hugetlb: simplify prep_compound_gigantic_page ref count racing code
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88         if (spool->count)
89                 return false;
90         if (spool->max_hpages != -1)
91                 return spool->used_hpages == 0;
92         if (spool->min_hpages != -1)
93                 return spool->rsv_hpages == spool->min_hpages;
94
95         return true;
96 }
97
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99                                                 unsigned long irq_flags)
100 {
101         spin_unlock_irqrestore(&spool->lock, irq_flags);
102
103         /* If no pages are used, and no other handles to the subpool
104          * remain, give up any reservations based on minimum size and
105          * free the subpool */
106         if (subpool_is_free(spool)) {
107                 if (spool->min_hpages != -1)
108                         hugetlb_acct_memory(spool->hstate,
109                                                 -spool->min_hpages);
110                 kfree(spool);
111         }
112 }
113
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115                                                 long min_hpages)
116 {
117         struct hugepage_subpool *spool;
118
119         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120         if (!spool)
121                 return NULL;
122
123         spin_lock_init(&spool->lock);
124         spool->count = 1;
125         spool->max_hpages = max_hpages;
126         spool->hstate = h;
127         spool->min_hpages = min_hpages;
128
129         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130                 kfree(spool);
131                 return NULL;
132         }
133         spool->rsv_hpages = min_hpages;
134
135         return spool;
136 }
137
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&spool->lock, flags);
143         BUG_ON(!spool->count);
144         spool->count--;
145         unlock_or_release_subpool(spool, flags);
146 }
147
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157                                       long delta)
158 {
159         long ret = delta;
160
161         if (!spool)
162                 return ret;
163
164         spin_lock_irq(&spool->lock);
165
166         if (spool->max_hpages != -1) {          /* maximum size accounting */
167                 if ((spool->used_hpages + delta) <= spool->max_hpages)
168                         spool->used_hpages += delta;
169                 else {
170                         ret = -ENOMEM;
171                         goto unlock_ret;
172                 }
173         }
174
175         /* minimum size accounting */
176         if (spool->min_hpages != -1 && spool->rsv_hpages) {
177                 if (delta > spool->rsv_hpages) {
178                         /*
179                          * Asking for more reserves than those already taken on
180                          * behalf of subpool.  Return difference.
181                          */
182                         ret = delta - spool->rsv_hpages;
183                         spool->rsv_hpages = 0;
184                 } else {
185                         ret = 0;        /* reserves already accounted for */
186                         spool->rsv_hpages -= delta;
187                 }
188         }
189
190 unlock_ret:
191         spin_unlock_irq(&spool->lock);
192         return ret;
193 }
194
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202                                        long delta)
203 {
204         long ret = delta;
205         unsigned long flags;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock_irqsave(&spool->lock, flags);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool, flags);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
363                      long *regions_needed)
364 {
365         struct file_region *nrg;
366
367         if (!regions_needed) {
368                 nrg = get_file_region_entry_from_cache(map, from, to);
369                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370                 list_add(&nrg->link, rg->link.prev);
371                 coalesce_file_region(map, nrg);
372         } else
373                 *regions_needed += 1;
374
375         return to - from;
376 }
377
378 /*
379  * Must be called with resv->lock held.
380  *
381  * Calling this with regions_needed != NULL will count the number of pages
382  * to be added but will not modify the linked list. And regions_needed will
383  * indicate the number of file_regions needed in the cache to carry out to add
384  * the regions for this range.
385  */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387                                      struct hugetlb_cgroup *h_cg,
388                                      struct hstate *h, long *regions_needed)
389 {
390         long add = 0;
391         struct list_head *head = &resv->regions;
392         long last_accounted_offset = f;
393         struct file_region *rg = NULL, *trg = NULL;
394
395         if (regions_needed)
396                 *regions_needed = 0;
397
398         /* In this loop, we essentially handle an entry for the range
399          * [last_accounted_offset, rg->from), at every iteration, with some
400          * bounds checking.
401          */
402         list_for_each_entry_safe(rg, trg, head, link) {
403                 /* Skip irrelevant regions that start before our range. */
404                 if (rg->from < f) {
405                         /* If this region ends after the last accounted offset,
406                          * then we need to update last_accounted_offset.
407                          */
408                         if (rg->to > last_accounted_offset)
409                                 last_accounted_offset = rg->to;
410                         continue;
411                 }
412
413                 /* When we find a region that starts beyond our range, we've
414                  * finished.
415                  */
416                 if (rg->from >= t)
417                         break;
418
419                 /* Add an entry for last_accounted_offset -> rg->from, and
420                  * update last_accounted_offset.
421                  */
422                 if (rg->from > last_accounted_offset)
423                         add += hugetlb_resv_map_add(resv, rg,
424                                                     last_accounted_offset,
425                                                     rg->from, h, h_cg,
426                                                     regions_needed);
427
428                 last_accounted_offset = rg->to;
429         }
430
431         /* Handle the case where our range extends beyond
432          * last_accounted_offset.
433          */
434         if (last_accounted_offset < t)
435                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436                                             t, h, h_cg, regions_needed);
437
438         VM_BUG_ON(add < 0);
439         return add;
440 }
441
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443  */
444 static int allocate_file_region_entries(struct resv_map *resv,
445                                         int regions_needed)
446         __must_hold(&resv->lock)
447 {
448         struct list_head allocated_regions;
449         int to_allocate = 0, i = 0;
450         struct file_region *trg = NULL, *rg = NULL;
451
452         VM_BUG_ON(regions_needed < 0);
453
454         INIT_LIST_HEAD(&allocated_regions);
455
456         /*
457          * Check for sufficient descriptors in the cache to accommodate
458          * the number of in progress add operations plus regions_needed.
459          *
460          * This is a while loop because when we drop the lock, some other call
461          * to region_add or region_del may have consumed some region_entries,
462          * so we keep looping here until we finally have enough entries for
463          * (adds_in_progress + regions_needed).
464          */
465         while (resv->region_cache_count <
466                (resv->adds_in_progress + regions_needed)) {
467                 to_allocate = resv->adds_in_progress + regions_needed -
468                               resv->region_cache_count;
469
470                 /* At this point, we should have enough entries in the cache
471                  * for all the existing adds_in_progress. We should only be
472                  * needing to allocate for regions_needed.
473                  */
474                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476                 spin_unlock(&resv->lock);
477                 for (i = 0; i < to_allocate; i++) {
478                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479                         if (!trg)
480                                 goto out_of_memory;
481                         list_add(&trg->link, &allocated_regions);
482                 }
483
484                 spin_lock(&resv->lock);
485
486                 list_splice(&allocated_regions, &resv->region_cache);
487                 resv->region_cache_count += to_allocate;
488         }
489
490         return 0;
491
492 out_of_memory:
493         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494                 list_del(&rg->link);
495                 kfree(rg);
496         }
497         return -ENOMEM;
498 }
499
500 /*
501  * Add the huge page range represented by [f, t) to the reserve
502  * map.  Regions will be taken from the cache to fill in this range.
503  * Sufficient regions should exist in the cache due to the previous
504  * call to region_chg with the same range, but in some cases the cache will not
505  * have sufficient entries due to races with other code doing region_add or
506  * region_del.  The extra needed entries will be allocated.
507  *
508  * regions_needed is the out value provided by a previous call to region_chg.
509  *
510  * Return the number of new huge pages added to the map.  This number is greater
511  * than or equal to zero.  If file_region entries needed to be allocated for
512  * this operation and we were not able to allocate, it returns -ENOMEM.
513  * region_add of regions of length 1 never allocate file_regions and cannot
514  * fail; region_chg will always allocate at least 1 entry and a region_add for
515  * 1 page will only require at most 1 entry.
516  */
517 static long region_add(struct resv_map *resv, long f, long t,
518                        long in_regions_needed, struct hstate *h,
519                        struct hugetlb_cgroup *h_cg)
520 {
521         long add = 0, actual_regions_needed = 0;
522
523         spin_lock(&resv->lock);
524 retry:
525
526         /* Count how many regions are actually needed to execute this add. */
527         add_reservation_in_range(resv, f, t, NULL, NULL,
528                                  &actual_regions_needed);
529
530         /*
531          * Check for sufficient descriptors in the cache to accommodate
532          * this add operation. Note that actual_regions_needed may be greater
533          * than in_regions_needed, as the resv_map may have been modified since
534          * the region_chg call. In this case, we need to make sure that we
535          * allocate extra entries, such that we have enough for all the
536          * existing adds_in_progress, plus the excess needed for this
537          * operation.
538          */
539         if (actual_regions_needed > in_regions_needed &&
540             resv->region_cache_count <
541                     resv->adds_in_progress +
542                             (actual_regions_needed - in_regions_needed)) {
543                 /* region_add operation of range 1 should never need to
544                  * allocate file_region entries.
545                  */
546                 VM_BUG_ON(t - f <= 1);
547
548                 if (allocate_file_region_entries(
549                             resv, actual_regions_needed - in_regions_needed)) {
550                         return -ENOMEM;
551                 }
552
553                 goto retry;
554         }
555
556         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557
558         resv->adds_in_progress -= in_regions_needed;
559
560         spin_unlock(&resv->lock);
561         return add;
562 }
563
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
584 static long region_chg(struct resv_map *resv, long f, long t,
585                        long *out_regions_needed)
586 {
587         long chg = 0;
588
589         spin_lock(&resv->lock);
590
591         /* Count how many hugepages in this range are NOT represented. */
592         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593                                        out_regions_needed);
594
595         if (*out_regions_needed == 0)
596                 *out_regions_needed = 1;
597
598         if (allocate_file_region_entries(resv, *out_regions_needed))
599                 return -ENOMEM;
600
601         resv->adds_in_progress += *out_regions_needed;
602
603         spin_unlock(&resv->lock);
604         return chg;
605 }
606
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
620 static void region_abort(struct resv_map *resv, long f, long t,
621                          long regions_needed)
622 {
623         spin_lock(&resv->lock);
624         VM_BUG_ON(!resv->region_cache_count);
625         resv->adds_in_progress -= regions_needed;
626         spin_unlock(&resv->lock);
627 }
628
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645         struct list_head *head = &resv->regions;
646         struct file_region *rg, *trg;
647         struct file_region *nrg = NULL;
648         long del = 0;
649
650 retry:
651         spin_lock(&resv->lock);
652         list_for_each_entry_safe(rg, trg, head, link) {
653                 /*
654                  * Skip regions before the range to be deleted.  file_region
655                  * ranges are normally of the form [from, to).  However, there
656                  * may be a "placeholder" entry in the map which is of the form
657                  * (from, to) with from == to.  Check for placeholder entries
658                  * at the beginning of the range to be deleted.
659                  */
660                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661                         continue;
662
663                 if (rg->from >= t)
664                         break;
665
666                 if (f > rg->from && t < rg->to) { /* Must split region */
667                         /*
668                          * Check for an entry in the cache before dropping
669                          * lock and attempting allocation.
670                          */
671                         if (!nrg &&
672                             resv->region_cache_count > resv->adds_in_progress) {
673                                 nrg = list_first_entry(&resv->region_cache,
674                                                         struct file_region,
675                                                         link);
676                                 list_del(&nrg->link);
677                                 resv->region_cache_count--;
678                         }
679
680                         if (!nrg) {
681                                 spin_unlock(&resv->lock);
682                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683                                 if (!nrg)
684                                         return -ENOMEM;
685                                 goto retry;
686                         }
687
688                         del += t - f;
689                         hugetlb_cgroup_uncharge_file_region(
690                                 resv, rg, t - f, false);
691
692                         /* New entry for end of split region */
693                         nrg->from = t;
694                         nrg->to = rg->to;
695
696                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
698                         INIT_LIST_HEAD(&nrg->link);
699
700                         /* Original entry is trimmed */
701                         rg->to = f;
702
703                         list_add(&nrg->link, &rg->link);
704                         nrg = NULL;
705                         break;
706                 }
707
708                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709                         del += rg->to - rg->from;
710                         hugetlb_cgroup_uncharge_file_region(resv, rg,
711                                                             rg->to - rg->from, true);
712                         list_del(&rg->link);
713                         kfree(rg);
714                         continue;
715                 }
716
717                 if (f <= rg->from) {    /* Trim beginning of region */
718                         hugetlb_cgroup_uncharge_file_region(resv, rg,
719                                                             t - rg->from, false);
720
721                         del += t - rg->from;
722                         rg->from = t;
723                 } else {                /* Trim end of region */
724                         hugetlb_cgroup_uncharge_file_region(resv, rg,
725                                                             rg->to - f, false);
726
727                         del += rg->to - f;
728                         rg->to = f;
729                 }
730         }
731
732         spin_unlock(&resv->lock);
733         kfree(nrg);
734         return del;
735 }
736
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748         struct hugepage_subpool *spool = subpool_inode(inode);
749         long rsv_adjust;
750         bool reserved = false;
751
752         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753         if (rsv_adjust > 0) {
754                 struct hstate *h = hstate_inode(inode);
755
756                 if (!hugetlb_acct_memory(h, 1))
757                         reserved = true;
758         } else if (!rsv_adjust) {
759                 reserved = true;
760         }
761
762         if (!reserved)
763                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772         struct list_head *head = &resv->regions;
773         struct file_region *rg;
774         long chg = 0;
775
776         spin_lock(&resv->lock);
777         /* Locate each segment we overlap with, and count that overlap. */
778         list_for_each_entry(rg, head, link) {
779                 long seg_from;
780                 long seg_to;
781
782                 if (rg->to <= f)
783                         continue;
784                 if (rg->from >= t)
785                         break;
786
787                 seg_from = max(rg->from, f);
788                 seg_to = min(rg->to, t);
789
790                 chg += seg_to - seg_from;
791         }
792         spin_unlock(&resv->lock);
793
794         return chg;
795 }
796
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802                         struct vm_area_struct *vma, unsigned long address)
803 {
804         return ((address - vma->vm_start) >> huge_page_shift(h)) +
805                         (vma->vm_pgoff >> huge_page_order(h));
806 }
807
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809                                      unsigned long address)
810 {
811         return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821         if (vma->vm_ops && vma->vm_ops->pagesize)
822                 return vma->vm_ops->pagesize(vma);
823         return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835         return vma_kernel_pagesize(vma);
836 }
837
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868         return (unsigned long)vma->vm_private_data;
869 }
870
871 static void set_vma_private_data(struct vm_area_struct *vma,
872                                                         unsigned long value)
873 {
874         vma->vm_private_data = (void *)value;
875 }
876
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879                                           struct hugetlb_cgroup *h_cg,
880                                           struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883         if (!h_cg || !h) {
884                 resv_map->reservation_counter = NULL;
885                 resv_map->pages_per_hpage = 0;
886                 resv_map->css = NULL;
887         } else {
888                 resv_map->reservation_counter =
889                         &h_cg->rsvd_hugepage[hstate_index(h)];
890                 resv_map->pages_per_hpage = pages_per_huge_page(h);
891                 resv_map->css = &h_cg->css;
892         }
893 #endif
894 }
895
896 struct resv_map *resv_map_alloc(void)
897 {
898         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901         if (!resv_map || !rg) {
902                 kfree(resv_map);
903                 kfree(rg);
904                 return NULL;
905         }
906
907         kref_init(&resv_map->refs);
908         spin_lock_init(&resv_map->lock);
909         INIT_LIST_HEAD(&resv_map->regions);
910
911         resv_map->adds_in_progress = 0;
912         /*
913          * Initialize these to 0. On shared mappings, 0's here indicate these
914          * fields don't do cgroup accounting. On private mappings, these will be
915          * re-initialized to the proper values, to indicate that hugetlb cgroup
916          * reservations are to be un-charged from here.
917          */
918         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919
920         INIT_LIST_HEAD(&resv_map->region_cache);
921         list_add(&rg->link, &resv_map->region_cache);
922         resv_map->region_cache_count = 1;
923
924         return resv_map;
925 }
926
927 void resv_map_release(struct kref *ref)
928 {
929         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930         struct list_head *head = &resv_map->region_cache;
931         struct file_region *rg, *trg;
932
933         /* Clear out any active regions before we release the map. */
934         region_del(resv_map, 0, LONG_MAX);
935
936         /* ... and any entries left in the cache */
937         list_for_each_entry_safe(rg, trg, head, link) {
938                 list_del(&rg->link);
939                 kfree(rg);
940         }
941
942         VM_BUG_ON(resv_map->adds_in_progress);
943
944         kfree(resv_map);
945 }
946
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949         /*
950          * At inode evict time, i_mapping may not point to the original
951          * address space within the inode.  This original address space
952          * contains the pointer to the resv_map.  So, always use the
953          * address space embedded within the inode.
954          * The VERY common case is inode->mapping == &inode->i_data but,
955          * this may not be true for device special inodes.
956          */
957         return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963         if (vma->vm_flags & VM_MAYSHARE) {
964                 struct address_space *mapping = vma->vm_file->f_mapping;
965                 struct inode *inode = mapping->host;
966
967                 return inode_resv_map(inode);
968
969         } else {
970                 return (struct resv_map *)(get_vma_private_data(vma) &
971                                                         ~HPAGE_RESV_MASK);
972         }
973 }
974
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980         set_vma_private_data(vma, (get_vma_private_data(vma) &
981                                 HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995
996         return (get_vma_private_data(vma) & flag) != 0;
997 }
998
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003         if (!(vma->vm_flags & VM_MAYSHARE))
1004                 vma->vm_private_data = (void *)0;
1005 }
1006
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010         if (vma->vm_flags & VM_NORESERVE) {
1011                 /*
1012                  * This address is already reserved by other process(chg == 0),
1013                  * so, we should decrement reserved count. Without decrementing,
1014                  * reserve count remains after releasing inode, because this
1015                  * allocated page will go into page cache and is regarded as
1016                  * coming from reserved pool in releasing step.  Currently, we
1017                  * don't have any other solution to deal with this situation
1018                  * properly, so add work-around here.
1019                  */
1020                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021                         return true;
1022                 else
1023                         return false;
1024         }
1025
1026         /* Shared mappings always use reserves */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 /*
1029                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030                  * be a region map for all pages.  The only situation where
1031                  * there is no region map is if a hole was punched via
1032                  * fallocate.  In this case, there really are no reserves to
1033                  * use.  This situation is indicated if chg != 0.
1034                  */
1035                 if (chg)
1036                         return false;
1037                 else
1038                         return true;
1039         }
1040
1041         /*
1042          * Only the process that called mmap() has reserves for
1043          * private mappings.
1044          */
1045         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046                 /*
1047                  * Like the shared case above, a hole punch or truncate
1048                  * could have been performed on the private mapping.
1049                  * Examine the value of chg to determine if reserves
1050                  * actually exist or were previously consumed.
1051                  * Very Subtle - The value of chg comes from a previous
1052                  * call to vma_needs_reserves().  The reserve map for
1053                  * private mappings has different (opposite) semantics
1054                  * than that of shared mappings.  vma_needs_reserves()
1055                  * has already taken this difference in semantics into
1056                  * account.  Therefore, the meaning of chg is the same
1057                  * as in the shared case above.  Code could easily be
1058                  * combined, but keeping it separate draws attention to
1059                  * subtle differences.
1060                  */
1061                 if (chg)
1062                         return false;
1063                 else
1064                         return true;
1065         }
1066
1067         return false;
1068 }
1069
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072         int nid = page_to_nid(page);
1073
1074         lockdep_assert_held(&hugetlb_lock);
1075         list_move(&page->lru, &h->hugepage_freelists[nid]);
1076         h->free_huge_pages++;
1077         h->free_huge_pages_node[nid]++;
1078         SetHPageFreed(page);
1079 }
1080
1081 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1082 {
1083         struct page *page;
1084         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1085
1086         lockdep_assert_held(&hugetlb_lock);
1087         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1088                 if (pin && !is_pinnable_page(page))
1089                         continue;
1090
1091                 if (PageHWPoison(page))
1092                         continue;
1093
1094                 list_move(&page->lru, &h->hugepage_activelist);
1095                 set_page_refcounted(page);
1096                 ClearHPageFreed(page);
1097                 h->free_huge_pages--;
1098                 h->free_huge_pages_node[nid]--;
1099                 return page;
1100         }
1101
1102         return NULL;
1103 }
1104
1105 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1106                 nodemask_t *nmask)
1107 {
1108         unsigned int cpuset_mems_cookie;
1109         struct zonelist *zonelist;
1110         struct zone *zone;
1111         struct zoneref *z;
1112         int node = NUMA_NO_NODE;
1113
1114         zonelist = node_zonelist(nid, gfp_mask);
1115
1116 retry_cpuset:
1117         cpuset_mems_cookie = read_mems_allowed_begin();
1118         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1119                 struct page *page;
1120
1121                 if (!cpuset_zone_allowed(zone, gfp_mask))
1122                         continue;
1123                 /*
1124                  * no need to ask again on the same node. Pool is node rather than
1125                  * zone aware
1126                  */
1127                 if (zone_to_nid(zone) == node)
1128                         continue;
1129                 node = zone_to_nid(zone);
1130
1131                 page = dequeue_huge_page_node_exact(h, node);
1132                 if (page)
1133                         return page;
1134         }
1135         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1136                 goto retry_cpuset;
1137
1138         return NULL;
1139 }
1140
1141 static struct page *dequeue_huge_page_vma(struct hstate *h,
1142                                 struct vm_area_struct *vma,
1143                                 unsigned long address, int avoid_reserve,
1144                                 long chg)
1145 {
1146         struct page *page;
1147         struct mempolicy *mpol;
1148         gfp_t gfp_mask;
1149         nodemask_t *nodemask;
1150         int nid;
1151
1152         /*
1153          * A child process with MAP_PRIVATE mappings created by their parent
1154          * have no page reserves. This check ensures that reservations are
1155          * not "stolen". The child may still get SIGKILLed
1156          */
1157         if (!vma_has_reserves(vma, chg) &&
1158                         h->free_huge_pages - h->resv_huge_pages == 0)
1159                 goto err;
1160
1161         /* If reserves cannot be used, ensure enough pages are in the pool */
1162         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1163                 goto err;
1164
1165         gfp_mask = htlb_alloc_mask(h);
1166         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1167         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1168         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1169                 SetHPageRestoreReserve(page);
1170                 h->resv_huge_pages--;
1171         }
1172
1173         mpol_cond_put(mpol);
1174         return page;
1175
1176 err:
1177         return NULL;
1178 }
1179
1180 /*
1181  * common helper functions for hstate_next_node_to_{alloc|free}.
1182  * We may have allocated or freed a huge page based on a different
1183  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1184  * be outside of *nodes_allowed.  Ensure that we use an allowed
1185  * node for alloc or free.
1186  */
1187 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         nid = next_node_in(nid, *nodes_allowed);
1190         VM_BUG_ON(nid >= MAX_NUMNODES);
1191
1192         return nid;
1193 }
1194
1195 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1196 {
1197         if (!node_isset(nid, *nodes_allowed))
1198                 nid = next_node_allowed(nid, nodes_allowed);
1199         return nid;
1200 }
1201
1202 /*
1203  * returns the previously saved node ["this node"] from which to
1204  * allocate a persistent huge page for the pool and advance the
1205  * next node from which to allocate, handling wrap at end of node
1206  * mask.
1207  */
1208 static int hstate_next_node_to_alloc(struct hstate *h,
1209                                         nodemask_t *nodes_allowed)
1210 {
1211         int nid;
1212
1213         VM_BUG_ON(!nodes_allowed);
1214
1215         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1216         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1217
1218         return nid;
1219 }
1220
1221 /*
1222  * helper for remove_pool_huge_page() - return the previously saved
1223  * node ["this node"] from which to free a huge page.  Advance the
1224  * next node id whether or not we find a free huge page to free so
1225  * that the next attempt to free addresses the next node.
1226  */
1227 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1228 {
1229         int nid;
1230
1231         VM_BUG_ON(!nodes_allowed);
1232
1233         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1234         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1235
1236         return nid;
1237 }
1238
1239 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1240         for (nr_nodes = nodes_weight(*mask);                            \
1241                 nr_nodes > 0 &&                                         \
1242                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1243                 nr_nodes--)
1244
1245 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1246         for (nr_nodes = nodes_weight(*mask);                            \
1247                 nr_nodes > 0 &&                                         \
1248                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1249                 nr_nodes--)
1250
1251 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1252 static void destroy_compound_gigantic_page(struct page *page,
1253                                         unsigned int order)
1254 {
1255         int i;
1256         int nr_pages = 1 << order;
1257         struct page *p = page + 1;
1258
1259         atomic_set(compound_mapcount_ptr(page), 0);
1260         atomic_set(compound_pincount_ptr(page), 0);
1261
1262         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1263                 clear_compound_head(p);
1264                 set_page_refcounted(p);
1265         }
1266
1267         set_compound_order(page, 0);
1268         page[1].compound_nr = 0;
1269         __ClearPageHead(page);
1270 }
1271
1272 static void free_gigantic_page(struct page *page, unsigned int order)
1273 {
1274         /*
1275          * If the page isn't allocated using the cma allocator,
1276          * cma_release() returns false.
1277          */
1278 #ifdef CONFIG_CMA
1279         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1280                 return;
1281 #endif
1282
1283         free_contig_range(page_to_pfn(page), 1 << order);
1284 }
1285
1286 #ifdef CONFIG_CONTIG_ALLOC
1287 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288                 int nid, nodemask_t *nodemask)
1289 {
1290         unsigned long nr_pages = pages_per_huge_page(h);
1291         if (nid == NUMA_NO_NODE)
1292                 nid = numa_mem_id();
1293
1294 #ifdef CONFIG_CMA
1295         {
1296                 struct page *page;
1297                 int node;
1298
1299                 if (hugetlb_cma[nid]) {
1300                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1301                                         huge_page_order(h), true);
1302                         if (page)
1303                                 return page;
1304                 }
1305
1306                 if (!(gfp_mask & __GFP_THISNODE)) {
1307                         for_each_node_mask(node, *nodemask) {
1308                                 if (node == nid || !hugetlb_cma[node])
1309                                         continue;
1310
1311                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1312                                                 huge_page_order(h), true);
1313                                 if (page)
1314                                         return page;
1315                         }
1316                 }
1317         }
1318 #endif
1319
1320         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1321 }
1322
1323 #else /* !CONFIG_CONTIG_ALLOC */
1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325                                         int nid, nodemask_t *nodemask)
1326 {
1327         return NULL;
1328 }
1329 #endif /* CONFIG_CONTIG_ALLOC */
1330
1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333                                         int nid, nodemask_t *nodemask)
1334 {
1335         return NULL;
1336 }
1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338 static inline void destroy_compound_gigantic_page(struct page *page,
1339                                                 unsigned int order) { }
1340 #endif
1341
1342 /*
1343  * Remove hugetlb page from lists, and update dtor so that page appears
1344  * as just a compound page.  A reference is held on the page.
1345  *
1346  * Must be called with hugetlb lock held.
1347  */
1348 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349                                                         bool adjust_surplus)
1350 {
1351         int nid = page_to_nid(page);
1352
1353         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
1356         lockdep_assert_held(&hugetlb_lock);
1357         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358                 return;
1359
1360         list_del(&page->lru);
1361
1362         if (HPageFreed(page)) {
1363                 h->free_huge_pages--;
1364                 h->free_huge_pages_node[nid]--;
1365         }
1366         if (adjust_surplus) {
1367                 h->surplus_huge_pages--;
1368                 h->surplus_huge_pages_node[nid]--;
1369         }
1370
1371         set_page_refcounted(page);
1372         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374         h->nr_huge_pages--;
1375         h->nr_huge_pages_node[nid]--;
1376 }
1377
1378 static void add_hugetlb_page(struct hstate *h, struct page *page,
1379                              bool adjust_surplus)
1380 {
1381         int zeroed;
1382         int nid = page_to_nid(page);
1383
1384         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1385
1386         lockdep_assert_held(&hugetlb_lock);
1387
1388         INIT_LIST_HEAD(&page->lru);
1389         h->nr_huge_pages++;
1390         h->nr_huge_pages_node[nid]++;
1391
1392         if (adjust_surplus) {
1393                 h->surplus_huge_pages++;
1394                 h->surplus_huge_pages_node[nid]++;
1395         }
1396
1397         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1398         set_page_private(page, 0);
1399         SetHPageVmemmapOptimized(page);
1400
1401         /*
1402          * This page is now managed by the hugetlb allocator and has
1403          * no users -- drop the last reference.
1404          */
1405         zeroed = put_page_testzero(page);
1406         VM_BUG_ON_PAGE(!zeroed, page);
1407         arch_clear_hugepage_flags(page);
1408         enqueue_huge_page(h, page);
1409 }
1410
1411 static void __update_and_free_page(struct hstate *h, struct page *page)
1412 {
1413         int i;
1414         struct page *subpage = page;
1415
1416         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1417                 return;
1418
1419         if (alloc_huge_page_vmemmap(h, page)) {
1420                 spin_lock_irq(&hugetlb_lock);
1421                 /*
1422                  * If we cannot allocate vmemmap pages, just refuse to free the
1423                  * page and put the page back on the hugetlb free list and treat
1424                  * as a surplus page.
1425                  */
1426                 add_hugetlb_page(h, page, true);
1427                 spin_unlock_irq(&hugetlb_lock);
1428                 return;
1429         }
1430
1431         for (i = 0; i < pages_per_huge_page(h);
1432              i++, subpage = mem_map_next(subpage, page, i)) {
1433                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1434                                 1 << PG_referenced | 1 << PG_dirty |
1435                                 1 << PG_active | 1 << PG_private |
1436                                 1 << PG_writeback);
1437         }
1438         if (hstate_is_gigantic(h)) {
1439                 destroy_compound_gigantic_page(page, huge_page_order(h));
1440                 free_gigantic_page(page, huge_page_order(h));
1441         } else {
1442                 __free_pages(page, huge_page_order(h));
1443         }
1444 }
1445
1446 /*
1447  * As update_and_free_page() can be called under any context, so we cannot
1448  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1449  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1450  * the vmemmap pages.
1451  *
1452  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1453  * freed and frees them one-by-one. As the page->mapping pointer is going
1454  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1455  * structure of a lockless linked list of huge pages to be freed.
1456  */
1457 static LLIST_HEAD(hpage_freelist);
1458
1459 static void free_hpage_workfn(struct work_struct *work)
1460 {
1461         struct llist_node *node;
1462
1463         node = llist_del_all(&hpage_freelist);
1464
1465         while (node) {
1466                 struct page *page;
1467                 struct hstate *h;
1468
1469                 page = container_of((struct address_space **)node,
1470                                      struct page, mapping);
1471                 node = node->next;
1472                 page->mapping = NULL;
1473                 /*
1474                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1475                  * is going to trigger because a previous call to
1476                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1477                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1478                  */
1479                 h = size_to_hstate(page_size(page));
1480
1481                 __update_and_free_page(h, page);
1482
1483                 cond_resched();
1484         }
1485 }
1486 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1487
1488 static inline void flush_free_hpage_work(struct hstate *h)
1489 {
1490         if (free_vmemmap_pages_per_hpage(h))
1491                 flush_work(&free_hpage_work);
1492 }
1493
1494 static void update_and_free_page(struct hstate *h, struct page *page,
1495                                  bool atomic)
1496 {
1497         if (!HPageVmemmapOptimized(page) || !atomic) {
1498                 __update_and_free_page(h, page);
1499                 return;
1500         }
1501
1502         /*
1503          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1504          *
1505          * Only call schedule_work() if hpage_freelist is previously
1506          * empty. Otherwise, schedule_work() had been called but the workfn
1507          * hasn't retrieved the list yet.
1508          */
1509         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1510                 schedule_work(&free_hpage_work);
1511 }
1512
1513 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1514 {
1515         struct page *page, *t_page;
1516
1517         list_for_each_entry_safe(page, t_page, list, lru) {
1518                 update_and_free_page(h, page, false);
1519                 cond_resched();
1520         }
1521 }
1522
1523 struct hstate *size_to_hstate(unsigned long size)
1524 {
1525         struct hstate *h;
1526
1527         for_each_hstate(h) {
1528                 if (huge_page_size(h) == size)
1529                         return h;
1530         }
1531         return NULL;
1532 }
1533
1534 void free_huge_page(struct page *page)
1535 {
1536         /*
1537          * Can't pass hstate in here because it is called from the
1538          * compound page destructor.
1539          */
1540         struct hstate *h = page_hstate(page);
1541         int nid = page_to_nid(page);
1542         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1543         bool restore_reserve;
1544         unsigned long flags;
1545
1546         VM_BUG_ON_PAGE(page_count(page), page);
1547         VM_BUG_ON_PAGE(page_mapcount(page), page);
1548
1549         hugetlb_set_page_subpool(page, NULL);
1550         page->mapping = NULL;
1551         restore_reserve = HPageRestoreReserve(page);
1552         ClearHPageRestoreReserve(page);
1553
1554         /*
1555          * If HPageRestoreReserve was set on page, page allocation consumed a
1556          * reservation.  If the page was associated with a subpool, there
1557          * would have been a page reserved in the subpool before allocation
1558          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1559          * reservation, do not call hugepage_subpool_put_pages() as this will
1560          * remove the reserved page from the subpool.
1561          */
1562         if (!restore_reserve) {
1563                 /*
1564                  * A return code of zero implies that the subpool will be
1565                  * under its minimum size if the reservation is not restored
1566                  * after page is free.  Therefore, force restore_reserve
1567                  * operation.
1568                  */
1569                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1570                         restore_reserve = true;
1571         }
1572
1573         spin_lock_irqsave(&hugetlb_lock, flags);
1574         ClearHPageMigratable(page);
1575         hugetlb_cgroup_uncharge_page(hstate_index(h),
1576                                      pages_per_huge_page(h), page);
1577         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1578                                           pages_per_huge_page(h), page);
1579         if (restore_reserve)
1580                 h->resv_huge_pages++;
1581
1582         if (HPageTemporary(page)) {
1583                 remove_hugetlb_page(h, page, false);
1584                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1585                 update_and_free_page(h, page, true);
1586         } else if (h->surplus_huge_pages_node[nid]) {
1587                 /* remove the page from active list */
1588                 remove_hugetlb_page(h, page, true);
1589                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1590                 update_and_free_page(h, page, true);
1591         } else {
1592                 arch_clear_hugepage_flags(page);
1593                 enqueue_huge_page(h, page);
1594                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1595         }
1596 }
1597
1598 /*
1599  * Must be called with the hugetlb lock held
1600  */
1601 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1602 {
1603         lockdep_assert_held(&hugetlb_lock);
1604         h->nr_huge_pages++;
1605         h->nr_huge_pages_node[nid]++;
1606 }
1607
1608 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1609 {
1610         free_huge_page_vmemmap(h, page);
1611         INIT_LIST_HEAD(&page->lru);
1612         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1613         hugetlb_set_page_subpool(page, NULL);
1614         set_hugetlb_cgroup(page, NULL);
1615         set_hugetlb_cgroup_rsvd(page, NULL);
1616 }
1617
1618 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1619 {
1620         __prep_new_huge_page(h, page);
1621         spin_lock_irq(&hugetlb_lock);
1622         __prep_account_new_huge_page(h, nid);
1623         spin_unlock_irq(&hugetlb_lock);
1624 }
1625
1626 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1627 {
1628         int i, j;
1629         int nr_pages = 1 << order;
1630         struct page *p = page + 1;
1631
1632         /* we rely on prep_new_huge_page to set the destructor */
1633         set_compound_order(page, order);
1634         __ClearPageReserved(page);
1635         __SetPageHead(page);
1636         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1637                 /*
1638                  * For gigantic hugepages allocated through bootmem at
1639                  * boot, it's safer to be consistent with the not-gigantic
1640                  * hugepages and clear the PG_reserved bit from all tail pages
1641                  * too.  Otherwise drivers using get_user_pages() to access tail
1642                  * pages may get the reference counting wrong if they see
1643                  * PG_reserved set on a tail page (despite the head page not
1644                  * having PG_reserved set).  Enforcing this consistency between
1645                  * head and tail pages allows drivers to optimize away a check
1646                  * on the head page when they need know if put_page() is needed
1647                  * after get_user_pages().
1648                  */
1649                 __ClearPageReserved(p);
1650                 /*
1651                  * Subtle and very unlikely
1652                  *
1653                  * Gigantic 'page allocators' such as memblock or cma will
1654                  * return a set of pages with each page ref counted.  We need
1655                  * to turn this set of pages into a compound page with tail
1656                  * page ref counts set to zero.  Code such as speculative page
1657                  * cache adding could take a ref on a 'to be' tail page.
1658                  * We need to respect any increased ref count, and only set
1659                  * the ref count to zero if count is currently 1.  If count
1660                  * is not 1, we return an error.  An error return indicates
1661                  * the set of pages can not be converted to a gigantic page.
1662                  * The caller who allocated the pages should then discard the
1663                  * pages using the appropriate free interface.
1664                  */
1665                 if (!page_ref_freeze(p, 1)) {
1666                         pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1667                         goto out_error;
1668                 }
1669                 set_page_count(p, 0);
1670                 set_compound_head(p, page);
1671         }
1672         atomic_set(compound_mapcount_ptr(page), -1);
1673         atomic_set(compound_pincount_ptr(page), 0);
1674         return true;
1675
1676 out_error:
1677         /* undo tail page modifications made above */
1678         p = page + 1;
1679         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1680                 clear_compound_head(p);
1681                 set_page_refcounted(p);
1682         }
1683         /* need to clear PG_reserved on remaining tail pages  */
1684         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1685                 __ClearPageReserved(p);
1686         set_compound_order(page, 0);
1687         page[1].compound_nr = 0;
1688         __ClearPageHead(page);
1689         return false;
1690 }
1691
1692 /*
1693  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1694  * transparent huge pages.  See the PageTransHuge() documentation for more
1695  * details.
1696  */
1697 int PageHuge(struct page *page)
1698 {
1699         if (!PageCompound(page))
1700                 return 0;
1701
1702         page = compound_head(page);
1703         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1704 }
1705 EXPORT_SYMBOL_GPL(PageHuge);
1706
1707 /*
1708  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1709  * normal or transparent huge pages.
1710  */
1711 int PageHeadHuge(struct page *page_head)
1712 {
1713         if (!PageHead(page_head))
1714                 return 0;
1715
1716         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1717 }
1718
1719 /*
1720  * Find and lock address space (mapping) in write mode.
1721  *
1722  * Upon entry, the page is locked which means that page_mapping() is
1723  * stable.  Due to locking order, we can only trylock_write.  If we can
1724  * not get the lock, simply return NULL to caller.
1725  */
1726 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1727 {
1728         struct address_space *mapping = page_mapping(hpage);
1729
1730         if (!mapping)
1731                 return mapping;
1732
1733         if (i_mmap_trylock_write(mapping))
1734                 return mapping;
1735
1736         return NULL;
1737 }
1738
1739 pgoff_t hugetlb_basepage_index(struct page *page)
1740 {
1741         struct page *page_head = compound_head(page);
1742         pgoff_t index = page_index(page_head);
1743         unsigned long compound_idx;
1744
1745         if (compound_order(page_head) >= MAX_ORDER)
1746                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1747         else
1748                 compound_idx = page - page_head;
1749
1750         return (index << compound_order(page_head)) + compound_idx;
1751 }
1752
1753 static struct page *alloc_buddy_huge_page(struct hstate *h,
1754                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1755                 nodemask_t *node_alloc_noretry)
1756 {
1757         int order = huge_page_order(h);
1758         struct page *page;
1759         bool alloc_try_hard = true;
1760
1761         /*
1762          * By default we always try hard to allocate the page with
1763          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1764          * a loop (to adjust global huge page counts) and previous allocation
1765          * failed, do not continue to try hard on the same node.  Use the
1766          * node_alloc_noretry bitmap to manage this state information.
1767          */
1768         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1769                 alloc_try_hard = false;
1770         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1771         if (alloc_try_hard)
1772                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1773         if (nid == NUMA_NO_NODE)
1774                 nid = numa_mem_id();
1775         page = __alloc_pages(gfp_mask, order, nid, nmask);
1776         if (page)
1777                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1778         else
1779                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1780
1781         /*
1782          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1783          * indicates an overall state change.  Clear bit so that we resume
1784          * normal 'try hard' allocations.
1785          */
1786         if (node_alloc_noretry && page && !alloc_try_hard)
1787                 node_clear(nid, *node_alloc_noretry);
1788
1789         /*
1790          * If we tried hard to get a page but failed, set bit so that
1791          * subsequent attempts will not try as hard until there is an
1792          * overall state change.
1793          */
1794         if (node_alloc_noretry && !page && alloc_try_hard)
1795                 node_set(nid, *node_alloc_noretry);
1796
1797         return page;
1798 }
1799
1800 /*
1801  * Common helper to allocate a fresh hugetlb page. All specific allocators
1802  * should use this function to get new hugetlb pages
1803  */
1804 static struct page *alloc_fresh_huge_page(struct hstate *h,
1805                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1806                 nodemask_t *node_alloc_noretry)
1807 {
1808         struct page *page;
1809         bool retry = false;
1810
1811 retry:
1812         if (hstate_is_gigantic(h))
1813                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1814         else
1815                 page = alloc_buddy_huge_page(h, gfp_mask,
1816                                 nid, nmask, node_alloc_noretry);
1817         if (!page)
1818                 return NULL;
1819
1820         if (hstate_is_gigantic(h)) {
1821                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1822                         /*
1823                          * Rare failure to convert pages to compound page.
1824                          * Free pages and try again - ONCE!
1825                          */
1826                         free_gigantic_page(page, huge_page_order(h));
1827                         if (!retry) {
1828                                 retry = true;
1829                                 goto retry;
1830                         }
1831                         return NULL;
1832                 }
1833         }
1834         prep_new_huge_page(h, page, page_to_nid(page));
1835
1836         return page;
1837 }
1838
1839 /*
1840  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1841  * manner.
1842  */
1843 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1844                                 nodemask_t *node_alloc_noretry)
1845 {
1846         struct page *page;
1847         int nr_nodes, node;
1848         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1849
1850         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1851                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1852                                                 node_alloc_noretry);
1853                 if (page)
1854                         break;
1855         }
1856
1857         if (!page)
1858                 return 0;
1859
1860         put_page(page); /* free it into the hugepage allocator */
1861
1862         return 1;
1863 }
1864
1865 /*
1866  * Remove huge page from pool from next node to free.  Attempt to keep
1867  * persistent huge pages more or less balanced over allowed nodes.
1868  * This routine only 'removes' the hugetlb page.  The caller must make
1869  * an additional call to free the page to low level allocators.
1870  * Called with hugetlb_lock locked.
1871  */
1872 static struct page *remove_pool_huge_page(struct hstate *h,
1873                                                 nodemask_t *nodes_allowed,
1874                                                  bool acct_surplus)
1875 {
1876         int nr_nodes, node;
1877         struct page *page = NULL;
1878
1879         lockdep_assert_held(&hugetlb_lock);
1880         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1881                 /*
1882                  * If we're returning unused surplus pages, only examine
1883                  * nodes with surplus pages.
1884                  */
1885                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1886                     !list_empty(&h->hugepage_freelists[node])) {
1887                         page = list_entry(h->hugepage_freelists[node].next,
1888                                           struct page, lru);
1889                         remove_hugetlb_page(h, page, acct_surplus);
1890                         break;
1891                 }
1892         }
1893
1894         return page;
1895 }
1896
1897 /*
1898  * Dissolve a given free hugepage into free buddy pages. This function does
1899  * nothing for in-use hugepages and non-hugepages.
1900  * This function returns values like below:
1901  *
1902  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1903  *           when the system is under memory pressure and the feature of
1904  *           freeing unused vmemmap pages associated with each hugetlb page
1905  *           is enabled.
1906  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1907  *           (allocated or reserved.)
1908  *       0:  successfully dissolved free hugepages or the page is not a
1909  *           hugepage (considered as already dissolved)
1910  */
1911 int dissolve_free_huge_page(struct page *page)
1912 {
1913         int rc = -EBUSY;
1914
1915 retry:
1916         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1917         if (!PageHuge(page))
1918                 return 0;
1919
1920         spin_lock_irq(&hugetlb_lock);
1921         if (!PageHuge(page)) {
1922                 rc = 0;
1923                 goto out;
1924         }
1925
1926         if (!page_count(page)) {
1927                 struct page *head = compound_head(page);
1928                 struct hstate *h = page_hstate(head);
1929                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1930                         goto out;
1931
1932                 /*
1933                  * We should make sure that the page is already on the free list
1934                  * when it is dissolved.
1935                  */
1936                 if (unlikely(!HPageFreed(head))) {
1937                         spin_unlock_irq(&hugetlb_lock);
1938                         cond_resched();
1939
1940                         /*
1941                          * Theoretically, we should return -EBUSY when we
1942                          * encounter this race. In fact, we have a chance
1943                          * to successfully dissolve the page if we do a
1944                          * retry. Because the race window is quite small.
1945                          * If we seize this opportunity, it is an optimization
1946                          * for increasing the success rate of dissolving page.
1947                          */
1948                         goto retry;
1949                 }
1950
1951                 remove_hugetlb_page(h, head, false);
1952                 h->max_huge_pages--;
1953                 spin_unlock_irq(&hugetlb_lock);
1954
1955                 /*
1956                  * Normally update_and_free_page will allocate required vmemmmap
1957                  * before freeing the page.  update_and_free_page will fail to
1958                  * free the page if it can not allocate required vmemmap.  We
1959                  * need to adjust max_huge_pages if the page is not freed.
1960                  * Attempt to allocate vmemmmap here so that we can take
1961                  * appropriate action on failure.
1962                  */
1963                 rc = alloc_huge_page_vmemmap(h, head);
1964                 if (!rc) {
1965                         /*
1966                          * Move PageHWPoison flag from head page to the raw
1967                          * error page, which makes any subpages rather than
1968                          * the error page reusable.
1969                          */
1970                         if (PageHWPoison(head) && page != head) {
1971                                 SetPageHWPoison(page);
1972                                 ClearPageHWPoison(head);
1973                         }
1974                         update_and_free_page(h, head, false);
1975                 } else {
1976                         spin_lock_irq(&hugetlb_lock);
1977                         add_hugetlb_page(h, head, false);
1978                         h->max_huge_pages++;
1979                         spin_unlock_irq(&hugetlb_lock);
1980                 }
1981
1982                 return rc;
1983         }
1984 out:
1985         spin_unlock_irq(&hugetlb_lock);
1986         return rc;
1987 }
1988
1989 /*
1990  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1991  * make specified memory blocks removable from the system.
1992  * Note that this will dissolve a free gigantic hugepage completely, if any
1993  * part of it lies within the given range.
1994  * Also note that if dissolve_free_huge_page() returns with an error, all
1995  * free hugepages that were dissolved before that error are lost.
1996  */
1997 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1998 {
1999         unsigned long pfn;
2000         struct page *page;
2001         int rc = 0;
2002
2003         if (!hugepages_supported())
2004                 return rc;
2005
2006         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2007                 page = pfn_to_page(pfn);
2008                 rc = dissolve_free_huge_page(page);
2009                 if (rc)
2010                         break;
2011         }
2012
2013         return rc;
2014 }
2015
2016 /*
2017  * Allocates a fresh surplus page from the page allocator.
2018  */
2019 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2020                 int nid, nodemask_t *nmask)
2021 {
2022         struct page *page = NULL;
2023
2024         if (hstate_is_gigantic(h))
2025                 return NULL;
2026
2027         spin_lock_irq(&hugetlb_lock);
2028         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2029                 goto out_unlock;
2030         spin_unlock_irq(&hugetlb_lock);
2031
2032         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2033         if (!page)
2034                 return NULL;
2035
2036         spin_lock_irq(&hugetlb_lock);
2037         /*
2038          * We could have raced with the pool size change.
2039          * Double check that and simply deallocate the new page
2040          * if we would end up overcommiting the surpluses. Abuse
2041          * temporary page to workaround the nasty free_huge_page
2042          * codeflow
2043          */
2044         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2045                 SetHPageTemporary(page);
2046                 spin_unlock_irq(&hugetlb_lock);
2047                 put_page(page);
2048                 return NULL;
2049         } else {
2050                 h->surplus_huge_pages++;
2051                 h->surplus_huge_pages_node[page_to_nid(page)]++;
2052         }
2053
2054 out_unlock:
2055         spin_unlock_irq(&hugetlb_lock);
2056
2057         return page;
2058 }
2059
2060 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2061                                      int nid, nodemask_t *nmask)
2062 {
2063         struct page *page;
2064
2065         if (hstate_is_gigantic(h))
2066                 return NULL;
2067
2068         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2069         if (!page)
2070                 return NULL;
2071
2072         /*
2073          * We do not account these pages as surplus because they are only
2074          * temporary and will be released properly on the last reference
2075          */
2076         SetHPageTemporary(page);
2077
2078         return page;
2079 }
2080
2081 /*
2082  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2083  */
2084 static
2085 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2086                 struct vm_area_struct *vma, unsigned long addr)
2087 {
2088         struct page *page;
2089         struct mempolicy *mpol;
2090         gfp_t gfp_mask = htlb_alloc_mask(h);
2091         int nid;
2092         nodemask_t *nodemask;
2093
2094         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2095         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2096         mpol_cond_put(mpol);
2097
2098         return page;
2099 }
2100
2101 /* page migration callback function */
2102 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2103                 nodemask_t *nmask, gfp_t gfp_mask)
2104 {
2105         spin_lock_irq(&hugetlb_lock);
2106         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2107                 struct page *page;
2108
2109                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2110                 if (page) {
2111                         spin_unlock_irq(&hugetlb_lock);
2112                         return page;
2113                 }
2114         }
2115         spin_unlock_irq(&hugetlb_lock);
2116
2117         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2118 }
2119
2120 /* mempolicy aware migration callback */
2121 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2122                 unsigned long address)
2123 {
2124         struct mempolicy *mpol;
2125         nodemask_t *nodemask;
2126         struct page *page;
2127         gfp_t gfp_mask;
2128         int node;
2129
2130         gfp_mask = htlb_alloc_mask(h);
2131         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2132         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2133         mpol_cond_put(mpol);
2134
2135         return page;
2136 }
2137
2138 /*
2139  * Increase the hugetlb pool such that it can accommodate a reservation
2140  * of size 'delta'.
2141  */
2142 static int gather_surplus_pages(struct hstate *h, long delta)
2143         __must_hold(&hugetlb_lock)
2144 {
2145         struct list_head surplus_list;
2146         struct page *page, *tmp;
2147         int ret;
2148         long i;
2149         long needed, allocated;
2150         bool alloc_ok = true;
2151
2152         lockdep_assert_held(&hugetlb_lock);
2153         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2154         if (needed <= 0) {
2155                 h->resv_huge_pages += delta;
2156                 return 0;
2157         }
2158
2159         allocated = 0;
2160         INIT_LIST_HEAD(&surplus_list);
2161
2162         ret = -ENOMEM;
2163 retry:
2164         spin_unlock_irq(&hugetlb_lock);
2165         for (i = 0; i < needed; i++) {
2166                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2167                                 NUMA_NO_NODE, NULL);
2168                 if (!page) {
2169                         alloc_ok = false;
2170                         break;
2171                 }
2172                 list_add(&page->lru, &surplus_list);
2173                 cond_resched();
2174         }
2175         allocated += i;
2176
2177         /*
2178          * After retaking hugetlb_lock, we need to recalculate 'needed'
2179          * because either resv_huge_pages or free_huge_pages may have changed.
2180          */
2181         spin_lock_irq(&hugetlb_lock);
2182         needed = (h->resv_huge_pages + delta) -
2183                         (h->free_huge_pages + allocated);
2184         if (needed > 0) {
2185                 if (alloc_ok)
2186                         goto retry;
2187                 /*
2188                  * We were not able to allocate enough pages to
2189                  * satisfy the entire reservation so we free what
2190                  * we've allocated so far.
2191                  */
2192                 goto free;
2193         }
2194         /*
2195          * The surplus_list now contains _at_least_ the number of extra pages
2196          * needed to accommodate the reservation.  Add the appropriate number
2197          * of pages to the hugetlb pool and free the extras back to the buddy
2198          * allocator.  Commit the entire reservation here to prevent another
2199          * process from stealing the pages as they are added to the pool but
2200          * before they are reserved.
2201          */
2202         needed += allocated;
2203         h->resv_huge_pages += delta;
2204         ret = 0;
2205
2206         /* Free the needed pages to the hugetlb pool */
2207         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2208                 int zeroed;
2209
2210                 if ((--needed) < 0)
2211                         break;
2212                 /*
2213                  * This page is now managed by the hugetlb allocator and has
2214                  * no users -- drop the buddy allocator's reference.
2215                  */
2216                 zeroed = put_page_testzero(page);
2217                 VM_BUG_ON_PAGE(!zeroed, page);
2218                 enqueue_huge_page(h, page);
2219         }
2220 free:
2221         spin_unlock_irq(&hugetlb_lock);
2222
2223         /* Free unnecessary surplus pages to the buddy allocator */
2224         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2225                 put_page(page);
2226         spin_lock_irq(&hugetlb_lock);
2227
2228         return ret;
2229 }
2230
2231 /*
2232  * This routine has two main purposes:
2233  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2234  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2235  *    to the associated reservation map.
2236  * 2) Free any unused surplus pages that may have been allocated to satisfy
2237  *    the reservation.  As many as unused_resv_pages may be freed.
2238  */
2239 static void return_unused_surplus_pages(struct hstate *h,
2240                                         unsigned long unused_resv_pages)
2241 {
2242         unsigned long nr_pages;
2243         struct page *page;
2244         LIST_HEAD(page_list);
2245
2246         lockdep_assert_held(&hugetlb_lock);
2247         /* Uncommit the reservation */
2248         h->resv_huge_pages -= unused_resv_pages;
2249
2250         /* Cannot return gigantic pages currently */
2251         if (hstate_is_gigantic(h))
2252                 goto out;
2253
2254         /*
2255          * Part (or even all) of the reservation could have been backed
2256          * by pre-allocated pages. Only free surplus pages.
2257          */
2258         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2259
2260         /*
2261          * We want to release as many surplus pages as possible, spread
2262          * evenly across all nodes with memory. Iterate across these nodes
2263          * until we can no longer free unreserved surplus pages. This occurs
2264          * when the nodes with surplus pages have no free pages.
2265          * remove_pool_huge_page() will balance the freed pages across the
2266          * on-line nodes with memory and will handle the hstate accounting.
2267          */
2268         while (nr_pages--) {
2269                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2270                 if (!page)
2271                         goto out;
2272
2273                 list_add(&page->lru, &page_list);
2274         }
2275
2276 out:
2277         spin_unlock_irq(&hugetlb_lock);
2278         update_and_free_pages_bulk(h, &page_list);
2279         spin_lock_irq(&hugetlb_lock);
2280 }
2281
2282
2283 /*
2284  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2285  * are used by the huge page allocation routines to manage reservations.
2286  *
2287  * vma_needs_reservation is called to determine if the huge page at addr
2288  * within the vma has an associated reservation.  If a reservation is
2289  * needed, the value 1 is returned.  The caller is then responsible for
2290  * managing the global reservation and subpool usage counts.  After
2291  * the huge page has been allocated, vma_commit_reservation is called
2292  * to add the page to the reservation map.  If the page allocation fails,
2293  * the reservation must be ended instead of committed.  vma_end_reservation
2294  * is called in such cases.
2295  *
2296  * In the normal case, vma_commit_reservation returns the same value
2297  * as the preceding vma_needs_reservation call.  The only time this
2298  * is not the case is if a reserve map was changed between calls.  It
2299  * is the responsibility of the caller to notice the difference and
2300  * take appropriate action.
2301  *
2302  * vma_add_reservation is used in error paths where a reservation must
2303  * be restored when a newly allocated huge page must be freed.  It is
2304  * to be called after calling vma_needs_reservation to determine if a
2305  * reservation exists.
2306  *
2307  * vma_del_reservation is used in error paths where an entry in the reserve
2308  * map was created during huge page allocation and must be removed.  It is to
2309  * be called after calling vma_needs_reservation to determine if a reservation
2310  * exists.
2311  */
2312 enum vma_resv_mode {
2313         VMA_NEEDS_RESV,
2314         VMA_COMMIT_RESV,
2315         VMA_END_RESV,
2316         VMA_ADD_RESV,
2317         VMA_DEL_RESV,
2318 };
2319 static long __vma_reservation_common(struct hstate *h,
2320                                 struct vm_area_struct *vma, unsigned long addr,
2321                                 enum vma_resv_mode mode)
2322 {
2323         struct resv_map *resv;
2324         pgoff_t idx;
2325         long ret;
2326         long dummy_out_regions_needed;
2327
2328         resv = vma_resv_map(vma);
2329         if (!resv)
2330                 return 1;
2331
2332         idx = vma_hugecache_offset(h, vma, addr);
2333         switch (mode) {
2334         case VMA_NEEDS_RESV:
2335                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2336                 /* We assume that vma_reservation_* routines always operate on
2337                  * 1 page, and that adding to resv map a 1 page entry can only
2338                  * ever require 1 region.
2339                  */
2340                 VM_BUG_ON(dummy_out_regions_needed != 1);
2341                 break;
2342         case VMA_COMMIT_RESV:
2343                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2344                 /* region_add calls of range 1 should never fail. */
2345                 VM_BUG_ON(ret < 0);
2346                 break;
2347         case VMA_END_RESV:
2348                 region_abort(resv, idx, idx + 1, 1);
2349                 ret = 0;
2350                 break;
2351         case VMA_ADD_RESV:
2352                 if (vma->vm_flags & VM_MAYSHARE) {
2353                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2354                         /* region_add calls of range 1 should never fail. */
2355                         VM_BUG_ON(ret < 0);
2356                 } else {
2357                         region_abort(resv, idx, idx + 1, 1);
2358                         ret = region_del(resv, idx, idx + 1);
2359                 }
2360                 break;
2361         case VMA_DEL_RESV:
2362                 if (vma->vm_flags & VM_MAYSHARE) {
2363                         region_abort(resv, idx, idx + 1, 1);
2364                         ret = region_del(resv, idx, idx + 1);
2365                 } else {
2366                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2367                         /* region_add calls of range 1 should never fail. */
2368                         VM_BUG_ON(ret < 0);
2369                 }
2370                 break;
2371         default:
2372                 BUG();
2373         }
2374
2375         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2376                 return ret;
2377         /*
2378          * We know private mapping must have HPAGE_RESV_OWNER set.
2379          *
2380          * In most cases, reserves always exist for private mappings.
2381          * However, a file associated with mapping could have been
2382          * hole punched or truncated after reserves were consumed.
2383          * As subsequent fault on such a range will not use reserves.
2384          * Subtle - The reserve map for private mappings has the
2385          * opposite meaning than that of shared mappings.  If NO
2386          * entry is in the reserve map, it means a reservation exists.
2387          * If an entry exists in the reserve map, it means the
2388          * reservation has already been consumed.  As a result, the
2389          * return value of this routine is the opposite of the
2390          * value returned from reserve map manipulation routines above.
2391          */
2392         if (ret > 0)
2393                 return 0;
2394         if (ret == 0)
2395                 return 1;
2396         return ret;
2397 }
2398
2399 static long vma_needs_reservation(struct hstate *h,
2400                         struct vm_area_struct *vma, unsigned long addr)
2401 {
2402         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2403 }
2404
2405 static long vma_commit_reservation(struct hstate *h,
2406                         struct vm_area_struct *vma, unsigned long addr)
2407 {
2408         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2409 }
2410
2411 static void vma_end_reservation(struct hstate *h,
2412                         struct vm_area_struct *vma, unsigned long addr)
2413 {
2414         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2415 }
2416
2417 static long vma_add_reservation(struct hstate *h,
2418                         struct vm_area_struct *vma, unsigned long addr)
2419 {
2420         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2421 }
2422
2423 static long vma_del_reservation(struct hstate *h,
2424                         struct vm_area_struct *vma, unsigned long addr)
2425 {
2426         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2427 }
2428
2429 /*
2430  * This routine is called to restore reservation information on error paths.
2431  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2432  * the hugetlb mutex should remain held when calling this routine.
2433  *
2434  * It handles two specific cases:
2435  * 1) A reservation was in place and the page consumed the reservation.
2436  *    HPageRestoreReserve is set in the page.
2437  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2438  *    not set.  However, alloc_huge_page always updates the reserve map.
2439  *
2440  * In case 1, free_huge_page later in the error path will increment the
2441  * global reserve count.  But, free_huge_page does not have enough context
2442  * to adjust the reservation map.  This case deals primarily with private
2443  * mappings.  Adjust the reserve map here to be consistent with global
2444  * reserve count adjustments to be made by free_huge_page.  Make sure the
2445  * reserve map indicates there is a reservation present.
2446  *
2447  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2448  */
2449 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2450                         unsigned long address, struct page *page)
2451 {
2452         long rc = vma_needs_reservation(h, vma, address);
2453
2454         if (HPageRestoreReserve(page)) {
2455                 if (unlikely(rc < 0))
2456                         /*
2457                          * Rare out of memory condition in reserve map
2458                          * manipulation.  Clear HPageRestoreReserve so that
2459                          * global reserve count will not be incremented
2460                          * by free_huge_page.  This will make it appear
2461                          * as though the reservation for this page was
2462                          * consumed.  This may prevent the task from
2463                          * faulting in the page at a later time.  This
2464                          * is better than inconsistent global huge page
2465                          * accounting of reserve counts.
2466                          */
2467                         ClearHPageRestoreReserve(page);
2468                 else if (rc)
2469                         (void)vma_add_reservation(h, vma, address);
2470                 else
2471                         vma_end_reservation(h, vma, address);
2472         } else {
2473                 if (!rc) {
2474                         /*
2475                          * This indicates there is an entry in the reserve map
2476                          * not added by alloc_huge_page.  We know it was added
2477                          * before the alloc_huge_page call, otherwise
2478                          * HPageRestoreReserve would be set on the page.
2479                          * Remove the entry so that a subsequent allocation
2480                          * does not consume a reservation.
2481                          */
2482                         rc = vma_del_reservation(h, vma, address);
2483                         if (rc < 0)
2484                                 /*
2485                                  * VERY rare out of memory condition.  Since
2486                                  * we can not delete the entry, set
2487                                  * HPageRestoreReserve so that the reserve
2488                                  * count will be incremented when the page
2489                                  * is freed.  This reserve will be consumed
2490                                  * on a subsequent allocation.
2491                                  */
2492                                 SetHPageRestoreReserve(page);
2493                 } else if (rc < 0) {
2494                         /*
2495                          * Rare out of memory condition from
2496                          * vma_needs_reservation call.  Memory allocation is
2497                          * only attempted if a new entry is needed.  Therefore,
2498                          * this implies there is not an entry in the
2499                          * reserve map.
2500                          *
2501                          * For shared mappings, no entry in the map indicates
2502                          * no reservation.  We are done.
2503                          */
2504                         if (!(vma->vm_flags & VM_MAYSHARE))
2505                                 /*
2506                                  * For private mappings, no entry indicates
2507                                  * a reservation is present.  Since we can
2508                                  * not add an entry, set SetHPageRestoreReserve
2509                                  * on the page so reserve count will be
2510                                  * incremented when freed.  This reserve will
2511                                  * be consumed on a subsequent allocation.
2512                                  */
2513                                 SetHPageRestoreReserve(page);
2514                 } else
2515                         /*
2516                          * No reservation present, do nothing
2517                          */
2518                          vma_end_reservation(h, vma, address);
2519         }
2520 }
2521
2522 /*
2523  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2524  * @h: struct hstate old page belongs to
2525  * @old_page: Old page to dissolve
2526  * @list: List to isolate the page in case we need to
2527  * Returns 0 on success, otherwise negated error.
2528  */
2529 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2530                                         struct list_head *list)
2531 {
2532         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2533         int nid = page_to_nid(old_page);
2534         struct page *new_page;
2535         int ret = 0;
2536
2537         /*
2538          * Before dissolving the page, we need to allocate a new one for the
2539          * pool to remain stable.  Here, we allocate the page and 'prep' it
2540          * by doing everything but actually updating counters and adding to
2541          * the pool.  This simplifies and let us do most of the processing
2542          * under the lock.
2543          */
2544         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2545         if (!new_page)
2546                 return -ENOMEM;
2547         __prep_new_huge_page(h, new_page);
2548
2549 retry:
2550         spin_lock_irq(&hugetlb_lock);
2551         if (!PageHuge(old_page)) {
2552                 /*
2553                  * Freed from under us. Drop new_page too.
2554                  */
2555                 goto free_new;
2556         } else if (page_count(old_page)) {
2557                 /*
2558                  * Someone has grabbed the page, try to isolate it here.
2559                  * Fail with -EBUSY if not possible.
2560                  */
2561                 spin_unlock_irq(&hugetlb_lock);
2562                 if (!isolate_huge_page(old_page, list))
2563                         ret = -EBUSY;
2564                 spin_lock_irq(&hugetlb_lock);
2565                 goto free_new;
2566         } else if (!HPageFreed(old_page)) {
2567                 /*
2568                  * Page's refcount is 0 but it has not been enqueued in the
2569                  * freelist yet. Race window is small, so we can succeed here if
2570                  * we retry.
2571                  */
2572                 spin_unlock_irq(&hugetlb_lock);
2573                 cond_resched();
2574                 goto retry;
2575         } else {
2576                 /*
2577                  * Ok, old_page is still a genuine free hugepage. Remove it from
2578                  * the freelist and decrease the counters. These will be
2579                  * incremented again when calling __prep_account_new_huge_page()
2580                  * and enqueue_huge_page() for new_page. The counters will remain
2581                  * stable since this happens under the lock.
2582                  */
2583                 remove_hugetlb_page(h, old_page, false);
2584
2585                 /*
2586                  * Reference count trick is needed because allocator gives us
2587                  * referenced page but the pool requires pages with 0 refcount.
2588                  */
2589                 __prep_account_new_huge_page(h, nid);
2590                 page_ref_dec(new_page);
2591                 enqueue_huge_page(h, new_page);
2592
2593                 /*
2594                  * Pages have been replaced, we can safely free the old one.
2595                  */
2596                 spin_unlock_irq(&hugetlb_lock);
2597                 update_and_free_page(h, old_page, false);
2598         }
2599
2600         return ret;
2601
2602 free_new:
2603         spin_unlock_irq(&hugetlb_lock);
2604         update_and_free_page(h, new_page, false);
2605
2606         return ret;
2607 }
2608
2609 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2610 {
2611         struct hstate *h;
2612         struct page *head;
2613         int ret = -EBUSY;
2614
2615         /*
2616          * The page might have been dissolved from under our feet, so make sure
2617          * to carefully check the state under the lock.
2618          * Return success when racing as if we dissolved the page ourselves.
2619          */
2620         spin_lock_irq(&hugetlb_lock);
2621         if (PageHuge(page)) {
2622                 head = compound_head(page);
2623                 h = page_hstate(head);
2624         } else {
2625                 spin_unlock_irq(&hugetlb_lock);
2626                 return 0;
2627         }
2628         spin_unlock_irq(&hugetlb_lock);
2629
2630         /*
2631          * Fence off gigantic pages as there is a cyclic dependency between
2632          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2633          * of bailing out right away without further retrying.
2634          */
2635         if (hstate_is_gigantic(h))
2636                 return -ENOMEM;
2637
2638         if (page_count(head) && isolate_huge_page(head, list))
2639                 ret = 0;
2640         else if (!page_count(head))
2641                 ret = alloc_and_dissolve_huge_page(h, head, list);
2642
2643         return ret;
2644 }
2645
2646 struct page *alloc_huge_page(struct vm_area_struct *vma,
2647                                     unsigned long addr, int avoid_reserve)
2648 {
2649         struct hugepage_subpool *spool = subpool_vma(vma);
2650         struct hstate *h = hstate_vma(vma);
2651         struct page *page;
2652         long map_chg, map_commit;
2653         long gbl_chg;
2654         int ret, idx;
2655         struct hugetlb_cgroup *h_cg;
2656         bool deferred_reserve;
2657
2658         idx = hstate_index(h);
2659         /*
2660          * Examine the region/reserve map to determine if the process
2661          * has a reservation for the page to be allocated.  A return
2662          * code of zero indicates a reservation exists (no change).
2663          */
2664         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2665         if (map_chg < 0)
2666                 return ERR_PTR(-ENOMEM);
2667
2668         /*
2669          * Processes that did not create the mapping will have no
2670          * reserves as indicated by the region/reserve map. Check
2671          * that the allocation will not exceed the subpool limit.
2672          * Allocations for MAP_NORESERVE mappings also need to be
2673          * checked against any subpool limit.
2674          */
2675         if (map_chg || avoid_reserve) {
2676                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2677                 if (gbl_chg < 0) {
2678                         vma_end_reservation(h, vma, addr);
2679                         return ERR_PTR(-ENOSPC);
2680                 }
2681
2682                 /*
2683                  * Even though there was no reservation in the region/reserve
2684                  * map, there could be reservations associated with the
2685                  * subpool that can be used.  This would be indicated if the
2686                  * return value of hugepage_subpool_get_pages() is zero.
2687                  * However, if avoid_reserve is specified we still avoid even
2688                  * the subpool reservations.
2689                  */
2690                 if (avoid_reserve)
2691                         gbl_chg = 1;
2692         }
2693
2694         /* If this allocation is not consuming a reservation, charge it now.
2695          */
2696         deferred_reserve = map_chg || avoid_reserve;
2697         if (deferred_reserve) {
2698                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2699                         idx, pages_per_huge_page(h), &h_cg);
2700                 if (ret)
2701                         goto out_subpool_put;
2702         }
2703
2704         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2705         if (ret)
2706                 goto out_uncharge_cgroup_reservation;
2707
2708         spin_lock_irq(&hugetlb_lock);
2709         /*
2710          * glb_chg is passed to indicate whether or not a page must be taken
2711          * from the global free pool (global change).  gbl_chg == 0 indicates
2712          * a reservation exists for the allocation.
2713          */
2714         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2715         if (!page) {
2716                 spin_unlock_irq(&hugetlb_lock);
2717                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2718                 if (!page)
2719                         goto out_uncharge_cgroup;
2720                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2721                         SetHPageRestoreReserve(page);
2722                         h->resv_huge_pages--;
2723                 }
2724                 spin_lock_irq(&hugetlb_lock);
2725                 list_add(&page->lru, &h->hugepage_activelist);
2726                 /* Fall through */
2727         }
2728         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2729         /* If allocation is not consuming a reservation, also store the
2730          * hugetlb_cgroup pointer on the page.
2731          */
2732         if (deferred_reserve) {
2733                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2734                                                   h_cg, page);
2735         }
2736
2737         spin_unlock_irq(&hugetlb_lock);
2738
2739         hugetlb_set_page_subpool(page, spool);
2740
2741         map_commit = vma_commit_reservation(h, vma, addr);
2742         if (unlikely(map_chg > map_commit)) {
2743                 /*
2744                  * The page was added to the reservation map between
2745                  * vma_needs_reservation and vma_commit_reservation.
2746                  * This indicates a race with hugetlb_reserve_pages.
2747                  * Adjust for the subpool count incremented above AND
2748                  * in hugetlb_reserve_pages for the same page.  Also,
2749                  * the reservation count added in hugetlb_reserve_pages
2750                  * no longer applies.
2751                  */
2752                 long rsv_adjust;
2753
2754                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2755                 hugetlb_acct_memory(h, -rsv_adjust);
2756                 if (deferred_reserve)
2757                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2758                                         pages_per_huge_page(h), page);
2759         }
2760         return page;
2761
2762 out_uncharge_cgroup:
2763         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2764 out_uncharge_cgroup_reservation:
2765         if (deferred_reserve)
2766                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2767                                                     h_cg);
2768 out_subpool_put:
2769         if (map_chg || avoid_reserve)
2770                 hugepage_subpool_put_pages(spool, 1);
2771         vma_end_reservation(h, vma, addr);
2772         return ERR_PTR(-ENOSPC);
2773 }
2774
2775 int alloc_bootmem_huge_page(struct hstate *h)
2776         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2777 int __alloc_bootmem_huge_page(struct hstate *h)
2778 {
2779         struct huge_bootmem_page *m;
2780         int nr_nodes, node;
2781
2782         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2783                 void *addr;
2784
2785                 addr = memblock_alloc_try_nid_raw(
2786                                 huge_page_size(h), huge_page_size(h),
2787                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2788                 if (addr) {
2789                         /*
2790                          * Use the beginning of the huge page to store the
2791                          * huge_bootmem_page struct (until gather_bootmem
2792                          * puts them into the mem_map).
2793                          */
2794                         m = addr;
2795                         goto found;
2796                 }
2797         }
2798         return 0;
2799
2800 found:
2801         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2802         /* Put them into a private list first because mem_map is not up yet */
2803         INIT_LIST_HEAD(&m->list);
2804         list_add(&m->list, &huge_boot_pages);
2805         m->hstate = h;
2806         return 1;
2807 }
2808
2809 /*
2810  * Put bootmem huge pages into the standard lists after mem_map is up.
2811  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2812  */
2813 static void __init gather_bootmem_prealloc(void)
2814 {
2815         struct huge_bootmem_page *m;
2816
2817         list_for_each_entry(m, &huge_boot_pages, list) {
2818                 struct page *page = virt_to_page(m);
2819                 struct hstate *h = m->hstate;
2820
2821                 VM_BUG_ON(!hstate_is_gigantic(h));
2822                 WARN_ON(page_count(page) != 1);
2823                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2824                         WARN_ON(PageReserved(page));
2825                         prep_new_huge_page(h, page, page_to_nid(page));
2826                         put_page(page); /* add to the hugepage allocator */
2827                 } else {
2828                         /* VERY unlikely inflated ref count on a tail page */
2829                         free_gigantic_page(page, huge_page_order(h));
2830                 }
2831
2832                 /*
2833                  * We need to restore the 'stolen' pages to totalram_pages
2834                  * in order to fix confusing memory reports from free(1) and
2835                  * other side-effects, like CommitLimit going negative.
2836                  */
2837                 adjust_managed_page_count(page, pages_per_huge_page(h));
2838                 cond_resched();
2839         }
2840 }
2841
2842 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2843 {
2844         unsigned long i;
2845         nodemask_t *node_alloc_noretry;
2846
2847         if (!hstate_is_gigantic(h)) {
2848                 /*
2849                  * Bit mask controlling how hard we retry per-node allocations.
2850                  * Ignore errors as lower level routines can deal with
2851                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2852                  * time, we are likely in bigger trouble.
2853                  */
2854                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2855                                                 GFP_KERNEL);
2856         } else {
2857                 /* allocations done at boot time */
2858                 node_alloc_noretry = NULL;
2859         }
2860
2861         /* bit mask controlling how hard we retry per-node allocations */
2862         if (node_alloc_noretry)
2863                 nodes_clear(*node_alloc_noretry);
2864
2865         for (i = 0; i < h->max_huge_pages; ++i) {
2866                 if (hstate_is_gigantic(h)) {
2867                         if (hugetlb_cma_size) {
2868                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2869                                 goto free;
2870                         }
2871                         if (!alloc_bootmem_huge_page(h))
2872                                 break;
2873                 } else if (!alloc_pool_huge_page(h,
2874                                          &node_states[N_MEMORY],
2875                                          node_alloc_noretry))
2876                         break;
2877                 cond_resched();
2878         }
2879         if (i < h->max_huge_pages) {
2880                 char buf[32];
2881
2882                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2883                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2884                         h->max_huge_pages, buf, i);
2885                 h->max_huge_pages = i;
2886         }
2887 free:
2888         kfree(node_alloc_noretry);
2889 }
2890
2891 static void __init hugetlb_init_hstates(void)
2892 {
2893         struct hstate *h;
2894
2895         for_each_hstate(h) {
2896                 if (minimum_order > huge_page_order(h))
2897                         minimum_order = huge_page_order(h);
2898
2899                 /* oversize hugepages were init'ed in early boot */
2900                 if (!hstate_is_gigantic(h))
2901                         hugetlb_hstate_alloc_pages(h);
2902         }
2903         VM_BUG_ON(minimum_order == UINT_MAX);
2904 }
2905
2906 static void __init report_hugepages(void)
2907 {
2908         struct hstate *h;
2909
2910         for_each_hstate(h) {
2911                 char buf[32];
2912
2913                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2914                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2915                         buf, h->free_huge_pages);
2916         }
2917 }
2918
2919 #ifdef CONFIG_HIGHMEM
2920 static void try_to_free_low(struct hstate *h, unsigned long count,
2921                                                 nodemask_t *nodes_allowed)
2922 {
2923         int i;
2924         LIST_HEAD(page_list);
2925
2926         lockdep_assert_held(&hugetlb_lock);
2927         if (hstate_is_gigantic(h))
2928                 return;
2929
2930         /*
2931          * Collect pages to be freed on a list, and free after dropping lock
2932          */
2933         for_each_node_mask(i, *nodes_allowed) {
2934                 struct page *page, *next;
2935                 struct list_head *freel = &h->hugepage_freelists[i];
2936                 list_for_each_entry_safe(page, next, freel, lru) {
2937                         if (count >= h->nr_huge_pages)
2938                                 goto out;
2939                         if (PageHighMem(page))
2940                                 continue;
2941                         remove_hugetlb_page(h, page, false);
2942                         list_add(&page->lru, &page_list);
2943                 }
2944         }
2945
2946 out:
2947         spin_unlock_irq(&hugetlb_lock);
2948         update_and_free_pages_bulk(h, &page_list);
2949         spin_lock_irq(&hugetlb_lock);
2950 }
2951 #else
2952 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2953                                                 nodemask_t *nodes_allowed)
2954 {
2955 }
2956 #endif
2957
2958 /*
2959  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2960  * balanced by operating on them in a round-robin fashion.
2961  * Returns 1 if an adjustment was made.
2962  */
2963 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2964                                 int delta)
2965 {
2966         int nr_nodes, node;
2967
2968         lockdep_assert_held(&hugetlb_lock);
2969         VM_BUG_ON(delta != -1 && delta != 1);
2970
2971         if (delta < 0) {
2972                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2973                         if (h->surplus_huge_pages_node[node])
2974                                 goto found;
2975                 }
2976         } else {
2977                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2978                         if (h->surplus_huge_pages_node[node] <
2979                                         h->nr_huge_pages_node[node])
2980                                 goto found;
2981                 }
2982         }
2983         return 0;
2984
2985 found:
2986         h->surplus_huge_pages += delta;
2987         h->surplus_huge_pages_node[node] += delta;
2988         return 1;
2989 }
2990
2991 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2992 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2993                               nodemask_t *nodes_allowed)
2994 {
2995         unsigned long min_count, ret;
2996         struct page *page;
2997         LIST_HEAD(page_list);
2998         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2999
3000         /*
3001          * Bit mask controlling how hard we retry per-node allocations.
3002          * If we can not allocate the bit mask, do not attempt to allocate
3003          * the requested huge pages.
3004          */
3005         if (node_alloc_noretry)
3006                 nodes_clear(*node_alloc_noretry);
3007         else
3008                 return -ENOMEM;
3009
3010         /*
3011          * resize_lock mutex prevents concurrent adjustments to number of
3012          * pages in hstate via the proc/sysfs interfaces.
3013          */
3014         mutex_lock(&h->resize_lock);
3015         flush_free_hpage_work(h);
3016         spin_lock_irq(&hugetlb_lock);
3017
3018         /*
3019          * Check for a node specific request.
3020          * Changing node specific huge page count may require a corresponding
3021          * change to the global count.  In any case, the passed node mask
3022          * (nodes_allowed) will restrict alloc/free to the specified node.
3023          */
3024         if (nid != NUMA_NO_NODE) {
3025                 unsigned long old_count = count;
3026
3027                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3028                 /*
3029                  * User may have specified a large count value which caused the
3030                  * above calculation to overflow.  In this case, they wanted
3031                  * to allocate as many huge pages as possible.  Set count to
3032                  * largest possible value to align with their intention.
3033                  */
3034                 if (count < old_count)
3035                         count = ULONG_MAX;
3036         }
3037
3038         /*
3039          * Gigantic pages runtime allocation depend on the capability for large
3040          * page range allocation.
3041          * If the system does not provide this feature, return an error when
3042          * the user tries to allocate gigantic pages but let the user free the
3043          * boottime allocated gigantic pages.
3044          */
3045         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3046                 if (count > persistent_huge_pages(h)) {
3047                         spin_unlock_irq(&hugetlb_lock);
3048                         mutex_unlock(&h->resize_lock);
3049                         NODEMASK_FREE(node_alloc_noretry);
3050                         return -EINVAL;
3051                 }
3052                 /* Fall through to decrease pool */
3053         }
3054
3055         /*
3056          * Increase the pool size
3057          * First take pages out of surplus state.  Then make up the
3058          * remaining difference by allocating fresh huge pages.
3059          *
3060          * We might race with alloc_surplus_huge_page() here and be unable
3061          * to convert a surplus huge page to a normal huge page. That is
3062          * not critical, though, it just means the overall size of the
3063          * pool might be one hugepage larger than it needs to be, but
3064          * within all the constraints specified by the sysctls.
3065          */
3066         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3067                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3068                         break;
3069         }
3070
3071         while (count > persistent_huge_pages(h)) {
3072                 /*
3073                  * If this allocation races such that we no longer need the
3074                  * page, free_huge_page will handle it by freeing the page
3075                  * and reducing the surplus.
3076                  */
3077                 spin_unlock_irq(&hugetlb_lock);
3078
3079                 /* yield cpu to avoid soft lockup */
3080                 cond_resched();
3081
3082                 ret = alloc_pool_huge_page(h, nodes_allowed,
3083                                                 node_alloc_noretry);
3084                 spin_lock_irq(&hugetlb_lock);
3085                 if (!ret)
3086                         goto out;
3087
3088                 /* Bail for signals. Probably ctrl-c from user */
3089                 if (signal_pending(current))
3090                         goto out;
3091         }
3092
3093         /*
3094          * Decrease the pool size
3095          * First return free pages to the buddy allocator (being careful
3096          * to keep enough around to satisfy reservations).  Then place
3097          * pages into surplus state as needed so the pool will shrink
3098          * to the desired size as pages become free.
3099          *
3100          * By placing pages into the surplus state independent of the
3101          * overcommit value, we are allowing the surplus pool size to
3102          * exceed overcommit. There are few sane options here. Since
3103          * alloc_surplus_huge_page() is checking the global counter,
3104          * though, we'll note that we're not allowed to exceed surplus
3105          * and won't grow the pool anywhere else. Not until one of the
3106          * sysctls are changed, or the surplus pages go out of use.
3107          */
3108         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3109         min_count = max(count, min_count);
3110         try_to_free_low(h, min_count, nodes_allowed);
3111
3112         /*
3113          * Collect pages to be removed on list without dropping lock
3114          */
3115         while (min_count < persistent_huge_pages(h)) {
3116                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3117                 if (!page)
3118                         break;
3119
3120                 list_add(&page->lru, &page_list);
3121         }
3122         /* free the pages after dropping lock */
3123         spin_unlock_irq(&hugetlb_lock);
3124         update_and_free_pages_bulk(h, &page_list);
3125         flush_free_hpage_work(h);
3126         spin_lock_irq(&hugetlb_lock);
3127
3128         while (count < persistent_huge_pages(h)) {
3129                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3130                         break;
3131         }
3132 out:
3133         h->max_huge_pages = persistent_huge_pages(h);
3134         spin_unlock_irq(&hugetlb_lock);
3135         mutex_unlock(&h->resize_lock);
3136
3137         NODEMASK_FREE(node_alloc_noretry);
3138
3139         return 0;
3140 }
3141
3142 #define HSTATE_ATTR_RO(_name) \
3143         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3144
3145 #define HSTATE_ATTR(_name) \
3146         static struct kobj_attribute _name##_attr = \
3147                 __ATTR(_name, 0644, _name##_show, _name##_store)
3148
3149 static struct kobject *hugepages_kobj;
3150 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3151
3152 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3153
3154 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3155 {
3156         int i;
3157
3158         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3159                 if (hstate_kobjs[i] == kobj) {
3160                         if (nidp)
3161                                 *nidp = NUMA_NO_NODE;
3162                         return &hstates[i];
3163                 }
3164
3165         return kobj_to_node_hstate(kobj, nidp);
3166 }
3167
3168 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3169                                         struct kobj_attribute *attr, char *buf)
3170 {
3171         struct hstate *h;
3172         unsigned long nr_huge_pages;
3173         int nid;
3174
3175         h = kobj_to_hstate(kobj, &nid);
3176         if (nid == NUMA_NO_NODE)
3177                 nr_huge_pages = h->nr_huge_pages;
3178         else
3179                 nr_huge_pages = h->nr_huge_pages_node[nid];
3180
3181         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3182 }
3183
3184 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3185                                            struct hstate *h, int nid,
3186                                            unsigned long count, size_t len)
3187 {
3188         int err;
3189         nodemask_t nodes_allowed, *n_mask;
3190
3191         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3192                 return -EINVAL;
3193
3194         if (nid == NUMA_NO_NODE) {
3195                 /*
3196                  * global hstate attribute
3197                  */
3198                 if (!(obey_mempolicy &&
3199                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3200                         n_mask = &node_states[N_MEMORY];
3201                 else
3202                         n_mask = &nodes_allowed;
3203         } else {
3204                 /*
3205                  * Node specific request.  count adjustment happens in
3206                  * set_max_huge_pages() after acquiring hugetlb_lock.
3207                  */
3208                 init_nodemask_of_node(&nodes_allowed, nid);
3209                 n_mask = &nodes_allowed;
3210         }
3211
3212         err = set_max_huge_pages(h, count, nid, n_mask);
3213
3214         return err ? err : len;
3215 }
3216
3217 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3218                                          struct kobject *kobj, const char *buf,
3219                                          size_t len)
3220 {
3221         struct hstate *h;
3222         unsigned long count;
3223         int nid;
3224         int err;
3225
3226         err = kstrtoul(buf, 10, &count);
3227         if (err)
3228                 return err;
3229
3230         h = kobj_to_hstate(kobj, &nid);
3231         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3232 }
3233
3234 static ssize_t nr_hugepages_show(struct kobject *kobj,
3235                                        struct kobj_attribute *attr, char *buf)
3236 {
3237         return nr_hugepages_show_common(kobj, attr, buf);
3238 }
3239
3240 static ssize_t nr_hugepages_store(struct kobject *kobj,
3241                struct kobj_attribute *attr, const char *buf, size_t len)
3242 {
3243         return nr_hugepages_store_common(false, kobj, buf, len);
3244 }
3245 HSTATE_ATTR(nr_hugepages);
3246
3247 #ifdef CONFIG_NUMA
3248
3249 /*
3250  * hstate attribute for optionally mempolicy-based constraint on persistent
3251  * huge page alloc/free.
3252  */
3253 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3254                                            struct kobj_attribute *attr,
3255                                            char *buf)
3256 {
3257         return nr_hugepages_show_common(kobj, attr, buf);
3258 }
3259
3260 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3261                struct kobj_attribute *attr, const char *buf, size_t len)
3262 {
3263         return nr_hugepages_store_common(true, kobj, buf, len);
3264 }
3265 HSTATE_ATTR(nr_hugepages_mempolicy);
3266 #endif
3267
3268
3269 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3270                                         struct kobj_attribute *attr, char *buf)
3271 {
3272         struct hstate *h = kobj_to_hstate(kobj, NULL);
3273         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3274 }
3275
3276 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3277                 struct kobj_attribute *attr, const char *buf, size_t count)
3278 {
3279         int err;
3280         unsigned long input;
3281         struct hstate *h = kobj_to_hstate(kobj, NULL);
3282
3283         if (hstate_is_gigantic(h))
3284                 return -EINVAL;
3285
3286         err = kstrtoul(buf, 10, &input);
3287         if (err)
3288                 return err;
3289
3290         spin_lock_irq(&hugetlb_lock);
3291         h->nr_overcommit_huge_pages = input;
3292         spin_unlock_irq(&hugetlb_lock);
3293
3294         return count;
3295 }
3296 HSTATE_ATTR(nr_overcommit_hugepages);
3297
3298 static ssize_t free_hugepages_show(struct kobject *kobj,
3299                                         struct kobj_attribute *attr, char *buf)
3300 {
3301         struct hstate *h;
3302         unsigned long free_huge_pages;
3303         int nid;
3304
3305         h = kobj_to_hstate(kobj, &nid);
3306         if (nid == NUMA_NO_NODE)
3307                 free_huge_pages = h->free_huge_pages;
3308         else
3309                 free_huge_pages = h->free_huge_pages_node[nid];
3310
3311         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3312 }
3313 HSTATE_ATTR_RO(free_hugepages);
3314
3315 static ssize_t resv_hugepages_show(struct kobject *kobj,
3316                                         struct kobj_attribute *attr, char *buf)
3317 {
3318         struct hstate *h = kobj_to_hstate(kobj, NULL);
3319         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3320 }
3321 HSTATE_ATTR_RO(resv_hugepages);
3322
3323 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3324                                         struct kobj_attribute *attr, char *buf)
3325 {
3326         struct hstate *h;
3327         unsigned long surplus_huge_pages;
3328         int nid;
3329
3330         h = kobj_to_hstate(kobj, &nid);
3331         if (nid == NUMA_NO_NODE)
3332                 surplus_huge_pages = h->surplus_huge_pages;
3333         else
3334                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3335
3336         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3337 }
3338 HSTATE_ATTR_RO(surplus_hugepages);
3339
3340 static struct attribute *hstate_attrs[] = {
3341         &nr_hugepages_attr.attr,
3342         &nr_overcommit_hugepages_attr.attr,
3343         &free_hugepages_attr.attr,
3344         &resv_hugepages_attr.attr,
3345         &surplus_hugepages_attr.attr,
3346 #ifdef CONFIG_NUMA
3347         &nr_hugepages_mempolicy_attr.attr,
3348 #endif
3349         NULL,
3350 };
3351
3352 static const struct attribute_group hstate_attr_group = {
3353         .attrs = hstate_attrs,
3354 };
3355
3356 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3357                                     struct kobject **hstate_kobjs,
3358                                     const struct attribute_group *hstate_attr_group)
3359 {
3360         int retval;
3361         int hi = hstate_index(h);
3362
3363         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3364         if (!hstate_kobjs[hi])
3365                 return -ENOMEM;
3366
3367         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3368         if (retval) {
3369                 kobject_put(hstate_kobjs[hi]);
3370                 hstate_kobjs[hi] = NULL;
3371         }
3372
3373         return retval;
3374 }
3375
3376 static void __init hugetlb_sysfs_init(void)
3377 {
3378         struct hstate *h;
3379         int err;
3380
3381         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3382         if (!hugepages_kobj)
3383                 return;
3384
3385         for_each_hstate(h) {
3386                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3387                                          hstate_kobjs, &hstate_attr_group);
3388                 if (err)
3389                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3390         }
3391 }
3392
3393 #ifdef CONFIG_NUMA
3394
3395 /*
3396  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3397  * with node devices in node_devices[] using a parallel array.  The array
3398  * index of a node device or _hstate == node id.
3399  * This is here to avoid any static dependency of the node device driver, in
3400  * the base kernel, on the hugetlb module.
3401  */
3402 struct node_hstate {
3403         struct kobject          *hugepages_kobj;
3404         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3405 };
3406 static struct node_hstate node_hstates[MAX_NUMNODES];
3407
3408 /*
3409  * A subset of global hstate attributes for node devices
3410  */
3411 static struct attribute *per_node_hstate_attrs[] = {
3412         &nr_hugepages_attr.attr,
3413         &free_hugepages_attr.attr,
3414         &surplus_hugepages_attr.attr,
3415         NULL,
3416 };
3417
3418 static const struct attribute_group per_node_hstate_attr_group = {
3419         .attrs = per_node_hstate_attrs,
3420 };
3421
3422 /*
3423  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3424  * Returns node id via non-NULL nidp.
3425  */
3426 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3427 {
3428         int nid;
3429
3430         for (nid = 0; nid < nr_node_ids; nid++) {
3431                 struct node_hstate *nhs = &node_hstates[nid];
3432                 int i;
3433                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3434                         if (nhs->hstate_kobjs[i] == kobj) {
3435                                 if (nidp)
3436                                         *nidp = nid;
3437                                 return &hstates[i];
3438                         }
3439         }
3440
3441         BUG();
3442         return NULL;
3443 }
3444
3445 /*
3446  * Unregister hstate attributes from a single node device.
3447  * No-op if no hstate attributes attached.
3448  */
3449 static void hugetlb_unregister_node(struct node *node)
3450 {
3451         struct hstate *h;
3452         struct node_hstate *nhs = &node_hstates[node->dev.id];
3453
3454         if (!nhs->hugepages_kobj)
3455                 return;         /* no hstate attributes */
3456
3457         for_each_hstate(h) {
3458                 int idx = hstate_index(h);
3459                 if (nhs->hstate_kobjs[idx]) {
3460                         kobject_put(nhs->hstate_kobjs[idx]);
3461                         nhs->hstate_kobjs[idx] = NULL;
3462                 }
3463         }
3464
3465         kobject_put(nhs->hugepages_kobj);
3466         nhs->hugepages_kobj = NULL;
3467 }
3468
3469
3470 /*
3471  * Register hstate attributes for a single node device.
3472  * No-op if attributes already registered.
3473  */
3474 static void hugetlb_register_node(struct node *node)
3475 {
3476         struct hstate *h;
3477         struct node_hstate *nhs = &node_hstates[node->dev.id];
3478         int err;
3479
3480         if (nhs->hugepages_kobj)
3481                 return;         /* already allocated */
3482
3483         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3484                                                         &node->dev.kobj);
3485         if (!nhs->hugepages_kobj)
3486                 return;
3487
3488         for_each_hstate(h) {
3489                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3490                                                 nhs->hstate_kobjs,
3491                                                 &per_node_hstate_attr_group);
3492                 if (err) {
3493                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3494                                 h->name, node->dev.id);
3495                         hugetlb_unregister_node(node);
3496                         break;
3497                 }
3498         }
3499 }
3500
3501 /*
3502  * hugetlb init time:  register hstate attributes for all registered node
3503  * devices of nodes that have memory.  All on-line nodes should have
3504  * registered their associated device by this time.
3505  */
3506 static void __init hugetlb_register_all_nodes(void)
3507 {
3508         int nid;
3509
3510         for_each_node_state(nid, N_MEMORY) {
3511                 struct node *node = node_devices[nid];
3512                 if (node->dev.id == nid)
3513                         hugetlb_register_node(node);
3514         }
3515
3516         /*
3517          * Let the node device driver know we're here so it can
3518          * [un]register hstate attributes on node hotplug.
3519          */
3520         register_hugetlbfs_with_node(hugetlb_register_node,
3521                                      hugetlb_unregister_node);
3522 }
3523 #else   /* !CONFIG_NUMA */
3524
3525 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3526 {
3527         BUG();
3528         if (nidp)
3529                 *nidp = -1;
3530         return NULL;
3531 }
3532
3533 static void hugetlb_register_all_nodes(void) { }
3534
3535 #endif
3536
3537 static int __init hugetlb_init(void)
3538 {
3539         int i;
3540
3541         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3542                         __NR_HPAGEFLAGS);
3543
3544         if (!hugepages_supported()) {
3545                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3546                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3547                 return 0;
3548         }
3549
3550         /*
3551          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3552          * architectures depend on setup being done here.
3553          */
3554         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3555         if (!parsed_default_hugepagesz) {
3556                 /*
3557                  * If we did not parse a default huge page size, set
3558                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3559                  * number of huge pages for this default size was implicitly
3560                  * specified, set that here as well.
3561                  * Note that the implicit setting will overwrite an explicit
3562                  * setting.  A warning will be printed in this case.
3563                  */
3564                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3565                 if (default_hstate_max_huge_pages) {
3566                         if (default_hstate.max_huge_pages) {
3567                                 char buf[32];
3568
3569                                 string_get_size(huge_page_size(&default_hstate),
3570                                         1, STRING_UNITS_2, buf, 32);
3571                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3572                                         default_hstate.max_huge_pages, buf);
3573                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3574                                         default_hstate_max_huge_pages);
3575                         }
3576                         default_hstate.max_huge_pages =
3577                                 default_hstate_max_huge_pages;
3578                 }
3579         }
3580
3581         hugetlb_cma_check();
3582         hugetlb_init_hstates();
3583         gather_bootmem_prealloc();
3584         report_hugepages();
3585
3586         hugetlb_sysfs_init();
3587         hugetlb_register_all_nodes();
3588         hugetlb_cgroup_file_init();
3589
3590 #ifdef CONFIG_SMP
3591         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3592 #else
3593         num_fault_mutexes = 1;
3594 #endif
3595         hugetlb_fault_mutex_table =
3596                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3597                               GFP_KERNEL);
3598         BUG_ON(!hugetlb_fault_mutex_table);
3599
3600         for (i = 0; i < num_fault_mutexes; i++)
3601                 mutex_init(&hugetlb_fault_mutex_table[i]);
3602         return 0;
3603 }
3604 subsys_initcall(hugetlb_init);
3605
3606 /* Overwritten by architectures with more huge page sizes */
3607 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3608 {
3609         return size == HPAGE_SIZE;
3610 }
3611
3612 void __init hugetlb_add_hstate(unsigned int order)
3613 {
3614         struct hstate *h;
3615         unsigned long i;
3616
3617         if (size_to_hstate(PAGE_SIZE << order)) {
3618                 return;
3619         }
3620         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3621         BUG_ON(order == 0);
3622         h = &hstates[hugetlb_max_hstate++];
3623         mutex_init(&h->resize_lock);
3624         h->order = order;
3625         h->mask = ~(huge_page_size(h) - 1);
3626         for (i = 0; i < MAX_NUMNODES; ++i)
3627                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3628         INIT_LIST_HEAD(&h->hugepage_activelist);
3629         h->next_nid_to_alloc = first_memory_node;
3630         h->next_nid_to_free = first_memory_node;
3631         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3632                                         huge_page_size(h)/1024);
3633         hugetlb_vmemmap_init(h);
3634
3635         parsed_hstate = h;
3636 }
3637
3638 /*
3639  * hugepages command line processing
3640  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3641  * specification.  If not, ignore the hugepages value.  hugepages can also
3642  * be the first huge page command line  option in which case it implicitly
3643  * specifies the number of huge pages for the default size.
3644  */
3645 static int __init hugepages_setup(char *s)
3646 {
3647         unsigned long *mhp;
3648         static unsigned long *last_mhp;
3649
3650         if (!parsed_valid_hugepagesz) {
3651                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3652                 parsed_valid_hugepagesz = true;
3653                 return 0;
3654         }
3655
3656         /*
3657          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3658          * yet, so this hugepages= parameter goes to the "default hstate".
3659          * Otherwise, it goes with the previously parsed hugepagesz or
3660          * default_hugepagesz.
3661          */
3662         else if (!hugetlb_max_hstate)
3663                 mhp = &default_hstate_max_huge_pages;
3664         else
3665                 mhp = &parsed_hstate->max_huge_pages;
3666
3667         if (mhp == last_mhp) {
3668                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3669                 return 0;
3670         }
3671
3672         if (sscanf(s, "%lu", mhp) <= 0)
3673                 *mhp = 0;
3674
3675         /*
3676          * Global state is always initialized later in hugetlb_init.
3677          * But we need to allocate gigantic hstates here early to still
3678          * use the bootmem allocator.
3679          */
3680         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3681                 hugetlb_hstate_alloc_pages(parsed_hstate);
3682
3683         last_mhp = mhp;
3684
3685         return 1;
3686 }
3687 __setup("hugepages=", hugepages_setup);
3688
3689 /*
3690  * hugepagesz command line processing
3691  * A specific huge page size can only be specified once with hugepagesz.
3692  * hugepagesz is followed by hugepages on the command line.  The global
3693  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3694  * hugepagesz argument was valid.
3695  */
3696 static int __init hugepagesz_setup(char *s)
3697 {
3698         unsigned long size;
3699         struct hstate *h;
3700
3701         parsed_valid_hugepagesz = false;
3702         size = (unsigned long)memparse(s, NULL);
3703
3704         if (!arch_hugetlb_valid_size(size)) {
3705                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3706                 return 0;
3707         }
3708
3709         h = size_to_hstate(size);
3710         if (h) {
3711                 /*
3712                  * hstate for this size already exists.  This is normally
3713                  * an error, but is allowed if the existing hstate is the
3714                  * default hstate.  More specifically, it is only allowed if
3715                  * the number of huge pages for the default hstate was not
3716                  * previously specified.
3717                  */
3718                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3719                     default_hstate.max_huge_pages) {
3720                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3721                         return 0;
3722                 }
3723
3724                 /*
3725                  * No need to call hugetlb_add_hstate() as hstate already
3726                  * exists.  But, do set parsed_hstate so that a following
3727                  * hugepages= parameter will be applied to this hstate.
3728                  */
3729                 parsed_hstate = h;
3730                 parsed_valid_hugepagesz = true;
3731                 return 1;
3732         }
3733
3734         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3735         parsed_valid_hugepagesz = true;
3736         return 1;
3737 }
3738 __setup("hugepagesz=", hugepagesz_setup);
3739
3740 /*
3741  * default_hugepagesz command line input
3742  * Only one instance of default_hugepagesz allowed on command line.
3743  */
3744 static int __init default_hugepagesz_setup(char *s)
3745 {
3746         unsigned long size;
3747
3748         parsed_valid_hugepagesz = false;
3749         if (parsed_default_hugepagesz) {
3750                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3751                 return 0;
3752         }
3753
3754         size = (unsigned long)memparse(s, NULL);
3755
3756         if (!arch_hugetlb_valid_size(size)) {
3757                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3758                 return 0;
3759         }
3760
3761         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3762         parsed_valid_hugepagesz = true;
3763         parsed_default_hugepagesz = true;
3764         default_hstate_idx = hstate_index(size_to_hstate(size));
3765
3766         /*
3767          * The number of default huge pages (for this size) could have been
3768          * specified as the first hugetlb parameter: hugepages=X.  If so,
3769          * then default_hstate_max_huge_pages is set.  If the default huge
3770          * page size is gigantic (>= MAX_ORDER), then the pages must be
3771          * allocated here from bootmem allocator.
3772          */
3773         if (default_hstate_max_huge_pages) {
3774                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3775                 if (hstate_is_gigantic(&default_hstate))
3776                         hugetlb_hstate_alloc_pages(&default_hstate);
3777                 default_hstate_max_huge_pages = 0;
3778         }
3779
3780         return 1;
3781 }
3782 __setup("default_hugepagesz=", default_hugepagesz_setup);
3783
3784 static unsigned int allowed_mems_nr(struct hstate *h)
3785 {
3786         int node;
3787         unsigned int nr = 0;
3788         nodemask_t *mpol_allowed;
3789         unsigned int *array = h->free_huge_pages_node;
3790         gfp_t gfp_mask = htlb_alloc_mask(h);
3791
3792         mpol_allowed = policy_nodemask_current(gfp_mask);
3793
3794         for_each_node_mask(node, cpuset_current_mems_allowed) {
3795                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3796                         nr += array[node];
3797         }
3798
3799         return nr;
3800 }
3801
3802 #ifdef CONFIG_SYSCTL
3803 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3804                                           void *buffer, size_t *length,
3805                                           loff_t *ppos, unsigned long *out)
3806 {
3807         struct ctl_table dup_table;
3808
3809         /*
3810          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3811          * can duplicate the @table and alter the duplicate of it.
3812          */
3813         dup_table = *table;
3814         dup_table.data = out;
3815
3816         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3817 }
3818
3819 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3820                          struct ctl_table *table, int write,
3821                          void *buffer, size_t *length, loff_t *ppos)
3822 {
3823         struct hstate *h = &default_hstate;
3824         unsigned long tmp = h->max_huge_pages;
3825         int ret;
3826
3827         if (!hugepages_supported())
3828                 return -EOPNOTSUPP;
3829
3830         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3831                                              &tmp);
3832         if (ret)
3833                 goto out;
3834
3835         if (write)
3836                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3837                                                   NUMA_NO_NODE, tmp, *length);
3838 out:
3839         return ret;
3840 }
3841
3842 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3843                           void *buffer, size_t *length, loff_t *ppos)
3844 {
3845
3846         return hugetlb_sysctl_handler_common(false, table, write,
3847                                                         buffer, length, ppos);
3848 }
3849
3850 #ifdef CONFIG_NUMA
3851 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3852                           void *buffer, size_t *length, loff_t *ppos)
3853 {
3854         return hugetlb_sysctl_handler_common(true, table, write,
3855                                                         buffer, length, ppos);
3856 }
3857 #endif /* CONFIG_NUMA */
3858
3859 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3860                 void *buffer, size_t *length, loff_t *ppos)
3861 {
3862         struct hstate *h = &default_hstate;
3863         unsigned long tmp;
3864         int ret;
3865
3866         if (!hugepages_supported())
3867                 return -EOPNOTSUPP;
3868
3869         tmp = h->nr_overcommit_huge_pages;
3870
3871         if (write && hstate_is_gigantic(h))
3872                 return -EINVAL;
3873
3874         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3875                                              &tmp);
3876         if (ret)
3877                 goto out;
3878
3879         if (write) {
3880                 spin_lock_irq(&hugetlb_lock);
3881                 h->nr_overcommit_huge_pages = tmp;
3882                 spin_unlock_irq(&hugetlb_lock);
3883         }
3884 out:
3885         return ret;
3886 }
3887
3888 #endif /* CONFIG_SYSCTL */
3889
3890 void hugetlb_report_meminfo(struct seq_file *m)
3891 {
3892         struct hstate *h;
3893         unsigned long total = 0;
3894
3895         if (!hugepages_supported())
3896                 return;
3897
3898         for_each_hstate(h) {
3899                 unsigned long count = h->nr_huge_pages;
3900
3901                 total += huge_page_size(h) * count;
3902
3903                 if (h == &default_hstate)
3904                         seq_printf(m,
3905                                    "HugePages_Total:   %5lu\n"
3906                                    "HugePages_Free:    %5lu\n"
3907                                    "HugePages_Rsvd:    %5lu\n"
3908                                    "HugePages_Surp:    %5lu\n"
3909                                    "Hugepagesize:   %8lu kB\n",
3910                                    count,
3911                                    h->free_huge_pages,
3912                                    h->resv_huge_pages,
3913                                    h->surplus_huge_pages,
3914                                    huge_page_size(h) / SZ_1K);
3915         }
3916
3917         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3918 }
3919
3920 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3921 {
3922         struct hstate *h = &default_hstate;
3923
3924         if (!hugepages_supported())
3925                 return 0;
3926
3927         return sysfs_emit_at(buf, len,
3928                              "Node %d HugePages_Total: %5u\n"
3929                              "Node %d HugePages_Free:  %5u\n"
3930                              "Node %d HugePages_Surp:  %5u\n",
3931                              nid, h->nr_huge_pages_node[nid],
3932                              nid, h->free_huge_pages_node[nid],
3933                              nid, h->surplus_huge_pages_node[nid]);
3934 }
3935
3936 void hugetlb_show_meminfo(void)
3937 {
3938         struct hstate *h;
3939         int nid;
3940
3941         if (!hugepages_supported())
3942                 return;
3943
3944         for_each_node_state(nid, N_MEMORY)
3945                 for_each_hstate(h)
3946                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3947                                 nid,
3948                                 h->nr_huge_pages_node[nid],
3949                                 h->free_huge_pages_node[nid],
3950                                 h->surplus_huge_pages_node[nid],
3951                                 huge_page_size(h) / SZ_1K);
3952 }
3953
3954 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3955 {
3956         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3957                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3958 }
3959
3960 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3961 unsigned long hugetlb_total_pages(void)
3962 {
3963         struct hstate *h;
3964         unsigned long nr_total_pages = 0;
3965
3966         for_each_hstate(h)
3967                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3968         return nr_total_pages;
3969 }
3970
3971 static int hugetlb_acct_memory(struct hstate *h, long delta)
3972 {
3973         int ret = -ENOMEM;
3974
3975         if (!delta)
3976                 return 0;
3977
3978         spin_lock_irq(&hugetlb_lock);
3979         /*
3980          * When cpuset is configured, it breaks the strict hugetlb page
3981          * reservation as the accounting is done on a global variable. Such
3982          * reservation is completely rubbish in the presence of cpuset because
3983          * the reservation is not checked against page availability for the
3984          * current cpuset. Application can still potentially OOM'ed by kernel
3985          * with lack of free htlb page in cpuset that the task is in.
3986          * Attempt to enforce strict accounting with cpuset is almost
3987          * impossible (or too ugly) because cpuset is too fluid that
3988          * task or memory node can be dynamically moved between cpusets.
3989          *
3990          * The change of semantics for shared hugetlb mapping with cpuset is
3991          * undesirable. However, in order to preserve some of the semantics,
3992          * we fall back to check against current free page availability as
3993          * a best attempt and hopefully to minimize the impact of changing
3994          * semantics that cpuset has.
3995          *
3996          * Apart from cpuset, we also have memory policy mechanism that
3997          * also determines from which node the kernel will allocate memory
3998          * in a NUMA system. So similar to cpuset, we also should consider
3999          * the memory policy of the current task. Similar to the description
4000          * above.
4001          */
4002         if (delta > 0) {
4003                 if (gather_surplus_pages(h, delta) < 0)
4004                         goto out;
4005
4006                 if (delta > allowed_mems_nr(h)) {
4007                         return_unused_surplus_pages(h, delta);
4008                         goto out;
4009                 }
4010         }
4011
4012         ret = 0;
4013         if (delta < 0)
4014                 return_unused_surplus_pages(h, (unsigned long) -delta);
4015
4016 out:
4017         spin_unlock_irq(&hugetlb_lock);
4018         return ret;
4019 }
4020
4021 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4022 {
4023         struct resv_map *resv = vma_resv_map(vma);
4024
4025         /*
4026          * This new VMA should share its siblings reservation map if present.
4027          * The VMA will only ever have a valid reservation map pointer where
4028          * it is being copied for another still existing VMA.  As that VMA
4029          * has a reference to the reservation map it cannot disappear until
4030          * after this open call completes.  It is therefore safe to take a
4031          * new reference here without additional locking.
4032          */
4033         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4034                 kref_get(&resv->refs);
4035 }
4036
4037 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4038 {
4039         struct hstate *h = hstate_vma(vma);
4040         struct resv_map *resv = vma_resv_map(vma);
4041         struct hugepage_subpool *spool = subpool_vma(vma);
4042         unsigned long reserve, start, end;
4043         long gbl_reserve;
4044
4045         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4046                 return;
4047
4048         start = vma_hugecache_offset(h, vma, vma->vm_start);
4049         end = vma_hugecache_offset(h, vma, vma->vm_end);
4050
4051         reserve = (end - start) - region_count(resv, start, end);
4052         hugetlb_cgroup_uncharge_counter(resv, start, end);
4053         if (reserve) {
4054                 /*
4055                  * Decrement reserve counts.  The global reserve count may be
4056                  * adjusted if the subpool has a minimum size.
4057                  */
4058                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4059                 hugetlb_acct_memory(h, -gbl_reserve);
4060         }
4061
4062         kref_put(&resv->refs, resv_map_release);
4063 }
4064
4065 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4066 {
4067         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4068                 return -EINVAL;
4069         return 0;
4070 }
4071
4072 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4073 {
4074         return huge_page_size(hstate_vma(vma));
4075 }
4076
4077 /*
4078  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4079  * handle_mm_fault() to try to instantiate regular-sized pages in the
4080  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4081  * this far.
4082  */
4083 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4084 {
4085         BUG();
4086         return 0;
4087 }
4088
4089 /*
4090  * When a new function is introduced to vm_operations_struct and added
4091  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4092  * This is because under System V memory model, mappings created via
4093  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4094  * their original vm_ops are overwritten with shm_vm_ops.
4095  */
4096 const struct vm_operations_struct hugetlb_vm_ops = {
4097         .fault = hugetlb_vm_op_fault,
4098         .open = hugetlb_vm_op_open,
4099         .close = hugetlb_vm_op_close,
4100         .may_split = hugetlb_vm_op_split,
4101         .pagesize = hugetlb_vm_op_pagesize,
4102 };
4103
4104 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4105                                 int writable)
4106 {
4107         pte_t entry;
4108         unsigned int shift = huge_page_shift(hstate_vma(vma));
4109
4110         if (writable) {
4111                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4112                                          vma->vm_page_prot)));
4113         } else {
4114                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4115                                            vma->vm_page_prot));
4116         }
4117         entry = pte_mkyoung(entry);
4118         entry = pte_mkhuge(entry);
4119         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4120
4121         return entry;
4122 }
4123
4124 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4125                                    unsigned long address, pte_t *ptep)
4126 {
4127         pte_t entry;
4128
4129         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4130         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4131                 update_mmu_cache(vma, address, ptep);
4132 }
4133
4134 bool is_hugetlb_entry_migration(pte_t pte)
4135 {
4136         swp_entry_t swp;
4137
4138         if (huge_pte_none(pte) || pte_present(pte))
4139                 return false;
4140         swp = pte_to_swp_entry(pte);
4141         if (is_migration_entry(swp))
4142                 return true;
4143         else
4144                 return false;
4145 }
4146
4147 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4148 {
4149         swp_entry_t swp;
4150
4151         if (huge_pte_none(pte) || pte_present(pte))
4152                 return false;
4153         swp = pte_to_swp_entry(pte);
4154         if (is_hwpoison_entry(swp))
4155                 return true;
4156         else
4157                 return false;
4158 }
4159
4160 static void
4161 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4162                      struct page *new_page)
4163 {
4164         __SetPageUptodate(new_page);
4165         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4166         hugepage_add_new_anon_rmap(new_page, vma, addr);
4167         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4168         ClearHPageRestoreReserve(new_page);
4169         SetHPageMigratable(new_page);
4170 }
4171
4172 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4173                             struct vm_area_struct *vma)
4174 {
4175         pte_t *src_pte, *dst_pte, entry, dst_entry;
4176         struct page *ptepage;
4177         unsigned long addr;
4178         bool cow = is_cow_mapping(vma->vm_flags);
4179         struct hstate *h = hstate_vma(vma);
4180         unsigned long sz = huge_page_size(h);
4181         unsigned long npages = pages_per_huge_page(h);
4182         struct address_space *mapping = vma->vm_file->f_mapping;
4183         struct mmu_notifier_range range;
4184         int ret = 0;
4185
4186         if (cow) {
4187                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4188                                         vma->vm_start,
4189                                         vma->vm_end);
4190                 mmu_notifier_invalidate_range_start(&range);
4191         } else {
4192                 /*
4193                  * For shared mappings i_mmap_rwsem must be held to call
4194                  * huge_pte_alloc, otherwise the returned ptep could go
4195                  * away if part of a shared pmd and another thread calls
4196                  * huge_pmd_unshare.
4197                  */
4198                 i_mmap_lock_read(mapping);
4199         }
4200
4201         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4202                 spinlock_t *src_ptl, *dst_ptl;
4203                 src_pte = huge_pte_offset(src, addr, sz);
4204                 if (!src_pte)
4205                         continue;
4206                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4207                 if (!dst_pte) {
4208                         ret = -ENOMEM;
4209                         break;
4210                 }
4211
4212                 /*
4213                  * If the pagetables are shared don't copy or take references.
4214                  * dst_pte == src_pte is the common case of src/dest sharing.
4215                  *
4216                  * However, src could have 'unshared' and dst shares with
4217                  * another vma.  If dst_pte !none, this implies sharing.
4218                  * Check here before taking page table lock, and once again
4219                  * after taking the lock below.
4220                  */
4221                 dst_entry = huge_ptep_get(dst_pte);
4222                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4223                         continue;
4224
4225                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4226                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4227                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4228                 entry = huge_ptep_get(src_pte);
4229                 dst_entry = huge_ptep_get(dst_pte);
4230 again:
4231                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4232                         /*
4233                          * Skip if src entry none.  Also, skip in the
4234                          * unlikely case dst entry !none as this implies
4235                          * sharing with another vma.
4236                          */
4237                         ;
4238                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4239                                     is_hugetlb_entry_hwpoisoned(entry))) {
4240                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4241
4242                         if (is_writable_migration_entry(swp_entry) && cow) {
4243                                 /*
4244                                  * COW mappings require pages in both
4245                                  * parent and child to be set to read.
4246                                  */
4247                                 swp_entry = make_readable_migration_entry(
4248                                                         swp_offset(swp_entry));
4249                                 entry = swp_entry_to_pte(swp_entry);
4250                                 set_huge_swap_pte_at(src, addr, src_pte,
4251                                                      entry, sz);
4252                         }
4253                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4254                 } else {
4255                         entry = huge_ptep_get(src_pte);
4256                         ptepage = pte_page(entry);
4257                         get_page(ptepage);
4258
4259                         /*
4260                          * This is a rare case where we see pinned hugetlb
4261                          * pages while they're prone to COW.  We need to do the
4262                          * COW earlier during fork.
4263                          *
4264                          * When pre-allocating the page or copying data, we
4265                          * need to be without the pgtable locks since we could
4266                          * sleep during the process.
4267                          */
4268                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4269                                 pte_t src_pte_old = entry;
4270                                 struct page *new;
4271
4272                                 spin_unlock(src_ptl);
4273                                 spin_unlock(dst_ptl);
4274                                 /* Do not use reserve as it's private owned */
4275                                 new = alloc_huge_page(vma, addr, 1);
4276                                 if (IS_ERR(new)) {
4277                                         put_page(ptepage);
4278                                         ret = PTR_ERR(new);
4279                                         break;
4280                                 }
4281                                 copy_user_huge_page(new, ptepage, addr, vma,
4282                                                     npages);
4283                                 put_page(ptepage);
4284
4285                                 /* Install the new huge page if src pte stable */
4286                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4287                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4288                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4289                                 entry = huge_ptep_get(src_pte);
4290                                 if (!pte_same(src_pte_old, entry)) {
4291                                         restore_reserve_on_error(h, vma, addr,
4292                                                                 new);
4293                                         put_page(new);
4294                                         /* dst_entry won't change as in child */
4295                                         goto again;
4296                                 }
4297                                 hugetlb_install_page(vma, dst_pte, addr, new);
4298                                 spin_unlock(src_ptl);
4299                                 spin_unlock(dst_ptl);
4300                                 continue;
4301                         }
4302
4303                         if (cow) {
4304                                 /*
4305                                  * No need to notify as we are downgrading page
4306                                  * table protection not changing it to point
4307                                  * to a new page.
4308                                  *
4309                                  * See Documentation/vm/mmu_notifier.rst
4310                                  */
4311                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4312                                 entry = huge_pte_wrprotect(entry);
4313                         }
4314
4315                         page_dup_rmap(ptepage, true);
4316                         set_huge_pte_at(dst, addr, dst_pte, entry);
4317                         hugetlb_count_add(npages, dst);
4318                 }
4319                 spin_unlock(src_ptl);
4320                 spin_unlock(dst_ptl);
4321         }
4322
4323         if (cow)
4324                 mmu_notifier_invalidate_range_end(&range);
4325         else
4326                 i_mmap_unlock_read(mapping);
4327
4328         return ret;
4329 }
4330
4331 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4332                             unsigned long start, unsigned long end,
4333                             struct page *ref_page)
4334 {
4335         struct mm_struct *mm = vma->vm_mm;
4336         unsigned long address;
4337         pte_t *ptep;
4338         pte_t pte;
4339         spinlock_t *ptl;
4340         struct page *page;
4341         struct hstate *h = hstate_vma(vma);
4342         unsigned long sz = huge_page_size(h);
4343         struct mmu_notifier_range range;
4344
4345         WARN_ON(!is_vm_hugetlb_page(vma));
4346         BUG_ON(start & ~huge_page_mask(h));
4347         BUG_ON(end & ~huge_page_mask(h));
4348
4349         /*
4350          * This is a hugetlb vma, all the pte entries should point
4351          * to huge page.
4352          */
4353         tlb_change_page_size(tlb, sz);
4354         tlb_start_vma(tlb, vma);
4355
4356         /*
4357          * If sharing possible, alert mmu notifiers of worst case.
4358          */
4359         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4360                                 end);
4361         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4362         mmu_notifier_invalidate_range_start(&range);
4363         address = start;
4364         for (; address < end; address += sz) {
4365                 ptep = huge_pte_offset(mm, address, sz);
4366                 if (!ptep)
4367                         continue;
4368
4369                 ptl = huge_pte_lock(h, mm, ptep);
4370                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4371                         spin_unlock(ptl);
4372                         /*
4373                          * We just unmapped a page of PMDs by clearing a PUD.
4374                          * The caller's TLB flush range should cover this area.
4375                          */
4376                         continue;
4377                 }
4378
4379                 pte = huge_ptep_get(ptep);
4380                 if (huge_pte_none(pte)) {
4381                         spin_unlock(ptl);
4382                         continue;
4383                 }
4384
4385                 /*
4386                  * Migrating hugepage or HWPoisoned hugepage is already
4387                  * unmapped and its refcount is dropped, so just clear pte here.
4388                  */
4389                 if (unlikely(!pte_present(pte))) {
4390                         huge_pte_clear(mm, address, ptep, sz);
4391                         spin_unlock(ptl);
4392                         continue;
4393                 }
4394
4395                 page = pte_page(pte);
4396                 /*
4397                  * If a reference page is supplied, it is because a specific
4398                  * page is being unmapped, not a range. Ensure the page we
4399                  * are about to unmap is the actual page of interest.
4400                  */
4401                 if (ref_page) {
4402                         if (page != ref_page) {
4403                                 spin_unlock(ptl);
4404                                 continue;
4405                         }
4406                         /*
4407                          * Mark the VMA as having unmapped its page so that
4408                          * future faults in this VMA will fail rather than
4409                          * looking like data was lost
4410                          */
4411                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4412                 }
4413
4414                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4415                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4416                 if (huge_pte_dirty(pte))
4417                         set_page_dirty(page);
4418
4419                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4420                 page_remove_rmap(page, true);
4421
4422                 spin_unlock(ptl);
4423                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4424                 /*
4425                  * Bail out after unmapping reference page if supplied
4426                  */
4427                 if (ref_page)
4428                         break;
4429         }
4430         mmu_notifier_invalidate_range_end(&range);
4431         tlb_end_vma(tlb, vma);
4432 }
4433
4434 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4435                           struct vm_area_struct *vma, unsigned long start,
4436                           unsigned long end, struct page *ref_page)
4437 {
4438         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4439
4440         /*
4441          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4442          * test will fail on a vma being torn down, and not grab a page table
4443          * on its way out.  We're lucky that the flag has such an appropriate
4444          * name, and can in fact be safely cleared here. We could clear it
4445          * before the __unmap_hugepage_range above, but all that's necessary
4446          * is to clear it before releasing the i_mmap_rwsem. This works
4447          * because in the context this is called, the VMA is about to be
4448          * destroyed and the i_mmap_rwsem is held.
4449          */
4450         vma->vm_flags &= ~VM_MAYSHARE;
4451 }
4452
4453 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4454                           unsigned long end, struct page *ref_page)
4455 {
4456         struct mmu_gather tlb;
4457
4458         tlb_gather_mmu(&tlb, vma->vm_mm);
4459         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4460         tlb_finish_mmu(&tlb);
4461 }
4462
4463 /*
4464  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4465  * mapping it owns the reserve page for. The intention is to unmap the page
4466  * from other VMAs and let the children be SIGKILLed if they are faulting the
4467  * same region.
4468  */
4469 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4470                               struct page *page, unsigned long address)
4471 {
4472         struct hstate *h = hstate_vma(vma);
4473         struct vm_area_struct *iter_vma;
4474         struct address_space *mapping;
4475         pgoff_t pgoff;
4476
4477         /*
4478          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4479          * from page cache lookup which is in HPAGE_SIZE units.
4480          */
4481         address = address & huge_page_mask(h);
4482         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4483                         vma->vm_pgoff;
4484         mapping = vma->vm_file->f_mapping;
4485
4486         /*
4487          * Take the mapping lock for the duration of the table walk. As
4488          * this mapping should be shared between all the VMAs,
4489          * __unmap_hugepage_range() is called as the lock is already held
4490          */
4491         i_mmap_lock_write(mapping);
4492         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4493                 /* Do not unmap the current VMA */
4494                 if (iter_vma == vma)
4495                         continue;
4496
4497                 /*
4498                  * Shared VMAs have their own reserves and do not affect
4499                  * MAP_PRIVATE accounting but it is possible that a shared
4500                  * VMA is using the same page so check and skip such VMAs.
4501                  */
4502                 if (iter_vma->vm_flags & VM_MAYSHARE)
4503                         continue;
4504
4505                 /*
4506                  * Unmap the page from other VMAs without their own reserves.
4507                  * They get marked to be SIGKILLed if they fault in these
4508                  * areas. This is because a future no-page fault on this VMA
4509                  * could insert a zeroed page instead of the data existing
4510                  * from the time of fork. This would look like data corruption
4511                  */
4512                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4513                         unmap_hugepage_range(iter_vma, address,
4514                                              address + huge_page_size(h), page);
4515         }
4516         i_mmap_unlock_write(mapping);
4517 }
4518
4519 /*
4520  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4521  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4522  * cannot race with other handlers or page migration.
4523  * Keep the pte_same checks anyway to make transition from the mutex easier.
4524  */
4525 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4526                        unsigned long address, pte_t *ptep,
4527                        struct page *pagecache_page, spinlock_t *ptl)
4528 {
4529         pte_t pte;
4530         struct hstate *h = hstate_vma(vma);
4531         struct page *old_page, *new_page;
4532         int outside_reserve = 0;
4533         vm_fault_t ret = 0;
4534         unsigned long haddr = address & huge_page_mask(h);
4535         struct mmu_notifier_range range;
4536
4537         pte = huge_ptep_get(ptep);
4538         old_page = pte_page(pte);
4539
4540 retry_avoidcopy:
4541         /* If no-one else is actually using this page, avoid the copy
4542          * and just make the page writable */
4543         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4544                 page_move_anon_rmap(old_page, vma);
4545                 set_huge_ptep_writable(vma, haddr, ptep);
4546                 return 0;
4547         }
4548
4549         /*
4550          * If the process that created a MAP_PRIVATE mapping is about to
4551          * perform a COW due to a shared page count, attempt to satisfy
4552          * the allocation without using the existing reserves. The pagecache
4553          * page is used to determine if the reserve at this address was
4554          * consumed or not. If reserves were used, a partial faulted mapping
4555          * at the time of fork() could consume its reserves on COW instead
4556          * of the full address range.
4557          */
4558         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4559                         old_page != pagecache_page)
4560                 outside_reserve = 1;
4561
4562         get_page(old_page);
4563
4564         /*
4565          * Drop page table lock as buddy allocator may be called. It will
4566          * be acquired again before returning to the caller, as expected.
4567          */
4568         spin_unlock(ptl);
4569         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4570
4571         if (IS_ERR(new_page)) {
4572                 /*
4573                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4574                  * it is due to references held by a child and an insufficient
4575                  * huge page pool. To guarantee the original mappers
4576                  * reliability, unmap the page from child processes. The child
4577                  * may get SIGKILLed if it later faults.
4578                  */
4579                 if (outside_reserve) {
4580                         struct address_space *mapping = vma->vm_file->f_mapping;
4581                         pgoff_t idx;
4582                         u32 hash;
4583
4584                         put_page(old_page);
4585                         BUG_ON(huge_pte_none(pte));
4586                         /*
4587                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4588                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4589                          * in write mode.  Dropping i_mmap_rwsem in read mode
4590                          * here is OK as COW mappings do not interact with
4591                          * PMD sharing.
4592                          *
4593                          * Reacquire both after unmap operation.
4594                          */
4595                         idx = vma_hugecache_offset(h, vma, haddr);
4596                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4597                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4598                         i_mmap_unlock_read(mapping);
4599
4600                         unmap_ref_private(mm, vma, old_page, haddr);
4601
4602                         i_mmap_lock_read(mapping);
4603                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4604                         spin_lock(ptl);
4605                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4606                         if (likely(ptep &&
4607                                    pte_same(huge_ptep_get(ptep), pte)))
4608                                 goto retry_avoidcopy;
4609                         /*
4610                          * race occurs while re-acquiring page table
4611                          * lock, and our job is done.
4612                          */
4613                         return 0;
4614                 }
4615
4616                 ret = vmf_error(PTR_ERR(new_page));
4617                 goto out_release_old;
4618         }
4619
4620         /*
4621          * When the original hugepage is shared one, it does not have
4622          * anon_vma prepared.
4623          */
4624         if (unlikely(anon_vma_prepare(vma))) {
4625                 ret = VM_FAULT_OOM;
4626                 goto out_release_all;
4627         }
4628
4629         copy_user_huge_page(new_page, old_page, address, vma,
4630                             pages_per_huge_page(h));
4631         __SetPageUptodate(new_page);
4632
4633         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4634                                 haddr + huge_page_size(h));
4635         mmu_notifier_invalidate_range_start(&range);
4636
4637         /*
4638          * Retake the page table lock to check for racing updates
4639          * before the page tables are altered
4640          */
4641         spin_lock(ptl);
4642         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4643         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4644                 ClearHPageRestoreReserve(new_page);
4645
4646                 /* Break COW */
4647                 huge_ptep_clear_flush(vma, haddr, ptep);
4648                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4649                 set_huge_pte_at(mm, haddr, ptep,
4650                                 make_huge_pte(vma, new_page, 1));
4651                 page_remove_rmap(old_page, true);
4652                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4653                 SetHPageMigratable(new_page);
4654                 /* Make the old page be freed below */
4655                 new_page = old_page;
4656         }
4657         spin_unlock(ptl);
4658         mmu_notifier_invalidate_range_end(&range);
4659 out_release_all:
4660         /* No restore in case of successful pagetable update (Break COW) */
4661         if (new_page != old_page)
4662                 restore_reserve_on_error(h, vma, haddr, new_page);
4663         put_page(new_page);
4664 out_release_old:
4665         put_page(old_page);
4666
4667         spin_lock(ptl); /* Caller expects lock to be held */
4668         return ret;
4669 }
4670
4671 /* Return the pagecache page at a given address within a VMA */
4672 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4673                         struct vm_area_struct *vma, unsigned long address)
4674 {
4675         struct address_space *mapping;
4676         pgoff_t idx;
4677
4678         mapping = vma->vm_file->f_mapping;
4679         idx = vma_hugecache_offset(h, vma, address);
4680
4681         return find_lock_page(mapping, idx);
4682 }
4683
4684 /*
4685  * Return whether there is a pagecache page to back given address within VMA.
4686  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4687  */
4688 static bool hugetlbfs_pagecache_present(struct hstate *h,
4689                         struct vm_area_struct *vma, unsigned long address)
4690 {
4691         struct address_space *mapping;
4692         pgoff_t idx;
4693         struct page *page;
4694
4695         mapping = vma->vm_file->f_mapping;
4696         idx = vma_hugecache_offset(h, vma, address);
4697
4698         page = find_get_page(mapping, idx);
4699         if (page)
4700                 put_page(page);
4701         return page != NULL;
4702 }
4703
4704 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4705                            pgoff_t idx)
4706 {
4707         struct inode *inode = mapping->host;
4708         struct hstate *h = hstate_inode(inode);
4709         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4710
4711         if (err)
4712                 return err;
4713         ClearHPageRestoreReserve(page);
4714
4715         /*
4716          * set page dirty so that it will not be removed from cache/file
4717          * by non-hugetlbfs specific code paths.
4718          */
4719         set_page_dirty(page);
4720
4721         spin_lock(&inode->i_lock);
4722         inode->i_blocks += blocks_per_huge_page(h);
4723         spin_unlock(&inode->i_lock);
4724         return 0;
4725 }
4726
4727 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4728                                                   struct address_space *mapping,
4729                                                   pgoff_t idx,
4730                                                   unsigned int flags,
4731                                                   unsigned long haddr,
4732                                                   unsigned long reason)
4733 {
4734         vm_fault_t ret;
4735         u32 hash;
4736         struct vm_fault vmf = {
4737                 .vma = vma,
4738                 .address = haddr,
4739                 .flags = flags,
4740
4741                 /*
4742                  * Hard to debug if it ends up being
4743                  * used by a callee that assumes
4744                  * something about the other
4745                  * uninitialized fields... same as in
4746                  * memory.c
4747                  */
4748         };
4749
4750         /*
4751          * hugetlb_fault_mutex and i_mmap_rwsem must be
4752          * dropped before handling userfault.  Reacquire
4753          * after handling fault to make calling code simpler.
4754          */
4755         hash = hugetlb_fault_mutex_hash(mapping, idx);
4756         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4757         i_mmap_unlock_read(mapping);
4758         ret = handle_userfault(&vmf, reason);
4759         i_mmap_lock_read(mapping);
4760         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4761
4762         return ret;
4763 }
4764
4765 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4766                         struct vm_area_struct *vma,
4767                         struct address_space *mapping, pgoff_t idx,
4768                         unsigned long address, pte_t *ptep, unsigned int flags)
4769 {
4770         struct hstate *h = hstate_vma(vma);
4771         vm_fault_t ret = VM_FAULT_SIGBUS;
4772         int anon_rmap = 0;
4773         unsigned long size;
4774         struct page *page;
4775         pte_t new_pte;
4776         spinlock_t *ptl;
4777         unsigned long haddr = address & huge_page_mask(h);
4778         bool new_page, new_pagecache_page = false;
4779
4780         /*
4781          * Currently, we are forced to kill the process in the event the
4782          * original mapper has unmapped pages from the child due to a failed
4783          * COW. Warn that such a situation has occurred as it may not be obvious
4784          */
4785         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4786                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4787                            current->pid);
4788                 return ret;
4789         }
4790
4791         /*
4792          * We can not race with truncation due to holding i_mmap_rwsem.
4793          * i_size is modified when holding i_mmap_rwsem, so check here
4794          * once for faults beyond end of file.
4795          */
4796         size = i_size_read(mapping->host) >> huge_page_shift(h);
4797         if (idx >= size)
4798                 goto out;
4799
4800 retry:
4801         new_page = false;
4802         page = find_lock_page(mapping, idx);
4803         if (!page) {
4804                 /* Check for page in userfault range */
4805                 if (userfaultfd_missing(vma)) {
4806                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4807                                                        flags, haddr,
4808                                                        VM_UFFD_MISSING);
4809                         goto out;
4810                 }
4811
4812                 page = alloc_huge_page(vma, haddr, 0);
4813                 if (IS_ERR(page)) {
4814                         /*
4815                          * Returning error will result in faulting task being
4816                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4817                          * tasks from racing to fault in the same page which
4818                          * could result in false unable to allocate errors.
4819                          * Page migration does not take the fault mutex, but
4820                          * does a clear then write of pte's under page table
4821                          * lock.  Page fault code could race with migration,
4822                          * notice the clear pte and try to allocate a page
4823                          * here.  Before returning error, get ptl and make
4824                          * sure there really is no pte entry.
4825                          */
4826                         ptl = huge_pte_lock(h, mm, ptep);
4827                         ret = 0;
4828                         if (huge_pte_none(huge_ptep_get(ptep)))
4829                                 ret = vmf_error(PTR_ERR(page));
4830                         spin_unlock(ptl);
4831                         goto out;
4832                 }
4833                 clear_huge_page(page, address, pages_per_huge_page(h));
4834                 __SetPageUptodate(page);
4835                 new_page = true;
4836
4837                 if (vma->vm_flags & VM_MAYSHARE) {
4838                         int err = huge_add_to_page_cache(page, mapping, idx);
4839                         if (err) {
4840                                 put_page(page);
4841                                 if (err == -EEXIST)
4842                                         goto retry;
4843                                 goto out;
4844                         }
4845                         new_pagecache_page = true;
4846                 } else {
4847                         lock_page(page);
4848                         if (unlikely(anon_vma_prepare(vma))) {
4849                                 ret = VM_FAULT_OOM;
4850                                 goto backout_unlocked;
4851                         }
4852                         anon_rmap = 1;
4853                 }
4854         } else {
4855                 /*
4856                  * If memory error occurs between mmap() and fault, some process
4857                  * don't have hwpoisoned swap entry for errored virtual address.
4858                  * So we need to block hugepage fault by PG_hwpoison bit check.
4859                  */
4860                 if (unlikely(PageHWPoison(page))) {
4861                         ret = VM_FAULT_HWPOISON_LARGE |
4862                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4863                         goto backout_unlocked;
4864                 }
4865
4866                 /* Check for page in userfault range. */
4867                 if (userfaultfd_minor(vma)) {
4868                         unlock_page(page);
4869                         put_page(page);
4870                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4871                                                        flags, haddr,
4872                                                        VM_UFFD_MINOR);
4873                         goto out;
4874                 }
4875         }
4876
4877         /*
4878          * If we are going to COW a private mapping later, we examine the
4879          * pending reservations for this page now. This will ensure that
4880          * any allocations necessary to record that reservation occur outside
4881          * the spinlock.
4882          */
4883         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4884                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4885                         ret = VM_FAULT_OOM;
4886                         goto backout_unlocked;
4887                 }
4888                 /* Just decrements count, does not deallocate */
4889                 vma_end_reservation(h, vma, haddr);
4890         }
4891
4892         ptl = huge_pte_lock(h, mm, ptep);
4893         ret = 0;
4894         if (!huge_pte_none(huge_ptep_get(ptep)))
4895                 goto backout;
4896
4897         if (anon_rmap) {
4898                 ClearHPageRestoreReserve(page);
4899                 hugepage_add_new_anon_rmap(page, vma, haddr);
4900         } else
4901                 page_dup_rmap(page, true);
4902         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4903                                 && (vma->vm_flags & VM_SHARED)));
4904         set_huge_pte_at(mm, haddr, ptep, new_pte);
4905
4906         hugetlb_count_add(pages_per_huge_page(h), mm);
4907         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4908                 /* Optimization, do the COW without a second fault */
4909                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4910         }
4911
4912         spin_unlock(ptl);
4913
4914         /*
4915          * Only set HPageMigratable in newly allocated pages.  Existing pages
4916          * found in the pagecache may not have HPageMigratableset if they have
4917          * been isolated for migration.
4918          */
4919         if (new_page)
4920                 SetHPageMigratable(page);
4921
4922         unlock_page(page);
4923 out:
4924         return ret;
4925
4926 backout:
4927         spin_unlock(ptl);
4928 backout_unlocked:
4929         unlock_page(page);
4930         /* restore reserve for newly allocated pages not in page cache */
4931         if (new_page && !new_pagecache_page)
4932                 restore_reserve_on_error(h, vma, haddr, page);
4933         put_page(page);
4934         goto out;
4935 }
4936
4937 #ifdef CONFIG_SMP
4938 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4939 {
4940         unsigned long key[2];
4941         u32 hash;
4942
4943         key[0] = (unsigned long) mapping;
4944         key[1] = idx;
4945
4946         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4947
4948         return hash & (num_fault_mutexes - 1);
4949 }
4950 #else
4951 /*
4952  * For uniprocessor systems we always use a single mutex, so just
4953  * return 0 and avoid the hashing overhead.
4954  */
4955 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4956 {
4957         return 0;
4958 }
4959 #endif
4960
4961 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4962                         unsigned long address, unsigned int flags)
4963 {
4964         pte_t *ptep, entry;
4965         spinlock_t *ptl;
4966         vm_fault_t ret;
4967         u32 hash;
4968         pgoff_t idx;
4969         struct page *page = NULL;
4970         struct page *pagecache_page = NULL;
4971         struct hstate *h = hstate_vma(vma);
4972         struct address_space *mapping;
4973         int need_wait_lock = 0;
4974         unsigned long haddr = address & huge_page_mask(h);
4975
4976         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4977         if (ptep) {
4978                 /*
4979                  * Since we hold no locks, ptep could be stale.  That is
4980                  * OK as we are only making decisions based on content and
4981                  * not actually modifying content here.
4982                  */
4983                 entry = huge_ptep_get(ptep);
4984                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4985                         migration_entry_wait_huge(vma, mm, ptep);
4986                         return 0;
4987                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4988                         return VM_FAULT_HWPOISON_LARGE |
4989                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4990         }
4991
4992         /*
4993          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4994          * until finished with ptep.  This serves two purposes:
4995          * 1) It prevents huge_pmd_unshare from being called elsewhere
4996          *    and making the ptep no longer valid.
4997          * 2) It synchronizes us with i_size modifications during truncation.
4998          *
4999          * ptep could have already be assigned via huge_pte_offset.  That
5000          * is OK, as huge_pte_alloc will return the same value unless
5001          * something has changed.
5002          */
5003         mapping = vma->vm_file->f_mapping;
5004         i_mmap_lock_read(mapping);
5005         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5006         if (!ptep) {
5007                 i_mmap_unlock_read(mapping);
5008                 return VM_FAULT_OOM;
5009         }
5010
5011         /*
5012          * Serialize hugepage allocation and instantiation, so that we don't
5013          * get spurious allocation failures if two CPUs race to instantiate
5014          * the same page in the page cache.
5015          */
5016         idx = vma_hugecache_offset(h, vma, haddr);
5017         hash = hugetlb_fault_mutex_hash(mapping, idx);
5018         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5019
5020         entry = huge_ptep_get(ptep);
5021         if (huge_pte_none(entry)) {
5022                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5023                 goto out_mutex;
5024         }
5025
5026         ret = 0;
5027
5028         /*
5029          * entry could be a migration/hwpoison entry at this point, so this
5030          * check prevents the kernel from going below assuming that we have
5031          * an active hugepage in pagecache. This goto expects the 2nd page
5032          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5033          * properly handle it.
5034          */
5035         if (!pte_present(entry))
5036                 goto out_mutex;
5037
5038         /*
5039          * If we are going to COW the mapping later, we examine the pending
5040          * reservations for this page now. This will ensure that any
5041          * allocations necessary to record that reservation occur outside the
5042          * spinlock. For private mappings, we also lookup the pagecache
5043          * page now as it is used to determine if a reservation has been
5044          * consumed.
5045          */
5046         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5047                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5048                         ret = VM_FAULT_OOM;
5049                         goto out_mutex;
5050                 }
5051                 /* Just decrements count, does not deallocate */
5052                 vma_end_reservation(h, vma, haddr);
5053
5054                 if (!(vma->vm_flags & VM_MAYSHARE))
5055                         pagecache_page = hugetlbfs_pagecache_page(h,
5056                                                                 vma, haddr);
5057         }
5058
5059         ptl = huge_pte_lock(h, mm, ptep);
5060
5061         /* Check for a racing update before calling hugetlb_cow */
5062         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5063                 goto out_ptl;
5064
5065         /*
5066          * hugetlb_cow() requires page locks of pte_page(entry) and
5067          * pagecache_page, so here we need take the former one
5068          * when page != pagecache_page or !pagecache_page.
5069          */
5070         page = pte_page(entry);
5071         if (page != pagecache_page)
5072                 if (!trylock_page(page)) {
5073                         need_wait_lock = 1;
5074                         goto out_ptl;
5075                 }
5076
5077         get_page(page);
5078
5079         if (flags & FAULT_FLAG_WRITE) {
5080                 if (!huge_pte_write(entry)) {
5081                         ret = hugetlb_cow(mm, vma, address, ptep,
5082                                           pagecache_page, ptl);
5083                         goto out_put_page;
5084                 }
5085                 entry = huge_pte_mkdirty(entry);
5086         }
5087         entry = pte_mkyoung(entry);
5088         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5089                                                 flags & FAULT_FLAG_WRITE))
5090                 update_mmu_cache(vma, haddr, ptep);
5091 out_put_page:
5092         if (page != pagecache_page)
5093                 unlock_page(page);
5094         put_page(page);
5095 out_ptl:
5096         spin_unlock(ptl);
5097
5098         if (pagecache_page) {
5099                 unlock_page(pagecache_page);
5100                 put_page(pagecache_page);
5101         }
5102 out_mutex:
5103         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5104         i_mmap_unlock_read(mapping);
5105         /*
5106          * Generally it's safe to hold refcount during waiting page lock. But
5107          * here we just wait to defer the next page fault to avoid busy loop and
5108          * the page is not used after unlocked before returning from the current
5109          * page fault. So we are safe from accessing freed page, even if we wait
5110          * here without taking refcount.
5111          */
5112         if (need_wait_lock)
5113                 wait_on_page_locked(page);
5114         return ret;
5115 }
5116
5117 #ifdef CONFIG_USERFAULTFD
5118 /*
5119  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5120  * modifications for huge pages.
5121  */
5122 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5123                             pte_t *dst_pte,
5124                             struct vm_area_struct *dst_vma,
5125                             unsigned long dst_addr,
5126                             unsigned long src_addr,
5127                             enum mcopy_atomic_mode mode,
5128                             struct page **pagep)
5129 {
5130         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5131         struct hstate *h = hstate_vma(dst_vma);
5132         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5133         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5134         unsigned long size;
5135         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5136         pte_t _dst_pte;
5137         spinlock_t *ptl;
5138         int ret = -ENOMEM;
5139         struct page *page;
5140         int writable;
5141         bool new_pagecache_page = false;
5142
5143         if (is_continue) {
5144                 ret = -EFAULT;
5145                 page = find_lock_page(mapping, idx);
5146                 if (!page)
5147                         goto out;
5148         } else if (!*pagep) {
5149                 /* If a page already exists, then it's UFFDIO_COPY for
5150                  * a non-missing case. Return -EEXIST.
5151                  */
5152                 if (vm_shared &&
5153                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5154                         ret = -EEXIST;
5155                         goto out;
5156                 }
5157
5158                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5159                 if (IS_ERR(page)) {
5160                         ret = -ENOMEM;
5161                         goto out;
5162                 }
5163
5164                 ret = copy_huge_page_from_user(page,
5165                                                 (const void __user *) src_addr,
5166                                                 pages_per_huge_page(h), false);
5167
5168                 /* fallback to copy_from_user outside mmap_lock */
5169                 if (unlikely(ret)) {
5170                         ret = -ENOENT;
5171                         /* Free the allocated page which may have
5172                          * consumed a reservation.
5173                          */
5174                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5175                         put_page(page);
5176
5177                         /* Allocate a temporary page to hold the copied
5178                          * contents.
5179                          */
5180                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5181                         if (!page) {
5182                                 ret = -ENOMEM;
5183                                 goto out;
5184                         }
5185                         *pagep = page;
5186                         /* Set the outparam pagep and return to the caller to
5187                          * copy the contents outside the lock. Don't free the
5188                          * page.
5189                          */
5190                         goto out;
5191                 }
5192         } else {
5193                 if (vm_shared &&
5194                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5195                         put_page(*pagep);
5196                         ret = -EEXIST;
5197                         *pagep = NULL;
5198                         goto out;
5199                 }
5200
5201                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5202                 if (IS_ERR(page)) {
5203                         ret = -ENOMEM;
5204                         *pagep = NULL;
5205                         goto out;
5206                 }
5207                 copy_huge_page(page, *pagep);
5208                 put_page(*pagep);
5209                 *pagep = NULL;
5210         }
5211
5212         /*
5213          * The memory barrier inside __SetPageUptodate makes sure that
5214          * preceding stores to the page contents become visible before
5215          * the set_pte_at() write.
5216          */
5217         __SetPageUptodate(page);
5218
5219         /* Add shared, newly allocated pages to the page cache. */
5220         if (vm_shared && !is_continue) {
5221                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5222                 ret = -EFAULT;
5223                 if (idx >= size)
5224                         goto out_release_nounlock;
5225
5226                 /*
5227                  * Serialization between remove_inode_hugepages() and
5228                  * huge_add_to_page_cache() below happens through the
5229                  * hugetlb_fault_mutex_table that here must be hold by
5230                  * the caller.
5231                  */
5232                 ret = huge_add_to_page_cache(page, mapping, idx);
5233                 if (ret)
5234                         goto out_release_nounlock;
5235                 new_pagecache_page = true;
5236         }
5237
5238         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5239         spin_lock(ptl);
5240
5241         /*
5242          * Recheck the i_size after holding PT lock to make sure not
5243          * to leave any page mapped (as page_mapped()) beyond the end
5244          * of the i_size (remove_inode_hugepages() is strict about
5245          * enforcing that). If we bail out here, we'll also leave a
5246          * page in the radix tree in the vm_shared case beyond the end
5247          * of the i_size, but remove_inode_hugepages() will take care
5248          * of it as soon as we drop the hugetlb_fault_mutex_table.
5249          */
5250         size = i_size_read(mapping->host) >> huge_page_shift(h);
5251         ret = -EFAULT;
5252         if (idx >= size)
5253                 goto out_release_unlock;
5254
5255         ret = -EEXIST;
5256         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5257                 goto out_release_unlock;
5258
5259         if (vm_shared) {
5260                 page_dup_rmap(page, true);
5261         } else {
5262                 ClearHPageRestoreReserve(page);
5263                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5264         }
5265
5266         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5267         if (is_continue && !vm_shared)
5268                 writable = 0;
5269         else
5270                 writable = dst_vma->vm_flags & VM_WRITE;
5271
5272         _dst_pte = make_huge_pte(dst_vma, page, writable);
5273         if (writable)
5274                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5275         _dst_pte = pte_mkyoung(_dst_pte);
5276
5277         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5278
5279         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5280                                         dst_vma->vm_flags & VM_WRITE);
5281         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5282
5283         /* No need to invalidate - it was non-present before */
5284         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5285
5286         spin_unlock(ptl);
5287         if (!is_continue)
5288                 SetHPageMigratable(page);
5289         if (vm_shared || is_continue)
5290                 unlock_page(page);
5291         ret = 0;
5292 out:
5293         return ret;
5294 out_release_unlock:
5295         spin_unlock(ptl);
5296         if (vm_shared || is_continue)
5297                 unlock_page(page);
5298 out_release_nounlock:
5299         if (!new_pagecache_page)
5300                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5301         put_page(page);
5302         goto out;
5303 }
5304 #endif /* CONFIG_USERFAULTFD */
5305
5306 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5307                                  int refs, struct page **pages,
5308                                  struct vm_area_struct **vmas)
5309 {
5310         int nr;
5311
5312         for (nr = 0; nr < refs; nr++) {
5313                 if (likely(pages))
5314                         pages[nr] = mem_map_offset(page, nr);
5315                 if (vmas)
5316                         vmas[nr] = vma;
5317         }
5318 }
5319
5320 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5321                          struct page **pages, struct vm_area_struct **vmas,
5322                          unsigned long *position, unsigned long *nr_pages,
5323                          long i, unsigned int flags, int *locked)
5324 {
5325         unsigned long pfn_offset;
5326         unsigned long vaddr = *position;
5327         unsigned long remainder = *nr_pages;
5328         struct hstate *h = hstate_vma(vma);
5329         int err = -EFAULT, refs;
5330
5331         while (vaddr < vma->vm_end && remainder) {
5332                 pte_t *pte;
5333                 spinlock_t *ptl = NULL;
5334                 int absent;
5335                 struct page *page;
5336
5337                 /*
5338                  * If we have a pending SIGKILL, don't keep faulting pages and
5339                  * potentially allocating memory.
5340                  */
5341                 if (fatal_signal_pending(current)) {
5342                         remainder = 0;
5343                         break;
5344                 }
5345
5346                 /*
5347                  * Some archs (sparc64, sh*) have multiple pte_ts to
5348                  * each hugepage.  We have to make sure we get the
5349                  * first, for the page indexing below to work.
5350                  *
5351                  * Note that page table lock is not held when pte is null.
5352                  */
5353                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5354                                       huge_page_size(h));
5355                 if (pte)
5356                         ptl = huge_pte_lock(h, mm, pte);
5357                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5358
5359                 /*
5360                  * When coredumping, it suits get_dump_page if we just return
5361                  * an error where there's an empty slot with no huge pagecache
5362                  * to back it.  This way, we avoid allocating a hugepage, and
5363                  * the sparse dumpfile avoids allocating disk blocks, but its
5364                  * huge holes still show up with zeroes where they need to be.
5365                  */
5366                 if (absent && (flags & FOLL_DUMP) &&
5367                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5368                         if (pte)
5369                                 spin_unlock(ptl);
5370                         remainder = 0;
5371                         break;
5372                 }
5373
5374                 /*
5375                  * We need call hugetlb_fault for both hugepages under migration
5376                  * (in which case hugetlb_fault waits for the migration,) and
5377                  * hwpoisoned hugepages (in which case we need to prevent the
5378                  * caller from accessing to them.) In order to do this, we use
5379                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5380                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5381                  * both cases, and because we can't follow correct pages
5382                  * directly from any kind of swap entries.
5383                  */
5384                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5385                     ((flags & FOLL_WRITE) &&
5386                       !huge_pte_write(huge_ptep_get(pte)))) {
5387                         vm_fault_t ret;
5388                         unsigned int fault_flags = 0;
5389
5390                         if (pte)
5391                                 spin_unlock(ptl);
5392                         if (flags & FOLL_WRITE)
5393                                 fault_flags |= FAULT_FLAG_WRITE;
5394                         if (locked)
5395                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5396                                         FAULT_FLAG_KILLABLE;
5397                         if (flags & FOLL_NOWAIT)
5398                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5399                                         FAULT_FLAG_RETRY_NOWAIT;
5400                         if (flags & FOLL_TRIED) {
5401                                 /*
5402                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5403                                  * FAULT_FLAG_TRIED can co-exist
5404                                  */
5405                                 fault_flags |= FAULT_FLAG_TRIED;
5406                         }
5407                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5408                         if (ret & VM_FAULT_ERROR) {
5409                                 err = vm_fault_to_errno(ret, flags);
5410                                 remainder = 0;
5411                                 break;
5412                         }
5413                         if (ret & VM_FAULT_RETRY) {
5414                                 if (locked &&
5415                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5416                                         *locked = 0;
5417                                 *nr_pages = 0;
5418                                 /*
5419                                  * VM_FAULT_RETRY must not return an
5420                                  * error, it will return zero
5421                                  * instead.
5422                                  *
5423                                  * No need to update "position" as the
5424                                  * caller will not check it after
5425                                  * *nr_pages is set to 0.
5426                                  */
5427                                 return i;
5428                         }
5429                         continue;
5430                 }
5431
5432                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5433                 page = pte_page(huge_ptep_get(pte));
5434
5435                 /*
5436                  * If subpage information not requested, update counters
5437                  * and skip the same_page loop below.
5438                  */
5439                 if (!pages && !vmas && !pfn_offset &&
5440                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5441                     (remainder >= pages_per_huge_page(h))) {
5442                         vaddr += huge_page_size(h);
5443                         remainder -= pages_per_huge_page(h);
5444                         i += pages_per_huge_page(h);
5445                         spin_unlock(ptl);
5446                         continue;
5447                 }
5448
5449                 /* vaddr may not be aligned to PAGE_SIZE */
5450                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5451                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5452
5453                 if (pages || vmas)
5454                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5455                                              vma, refs,
5456                                              likely(pages) ? pages + i : NULL,
5457                                              vmas ? vmas + i : NULL);
5458
5459                 if (pages) {
5460                         /*
5461                          * try_grab_compound_head() should always succeed here,
5462                          * because: a) we hold the ptl lock, and b) we've just
5463                          * checked that the huge page is present in the page
5464                          * tables. If the huge page is present, then the tail
5465                          * pages must also be present. The ptl prevents the
5466                          * head page and tail pages from being rearranged in
5467                          * any way. So this page must be available at this
5468                          * point, unless the page refcount overflowed:
5469                          */
5470                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5471                                                                  refs,
5472                                                                  flags))) {
5473                                 spin_unlock(ptl);
5474                                 remainder = 0;
5475                                 err = -ENOMEM;
5476                                 break;
5477                         }
5478                 }
5479
5480                 vaddr += (refs << PAGE_SHIFT);
5481                 remainder -= refs;
5482                 i += refs;
5483
5484                 spin_unlock(ptl);
5485         }
5486         *nr_pages = remainder;
5487         /*
5488          * setting position is actually required only if remainder is
5489          * not zero but it's faster not to add a "if (remainder)"
5490          * branch.
5491          */
5492         *position = vaddr;
5493
5494         return i ? i : err;
5495 }
5496
5497 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5498                 unsigned long address, unsigned long end, pgprot_t newprot)
5499 {
5500         struct mm_struct *mm = vma->vm_mm;
5501         unsigned long start = address;
5502         pte_t *ptep;
5503         pte_t pte;
5504         struct hstate *h = hstate_vma(vma);
5505         unsigned long pages = 0;
5506         bool shared_pmd = false;
5507         struct mmu_notifier_range range;
5508
5509         /*
5510          * In the case of shared PMDs, the area to flush could be beyond
5511          * start/end.  Set range.start/range.end to cover the maximum possible
5512          * range if PMD sharing is possible.
5513          */
5514         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5515                                 0, vma, mm, start, end);
5516         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5517
5518         BUG_ON(address >= end);
5519         flush_cache_range(vma, range.start, range.end);
5520
5521         mmu_notifier_invalidate_range_start(&range);
5522         i_mmap_lock_write(vma->vm_file->f_mapping);
5523         for (; address < end; address += huge_page_size(h)) {
5524                 spinlock_t *ptl;
5525                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5526                 if (!ptep)
5527                         continue;
5528                 ptl = huge_pte_lock(h, mm, ptep);
5529                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5530                         pages++;
5531                         spin_unlock(ptl);
5532                         shared_pmd = true;
5533                         continue;
5534                 }
5535                 pte = huge_ptep_get(ptep);
5536                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5537                         spin_unlock(ptl);
5538                         continue;
5539                 }
5540                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5541                         swp_entry_t entry = pte_to_swp_entry(pte);
5542
5543                         if (is_writable_migration_entry(entry)) {
5544                                 pte_t newpte;
5545
5546                                 entry = make_readable_migration_entry(
5547                                                         swp_offset(entry));
5548                                 newpte = swp_entry_to_pte(entry);
5549                                 set_huge_swap_pte_at(mm, address, ptep,
5550                                                      newpte, huge_page_size(h));
5551                                 pages++;
5552                         }
5553                         spin_unlock(ptl);
5554                         continue;
5555                 }
5556                 if (!huge_pte_none(pte)) {
5557                         pte_t old_pte;
5558                         unsigned int shift = huge_page_shift(hstate_vma(vma));
5559
5560                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5561                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5562                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5563                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5564                         pages++;
5565                 }
5566                 spin_unlock(ptl);
5567         }
5568         /*
5569          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5570          * may have cleared our pud entry and done put_page on the page table:
5571          * once we release i_mmap_rwsem, another task can do the final put_page
5572          * and that page table be reused and filled with junk.  If we actually
5573          * did unshare a page of pmds, flush the range corresponding to the pud.
5574          */
5575         if (shared_pmd)
5576                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5577         else
5578                 flush_hugetlb_tlb_range(vma, start, end);
5579         /*
5580          * No need to call mmu_notifier_invalidate_range() we are downgrading
5581          * page table protection not changing it to point to a new page.
5582          *
5583          * See Documentation/vm/mmu_notifier.rst
5584          */
5585         i_mmap_unlock_write(vma->vm_file->f_mapping);
5586         mmu_notifier_invalidate_range_end(&range);
5587
5588         return pages << h->order;
5589 }
5590
5591 /* Return true if reservation was successful, false otherwise.  */
5592 bool hugetlb_reserve_pages(struct inode *inode,
5593                                         long from, long to,
5594                                         struct vm_area_struct *vma,
5595                                         vm_flags_t vm_flags)
5596 {
5597         long chg, add = -1;
5598         struct hstate *h = hstate_inode(inode);
5599         struct hugepage_subpool *spool = subpool_inode(inode);
5600         struct resv_map *resv_map;
5601         struct hugetlb_cgroup *h_cg = NULL;
5602         long gbl_reserve, regions_needed = 0;
5603
5604         /* This should never happen */
5605         if (from > to) {
5606                 VM_WARN(1, "%s called with a negative range\n", __func__);
5607                 return false;
5608         }
5609
5610         /*
5611          * Only apply hugepage reservation if asked. At fault time, an
5612          * attempt will be made for VM_NORESERVE to allocate a page
5613          * without using reserves
5614          */
5615         if (vm_flags & VM_NORESERVE)
5616                 return true;
5617
5618         /*
5619          * Shared mappings base their reservation on the number of pages that
5620          * are already allocated on behalf of the file. Private mappings need
5621          * to reserve the full area even if read-only as mprotect() may be
5622          * called to make the mapping read-write. Assume !vma is a shm mapping
5623          */
5624         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5625                 /*
5626                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5627                  * called for inodes for which resv_maps were created (see
5628                  * hugetlbfs_get_inode).
5629                  */
5630                 resv_map = inode_resv_map(inode);
5631
5632                 chg = region_chg(resv_map, from, to, &regions_needed);
5633
5634         } else {
5635                 /* Private mapping. */
5636                 resv_map = resv_map_alloc();
5637                 if (!resv_map)
5638                         return false;
5639
5640                 chg = to - from;
5641
5642                 set_vma_resv_map(vma, resv_map);
5643                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5644         }
5645
5646         if (chg < 0)
5647                 goto out_err;
5648
5649         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5650                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5651                 goto out_err;
5652
5653         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5654                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5655                  * of the resv_map.
5656                  */
5657                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5658         }
5659
5660         /*
5661          * There must be enough pages in the subpool for the mapping. If
5662          * the subpool has a minimum size, there may be some global
5663          * reservations already in place (gbl_reserve).
5664          */
5665         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5666         if (gbl_reserve < 0)
5667                 goto out_uncharge_cgroup;
5668
5669         /*
5670          * Check enough hugepages are available for the reservation.
5671          * Hand the pages back to the subpool if there are not
5672          */
5673         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5674                 goto out_put_pages;
5675
5676         /*
5677          * Account for the reservations made. Shared mappings record regions
5678          * that have reservations as they are shared by multiple VMAs.
5679          * When the last VMA disappears, the region map says how much
5680          * the reservation was and the page cache tells how much of
5681          * the reservation was consumed. Private mappings are per-VMA and
5682          * only the consumed reservations are tracked. When the VMA
5683          * disappears, the original reservation is the VMA size and the
5684          * consumed reservations are stored in the map. Hence, nothing
5685          * else has to be done for private mappings here
5686          */
5687         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5688                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5689
5690                 if (unlikely(add < 0)) {
5691                         hugetlb_acct_memory(h, -gbl_reserve);
5692                         goto out_put_pages;
5693                 } else if (unlikely(chg > add)) {
5694                         /*
5695                          * pages in this range were added to the reserve
5696                          * map between region_chg and region_add.  This
5697                          * indicates a race with alloc_huge_page.  Adjust
5698                          * the subpool and reserve counts modified above
5699                          * based on the difference.
5700                          */
5701                         long rsv_adjust;
5702
5703                         /*
5704                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5705                          * reference to h_cg->css. See comment below for detail.
5706                          */
5707                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5708                                 hstate_index(h),
5709                                 (chg - add) * pages_per_huge_page(h), h_cg);
5710
5711                         rsv_adjust = hugepage_subpool_put_pages(spool,
5712                                                                 chg - add);
5713                         hugetlb_acct_memory(h, -rsv_adjust);
5714                 } else if (h_cg) {
5715                         /*
5716                          * The file_regions will hold their own reference to
5717                          * h_cg->css. So we should release the reference held
5718                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5719                          * done.
5720                          */
5721                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5722                 }
5723         }
5724         return true;
5725
5726 out_put_pages:
5727         /* put back original number of pages, chg */
5728         (void)hugepage_subpool_put_pages(spool, chg);
5729 out_uncharge_cgroup:
5730         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5731                                             chg * pages_per_huge_page(h), h_cg);
5732 out_err:
5733         if (!vma || vma->vm_flags & VM_MAYSHARE)
5734                 /* Only call region_abort if the region_chg succeeded but the
5735                  * region_add failed or didn't run.
5736                  */
5737                 if (chg >= 0 && add < 0)
5738                         region_abort(resv_map, from, to, regions_needed);
5739         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5740                 kref_put(&resv_map->refs, resv_map_release);
5741         return false;
5742 }
5743
5744 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5745                                                                 long freed)
5746 {
5747         struct hstate *h = hstate_inode(inode);
5748         struct resv_map *resv_map = inode_resv_map(inode);
5749         long chg = 0;
5750         struct hugepage_subpool *spool = subpool_inode(inode);
5751         long gbl_reserve;
5752
5753         /*
5754          * Since this routine can be called in the evict inode path for all
5755          * hugetlbfs inodes, resv_map could be NULL.
5756          */
5757         if (resv_map) {
5758                 chg = region_del(resv_map, start, end);
5759                 /*
5760                  * region_del() can fail in the rare case where a region
5761                  * must be split and another region descriptor can not be
5762                  * allocated.  If end == LONG_MAX, it will not fail.
5763                  */
5764                 if (chg < 0)
5765                         return chg;
5766         }
5767
5768         spin_lock(&inode->i_lock);
5769         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5770         spin_unlock(&inode->i_lock);
5771
5772         /*
5773          * If the subpool has a minimum size, the number of global
5774          * reservations to be released may be adjusted.
5775          *
5776          * Note that !resv_map implies freed == 0. So (chg - freed)
5777          * won't go negative.
5778          */
5779         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5780         hugetlb_acct_memory(h, -gbl_reserve);
5781
5782         return 0;
5783 }
5784
5785 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5786 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5787                                 struct vm_area_struct *vma,
5788                                 unsigned long addr, pgoff_t idx)
5789 {
5790         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5791                                 svma->vm_start;
5792         unsigned long sbase = saddr & PUD_MASK;
5793         unsigned long s_end = sbase + PUD_SIZE;
5794
5795         /* Allow segments to share if only one is marked locked */
5796         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5797         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5798
5799         /*
5800          * match the virtual addresses, permission and the alignment of the
5801          * page table page.
5802          */
5803         if (pmd_index(addr) != pmd_index(saddr) ||
5804             vm_flags != svm_flags ||
5805             !range_in_vma(svma, sbase, s_end))
5806                 return 0;
5807
5808         return saddr;
5809 }
5810
5811 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5812 {
5813         unsigned long base = addr & PUD_MASK;
5814         unsigned long end = base + PUD_SIZE;
5815
5816         /*
5817          * check on proper vm_flags and page table alignment
5818          */
5819         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5820                 return true;
5821         return false;
5822 }
5823
5824 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5825 {
5826 #ifdef CONFIG_USERFAULTFD
5827         if (uffd_disable_huge_pmd_share(vma))
5828                 return false;
5829 #endif
5830         return vma_shareable(vma, addr);
5831 }
5832
5833 /*
5834  * Determine if start,end range within vma could be mapped by shared pmd.
5835  * If yes, adjust start and end to cover range associated with possible
5836  * shared pmd mappings.
5837  */
5838 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5839                                 unsigned long *start, unsigned long *end)
5840 {
5841         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5842                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5843
5844         /*
5845          * vma needs to span at least one aligned PUD size, and the range
5846          * must be at least partially within in.
5847          */
5848         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5849                 (*end <= v_start) || (*start >= v_end))
5850                 return;
5851
5852         /* Extend the range to be PUD aligned for a worst case scenario */
5853         if (*start > v_start)
5854                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5855
5856         if (*end < v_end)
5857                 *end = ALIGN(*end, PUD_SIZE);
5858 }
5859
5860 /*
5861  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5862  * and returns the corresponding pte. While this is not necessary for the
5863  * !shared pmd case because we can allocate the pmd later as well, it makes the
5864  * code much cleaner.
5865  *
5866  * This routine must be called with i_mmap_rwsem held in at least read mode if
5867  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5868  * table entries associated with the address space.  This is important as we
5869  * are setting up sharing based on existing page table entries (mappings).
5870  *
5871  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5872  * huge_pte_alloc know that sharing is not possible and do not take
5873  * i_mmap_rwsem as a performance optimization.  This is handled by the
5874  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5875  * only required for subsequent processing.
5876  */
5877 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5878                       unsigned long addr, pud_t *pud)
5879 {
5880         struct address_space *mapping = vma->vm_file->f_mapping;
5881         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5882                         vma->vm_pgoff;
5883         struct vm_area_struct *svma;
5884         unsigned long saddr;
5885         pte_t *spte = NULL;
5886         pte_t *pte;
5887         spinlock_t *ptl;
5888
5889         i_mmap_assert_locked(mapping);
5890         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5891                 if (svma == vma)
5892                         continue;
5893
5894                 saddr = page_table_shareable(svma, vma, addr, idx);
5895                 if (saddr) {
5896                         spte = huge_pte_offset(svma->vm_mm, saddr,
5897                                                vma_mmu_pagesize(svma));
5898                         if (spte) {
5899                                 get_page(virt_to_page(spte));
5900                                 break;
5901                         }
5902                 }
5903         }
5904
5905         if (!spte)
5906                 goto out;
5907
5908         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5909         if (pud_none(*pud)) {
5910                 pud_populate(mm, pud,
5911                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5912                 mm_inc_nr_pmds(mm);
5913         } else {
5914                 put_page(virt_to_page(spte));
5915         }
5916         spin_unlock(ptl);
5917 out:
5918         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5919         return pte;
5920 }
5921
5922 /*
5923  * unmap huge page backed by shared pte.
5924  *
5925  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5926  * indicated by page_count > 1, unmap is achieved by clearing pud and
5927  * decrementing the ref count. If count == 1, the pte page is not shared.
5928  *
5929  * Called with page table lock held and i_mmap_rwsem held in write mode.
5930  *
5931  * returns: 1 successfully unmapped a shared pte page
5932  *          0 the underlying pte page is not shared, or it is the last user
5933  */
5934 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5935                                         unsigned long *addr, pte_t *ptep)
5936 {
5937         pgd_t *pgd = pgd_offset(mm, *addr);
5938         p4d_t *p4d = p4d_offset(pgd, *addr);
5939         pud_t *pud = pud_offset(p4d, *addr);
5940
5941         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5942         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5943         if (page_count(virt_to_page(ptep)) == 1)
5944                 return 0;
5945
5946         pud_clear(pud);
5947         put_page(virt_to_page(ptep));
5948         mm_dec_nr_pmds(mm);
5949         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5950         return 1;
5951 }
5952
5953 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5954 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5955                       unsigned long addr, pud_t *pud)
5956 {
5957         return NULL;
5958 }
5959
5960 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5961                                 unsigned long *addr, pte_t *ptep)
5962 {
5963         return 0;
5964 }
5965
5966 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5967                                 unsigned long *start, unsigned long *end)
5968 {
5969 }
5970
5971 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5972 {
5973         return false;
5974 }
5975 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5976
5977 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5978 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5979                         unsigned long addr, unsigned long sz)
5980 {
5981         pgd_t *pgd;
5982         p4d_t *p4d;
5983         pud_t *pud;
5984         pte_t *pte = NULL;
5985
5986         pgd = pgd_offset(mm, addr);
5987         p4d = p4d_alloc(mm, pgd, addr);
5988         if (!p4d)
5989                 return NULL;
5990         pud = pud_alloc(mm, p4d, addr);
5991         if (pud) {
5992                 if (sz == PUD_SIZE) {
5993                         pte = (pte_t *)pud;
5994                 } else {
5995                         BUG_ON(sz != PMD_SIZE);
5996                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5997                                 pte = huge_pmd_share(mm, vma, addr, pud);
5998                         else
5999                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6000                 }
6001         }
6002         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6003
6004         return pte;
6005 }
6006
6007 /*
6008  * huge_pte_offset() - Walk the page table to resolve the hugepage
6009  * entry at address @addr
6010  *
6011  * Return: Pointer to page table entry (PUD or PMD) for
6012  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6013  * size @sz doesn't match the hugepage size at this level of the page
6014  * table.
6015  */
6016 pte_t *huge_pte_offset(struct mm_struct *mm,
6017                        unsigned long addr, unsigned long sz)
6018 {
6019         pgd_t *pgd;
6020         p4d_t *p4d;
6021         pud_t *pud;
6022         pmd_t *pmd;
6023
6024         pgd = pgd_offset(mm, addr);
6025         if (!pgd_present(*pgd))
6026                 return NULL;
6027         p4d = p4d_offset(pgd, addr);
6028         if (!p4d_present(*p4d))
6029                 return NULL;
6030
6031         pud = pud_offset(p4d, addr);
6032         if (sz == PUD_SIZE)
6033                 /* must be pud huge, non-present or none */
6034                 return (pte_t *)pud;
6035         if (!pud_present(*pud))
6036                 return NULL;
6037         /* must have a valid entry and size to go further */
6038
6039         pmd = pmd_offset(pud, addr);
6040         /* must be pmd huge, non-present or none */
6041         return (pte_t *)pmd;
6042 }
6043
6044 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6045
6046 /*
6047  * These functions are overwritable if your architecture needs its own
6048  * behavior.
6049  */
6050 struct page * __weak
6051 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6052                               int write)
6053 {
6054         return ERR_PTR(-EINVAL);
6055 }
6056
6057 struct page * __weak
6058 follow_huge_pd(struct vm_area_struct *vma,
6059                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6060 {
6061         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6062         return NULL;
6063 }
6064
6065 struct page * __weak
6066 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6067                 pmd_t *pmd, int flags)
6068 {
6069         struct page *page = NULL;
6070         spinlock_t *ptl;
6071         pte_t pte;
6072
6073         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6074         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6075                          (FOLL_PIN | FOLL_GET)))
6076                 return NULL;
6077
6078 retry:
6079         ptl = pmd_lockptr(mm, pmd);
6080         spin_lock(ptl);
6081         /*
6082          * make sure that the address range covered by this pmd is not
6083          * unmapped from other threads.
6084          */
6085         if (!pmd_huge(*pmd))
6086                 goto out;
6087         pte = huge_ptep_get((pte_t *)pmd);
6088         if (pte_present(pte)) {
6089                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6090                 /*
6091                  * try_grab_page() should always succeed here, because: a) we
6092                  * hold the pmd (ptl) lock, and b) we've just checked that the
6093                  * huge pmd (head) page is present in the page tables. The ptl
6094                  * prevents the head page and tail pages from being rearranged
6095                  * in any way. So this page must be available at this point,
6096                  * unless the page refcount overflowed:
6097                  */
6098                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6099                         page = NULL;
6100                         goto out;
6101                 }
6102         } else {
6103                 if (is_hugetlb_entry_migration(pte)) {
6104                         spin_unlock(ptl);
6105                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6106                         goto retry;
6107                 }
6108                 /*
6109                  * hwpoisoned entry is treated as no_page_table in
6110                  * follow_page_mask().
6111                  */
6112         }
6113 out:
6114         spin_unlock(ptl);
6115         return page;
6116 }
6117
6118 struct page * __weak
6119 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6120                 pud_t *pud, int flags)
6121 {
6122         if (flags & (FOLL_GET | FOLL_PIN))
6123                 return NULL;
6124
6125         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6126 }
6127
6128 struct page * __weak
6129 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6130 {
6131         if (flags & (FOLL_GET | FOLL_PIN))
6132                 return NULL;
6133
6134         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6135 }
6136
6137 bool isolate_huge_page(struct page *page, struct list_head *list)
6138 {
6139         bool ret = true;
6140
6141         spin_lock_irq(&hugetlb_lock);
6142         if (!PageHeadHuge(page) ||
6143             !HPageMigratable(page) ||
6144             !get_page_unless_zero(page)) {
6145                 ret = false;
6146                 goto unlock;
6147         }
6148         ClearHPageMigratable(page);
6149         list_move_tail(&page->lru, list);
6150 unlock:
6151         spin_unlock_irq(&hugetlb_lock);
6152         return ret;
6153 }
6154
6155 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6156 {
6157         int ret = 0;
6158
6159         *hugetlb = false;
6160         spin_lock_irq(&hugetlb_lock);
6161         if (PageHeadHuge(page)) {
6162                 *hugetlb = true;
6163                 if (HPageFreed(page) || HPageMigratable(page))
6164                         ret = get_page_unless_zero(page);
6165                 else
6166                         ret = -EBUSY;
6167         }
6168         spin_unlock_irq(&hugetlb_lock);
6169         return ret;
6170 }
6171
6172 void putback_active_hugepage(struct page *page)
6173 {
6174         spin_lock_irq(&hugetlb_lock);
6175         SetHPageMigratable(page);
6176         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6177         spin_unlock_irq(&hugetlb_lock);
6178         put_page(page);
6179 }
6180
6181 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6182 {
6183         struct hstate *h = page_hstate(oldpage);
6184
6185         hugetlb_cgroup_migrate(oldpage, newpage);
6186         set_page_owner_migrate_reason(newpage, reason);
6187
6188         /*
6189          * transfer temporary state of the new huge page. This is
6190          * reverse to other transitions because the newpage is going to
6191          * be final while the old one will be freed so it takes over
6192          * the temporary status.
6193          *
6194          * Also note that we have to transfer the per-node surplus state
6195          * here as well otherwise the global surplus count will not match
6196          * the per-node's.
6197          */
6198         if (HPageTemporary(newpage)) {
6199                 int old_nid = page_to_nid(oldpage);
6200                 int new_nid = page_to_nid(newpage);
6201
6202                 SetHPageTemporary(oldpage);
6203                 ClearHPageTemporary(newpage);
6204
6205                 /*
6206                  * There is no need to transfer the per-node surplus state
6207                  * when we do not cross the node.
6208                  */
6209                 if (new_nid == old_nid)
6210                         return;
6211                 spin_lock_irq(&hugetlb_lock);
6212                 if (h->surplus_huge_pages_node[old_nid]) {
6213                         h->surplus_huge_pages_node[old_nid]--;
6214                         h->surplus_huge_pages_node[new_nid]++;
6215                 }
6216                 spin_unlock_irq(&hugetlb_lock);
6217         }
6218 }
6219
6220 /*
6221  * This function will unconditionally remove all the shared pmd pgtable entries
6222  * within the specific vma for a hugetlbfs memory range.
6223  */
6224 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6225 {
6226         struct hstate *h = hstate_vma(vma);
6227         unsigned long sz = huge_page_size(h);
6228         struct mm_struct *mm = vma->vm_mm;
6229         struct mmu_notifier_range range;
6230         unsigned long address, start, end;
6231         spinlock_t *ptl;
6232         pte_t *ptep;
6233
6234         if (!(vma->vm_flags & VM_MAYSHARE))
6235                 return;
6236
6237         start = ALIGN(vma->vm_start, PUD_SIZE);
6238         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6239
6240         if (start >= end)
6241                 return;
6242
6243         /*
6244          * No need to call adjust_range_if_pmd_sharing_possible(), because
6245          * we have already done the PUD_SIZE alignment.
6246          */
6247         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6248                                 start, end);
6249         mmu_notifier_invalidate_range_start(&range);
6250         i_mmap_lock_write(vma->vm_file->f_mapping);
6251         for (address = start; address < end; address += PUD_SIZE) {
6252                 unsigned long tmp = address;
6253
6254                 ptep = huge_pte_offset(mm, address, sz);
6255                 if (!ptep)
6256                         continue;
6257                 ptl = huge_pte_lock(h, mm, ptep);
6258                 /* We don't want 'address' to be changed */
6259                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6260                 spin_unlock(ptl);
6261         }
6262         flush_hugetlb_tlb_range(vma, start, end);
6263         i_mmap_unlock_write(vma->vm_file->f_mapping);
6264         /*
6265          * No need to call mmu_notifier_invalidate_range(), see
6266          * Documentation/vm/mmu_notifier.rst.
6267          */
6268         mmu_notifier_invalidate_range_end(&range);
6269 }
6270
6271 #ifdef CONFIG_CMA
6272 static bool cma_reserve_called __initdata;
6273
6274 static int __init cmdline_parse_hugetlb_cma(char *p)
6275 {
6276         hugetlb_cma_size = memparse(p, &p);
6277         return 0;
6278 }
6279
6280 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6281
6282 void __init hugetlb_cma_reserve(int order)
6283 {
6284         unsigned long size, reserved, per_node;
6285         int nid;
6286
6287         cma_reserve_called = true;
6288
6289         if (!hugetlb_cma_size)
6290                 return;
6291
6292         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6293                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6294                         (PAGE_SIZE << order) / SZ_1M);
6295                 return;
6296         }
6297
6298         /*
6299          * If 3 GB area is requested on a machine with 4 numa nodes,
6300          * let's allocate 1 GB on first three nodes and ignore the last one.
6301          */
6302         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6303         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6304                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6305
6306         reserved = 0;
6307         for_each_node_state(nid, N_ONLINE) {
6308                 int res;
6309                 char name[CMA_MAX_NAME];
6310
6311                 size = min(per_node, hugetlb_cma_size - reserved);
6312                 size = round_up(size, PAGE_SIZE << order);
6313
6314                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6315                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6316                                                  0, false, name,
6317                                                  &hugetlb_cma[nid], nid);
6318                 if (res) {
6319                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6320                                 res, nid);
6321                         continue;
6322                 }
6323
6324                 reserved += size;
6325                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6326                         size / SZ_1M, nid);
6327
6328                 if (reserved >= hugetlb_cma_size)
6329                         break;
6330         }
6331 }
6332
6333 void __init hugetlb_cma_check(void)
6334 {
6335         if (!hugetlb_cma_size || cma_reserve_called)
6336                 return;
6337
6338         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6339 }
6340
6341 #endif /* CONFIG_CMA */