2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
27 #include <asm/pgtable.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 __initdata LIST_HEAD(huge_boot_pages);
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
76 spin_lock_init(&spool->lock);
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
106 spin_unlock(&spool->lock);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(file_inode(vma->vm_file));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg -= rg->to - rg->from;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
248 if (&rg->link == head)
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
262 chg += rg->to - rg->from;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
321 hstate = hstate_vma(vma);
323 return 1UL << huge_page_shift(hstate);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
376 vma->vm_private_data = (void *)value;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
449 if (vma->vm_flags & VM_NORESERVE) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
470 * Only the process that called mmap() has reserves for
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
481 int nid = page_to_nid(page);
482 list_move(&page->lru, &h->hugepage_freelists[nid]);
483 h->free_huge_pages++;
484 h->free_huge_pages_node[nid]++;
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 if (!is_migrate_isolate_page(page))
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
498 if (&h->hugepage_freelists[nid] == &page->lru)
500 list_move(&page->lru, &h->hugepage_activelist);
501 set_page_refcounted(page);
502 h->free_huge_pages--;
503 h->free_huge_pages_node[nid]--;
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
510 if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 return GFP_HIGHUSER_MOVABLE;
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517 struct vm_area_struct *vma,
518 unsigned long address, int avoid_reserve,
521 struct page *page = NULL;
522 struct mempolicy *mpol;
523 nodemask_t *nodemask;
524 struct zonelist *zonelist;
527 unsigned int cpuset_mems_cookie;
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
534 if (!vma_has_reserves(vma, chg) &&
535 h->free_huge_pages - h->resv_huge_pages == 0)
538 /* If reserves cannot be used, ensure enough pages are in the pool */
539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
543 cpuset_mems_cookie = get_mems_allowed();
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask(h), &mpol, &nodemask);
547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 MAX_NR_ZONES - 1, nodemask) {
549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 page = dequeue_huge_page_node(h, zone_to_nid(zone));
554 if (!vma_has_reserves(vma, chg))
557 SetPagePrivate(page);
558 h->resv_huge_pages--;
565 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 static void update_and_free_page(struct hstate *h, struct page *page)
577 VM_BUG_ON(h->order >= MAX_ORDER);
580 h->nr_huge_pages_node[page_to_nid(page)]--;
581 for (i = 0; i < pages_per_huge_page(h); i++) {
582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 1 << PG_referenced | 1 << PG_dirty |
584 1 << PG_active | 1 << PG_reserved |
585 1 << PG_private | 1 << PG_writeback);
587 VM_BUG_ON(hugetlb_cgroup_from_page(page));
588 set_compound_page_dtor(page, NULL);
589 set_page_refcounted(page);
590 arch_release_hugepage(page);
591 __free_pages(page, huge_page_order(h));
594 struct hstate *size_to_hstate(unsigned long size)
599 if (huge_page_size(h) == size)
605 static void free_huge_page(struct page *page)
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
611 struct hstate *h = page_hstate(page);
612 int nid = page_to_nid(page);
613 struct hugepage_subpool *spool =
614 (struct hugepage_subpool *)page_private(page);
615 bool restore_reserve;
617 set_page_private(page, 0);
618 page->mapping = NULL;
619 BUG_ON(page_count(page));
620 BUG_ON(page_mapcount(page));
621 restore_reserve = PagePrivate(page);
622 ClearPagePrivate(page);
624 spin_lock(&hugetlb_lock);
625 hugetlb_cgroup_uncharge_page(hstate_index(h),
626 pages_per_huge_page(h), page);
628 h->resv_huge_pages++;
630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 /* remove the page from active list */
632 list_del(&page->lru);
633 update_and_free_page(h, page);
634 h->surplus_huge_pages--;
635 h->surplus_huge_pages_node[nid]--;
637 arch_clear_hugepage_flags(page);
638 enqueue_huge_page(h, page);
640 spin_unlock(&hugetlb_lock);
641 hugepage_subpool_put_pages(spool, 1);
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
646 INIT_LIST_HEAD(&page->lru);
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
649 set_hugetlb_cgroup(page, NULL);
651 h->nr_huge_pages_node[nid]++;
652 spin_unlock(&hugetlb_lock);
653 put_page(page); /* free it into the hugepage allocator */
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 int nr_pages = 1 << order;
660 struct page *p = page + 1;
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page, order);
665 __ClearPageReserved(page);
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
680 __ClearPageReserved(p);
681 set_page_count(p, 0);
682 p->first_page = page;
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
691 int PageHuge(struct page *page)
693 compound_page_dtor *dtor;
695 if (!PageCompound(page))
698 page = compound_head(page);
699 dtor = get_compound_page_dtor(page);
701 return dtor == free_huge_page;
703 EXPORT_SYMBOL_GPL(PageHuge);
705 pgoff_t __basepage_index(struct page *page)
707 struct page *page_head = compound_head(page);
708 pgoff_t index = page_index(page_head);
709 unsigned long compound_idx;
711 if (!PageHuge(page_head))
712 return page_index(page);
714 if (compound_order(page_head) >= MAX_ORDER)
715 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
717 compound_idx = page - page_head;
719 return (index << compound_order(page_head)) + compound_idx;
722 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
726 if (h->order >= MAX_ORDER)
729 page = alloc_pages_exact_node(nid,
730 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
731 __GFP_REPEAT|__GFP_NOWARN,
734 if (arch_prepare_hugepage(page)) {
735 __free_pages(page, huge_page_order(h));
738 prep_new_huge_page(h, page, nid);
745 * common helper functions for hstate_next_node_to_{alloc|free}.
746 * We may have allocated or freed a huge page based on a different
747 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
748 * be outside of *nodes_allowed. Ensure that we use an allowed
749 * node for alloc or free.
751 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
753 nid = next_node(nid, *nodes_allowed);
754 if (nid == MAX_NUMNODES)
755 nid = first_node(*nodes_allowed);
756 VM_BUG_ON(nid >= MAX_NUMNODES);
761 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
763 if (!node_isset(nid, *nodes_allowed))
764 nid = next_node_allowed(nid, nodes_allowed);
769 * returns the previously saved node ["this node"] from which to
770 * allocate a persistent huge page for the pool and advance the
771 * next node from which to allocate, handling wrap at end of node
774 static int hstate_next_node_to_alloc(struct hstate *h,
775 nodemask_t *nodes_allowed)
779 VM_BUG_ON(!nodes_allowed);
781 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
782 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
788 * helper for free_pool_huge_page() - return the previously saved
789 * node ["this node"] from which to free a huge page. Advance the
790 * next node id whether or not we find a free huge page to free so
791 * that the next attempt to free addresses the next node.
793 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
797 VM_BUG_ON(!nodes_allowed);
799 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
800 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
805 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
806 for (nr_nodes = nodes_weight(*mask); \
808 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
811 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
812 for (nr_nodes = nodes_weight(*mask); \
814 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
817 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
823 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
824 page = alloc_fresh_huge_page_node(h, node);
832 count_vm_event(HTLB_BUDDY_PGALLOC);
834 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
840 * Free huge page from pool from next node to free.
841 * Attempt to keep persistent huge pages more or less
842 * balanced over allowed nodes.
843 * Called with hugetlb_lock locked.
845 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
853 * If we're returning unused surplus pages, only examine
854 * nodes with surplus pages.
856 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
857 !list_empty(&h->hugepage_freelists[node])) {
859 list_entry(h->hugepage_freelists[node].next,
861 list_del(&page->lru);
862 h->free_huge_pages--;
863 h->free_huge_pages_node[node]--;
865 h->surplus_huge_pages--;
866 h->surplus_huge_pages_node[node]--;
868 update_and_free_page(h, page);
878 * Dissolve a given free hugepage into free buddy pages. This function does
879 * nothing for in-use (including surplus) hugepages.
881 static void dissolve_free_huge_page(struct page *page)
883 spin_lock(&hugetlb_lock);
884 if (PageHuge(page) && !page_count(page)) {
885 struct hstate *h = page_hstate(page);
886 int nid = page_to_nid(page);
887 list_del(&page->lru);
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 update_and_free_page(h, page);
892 spin_unlock(&hugetlb_lock);
896 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
897 * make specified memory blocks removable from the system.
898 * Note that start_pfn should aligned with (minimum) hugepage size.
900 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
902 unsigned int order = 8 * sizeof(void *);
906 /* Set scan step to minimum hugepage size */
908 if (order > huge_page_order(h))
909 order = huge_page_order(h);
910 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
911 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
912 dissolve_free_huge_page(pfn_to_page(pfn));
915 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
920 if (h->order >= MAX_ORDER)
924 * Assume we will successfully allocate the surplus page to
925 * prevent racing processes from causing the surplus to exceed
928 * This however introduces a different race, where a process B
929 * tries to grow the static hugepage pool while alloc_pages() is
930 * called by process A. B will only examine the per-node
931 * counters in determining if surplus huge pages can be
932 * converted to normal huge pages in adjust_pool_surplus(). A
933 * won't be able to increment the per-node counter, until the
934 * lock is dropped by B, but B doesn't drop hugetlb_lock until
935 * no more huge pages can be converted from surplus to normal
936 * state (and doesn't try to convert again). Thus, we have a
937 * case where a surplus huge page exists, the pool is grown, and
938 * the surplus huge page still exists after, even though it
939 * should just have been converted to a normal huge page. This
940 * does not leak memory, though, as the hugepage will be freed
941 * once it is out of use. It also does not allow the counters to
942 * go out of whack in adjust_pool_surplus() as we don't modify
943 * the node values until we've gotten the hugepage and only the
944 * per-node value is checked there.
946 spin_lock(&hugetlb_lock);
947 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
948 spin_unlock(&hugetlb_lock);
952 h->surplus_huge_pages++;
954 spin_unlock(&hugetlb_lock);
956 if (nid == NUMA_NO_NODE)
957 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
958 __GFP_REPEAT|__GFP_NOWARN,
961 page = alloc_pages_exact_node(nid,
962 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
963 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
965 if (page && arch_prepare_hugepage(page)) {
966 __free_pages(page, huge_page_order(h));
970 spin_lock(&hugetlb_lock);
972 INIT_LIST_HEAD(&page->lru);
973 r_nid = page_to_nid(page);
974 set_compound_page_dtor(page, free_huge_page);
975 set_hugetlb_cgroup(page, NULL);
977 * We incremented the global counters already
979 h->nr_huge_pages_node[r_nid]++;
980 h->surplus_huge_pages_node[r_nid]++;
981 __count_vm_event(HTLB_BUDDY_PGALLOC);
984 h->surplus_huge_pages--;
985 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
987 spin_unlock(&hugetlb_lock);
993 * This allocation function is useful in the context where vma is irrelevant.
994 * E.g. soft-offlining uses this function because it only cares physical
995 * address of error page.
997 struct page *alloc_huge_page_node(struct hstate *h, int nid)
999 struct page *page = NULL;
1001 spin_lock(&hugetlb_lock);
1002 if (h->free_huge_pages - h->resv_huge_pages > 0)
1003 page = dequeue_huge_page_node(h, nid);
1004 spin_unlock(&hugetlb_lock);
1007 page = alloc_buddy_huge_page(h, nid);
1013 * Increase the hugetlb pool such that it can accommodate a reservation
1016 static int gather_surplus_pages(struct hstate *h, int delta)
1018 struct list_head surplus_list;
1019 struct page *page, *tmp;
1021 int needed, allocated;
1022 bool alloc_ok = true;
1024 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1026 h->resv_huge_pages += delta;
1031 INIT_LIST_HEAD(&surplus_list);
1035 spin_unlock(&hugetlb_lock);
1036 for (i = 0; i < needed; i++) {
1037 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1042 list_add(&page->lru, &surplus_list);
1047 * After retaking hugetlb_lock, we need to recalculate 'needed'
1048 * because either resv_huge_pages or free_huge_pages may have changed.
1050 spin_lock(&hugetlb_lock);
1051 needed = (h->resv_huge_pages + delta) -
1052 (h->free_huge_pages + allocated);
1057 * We were not able to allocate enough pages to
1058 * satisfy the entire reservation so we free what
1059 * we've allocated so far.
1064 * The surplus_list now contains _at_least_ the number of extra pages
1065 * needed to accommodate the reservation. Add the appropriate number
1066 * of pages to the hugetlb pool and free the extras back to the buddy
1067 * allocator. Commit the entire reservation here to prevent another
1068 * process from stealing the pages as they are added to the pool but
1069 * before they are reserved.
1071 needed += allocated;
1072 h->resv_huge_pages += delta;
1075 /* Free the needed pages to the hugetlb pool */
1076 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1080 * This page is now managed by the hugetlb allocator and has
1081 * no users -- drop the buddy allocator's reference.
1083 put_page_testzero(page);
1084 VM_BUG_ON(page_count(page));
1085 enqueue_huge_page(h, page);
1088 spin_unlock(&hugetlb_lock);
1090 /* Free unnecessary surplus pages to the buddy allocator */
1091 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1093 spin_lock(&hugetlb_lock);
1099 * When releasing a hugetlb pool reservation, any surplus pages that were
1100 * allocated to satisfy the reservation must be explicitly freed if they were
1102 * Called with hugetlb_lock held.
1104 static void return_unused_surplus_pages(struct hstate *h,
1105 unsigned long unused_resv_pages)
1107 unsigned long nr_pages;
1109 /* Uncommit the reservation */
1110 h->resv_huge_pages -= unused_resv_pages;
1112 /* Cannot return gigantic pages currently */
1113 if (h->order >= MAX_ORDER)
1116 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1119 * We want to release as many surplus pages as possible, spread
1120 * evenly across all nodes with memory. Iterate across these nodes
1121 * until we can no longer free unreserved surplus pages. This occurs
1122 * when the nodes with surplus pages have no free pages.
1123 * free_pool_huge_page() will balance the the freed pages across the
1124 * on-line nodes with memory and will handle the hstate accounting.
1126 while (nr_pages--) {
1127 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1133 * Determine if the huge page at addr within the vma has an associated
1134 * reservation. Where it does not we will need to logically increase
1135 * reservation and actually increase subpool usage before an allocation
1136 * can occur. Where any new reservation would be required the
1137 * reservation change is prepared, but not committed. Once the page
1138 * has been allocated from the subpool and instantiated the change should
1139 * be committed via vma_commit_reservation. No action is required on
1142 static long vma_needs_reservation(struct hstate *h,
1143 struct vm_area_struct *vma, unsigned long addr)
1145 struct address_space *mapping = vma->vm_file->f_mapping;
1146 struct inode *inode = mapping->host;
1148 if (vma->vm_flags & VM_MAYSHARE) {
1149 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1150 return region_chg(&inode->i_mapping->private_list,
1153 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1158 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1159 struct resv_map *resv = vma_resv_map(vma);
1161 err = region_chg(&resv->regions, idx, idx + 1);
1167 static void vma_commit_reservation(struct hstate *h,
1168 struct vm_area_struct *vma, unsigned long addr)
1170 struct address_space *mapping = vma->vm_file->f_mapping;
1171 struct inode *inode = mapping->host;
1173 if (vma->vm_flags & VM_MAYSHARE) {
1174 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1175 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1177 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1178 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1179 struct resv_map *resv = vma_resv_map(vma);
1181 /* Mark this page used in the map. */
1182 region_add(&resv->regions, idx, idx + 1);
1186 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1187 unsigned long addr, int avoid_reserve)
1189 struct hugepage_subpool *spool = subpool_vma(vma);
1190 struct hstate *h = hstate_vma(vma);
1194 struct hugetlb_cgroup *h_cg;
1196 idx = hstate_index(h);
1198 * Processes that did not create the mapping will have no
1199 * reserves and will not have accounted against subpool
1200 * limit. Check that the subpool limit can be made before
1201 * satisfying the allocation MAP_NORESERVE mappings may also
1202 * need pages and subpool limit allocated allocated if no reserve
1205 chg = vma_needs_reservation(h, vma, addr);
1207 return ERR_PTR(-ENOMEM);
1208 if (chg || avoid_reserve)
1209 if (hugepage_subpool_get_pages(spool, 1))
1210 return ERR_PTR(-ENOSPC);
1212 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1214 if (chg || avoid_reserve)
1215 hugepage_subpool_put_pages(spool, 1);
1216 return ERR_PTR(-ENOSPC);
1218 spin_lock(&hugetlb_lock);
1219 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1221 spin_unlock(&hugetlb_lock);
1222 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1224 hugetlb_cgroup_uncharge_cgroup(idx,
1225 pages_per_huge_page(h),
1227 if (chg || avoid_reserve)
1228 hugepage_subpool_put_pages(spool, 1);
1229 return ERR_PTR(-ENOSPC);
1231 spin_lock(&hugetlb_lock);
1232 list_move(&page->lru, &h->hugepage_activelist);
1235 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1236 spin_unlock(&hugetlb_lock);
1238 set_page_private(page, (unsigned long)spool);
1240 vma_commit_reservation(h, vma, addr);
1245 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1246 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1247 * where no ERR_VALUE is expected to be returned.
1249 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1250 unsigned long addr, int avoid_reserve)
1252 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1258 int __weak alloc_bootmem_huge_page(struct hstate *h)
1260 struct huge_bootmem_page *m;
1263 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1266 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1267 huge_page_size(h), huge_page_size(h), 0);
1271 * Use the beginning of the huge page to store the
1272 * huge_bootmem_page struct (until gather_bootmem
1273 * puts them into the mem_map).
1282 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1283 /* Put them into a private list first because mem_map is not up yet */
1284 list_add(&m->list, &huge_boot_pages);
1289 static void prep_compound_huge_page(struct page *page, int order)
1291 if (unlikely(order > (MAX_ORDER - 1)))
1292 prep_compound_gigantic_page(page, order);
1294 prep_compound_page(page, order);
1297 /* Put bootmem huge pages into the standard lists after mem_map is up */
1298 static void __init gather_bootmem_prealloc(void)
1300 struct huge_bootmem_page *m;
1302 list_for_each_entry(m, &huge_boot_pages, list) {
1303 struct hstate *h = m->hstate;
1306 #ifdef CONFIG_HIGHMEM
1307 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1308 free_bootmem_late((unsigned long)m,
1309 sizeof(struct huge_bootmem_page));
1311 page = virt_to_page(m);
1313 WARN_ON(page_count(page) != 1);
1314 prep_compound_huge_page(page, h->order);
1315 WARN_ON(PageReserved(page));
1316 prep_new_huge_page(h, page, page_to_nid(page));
1318 * If we had gigantic hugepages allocated at boot time, we need
1319 * to restore the 'stolen' pages to totalram_pages in order to
1320 * fix confusing memory reports from free(1) and another
1321 * side-effects, like CommitLimit going negative.
1323 if (h->order > (MAX_ORDER - 1))
1324 adjust_managed_page_count(page, 1 << h->order);
1328 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1332 for (i = 0; i < h->max_huge_pages; ++i) {
1333 if (h->order >= MAX_ORDER) {
1334 if (!alloc_bootmem_huge_page(h))
1336 } else if (!alloc_fresh_huge_page(h,
1337 &node_states[N_MEMORY]))
1340 h->max_huge_pages = i;
1343 static void __init hugetlb_init_hstates(void)
1347 for_each_hstate(h) {
1348 /* oversize hugepages were init'ed in early boot */
1349 if (h->order < MAX_ORDER)
1350 hugetlb_hstate_alloc_pages(h);
1354 static char * __init memfmt(char *buf, unsigned long n)
1356 if (n >= (1UL << 30))
1357 sprintf(buf, "%lu GB", n >> 30);
1358 else if (n >= (1UL << 20))
1359 sprintf(buf, "%lu MB", n >> 20);
1361 sprintf(buf, "%lu KB", n >> 10);
1365 static void __init report_hugepages(void)
1369 for_each_hstate(h) {
1371 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1372 memfmt(buf, huge_page_size(h)),
1373 h->free_huge_pages);
1377 #ifdef CONFIG_HIGHMEM
1378 static void try_to_free_low(struct hstate *h, unsigned long count,
1379 nodemask_t *nodes_allowed)
1383 if (h->order >= MAX_ORDER)
1386 for_each_node_mask(i, *nodes_allowed) {
1387 struct page *page, *next;
1388 struct list_head *freel = &h->hugepage_freelists[i];
1389 list_for_each_entry_safe(page, next, freel, lru) {
1390 if (count >= h->nr_huge_pages)
1392 if (PageHighMem(page))
1394 list_del(&page->lru);
1395 update_and_free_page(h, page);
1396 h->free_huge_pages--;
1397 h->free_huge_pages_node[page_to_nid(page)]--;
1402 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1403 nodemask_t *nodes_allowed)
1409 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1410 * balanced by operating on them in a round-robin fashion.
1411 * Returns 1 if an adjustment was made.
1413 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1418 VM_BUG_ON(delta != -1 && delta != 1);
1421 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1422 if (h->surplus_huge_pages_node[node])
1426 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1427 if (h->surplus_huge_pages_node[node] <
1428 h->nr_huge_pages_node[node])
1435 h->surplus_huge_pages += delta;
1436 h->surplus_huge_pages_node[node] += delta;
1440 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1441 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1442 nodemask_t *nodes_allowed)
1444 unsigned long min_count, ret;
1446 if (h->order >= MAX_ORDER)
1447 return h->max_huge_pages;
1450 * Increase the pool size
1451 * First take pages out of surplus state. Then make up the
1452 * remaining difference by allocating fresh huge pages.
1454 * We might race with alloc_buddy_huge_page() here and be unable
1455 * to convert a surplus huge page to a normal huge page. That is
1456 * not critical, though, it just means the overall size of the
1457 * pool might be one hugepage larger than it needs to be, but
1458 * within all the constraints specified by the sysctls.
1460 spin_lock(&hugetlb_lock);
1461 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1462 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1466 while (count > persistent_huge_pages(h)) {
1468 * If this allocation races such that we no longer need the
1469 * page, free_huge_page will handle it by freeing the page
1470 * and reducing the surplus.
1472 spin_unlock(&hugetlb_lock);
1473 ret = alloc_fresh_huge_page(h, nodes_allowed);
1474 spin_lock(&hugetlb_lock);
1478 /* Bail for signals. Probably ctrl-c from user */
1479 if (signal_pending(current))
1484 * Decrease the pool size
1485 * First return free pages to the buddy allocator (being careful
1486 * to keep enough around to satisfy reservations). Then place
1487 * pages into surplus state as needed so the pool will shrink
1488 * to the desired size as pages become free.
1490 * By placing pages into the surplus state independent of the
1491 * overcommit value, we are allowing the surplus pool size to
1492 * exceed overcommit. There are few sane options here. Since
1493 * alloc_buddy_huge_page() is checking the global counter,
1494 * though, we'll note that we're not allowed to exceed surplus
1495 * and won't grow the pool anywhere else. Not until one of the
1496 * sysctls are changed, or the surplus pages go out of use.
1498 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1499 min_count = max(count, min_count);
1500 try_to_free_low(h, min_count, nodes_allowed);
1501 while (min_count < persistent_huge_pages(h)) {
1502 if (!free_pool_huge_page(h, nodes_allowed, 0))
1505 while (count < persistent_huge_pages(h)) {
1506 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1510 ret = persistent_huge_pages(h);
1511 spin_unlock(&hugetlb_lock);
1515 #define HSTATE_ATTR_RO(_name) \
1516 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1518 #define HSTATE_ATTR(_name) \
1519 static struct kobj_attribute _name##_attr = \
1520 __ATTR(_name, 0644, _name##_show, _name##_store)
1522 static struct kobject *hugepages_kobj;
1523 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1525 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1527 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1531 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1532 if (hstate_kobjs[i] == kobj) {
1534 *nidp = NUMA_NO_NODE;
1538 return kobj_to_node_hstate(kobj, nidp);
1541 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1542 struct kobj_attribute *attr, char *buf)
1545 unsigned long nr_huge_pages;
1548 h = kobj_to_hstate(kobj, &nid);
1549 if (nid == NUMA_NO_NODE)
1550 nr_huge_pages = h->nr_huge_pages;
1552 nr_huge_pages = h->nr_huge_pages_node[nid];
1554 return sprintf(buf, "%lu\n", nr_huge_pages);
1557 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1558 struct kobject *kobj, struct kobj_attribute *attr,
1559 const char *buf, size_t len)
1563 unsigned long count;
1565 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1567 err = kstrtoul(buf, 10, &count);
1571 h = kobj_to_hstate(kobj, &nid);
1572 if (h->order >= MAX_ORDER) {
1577 if (nid == NUMA_NO_NODE) {
1579 * global hstate attribute
1581 if (!(obey_mempolicy &&
1582 init_nodemask_of_mempolicy(nodes_allowed))) {
1583 NODEMASK_FREE(nodes_allowed);
1584 nodes_allowed = &node_states[N_MEMORY];
1586 } else if (nodes_allowed) {
1588 * per node hstate attribute: adjust count to global,
1589 * but restrict alloc/free to the specified node.
1591 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1592 init_nodemask_of_node(nodes_allowed, nid);
1594 nodes_allowed = &node_states[N_MEMORY];
1596 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1598 if (nodes_allowed != &node_states[N_MEMORY])
1599 NODEMASK_FREE(nodes_allowed);
1603 NODEMASK_FREE(nodes_allowed);
1607 static ssize_t nr_hugepages_show(struct kobject *kobj,
1608 struct kobj_attribute *attr, char *buf)
1610 return nr_hugepages_show_common(kobj, attr, buf);
1613 static ssize_t nr_hugepages_store(struct kobject *kobj,
1614 struct kobj_attribute *attr, const char *buf, size_t len)
1616 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1618 HSTATE_ATTR(nr_hugepages);
1623 * hstate attribute for optionally mempolicy-based constraint on persistent
1624 * huge page alloc/free.
1626 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1627 struct kobj_attribute *attr, char *buf)
1629 return nr_hugepages_show_common(kobj, attr, buf);
1632 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1633 struct kobj_attribute *attr, const char *buf, size_t len)
1635 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1637 HSTATE_ATTR(nr_hugepages_mempolicy);
1641 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1644 struct hstate *h = kobj_to_hstate(kobj, NULL);
1645 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1648 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1649 struct kobj_attribute *attr, const char *buf, size_t count)
1652 unsigned long input;
1653 struct hstate *h = kobj_to_hstate(kobj, NULL);
1655 if (h->order >= MAX_ORDER)
1658 err = kstrtoul(buf, 10, &input);
1662 spin_lock(&hugetlb_lock);
1663 h->nr_overcommit_huge_pages = input;
1664 spin_unlock(&hugetlb_lock);
1668 HSTATE_ATTR(nr_overcommit_hugepages);
1670 static ssize_t free_hugepages_show(struct kobject *kobj,
1671 struct kobj_attribute *attr, char *buf)
1674 unsigned long free_huge_pages;
1677 h = kobj_to_hstate(kobj, &nid);
1678 if (nid == NUMA_NO_NODE)
1679 free_huge_pages = h->free_huge_pages;
1681 free_huge_pages = h->free_huge_pages_node[nid];
1683 return sprintf(buf, "%lu\n", free_huge_pages);
1685 HSTATE_ATTR_RO(free_hugepages);
1687 static ssize_t resv_hugepages_show(struct kobject *kobj,
1688 struct kobj_attribute *attr, char *buf)
1690 struct hstate *h = kobj_to_hstate(kobj, NULL);
1691 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1693 HSTATE_ATTR_RO(resv_hugepages);
1695 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1696 struct kobj_attribute *attr, char *buf)
1699 unsigned long surplus_huge_pages;
1702 h = kobj_to_hstate(kobj, &nid);
1703 if (nid == NUMA_NO_NODE)
1704 surplus_huge_pages = h->surplus_huge_pages;
1706 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1708 return sprintf(buf, "%lu\n", surplus_huge_pages);
1710 HSTATE_ATTR_RO(surplus_hugepages);
1712 static struct attribute *hstate_attrs[] = {
1713 &nr_hugepages_attr.attr,
1714 &nr_overcommit_hugepages_attr.attr,
1715 &free_hugepages_attr.attr,
1716 &resv_hugepages_attr.attr,
1717 &surplus_hugepages_attr.attr,
1719 &nr_hugepages_mempolicy_attr.attr,
1724 static struct attribute_group hstate_attr_group = {
1725 .attrs = hstate_attrs,
1728 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1729 struct kobject **hstate_kobjs,
1730 struct attribute_group *hstate_attr_group)
1733 int hi = hstate_index(h);
1735 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1736 if (!hstate_kobjs[hi])
1739 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1741 kobject_put(hstate_kobjs[hi]);
1746 static void __init hugetlb_sysfs_init(void)
1751 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1752 if (!hugepages_kobj)
1755 for_each_hstate(h) {
1756 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1757 hstate_kobjs, &hstate_attr_group);
1759 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1766 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1767 * with node devices in node_devices[] using a parallel array. The array
1768 * index of a node device or _hstate == node id.
1769 * This is here to avoid any static dependency of the node device driver, in
1770 * the base kernel, on the hugetlb module.
1772 struct node_hstate {
1773 struct kobject *hugepages_kobj;
1774 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1776 struct node_hstate node_hstates[MAX_NUMNODES];
1779 * A subset of global hstate attributes for node devices
1781 static struct attribute *per_node_hstate_attrs[] = {
1782 &nr_hugepages_attr.attr,
1783 &free_hugepages_attr.attr,
1784 &surplus_hugepages_attr.attr,
1788 static struct attribute_group per_node_hstate_attr_group = {
1789 .attrs = per_node_hstate_attrs,
1793 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1794 * Returns node id via non-NULL nidp.
1796 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1800 for (nid = 0; nid < nr_node_ids; nid++) {
1801 struct node_hstate *nhs = &node_hstates[nid];
1803 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1804 if (nhs->hstate_kobjs[i] == kobj) {
1816 * Unregister hstate attributes from a single node device.
1817 * No-op if no hstate attributes attached.
1819 static void hugetlb_unregister_node(struct node *node)
1822 struct node_hstate *nhs = &node_hstates[node->dev.id];
1824 if (!nhs->hugepages_kobj)
1825 return; /* no hstate attributes */
1827 for_each_hstate(h) {
1828 int idx = hstate_index(h);
1829 if (nhs->hstate_kobjs[idx]) {
1830 kobject_put(nhs->hstate_kobjs[idx]);
1831 nhs->hstate_kobjs[idx] = NULL;
1835 kobject_put(nhs->hugepages_kobj);
1836 nhs->hugepages_kobj = NULL;
1840 * hugetlb module exit: unregister hstate attributes from node devices
1843 static void hugetlb_unregister_all_nodes(void)
1848 * disable node device registrations.
1850 register_hugetlbfs_with_node(NULL, NULL);
1853 * remove hstate attributes from any nodes that have them.
1855 for (nid = 0; nid < nr_node_ids; nid++)
1856 hugetlb_unregister_node(node_devices[nid]);
1860 * Register hstate attributes for a single node device.
1861 * No-op if attributes already registered.
1863 static void hugetlb_register_node(struct node *node)
1866 struct node_hstate *nhs = &node_hstates[node->dev.id];
1869 if (nhs->hugepages_kobj)
1870 return; /* already allocated */
1872 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1874 if (!nhs->hugepages_kobj)
1877 for_each_hstate(h) {
1878 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1880 &per_node_hstate_attr_group);
1882 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1883 h->name, node->dev.id);
1884 hugetlb_unregister_node(node);
1891 * hugetlb init time: register hstate attributes for all registered node
1892 * devices of nodes that have memory. All on-line nodes should have
1893 * registered their associated device by this time.
1895 static void hugetlb_register_all_nodes(void)
1899 for_each_node_state(nid, N_MEMORY) {
1900 struct node *node = node_devices[nid];
1901 if (node->dev.id == nid)
1902 hugetlb_register_node(node);
1906 * Let the node device driver know we're here so it can
1907 * [un]register hstate attributes on node hotplug.
1909 register_hugetlbfs_with_node(hugetlb_register_node,
1910 hugetlb_unregister_node);
1912 #else /* !CONFIG_NUMA */
1914 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1922 static void hugetlb_unregister_all_nodes(void) { }
1924 static void hugetlb_register_all_nodes(void) { }
1928 static void __exit hugetlb_exit(void)
1932 hugetlb_unregister_all_nodes();
1934 for_each_hstate(h) {
1935 kobject_put(hstate_kobjs[hstate_index(h)]);
1938 kobject_put(hugepages_kobj);
1940 module_exit(hugetlb_exit);
1942 static int __init hugetlb_init(void)
1944 /* Some platform decide whether they support huge pages at boot
1945 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1946 * there is no such support
1948 if (HPAGE_SHIFT == 0)
1951 if (!size_to_hstate(default_hstate_size)) {
1952 default_hstate_size = HPAGE_SIZE;
1953 if (!size_to_hstate(default_hstate_size))
1954 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1956 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1957 if (default_hstate_max_huge_pages)
1958 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1960 hugetlb_init_hstates();
1961 gather_bootmem_prealloc();
1964 hugetlb_sysfs_init();
1965 hugetlb_register_all_nodes();
1966 hugetlb_cgroup_file_init();
1970 module_init(hugetlb_init);
1972 /* Should be called on processing a hugepagesz=... option */
1973 void __init hugetlb_add_hstate(unsigned order)
1978 if (size_to_hstate(PAGE_SIZE << order)) {
1979 pr_warning("hugepagesz= specified twice, ignoring\n");
1982 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1984 h = &hstates[hugetlb_max_hstate++];
1986 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1987 h->nr_huge_pages = 0;
1988 h->free_huge_pages = 0;
1989 for (i = 0; i < MAX_NUMNODES; ++i)
1990 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1991 INIT_LIST_HEAD(&h->hugepage_activelist);
1992 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1993 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1994 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1995 huge_page_size(h)/1024);
2000 static int __init hugetlb_nrpages_setup(char *s)
2003 static unsigned long *last_mhp;
2006 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2007 * so this hugepages= parameter goes to the "default hstate".
2009 if (!hugetlb_max_hstate)
2010 mhp = &default_hstate_max_huge_pages;
2012 mhp = &parsed_hstate->max_huge_pages;
2014 if (mhp == last_mhp) {
2015 pr_warning("hugepages= specified twice without "
2016 "interleaving hugepagesz=, ignoring\n");
2020 if (sscanf(s, "%lu", mhp) <= 0)
2024 * Global state is always initialized later in hugetlb_init.
2025 * But we need to allocate >= MAX_ORDER hstates here early to still
2026 * use the bootmem allocator.
2028 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2029 hugetlb_hstate_alloc_pages(parsed_hstate);
2035 __setup("hugepages=", hugetlb_nrpages_setup);
2037 static int __init hugetlb_default_setup(char *s)
2039 default_hstate_size = memparse(s, &s);
2042 __setup("default_hugepagesz=", hugetlb_default_setup);
2044 static unsigned int cpuset_mems_nr(unsigned int *array)
2047 unsigned int nr = 0;
2049 for_each_node_mask(node, cpuset_current_mems_allowed)
2055 #ifdef CONFIG_SYSCTL
2056 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2057 struct ctl_table *table, int write,
2058 void __user *buffer, size_t *length, loff_t *ppos)
2060 struct hstate *h = &default_hstate;
2064 tmp = h->max_huge_pages;
2066 if (write && h->order >= MAX_ORDER)
2070 table->maxlen = sizeof(unsigned long);
2071 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2076 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2077 GFP_KERNEL | __GFP_NORETRY);
2078 if (!(obey_mempolicy &&
2079 init_nodemask_of_mempolicy(nodes_allowed))) {
2080 NODEMASK_FREE(nodes_allowed);
2081 nodes_allowed = &node_states[N_MEMORY];
2083 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2085 if (nodes_allowed != &node_states[N_MEMORY])
2086 NODEMASK_FREE(nodes_allowed);
2092 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2093 void __user *buffer, size_t *length, loff_t *ppos)
2096 return hugetlb_sysctl_handler_common(false, table, write,
2097 buffer, length, ppos);
2101 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2102 void __user *buffer, size_t *length, loff_t *ppos)
2104 return hugetlb_sysctl_handler_common(true, table, write,
2105 buffer, length, ppos);
2107 #endif /* CONFIG_NUMA */
2109 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2110 void __user *buffer,
2111 size_t *length, loff_t *ppos)
2113 struct hstate *h = &default_hstate;
2117 tmp = h->nr_overcommit_huge_pages;
2119 if (write && h->order >= MAX_ORDER)
2123 table->maxlen = sizeof(unsigned long);
2124 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2129 spin_lock(&hugetlb_lock);
2130 h->nr_overcommit_huge_pages = tmp;
2131 spin_unlock(&hugetlb_lock);
2137 #endif /* CONFIG_SYSCTL */
2139 void hugetlb_report_meminfo(struct seq_file *m)
2141 struct hstate *h = &default_hstate;
2143 "HugePages_Total: %5lu\n"
2144 "HugePages_Free: %5lu\n"
2145 "HugePages_Rsvd: %5lu\n"
2146 "HugePages_Surp: %5lu\n"
2147 "Hugepagesize: %8lu kB\n",
2151 h->surplus_huge_pages,
2152 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2155 int hugetlb_report_node_meminfo(int nid, char *buf)
2157 struct hstate *h = &default_hstate;
2159 "Node %d HugePages_Total: %5u\n"
2160 "Node %d HugePages_Free: %5u\n"
2161 "Node %d HugePages_Surp: %5u\n",
2162 nid, h->nr_huge_pages_node[nid],
2163 nid, h->free_huge_pages_node[nid],
2164 nid, h->surplus_huge_pages_node[nid]);
2167 void hugetlb_show_meminfo(void)
2172 for_each_node_state(nid, N_MEMORY)
2174 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2176 h->nr_huge_pages_node[nid],
2177 h->free_huge_pages_node[nid],
2178 h->surplus_huge_pages_node[nid],
2179 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2182 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2183 unsigned long hugetlb_total_pages(void)
2186 unsigned long nr_total_pages = 0;
2189 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2190 return nr_total_pages;
2193 static int hugetlb_acct_memory(struct hstate *h, long delta)
2197 spin_lock(&hugetlb_lock);
2199 * When cpuset is configured, it breaks the strict hugetlb page
2200 * reservation as the accounting is done on a global variable. Such
2201 * reservation is completely rubbish in the presence of cpuset because
2202 * the reservation is not checked against page availability for the
2203 * current cpuset. Application can still potentially OOM'ed by kernel
2204 * with lack of free htlb page in cpuset that the task is in.
2205 * Attempt to enforce strict accounting with cpuset is almost
2206 * impossible (or too ugly) because cpuset is too fluid that
2207 * task or memory node can be dynamically moved between cpusets.
2209 * The change of semantics for shared hugetlb mapping with cpuset is
2210 * undesirable. However, in order to preserve some of the semantics,
2211 * we fall back to check against current free page availability as
2212 * a best attempt and hopefully to minimize the impact of changing
2213 * semantics that cpuset has.
2216 if (gather_surplus_pages(h, delta) < 0)
2219 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2220 return_unused_surplus_pages(h, delta);
2227 return_unused_surplus_pages(h, (unsigned long) -delta);
2230 spin_unlock(&hugetlb_lock);
2234 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2236 struct resv_map *resv = vma_resv_map(vma);
2239 * This new VMA should share its siblings reservation map if present.
2240 * The VMA will only ever have a valid reservation map pointer where
2241 * it is being copied for another still existing VMA. As that VMA
2242 * has a reference to the reservation map it cannot disappear until
2243 * after this open call completes. It is therefore safe to take a
2244 * new reference here without additional locking.
2247 kref_get(&resv->refs);
2250 static void resv_map_put(struct vm_area_struct *vma)
2252 struct resv_map *resv = vma_resv_map(vma);
2256 kref_put(&resv->refs, resv_map_release);
2259 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2261 struct hstate *h = hstate_vma(vma);
2262 struct resv_map *resv = vma_resv_map(vma);
2263 struct hugepage_subpool *spool = subpool_vma(vma);
2264 unsigned long reserve;
2265 unsigned long start;
2269 start = vma_hugecache_offset(h, vma, vma->vm_start);
2270 end = vma_hugecache_offset(h, vma, vma->vm_end);
2272 reserve = (end - start) -
2273 region_count(&resv->regions, start, end);
2278 hugetlb_acct_memory(h, -reserve);
2279 hugepage_subpool_put_pages(spool, reserve);
2285 * We cannot handle pagefaults against hugetlb pages at all. They cause
2286 * handle_mm_fault() to try to instantiate regular-sized pages in the
2287 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2290 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2296 const struct vm_operations_struct hugetlb_vm_ops = {
2297 .fault = hugetlb_vm_op_fault,
2298 .open = hugetlb_vm_op_open,
2299 .close = hugetlb_vm_op_close,
2302 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2308 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2309 vma->vm_page_prot)));
2311 entry = huge_pte_wrprotect(mk_huge_pte(page,
2312 vma->vm_page_prot));
2314 entry = pte_mkyoung(entry);
2315 entry = pte_mkhuge(entry);
2316 entry = arch_make_huge_pte(entry, vma, page, writable);
2321 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2322 unsigned long address, pte_t *ptep)
2326 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2327 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2328 update_mmu_cache(vma, address, ptep);
2332 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2333 struct vm_area_struct *vma)
2335 pte_t *src_pte, *dst_pte, entry;
2336 struct page *ptepage;
2339 struct hstate *h = hstate_vma(vma);
2340 unsigned long sz = huge_page_size(h);
2342 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2344 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2345 spinlock_t *src_ptl, *dst_ptl;
2346 src_pte = huge_pte_offset(src, addr);
2349 dst_pte = huge_pte_alloc(dst, addr, sz);
2353 /* If the pagetables are shared don't copy or take references */
2354 if (dst_pte == src_pte)
2357 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2358 src_ptl = huge_pte_lockptr(h, src, src_pte);
2359 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2360 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2362 huge_ptep_set_wrprotect(src, addr, src_pte);
2363 entry = huge_ptep_get(src_pte);
2364 ptepage = pte_page(entry);
2366 page_dup_rmap(ptepage);
2367 set_huge_pte_at(dst, addr, dst_pte, entry);
2369 spin_unlock(src_ptl);
2370 spin_unlock(dst_ptl);
2378 static int is_hugetlb_entry_migration(pte_t pte)
2382 if (huge_pte_none(pte) || pte_present(pte))
2384 swp = pte_to_swp_entry(pte);
2385 if (non_swap_entry(swp) && is_migration_entry(swp))
2391 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2395 if (huge_pte_none(pte) || pte_present(pte))
2397 swp = pte_to_swp_entry(pte);
2398 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2404 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2405 unsigned long start, unsigned long end,
2406 struct page *ref_page)
2408 int force_flush = 0;
2409 struct mm_struct *mm = vma->vm_mm;
2410 unsigned long address;
2415 struct hstate *h = hstate_vma(vma);
2416 unsigned long sz = huge_page_size(h);
2417 const unsigned long mmun_start = start; /* For mmu_notifiers */
2418 const unsigned long mmun_end = end; /* For mmu_notifiers */
2420 WARN_ON(!is_vm_hugetlb_page(vma));
2421 BUG_ON(start & ~huge_page_mask(h));
2422 BUG_ON(end & ~huge_page_mask(h));
2424 tlb_start_vma(tlb, vma);
2425 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427 for (address = start; address < end; address += sz) {
2428 ptep = huge_pte_offset(mm, address);
2432 ptl = huge_pte_lock(h, mm, ptep);
2433 if (huge_pmd_unshare(mm, &address, ptep))
2436 pte = huge_ptep_get(ptep);
2437 if (huge_pte_none(pte))
2441 * HWPoisoned hugepage is already unmapped and dropped reference
2443 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2444 huge_pte_clear(mm, address, ptep);
2448 page = pte_page(pte);
2450 * If a reference page is supplied, it is because a specific
2451 * page is being unmapped, not a range. Ensure the page we
2452 * are about to unmap is the actual page of interest.
2455 if (page != ref_page)
2459 * Mark the VMA as having unmapped its page so that
2460 * future faults in this VMA will fail rather than
2461 * looking like data was lost
2463 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2466 pte = huge_ptep_get_and_clear(mm, address, ptep);
2467 tlb_remove_tlb_entry(tlb, ptep, address);
2468 if (huge_pte_dirty(pte))
2469 set_page_dirty(page);
2471 page_remove_rmap(page);
2472 force_flush = !__tlb_remove_page(tlb, page);
2477 /* Bail out after unmapping reference page if supplied */
2486 * mmu_gather ran out of room to batch pages, we break out of
2487 * the PTE lock to avoid doing the potential expensive TLB invalidate
2488 * and page-free while holding it.
2493 if (address < end && !ref_page)
2496 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2497 tlb_end_vma(tlb, vma);
2500 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2501 struct vm_area_struct *vma, unsigned long start,
2502 unsigned long end, struct page *ref_page)
2504 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2507 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2508 * test will fail on a vma being torn down, and not grab a page table
2509 * on its way out. We're lucky that the flag has such an appropriate
2510 * name, and can in fact be safely cleared here. We could clear it
2511 * before the __unmap_hugepage_range above, but all that's necessary
2512 * is to clear it before releasing the i_mmap_mutex. This works
2513 * because in the context this is called, the VMA is about to be
2514 * destroyed and the i_mmap_mutex is held.
2516 vma->vm_flags &= ~VM_MAYSHARE;
2519 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2520 unsigned long end, struct page *ref_page)
2522 struct mm_struct *mm;
2523 struct mmu_gather tlb;
2527 tlb_gather_mmu(&tlb, mm, start, end);
2528 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2529 tlb_finish_mmu(&tlb, start, end);
2533 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2534 * mappping it owns the reserve page for. The intention is to unmap the page
2535 * from other VMAs and let the children be SIGKILLed if they are faulting the
2538 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2539 struct page *page, unsigned long address)
2541 struct hstate *h = hstate_vma(vma);
2542 struct vm_area_struct *iter_vma;
2543 struct address_space *mapping;
2547 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2548 * from page cache lookup which is in HPAGE_SIZE units.
2550 address = address & huge_page_mask(h);
2551 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2553 mapping = file_inode(vma->vm_file)->i_mapping;
2556 * Take the mapping lock for the duration of the table walk. As
2557 * this mapping should be shared between all the VMAs,
2558 * __unmap_hugepage_range() is called as the lock is already held
2560 mutex_lock(&mapping->i_mmap_mutex);
2561 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2562 /* Do not unmap the current VMA */
2563 if (iter_vma == vma)
2567 * Unmap the page from other VMAs without their own reserves.
2568 * They get marked to be SIGKILLed if they fault in these
2569 * areas. This is because a future no-page fault on this VMA
2570 * could insert a zeroed page instead of the data existing
2571 * from the time of fork. This would look like data corruption
2573 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2574 unmap_hugepage_range(iter_vma, address,
2575 address + huge_page_size(h), page);
2577 mutex_unlock(&mapping->i_mmap_mutex);
2583 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2584 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2585 * cannot race with other handlers or page migration.
2586 * Keep the pte_same checks anyway to make transition from the mutex easier.
2588 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2589 unsigned long address, pte_t *ptep, pte_t pte,
2590 struct page *pagecache_page, spinlock_t *ptl)
2592 struct hstate *h = hstate_vma(vma);
2593 struct page *old_page, *new_page;
2594 int outside_reserve = 0;
2595 unsigned long mmun_start; /* For mmu_notifiers */
2596 unsigned long mmun_end; /* For mmu_notifiers */
2598 old_page = pte_page(pte);
2601 /* If no-one else is actually using this page, avoid the copy
2602 * and just make the page writable */
2603 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2604 page_move_anon_rmap(old_page, vma, address);
2605 set_huge_ptep_writable(vma, address, ptep);
2610 * If the process that created a MAP_PRIVATE mapping is about to
2611 * perform a COW due to a shared page count, attempt to satisfy
2612 * the allocation without using the existing reserves. The pagecache
2613 * page is used to determine if the reserve at this address was
2614 * consumed or not. If reserves were used, a partial faulted mapping
2615 * at the time of fork() could consume its reserves on COW instead
2616 * of the full address range.
2618 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2619 old_page != pagecache_page)
2620 outside_reserve = 1;
2622 page_cache_get(old_page);
2624 /* Drop page table lock as buddy allocator may be called */
2626 new_page = alloc_huge_page(vma, address, outside_reserve);
2628 if (IS_ERR(new_page)) {
2629 long err = PTR_ERR(new_page);
2630 page_cache_release(old_page);
2633 * If a process owning a MAP_PRIVATE mapping fails to COW,
2634 * it is due to references held by a child and an insufficient
2635 * huge page pool. To guarantee the original mappers
2636 * reliability, unmap the page from child processes. The child
2637 * may get SIGKILLed if it later faults.
2639 if (outside_reserve) {
2640 BUG_ON(huge_pte_none(pte));
2641 if (unmap_ref_private(mm, vma, old_page, address)) {
2642 BUG_ON(huge_pte_none(pte));
2644 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2645 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2646 goto retry_avoidcopy;
2648 * race occurs while re-acquiring page table
2649 * lock, and our job is done.
2656 /* Caller expects lock to be held */
2659 return VM_FAULT_OOM;
2661 return VM_FAULT_SIGBUS;
2665 * When the original hugepage is shared one, it does not have
2666 * anon_vma prepared.
2668 if (unlikely(anon_vma_prepare(vma))) {
2669 page_cache_release(new_page);
2670 page_cache_release(old_page);
2671 /* Caller expects lock to be held */
2673 return VM_FAULT_OOM;
2676 copy_user_huge_page(new_page, old_page, address, vma,
2677 pages_per_huge_page(h));
2678 __SetPageUptodate(new_page);
2680 mmun_start = address & huge_page_mask(h);
2681 mmun_end = mmun_start + huge_page_size(h);
2682 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2684 * Retake the page table lock to check for racing updates
2685 * before the page tables are altered
2688 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2689 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2690 ClearPagePrivate(new_page);
2693 huge_ptep_clear_flush(vma, address, ptep);
2694 set_huge_pte_at(mm, address, ptep,
2695 make_huge_pte(vma, new_page, 1));
2696 page_remove_rmap(old_page);
2697 hugepage_add_new_anon_rmap(new_page, vma, address);
2698 /* Make the old page be freed below */
2699 new_page = old_page;
2702 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2703 page_cache_release(new_page);
2704 page_cache_release(old_page);
2706 /* Caller expects lock to be held */
2711 /* Return the pagecache page at a given address within a VMA */
2712 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2713 struct vm_area_struct *vma, unsigned long address)
2715 struct address_space *mapping;
2718 mapping = vma->vm_file->f_mapping;
2719 idx = vma_hugecache_offset(h, vma, address);
2721 return find_lock_page(mapping, idx);
2725 * Return whether there is a pagecache page to back given address within VMA.
2726 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2728 static bool hugetlbfs_pagecache_present(struct hstate *h,
2729 struct vm_area_struct *vma, unsigned long address)
2731 struct address_space *mapping;
2735 mapping = vma->vm_file->f_mapping;
2736 idx = vma_hugecache_offset(h, vma, address);
2738 page = find_get_page(mapping, idx);
2741 return page != NULL;
2744 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2745 unsigned long address, pte_t *ptep, unsigned int flags)
2747 struct hstate *h = hstate_vma(vma);
2748 int ret = VM_FAULT_SIGBUS;
2753 struct address_space *mapping;
2758 * Currently, we are forced to kill the process in the event the
2759 * original mapper has unmapped pages from the child due to a failed
2760 * COW. Warn that such a situation has occurred as it may not be obvious
2762 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2763 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2768 mapping = vma->vm_file->f_mapping;
2769 idx = vma_hugecache_offset(h, vma, address);
2772 * Use page lock to guard against racing truncation
2773 * before we get page_table_lock.
2776 page = find_lock_page(mapping, idx);
2778 size = i_size_read(mapping->host) >> huge_page_shift(h);
2781 page = alloc_huge_page(vma, address, 0);
2783 ret = PTR_ERR(page);
2787 ret = VM_FAULT_SIGBUS;
2790 clear_huge_page(page, address, pages_per_huge_page(h));
2791 __SetPageUptodate(page);
2793 if (vma->vm_flags & VM_MAYSHARE) {
2795 struct inode *inode = mapping->host;
2797 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2804 ClearPagePrivate(page);
2806 spin_lock(&inode->i_lock);
2807 inode->i_blocks += blocks_per_huge_page(h);
2808 spin_unlock(&inode->i_lock);
2811 if (unlikely(anon_vma_prepare(vma))) {
2813 goto backout_unlocked;
2819 * If memory error occurs between mmap() and fault, some process
2820 * don't have hwpoisoned swap entry for errored virtual address.
2821 * So we need to block hugepage fault by PG_hwpoison bit check.
2823 if (unlikely(PageHWPoison(page))) {
2824 ret = VM_FAULT_HWPOISON |
2825 VM_FAULT_SET_HINDEX(hstate_index(h));
2826 goto backout_unlocked;
2831 * If we are going to COW a private mapping later, we examine the
2832 * pending reservations for this page now. This will ensure that
2833 * any allocations necessary to record that reservation occur outside
2836 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2837 if (vma_needs_reservation(h, vma, address) < 0) {
2839 goto backout_unlocked;
2842 ptl = huge_pte_lockptr(h, mm, ptep);
2844 size = i_size_read(mapping->host) >> huge_page_shift(h);
2849 if (!huge_pte_none(huge_ptep_get(ptep)))
2853 ClearPagePrivate(page);
2854 hugepage_add_new_anon_rmap(page, vma, address);
2857 page_dup_rmap(page);
2858 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2859 && (vma->vm_flags & VM_SHARED)));
2860 set_huge_pte_at(mm, address, ptep, new_pte);
2862 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2863 /* Optimization, do the COW without a second fault */
2864 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2880 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2881 unsigned long address, unsigned int flags)
2887 struct page *page = NULL;
2888 struct page *pagecache_page = NULL;
2889 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2890 struct hstate *h = hstate_vma(vma);
2892 address &= huge_page_mask(h);
2894 ptep = huge_pte_offset(mm, address);
2896 entry = huge_ptep_get(ptep);
2897 if (unlikely(is_hugetlb_entry_migration(entry))) {
2898 migration_entry_wait_huge(vma, mm, ptep);
2900 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2901 return VM_FAULT_HWPOISON_LARGE |
2902 VM_FAULT_SET_HINDEX(hstate_index(h));
2905 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2907 return VM_FAULT_OOM;
2910 * Serialize hugepage allocation and instantiation, so that we don't
2911 * get spurious allocation failures if two CPUs race to instantiate
2912 * the same page in the page cache.
2914 mutex_lock(&hugetlb_instantiation_mutex);
2915 entry = huge_ptep_get(ptep);
2916 if (huge_pte_none(entry)) {
2917 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2924 * If we are going to COW the mapping later, we examine the pending
2925 * reservations for this page now. This will ensure that any
2926 * allocations necessary to record that reservation occur outside the
2927 * spinlock. For private mappings, we also lookup the pagecache
2928 * page now as it is used to determine if a reservation has been
2931 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2932 if (vma_needs_reservation(h, vma, address) < 0) {
2937 if (!(vma->vm_flags & VM_MAYSHARE))
2938 pagecache_page = hugetlbfs_pagecache_page(h,
2943 * hugetlb_cow() requires page locks of pte_page(entry) and
2944 * pagecache_page, so here we need take the former one
2945 * when page != pagecache_page or !pagecache_page.
2946 * Note that locking order is always pagecache_page -> page,
2947 * so no worry about deadlock.
2949 page = pte_page(entry);
2951 if (page != pagecache_page)
2954 ptl = huge_pte_lockptr(h, mm, ptep);
2956 /* Check for a racing update before calling hugetlb_cow */
2957 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2961 if (flags & FAULT_FLAG_WRITE) {
2962 if (!huge_pte_write(entry)) {
2963 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2964 pagecache_page, ptl);
2967 entry = huge_pte_mkdirty(entry);
2969 entry = pte_mkyoung(entry);
2970 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2971 flags & FAULT_FLAG_WRITE))
2972 update_mmu_cache(vma, address, ptep);
2977 if (pagecache_page) {
2978 unlock_page(pagecache_page);
2979 put_page(pagecache_page);
2981 if (page != pagecache_page)
2986 mutex_unlock(&hugetlb_instantiation_mutex);
2991 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992 struct page **pages, struct vm_area_struct **vmas,
2993 unsigned long *position, unsigned long *nr_pages,
2994 long i, unsigned int flags)
2996 unsigned long pfn_offset;
2997 unsigned long vaddr = *position;
2998 unsigned long remainder = *nr_pages;
2999 struct hstate *h = hstate_vma(vma);
3001 while (vaddr < vma->vm_end && remainder) {
3003 spinlock_t *ptl = NULL;
3008 * Some archs (sparc64, sh*) have multiple pte_ts to
3009 * each hugepage. We have to make sure we get the
3010 * first, for the page indexing below to work.
3012 * Note that page table lock is not held when pte is null.
3014 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3016 ptl = huge_pte_lock(h, mm, pte);
3017 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3020 * When coredumping, it suits get_dump_page if we just return
3021 * an error where there's an empty slot with no huge pagecache
3022 * to back it. This way, we avoid allocating a hugepage, and
3023 * the sparse dumpfile avoids allocating disk blocks, but its
3024 * huge holes still show up with zeroes where they need to be.
3026 if (absent && (flags & FOLL_DUMP) &&
3027 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3035 * We need call hugetlb_fault for both hugepages under migration
3036 * (in which case hugetlb_fault waits for the migration,) and
3037 * hwpoisoned hugepages (in which case we need to prevent the
3038 * caller from accessing to them.) In order to do this, we use
3039 * here is_swap_pte instead of is_hugetlb_entry_migration and
3040 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3041 * both cases, and because we can't follow correct pages
3042 * directly from any kind of swap entries.
3044 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3045 ((flags & FOLL_WRITE) &&
3046 !huge_pte_write(huge_ptep_get(pte)))) {
3051 ret = hugetlb_fault(mm, vma, vaddr,
3052 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3053 if (!(ret & VM_FAULT_ERROR))
3060 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3061 page = pte_page(huge_ptep_get(pte));
3064 pages[i] = mem_map_offset(page, pfn_offset);
3075 if (vaddr < vma->vm_end && remainder &&
3076 pfn_offset < pages_per_huge_page(h)) {
3078 * We use pfn_offset to avoid touching the pageframes
3079 * of this compound page.
3085 *nr_pages = remainder;
3088 return i ? i : -EFAULT;
3091 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3092 unsigned long address, unsigned long end, pgprot_t newprot)
3094 struct mm_struct *mm = vma->vm_mm;
3095 unsigned long start = address;
3098 struct hstate *h = hstate_vma(vma);
3099 unsigned long pages = 0;
3101 BUG_ON(address >= end);
3102 flush_cache_range(vma, address, end);
3104 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3105 for (; address < end; address += huge_page_size(h)) {
3107 ptep = huge_pte_offset(mm, address);
3110 ptl = huge_pte_lock(h, mm, ptep);
3111 if (huge_pmd_unshare(mm, &address, ptep)) {
3116 if (!huge_pte_none(huge_ptep_get(ptep))) {
3117 pte = huge_ptep_get_and_clear(mm, address, ptep);
3118 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3119 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3120 set_huge_pte_at(mm, address, ptep, pte);
3126 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3127 * may have cleared our pud entry and done put_page on the page table:
3128 * once we release i_mmap_mutex, another task can do the final put_page
3129 * and that page table be reused and filled with junk.
3131 flush_tlb_range(vma, start, end);
3132 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3134 return pages << h->order;
3137 int hugetlb_reserve_pages(struct inode *inode,
3139 struct vm_area_struct *vma,
3140 vm_flags_t vm_flags)
3143 struct hstate *h = hstate_inode(inode);
3144 struct hugepage_subpool *spool = subpool_inode(inode);
3147 * Only apply hugepage reservation if asked. At fault time, an
3148 * attempt will be made for VM_NORESERVE to allocate a page
3149 * without using reserves
3151 if (vm_flags & VM_NORESERVE)
3155 * Shared mappings base their reservation on the number of pages that
3156 * are already allocated on behalf of the file. Private mappings need
3157 * to reserve the full area even if read-only as mprotect() may be
3158 * called to make the mapping read-write. Assume !vma is a shm mapping
3160 if (!vma || vma->vm_flags & VM_MAYSHARE)
3161 chg = region_chg(&inode->i_mapping->private_list, from, to);
3163 struct resv_map *resv_map = resv_map_alloc();
3169 set_vma_resv_map(vma, resv_map);
3170 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3178 /* There must be enough pages in the subpool for the mapping */
3179 if (hugepage_subpool_get_pages(spool, chg)) {
3185 * Check enough hugepages are available for the reservation.
3186 * Hand the pages back to the subpool if there are not
3188 ret = hugetlb_acct_memory(h, chg);
3190 hugepage_subpool_put_pages(spool, chg);
3195 * Account for the reservations made. Shared mappings record regions
3196 * that have reservations as they are shared by multiple VMAs.
3197 * When the last VMA disappears, the region map says how much
3198 * the reservation was and the page cache tells how much of
3199 * the reservation was consumed. Private mappings are per-VMA and
3200 * only the consumed reservations are tracked. When the VMA
3201 * disappears, the original reservation is the VMA size and the
3202 * consumed reservations are stored in the map. Hence, nothing
3203 * else has to be done for private mappings here
3205 if (!vma || vma->vm_flags & VM_MAYSHARE)
3206 region_add(&inode->i_mapping->private_list, from, to);
3214 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3216 struct hstate *h = hstate_inode(inode);
3217 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3218 struct hugepage_subpool *spool = subpool_inode(inode);
3220 spin_lock(&inode->i_lock);
3221 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3222 spin_unlock(&inode->i_lock);
3224 hugepage_subpool_put_pages(spool, (chg - freed));
3225 hugetlb_acct_memory(h, -(chg - freed));
3228 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3229 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3230 struct vm_area_struct *vma,
3231 unsigned long addr, pgoff_t idx)
3233 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3235 unsigned long sbase = saddr & PUD_MASK;
3236 unsigned long s_end = sbase + PUD_SIZE;
3238 /* Allow segments to share if only one is marked locked */
3239 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3240 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3243 * match the virtual addresses, permission and the alignment of the
3246 if (pmd_index(addr) != pmd_index(saddr) ||
3247 vm_flags != svm_flags ||
3248 sbase < svma->vm_start || svma->vm_end < s_end)
3254 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3256 unsigned long base = addr & PUD_MASK;
3257 unsigned long end = base + PUD_SIZE;
3260 * check on proper vm_flags and page table alignment
3262 if (vma->vm_flags & VM_MAYSHARE &&
3263 vma->vm_start <= base && end <= vma->vm_end)
3269 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3270 * and returns the corresponding pte. While this is not necessary for the
3271 * !shared pmd case because we can allocate the pmd later as well, it makes the
3272 * code much cleaner. pmd allocation is essential for the shared case because
3273 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3274 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3275 * bad pmd for sharing.
3277 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3279 struct vm_area_struct *vma = find_vma(mm, addr);
3280 struct address_space *mapping = vma->vm_file->f_mapping;
3281 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3283 struct vm_area_struct *svma;
3284 unsigned long saddr;
3289 if (!vma_shareable(vma, addr))
3290 return (pte_t *)pmd_alloc(mm, pud, addr);
3292 mutex_lock(&mapping->i_mmap_mutex);
3293 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3297 saddr = page_table_shareable(svma, vma, addr, idx);
3299 spte = huge_pte_offset(svma->vm_mm, saddr);
3301 get_page(virt_to_page(spte));
3310 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3313 pud_populate(mm, pud,
3314 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3316 put_page(virt_to_page(spte));
3319 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3320 mutex_unlock(&mapping->i_mmap_mutex);
3325 * unmap huge page backed by shared pte.
3327 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3328 * indicated by page_count > 1, unmap is achieved by clearing pud and
3329 * decrementing the ref count. If count == 1, the pte page is not shared.
3331 * called with page table lock held.
3333 * returns: 1 successfully unmapped a shared pte page
3334 * 0 the underlying pte page is not shared, or it is the last user
3336 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3338 pgd_t *pgd = pgd_offset(mm, *addr);
3339 pud_t *pud = pud_offset(pgd, *addr);
3341 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3342 if (page_count(virt_to_page(ptep)) == 1)
3346 put_page(virt_to_page(ptep));
3347 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3350 #define want_pmd_share() (1)
3351 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3352 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3356 #define want_pmd_share() (0)
3357 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3359 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3360 pte_t *huge_pte_alloc(struct mm_struct *mm,
3361 unsigned long addr, unsigned long sz)
3367 pgd = pgd_offset(mm, addr);
3368 pud = pud_alloc(mm, pgd, addr);
3370 if (sz == PUD_SIZE) {
3373 BUG_ON(sz != PMD_SIZE);
3374 if (want_pmd_share() && pud_none(*pud))
3375 pte = huge_pmd_share(mm, addr, pud);
3377 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3380 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3385 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3391 pgd = pgd_offset(mm, addr);
3392 if (pgd_present(*pgd)) {
3393 pud = pud_offset(pgd, addr);
3394 if (pud_present(*pud)) {
3396 return (pte_t *)pud;
3397 pmd = pmd_offset(pud, addr);
3400 return (pte_t *) pmd;
3404 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3405 pmd_t *pmd, int write)
3409 page = pte_page(*(pte_t *)pmd);
3411 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3416 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3417 pud_t *pud, int write)
3421 page = pte_page(*(pte_t *)pud);
3423 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3427 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3429 /* Can be overriden by architectures */
3430 __attribute__((weak)) struct page *
3431 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3432 pud_t *pud, int write)
3438 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3440 #ifdef CONFIG_MEMORY_FAILURE
3442 /* Should be called in hugetlb_lock */
3443 static int is_hugepage_on_freelist(struct page *hpage)
3447 struct hstate *h = page_hstate(hpage);
3448 int nid = page_to_nid(hpage);
3450 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3457 * This function is called from memory failure code.
3458 * Assume the caller holds page lock of the head page.
3460 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3462 struct hstate *h = page_hstate(hpage);
3463 int nid = page_to_nid(hpage);
3466 spin_lock(&hugetlb_lock);
3467 if (is_hugepage_on_freelist(hpage)) {
3469 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3470 * but dangling hpage->lru can trigger list-debug warnings
3471 * (this happens when we call unpoison_memory() on it),
3472 * so let it point to itself with list_del_init().
3474 list_del_init(&hpage->lru);
3475 set_page_refcounted(hpage);
3476 h->free_huge_pages--;
3477 h->free_huge_pages_node[nid]--;
3480 spin_unlock(&hugetlb_lock);
3485 bool isolate_huge_page(struct page *page, struct list_head *list)
3487 VM_BUG_ON(!PageHead(page));
3488 if (!get_page_unless_zero(page))
3490 spin_lock(&hugetlb_lock);
3491 list_move_tail(&page->lru, list);
3492 spin_unlock(&hugetlb_lock);
3496 void putback_active_hugepage(struct page *page)
3498 VM_BUG_ON(!PageHead(page));
3499 spin_lock(&hugetlb_lock);
3500 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3501 spin_unlock(&hugetlb_lock);
3505 bool is_hugepage_active(struct page *page)
3507 VM_BUG_ON(!PageHuge(page));
3509 * This function can be called for a tail page because the caller,
3510 * scan_movable_pages, scans through a given pfn-range which typically
3511 * covers one memory block. In systems using gigantic hugepage (1GB
3512 * for x86_64,) a hugepage is larger than a memory block, and we don't
3513 * support migrating such large hugepages for now, so return false
3514 * when called for tail pages.
3519 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3520 * so we should return false for them.
3522 if (unlikely(PageHWPoison(page)))
3524 return page_count(page) > 0;