1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
36 #include <asm/pgalloc.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
45 #include "hugetlb_vmemmap.h"
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size __initdata;
57 * Minimum page order among possible hugepage sizes, set to a proper value
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
62 __initdata LIST_HEAD(huge_boot_pages);
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72 * free_huge_pages, and surplus_huge_pages.
74 DEFINE_SPINLOCK(hugetlb_lock);
77 * Serializes faults on the same logical page. This is used to
78 * prevent spurious OOMs when the hugepage pool is fully utilized.
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
90 if (spool->max_hpages != -1)
91 return spool->used_hpages == 0;
92 if (spool->min_hpages != -1)
93 return spool->rsv_hpages == spool->min_hpages;
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99 unsigned long irq_flags)
101 spin_unlock_irqrestore(&spool->lock, irq_flags);
103 /* If no pages are used, and no other handles to the subpool
104 * remain, give up any reservations based on minimum size and
105 * free the subpool */
106 if (subpool_is_free(spool)) {
107 if (spool->min_hpages != -1)
108 hugetlb_acct_memory(spool->hstate,
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
117 struct hugepage_subpool *spool;
119 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 spin_lock_init(&spool->lock);
125 spool->max_hpages = max_hpages;
127 spool->min_hpages = min_hpages;
129 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 spool->rsv_hpages = min_hpages;
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 spin_lock_irqsave(&spool->lock, flags);
143 BUG_ON(!spool->count);
145 unlock_or_release_subpool(spool, flags);
149 * Subpool accounting for allocating and reserving pages.
150 * Return -ENOMEM if there are not enough resources to satisfy the
151 * request. Otherwise, return the number of pages by which the
152 * global pools must be adjusted (upward). The returned value may
153 * only be different than the passed value (delta) in the case where
154 * a subpool minimum size must be maintained.
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
164 spin_lock_irq(&spool->lock);
166 if (spool->max_hpages != -1) { /* maximum size accounting */
167 if ((spool->used_hpages + delta) <= spool->max_hpages)
168 spool->used_hpages += delta;
175 /* minimum size accounting */
176 if (spool->min_hpages != -1 && spool->rsv_hpages) {
177 if (delta > spool->rsv_hpages) {
179 * Asking for more reserves than those already taken on
180 * behalf of subpool. Return difference.
182 ret = delta - spool->rsv_hpages;
183 spool->rsv_hpages = 0;
185 ret = 0; /* reserves already accounted for */
186 spool->rsv_hpages -= delta;
191 spin_unlock_irq(&spool->lock);
196 * Subpool accounting for freeing and unreserving pages.
197 * Return the number of global page reservations that must be dropped.
198 * The return value may only be different than the passed value (delta)
199 * in the case where a subpool minimum size must be maintained.
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210 spin_lock_irqsave(&spool->lock, flags);
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
231 unlock_or_release_subpool(spool, flags);
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
238 return HUGETLBFS_SB(inode->i_sb)->spool;
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
243 return subpool_inode(file_inode(vma->vm_file));
246 /* Helper that removes a struct file_region from the resv_map cache and returns
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
252 struct file_region *nrg = NULL;
254 VM_BUG_ON(resv->region_cache_count <= 0);
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 list_del(&nrg->link);
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
269 #ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
280 struct resv_map *resv,
281 struct file_region *nrg)
283 #ifdef CONFIG_CGROUP_HUGETLB
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
306 nrg->reservation_counter = NULL;
312 static void put_uncharge_info(struct file_region *rg)
314 #ifdef CONFIG_CGROUP_HUGETLB
320 static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
323 #ifdef CONFIG_CGROUP_HUGETLB
325 rg->reservation_counter == org->reservation_counter &&
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
335 struct file_region *nrg = NULL, *prg = NULL;
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
343 put_uncharge_info(rg);
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
355 put_uncharge_info(rg);
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362 long to, struct hstate *h, struct hugetlb_cgroup *cg,
363 long *regions_needed)
365 struct file_region *nrg;
367 if (!regions_needed) {
368 nrg = get_file_region_entry_from_cache(map, from, to);
369 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370 list_add(&nrg->link, rg->link.prev);
371 coalesce_file_region(map, nrg);
373 *regions_needed += 1;
379 * Must be called with resv->lock held.
381 * Calling this with regions_needed != NULL will count the number of pages
382 * to be added but will not modify the linked list. And regions_needed will
383 * indicate the number of file_regions needed in the cache to carry out to add
384 * the regions for this range.
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387 struct hugetlb_cgroup *h_cg,
388 struct hstate *h, long *regions_needed)
391 struct list_head *head = &resv->regions;
392 long last_accounted_offset = f;
393 struct file_region *rg = NULL, *trg = NULL;
398 /* In this loop, we essentially handle an entry for the range
399 * [last_accounted_offset, rg->from), at every iteration, with some
402 list_for_each_entry_safe(rg, trg, head, link) {
403 /* Skip irrelevant regions that start before our range. */
405 /* If this region ends after the last accounted offset,
406 * then we need to update last_accounted_offset.
408 if (rg->to > last_accounted_offset)
409 last_accounted_offset = rg->to;
413 /* When we find a region that starts beyond our range, we've
419 /* Add an entry for last_accounted_offset -> rg->from, and
420 * update last_accounted_offset.
422 if (rg->from > last_accounted_offset)
423 add += hugetlb_resv_map_add(resv, rg,
424 last_accounted_offset,
428 last_accounted_offset = rg->to;
431 /* Handle the case where our range extends beyond
432 * last_accounted_offset.
434 if (last_accounted_offset < t)
435 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436 t, h, h_cg, regions_needed);
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
444 static int allocate_file_region_entries(struct resv_map *resv,
446 __must_hold(&resv->lock)
448 struct list_head allocated_regions;
449 int to_allocate = 0, i = 0;
450 struct file_region *trg = NULL, *rg = NULL;
452 VM_BUG_ON(regions_needed < 0);
454 INIT_LIST_HEAD(&allocated_regions);
457 * Check for sufficient descriptors in the cache to accommodate
458 * the number of in progress add operations plus regions_needed.
460 * This is a while loop because when we drop the lock, some other call
461 * to region_add or region_del may have consumed some region_entries,
462 * so we keep looping here until we finally have enough entries for
463 * (adds_in_progress + regions_needed).
465 while (resv->region_cache_count <
466 (resv->adds_in_progress + regions_needed)) {
467 to_allocate = resv->adds_in_progress + regions_needed -
468 resv->region_cache_count;
470 /* At this point, we should have enough entries in the cache
471 * for all the existing adds_in_progress. We should only be
472 * needing to allocate for regions_needed.
474 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
476 spin_unlock(&resv->lock);
477 for (i = 0; i < to_allocate; i++) {
478 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
481 list_add(&trg->link, &allocated_regions);
484 spin_lock(&resv->lock);
486 list_splice(&allocated_regions, &resv->region_cache);
487 resv->region_cache_count += to_allocate;
493 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
501 * Add the huge page range represented by [f, t) to the reserve
502 * map. Regions will be taken from the cache to fill in this range.
503 * Sufficient regions should exist in the cache due to the previous
504 * call to region_chg with the same range, but in some cases the cache will not
505 * have sufficient entries due to races with other code doing region_add or
506 * region_del. The extra needed entries will be allocated.
508 * regions_needed is the out value provided by a previous call to region_chg.
510 * Return the number of new huge pages added to the map. This number is greater
511 * than or equal to zero. If file_region entries needed to be allocated for
512 * this operation and we were not able to allocate, it returns -ENOMEM.
513 * region_add of regions of length 1 never allocate file_regions and cannot
514 * fail; region_chg will always allocate at least 1 entry and a region_add for
515 * 1 page will only require at most 1 entry.
517 static long region_add(struct resv_map *resv, long f, long t,
518 long in_regions_needed, struct hstate *h,
519 struct hugetlb_cgroup *h_cg)
521 long add = 0, actual_regions_needed = 0;
523 spin_lock(&resv->lock);
526 /* Count how many regions are actually needed to execute this add. */
527 add_reservation_in_range(resv, f, t, NULL, NULL,
528 &actual_regions_needed);
531 * Check for sufficient descriptors in the cache to accommodate
532 * this add operation. Note that actual_regions_needed may be greater
533 * than in_regions_needed, as the resv_map may have been modified since
534 * the region_chg call. In this case, we need to make sure that we
535 * allocate extra entries, such that we have enough for all the
536 * existing adds_in_progress, plus the excess needed for this
539 if (actual_regions_needed > in_regions_needed &&
540 resv->region_cache_count <
541 resv->adds_in_progress +
542 (actual_regions_needed - in_regions_needed)) {
543 /* region_add operation of range 1 should never need to
544 * allocate file_region entries.
546 VM_BUG_ON(t - f <= 1);
548 if (allocate_file_region_entries(
549 resv, actual_regions_needed - in_regions_needed)) {
556 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
558 resv->adds_in_progress -= in_regions_needed;
560 spin_unlock(&resv->lock);
565 * Examine the existing reserve map and determine how many
566 * huge pages in the specified range [f, t) are NOT currently
567 * represented. This routine is called before a subsequent
568 * call to region_add that will actually modify the reserve
569 * map to add the specified range [f, t). region_chg does
570 * not change the number of huge pages represented by the
571 * map. A number of new file_region structures is added to the cache as a
572 * placeholder, for the subsequent region_add call to use. At least 1
573 * file_region structure is added.
575 * out_regions_needed is the number of regions added to the
576 * resv->adds_in_progress. This value needs to be provided to a follow up call
577 * to region_add or region_abort for proper accounting.
579 * Returns the number of huge pages that need to be added to the existing
580 * reservation map for the range [f, t). This number is greater or equal to
581 * zero. -ENOMEM is returned if a new file_region structure or cache entry
582 * is needed and can not be allocated.
584 static long region_chg(struct resv_map *resv, long f, long t,
585 long *out_regions_needed)
589 spin_lock(&resv->lock);
591 /* Count how many hugepages in this range are NOT represented. */
592 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
595 if (*out_regions_needed == 0)
596 *out_regions_needed = 1;
598 if (allocate_file_region_entries(resv, *out_regions_needed))
601 resv->adds_in_progress += *out_regions_needed;
603 spin_unlock(&resv->lock);
608 * Abort the in progress add operation. The adds_in_progress field
609 * of the resv_map keeps track of the operations in progress between
610 * calls to region_chg and region_add. Operations are sometimes
611 * aborted after the call to region_chg. In such cases, region_abort
612 * is called to decrement the adds_in_progress counter. regions_needed
613 * is the value returned by the region_chg call, it is used to decrement
614 * the adds_in_progress counter.
616 * NOTE: The range arguments [f, t) are not needed or used in this
617 * routine. They are kept to make reading the calling code easier as
618 * arguments will match the associated region_chg call.
620 static void region_abort(struct resv_map *resv, long f, long t,
623 spin_lock(&resv->lock);
624 VM_BUG_ON(!resv->region_cache_count);
625 resv->adds_in_progress -= regions_needed;
626 spin_unlock(&resv->lock);
630 * Delete the specified range [f, t) from the reserve map. If the
631 * t parameter is LONG_MAX, this indicates that ALL regions after f
632 * should be deleted. Locate the regions which intersect [f, t)
633 * and either trim, delete or split the existing regions.
635 * Returns the number of huge pages deleted from the reserve map.
636 * In the normal case, the return value is zero or more. In the
637 * case where a region must be split, a new region descriptor must
638 * be allocated. If the allocation fails, -ENOMEM will be returned.
639 * NOTE: If the parameter t == LONG_MAX, then we will never split
640 * a region and possibly return -ENOMEM. Callers specifying
641 * t == LONG_MAX do not need to check for -ENOMEM error.
643 static long region_del(struct resv_map *resv, long f, long t)
645 struct list_head *head = &resv->regions;
646 struct file_region *rg, *trg;
647 struct file_region *nrg = NULL;
651 spin_lock(&resv->lock);
652 list_for_each_entry_safe(rg, trg, head, link) {
654 * Skip regions before the range to be deleted. file_region
655 * ranges are normally of the form [from, to). However, there
656 * may be a "placeholder" entry in the map which is of the form
657 * (from, to) with from == to. Check for placeholder entries
658 * at the beginning of the range to be deleted.
660 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
666 if (f > rg->from && t < rg->to) { /* Must split region */
668 * Check for an entry in the cache before dropping
669 * lock and attempting allocation.
672 resv->region_cache_count > resv->adds_in_progress) {
673 nrg = list_first_entry(&resv->region_cache,
676 list_del(&nrg->link);
677 resv->region_cache_count--;
681 spin_unlock(&resv->lock);
682 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
689 hugetlb_cgroup_uncharge_file_region(
690 resv, rg, t - f, false);
692 /* New entry for end of split region */
696 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
698 INIT_LIST_HEAD(&nrg->link);
700 /* Original entry is trimmed */
703 list_add(&nrg->link, &rg->link);
708 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709 del += rg->to - rg->from;
710 hugetlb_cgroup_uncharge_file_region(resv, rg,
711 rg->to - rg->from, true);
717 if (f <= rg->from) { /* Trim beginning of region */
718 hugetlb_cgroup_uncharge_file_region(resv, rg,
719 t - rg->from, false);
723 } else { /* Trim end of region */
724 hugetlb_cgroup_uncharge_file_region(resv, rg,
732 spin_unlock(&resv->lock);
738 * A rare out of memory error was encountered which prevented removal of
739 * the reserve map region for a page. The huge page itself was free'ed
740 * and removed from the page cache. This routine will adjust the subpool
741 * usage count, and the global reserve count if needed. By incrementing
742 * these counts, the reserve map entry which could not be deleted will
743 * appear as a "reserved" entry instead of simply dangling with incorrect
746 void hugetlb_fix_reserve_counts(struct inode *inode)
748 struct hugepage_subpool *spool = subpool_inode(inode);
750 bool reserved = false;
752 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753 if (rsv_adjust > 0) {
754 struct hstate *h = hstate_inode(inode);
756 if (!hugetlb_acct_memory(h, 1))
758 } else if (!rsv_adjust) {
763 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
767 * Count and return the number of huge pages in the reserve map
768 * that intersect with the range [f, t).
770 static long region_count(struct resv_map *resv, long f, long t)
772 struct list_head *head = &resv->regions;
773 struct file_region *rg;
776 spin_lock(&resv->lock);
777 /* Locate each segment we overlap with, and count that overlap. */
778 list_for_each_entry(rg, head, link) {
787 seg_from = max(rg->from, f);
788 seg_to = min(rg->to, t);
790 chg += seg_to - seg_from;
792 spin_unlock(&resv->lock);
798 * Convert the address within this vma to the page offset within
799 * the mapping, in pagecache page units; huge pages here.
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802 struct vm_area_struct *vma, unsigned long address)
804 return ((address - vma->vm_start) >> huge_page_shift(h)) +
805 (vma->vm_pgoff >> huge_page_order(h));
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809 unsigned long address)
811 return vma_hugecache_offset(hstate_vma(vma), vma, address);
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
816 * Return the size of the pages allocated when backing a VMA. In the majority
817 * cases this will be same size as used by the page table entries.
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
821 if (vma->vm_ops && vma->vm_ops->pagesize)
822 return vma->vm_ops->pagesize(vma);
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
828 * Return the page size being used by the MMU to back a VMA. In the majority
829 * of cases, the page size used by the kernel matches the MMU size. On
830 * architectures where it differs, an architecture-specific 'strong'
831 * version of this symbol is required.
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
835 return vma_kernel_pagesize(vma);
839 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
840 * bits of the reservation map pointer, which are always clear due to
843 #define HPAGE_RESV_OWNER (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
848 * These helpers are used to track how many pages are reserved for
849 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850 * is guaranteed to have their future faults succeed.
852 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853 * the reserve counters are updated with the hugetlb_lock held. It is safe
854 * to reset the VMA at fork() time as it is not in use yet and there is no
855 * chance of the global counters getting corrupted as a result of the values.
857 * The private mapping reservation is represented in a subtly different
858 * manner to a shared mapping. A shared mapping has a region map associated
859 * with the underlying file, this region map represents the backing file
860 * pages which have ever had a reservation assigned which this persists even
861 * after the page is instantiated. A private mapping has a region map
862 * associated with the original mmap which is attached to all VMAs which
863 * reference it, this region map represents those offsets which have consumed
864 * reservation ie. where pages have been instantiated.
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
868 return (unsigned long)vma->vm_private_data;
871 static void set_vma_private_data(struct vm_area_struct *vma,
874 vma->vm_private_data = (void *)value;
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879 struct hugetlb_cgroup *h_cg,
882 #ifdef CONFIG_CGROUP_HUGETLB
884 resv_map->reservation_counter = NULL;
885 resv_map->pages_per_hpage = 0;
886 resv_map->css = NULL;
888 resv_map->reservation_counter =
889 &h_cg->rsvd_hugepage[hstate_index(h)];
890 resv_map->pages_per_hpage = pages_per_huge_page(h);
891 resv_map->css = &h_cg->css;
896 struct resv_map *resv_map_alloc(void)
898 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
901 if (!resv_map || !rg) {
907 kref_init(&resv_map->refs);
908 spin_lock_init(&resv_map->lock);
909 INIT_LIST_HEAD(&resv_map->regions);
911 resv_map->adds_in_progress = 0;
913 * Initialize these to 0. On shared mappings, 0's here indicate these
914 * fields don't do cgroup accounting. On private mappings, these will be
915 * re-initialized to the proper values, to indicate that hugetlb cgroup
916 * reservations are to be un-charged from here.
918 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
920 INIT_LIST_HEAD(&resv_map->region_cache);
921 list_add(&rg->link, &resv_map->region_cache);
922 resv_map->region_cache_count = 1;
927 void resv_map_release(struct kref *ref)
929 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930 struct list_head *head = &resv_map->region_cache;
931 struct file_region *rg, *trg;
933 /* Clear out any active regions before we release the map. */
934 region_del(resv_map, 0, LONG_MAX);
936 /* ... and any entries left in the cache */
937 list_for_each_entry_safe(rg, trg, head, link) {
942 VM_BUG_ON(resv_map->adds_in_progress);
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
950 * At inode evict time, i_mapping may not point to the original
951 * address space within the inode. This original address space
952 * contains the pointer to the resv_map. So, always use the
953 * address space embedded within the inode.
954 * The VERY common case is inode->mapping == &inode->i_data but,
955 * this may not be true for device special inodes.
957 return (struct resv_map *)(&inode->i_data)->private_data;
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
962 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963 if (vma->vm_flags & VM_MAYSHARE) {
964 struct address_space *mapping = vma->vm_file->f_mapping;
965 struct inode *inode = mapping->host;
967 return inode_resv_map(inode);
970 return (struct resv_map *)(get_vma_private_data(vma) &
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
977 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
980 set_vma_private_data(vma, (get_vma_private_data(vma) &
981 HPAGE_RESV_MASK) | (unsigned long)map);
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
986 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
989 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
996 return (get_vma_private_data(vma) & flag) != 0;
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1002 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 if (!(vma->vm_flags & VM_MAYSHARE))
1004 vma->vm_private_data = (void *)0;
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1010 if (vma->vm_flags & VM_NORESERVE) {
1012 * This address is already reserved by other process(chg == 0),
1013 * so, we should decrement reserved count. Without decrementing,
1014 * reserve count remains after releasing inode, because this
1015 * allocated page will go into page cache and is regarded as
1016 * coming from reserved pool in releasing step. Currently, we
1017 * don't have any other solution to deal with this situation
1018 * properly, so add work-around here.
1020 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1026 /* Shared mappings always use reserves */
1027 if (vma->vm_flags & VM_MAYSHARE) {
1029 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1030 * be a region map for all pages. The only situation where
1031 * there is no region map is if a hole was punched via
1032 * fallocate. In this case, there really are no reserves to
1033 * use. This situation is indicated if chg != 0.
1042 * Only the process that called mmap() has reserves for
1045 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1047 * Like the shared case above, a hole punch or truncate
1048 * could have been performed on the private mapping.
1049 * Examine the value of chg to determine if reserves
1050 * actually exist or were previously consumed.
1051 * Very Subtle - The value of chg comes from a previous
1052 * call to vma_needs_reserves(). The reserve map for
1053 * private mappings has different (opposite) semantics
1054 * than that of shared mappings. vma_needs_reserves()
1055 * has already taken this difference in semantics into
1056 * account. Therefore, the meaning of chg is the same
1057 * as in the shared case above. Code could easily be
1058 * combined, but keeping it separate draws attention to
1059 * subtle differences.
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1072 int nid = page_to_nid(page);
1074 lockdep_assert_held(&hugetlb_lock);
1075 VM_BUG_ON_PAGE(page_count(page), page);
1077 list_move(&page->lru, &h->hugepage_freelists[nid]);
1078 h->free_huge_pages++;
1079 h->free_huge_pages_node[nid]++;
1080 SetHPageFreed(page);
1083 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1086 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1088 lockdep_assert_held(&hugetlb_lock);
1089 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1090 if (pin && !is_pinnable_page(page))
1093 if (PageHWPoison(page))
1096 list_move(&page->lru, &h->hugepage_activelist);
1097 set_page_refcounted(page);
1098 ClearHPageFreed(page);
1099 h->free_huge_pages--;
1100 h->free_huge_pages_node[nid]--;
1107 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1110 unsigned int cpuset_mems_cookie;
1111 struct zonelist *zonelist;
1114 int node = NUMA_NO_NODE;
1116 zonelist = node_zonelist(nid, gfp_mask);
1119 cpuset_mems_cookie = read_mems_allowed_begin();
1120 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1123 if (!cpuset_zone_allowed(zone, gfp_mask))
1126 * no need to ask again on the same node. Pool is node rather than
1129 if (zone_to_nid(zone) == node)
1131 node = zone_to_nid(zone);
1133 page = dequeue_huge_page_node_exact(h, node);
1137 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1143 static struct page *dequeue_huge_page_vma(struct hstate *h,
1144 struct vm_area_struct *vma,
1145 unsigned long address, int avoid_reserve,
1148 struct page *page = NULL;
1149 struct mempolicy *mpol;
1151 nodemask_t *nodemask;
1155 * A child process with MAP_PRIVATE mappings created by their parent
1156 * have no page reserves. This check ensures that reservations are
1157 * not "stolen". The child may still get SIGKILLed
1159 if (!vma_has_reserves(vma, chg) &&
1160 h->free_huge_pages - h->resv_huge_pages == 0)
1163 /* If reserves cannot be used, ensure enough pages are in the pool */
1164 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1167 gfp_mask = htlb_alloc_mask(h);
1168 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1170 if (mpol_is_preferred_many(mpol)) {
1171 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1173 /* Fallback to all nodes if page==NULL */
1178 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1180 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1181 SetHPageRestoreReserve(page);
1182 h->resv_huge_pages--;
1185 mpol_cond_put(mpol);
1193 * common helper functions for hstate_next_node_to_{alloc|free}.
1194 * We may have allocated or freed a huge page based on a different
1195 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1196 * be outside of *nodes_allowed. Ensure that we use an allowed
1197 * node for alloc or free.
1199 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1201 nid = next_node_in(nid, *nodes_allowed);
1202 VM_BUG_ON(nid >= MAX_NUMNODES);
1207 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1209 if (!node_isset(nid, *nodes_allowed))
1210 nid = next_node_allowed(nid, nodes_allowed);
1215 * returns the previously saved node ["this node"] from which to
1216 * allocate a persistent huge page for the pool and advance the
1217 * next node from which to allocate, handling wrap at end of node
1220 static int hstate_next_node_to_alloc(struct hstate *h,
1221 nodemask_t *nodes_allowed)
1225 VM_BUG_ON(!nodes_allowed);
1227 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1228 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1234 * helper for remove_pool_huge_page() - return the previously saved
1235 * node ["this node"] from which to free a huge page. Advance the
1236 * next node id whether or not we find a free huge page to free so
1237 * that the next attempt to free addresses the next node.
1239 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1243 VM_BUG_ON(!nodes_allowed);
1245 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1246 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1251 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1252 for (nr_nodes = nodes_weight(*mask); \
1254 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1257 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1258 for (nr_nodes = nodes_weight(*mask); \
1260 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1263 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1264 static void destroy_compound_gigantic_page(struct page *page,
1268 int nr_pages = 1 << order;
1269 struct page *p = page + 1;
1271 atomic_set(compound_mapcount_ptr(page), 0);
1272 atomic_set(compound_pincount_ptr(page), 0);
1274 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1275 clear_compound_head(p);
1276 set_page_refcounted(p);
1279 set_compound_order(page, 0);
1280 page[1].compound_nr = 0;
1281 __ClearPageHead(page);
1284 static void free_gigantic_page(struct page *page, unsigned int order)
1287 * If the page isn't allocated using the cma allocator,
1288 * cma_release() returns false.
1291 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1295 free_contig_range(page_to_pfn(page), 1 << order);
1298 #ifdef CONFIG_CONTIG_ALLOC
1299 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1300 int nid, nodemask_t *nodemask)
1302 unsigned long nr_pages = pages_per_huge_page(h);
1303 if (nid == NUMA_NO_NODE)
1304 nid = numa_mem_id();
1311 if (hugetlb_cma[nid]) {
1312 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1313 huge_page_order(h), true);
1318 if (!(gfp_mask & __GFP_THISNODE)) {
1319 for_each_node_mask(node, *nodemask) {
1320 if (node == nid || !hugetlb_cma[node])
1323 page = cma_alloc(hugetlb_cma[node], nr_pages,
1324 huge_page_order(h), true);
1332 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1335 #else /* !CONFIG_CONTIG_ALLOC */
1336 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1337 int nid, nodemask_t *nodemask)
1341 #endif /* CONFIG_CONTIG_ALLOC */
1343 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1344 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1345 int nid, nodemask_t *nodemask)
1349 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1350 static inline void destroy_compound_gigantic_page(struct page *page,
1351 unsigned int order) { }
1355 * Remove hugetlb page from lists, and update dtor so that page appears
1356 * as just a compound page. A reference is held on the page.
1358 * Must be called with hugetlb lock held.
1360 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1361 bool adjust_surplus)
1363 int nid = page_to_nid(page);
1365 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1366 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1368 lockdep_assert_held(&hugetlb_lock);
1369 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1372 list_del(&page->lru);
1374 if (HPageFreed(page)) {
1375 h->free_huge_pages--;
1376 h->free_huge_pages_node[nid]--;
1378 if (adjust_surplus) {
1379 h->surplus_huge_pages--;
1380 h->surplus_huge_pages_node[nid]--;
1386 * For non-gigantic pages set the destructor to the normal compound
1387 * page dtor. This is needed in case someone takes an additional
1388 * temporary ref to the page, and freeing is delayed until they drop
1391 * For gigantic pages set the destructor to the null dtor. This
1392 * destructor will never be called. Before freeing the gigantic
1393 * page destroy_compound_gigantic_page will turn the compound page
1394 * into a simple group of pages. After this the destructor does not
1397 * This handles the case where more than one ref is held when and
1398 * after update_and_free_page is called.
1400 set_page_refcounted(page);
1401 if (hstate_is_gigantic(h))
1402 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1404 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1407 h->nr_huge_pages_node[nid]--;
1410 static void add_hugetlb_page(struct hstate *h, struct page *page,
1411 bool adjust_surplus)
1414 int nid = page_to_nid(page);
1416 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1418 lockdep_assert_held(&hugetlb_lock);
1420 INIT_LIST_HEAD(&page->lru);
1422 h->nr_huge_pages_node[nid]++;
1424 if (adjust_surplus) {
1425 h->surplus_huge_pages++;
1426 h->surplus_huge_pages_node[nid]++;
1429 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1430 set_page_private(page, 0);
1431 SetHPageVmemmapOptimized(page);
1434 * This page is about to be managed by the hugetlb allocator and
1435 * should have no users. Drop our reference, and check for others
1438 zeroed = put_page_testzero(page);
1441 * It is VERY unlikely soneone else has taken a ref on
1442 * the page. In this case, we simply return as the
1443 * hugetlb destructor (free_huge_page) will be called
1444 * when this other ref is dropped.
1448 arch_clear_hugepage_flags(page);
1449 enqueue_huge_page(h, page);
1452 static void __update_and_free_page(struct hstate *h, struct page *page)
1455 struct page *subpage = page;
1457 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1460 if (alloc_huge_page_vmemmap(h, page)) {
1461 spin_lock_irq(&hugetlb_lock);
1463 * If we cannot allocate vmemmap pages, just refuse to free the
1464 * page and put the page back on the hugetlb free list and treat
1465 * as a surplus page.
1467 add_hugetlb_page(h, page, true);
1468 spin_unlock_irq(&hugetlb_lock);
1472 for (i = 0; i < pages_per_huge_page(h);
1473 i++, subpage = mem_map_next(subpage, page, i)) {
1474 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1475 1 << PG_referenced | 1 << PG_dirty |
1476 1 << PG_active | 1 << PG_private |
1479 if (hstate_is_gigantic(h)) {
1480 destroy_compound_gigantic_page(page, huge_page_order(h));
1481 free_gigantic_page(page, huge_page_order(h));
1483 __free_pages(page, huge_page_order(h));
1488 * As update_and_free_page() can be called under any context, so we cannot
1489 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1490 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1491 * the vmemmap pages.
1493 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1494 * freed and frees them one-by-one. As the page->mapping pointer is going
1495 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1496 * structure of a lockless linked list of huge pages to be freed.
1498 static LLIST_HEAD(hpage_freelist);
1500 static void free_hpage_workfn(struct work_struct *work)
1502 struct llist_node *node;
1504 node = llist_del_all(&hpage_freelist);
1510 page = container_of((struct address_space **)node,
1511 struct page, mapping);
1513 page->mapping = NULL;
1515 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1516 * is going to trigger because a previous call to
1517 * remove_hugetlb_page() will set_compound_page_dtor(page,
1518 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1520 h = size_to_hstate(page_size(page));
1522 __update_and_free_page(h, page);
1527 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1529 static inline void flush_free_hpage_work(struct hstate *h)
1531 if (free_vmemmap_pages_per_hpage(h))
1532 flush_work(&free_hpage_work);
1535 static void update_and_free_page(struct hstate *h, struct page *page,
1538 if (!HPageVmemmapOptimized(page) || !atomic) {
1539 __update_and_free_page(h, page);
1544 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1546 * Only call schedule_work() if hpage_freelist is previously
1547 * empty. Otherwise, schedule_work() had been called but the workfn
1548 * hasn't retrieved the list yet.
1550 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1551 schedule_work(&free_hpage_work);
1554 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1556 struct page *page, *t_page;
1558 list_for_each_entry_safe(page, t_page, list, lru) {
1559 update_and_free_page(h, page, false);
1564 struct hstate *size_to_hstate(unsigned long size)
1568 for_each_hstate(h) {
1569 if (huge_page_size(h) == size)
1575 void free_huge_page(struct page *page)
1578 * Can't pass hstate in here because it is called from the
1579 * compound page destructor.
1581 struct hstate *h = page_hstate(page);
1582 int nid = page_to_nid(page);
1583 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1584 bool restore_reserve;
1585 unsigned long flags;
1587 VM_BUG_ON_PAGE(page_count(page), page);
1588 VM_BUG_ON_PAGE(page_mapcount(page), page);
1590 hugetlb_set_page_subpool(page, NULL);
1591 page->mapping = NULL;
1592 restore_reserve = HPageRestoreReserve(page);
1593 ClearHPageRestoreReserve(page);
1596 * If HPageRestoreReserve was set on page, page allocation consumed a
1597 * reservation. If the page was associated with a subpool, there
1598 * would have been a page reserved in the subpool before allocation
1599 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1600 * reservation, do not call hugepage_subpool_put_pages() as this will
1601 * remove the reserved page from the subpool.
1603 if (!restore_reserve) {
1605 * A return code of zero implies that the subpool will be
1606 * under its minimum size if the reservation is not restored
1607 * after page is free. Therefore, force restore_reserve
1610 if (hugepage_subpool_put_pages(spool, 1) == 0)
1611 restore_reserve = true;
1614 spin_lock_irqsave(&hugetlb_lock, flags);
1615 ClearHPageMigratable(page);
1616 hugetlb_cgroup_uncharge_page(hstate_index(h),
1617 pages_per_huge_page(h), page);
1618 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1619 pages_per_huge_page(h), page);
1620 if (restore_reserve)
1621 h->resv_huge_pages++;
1623 if (HPageTemporary(page)) {
1624 remove_hugetlb_page(h, page, false);
1625 spin_unlock_irqrestore(&hugetlb_lock, flags);
1626 update_and_free_page(h, page, true);
1627 } else if (h->surplus_huge_pages_node[nid]) {
1628 /* remove the page from active list */
1629 remove_hugetlb_page(h, page, true);
1630 spin_unlock_irqrestore(&hugetlb_lock, flags);
1631 update_and_free_page(h, page, true);
1633 arch_clear_hugepage_flags(page);
1634 enqueue_huge_page(h, page);
1635 spin_unlock_irqrestore(&hugetlb_lock, flags);
1640 * Must be called with the hugetlb lock held
1642 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1644 lockdep_assert_held(&hugetlb_lock);
1646 h->nr_huge_pages_node[nid]++;
1649 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1651 free_huge_page_vmemmap(h, page);
1652 INIT_LIST_HEAD(&page->lru);
1653 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1654 hugetlb_set_page_subpool(page, NULL);
1655 set_hugetlb_cgroup(page, NULL);
1656 set_hugetlb_cgroup_rsvd(page, NULL);
1659 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1661 __prep_new_huge_page(h, page);
1662 spin_lock_irq(&hugetlb_lock);
1663 __prep_account_new_huge_page(h, nid);
1664 spin_unlock_irq(&hugetlb_lock);
1667 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1670 int nr_pages = 1 << order;
1671 struct page *p = page + 1;
1673 /* we rely on prep_new_huge_page to set the destructor */
1674 set_compound_order(page, order);
1675 __ClearPageReserved(page);
1676 __SetPageHead(page);
1677 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1679 * For gigantic hugepages allocated through bootmem at
1680 * boot, it's safer to be consistent with the not-gigantic
1681 * hugepages and clear the PG_reserved bit from all tail pages
1682 * too. Otherwise drivers using get_user_pages() to access tail
1683 * pages may get the reference counting wrong if they see
1684 * PG_reserved set on a tail page (despite the head page not
1685 * having PG_reserved set). Enforcing this consistency between
1686 * head and tail pages allows drivers to optimize away a check
1687 * on the head page when they need know if put_page() is needed
1688 * after get_user_pages().
1690 __ClearPageReserved(p);
1692 * Subtle and very unlikely
1694 * Gigantic 'page allocators' such as memblock or cma will
1695 * return a set of pages with each page ref counted. We need
1696 * to turn this set of pages into a compound page with tail
1697 * page ref counts set to zero. Code such as speculative page
1698 * cache adding could take a ref on a 'to be' tail page.
1699 * We need to respect any increased ref count, and only set
1700 * the ref count to zero if count is currently 1. If count
1701 * is not 1, we return an error. An error return indicates
1702 * the set of pages can not be converted to a gigantic page.
1703 * The caller who allocated the pages should then discard the
1704 * pages using the appropriate free interface.
1706 if (!page_ref_freeze(p, 1)) {
1707 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1710 set_page_count(p, 0);
1711 set_compound_head(p, page);
1713 atomic_set(compound_mapcount_ptr(page), -1);
1714 atomic_set(compound_pincount_ptr(page), 0);
1718 /* undo tail page modifications made above */
1720 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1721 clear_compound_head(p);
1722 set_page_refcounted(p);
1724 /* need to clear PG_reserved on remaining tail pages */
1725 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1726 __ClearPageReserved(p);
1727 set_compound_order(page, 0);
1728 page[1].compound_nr = 0;
1729 __ClearPageHead(page);
1734 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1735 * transparent huge pages. See the PageTransHuge() documentation for more
1738 int PageHuge(struct page *page)
1740 if (!PageCompound(page))
1743 page = compound_head(page);
1744 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1746 EXPORT_SYMBOL_GPL(PageHuge);
1749 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1750 * normal or transparent huge pages.
1752 int PageHeadHuge(struct page *page_head)
1754 if (!PageHead(page_head))
1757 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1761 * Find and lock address space (mapping) in write mode.
1763 * Upon entry, the page is locked which means that page_mapping() is
1764 * stable. Due to locking order, we can only trylock_write. If we can
1765 * not get the lock, simply return NULL to caller.
1767 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1769 struct address_space *mapping = page_mapping(hpage);
1774 if (i_mmap_trylock_write(mapping))
1780 pgoff_t hugetlb_basepage_index(struct page *page)
1782 struct page *page_head = compound_head(page);
1783 pgoff_t index = page_index(page_head);
1784 unsigned long compound_idx;
1786 if (compound_order(page_head) >= MAX_ORDER)
1787 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1789 compound_idx = page - page_head;
1791 return (index << compound_order(page_head)) + compound_idx;
1794 static struct page *alloc_buddy_huge_page(struct hstate *h,
1795 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1796 nodemask_t *node_alloc_noretry)
1798 int order = huge_page_order(h);
1800 bool alloc_try_hard = true;
1803 * By default we always try hard to allocate the page with
1804 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1805 * a loop (to adjust global huge page counts) and previous allocation
1806 * failed, do not continue to try hard on the same node. Use the
1807 * node_alloc_noretry bitmap to manage this state information.
1809 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1810 alloc_try_hard = false;
1811 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1813 gfp_mask |= __GFP_RETRY_MAYFAIL;
1814 if (nid == NUMA_NO_NODE)
1815 nid = numa_mem_id();
1816 page = __alloc_pages(gfp_mask, order, nid, nmask);
1818 __count_vm_event(HTLB_BUDDY_PGALLOC);
1820 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1823 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1824 * indicates an overall state change. Clear bit so that we resume
1825 * normal 'try hard' allocations.
1827 if (node_alloc_noretry && page && !alloc_try_hard)
1828 node_clear(nid, *node_alloc_noretry);
1831 * If we tried hard to get a page but failed, set bit so that
1832 * subsequent attempts will not try as hard until there is an
1833 * overall state change.
1835 if (node_alloc_noretry && !page && alloc_try_hard)
1836 node_set(nid, *node_alloc_noretry);
1842 * Common helper to allocate a fresh hugetlb page. All specific allocators
1843 * should use this function to get new hugetlb pages
1845 static struct page *alloc_fresh_huge_page(struct hstate *h,
1846 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1847 nodemask_t *node_alloc_noretry)
1853 if (hstate_is_gigantic(h))
1854 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1856 page = alloc_buddy_huge_page(h, gfp_mask,
1857 nid, nmask, node_alloc_noretry);
1861 if (hstate_is_gigantic(h)) {
1862 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1864 * Rare failure to convert pages to compound page.
1865 * Free pages and try again - ONCE!
1867 free_gigantic_page(page, huge_page_order(h));
1875 prep_new_huge_page(h, page, page_to_nid(page));
1881 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1884 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1885 nodemask_t *node_alloc_noretry)
1889 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1891 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1892 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1893 node_alloc_noretry);
1901 put_page(page); /* free it into the hugepage allocator */
1907 * Remove huge page from pool from next node to free. Attempt to keep
1908 * persistent huge pages more or less balanced over allowed nodes.
1909 * This routine only 'removes' the hugetlb page. The caller must make
1910 * an additional call to free the page to low level allocators.
1911 * Called with hugetlb_lock locked.
1913 static struct page *remove_pool_huge_page(struct hstate *h,
1914 nodemask_t *nodes_allowed,
1918 struct page *page = NULL;
1920 lockdep_assert_held(&hugetlb_lock);
1921 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1923 * If we're returning unused surplus pages, only examine
1924 * nodes with surplus pages.
1926 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1927 !list_empty(&h->hugepage_freelists[node])) {
1928 page = list_entry(h->hugepage_freelists[node].next,
1930 remove_hugetlb_page(h, page, acct_surplus);
1939 * Dissolve a given free hugepage into free buddy pages. This function does
1940 * nothing for in-use hugepages and non-hugepages.
1941 * This function returns values like below:
1943 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1944 * when the system is under memory pressure and the feature of
1945 * freeing unused vmemmap pages associated with each hugetlb page
1947 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1948 * (allocated or reserved.)
1949 * 0: successfully dissolved free hugepages or the page is not a
1950 * hugepage (considered as already dissolved)
1952 int dissolve_free_huge_page(struct page *page)
1957 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1958 if (!PageHuge(page))
1961 spin_lock_irq(&hugetlb_lock);
1962 if (!PageHuge(page)) {
1967 if (!page_count(page)) {
1968 struct page *head = compound_head(page);
1969 struct hstate *h = page_hstate(head);
1970 if (h->free_huge_pages - h->resv_huge_pages == 0)
1974 * We should make sure that the page is already on the free list
1975 * when it is dissolved.
1977 if (unlikely(!HPageFreed(head))) {
1978 spin_unlock_irq(&hugetlb_lock);
1982 * Theoretically, we should return -EBUSY when we
1983 * encounter this race. In fact, we have a chance
1984 * to successfully dissolve the page if we do a
1985 * retry. Because the race window is quite small.
1986 * If we seize this opportunity, it is an optimization
1987 * for increasing the success rate of dissolving page.
1992 remove_hugetlb_page(h, head, false);
1993 h->max_huge_pages--;
1994 spin_unlock_irq(&hugetlb_lock);
1997 * Normally update_and_free_page will allocate required vmemmmap
1998 * before freeing the page. update_and_free_page will fail to
1999 * free the page if it can not allocate required vmemmap. We
2000 * need to adjust max_huge_pages if the page is not freed.
2001 * Attempt to allocate vmemmmap here so that we can take
2002 * appropriate action on failure.
2004 rc = alloc_huge_page_vmemmap(h, head);
2007 * Move PageHWPoison flag from head page to the raw
2008 * error page, which makes any subpages rather than
2009 * the error page reusable.
2011 if (PageHWPoison(head) && page != head) {
2012 SetPageHWPoison(page);
2013 ClearPageHWPoison(head);
2015 update_and_free_page(h, head, false);
2017 spin_lock_irq(&hugetlb_lock);
2018 add_hugetlb_page(h, head, false);
2019 h->max_huge_pages++;
2020 spin_unlock_irq(&hugetlb_lock);
2026 spin_unlock_irq(&hugetlb_lock);
2031 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2032 * make specified memory blocks removable from the system.
2033 * Note that this will dissolve a free gigantic hugepage completely, if any
2034 * part of it lies within the given range.
2035 * Also note that if dissolve_free_huge_page() returns with an error, all
2036 * free hugepages that were dissolved before that error are lost.
2038 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2044 if (!hugepages_supported())
2047 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2048 page = pfn_to_page(pfn);
2049 rc = dissolve_free_huge_page(page);
2058 * Allocates a fresh surplus page from the page allocator.
2060 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2061 int nid, nodemask_t *nmask, bool zero_ref)
2063 struct page *page = NULL;
2066 if (hstate_is_gigantic(h))
2069 spin_lock_irq(&hugetlb_lock);
2070 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2072 spin_unlock_irq(&hugetlb_lock);
2075 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2079 spin_lock_irq(&hugetlb_lock);
2081 * We could have raced with the pool size change.
2082 * Double check that and simply deallocate the new page
2083 * if we would end up overcommiting the surpluses. Abuse
2084 * temporary page to workaround the nasty free_huge_page
2087 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2088 SetHPageTemporary(page);
2089 spin_unlock_irq(&hugetlb_lock);
2096 * Caller requires a page with zero ref count.
2097 * We will drop ref count here. If someone else is holding
2098 * a ref, the page will be freed when they drop it. Abuse
2099 * temporary page flag to accomplish this.
2101 SetHPageTemporary(page);
2102 if (!put_page_testzero(page)) {
2104 * Unexpected inflated ref count on freshly allocated
2107 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2108 spin_unlock_irq(&hugetlb_lock);
2115 ClearHPageTemporary(page);
2118 h->surplus_huge_pages++;
2119 h->surplus_huge_pages_node[page_to_nid(page)]++;
2122 spin_unlock_irq(&hugetlb_lock);
2127 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2128 int nid, nodemask_t *nmask)
2132 if (hstate_is_gigantic(h))
2135 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2140 * We do not account these pages as surplus because they are only
2141 * temporary and will be released properly on the last reference
2143 SetHPageTemporary(page);
2149 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2152 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2153 struct vm_area_struct *vma, unsigned long addr)
2155 struct page *page = NULL;
2156 struct mempolicy *mpol;
2157 gfp_t gfp_mask = htlb_alloc_mask(h);
2159 nodemask_t *nodemask;
2161 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2162 if (mpol_is_preferred_many(mpol)) {
2163 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2165 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2166 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2168 /* Fallback to all nodes if page==NULL */
2173 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2174 mpol_cond_put(mpol);
2178 /* page migration callback function */
2179 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2180 nodemask_t *nmask, gfp_t gfp_mask)
2182 spin_lock_irq(&hugetlb_lock);
2183 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2186 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2188 spin_unlock_irq(&hugetlb_lock);
2192 spin_unlock_irq(&hugetlb_lock);
2194 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2197 /* mempolicy aware migration callback */
2198 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2199 unsigned long address)
2201 struct mempolicy *mpol;
2202 nodemask_t *nodemask;
2207 gfp_mask = htlb_alloc_mask(h);
2208 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2209 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2210 mpol_cond_put(mpol);
2216 * Increase the hugetlb pool such that it can accommodate a reservation
2219 static int gather_surplus_pages(struct hstate *h, long delta)
2220 __must_hold(&hugetlb_lock)
2222 struct list_head surplus_list;
2223 struct page *page, *tmp;
2226 long needed, allocated;
2227 bool alloc_ok = true;
2229 lockdep_assert_held(&hugetlb_lock);
2230 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2232 h->resv_huge_pages += delta;
2237 INIT_LIST_HEAD(&surplus_list);
2241 spin_unlock_irq(&hugetlb_lock);
2242 for (i = 0; i < needed; i++) {
2243 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2244 NUMA_NO_NODE, NULL, true);
2249 list_add(&page->lru, &surplus_list);
2255 * After retaking hugetlb_lock, we need to recalculate 'needed'
2256 * because either resv_huge_pages or free_huge_pages may have changed.
2258 spin_lock_irq(&hugetlb_lock);
2259 needed = (h->resv_huge_pages + delta) -
2260 (h->free_huge_pages + allocated);
2265 * We were not able to allocate enough pages to
2266 * satisfy the entire reservation so we free what
2267 * we've allocated so far.
2272 * The surplus_list now contains _at_least_ the number of extra pages
2273 * needed to accommodate the reservation. Add the appropriate number
2274 * of pages to the hugetlb pool and free the extras back to the buddy
2275 * allocator. Commit the entire reservation here to prevent another
2276 * process from stealing the pages as they are added to the pool but
2277 * before they are reserved.
2279 needed += allocated;
2280 h->resv_huge_pages += delta;
2283 /* Free the needed pages to the hugetlb pool */
2284 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2287 /* Add the page to the hugetlb allocator */
2288 enqueue_huge_page(h, page);
2291 spin_unlock_irq(&hugetlb_lock);
2294 * Free unnecessary surplus pages to the buddy allocator.
2295 * Pages have no ref count, call free_huge_page directly.
2297 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2298 free_huge_page(page);
2299 spin_lock_irq(&hugetlb_lock);
2305 * This routine has two main purposes:
2306 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2307 * in unused_resv_pages. This corresponds to the prior adjustments made
2308 * to the associated reservation map.
2309 * 2) Free any unused surplus pages that may have been allocated to satisfy
2310 * the reservation. As many as unused_resv_pages may be freed.
2312 static void return_unused_surplus_pages(struct hstate *h,
2313 unsigned long unused_resv_pages)
2315 unsigned long nr_pages;
2317 LIST_HEAD(page_list);
2319 lockdep_assert_held(&hugetlb_lock);
2320 /* Uncommit the reservation */
2321 h->resv_huge_pages -= unused_resv_pages;
2323 /* Cannot return gigantic pages currently */
2324 if (hstate_is_gigantic(h))
2328 * Part (or even all) of the reservation could have been backed
2329 * by pre-allocated pages. Only free surplus pages.
2331 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2334 * We want to release as many surplus pages as possible, spread
2335 * evenly across all nodes with memory. Iterate across these nodes
2336 * until we can no longer free unreserved surplus pages. This occurs
2337 * when the nodes with surplus pages have no free pages.
2338 * remove_pool_huge_page() will balance the freed pages across the
2339 * on-line nodes with memory and will handle the hstate accounting.
2341 while (nr_pages--) {
2342 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2346 list_add(&page->lru, &page_list);
2350 spin_unlock_irq(&hugetlb_lock);
2351 update_and_free_pages_bulk(h, &page_list);
2352 spin_lock_irq(&hugetlb_lock);
2357 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2358 * are used by the huge page allocation routines to manage reservations.
2360 * vma_needs_reservation is called to determine if the huge page at addr
2361 * within the vma has an associated reservation. If a reservation is
2362 * needed, the value 1 is returned. The caller is then responsible for
2363 * managing the global reservation and subpool usage counts. After
2364 * the huge page has been allocated, vma_commit_reservation is called
2365 * to add the page to the reservation map. If the page allocation fails,
2366 * the reservation must be ended instead of committed. vma_end_reservation
2367 * is called in such cases.
2369 * In the normal case, vma_commit_reservation returns the same value
2370 * as the preceding vma_needs_reservation call. The only time this
2371 * is not the case is if a reserve map was changed between calls. It
2372 * is the responsibility of the caller to notice the difference and
2373 * take appropriate action.
2375 * vma_add_reservation is used in error paths where a reservation must
2376 * be restored when a newly allocated huge page must be freed. It is
2377 * to be called after calling vma_needs_reservation to determine if a
2378 * reservation exists.
2380 * vma_del_reservation is used in error paths where an entry in the reserve
2381 * map was created during huge page allocation and must be removed. It is to
2382 * be called after calling vma_needs_reservation to determine if a reservation
2385 enum vma_resv_mode {
2392 static long __vma_reservation_common(struct hstate *h,
2393 struct vm_area_struct *vma, unsigned long addr,
2394 enum vma_resv_mode mode)
2396 struct resv_map *resv;
2399 long dummy_out_regions_needed;
2401 resv = vma_resv_map(vma);
2405 idx = vma_hugecache_offset(h, vma, addr);
2407 case VMA_NEEDS_RESV:
2408 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2409 /* We assume that vma_reservation_* routines always operate on
2410 * 1 page, and that adding to resv map a 1 page entry can only
2411 * ever require 1 region.
2413 VM_BUG_ON(dummy_out_regions_needed != 1);
2415 case VMA_COMMIT_RESV:
2416 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2417 /* region_add calls of range 1 should never fail. */
2421 region_abort(resv, idx, idx + 1, 1);
2425 if (vma->vm_flags & VM_MAYSHARE) {
2426 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2427 /* region_add calls of range 1 should never fail. */
2430 region_abort(resv, idx, idx + 1, 1);
2431 ret = region_del(resv, idx, idx + 1);
2435 if (vma->vm_flags & VM_MAYSHARE) {
2436 region_abort(resv, idx, idx + 1, 1);
2437 ret = region_del(resv, idx, idx + 1);
2439 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2440 /* region_add calls of range 1 should never fail. */
2448 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2451 * We know private mapping must have HPAGE_RESV_OWNER set.
2453 * In most cases, reserves always exist for private mappings.
2454 * However, a file associated with mapping could have been
2455 * hole punched or truncated after reserves were consumed.
2456 * As subsequent fault on such a range will not use reserves.
2457 * Subtle - The reserve map for private mappings has the
2458 * opposite meaning than that of shared mappings. If NO
2459 * entry is in the reserve map, it means a reservation exists.
2460 * If an entry exists in the reserve map, it means the
2461 * reservation has already been consumed. As a result, the
2462 * return value of this routine is the opposite of the
2463 * value returned from reserve map manipulation routines above.
2472 static long vma_needs_reservation(struct hstate *h,
2473 struct vm_area_struct *vma, unsigned long addr)
2475 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2478 static long vma_commit_reservation(struct hstate *h,
2479 struct vm_area_struct *vma, unsigned long addr)
2481 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2484 static void vma_end_reservation(struct hstate *h,
2485 struct vm_area_struct *vma, unsigned long addr)
2487 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2490 static long vma_add_reservation(struct hstate *h,
2491 struct vm_area_struct *vma, unsigned long addr)
2493 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2496 static long vma_del_reservation(struct hstate *h,
2497 struct vm_area_struct *vma, unsigned long addr)
2499 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2503 * This routine is called to restore reservation information on error paths.
2504 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2505 * the hugetlb mutex should remain held when calling this routine.
2507 * It handles two specific cases:
2508 * 1) A reservation was in place and the page consumed the reservation.
2509 * HPageRestoreReserve is set in the page.
2510 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2511 * not set. However, alloc_huge_page always updates the reserve map.
2513 * In case 1, free_huge_page later in the error path will increment the
2514 * global reserve count. But, free_huge_page does not have enough context
2515 * to adjust the reservation map. This case deals primarily with private
2516 * mappings. Adjust the reserve map here to be consistent with global
2517 * reserve count adjustments to be made by free_huge_page. Make sure the
2518 * reserve map indicates there is a reservation present.
2520 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2522 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2523 unsigned long address, struct page *page)
2525 long rc = vma_needs_reservation(h, vma, address);
2527 if (HPageRestoreReserve(page)) {
2528 if (unlikely(rc < 0))
2530 * Rare out of memory condition in reserve map
2531 * manipulation. Clear HPageRestoreReserve so that
2532 * global reserve count will not be incremented
2533 * by free_huge_page. This will make it appear
2534 * as though the reservation for this page was
2535 * consumed. This may prevent the task from
2536 * faulting in the page at a later time. This
2537 * is better than inconsistent global huge page
2538 * accounting of reserve counts.
2540 ClearHPageRestoreReserve(page);
2542 (void)vma_add_reservation(h, vma, address);
2544 vma_end_reservation(h, vma, address);
2548 * This indicates there is an entry in the reserve map
2549 * not added by alloc_huge_page. We know it was added
2550 * before the alloc_huge_page call, otherwise
2551 * HPageRestoreReserve would be set on the page.
2552 * Remove the entry so that a subsequent allocation
2553 * does not consume a reservation.
2555 rc = vma_del_reservation(h, vma, address);
2558 * VERY rare out of memory condition. Since
2559 * we can not delete the entry, set
2560 * HPageRestoreReserve so that the reserve
2561 * count will be incremented when the page
2562 * is freed. This reserve will be consumed
2563 * on a subsequent allocation.
2565 SetHPageRestoreReserve(page);
2566 } else if (rc < 0) {
2568 * Rare out of memory condition from
2569 * vma_needs_reservation call. Memory allocation is
2570 * only attempted if a new entry is needed. Therefore,
2571 * this implies there is not an entry in the
2574 * For shared mappings, no entry in the map indicates
2575 * no reservation. We are done.
2577 if (!(vma->vm_flags & VM_MAYSHARE))
2579 * For private mappings, no entry indicates
2580 * a reservation is present. Since we can
2581 * not add an entry, set SetHPageRestoreReserve
2582 * on the page so reserve count will be
2583 * incremented when freed. This reserve will
2584 * be consumed on a subsequent allocation.
2586 SetHPageRestoreReserve(page);
2589 * No reservation present, do nothing
2591 vma_end_reservation(h, vma, address);
2596 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2597 * @h: struct hstate old page belongs to
2598 * @old_page: Old page to dissolve
2599 * @list: List to isolate the page in case we need to
2600 * Returns 0 on success, otherwise negated error.
2602 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2603 struct list_head *list)
2605 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2606 int nid = page_to_nid(old_page);
2607 bool alloc_retry = false;
2608 struct page *new_page;
2612 * Before dissolving the page, we need to allocate a new one for the
2613 * pool to remain stable. Here, we allocate the page and 'prep' it
2614 * by doing everything but actually updating counters and adding to
2615 * the pool. This simplifies and let us do most of the processing
2619 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2623 * If all goes well, this page will be directly added to the free
2624 * list in the pool. For this the ref count needs to be zero.
2625 * Attempt to drop now, and retry once if needed. It is VERY
2626 * unlikely there is another ref on the page.
2628 * If someone else has a reference to the page, it will be freed
2629 * when they drop their ref. Abuse temporary page flag to accomplish
2630 * this. Retry once if there is an inflated ref count.
2632 SetHPageTemporary(new_page);
2633 if (!put_page_testzero(new_page)) {
2640 ClearHPageTemporary(new_page);
2642 __prep_new_huge_page(h, new_page);
2645 spin_lock_irq(&hugetlb_lock);
2646 if (!PageHuge(old_page)) {
2648 * Freed from under us. Drop new_page too.
2651 } else if (page_count(old_page)) {
2653 * Someone has grabbed the page, try to isolate it here.
2654 * Fail with -EBUSY if not possible.
2656 spin_unlock_irq(&hugetlb_lock);
2657 if (!isolate_huge_page(old_page, list))
2659 spin_lock_irq(&hugetlb_lock);
2661 } else if (!HPageFreed(old_page)) {
2663 * Page's refcount is 0 but it has not been enqueued in the
2664 * freelist yet. Race window is small, so we can succeed here if
2667 spin_unlock_irq(&hugetlb_lock);
2672 * Ok, old_page is still a genuine free hugepage. Remove it from
2673 * the freelist and decrease the counters. These will be
2674 * incremented again when calling __prep_account_new_huge_page()
2675 * and enqueue_huge_page() for new_page. The counters will remain
2676 * stable since this happens under the lock.
2678 remove_hugetlb_page(h, old_page, false);
2681 * Ref count on new page is already zero as it was dropped
2682 * earlier. It can be directly added to the pool free list.
2684 __prep_account_new_huge_page(h, nid);
2685 enqueue_huge_page(h, new_page);
2688 * Pages have been replaced, we can safely free the old one.
2690 spin_unlock_irq(&hugetlb_lock);
2691 update_and_free_page(h, old_page, false);
2697 spin_unlock_irq(&hugetlb_lock);
2698 /* Page has a zero ref count, but needs a ref to be freed */
2699 set_page_refcounted(new_page);
2700 update_and_free_page(h, new_page, false);
2705 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2712 * The page might have been dissolved from under our feet, so make sure
2713 * to carefully check the state under the lock.
2714 * Return success when racing as if we dissolved the page ourselves.
2716 spin_lock_irq(&hugetlb_lock);
2717 if (PageHuge(page)) {
2718 head = compound_head(page);
2719 h = page_hstate(head);
2721 spin_unlock_irq(&hugetlb_lock);
2724 spin_unlock_irq(&hugetlb_lock);
2727 * Fence off gigantic pages as there is a cyclic dependency between
2728 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2729 * of bailing out right away without further retrying.
2731 if (hstate_is_gigantic(h))
2734 if (page_count(head) && isolate_huge_page(head, list))
2736 else if (!page_count(head))
2737 ret = alloc_and_dissolve_huge_page(h, head, list);
2742 struct page *alloc_huge_page(struct vm_area_struct *vma,
2743 unsigned long addr, int avoid_reserve)
2745 struct hugepage_subpool *spool = subpool_vma(vma);
2746 struct hstate *h = hstate_vma(vma);
2748 long map_chg, map_commit;
2751 struct hugetlb_cgroup *h_cg;
2752 bool deferred_reserve;
2754 idx = hstate_index(h);
2756 * Examine the region/reserve map to determine if the process
2757 * has a reservation for the page to be allocated. A return
2758 * code of zero indicates a reservation exists (no change).
2760 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2762 return ERR_PTR(-ENOMEM);
2765 * Processes that did not create the mapping will have no
2766 * reserves as indicated by the region/reserve map. Check
2767 * that the allocation will not exceed the subpool limit.
2768 * Allocations for MAP_NORESERVE mappings also need to be
2769 * checked against any subpool limit.
2771 if (map_chg || avoid_reserve) {
2772 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2774 vma_end_reservation(h, vma, addr);
2775 return ERR_PTR(-ENOSPC);
2779 * Even though there was no reservation in the region/reserve
2780 * map, there could be reservations associated with the
2781 * subpool that can be used. This would be indicated if the
2782 * return value of hugepage_subpool_get_pages() is zero.
2783 * However, if avoid_reserve is specified we still avoid even
2784 * the subpool reservations.
2790 /* If this allocation is not consuming a reservation, charge it now.
2792 deferred_reserve = map_chg || avoid_reserve;
2793 if (deferred_reserve) {
2794 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2795 idx, pages_per_huge_page(h), &h_cg);
2797 goto out_subpool_put;
2800 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2802 goto out_uncharge_cgroup_reservation;
2804 spin_lock_irq(&hugetlb_lock);
2806 * glb_chg is passed to indicate whether or not a page must be taken
2807 * from the global free pool (global change). gbl_chg == 0 indicates
2808 * a reservation exists for the allocation.
2810 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2812 spin_unlock_irq(&hugetlb_lock);
2813 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2815 goto out_uncharge_cgroup;
2816 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2817 SetHPageRestoreReserve(page);
2818 h->resv_huge_pages--;
2820 spin_lock_irq(&hugetlb_lock);
2821 list_add(&page->lru, &h->hugepage_activelist);
2824 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2825 /* If allocation is not consuming a reservation, also store the
2826 * hugetlb_cgroup pointer on the page.
2828 if (deferred_reserve) {
2829 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2833 spin_unlock_irq(&hugetlb_lock);
2835 hugetlb_set_page_subpool(page, spool);
2837 map_commit = vma_commit_reservation(h, vma, addr);
2838 if (unlikely(map_chg > map_commit)) {
2840 * The page was added to the reservation map between
2841 * vma_needs_reservation and vma_commit_reservation.
2842 * This indicates a race with hugetlb_reserve_pages.
2843 * Adjust for the subpool count incremented above AND
2844 * in hugetlb_reserve_pages for the same page. Also,
2845 * the reservation count added in hugetlb_reserve_pages
2846 * no longer applies.
2850 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2851 hugetlb_acct_memory(h, -rsv_adjust);
2852 if (deferred_reserve)
2853 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2854 pages_per_huge_page(h), page);
2858 out_uncharge_cgroup:
2859 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2860 out_uncharge_cgroup_reservation:
2861 if (deferred_reserve)
2862 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2865 if (map_chg || avoid_reserve)
2866 hugepage_subpool_put_pages(spool, 1);
2867 vma_end_reservation(h, vma, addr);
2868 return ERR_PTR(-ENOSPC);
2871 int alloc_bootmem_huge_page(struct hstate *h)
2872 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2873 int __alloc_bootmem_huge_page(struct hstate *h)
2875 struct huge_bootmem_page *m;
2878 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2881 addr = memblock_alloc_try_nid_raw(
2882 huge_page_size(h), huge_page_size(h),
2883 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2886 * Use the beginning of the huge page to store the
2887 * huge_bootmem_page struct (until gather_bootmem
2888 * puts them into the mem_map).
2897 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2898 /* Put them into a private list first because mem_map is not up yet */
2899 INIT_LIST_HEAD(&m->list);
2900 list_add(&m->list, &huge_boot_pages);
2906 * Put bootmem huge pages into the standard lists after mem_map is up.
2907 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2909 static void __init gather_bootmem_prealloc(void)
2911 struct huge_bootmem_page *m;
2913 list_for_each_entry(m, &huge_boot_pages, list) {
2914 struct page *page = virt_to_page(m);
2915 struct hstate *h = m->hstate;
2917 VM_BUG_ON(!hstate_is_gigantic(h));
2918 WARN_ON(page_count(page) != 1);
2919 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2920 WARN_ON(PageReserved(page));
2921 prep_new_huge_page(h, page, page_to_nid(page));
2922 put_page(page); /* add to the hugepage allocator */
2924 /* VERY unlikely inflated ref count on a tail page */
2925 free_gigantic_page(page, huge_page_order(h));
2929 * We need to restore the 'stolen' pages to totalram_pages
2930 * in order to fix confusing memory reports from free(1) and
2931 * other side-effects, like CommitLimit going negative.
2933 adjust_managed_page_count(page, pages_per_huge_page(h));
2938 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2941 nodemask_t *node_alloc_noretry;
2943 if (!hstate_is_gigantic(h)) {
2945 * Bit mask controlling how hard we retry per-node allocations.
2946 * Ignore errors as lower level routines can deal with
2947 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2948 * time, we are likely in bigger trouble.
2950 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2953 /* allocations done at boot time */
2954 node_alloc_noretry = NULL;
2957 /* bit mask controlling how hard we retry per-node allocations */
2958 if (node_alloc_noretry)
2959 nodes_clear(*node_alloc_noretry);
2961 for (i = 0; i < h->max_huge_pages; ++i) {
2962 if (hstate_is_gigantic(h)) {
2963 if (hugetlb_cma_size) {
2964 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2967 if (!alloc_bootmem_huge_page(h))
2969 } else if (!alloc_pool_huge_page(h,
2970 &node_states[N_MEMORY],
2971 node_alloc_noretry))
2975 if (i < h->max_huge_pages) {
2978 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2979 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2980 h->max_huge_pages, buf, i);
2981 h->max_huge_pages = i;
2984 kfree(node_alloc_noretry);
2987 static void __init hugetlb_init_hstates(void)
2991 for_each_hstate(h) {
2992 if (minimum_order > huge_page_order(h))
2993 minimum_order = huge_page_order(h);
2995 /* oversize hugepages were init'ed in early boot */
2996 if (!hstate_is_gigantic(h))
2997 hugetlb_hstate_alloc_pages(h);
2999 VM_BUG_ON(minimum_order == UINT_MAX);
3002 static void __init report_hugepages(void)
3006 for_each_hstate(h) {
3009 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3010 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3011 buf, h->free_huge_pages);
3015 #ifdef CONFIG_HIGHMEM
3016 static void try_to_free_low(struct hstate *h, unsigned long count,
3017 nodemask_t *nodes_allowed)
3020 LIST_HEAD(page_list);
3022 lockdep_assert_held(&hugetlb_lock);
3023 if (hstate_is_gigantic(h))
3027 * Collect pages to be freed on a list, and free after dropping lock
3029 for_each_node_mask(i, *nodes_allowed) {
3030 struct page *page, *next;
3031 struct list_head *freel = &h->hugepage_freelists[i];
3032 list_for_each_entry_safe(page, next, freel, lru) {
3033 if (count >= h->nr_huge_pages)
3035 if (PageHighMem(page))
3037 remove_hugetlb_page(h, page, false);
3038 list_add(&page->lru, &page_list);
3043 spin_unlock_irq(&hugetlb_lock);
3044 update_and_free_pages_bulk(h, &page_list);
3045 spin_lock_irq(&hugetlb_lock);
3048 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3049 nodemask_t *nodes_allowed)
3055 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3056 * balanced by operating on them in a round-robin fashion.
3057 * Returns 1 if an adjustment was made.
3059 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3064 lockdep_assert_held(&hugetlb_lock);
3065 VM_BUG_ON(delta != -1 && delta != 1);
3068 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3069 if (h->surplus_huge_pages_node[node])
3073 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3074 if (h->surplus_huge_pages_node[node] <
3075 h->nr_huge_pages_node[node])
3082 h->surplus_huge_pages += delta;
3083 h->surplus_huge_pages_node[node] += delta;
3087 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3088 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3089 nodemask_t *nodes_allowed)
3091 unsigned long min_count, ret;
3093 LIST_HEAD(page_list);
3094 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3097 * Bit mask controlling how hard we retry per-node allocations.
3098 * If we can not allocate the bit mask, do not attempt to allocate
3099 * the requested huge pages.
3101 if (node_alloc_noretry)
3102 nodes_clear(*node_alloc_noretry);
3107 * resize_lock mutex prevents concurrent adjustments to number of
3108 * pages in hstate via the proc/sysfs interfaces.
3110 mutex_lock(&h->resize_lock);
3111 flush_free_hpage_work(h);
3112 spin_lock_irq(&hugetlb_lock);
3115 * Check for a node specific request.
3116 * Changing node specific huge page count may require a corresponding
3117 * change to the global count. In any case, the passed node mask
3118 * (nodes_allowed) will restrict alloc/free to the specified node.
3120 if (nid != NUMA_NO_NODE) {
3121 unsigned long old_count = count;
3123 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3125 * User may have specified a large count value which caused the
3126 * above calculation to overflow. In this case, they wanted
3127 * to allocate as many huge pages as possible. Set count to
3128 * largest possible value to align with their intention.
3130 if (count < old_count)
3135 * Gigantic pages runtime allocation depend on the capability for large
3136 * page range allocation.
3137 * If the system does not provide this feature, return an error when
3138 * the user tries to allocate gigantic pages but let the user free the
3139 * boottime allocated gigantic pages.
3141 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3142 if (count > persistent_huge_pages(h)) {
3143 spin_unlock_irq(&hugetlb_lock);
3144 mutex_unlock(&h->resize_lock);
3145 NODEMASK_FREE(node_alloc_noretry);
3148 /* Fall through to decrease pool */
3152 * Increase the pool size
3153 * First take pages out of surplus state. Then make up the
3154 * remaining difference by allocating fresh huge pages.
3156 * We might race with alloc_surplus_huge_page() here and be unable
3157 * to convert a surplus huge page to a normal huge page. That is
3158 * not critical, though, it just means the overall size of the
3159 * pool might be one hugepage larger than it needs to be, but
3160 * within all the constraints specified by the sysctls.
3162 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3163 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3167 while (count > persistent_huge_pages(h)) {
3169 * If this allocation races such that we no longer need the
3170 * page, free_huge_page will handle it by freeing the page
3171 * and reducing the surplus.
3173 spin_unlock_irq(&hugetlb_lock);
3175 /* yield cpu to avoid soft lockup */
3178 ret = alloc_pool_huge_page(h, nodes_allowed,
3179 node_alloc_noretry);
3180 spin_lock_irq(&hugetlb_lock);
3184 /* Bail for signals. Probably ctrl-c from user */
3185 if (signal_pending(current))
3190 * Decrease the pool size
3191 * First return free pages to the buddy allocator (being careful
3192 * to keep enough around to satisfy reservations). Then place
3193 * pages into surplus state as needed so the pool will shrink
3194 * to the desired size as pages become free.
3196 * By placing pages into the surplus state independent of the
3197 * overcommit value, we are allowing the surplus pool size to
3198 * exceed overcommit. There are few sane options here. Since
3199 * alloc_surplus_huge_page() is checking the global counter,
3200 * though, we'll note that we're not allowed to exceed surplus
3201 * and won't grow the pool anywhere else. Not until one of the
3202 * sysctls are changed, or the surplus pages go out of use.
3204 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3205 min_count = max(count, min_count);
3206 try_to_free_low(h, min_count, nodes_allowed);
3209 * Collect pages to be removed on list without dropping lock
3211 while (min_count < persistent_huge_pages(h)) {
3212 page = remove_pool_huge_page(h, nodes_allowed, 0);
3216 list_add(&page->lru, &page_list);
3218 /* free the pages after dropping lock */
3219 spin_unlock_irq(&hugetlb_lock);
3220 update_and_free_pages_bulk(h, &page_list);
3221 flush_free_hpage_work(h);
3222 spin_lock_irq(&hugetlb_lock);
3224 while (count < persistent_huge_pages(h)) {
3225 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3229 h->max_huge_pages = persistent_huge_pages(h);
3230 spin_unlock_irq(&hugetlb_lock);
3231 mutex_unlock(&h->resize_lock);
3233 NODEMASK_FREE(node_alloc_noretry);
3238 #define HSTATE_ATTR_RO(_name) \
3239 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3241 #define HSTATE_ATTR(_name) \
3242 static struct kobj_attribute _name##_attr = \
3243 __ATTR(_name, 0644, _name##_show, _name##_store)
3245 static struct kobject *hugepages_kobj;
3246 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3248 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3250 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3254 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3255 if (hstate_kobjs[i] == kobj) {
3257 *nidp = NUMA_NO_NODE;
3261 return kobj_to_node_hstate(kobj, nidp);
3264 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3265 struct kobj_attribute *attr, char *buf)
3268 unsigned long nr_huge_pages;
3271 h = kobj_to_hstate(kobj, &nid);
3272 if (nid == NUMA_NO_NODE)
3273 nr_huge_pages = h->nr_huge_pages;
3275 nr_huge_pages = h->nr_huge_pages_node[nid];
3277 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3280 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3281 struct hstate *h, int nid,
3282 unsigned long count, size_t len)
3285 nodemask_t nodes_allowed, *n_mask;
3287 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3290 if (nid == NUMA_NO_NODE) {
3292 * global hstate attribute
3294 if (!(obey_mempolicy &&
3295 init_nodemask_of_mempolicy(&nodes_allowed)))
3296 n_mask = &node_states[N_MEMORY];
3298 n_mask = &nodes_allowed;
3301 * Node specific request. count adjustment happens in
3302 * set_max_huge_pages() after acquiring hugetlb_lock.
3304 init_nodemask_of_node(&nodes_allowed, nid);
3305 n_mask = &nodes_allowed;
3308 err = set_max_huge_pages(h, count, nid, n_mask);
3310 return err ? err : len;
3313 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3314 struct kobject *kobj, const char *buf,
3318 unsigned long count;
3322 err = kstrtoul(buf, 10, &count);
3326 h = kobj_to_hstate(kobj, &nid);
3327 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3330 static ssize_t nr_hugepages_show(struct kobject *kobj,
3331 struct kobj_attribute *attr, char *buf)
3333 return nr_hugepages_show_common(kobj, attr, buf);
3336 static ssize_t nr_hugepages_store(struct kobject *kobj,
3337 struct kobj_attribute *attr, const char *buf, size_t len)
3339 return nr_hugepages_store_common(false, kobj, buf, len);
3341 HSTATE_ATTR(nr_hugepages);
3346 * hstate attribute for optionally mempolicy-based constraint on persistent
3347 * huge page alloc/free.
3349 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3350 struct kobj_attribute *attr,
3353 return nr_hugepages_show_common(kobj, attr, buf);
3356 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3357 struct kobj_attribute *attr, const char *buf, size_t len)
3359 return nr_hugepages_store_common(true, kobj, buf, len);
3361 HSTATE_ATTR(nr_hugepages_mempolicy);
3365 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3366 struct kobj_attribute *attr, char *buf)
3368 struct hstate *h = kobj_to_hstate(kobj, NULL);
3369 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3372 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3373 struct kobj_attribute *attr, const char *buf, size_t count)
3376 unsigned long input;
3377 struct hstate *h = kobj_to_hstate(kobj, NULL);
3379 if (hstate_is_gigantic(h))
3382 err = kstrtoul(buf, 10, &input);
3386 spin_lock_irq(&hugetlb_lock);
3387 h->nr_overcommit_huge_pages = input;
3388 spin_unlock_irq(&hugetlb_lock);
3392 HSTATE_ATTR(nr_overcommit_hugepages);
3394 static ssize_t free_hugepages_show(struct kobject *kobj,
3395 struct kobj_attribute *attr, char *buf)
3398 unsigned long free_huge_pages;
3401 h = kobj_to_hstate(kobj, &nid);
3402 if (nid == NUMA_NO_NODE)
3403 free_huge_pages = h->free_huge_pages;
3405 free_huge_pages = h->free_huge_pages_node[nid];
3407 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3409 HSTATE_ATTR_RO(free_hugepages);
3411 static ssize_t resv_hugepages_show(struct kobject *kobj,
3412 struct kobj_attribute *attr, char *buf)
3414 struct hstate *h = kobj_to_hstate(kobj, NULL);
3415 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3417 HSTATE_ATTR_RO(resv_hugepages);
3419 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3420 struct kobj_attribute *attr, char *buf)
3423 unsigned long surplus_huge_pages;
3426 h = kobj_to_hstate(kobj, &nid);
3427 if (nid == NUMA_NO_NODE)
3428 surplus_huge_pages = h->surplus_huge_pages;
3430 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3432 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3434 HSTATE_ATTR_RO(surplus_hugepages);
3436 static struct attribute *hstate_attrs[] = {
3437 &nr_hugepages_attr.attr,
3438 &nr_overcommit_hugepages_attr.attr,
3439 &free_hugepages_attr.attr,
3440 &resv_hugepages_attr.attr,
3441 &surplus_hugepages_attr.attr,
3443 &nr_hugepages_mempolicy_attr.attr,
3448 static const struct attribute_group hstate_attr_group = {
3449 .attrs = hstate_attrs,
3452 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3453 struct kobject **hstate_kobjs,
3454 const struct attribute_group *hstate_attr_group)
3457 int hi = hstate_index(h);
3459 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3460 if (!hstate_kobjs[hi])
3463 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3465 kobject_put(hstate_kobjs[hi]);
3466 hstate_kobjs[hi] = NULL;
3472 static void __init hugetlb_sysfs_init(void)
3477 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3478 if (!hugepages_kobj)
3481 for_each_hstate(h) {
3482 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3483 hstate_kobjs, &hstate_attr_group);
3485 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3492 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3493 * with node devices in node_devices[] using a parallel array. The array
3494 * index of a node device or _hstate == node id.
3495 * This is here to avoid any static dependency of the node device driver, in
3496 * the base kernel, on the hugetlb module.
3498 struct node_hstate {
3499 struct kobject *hugepages_kobj;
3500 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3502 static struct node_hstate node_hstates[MAX_NUMNODES];
3505 * A subset of global hstate attributes for node devices
3507 static struct attribute *per_node_hstate_attrs[] = {
3508 &nr_hugepages_attr.attr,
3509 &free_hugepages_attr.attr,
3510 &surplus_hugepages_attr.attr,
3514 static const struct attribute_group per_node_hstate_attr_group = {
3515 .attrs = per_node_hstate_attrs,
3519 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3520 * Returns node id via non-NULL nidp.
3522 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3526 for (nid = 0; nid < nr_node_ids; nid++) {
3527 struct node_hstate *nhs = &node_hstates[nid];
3529 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3530 if (nhs->hstate_kobjs[i] == kobj) {
3542 * Unregister hstate attributes from a single node device.
3543 * No-op if no hstate attributes attached.
3545 static void hugetlb_unregister_node(struct node *node)
3548 struct node_hstate *nhs = &node_hstates[node->dev.id];
3550 if (!nhs->hugepages_kobj)
3551 return; /* no hstate attributes */
3553 for_each_hstate(h) {
3554 int idx = hstate_index(h);
3555 if (nhs->hstate_kobjs[idx]) {
3556 kobject_put(nhs->hstate_kobjs[idx]);
3557 nhs->hstate_kobjs[idx] = NULL;
3561 kobject_put(nhs->hugepages_kobj);
3562 nhs->hugepages_kobj = NULL;
3567 * Register hstate attributes for a single node device.
3568 * No-op if attributes already registered.
3570 static void hugetlb_register_node(struct node *node)
3573 struct node_hstate *nhs = &node_hstates[node->dev.id];
3576 if (nhs->hugepages_kobj)
3577 return; /* already allocated */
3579 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3581 if (!nhs->hugepages_kobj)
3584 for_each_hstate(h) {
3585 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3587 &per_node_hstate_attr_group);
3589 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3590 h->name, node->dev.id);
3591 hugetlb_unregister_node(node);
3598 * hugetlb init time: register hstate attributes for all registered node
3599 * devices of nodes that have memory. All on-line nodes should have
3600 * registered their associated device by this time.
3602 static void __init hugetlb_register_all_nodes(void)
3606 for_each_node_state(nid, N_MEMORY) {
3607 struct node *node = node_devices[nid];
3608 if (node->dev.id == nid)
3609 hugetlb_register_node(node);
3613 * Let the node device driver know we're here so it can
3614 * [un]register hstate attributes on node hotplug.
3616 register_hugetlbfs_with_node(hugetlb_register_node,
3617 hugetlb_unregister_node);
3619 #else /* !CONFIG_NUMA */
3621 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3629 static void hugetlb_register_all_nodes(void) { }
3633 static int __init hugetlb_init(void)
3637 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3640 if (!hugepages_supported()) {
3641 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3642 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3647 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3648 * architectures depend on setup being done here.
3650 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3651 if (!parsed_default_hugepagesz) {
3653 * If we did not parse a default huge page size, set
3654 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3655 * number of huge pages for this default size was implicitly
3656 * specified, set that here as well.
3657 * Note that the implicit setting will overwrite an explicit
3658 * setting. A warning will be printed in this case.
3660 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3661 if (default_hstate_max_huge_pages) {
3662 if (default_hstate.max_huge_pages) {
3665 string_get_size(huge_page_size(&default_hstate),
3666 1, STRING_UNITS_2, buf, 32);
3667 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3668 default_hstate.max_huge_pages, buf);
3669 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3670 default_hstate_max_huge_pages);
3672 default_hstate.max_huge_pages =
3673 default_hstate_max_huge_pages;
3677 hugetlb_cma_check();
3678 hugetlb_init_hstates();
3679 gather_bootmem_prealloc();
3682 hugetlb_sysfs_init();
3683 hugetlb_register_all_nodes();
3684 hugetlb_cgroup_file_init();
3687 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3689 num_fault_mutexes = 1;
3691 hugetlb_fault_mutex_table =
3692 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3694 BUG_ON(!hugetlb_fault_mutex_table);
3696 for (i = 0; i < num_fault_mutexes; i++)
3697 mutex_init(&hugetlb_fault_mutex_table[i]);
3700 subsys_initcall(hugetlb_init);
3702 /* Overwritten by architectures with more huge page sizes */
3703 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3705 return size == HPAGE_SIZE;
3708 void __init hugetlb_add_hstate(unsigned int order)
3713 if (size_to_hstate(PAGE_SIZE << order)) {
3716 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3718 h = &hstates[hugetlb_max_hstate++];
3719 mutex_init(&h->resize_lock);
3721 h->mask = ~(huge_page_size(h) - 1);
3722 for (i = 0; i < MAX_NUMNODES; ++i)
3723 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3724 INIT_LIST_HEAD(&h->hugepage_activelist);
3725 h->next_nid_to_alloc = first_memory_node;
3726 h->next_nid_to_free = first_memory_node;
3727 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3728 huge_page_size(h)/1024);
3729 hugetlb_vmemmap_init(h);
3735 * hugepages command line processing
3736 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3737 * specification. If not, ignore the hugepages value. hugepages can also
3738 * be the first huge page command line option in which case it implicitly
3739 * specifies the number of huge pages for the default size.
3741 static int __init hugepages_setup(char *s)
3744 static unsigned long *last_mhp;
3746 if (!parsed_valid_hugepagesz) {
3747 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3748 parsed_valid_hugepagesz = true;
3753 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3754 * yet, so this hugepages= parameter goes to the "default hstate".
3755 * Otherwise, it goes with the previously parsed hugepagesz or
3756 * default_hugepagesz.
3758 else if (!hugetlb_max_hstate)
3759 mhp = &default_hstate_max_huge_pages;
3761 mhp = &parsed_hstate->max_huge_pages;
3763 if (mhp == last_mhp) {
3764 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3768 if (sscanf(s, "%lu", mhp) <= 0)
3772 * Global state is always initialized later in hugetlb_init.
3773 * But we need to allocate gigantic hstates here early to still
3774 * use the bootmem allocator.
3776 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3777 hugetlb_hstate_alloc_pages(parsed_hstate);
3783 __setup("hugepages=", hugepages_setup);
3786 * hugepagesz command line processing
3787 * A specific huge page size can only be specified once with hugepagesz.
3788 * hugepagesz is followed by hugepages on the command line. The global
3789 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3790 * hugepagesz argument was valid.
3792 static int __init hugepagesz_setup(char *s)
3797 parsed_valid_hugepagesz = false;
3798 size = (unsigned long)memparse(s, NULL);
3800 if (!arch_hugetlb_valid_size(size)) {
3801 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3805 h = size_to_hstate(size);
3808 * hstate for this size already exists. This is normally
3809 * an error, but is allowed if the existing hstate is the
3810 * default hstate. More specifically, it is only allowed if
3811 * the number of huge pages for the default hstate was not
3812 * previously specified.
3814 if (!parsed_default_hugepagesz || h != &default_hstate ||
3815 default_hstate.max_huge_pages) {
3816 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3821 * No need to call hugetlb_add_hstate() as hstate already
3822 * exists. But, do set parsed_hstate so that a following
3823 * hugepages= parameter will be applied to this hstate.
3826 parsed_valid_hugepagesz = true;
3830 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3831 parsed_valid_hugepagesz = true;
3834 __setup("hugepagesz=", hugepagesz_setup);
3837 * default_hugepagesz command line input
3838 * Only one instance of default_hugepagesz allowed on command line.
3840 static int __init default_hugepagesz_setup(char *s)
3844 parsed_valid_hugepagesz = false;
3845 if (parsed_default_hugepagesz) {
3846 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3850 size = (unsigned long)memparse(s, NULL);
3852 if (!arch_hugetlb_valid_size(size)) {
3853 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3857 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3858 parsed_valid_hugepagesz = true;
3859 parsed_default_hugepagesz = true;
3860 default_hstate_idx = hstate_index(size_to_hstate(size));
3863 * The number of default huge pages (for this size) could have been
3864 * specified as the first hugetlb parameter: hugepages=X. If so,
3865 * then default_hstate_max_huge_pages is set. If the default huge
3866 * page size is gigantic (>= MAX_ORDER), then the pages must be
3867 * allocated here from bootmem allocator.
3869 if (default_hstate_max_huge_pages) {
3870 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3871 if (hstate_is_gigantic(&default_hstate))
3872 hugetlb_hstate_alloc_pages(&default_hstate);
3873 default_hstate_max_huge_pages = 0;
3878 __setup("default_hugepagesz=", default_hugepagesz_setup);
3880 static unsigned int allowed_mems_nr(struct hstate *h)
3883 unsigned int nr = 0;
3884 nodemask_t *mpol_allowed;
3885 unsigned int *array = h->free_huge_pages_node;
3886 gfp_t gfp_mask = htlb_alloc_mask(h);
3888 mpol_allowed = policy_nodemask_current(gfp_mask);
3890 for_each_node_mask(node, cpuset_current_mems_allowed) {
3891 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3898 #ifdef CONFIG_SYSCTL
3899 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3900 void *buffer, size_t *length,
3901 loff_t *ppos, unsigned long *out)
3903 struct ctl_table dup_table;
3906 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3907 * can duplicate the @table and alter the duplicate of it.
3910 dup_table.data = out;
3912 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3915 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3916 struct ctl_table *table, int write,
3917 void *buffer, size_t *length, loff_t *ppos)
3919 struct hstate *h = &default_hstate;
3920 unsigned long tmp = h->max_huge_pages;
3923 if (!hugepages_supported())
3926 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3933 NUMA_NO_NODE, tmp, *length);
3938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3939 void *buffer, size_t *length, loff_t *ppos)
3942 return hugetlb_sysctl_handler_common(false, table, write,
3943 buffer, length, ppos);
3947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3948 void *buffer, size_t *length, loff_t *ppos)
3950 return hugetlb_sysctl_handler_common(true, table, write,
3951 buffer, length, ppos);
3953 #endif /* CONFIG_NUMA */
3955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3956 void *buffer, size_t *length, loff_t *ppos)
3958 struct hstate *h = &default_hstate;
3962 if (!hugepages_supported())
3965 tmp = h->nr_overcommit_huge_pages;
3967 if (write && hstate_is_gigantic(h))
3970 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3976 spin_lock_irq(&hugetlb_lock);
3977 h->nr_overcommit_huge_pages = tmp;
3978 spin_unlock_irq(&hugetlb_lock);
3984 #endif /* CONFIG_SYSCTL */
3986 void hugetlb_report_meminfo(struct seq_file *m)
3989 unsigned long total = 0;
3991 if (!hugepages_supported())
3994 for_each_hstate(h) {
3995 unsigned long count = h->nr_huge_pages;
3997 total += huge_page_size(h) * count;
3999 if (h == &default_hstate)
4001 "HugePages_Total: %5lu\n"
4002 "HugePages_Free: %5lu\n"
4003 "HugePages_Rsvd: %5lu\n"
4004 "HugePages_Surp: %5lu\n"
4005 "Hugepagesize: %8lu kB\n",
4009 h->surplus_huge_pages,
4010 huge_page_size(h) / SZ_1K);
4013 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4016 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4018 struct hstate *h = &default_hstate;
4020 if (!hugepages_supported())
4023 return sysfs_emit_at(buf, len,
4024 "Node %d HugePages_Total: %5u\n"
4025 "Node %d HugePages_Free: %5u\n"
4026 "Node %d HugePages_Surp: %5u\n",
4027 nid, h->nr_huge_pages_node[nid],
4028 nid, h->free_huge_pages_node[nid],
4029 nid, h->surplus_huge_pages_node[nid]);
4032 void hugetlb_show_meminfo(void)
4037 if (!hugepages_supported())
4040 for_each_node_state(nid, N_MEMORY)
4042 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4044 h->nr_huge_pages_node[nid],
4045 h->free_huge_pages_node[nid],
4046 h->surplus_huge_pages_node[nid],
4047 huge_page_size(h) / SZ_1K);
4050 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4052 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4053 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4056 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4057 unsigned long hugetlb_total_pages(void)
4060 unsigned long nr_total_pages = 0;
4063 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4064 return nr_total_pages;
4067 static int hugetlb_acct_memory(struct hstate *h, long delta)
4074 spin_lock_irq(&hugetlb_lock);
4076 * When cpuset is configured, it breaks the strict hugetlb page
4077 * reservation as the accounting is done on a global variable. Such
4078 * reservation is completely rubbish in the presence of cpuset because
4079 * the reservation is not checked against page availability for the
4080 * current cpuset. Application can still potentially OOM'ed by kernel
4081 * with lack of free htlb page in cpuset that the task is in.
4082 * Attempt to enforce strict accounting with cpuset is almost
4083 * impossible (or too ugly) because cpuset is too fluid that
4084 * task or memory node can be dynamically moved between cpusets.
4086 * The change of semantics for shared hugetlb mapping with cpuset is
4087 * undesirable. However, in order to preserve some of the semantics,
4088 * we fall back to check against current free page availability as
4089 * a best attempt and hopefully to minimize the impact of changing
4090 * semantics that cpuset has.
4092 * Apart from cpuset, we also have memory policy mechanism that
4093 * also determines from which node the kernel will allocate memory
4094 * in a NUMA system. So similar to cpuset, we also should consider
4095 * the memory policy of the current task. Similar to the description
4099 if (gather_surplus_pages(h, delta) < 0)
4102 if (delta > allowed_mems_nr(h)) {
4103 return_unused_surplus_pages(h, delta);
4110 return_unused_surplus_pages(h, (unsigned long) -delta);
4113 spin_unlock_irq(&hugetlb_lock);
4117 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4119 struct resv_map *resv = vma_resv_map(vma);
4122 * This new VMA should share its siblings reservation map if present.
4123 * The VMA will only ever have a valid reservation map pointer where
4124 * it is being copied for another still existing VMA. As that VMA
4125 * has a reference to the reservation map it cannot disappear until
4126 * after this open call completes. It is therefore safe to take a
4127 * new reference here without additional locking.
4129 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4130 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4131 kref_get(&resv->refs);
4135 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4137 struct hstate *h = hstate_vma(vma);
4138 struct resv_map *resv = vma_resv_map(vma);
4139 struct hugepage_subpool *spool = subpool_vma(vma);
4140 unsigned long reserve, start, end;
4143 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4146 start = vma_hugecache_offset(h, vma, vma->vm_start);
4147 end = vma_hugecache_offset(h, vma, vma->vm_end);
4149 reserve = (end - start) - region_count(resv, start, end);
4150 hugetlb_cgroup_uncharge_counter(resv, start, end);
4153 * Decrement reserve counts. The global reserve count may be
4154 * adjusted if the subpool has a minimum size.
4156 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4157 hugetlb_acct_memory(h, -gbl_reserve);
4160 kref_put(&resv->refs, resv_map_release);
4163 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4165 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4170 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4172 return huge_page_size(hstate_vma(vma));
4176 * We cannot handle pagefaults against hugetlb pages at all. They cause
4177 * handle_mm_fault() to try to instantiate regular-sized pages in the
4178 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4181 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4188 * When a new function is introduced to vm_operations_struct and added
4189 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4190 * This is because under System V memory model, mappings created via
4191 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4192 * their original vm_ops are overwritten with shm_vm_ops.
4194 const struct vm_operations_struct hugetlb_vm_ops = {
4195 .fault = hugetlb_vm_op_fault,
4196 .open = hugetlb_vm_op_open,
4197 .close = hugetlb_vm_op_close,
4198 .may_split = hugetlb_vm_op_split,
4199 .pagesize = hugetlb_vm_op_pagesize,
4202 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4206 unsigned int shift = huge_page_shift(hstate_vma(vma));
4209 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4210 vma->vm_page_prot)));
4212 entry = huge_pte_wrprotect(mk_huge_pte(page,
4213 vma->vm_page_prot));
4215 entry = pte_mkyoung(entry);
4216 entry = pte_mkhuge(entry);
4217 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4222 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4223 unsigned long address, pte_t *ptep)
4227 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4228 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4229 update_mmu_cache(vma, address, ptep);
4232 bool is_hugetlb_entry_migration(pte_t pte)
4236 if (huge_pte_none(pte) || pte_present(pte))
4238 swp = pte_to_swp_entry(pte);
4239 if (is_migration_entry(swp))
4245 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4249 if (huge_pte_none(pte) || pte_present(pte))
4251 swp = pte_to_swp_entry(pte);
4252 if (is_hwpoison_entry(swp))
4259 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4260 struct page *new_page)
4262 __SetPageUptodate(new_page);
4263 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4264 hugepage_add_new_anon_rmap(new_page, vma, addr);
4265 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4266 ClearHPageRestoreReserve(new_page);
4267 SetHPageMigratable(new_page);
4270 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4271 struct vm_area_struct *vma)
4273 pte_t *src_pte, *dst_pte, entry, dst_entry;
4274 struct page *ptepage;
4276 bool cow = is_cow_mapping(vma->vm_flags);
4277 struct hstate *h = hstate_vma(vma);
4278 unsigned long sz = huge_page_size(h);
4279 unsigned long npages = pages_per_huge_page(h);
4280 struct address_space *mapping = vma->vm_file->f_mapping;
4281 struct mmu_notifier_range range;
4285 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4288 mmu_notifier_invalidate_range_start(&range);
4291 * For shared mappings i_mmap_rwsem must be held to call
4292 * huge_pte_alloc, otherwise the returned ptep could go
4293 * away if part of a shared pmd and another thread calls
4296 i_mmap_lock_read(mapping);
4299 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4300 spinlock_t *src_ptl, *dst_ptl;
4301 src_pte = huge_pte_offset(src, addr, sz);
4304 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4311 * If the pagetables are shared don't copy or take references.
4312 * dst_pte == src_pte is the common case of src/dest sharing.
4314 * However, src could have 'unshared' and dst shares with
4315 * another vma. If dst_pte !none, this implies sharing.
4316 * Check here before taking page table lock, and once again
4317 * after taking the lock below.
4319 dst_entry = huge_ptep_get(dst_pte);
4320 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4323 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4324 src_ptl = huge_pte_lockptr(h, src, src_pte);
4325 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4326 entry = huge_ptep_get(src_pte);
4327 dst_entry = huge_ptep_get(dst_pte);
4329 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4331 * Skip if src entry none. Also, skip in the
4332 * unlikely case dst entry !none as this implies
4333 * sharing with another vma.
4336 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4337 is_hugetlb_entry_hwpoisoned(entry))) {
4338 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4340 if (is_writable_migration_entry(swp_entry) && cow) {
4342 * COW mappings require pages in both
4343 * parent and child to be set to read.
4345 swp_entry = make_readable_migration_entry(
4346 swp_offset(swp_entry));
4347 entry = swp_entry_to_pte(swp_entry);
4348 set_huge_swap_pte_at(src, addr, src_pte,
4351 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4353 entry = huge_ptep_get(src_pte);
4354 ptepage = pte_page(entry);
4358 * This is a rare case where we see pinned hugetlb
4359 * pages while they're prone to COW. We need to do the
4360 * COW earlier during fork.
4362 * When pre-allocating the page or copying data, we
4363 * need to be without the pgtable locks since we could
4364 * sleep during the process.
4366 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4367 pte_t src_pte_old = entry;
4370 spin_unlock(src_ptl);
4371 spin_unlock(dst_ptl);
4372 /* Do not use reserve as it's private owned */
4373 new = alloc_huge_page(vma, addr, 1);
4379 copy_user_huge_page(new, ptepage, addr, vma,
4383 /* Install the new huge page if src pte stable */
4384 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4385 src_ptl = huge_pte_lockptr(h, src, src_pte);
4386 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4387 entry = huge_ptep_get(src_pte);
4388 if (!pte_same(src_pte_old, entry)) {
4389 restore_reserve_on_error(h, vma, addr,
4392 /* dst_entry won't change as in child */
4395 hugetlb_install_page(vma, dst_pte, addr, new);
4396 spin_unlock(src_ptl);
4397 spin_unlock(dst_ptl);
4403 * No need to notify as we are downgrading page
4404 * table protection not changing it to point
4407 * See Documentation/vm/mmu_notifier.rst
4409 huge_ptep_set_wrprotect(src, addr, src_pte);
4410 entry = huge_pte_wrprotect(entry);
4413 page_dup_rmap(ptepage, true);
4414 set_huge_pte_at(dst, addr, dst_pte, entry);
4415 hugetlb_count_add(npages, dst);
4417 spin_unlock(src_ptl);
4418 spin_unlock(dst_ptl);
4422 mmu_notifier_invalidate_range_end(&range);
4424 i_mmap_unlock_read(mapping);
4429 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4430 unsigned long start, unsigned long end,
4431 struct page *ref_page)
4433 struct mm_struct *mm = vma->vm_mm;
4434 unsigned long address;
4439 struct hstate *h = hstate_vma(vma);
4440 unsigned long sz = huge_page_size(h);
4441 struct mmu_notifier_range range;
4442 bool force_flush = false;
4444 WARN_ON(!is_vm_hugetlb_page(vma));
4445 BUG_ON(start & ~huge_page_mask(h));
4446 BUG_ON(end & ~huge_page_mask(h));
4449 * This is a hugetlb vma, all the pte entries should point
4452 tlb_change_page_size(tlb, sz);
4453 tlb_start_vma(tlb, vma);
4456 * If sharing possible, alert mmu notifiers of worst case.
4458 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4460 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4461 mmu_notifier_invalidate_range_start(&range);
4463 for (; address < end; address += sz) {
4464 ptep = huge_pte_offset(mm, address, sz);
4468 ptl = huge_pte_lock(h, mm, ptep);
4469 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4471 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4476 pte = huge_ptep_get(ptep);
4477 if (huge_pte_none(pte)) {
4483 * Migrating hugepage or HWPoisoned hugepage is already
4484 * unmapped and its refcount is dropped, so just clear pte here.
4486 if (unlikely(!pte_present(pte))) {
4487 huge_pte_clear(mm, address, ptep, sz);
4492 page = pte_page(pte);
4494 * If a reference page is supplied, it is because a specific
4495 * page is being unmapped, not a range. Ensure the page we
4496 * are about to unmap is the actual page of interest.
4499 if (page != ref_page) {
4504 * Mark the VMA as having unmapped its page so that
4505 * future faults in this VMA will fail rather than
4506 * looking like data was lost
4508 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4511 pte = huge_ptep_get_and_clear(mm, address, ptep);
4512 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4513 if (huge_pte_dirty(pte))
4514 set_page_dirty(page);
4516 hugetlb_count_sub(pages_per_huge_page(h), mm);
4517 page_remove_rmap(page, true);
4520 tlb_remove_page_size(tlb, page, huge_page_size(h));
4522 * Bail out after unmapping reference page if supplied
4527 mmu_notifier_invalidate_range_end(&range);
4528 tlb_end_vma(tlb, vma);
4531 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4532 * could defer the flush until now, since by holding i_mmap_rwsem we
4533 * guaranteed that the last refernece would not be dropped. But we must
4534 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4535 * dropped and the last reference to the shared PMDs page might be
4538 * In theory we could defer the freeing of the PMD pages as well, but
4539 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4540 * detect sharing, so we cannot defer the release of the page either.
4541 * Instead, do flush now.
4544 tlb_flush_mmu_tlbonly(tlb);
4547 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4548 struct vm_area_struct *vma, unsigned long start,
4549 unsigned long end, struct page *ref_page)
4551 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4554 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4555 * test will fail on a vma being torn down, and not grab a page table
4556 * on its way out. We're lucky that the flag has such an appropriate
4557 * name, and can in fact be safely cleared here. We could clear it
4558 * before the __unmap_hugepage_range above, but all that's necessary
4559 * is to clear it before releasing the i_mmap_rwsem. This works
4560 * because in the context this is called, the VMA is about to be
4561 * destroyed and the i_mmap_rwsem is held.
4563 vma->vm_flags &= ~VM_MAYSHARE;
4566 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4567 unsigned long end, struct page *ref_page)
4569 struct mmu_gather tlb;
4571 tlb_gather_mmu(&tlb, vma->vm_mm);
4572 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4573 tlb_finish_mmu(&tlb);
4577 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4578 * mapping it owns the reserve page for. The intention is to unmap the page
4579 * from other VMAs and let the children be SIGKILLed if they are faulting the
4582 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4583 struct page *page, unsigned long address)
4585 struct hstate *h = hstate_vma(vma);
4586 struct vm_area_struct *iter_vma;
4587 struct address_space *mapping;
4591 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4592 * from page cache lookup which is in HPAGE_SIZE units.
4594 address = address & huge_page_mask(h);
4595 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4597 mapping = vma->vm_file->f_mapping;
4600 * Take the mapping lock for the duration of the table walk. As
4601 * this mapping should be shared between all the VMAs,
4602 * __unmap_hugepage_range() is called as the lock is already held
4604 i_mmap_lock_write(mapping);
4605 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4606 /* Do not unmap the current VMA */
4607 if (iter_vma == vma)
4611 * Shared VMAs have their own reserves and do not affect
4612 * MAP_PRIVATE accounting but it is possible that a shared
4613 * VMA is using the same page so check and skip such VMAs.
4615 if (iter_vma->vm_flags & VM_MAYSHARE)
4619 * Unmap the page from other VMAs without their own reserves.
4620 * They get marked to be SIGKILLed if they fault in these
4621 * areas. This is because a future no-page fault on this VMA
4622 * could insert a zeroed page instead of the data existing
4623 * from the time of fork. This would look like data corruption
4625 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4626 unmap_hugepage_range(iter_vma, address,
4627 address + huge_page_size(h), page);
4629 i_mmap_unlock_write(mapping);
4633 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4634 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4635 * cannot race with other handlers or page migration.
4636 * Keep the pte_same checks anyway to make transition from the mutex easier.
4638 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4639 unsigned long address, pte_t *ptep,
4640 struct page *pagecache_page, spinlock_t *ptl)
4643 struct hstate *h = hstate_vma(vma);
4644 struct page *old_page, *new_page;
4645 int outside_reserve = 0;
4647 unsigned long haddr = address & huge_page_mask(h);
4648 struct mmu_notifier_range range;
4650 pte = huge_ptep_get(ptep);
4651 old_page = pte_page(pte);
4654 /* If no-one else is actually using this page, avoid the copy
4655 * and just make the page writable */
4656 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4657 page_move_anon_rmap(old_page, vma);
4658 set_huge_ptep_writable(vma, haddr, ptep);
4663 * If the process that created a MAP_PRIVATE mapping is about to
4664 * perform a COW due to a shared page count, attempt to satisfy
4665 * the allocation without using the existing reserves. The pagecache
4666 * page is used to determine if the reserve at this address was
4667 * consumed or not. If reserves were used, a partial faulted mapping
4668 * at the time of fork() could consume its reserves on COW instead
4669 * of the full address range.
4671 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4672 old_page != pagecache_page)
4673 outside_reserve = 1;
4678 * Drop page table lock as buddy allocator may be called. It will
4679 * be acquired again before returning to the caller, as expected.
4682 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4684 if (IS_ERR(new_page)) {
4686 * If a process owning a MAP_PRIVATE mapping fails to COW,
4687 * it is due to references held by a child and an insufficient
4688 * huge page pool. To guarantee the original mappers
4689 * reliability, unmap the page from child processes. The child
4690 * may get SIGKILLed if it later faults.
4692 if (outside_reserve) {
4693 struct address_space *mapping = vma->vm_file->f_mapping;
4698 BUG_ON(huge_pte_none(pte));
4700 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4701 * unmapping. unmapping needs to hold i_mmap_rwsem
4702 * in write mode. Dropping i_mmap_rwsem in read mode
4703 * here is OK as COW mappings do not interact with
4706 * Reacquire both after unmap operation.
4708 idx = vma_hugecache_offset(h, vma, haddr);
4709 hash = hugetlb_fault_mutex_hash(mapping, idx);
4710 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4711 i_mmap_unlock_read(mapping);
4713 unmap_ref_private(mm, vma, old_page, haddr);
4715 i_mmap_lock_read(mapping);
4716 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4718 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4720 pte_same(huge_ptep_get(ptep), pte)))
4721 goto retry_avoidcopy;
4723 * race occurs while re-acquiring page table
4724 * lock, and our job is done.
4729 ret = vmf_error(PTR_ERR(new_page));
4730 goto out_release_old;
4734 * When the original hugepage is shared one, it does not have
4735 * anon_vma prepared.
4737 if (unlikely(anon_vma_prepare(vma))) {
4739 goto out_release_all;
4742 copy_user_huge_page(new_page, old_page, address, vma,
4743 pages_per_huge_page(h));
4744 __SetPageUptodate(new_page);
4746 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4747 haddr + huge_page_size(h));
4748 mmu_notifier_invalidate_range_start(&range);
4751 * Retake the page table lock to check for racing updates
4752 * before the page tables are altered
4755 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4756 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4757 ClearHPageRestoreReserve(new_page);
4760 huge_ptep_clear_flush(vma, haddr, ptep);
4761 mmu_notifier_invalidate_range(mm, range.start, range.end);
4762 set_huge_pte_at(mm, haddr, ptep,
4763 make_huge_pte(vma, new_page, 1));
4764 page_remove_rmap(old_page, true);
4765 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4766 SetHPageMigratable(new_page);
4767 /* Make the old page be freed below */
4768 new_page = old_page;
4771 mmu_notifier_invalidate_range_end(&range);
4773 /* No restore in case of successful pagetable update (Break COW) */
4774 if (new_page != old_page)
4775 restore_reserve_on_error(h, vma, haddr, new_page);
4780 spin_lock(ptl); /* Caller expects lock to be held */
4784 /* Return the pagecache page at a given address within a VMA */
4785 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4786 struct vm_area_struct *vma, unsigned long address)
4788 struct address_space *mapping;
4791 mapping = vma->vm_file->f_mapping;
4792 idx = vma_hugecache_offset(h, vma, address);
4794 return find_lock_page(mapping, idx);
4798 * Return whether there is a pagecache page to back given address within VMA.
4799 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4801 static bool hugetlbfs_pagecache_present(struct hstate *h,
4802 struct vm_area_struct *vma, unsigned long address)
4804 struct address_space *mapping;
4808 mapping = vma->vm_file->f_mapping;
4809 idx = vma_hugecache_offset(h, vma, address);
4811 page = find_get_page(mapping, idx);
4814 return page != NULL;
4817 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4820 struct inode *inode = mapping->host;
4821 struct hstate *h = hstate_inode(inode);
4822 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4826 ClearHPageRestoreReserve(page);
4829 * set page dirty so that it will not be removed from cache/file
4830 * by non-hugetlbfs specific code paths.
4832 set_page_dirty(page);
4834 spin_lock(&inode->i_lock);
4835 inode->i_blocks += blocks_per_huge_page(h);
4836 spin_unlock(&inode->i_lock);
4840 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4841 struct address_space *mapping,
4844 unsigned long haddr,
4845 unsigned long reason)
4849 struct vm_fault vmf = {
4855 * Hard to debug if it ends up being
4856 * used by a callee that assumes
4857 * something about the other
4858 * uninitialized fields... same as in
4864 * hugetlb_fault_mutex and i_mmap_rwsem must be
4865 * dropped before handling userfault. Reacquire
4866 * after handling fault to make calling code simpler.
4868 hash = hugetlb_fault_mutex_hash(mapping, idx);
4869 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4870 i_mmap_unlock_read(mapping);
4871 ret = handle_userfault(&vmf, reason);
4872 i_mmap_lock_read(mapping);
4873 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4878 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4879 struct vm_area_struct *vma,
4880 struct address_space *mapping, pgoff_t idx,
4881 unsigned long address, pte_t *ptep, unsigned int flags)
4883 struct hstate *h = hstate_vma(vma);
4884 vm_fault_t ret = VM_FAULT_SIGBUS;
4890 unsigned long haddr = address & huge_page_mask(h);
4891 bool new_page, new_pagecache_page = false;
4894 * Currently, we are forced to kill the process in the event the
4895 * original mapper has unmapped pages from the child due to a failed
4896 * COW. Warn that such a situation has occurred as it may not be obvious
4898 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4899 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4905 * We can not race with truncation due to holding i_mmap_rwsem.
4906 * i_size is modified when holding i_mmap_rwsem, so check here
4907 * once for faults beyond end of file.
4909 size = i_size_read(mapping->host) >> huge_page_shift(h);
4915 page = find_lock_page(mapping, idx);
4917 /* Check for page in userfault range */
4918 if (userfaultfd_missing(vma)) {
4919 ret = hugetlb_handle_userfault(vma, mapping, idx,
4925 page = alloc_huge_page(vma, haddr, 0);
4928 * Returning error will result in faulting task being
4929 * sent SIGBUS. The hugetlb fault mutex prevents two
4930 * tasks from racing to fault in the same page which
4931 * could result in false unable to allocate errors.
4932 * Page migration does not take the fault mutex, but
4933 * does a clear then write of pte's under page table
4934 * lock. Page fault code could race with migration,
4935 * notice the clear pte and try to allocate a page
4936 * here. Before returning error, get ptl and make
4937 * sure there really is no pte entry.
4939 ptl = huge_pte_lock(h, mm, ptep);
4941 if (huge_pte_none(huge_ptep_get(ptep)))
4942 ret = vmf_error(PTR_ERR(page));
4946 clear_huge_page(page, address, pages_per_huge_page(h));
4947 __SetPageUptodate(page);
4950 if (vma->vm_flags & VM_MAYSHARE) {
4951 int err = huge_add_to_page_cache(page, mapping, idx);
4958 new_pagecache_page = true;
4961 if (unlikely(anon_vma_prepare(vma))) {
4963 goto backout_unlocked;
4969 * If memory error occurs between mmap() and fault, some process
4970 * don't have hwpoisoned swap entry for errored virtual address.
4971 * So we need to block hugepage fault by PG_hwpoison bit check.
4973 if (unlikely(PageHWPoison(page))) {
4974 ret = VM_FAULT_HWPOISON_LARGE |
4975 VM_FAULT_SET_HINDEX(hstate_index(h));
4976 goto backout_unlocked;
4979 /* Check for page in userfault range. */
4980 if (userfaultfd_minor(vma)) {
4983 ret = hugetlb_handle_userfault(vma, mapping, idx,
4991 * If we are going to COW a private mapping later, we examine the
4992 * pending reservations for this page now. This will ensure that
4993 * any allocations necessary to record that reservation occur outside
4996 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4997 if (vma_needs_reservation(h, vma, haddr) < 0) {
4999 goto backout_unlocked;
5001 /* Just decrements count, does not deallocate */
5002 vma_end_reservation(h, vma, haddr);
5005 ptl = huge_pte_lock(h, mm, ptep);
5007 if (!huge_pte_none(huge_ptep_get(ptep)))
5011 ClearHPageRestoreReserve(page);
5012 hugepage_add_new_anon_rmap(page, vma, haddr);
5014 page_dup_rmap(page, true);
5015 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5016 && (vma->vm_flags & VM_SHARED)));
5017 set_huge_pte_at(mm, haddr, ptep, new_pte);
5019 hugetlb_count_add(pages_per_huge_page(h), mm);
5020 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5021 /* Optimization, do the COW without a second fault */
5022 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5028 * Only set HPageMigratable in newly allocated pages. Existing pages
5029 * found in the pagecache may not have HPageMigratableset if they have
5030 * been isolated for migration.
5033 SetHPageMigratable(page);
5043 /* restore reserve for newly allocated pages not in page cache */
5044 if (new_page && !new_pagecache_page)
5045 restore_reserve_on_error(h, vma, haddr, page);
5051 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5053 unsigned long key[2];
5056 key[0] = (unsigned long) mapping;
5059 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5061 return hash & (num_fault_mutexes - 1);
5065 * For uniprocessor systems we always use a single mutex, so just
5066 * return 0 and avoid the hashing overhead.
5068 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5074 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5075 unsigned long address, unsigned int flags)
5082 struct page *page = NULL;
5083 struct page *pagecache_page = NULL;
5084 struct hstate *h = hstate_vma(vma);
5085 struct address_space *mapping;
5086 int need_wait_lock = 0;
5087 unsigned long haddr = address & huge_page_mask(h);
5089 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5092 * Since we hold no locks, ptep could be stale. That is
5093 * OK as we are only making decisions based on content and
5094 * not actually modifying content here.
5096 entry = huge_ptep_get(ptep);
5097 if (unlikely(is_hugetlb_entry_migration(entry))) {
5098 migration_entry_wait_huge(vma, mm, ptep);
5100 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5101 return VM_FAULT_HWPOISON_LARGE |
5102 VM_FAULT_SET_HINDEX(hstate_index(h));
5106 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5107 * until finished with ptep. This serves two purposes:
5108 * 1) It prevents huge_pmd_unshare from being called elsewhere
5109 * and making the ptep no longer valid.
5110 * 2) It synchronizes us with i_size modifications during truncation.
5112 * ptep could have already be assigned via huge_pte_offset. That
5113 * is OK, as huge_pte_alloc will return the same value unless
5114 * something has changed.
5116 mapping = vma->vm_file->f_mapping;
5117 i_mmap_lock_read(mapping);
5118 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5120 i_mmap_unlock_read(mapping);
5121 return VM_FAULT_OOM;
5125 * Serialize hugepage allocation and instantiation, so that we don't
5126 * get spurious allocation failures if two CPUs race to instantiate
5127 * the same page in the page cache.
5129 idx = vma_hugecache_offset(h, vma, haddr);
5130 hash = hugetlb_fault_mutex_hash(mapping, idx);
5131 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5133 entry = huge_ptep_get(ptep);
5134 if (huge_pte_none(entry)) {
5135 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5142 * entry could be a migration/hwpoison entry at this point, so this
5143 * check prevents the kernel from going below assuming that we have
5144 * an active hugepage in pagecache. This goto expects the 2nd page
5145 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5146 * properly handle it.
5148 if (!pte_present(entry))
5152 * If we are going to COW the mapping later, we examine the pending
5153 * reservations for this page now. This will ensure that any
5154 * allocations necessary to record that reservation occur outside the
5155 * spinlock. For private mappings, we also lookup the pagecache
5156 * page now as it is used to determine if a reservation has been
5159 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5160 if (vma_needs_reservation(h, vma, haddr) < 0) {
5164 /* Just decrements count, does not deallocate */
5165 vma_end_reservation(h, vma, haddr);
5167 if (!(vma->vm_flags & VM_MAYSHARE))
5168 pagecache_page = hugetlbfs_pagecache_page(h,
5172 ptl = huge_pte_lock(h, mm, ptep);
5174 /* Check for a racing update before calling hugetlb_cow */
5175 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5179 * hugetlb_cow() requires page locks of pte_page(entry) and
5180 * pagecache_page, so here we need take the former one
5181 * when page != pagecache_page or !pagecache_page.
5183 page = pte_page(entry);
5184 if (page != pagecache_page)
5185 if (!trylock_page(page)) {
5192 if (flags & FAULT_FLAG_WRITE) {
5193 if (!huge_pte_write(entry)) {
5194 ret = hugetlb_cow(mm, vma, address, ptep,
5195 pagecache_page, ptl);
5198 entry = huge_pte_mkdirty(entry);
5200 entry = pte_mkyoung(entry);
5201 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5202 flags & FAULT_FLAG_WRITE))
5203 update_mmu_cache(vma, haddr, ptep);
5205 if (page != pagecache_page)
5211 if (pagecache_page) {
5212 unlock_page(pagecache_page);
5213 put_page(pagecache_page);
5216 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5217 i_mmap_unlock_read(mapping);
5219 * Generally it's safe to hold refcount during waiting page lock. But
5220 * here we just wait to defer the next page fault to avoid busy loop and
5221 * the page is not used after unlocked before returning from the current
5222 * page fault. So we are safe from accessing freed page, even if we wait
5223 * here without taking refcount.
5226 wait_on_page_locked(page);
5230 #ifdef CONFIG_USERFAULTFD
5232 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5233 * modifications for huge pages.
5235 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5237 struct vm_area_struct *dst_vma,
5238 unsigned long dst_addr,
5239 unsigned long src_addr,
5240 enum mcopy_atomic_mode mode,
5241 struct page **pagep)
5243 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5244 struct hstate *h = hstate_vma(dst_vma);
5245 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5246 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5248 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5254 bool page_in_pagecache = false;
5258 page = find_lock_page(mapping, idx);
5261 page_in_pagecache = true;
5262 } else if (!*pagep) {
5263 /* If a page already exists, then it's UFFDIO_COPY for
5264 * a non-missing case. Return -EEXIST.
5267 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5272 page = alloc_huge_page(dst_vma, dst_addr, 0);
5278 ret = copy_huge_page_from_user(page,
5279 (const void __user *) src_addr,
5280 pages_per_huge_page(h), false);
5282 /* fallback to copy_from_user outside mmap_lock */
5283 if (unlikely(ret)) {
5285 /* Free the allocated page which may have
5286 * consumed a reservation.
5288 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5291 /* Allocate a temporary page to hold the copied
5294 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5300 /* Set the outparam pagep and return to the caller to
5301 * copy the contents outside the lock. Don't free the
5308 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5315 page = alloc_huge_page(dst_vma, dst_addr, 0);
5321 copy_huge_page(page, *pagep);
5327 * The memory barrier inside __SetPageUptodate makes sure that
5328 * preceding stores to the page contents become visible before
5329 * the set_pte_at() write.
5331 __SetPageUptodate(page);
5333 /* Add shared, newly allocated pages to the page cache. */
5334 if (vm_shared && !is_continue) {
5335 size = i_size_read(mapping->host) >> huge_page_shift(h);
5338 goto out_release_nounlock;
5341 * Serialization between remove_inode_hugepages() and
5342 * huge_add_to_page_cache() below happens through the
5343 * hugetlb_fault_mutex_table that here must be hold by
5346 ret = huge_add_to_page_cache(page, mapping, idx);
5348 goto out_release_nounlock;
5349 page_in_pagecache = true;
5352 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5356 * Recheck the i_size after holding PT lock to make sure not
5357 * to leave any page mapped (as page_mapped()) beyond the end
5358 * of the i_size (remove_inode_hugepages() is strict about
5359 * enforcing that). If we bail out here, we'll also leave a
5360 * page in the radix tree in the vm_shared case beyond the end
5361 * of the i_size, but remove_inode_hugepages() will take care
5362 * of it as soon as we drop the hugetlb_fault_mutex_table.
5364 size = i_size_read(mapping->host) >> huge_page_shift(h);
5367 goto out_release_unlock;
5370 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5371 goto out_release_unlock;
5374 page_dup_rmap(page, true);
5376 ClearHPageRestoreReserve(page);
5377 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5380 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5381 if (is_continue && !vm_shared)
5384 writable = dst_vma->vm_flags & VM_WRITE;
5386 _dst_pte = make_huge_pte(dst_vma, page, writable);
5388 _dst_pte = huge_pte_mkdirty(_dst_pte);
5389 _dst_pte = pte_mkyoung(_dst_pte);
5391 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5393 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5394 dst_vma->vm_flags & VM_WRITE);
5395 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5397 /* No need to invalidate - it was non-present before */
5398 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5402 SetHPageMigratable(page);
5403 if (vm_shared || is_continue)
5410 if (vm_shared || is_continue)
5412 out_release_nounlock:
5413 if (!page_in_pagecache)
5414 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5418 #endif /* CONFIG_USERFAULTFD */
5420 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5421 int refs, struct page **pages,
5422 struct vm_area_struct **vmas)
5426 for (nr = 0; nr < refs; nr++) {
5428 pages[nr] = mem_map_offset(page, nr);
5434 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5435 struct page **pages, struct vm_area_struct **vmas,
5436 unsigned long *position, unsigned long *nr_pages,
5437 long i, unsigned int flags, int *locked)
5439 unsigned long pfn_offset;
5440 unsigned long vaddr = *position;
5441 unsigned long remainder = *nr_pages;
5442 struct hstate *h = hstate_vma(vma);
5443 int err = -EFAULT, refs;
5445 while (vaddr < vma->vm_end && remainder) {
5447 spinlock_t *ptl = NULL;
5452 * If we have a pending SIGKILL, don't keep faulting pages and
5453 * potentially allocating memory.
5455 if (fatal_signal_pending(current)) {
5461 * Some archs (sparc64, sh*) have multiple pte_ts to
5462 * each hugepage. We have to make sure we get the
5463 * first, for the page indexing below to work.
5465 * Note that page table lock is not held when pte is null.
5467 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5470 ptl = huge_pte_lock(h, mm, pte);
5471 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5474 * When coredumping, it suits get_dump_page if we just return
5475 * an error where there's an empty slot with no huge pagecache
5476 * to back it. This way, we avoid allocating a hugepage, and
5477 * the sparse dumpfile avoids allocating disk blocks, but its
5478 * huge holes still show up with zeroes where they need to be.
5480 if (absent && (flags & FOLL_DUMP) &&
5481 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5489 * We need call hugetlb_fault for both hugepages under migration
5490 * (in which case hugetlb_fault waits for the migration,) and
5491 * hwpoisoned hugepages (in which case we need to prevent the
5492 * caller from accessing to them.) In order to do this, we use
5493 * here is_swap_pte instead of is_hugetlb_entry_migration and
5494 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5495 * both cases, and because we can't follow correct pages
5496 * directly from any kind of swap entries.
5498 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5499 ((flags & FOLL_WRITE) &&
5500 !huge_pte_write(huge_ptep_get(pte)))) {
5502 unsigned int fault_flags = 0;
5506 if (flags & FOLL_WRITE)
5507 fault_flags |= FAULT_FLAG_WRITE;
5509 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5510 FAULT_FLAG_KILLABLE;
5511 if (flags & FOLL_NOWAIT)
5512 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5513 FAULT_FLAG_RETRY_NOWAIT;
5514 if (flags & FOLL_TRIED) {
5516 * Note: FAULT_FLAG_ALLOW_RETRY and
5517 * FAULT_FLAG_TRIED can co-exist
5519 fault_flags |= FAULT_FLAG_TRIED;
5521 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5522 if (ret & VM_FAULT_ERROR) {
5523 err = vm_fault_to_errno(ret, flags);
5527 if (ret & VM_FAULT_RETRY) {
5529 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5533 * VM_FAULT_RETRY must not return an
5534 * error, it will return zero
5537 * No need to update "position" as the
5538 * caller will not check it after
5539 * *nr_pages is set to 0.
5546 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5547 page = pte_page(huge_ptep_get(pte));
5550 * If subpage information not requested, update counters
5551 * and skip the same_page loop below.
5553 if (!pages && !vmas && !pfn_offset &&
5554 (vaddr + huge_page_size(h) < vma->vm_end) &&
5555 (remainder >= pages_per_huge_page(h))) {
5556 vaddr += huge_page_size(h);
5557 remainder -= pages_per_huge_page(h);
5558 i += pages_per_huge_page(h);
5563 /* vaddr may not be aligned to PAGE_SIZE */
5564 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5565 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5568 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5570 likely(pages) ? pages + i : NULL,
5571 vmas ? vmas + i : NULL);
5575 * try_grab_compound_head() should always succeed here,
5576 * because: a) we hold the ptl lock, and b) we've just
5577 * checked that the huge page is present in the page
5578 * tables. If the huge page is present, then the tail
5579 * pages must also be present. The ptl prevents the
5580 * head page and tail pages from being rearranged in
5581 * any way. So this page must be available at this
5582 * point, unless the page refcount overflowed:
5584 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5594 vaddr += (refs << PAGE_SHIFT);
5600 *nr_pages = remainder;
5602 * setting position is actually required only if remainder is
5603 * not zero but it's faster not to add a "if (remainder)"
5611 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5612 unsigned long address, unsigned long end, pgprot_t newprot)
5614 struct mm_struct *mm = vma->vm_mm;
5615 unsigned long start = address;
5618 struct hstate *h = hstate_vma(vma);
5619 unsigned long pages = 0;
5620 bool shared_pmd = false;
5621 struct mmu_notifier_range range;
5624 * In the case of shared PMDs, the area to flush could be beyond
5625 * start/end. Set range.start/range.end to cover the maximum possible
5626 * range if PMD sharing is possible.
5628 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5629 0, vma, mm, start, end);
5630 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5632 BUG_ON(address >= end);
5633 flush_cache_range(vma, range.start, range.end);
5635 mmu_notifier_invalidate_range_start(&range);
5636 i_mmap_lock_write(vma->vm_file->f_mapping);
5637 for (; address < end; address += huge_page_size(h)) {
5639 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5642 ptl = huge_pte_lock(h, mm, ptep);
5643 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5649 pte = huge_ptep_get(ptep);
5650 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5654 if (unlikely(is_hugetlb_entry_migration(pte))) {
5655 swp_entry_t entry = pte_to_swp_entry(pte);
5657 if (is_writable_migration_entry(entry)) {
5660 entry = make_readable_migration_entry(
5662 newpte = swp_entry_to_pte(entry);
5663 set_huge_swap_pte_at(mm, address, ptep,
5664 newpte, huge_page_size(h));
5670 if (!huge_pte_none(pte)) {
5672 unsigned int shift = huge_page_shift(hstate_vma(vma));
5674 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5675 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5676 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5677 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5683 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5684 * may have cleared our pud entry and done put_page on the page table:
5685 * once we release i_mmap_rwsem, another task can do the final put_page
5686 * and that page table be reused and filled with junk. If we actually
5687 * did unshare a page of pmds, flush the range corresponding to the pud.
5690 flush_hugetlb_tlb_range(vma, range.start, range.end);
5692 flush_hugetlb_tlb_range(vma, start, end);
5694 * No need to call mmu_notifier_invalidate_range() we are downgrading
5695 * page table protection not changing it to point to a new page.
5697 * See Documentation/vm/mmu_notifier.rst
5699 i_mmap_unlock_write(vma->vm_file->f_mapping);
5700 mmu_notifier_invalidate_range_end(&range);
5702 return pages << h->order;
5705 /* Return true if reservation was successful, false otherwise. */
5706 bool hugetlb_reserve_pages(struct inode *inode,
5708 struct vm_area_struct *vma,
5709 vm_flags_t vm_flags)
5712 struct hstate *h = hstate_inode(inode);
5713 struct hugepage_subpool *spool = subpool_inode(inode);
5714 struct resv_map *resv_map;
5715 struct hugetlb_cgroup *h_cg = NULL;
5716 long gbl_reserve, regions_needed = 0;
5718 /* This should never happen */
5720 VM_WARN(1, "%s called with a negative range\n", __func__);
5725 * Only apply hugepage reservation if asked. At fault time, an
5726 * attempt will be made for VM_NORESERVE to allocate a page
5727 * without using reserves
5729 if (vm_flags & VM_NORESERVE)
5733 * Shared mappings base their reservation on the number of pages that
5734 * are already allocated on behalf of the file. Private mappings need
5735 * to reserve the full area even if read-only as mprotect() may be
5736 * called to make the mapping read-write. Assume !vma is a shm mapping
5738 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5740 * resv_map can not be NULL as hugetlb_reserve_pages is only
5741 * called for inodes for which resv_maps were created (see
5742 * hugetlbfs_get_inode).
5744 resv_map = inode_resv_map(inode);
5746 chg = region_chg(resv_map, from, to, ®ions_needed);
5749 /* Private mapping. */
5750 resv_map = resv_map_alloc();
5756 set_vma_resv_map(vma, resv_map);
5757 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5763 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5764 chg * pages_per_huge_page(h), &h_cg) < 0)
5767 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5768 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5771 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5775 * There must be enough pages in the subpool for the mapping. If
5776 * the subpool has a minimum size, there may be some global
5777 * reservations already in place (gbl_reserve).
5779 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5780 if (gbl_reserve < 0)
5781 goto out_uncharge_cgroup;
5784 * Check enough hugepages are available for the reservation.
5785 * Hand the pages back to the subpool if there are not
5787 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5791 * Account for the reservations made. Shared mappings record regions
5792 * that have reservations as they are shared by multiple VMAs.
5793 * When the last VMA disappears, the region map says how much
5794 * the reservation was and the page cache tells how much of
5795 * the reservation was consumed. Private mappings are per-VMA and
5796 * only the consumed reservations are tracked. When the VMA
5797 * disappears, the original reservation is the VMA size and the
5798 * consumed reservations are stored in the map. Hence, nothing
5799 * else has to be done for private mappings here
5801 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5802 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5804 if (unlikely(add < 0)) {
5805 hugetlb_acct_memory(h, -gbl_reserve);
5807 } else if (unlikely(chg > add)) {
5809 * pages in this range were added to the reserve
5810 * map between region_chg and region_add. This
5811 * indicates a race with alloc_huge_page. Adjust
5812 * the subpool and reserve counts modified above
5813 * based on the difference.
5818 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5819 * reference to h_cg->css. See comment below for detail.
5821 hugetlb_cgroup_uncharge_cgroup_rsvd(
5823 (chg - add) * pages_per_huge_page(h), h_cg);
5825 rsv_adjust = hugepage_subpool_put_pages(spool,
5827 hugetlb_acct_memory(h, -rsv_adjust);
5830 * The file_regions will hold their own reference to
5831 * h_cg->css. So we should release the reference held
5832 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5835 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5841 /* put back original number of pages, chg */
5842 (void)hugepage_subpool_put_pages(spool, chg);
5843 out_uncharge_cgroup:
5844 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5845 chg * pages_per_huge_page(h), h_cg);
5847 if (!vma || vma->vm_flags & VM_MAYSHARE)
5848 /* Only call region_abort if the region_chg succeeded but the
5849 * region_add failed or didn't run.
5851 if (chg >= 0 && add < 0)
5852 region_abort(resv_map, from, to, regions_needed);
5853 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5854 kref_put(&resv_map->refs, resv_map_release);
5858 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5861 struct hstate *h = hstate_inode(inode);
5862 struct resv_map *resv_map = inode_resv_map(inode);
5864 struct hugepage_subpool *spool = subpool_inode(inode);
5868 * Since this routine can be called in the evict inode path for all
5869 * hugetlbfs inodes, resv_map could be NULL.
5872 chg = region_del(resv_map, start, end);
5874 * region_del() can fail in the rare case where a region
5875 * must be split and another region descriptor can not be
5876 * allocated. If end == LONG_MAX, it will not fail.
5882 spin_lock(&inode->i_lock);
5883 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5884 spin_unlock(&inode->i_lock);
5887 * If the subpool has a minimum size, the number of global
5888 * reservations to be released may be adjusted.
5890 * Note that !resv_map implies freed == 0. So (chg - freed)
5891 * won't go negative.
5893 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5894 hugetlb_acct_memory(h, -gbl_reserve);
5899 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5900 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5901 struct vm_area_struct *vma,
5902 unsigned long addr, pgoff_t idx)
5904 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5906 unsigned long sbase = saddr & PUD_MASK;
5907 unsigned long s_end = sbase + PUD_SIZE;
5909 /* Allow segments to share if only one is marked locked */
5910 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5911 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5914 * match the virtual addresses, permission and the alignment of the
5917 if (pmd_index(addr) != pmd_index(saddr) ||
5918 vm_flags != svm_flags ||
5919 !range_in_vma(svma, sbase, s_end))
5925 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5927 unsigned long base = addr & PUD_MASK;
5928 unsigned long end = base + PUD_SIZE;
5931 * check on proper vm_flags and page table alignment
5933 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5938 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5940 #ifdef CONFIG_USERFAULTFD
5941 if (uffd_disable_huge_pmd_share(vma))
5944 return vma_shareable(vma, addr);
5948 * Determine if start,end range within vma could be mapped by shared pmd.
5949 * If yes, adjust start and end to cover range associated with possible
5950 * shared pmd mappings.
5952 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5953 unsigned long *start, unsigned long *end)
5955 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5956 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5959 * vma needs to span at least one aligned PUD size, and the range
5960 * must be at least partially within in.
5962 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5963 (*end <= v_start) || (*start >= v_end))
5966 /* Extend the range to be PUD aligned for a worst case scenario */
5967 if (*start > v_start)
5968 *start = ALIGN_DOWN(*start, PUD_SIZE);
5971 *end = ALIGN(*end, PUD_SIZE);
5975 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5976 * and returns the corresponding pte. While this is not necessary for the
5977 * !shared pmd case because we can allocate the pmd later as well, it makes the
5978 * code much cleaner.
5980 * This routine must be called with i_mmap_rwsem held in at least read mode if
5981 * sharing is possible. For hugetlbfs, this prevents removal of any page
5982 * table entries associated with the address space. This is important as we
5983 * are setting up sharing based on existing page table entries (mappings).
5985 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5986 * huge_pte_alloc know that sharing is not possible and do not take
5987 * i_mmap_rwsem as a performance optimization. This is handled by the
5988 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5989 * only required for subsequent processing.
5991 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5992 unsigned long addr, pud_t *pud)
5994 struct address_space *mapping = vma->vm_file->f_mapping;
5995 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5997 struct vm_area_struct *svma;
5998 unsigned long saddr;
6003 i_mmap_assert_locked(mapping);
6004 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6008 saddr = page_table_shareable(svma, vma, addr, idx);
6010 spte = huge_pte_offset(svma->vm_mm, saddr,
6011 vma_mmu_pagesize(svma));
6013 get_page(virt_to_page(spte));
6022 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6023 if (pud_none(*pud)) {
6024 pud_populate(mm, pud,
6025 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6028 put_page(virt_to_page(spte));
6032 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6037 * unmap huge page backed by shared pte.
6039 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6040 * indicated by page_count > 1, unmap is achieved by clearing pud and
6041 * decrementing the ref count. If count == 1, the pte page is not shared.
6043 * Called with page table lock held and i_mmap_rwsem held in write mode.
6045 * returns: 1 successfully unmapped a shared pte page
6046 * 0 the underlying pte page is not shared, or it is the last user
6048 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6049 unsigned long *addr, pte_t *ptep)
6051 pgd_t *pgd = pgd_offset(mm, *addr);
6052 p4d_t *p4d = p4d_offset(pgd, *addr);
6053 pud_t *pud = pud_offset(p4d, *addr);
6055 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6056 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6057 if (page_count(virt_to_page(ptep)) == 1)
6061 put_page(virt_to_page(ptep));
6063 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6067 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6069 unsigned long addr, pud_t *pud)
6074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6075 unsigned long *addr, pte_t *ptep)
6080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6081 unsigned long *start, unsigned long *end)
6085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6093 unsigned long addr, unsigned long sz)
6100 pgd = pgd_offset(mm, addr);
6101 p4d = p4d_alloc(mm, pgd, addr);
6104 pud = pud_alloc(mm, p4d, addr);
6106 if (sz == PUD_SIZE) {
6109 BUG_ON(sz != PMD_SIZE);
6110 if (want_pmd_share(vma, addr) && pud_none(*pud))
6111 pte = huge_pmd_share(mm, vma, addr, pud);
6113 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6116 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6122 * huge_pte_offset() - Walk the page table to resolve the hugepage
6123 * entry at address @addr
6125 * Return: Pointer to page table entry (PUD or PMD) for
6126 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6127 * size @sz doesn't match the hugepage size at this level of the page
6130 pte_t *huge_pte_offset(struct mm_struct *mm,
6131 unsigned long addr, unsigned long sz)
6138 pgd = pgd_offset(mm, addr);
6139 if (!pgd_present(*pgd))
6141 p4d = p4d_offset(pgd, addr);
6142 if (!p4d_present(*p4d))
6145 pud = pud_offset(p4d, addr);
6147 /* must be pud huge, non-present or none */
6148 return (pte_t *)pud;
6149 if (!pud_present(*pud))
6151 /* must have a valid entry and size to go further */
6153 pmd = pmd_offset(pud, addr);
6154 /* must be pmd huge, non-present or none */
6155 return (pte_t *)pmd;
6158 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6161 * These functions are overwritable if your architecture needs its own
6164 struct page * __weak
6165 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6168 return ERR_PTR(-EINVAL);
6171 struct page * __weak
6172 follow_huge_pd(struct vm_area_struct *vma,
6173 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6175 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6179 struct page * __weak
6180 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6181 pmd_t *pmd, int flags)
6183 struct page *page = NULL;
6187 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6188 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6189 (FOLL_PIN | FOLL_GET)))
6193 ptl = pmd_lockptr(mm, pmd);
6196 * make sure that the address range covered by this pmd is not
6197 * unmapped from other threads.
6199 if (!pmd_huge(*pmd))
6201 pte = huge_ptep_get((pte_t *)pmd);
6202 if (pte_present(pte)) {
6203 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6205 * try_grab_page() should always succeed here, because: a) we
6206 * hold the pmd (ptl) lock, and b) we've just checked that the
6207 * huge pmd (head) page is present in the page tables. The ptl
6208 * prevents the head page and tail pages from being rearranged
6209 * in any way. So this page must be available at this point,
6210 * unless the page refcount overflowed:
6212 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6217 if (is_hugetlb_entry_migration(pte)) {
6219 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6223 * hwpoisoned entry is treated as no_page_table in
6224 * follow_page_mask().
6232 struct page * __weak
6233 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6234 pud_t *pud, int flags)
6236 if (flags & (FOLL_GET | FOLL_PIN))
6239 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6242 struct page * __weak
6243 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6245 if (flags & (FOLL_GET | FOLL_PIN))
6248 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6251 bool isolate_huge_page(struct page *page, struct list_head *list)
6255 spin_lock_irq(&hugetlb_lock);
6256 if (!PageHeadHuge(page) ||
6257 !HPageMigratable(page) ||
6258 !get_page_unless_zero(page)) {
6262 ClearHPageMigratable(page);
6263 list_move_tail(&page->lru, list);
6265 spin_unlock_irq(&hugetlb_lock);
6269 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6274 spin_lock_irq(&hugetlb_lock);
6275 if (PageHeadHuge(page)) {
6277 if (HPageFreed(page) || HPageMigratable(page))
6278 ret = get_page_unless_zero(page);
6282 spin_unlock_irq(&hugetlb_lock);
6286 void putback_active_hugepage(struct page *page)
6288 spin_lock_irq(&hugetlb_lock);
6289 SetHPageMigratable(page);
6290 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6291 spin_unlock_irq(&hugetlb_lock);
6295 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6297 struct hstate *h = page_hstate(oldpage);
6299 hugetlb_cgroup_migrate(oldpage, newpage);
6300 set_page_owner_migrate_reason(newpage, reason);
6303 * transfer temporary state of the new huge page. This is
6304 * reverse to other transitions because the newpage is going to
6305 * be final while the old one will be freed so it takes over
6306 * the temporary status.
6308 * Also note that we have to transfer the per-node surplus state
6309 * here as well otherwise the global surplus count will not match
6312 if (HPageTemporary(newpage)) {
6313 int old_nid = page_to_nid(oldpage);
6314 int new_nid = page_to_nid(newpage);
6316 SetHPageTemporary(oldpage);
6317 ClearHPageTemporary(newpage);
6320 * There is no need to transfer the per-node surplus state
6321 * when we do not cross the node.
6323 if (new_nid == old_nid)
6325 spin_lock_irq(&hugetlb_lock);
6326 if (h->surplus_huge_pages_node[old_nid]) {
6327 h->surplus_huge_pages_node[old_nid]--;
6328 h->surplus_huge_pages_node[new_nid]++;
6330 spin_unlock_irq(&hugetlb_lock);
6335 * This function will unconditionally remove all the shared pmd pgtable entries
6336 * within the specific vma for a hugetlbfs memory range.
6338 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6340 struct hstate *h = hstate_vma(vma);
6341 unsigned long sz = huge_page_size(h);
6342 struct mm_struct *mm = vma->vm_mm;
6343 struct mmu_notifier_range range;
6344 unsigned long address, start, end;
6348 if (!(vma->vm_flags & VM_MAYSHARE))
6351 start = ALIGN(vma->vm_start, PUD_SIZE);
6352 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6358 * No need to call adjust_range_if_pmd_sharing_possible(), because
6359 * we have already done the PUD_SIZE alignment.
6361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6363 mmu_notifier_invalidate_range_start(&range);
6364 i_mmap_lock_write(vma->vm_file->f_mapping);
6365 for (address = start; address < end; address += PUD_SIZE) {
6366 unsigned long tmp = address;
6368 ptep = huge_pte_offset(mm, address, sz);
6371 ptl = huge_pte_lock(h, mm, ptep);
6372 /* We don't want 'address' to be changed */
6373 huge_pmd_unshare(mm, vma, &tmp, ptep);
6376 flush_hugetlb_tlb_range(vma, start, end);
6377 i_mmap_unlock_write(vma->vm_file->f_mapping);
6379 * No need to call mmu_notifier_invalidate_range(), see
6380 * Documentation/vm/mmu_notifier.rst.
6382 mmu_notifier_invalidate_range_end(&range);
6386 static bool cma_reserve_called __initdata;
6388 static int __init cmdline_parse_hugetlb_cma(char *p)
6390 hugetlb_cma_size = memparse(p, &p);
6394 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6396 void __init hugetlb_cma_reserve(int order)
6398 unsigned long size, reserved, per_node;
6401 cma_reserve_called = true;
6403 if (!hugetlb_cma_size)
6406 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6407 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6408 (PAGE_SIZE << order) / SZ_1M);
6413 * If 3 GB area is requested on a machine with 4 numa nodes,
6414 * let's allocate 1 GB on first three nodes and ignore the last one.
6416 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6417 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6418 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6421 for_each_node_state(nid, N_ONLINE) {
6423 char name[CMA_MAX_NAME];
6425 size = min(per_node, hugetlb_cma_size - reserved);
6426 size = round_up(size, PAGE_SIZE << order);
6428 snprintf(name, sizeof(name), "hugetlb%d", nid);
6429 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6431 &hugetlb_cma[nid], nid);
6433 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6439 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6442 if (reserved >= hugetlb_cma_size)
6447 void __init hugetlb_cma_check(void)
6449 if (!hugetlb_cma_size || cma_reserve_called)
6452 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6455 #endif /* CONFIG_CMA */