Merge branch 'for-next' into for-linus
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264         struct file_region *nrg;
265
266         VM_BUG_ON(resv->region_cache_count <= 0);
267
268         resv->region_cache_count--;
269         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270         list_del(&nrg->link);
271
272         nrg->from = from;
273         nrg->to = to;
274
275         return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279                                               struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         nrg->reservation_counter = rg->reservation_counter;
283         nrg->css = rg->css;
284         if (rg->css)
285                 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291                                                 struct hstate *h,
292                                                 struct resv_map *resv,
293                                                 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296         if (h_cg) {
297                 nrg->reservation_counter =
298                         &h_cg->rsvd_hugepage[hstate_index(h)];
299                 nrg->css = &h_cg->css;
300                 /*
301                  * The caller will hold exactly one h_cg->css reference for the
302                  * whole contiguous reservation region. But this area might be
303                  * scattered when there are already some file_regions reside in
304                  * it. As a result, many file_regions may share only one css
305                  * reference. In order to ensure that one file_region must hold
306                  * exactly one h_cg->css reference, we should do css_get for
307                  * each file_region and leave the reference held by caller
308                  * untouched.
309                  */
310                 css_get(&h_cg->css);
311                 if (!resv->pages_per_hpage)
312                         resv->pages_per_hpage = pages_per_huge_page(h);
313                 /* pages_per_hpage should be the same for all entries in
314                  * a resv_map.
315                  */
316                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317         } else {
318                 nrg->reservation_counter = NULL;
319                 nrg->css = NULL;
320         }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327         if (rg->css)
328                 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333                                    struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336         return rg->reservation_counter == org->reservation_counter &&
337                rg->css == org->css;
338
339 #else
340         return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346         struct file_region *nrg, *prg;
347
348         prg = list_prev_entry(rg, link);
349         if (&prg->link != &resv->regions && prg->to == rg->from &&
350             has_same_uncharge_info(prg, rg)) {
351                 prg->to = rg->to;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356
357                 rg = prg;
358         }
359
360         nrg = list_next_entry(rg, link);
361         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362             has_same_uncharge_info(nrg, rg)) {
363                 nrg->from = rg->from;
364
365                 list_del(&rg->link);
366                 put_uncharge_info(rg);
367                 kfree(rg);
368         }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
374                      long *regions_needed)
375 {
376         struct file_region *nrg;
377
378         if (!regions_needed) {
379                 nrg = get_file_region_entry_from_cache(map, from, to);
380                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381                 list_add(&nrg->link, rg);
382                 coalesce_file_region(map, nrg);
383         } else
384                 *regions_needed += 1;
385
386         return to - from;
387 }
388
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398                                      struct hugetlb_cgroup *h_cg,
399                                      struct hstate *h, long *regions_needed)
400 {
401         long add = 0;
402         struct list_head *head = &resv->regions;
403         long last_accounted_offset = f;
404         struct file_region *iter, *trg = NULL;
405         struct list_head *rg = NULL;
406
407         if (regions_needed)
408                 *regions_needed = 0;
409
410         /* In this loop, we essentially handle an entry for the range
411          * [last_accounted_offset, iter->from), at every iteration, with some
412          * bounds checking.
413          */
414         list_for_each_entry_safe(iter, trg, head, link) {
415                 /* Skip irrelevant regions that start before our range. */
416                 if (iter->from < f) {
417                         /* If this region ends after the last accounted offset,
418                          * then we need to update last_accounted_offset.
419                          */
420                         if (iter->to > last_accounted_offset)
421                                 last_accounted_offset = iter->to;
422                         continue;
423                 }
424
425                 /* When we find a region that starts beyond our range, we've
426                  * finished.
427                  */
428                 if (iter->from >= t) {
429                         rg = iter->link.prev;
430                         break;
431                 }
432
433                 /* Add an entry for last_accounted_offset -> iter->from, and
434                  * update last_accounted_offset.
435                  */
436                 if (iter->from > last_accounted_offset)
437                         add += hugetlb_resv_map_add(resv, iter->link.prev,
438                                                     last_accounted_offset,
439                                                     iter->from, h, h_cg,
440                                                     regions_needed);
441
442                 last_accounted_offset = iter->to;
443         }
444
445         /* Handle the case where our range extends beyond
446          * last_accounted_offset.
447          */
448         if (!rg)
449                 rg = head->prev;
450         if (last_accounted_offset < t)
451                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452                                             t, h, h_cg, regions_needed);
453
454         return add;
455 }
456
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460                                         int regions_needed)
461         __must_hold(&resv->lock)
462 {
463         LIST_HEAD(allocated_regions);
464         int to_allocate = 0, i = 0;
465         struct file_region *trg = NULL, *rg = NULL;
466
467         VM_BUG_ON(regions_needed < 0);
468
469         /*
470          * Check for sufficient descriptors in the cache to accommodate
471          * the number of in progress add operations plus regions_needed.
472          *
473          * This is a while loop because when we drop the lock, some other call
474          * to region_add or region_del may have consumed some region_entries,
475          * so we keep looping here until we finally have enough entries for
476          * (adds_in_progress + regions_needed).
477          */
478         while (resv->region_cache_count <
479                (resv->adds_in_progress + regions_needed)) {
480                 to_allocate = resv->adds_in_progress + regions_needed -
481                               resv->region_cache_count;
482
483                 /* At this point, we should have enough entries in the cache
484                  * for all the existing adds_in_progress. We should only be
485                  * needing to allocate for regions_needed.
486                  */
487                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489                 spin_unlock(&resv->lock);
490                 for (i = 0; i < to_allocate; i++) {
491                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492                         if (!trg)
493                                 goto out_of_memory;
494                         list_add(&trg->link, &allocated_regions);
495                 }
496
497                 spin_lock(&resv->lock);
498
499                 list_splice(&allocated_regions, &resv->region_cache);
500                 resv->region_cache_count += to_allocate;
501         }
502
503         return 0;
504
505 out_of_memory:
506         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507                 list_del(&rg->link);
508                 kfree(rg);
509         }
510         return -ENOMEM;
511 }
512
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531                        long in_regions_needed, struct hstate *h,
532                        struct hugetlb_cgroup *h_cg)
533 {
534         long add = 0, actual_regions_needed = 0;
535
536         spin_lock(&resv->lock);
537 retry:
538
539         /* Count how many regions are actually needed to execute this add. */
540         add_reservation_in_range(resv, f, t, NULL, NULL,
541                                  &actual_regions_needed);
542
543         /*
544          * Check for sufficient descriptors in the cache to accommodate
545          * this add operation. Note that actual_regions_needed may be greater
546          * than in_regions_needed, as the resv_map may have been modified since
547          * the region_chg call. In this case, we need to make sure that we
548          * allocate extra entries, such that we have enough for all the
549          * existing adds_in_progress, plus the excess needed for this
550          * operation.
551          */
552         if (actual_regions_needed > in_regions_needed &&
553             resv->region_cache_count <
554                     resv->adds_in_progress +
555                             (actual_regions_needed - in_regions_needed)) {
556                 /* region_add operation of range 1 should never need to
557                  * allocate file_region entries.
558                  */
559                 VM_BUG_ON(t - f <= 1);
560
561                 if (allocate_file_region_entries(
562                             resv, actual_regions_needed - in_regions_needed)) {
563                         return -ENOMEM;
564                 }
565
566                 goto retry;
567         }
568
569         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570
571         resv->adds_in_progress -= in_regions_needed;
572
573         spin_unlock(&resv->lock);
574         return add;
575 }
576
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598                        long *out_regions_needed)
599 {
600         long chg = 0;
601
602         spin_lock(&resv->lock);
603
604         /* Count how many hugepages in this range are NOT represented. */
605         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606                                        out_regions_needed);
607
608         if (*out_regions_needed == 0)
609                 *out_regions_needed = 1;
610
611         if (allocate_file_region_entries(resv, *out_regions_needed))
612                 return -ENOMEM;
613
614         resv->adds_in_progress += *out_regions_needed;
615
616         spin_unlock(&resv->lock);
617         return chg;
618 }
619
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634                          long regions_needed)
635 {
636         spin_lock(&resv->lock);
637         VM_BUG_ON(!resv->region_cache_count);
638         resv->adds_in_progress -= regions_needed;
639         spin_unlock(&resv->lock);
640 }
641
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658         struct list_head *head = &resv->regions;
659         struct file_region *rg, *trg;
660         struct file_region *nrg = NULL;
661         long del = 0;
662
663 retry:
664         spin_lock(&resv->lock);
665         list_for_each_entry_safe(rg, trg, head, link) {
666                 /*
667                  * Skip regions before the range to be deleted.  file_region
668                  * ranges are normally of the form [from, to).  However, there
669                  * may be a "placeholder" entry in the map which is of the form
670                  * (from, to) with from == to.  Check for placeholder entries
671                  * at the beginning of the range to be deleted.
672                  */
673                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674                         continue;
675
676                 if (rg->from >= t)
677                         break;
678
679                 if (f > rg->from && t < rg->to) { /* Must split region */
680                         /*
681                          * Check for an entry in the cache before dropping
682                          * lock and attempting allocation.
683                          */
684                         if (!nrg &&
685                             resv->region_cache_count > resv->adds_in_progress) {
686                                 nrg = list_first_entry(&resv->region_cache,
687                                                         struct file_region,
688                                                         link);
689                                 list_del(&nrg->link);
690                                 resv->region_cache_count--;
691                         }
692
693                         if (!nrg) {
694                                 spin_unlock(&resv->lock);
695                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696                                 if (!nrg)
697                                         return -ENOMEM;
698                                 goto retry;
699                         }
700
701                         del += t - f;
702                         hugetlb_cgroup_uncharge_file_region(
703                                 resv, rg, t - f, false);
704
705                         /* New entry for end of split region */
706                         nrg->from = t;
707                         nrg->to = rg->to;
708
709                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
711                         INIT_LIST_HEAD(&nrg->link);
712
713                         /* Original entry is trimmed */
714                         rg->to = f;
715
716                         list_add(&nrg->link, &rg->link);
717                         nrg = NULL;
718                         break;
719                 }
720
721                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722                         del += rg->to - rg->from;
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - rg->from, true);
725                         list_del(&rg->link);
726                         kfree(rg);
727                         continue;
728                 }
729
730                 if (f <= rg->from) {    /* Trim beginning of region */
731                         hugetlb_cgroup_uncharge_file_region(resv, rg,
732                                                             t - rg->from, false);
733
734                         del += t - rg->from;
735                         rg->from = t;
736                 } else {                /* Trim end of region */
737                         hugetlb_cgroup_uncharge_file_region(resv, rg,
738                                                             rg->to - f, false);
739
740                         del += rg->to - f;
741                         rg->to = f;
742                 }
743         }
744
745         spin_unlock(&resv->lock);
746         kfree(nrg);
747         return del;
748 }
749
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761         struct hugepage_subpool *spool = subpool_inode(inode);
762         long rsv_adjust;
763         bool reserved = false;
764
765         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766         if (rsv_adjust > 0) {
767                 struct hstate *h = hstate_inode(inode);
768
769                 if (!hugetlb_acct_memory(h, 1))
770                         reserved = true;
771         } else if (!rsv_adjust) {
772                 reserved = true;
773         }
774
775         if (!reserved)
776                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785         struct list_head *head = &resv->regions;
786         struct file_region *rg;
787         long chg = 0;
788
789         spin_lock(&resv->lock);
790         /* Locate each segment we overlap with, and count that overlap. */
791         list_for_each_entry(rg, head, link) {
792                 long seg_from;
793                 long seg_to;
794
795                 if (rg->to <= f)
796                         continue;
797                 if (rg->from >= t)
798                         break;
799
800                 seg_from = max(rg->from, f);
801                 seg_to = min(rg->to, t);
802
803                 chg += seg_to - seg_from;
804         }
805         spin_unlock(&resv->lock);
806
807         return chg;
808 }
809
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815                         struct vm_area_struct *vma, unsigned long address)
816 {
817         return ((address - vma->vm_start) >> huge_page_shift(h)) +
818                         (vma->vm_pgoff >> huge_page_order(h));
819 }
820
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822                                      unsigned long address)
823 {
824         return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834         if (vma->vm_ops && vma->vm_ops->pagesize)
835                 return vma->vm_ops->pagesize(vma);
836         return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848         return vma_kernel_pagesize(vma);
849 }
850
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881         return (unsigned long)vma->vm_private_data;
882 }
883
884 static void set_vma_private_data(struct vm_area_struct *vma,
885                                                         unsigned long value)
886 {
887         vma->vm_private_data = (void *)value;
888 }
889
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892                                           struct hugetlb_cgroup *h_cg,
893                                           struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896         if (!h_cg || !h) {
897                 resv_map->reservation_counter = NULL;
898                 resv_map->pages_per_hpage = 0;
899                 resv_map->css = NULL;
900         } else {
901                 resv_map->reservation_counter =
902                         &h_cg->rsvd_hugepage[hstate_index(h)];
903                 resv_map->pages_per_hpage = pages_per_huge_page(h);
904                 resv_map->css = &h_cg->css;
905         }
906 #endif
907 }
908
909 struct resv_map *resv_map_alloc(void)
910 {
911         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914         if (!resv_map || !rg) {
915                 kfree(resv_map);
916                 kfree(rg);
917                 return NULL;
918         }
919
920         kref_init(&resv_map->refs);
921         spin_lock_init(&resv_map->lock);
922         INIT_LIST_HEAD(&resv_map->regions);
923
924         resv_map->adds_in_progress = 0;
925         /*
926          * Initialize these to 0. On shared mappings, 0's here indicate these
927          * fields don't do cgroup accounting. On private mappings, these will be
928          * re-initialized to the proper values, to indicate that hugetlb cgroup
929          * reservations are to be un-charged from here.
930          */
931         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932
933         INIT_LIST_HEAD(&resv_map->region_cache);
934         list_add(&rg->link, &resv_map->region_cache);
935         resv_map->region_cache_count = 1;
936
937         return resv_map;
938 }
939
940 void resv_map_release(struct kref *ref)
941 {
942         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943         struct list_head *head = &resv_map->region_cache;
944         struct file_region *rg, *trg;
945
946         /* Clear out any active regions before we release the map. */
947         region_del(resv_map, 0, LONG_MAX);
948
949         /* ... and any entries left in the cache */
950         list_for_each_entry_safe(rg, trg, head, link) {
951                 list_del(&rg->link);
952                 kfree(rg);
953         }
954
955         VM_BUG_ON(resv_map->adds_in_progress);
956
957         kfree(resv_map);
958 }
959
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962         /*
963          * At inode evict time, i_mapping may not point to the original
964          * address space within the inode.  This original address space
965          * contains the pointer to the resv_map.  So, always use the
966          * address space embedded within the inode.
967          * The VERY common case is inode->mapping == &inode->i_data but,
968          * this may not be true for device special inodes.
969          */
970         return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         if (vma->vm_flags & VM_MAYSHARE) {
977                 struct address_space *mapping = vma->vm_file->f_mapping;
978                 struct inode *inode = mapping->host;
979
980                 return inode_resv_map(inode);
981
982         } else {
983                 return (struct resv_map *)(get_vma_private_data(vma) &
984                                                         ~HPAGE_RESV_MASK);
985         }
986 }
987
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992
993         set_vma_private_data(vma, (get_vma_private_data(vma) &
994                                 HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001
1002         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008
1009         return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015         /*
1016          * Clear vm_private_data
1017          * - For shared mappings this is a per-vma semaphore that may be
1018          *   allocated in a subsequent call to hugetlb_vm_op_open.
1019          *   Before clearing, make sure pointer is not associated with vma
1020          *   as this will leak the structure.  This is the case when called
1021          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022          *   been called to allocate a new structure.
1023          * - For MAP_PRIVATE mappings, this is the reserve map which does
1024          *   not apply to children.  Faults generated by the children are
1025          *   not guaranteed to succeed, even if read-only.
1026          */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029
1030                 if (vma_lock && vma_lock->vma != vma)
1031                         vma->vm_private_data = NULL;
1032         } else
1033                 vma->vm_private_data = NULL;
1034 }
1035
1036 /*
1037  * Reset and decrement one ref on hugepage private reservation.
1038  * Called with mm->mmap_sem writer semaphore held.
1039  * This function should be only used by move_vma() and operate on
1040  * same sized vma. It should never come here with last ref on the
1041  * reservation.
1042  */
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044 {
1045         /*
1046          * Clear the old hugetlb private page reservation.
1047          * It has already been transferred to new_vma.
1048          *
1049          * During a mremap() operation of a hugetlb vma we call move_vma()
1050          * which copies vma into new_vma and unmaps vma. After the copy
1051          * operation both new_vma and vma share a reference to the resv_map
1052          * struct, and at that point vma is about to be unmapped. We don't
1053          * want to return the reservation to the pool at unmap of vma because
1054          * the reservation still lives on in new_vma, so simply decrement the
1055          * ref here and remove the resv_map reference from this vma.
1056          */
1057         struct resv_map *reservations = vma_resv_map(vma);
1058
1059         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061                 kref_put(&reservations->refs, resv_map_release);
1062         }
1063
1064         hugetlb_dup_vma_private(vma);
1065 }
1066
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1069 {
1070         if (vma->vm_flags & VM_NORESERVE) {
1071                 /*
1072                  * This address is already reserved by other process(chg == 0),
1073                  * so, we should decrement reserved count. Without decrementing,
1074                  * reserve count remains after releasing inode, because this
1075                  * allocated page will go into page cache and is regarded as
1076                  * coming from reserved pool in releasing step.  Currently, we
1077                  * don't have any other solution to deal with this situation
1078                  * properly, so add work-around here.
1079                  */
1080                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1081                         return true;
1082                 else
1083                         return false;
1084         }
1085
1086         /* Shared mappings always use reserves */
1087         if (vma->vm_flags & VM_MAYSHARE) {
1088                 /*
1089                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1090                  * be a region map for all pages.  The only situation where
1091                  * there is no region map is if a hole was punched via
1092                  * fallocate.  In this case, there really are no reserves to
1093                  * use.  This situation is indicated if chg != 0.
1094                  */
1095                 if (chg)
1096                         return false;
1097                 else
1098                         return true;
1099         }
1100
1101         /*
1102          * Only the process that called mmap() has reserves for
1103          * private mappings.
1104          */
1105         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106                 /*
1107                  * Like the shared case above, a hole punch or truncate
1108                  * could have been performed on the private mapping.
1109                  * Examine the value of chg to determine if reserves
1110                  * actually exist or were previously consumed.
1111                  * Very Subtle - The value of chg comes from a previous
1112                  * call to vma_needs_reserves().  The reserve map for
1113                  * private mappings has different (opposite) semantics
1114                  * than that of shared mappings.  vma_needs_reserves()
1115                  * has already taken this difference in semantics into
1116                  * account.  Therefore, the meaning of chg is the same
1117                  * as in the shared case above.  Code could easily be
1118                  * combined, but keeping it separate draws attention to
1119                  * subtle differences.
1120                  */
1121                 if (chg)
1122                         return false;
1123                 else
1124                         return true;
1125         }
1126
1127         return false;
1128 }
1129
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1131 {
1132         int nid = page_to_nid(page);
1133
1134         lockdep_assert_held(&hugetlb_lock);
1135         VM_BUG_ON_PAGE(page_count(page), page);
1136
1137         list_move(&page->lru, &h->hugepage_freelists[nid]);
1138         h->free_huge_pages++;
1139         h->free_huge_pages_node[nid]++;
1140         SetHPageFreed(page);
1141 }
1142
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1144 {
1145         struct page *page;
1146         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1147
1148         lockdep_assert_held(&hugetlb_lock);
1149         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150                 if (pin && !is_longterm_pinnable_page(page))
1151                         continue;
1152
1153                 if (PageHWPoison(page))
1154                         continue;
1155
1156                 list_move(&page->lru, &h->hugepage_activelist);
1157                 set_page_refcounted(page);
1158                 ClearHPageFreed(page);
1159                 h->free_huge_pages--;
1160                 h->free_huge_pages_node[nid]--;
1161                 return page;
1162         }
1163
1164         return NULL;
1165 }
1166
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168                 nodemask_t *nmask)
1169 {
1170         unsigned int cpuset_mems_cookie;
1171         struct zonelist *zonelist;
1172         struct zone *zone;
1173         struct zoneref *z;
1174         int node = NUMA_NO_NODE;
1175
1176         zonelist = node_zonelist(nid, gfp_mask);
1177
1178 retry_cpuset:
1179         cpuset_mems_cookie = read_mems_allowed_begin();
1180         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181                 struct page *page;
1182
1183                 if (!cpuset_zone_allowed(zone, gfp_mask))
1184                         continue;
1185                 /*
1186                  * no need to ask again on the same node. Pool is node rather than
1187                  * zone aware
1188                  */
1189                 if (zone_to_nid(zone) == node)
1190                         continue;
1191                 node = zone_to_nid(zone);
1192
1193                 page = dequeue_huge_page_node_exact(h, node);
1194                 if (page)
1195                         return page;
1196         }
1197         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198                 goto retry_cpuset;
1199
1200         return NULL;
1201 }
1202
1203 static unsigned long available_huge_pages(struct hstate *h)
1204 {
1205         return h->free_huge_pages - h->resv_huge_pages;
1206 }
1207
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209                                 struct vm_area_struct *vma,
1210                                 unsigned long address, int avoid_reserve,
1211                                 long chg)
1212 {
1213         struct page *page = NULL;
1214         struct mempolicy *mpol;
1215         gfp_t gfp_mask;
1216         nodemask_t *nodemask;
1217         int nid;
1218
1219         /*
1220          * A child process with MAP_PRIVATE mappings created by their parent
1221          * have no page reserves. This check ensures that reservations are
1222          * not "stolen". The child may still get SIGKILLed
1223          */
1224         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1225                 goto err;
1226
1227         /* If reserves cannot be used, ensure enough pages are in the pool */
1228         if (avoid_reserve && !available_huge_pages(h))
1229                 goto err;
1230
1231         gfp_mask = htlb_alloc_mask(h);
1232         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1233
1234         if (mpol_is_preferred_many(mpol)) {
1235                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236
1237                 /* Fallback to all nodes if page==NULL */
1238                 nodemask = NULL;
1239         }
1240
1241         if (!page)
1242                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243
1244         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245                 SetHPageRestoreReserve(page);
1246                 h->resv_huge_pages--;
1247         }
1248
1249         mpol_cond_put(mpol);
1250         return page;
1251
1252 err:
1253         return NULL;
1254 }
1255
1256 /*
1257  * common helper functions for hstate_next_node_to_{alloc|free}.
1258  * We may have allocated or freed a huge page based on a different
1259  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260  * be outside of *nodes_allowed.  Ensure that we use an allowed
1261  * node for alloc or free.
1262  */
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265         nid = next_node_in(nid, *nodes_allowed);
1266         VM_BUG_ON(nid >= MAX_NUMNODES);
1267
1268         return nid;
1269 }
1270
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272 {
1273         if (!node_isset(nid, *nodes_allowed))
1274                 nid = next_node_allowed(nid, nodes_allowed);
1275         return nid;
1276 }
1277
1278 /*
1279  * returns the previously saved node ["this node"] from which to
1280  * allocate a persistent huge page for the pool and advance the
1281  * next node from which to allocate, handling wrap at end of node
1282  * mask.
1283  */
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285                                         nodemask_t *nodes_allowed)
1286 {
1287         int nid;
1288
1289         VM_BUG_ON(!nodes_allowed);
1290
1291         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293
1294         return nid;
1295 }
1296
1297 /*
1298  * helper for remove_pool_huge_page() - return the previously saved
1299  * node ["this node"] from which to free a huge page.  Advance the
1300  * next node id whether or not we find a free huge page to free so
1301  * that the next attempt to free addresses the next node.
1302  */
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304 {
1305         int nid;
1306
1307         VM_BUG_ON(!nodes_allowed);
1308
1309         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311
1312         return nid;
1313 }
1314
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1316         for (nr_nodes = nodes_weight(*mask);                            \
1317                 nr_nodes > 0 &&                                         \
1318                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1319                 nr_nodes--)
1320
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1322         for (nr_nodes = nodes_weight(*mask);                            \
1323                 nr_nodes > 0 &&                                         \
1324                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1325                 nr_nodes--)
1326
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329                                         unsigned int order, bool demote)
1330 {
1331         int i;
1332         int nr_pages = 1 << order;
1333         struct page *p;
1334
1335         atomic_set(compound_mapcount_ptr(page), 0);
1336         atomic_set(compound_pincount_ptr(page), 0);
1337
1338         for (i = 1; i < nr_pages; i++) {
1339                 p = nth_page(page, i);
1340                 p->mapping = NULL;
1341                 clear_compound_head(p);
1342                 if (!demote)
1343                         set_page_refcounted(p);
1344         }
1345
1346         set_compound_order(page, 0);
1347 #ifdef CONFIG_64BIT
1348         page[1].compound_nr = 0;
1349 #endif
1350         __ClearPageHead(page);
1351 }
1352
1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1354                                         unsigned int order)
1355 {
1356         __destroy_compound_gigantic_page(page, order, true);
1357 }
1358
1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1360 static void destroy_compound_gigantic_page(struct page *page,
1361                                         unsigned int order)
1362 {
1363         __destroy_compound_gigantic_page(page, order, false);
1364 }
1365
1366 static void free_gigantic_page(struct page *page, unsigned int order)
1367 {
1368         /*
1369          * If the page isn't allocated using the cma allocator,
1370          * cma_release() returns false.
1371          */
1372 #ifdef CONFIG_CMA
1373         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1374                 return;
1375 #endif
1376
1377         free_contig_range(page_to_pfn(page), 1 << order);
1378 }
1379
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382                 int nid, nodemask_t *nodemask)
1383 {
1384         unsigned long nr_pages = pages_per_huge_page(h);
1385         if (nid == NUMA_NO_NODE)
1386                 nid = numa_mem_id();
1387
1388 #ifdef CONFIG_CMA
1389         {
1390                 struct page *page;
1391                 int node;
1392
1393                 if (hugetlb_cma[nid]) {
1394                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395                                         huge_page_order(h), true);
1396                         if (page)
1397                                 return page;
1398                 }
1399
1400                 if (!(gfp_mask & __GFP_THISNODE)) {
1401                         for_each_node_mask(node, *nodemask) {
1402                                 if (node == nid || !hugetlb_cma[node])
1403                                         continue;
1404
1405                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406                                                 huge_page_order(h), true);
1407                                 if (page)
1408                                         return page;
1409                         }
1410                 }
1411         }
1412 #endif
1413
1414         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1415 }
1416
1417 #else /* !CONFIG_CONTIG_ALLOC */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419                                         int nid, nodemask_t *nodemask)
1420 {
1421         return NULL;
1422 }
1423 #endif /* CONFIG_CONTIG_ALLOC */
1424
1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1427                                         int nid, nodemask_t *nodemask)
1428 {
1429         return NULL;
1430 }
1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1432 static inline void destroy_compound_gigantic_page(struct page *page,
1433                                                 unsigned int order) { }
1434 #endif
1435
1436 /*
1437  * Remove hugetlb page from lists, and update dtor so that page appears
1438  * as just a compound page.
1439  *
1440  * A reference is held on the page, except in the case of demote.
1441  *
1442  * Must be called with hugetlb lock held.
1443  */
1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445                                                         bool adjust_surplus,
1446                                                         bool demote)
1447 {
1448         int nid = page_to_nid(page);
1449
1450         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1452
1453         lockdep_assert_held(&hugetlb_lock);
1454         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1455                 return;
1456
1457         list_del(&page->lru);
1458
1459         if (HPageFreed(page)) {
1460                 h->free_huge_pages--;
1461                 h->free_huge_pages_node[nid]--;
1462         }
1463         if (adjust_surplus) {
1464                 h->surplus_huge_pages--;
1465                 h->surplus_huge_pages_node[nid]--;
1466         }
1467
1468         /*
1469          * Very subtle
1470          *
1471          * For non-gigantic pages set the destructor to the normal compound
1472          * page dtor.  This is needed in case someone takes an additional
1473          * temporary ref to the page, and freeing is delayed until they drop
1474          * their reference.
1475          *
1476          * For gigantic pages set the destructor to the null dtor.  This
1477          * destructor will never be called.  Before freeing the gigantic
1478          * page destroy_compound_gigantic_page will turn the compound page
1479          * into a simple group of pages.  After this the destructor does not
1480          * apply.
1481          *
1482          * This handles the case where more than one ref is held when and
1483          * after update_and_free_page is called.
1484          *
1485          * In the case of demote we do not ref count the page as it will soon
1486          * be turned into a page of smaller size.
1487          */
1488         if (!demote)
1489                 set_page_refcounted(page);
1490         if (hstate_is_gigantic(h))
1491                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1492         else
1493                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1494
1495         h->nr_huge_pages--;
1496         h->nr_huge_pages_node[nid]--;
1497 }
1498
1499 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500                                                         bool adjust_surplus)
1501 {
1502         __remove_hugetlb_page(h, page, adjust_surplus, false);
1503 }
1504
1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506                                                         bool adjust_surplus)
1507 {
1508         __remove_hugetlb_page(h, page, adjust_surplus, true);
1509 }
1510
1511 static void add_hugetlb_page(struct hstate *h, struct page *page,
1512                              bool adjust_surplus)
1513 {
1514         int zeroed;
1515         int nid = page_to_nid(page);
1516
1517         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1518
1519         lockdep_assert_held(&hugetlb_lock);
1520
1521         INIT_LIST_HEAD(&page->lru);
1522         h->nr_huge_pages++;
1523         h->nr_huge_pages_node[nid]++;
1524
1525         if (adjust_surplus) {
1526                 h->surplus_huge_pages++;
1527                 h->surplus_huge_pages_node[nid]++;
1528         }
1529
1530         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531         set_page_private(page, 0);
1532         /*
1533          * We have to set HPageVmemmapOptimized again as above
1534          * set_page_private(page, 0) cleared it.
1535          */
1536         SetHPageVmemmapOptimized(page);
1537
1538         /*
1539          * This page is about to be managed by the hugetlb allocator and
1540          * should have no users.  Drop our reference, and check for others
1541          * just in case.
1542          */
1543         zeroed = put_page_testzero(page);
1544         if (!zeroed)
1545                 /*
1546                  * It is VERY unlikely soneone else has taken a ref on
1547                  * the page.  In this case, we simply return as the
1548                  * hugetlb destructor (free_huge_page) will be called
1549                  * when this other ref is dropped.
1550                  */
1551                 return;
1552
1553         arch_clear_hugepage_flags(page);
1554         enqueue_huge_page(h, page);
1555 }
1556
1557 static void __update_and_free_page(struct hstate *h, struct page *page)
1558 {
1559         int i;
1560         struct page *subpage;
1561
1562         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1563                 return;
1564
1565         /*
1566          * If we don't know which subpages are hwpoisoned, we can't free
1567          * the hugepage, so it's leaked intentionally.
1568          */
1569         if (HPageRawHwpUnreliable(page))
1570                 return;
1571
1572         if (hugetlb_vmemmap_restore(h, page)) {
1573                 spin_lock_irq(&hugetlb_lock);
1574                 /*
1575                  * If we cannot allocate vmemmap pages, just refuse to free the
1576                  * page and put the page back on the hugetlb free list and treat
1577                  * as a surplus page.
1578                  */
1579                 add_hugetlb_page(h, page, true);
1580                 spin_unlock_irq(&hugetlb_lock);
1581                 return;
1582         }
1583
1584         /*
1585          * Move PageHWPoison flag from head page to the raw error pages,
1586          * which makes any healthy subpages reusable.
1587          */
1588         if (unlikely(PageHWPoison(page)))
1589                 hugetlb_clear_page_hwpoison(page);
1590
1591         for (i = 0; i < pages_per_huge_page(h); i++) {
1592                 subpage = nth_page(page, i);
1593                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1594                                 1 << PG_referenced | 1 << PG_dirty |
1595                                 1 << PG_active | 1 << PG_private |
1596                                 1 << PG_writeback);
1597         }
1598
1599         /*
1600          * Non-gigantic pages demoted from CMA allocated gigantic pages
1601          * need to be given back to CMA in free_gigantic_page.
1602          */
1603         if (hstate_is_gigantic(h) ||
1604             hugetlb_cma_page(page, huge_page_order(h))) {
1605                 destroy_compound_gigantic_page(page, huge_page_order(h));
1606                 free_gigantic_page(page, huge_page_order(h));
1607         } else {
1608                 __free_pages(page, huge_page_order(h));
1609         }
1610 }
1611
1612 /*
1613  * As update_and_free_page() can be called under any context, so we cannot
1614  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616  * the vmemmap pages.
1617  *
1618  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619  * freed and frees them one-by-one. As the page->mapping pointer is going
1620  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621  * structure of a lockless linked list of huge pages to be freed.
1622  */
1623 static LLIST_HEAD(hpage_freelist);
1624
1625 static void free_hpage_workfn(struct work_struct *work)
1626 {
1627         struct llist_node *node;
1628
1629         node = llist_del_all(&hpage_freelist);
1630
1631         while (node) {
1632                 struct page *page;
1633                 struct hstate *h;
1634
1635                 page = container_of((struct address_space **)node,
1636                                      struct page, mapping);
1637                 node = node->next;
1638                 page->mapping = NULL;
1639                 /*
1640                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641                  * is going to trigger because a previous call to
1642                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1643                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1644                  */
1645                 h = size_to_hstate(page_size(page));
1646
1647                 __update_and_free_page(h, page);
1648
1649                 cond_resched();
1650         }
1651 }
1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1653
1654 static inline void flush_free_hpage_work(struct hstate *h)
1655 {
1656         if (hugetlb_vmemmap_optimizable(h))
1657                 flush_work(&free_hpage_work);
1658 }
1659
1660 static void update_and_free_page(struct hstate *h, struct page *page,
1661                                  bool atomic)
1662 {
1663         if (!HPageVmemmapOptimized(page) || !atomic) {
1664                 __update_and_free_page(h, page);
1665                 return;
1666         }
1667
1668         /*
1669          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1670          *
1671          * Only call schedule_work() if hpage_freelist is previously
1672          * empty. Otherwise, schedule_work() had been called but the workfn
1673          * hasn't retrieved the list yet.
1674          */
1675         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676                 schedule_work(&free_hpage_work);
1677 }
1678
1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1680 {
1681         struct page *page, *t_page;
1682
1683         list_for_each_entry_safe(page, t_page, list, lru) {
1684                 update_and_free_page(h, page, false);
1685                 cond_resched();
1686         }
1687 }
1688
1689 struct hstate *size_to_hstate(unsigned long size)
1690 {
1691         struct hstate *h;
1692
1693         for_each_hstate(h) {
1694                 if (huge_page_size(h) == size)
1695                         return h;
1696         }
1697         return NULL;
1698 }
1699
1700 void free_huge_page(struct page *page)
1701 {
1702         /*
1703          * Can't pass hstate in here because it is called from the
1704          * compound page destructor.
1705          */
1706         struct hstate *h = page_hstate(page);
1707         int nid = page_to_nid(page);
1708         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1709         bool restore_reserve;
1710         unsigned long flags;
1711
1712         VM_BUG_ON_PAGE(page_count(page), page);
1713         VM_BUG_ON_PAGE(page_mapcount(page), page);
1714
1715         hugetlb_set_page_subpool(page, NULL);
1716         if (PageAnon(page))
1717                 __ClearPageAnonExclusive(page);
1718         page->mapping = NULL;
1719         restore_reserve = HPageRestoreReserve(page);
1720         ClearHPageRestoreReserve(page);
1721
1722         /*
1723          * If HPageRestoreReserve was set on page, page allocation consumed a
1724          * reservation.  If the page was associated with a subpool, there
1725          * would have been a page reserved in the subpool before allocation
1726          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1727          * reservation, do not call hugepage_subpool_put_pages() as this will
1728          * remove the reserved page from the subpool.
1729          */
1730         if (!restore_reserve) {
1731                 /*
1732                  * A return code of zero implies that the subpool will be
1733                  * under its minimum size if the reservation is not restored
1734                  * after page is free.  Therefore, force restore_reserve
1735                  * operation.
1736                  */
1737                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1738                         restore_reserve = true;
1739         }
1740
1741         spin_lock_irqsave(&hugetlb_lock, flags);
1742         ClearHPageMigratable(page);
1743         hugetlb_cgroup_uncharge_page(hstate_index(h),
1744                                      pages_per_huge_page(h), page);
1745         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746                                           pages_per_huge_page(h), page);
1747         if (restore_reserve)
1748                 h->resv_huge_pages++;
1749
1750         if (HPageTemporary(page)) {
1751                 remove_hugetlb_page(h, page, false);
1752                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1753                 update_and_free_page(h, page, true);
1754         } else if (h->surplus_huge_pages_node[nid]) {
1755                 /* remove the page from active list */
1756                 remove_hugetlb_page(h, page, true);
1757                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1758                 update_and_free_page(h, page, true);
1759         } else {
1760                 arch_clear_hugepage_flags(page);
1761                 enqueue_huge_page(h, page);
1762                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1763         }
1764 }
1765
1766 /*
1767  * Must be called with the hugetlb lock held
1768  */
1769 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1770 {
1771         lockdep_assert_held(&hugetlb_lock);
1772         h->nr_huge_pages++;
1773         h->nr_huge_pages_node[nid]++;
1774 }
1775
1776 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1777 {
1778         hugetlb_vmemmap_optimize(h, page);
1779         INIT_LIST_HEAD(&page->lru);
1780         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1781         hugetlb_set_page_subpool(page, NULL);
1782         set_hugetlb_cgroup(page, NULL);
1783         set_hugetlb_cgroup_rsvd(page, NULL);
1784 }
1785
1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1787 {
1788         __prep_new_huge_page(h, page);
1789         spin_lock_irq(&hugetlb_lock);
1790         __prep_account_new_huge_page(h, nid);
1791         spin_unlock_irq(&hugetlb_lock);
1792 }
1793
1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1795                                                                 bool demote)
1796 {
1797         int i, j;
1798         int nr_pages = 1 << order;
1799         struct page *p;
1800
1801         /* we rely on prep_new_huge_page to set the destructor */
1802         set_compound_order(page, order);
1803         __SetPageHead(page);
1804         for (i = 0; i < nr_pages; i++) {
1805                 p = nth_page(page, i);
1806
1807                 /*
1808                  * For gigantic hugepages allocated through bootmem at
1809                  * boot, it's safer to be consistent with the not-gigantic
1810                  * hugepages and clear the PG_reserved bit from all tail pages
1811                  * too.  Otherwise drivers using get_user_pages() to access tail
1812                  * pages may get the reference counting wrong if they see
1813                  * PG_reserved set on a tail page (despite the head page not
1814                  * having PG_reserved set).  Enforcing this consistency between
1815                  * head and tail pages allows drivers to optimize away a check
1816                  * on the head page when they need know if put_page() is needed
1817                  * after get_user_pages().
1818                  */
1819                 __ClearPageReserved(p);
1820                 /*
1821                  * Subtle and very unlikely
1822                  *
1823                  * Gigantic 'page allocators' such as memblock or cma will
1824                  * return a set of pages with each page ref counted.  We need
1825                  * to turn this set of pages into a compound page with tail
1826                  * page ref counts set to zero.  Code such as speculative page
1827                  * cache adding could take a ref on a 'to be' tail page.
1828                  * We need to respect any increased ref count, and only set
1829                  * the ref count to zero if count is currently 1.  If count
1830                  * is not 1, we return an error.  An error return indicates
1831                  * the set of pages can not be converted to a gigantic page.
1832                  * The caller who allocated the pages should then discard the
1833                  * pages using the appropriate free interface.
1834                  *
1835                  * In the case of demote, the ref count will be zero.
1836                  */
1837                 if (!demote) {
1838                         if (!page_ref_freeze(p, 1)) {
1839                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1840                                 goto out_error;
1841                         }
1842                 } else {
1843                         VM_BUG_ON_PAGE(page_count(p), p);
1844                 }
1845                 if (i != 0)
1846                         set_compound_head(p, page);
1847         }
1848         atomic_set(compound_mapcount_ptr(page), -1);
1849         atomic_set(compound_pincount_ptr(page), 0);
1850         return true;
1851
1852 out_error:
1853         /* undo page modifications made above */
1854         for (j = 0; j < i; j++) {
1855                 p = nth_page(page, j);
1856                 if (j != 0)
1857                         clear_compound_head(p);
1858                 set_page_refcounted(p);
1859         }
1860         /* need to clear PG_reserved on remaining tail pages  */
1861         for (; j < nr_pages; j++) {
1862                 p = nth_page(page, j);
1863                 __ClearPageReserved(p);
1864         }
1865         set_compound_order(page, 0);
1866 #ifdef CONFIG_64BIT
1867         page[1].compound_nr = 0;
1868 #endif
1869         __ClearPageHead(page);
1870         return false;
1871 }
1872
1873 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1874 {
1875         return __prep_compound_gigantic_page(page, order, false);
1876 }
1877
1878 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1879                                                         unsigned int order)
1880 {
1881         return __prep_compound_gigantic_page(page, order, true);
1882 }
1883
1884 /*
1885  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1886  * transparent huge pages.  See the PageTransHuge() documentation for more
1887  * details.
1888  */
1889 int PageHuge(struct page *page)
1890 {
1891         if (!PageCompound(page))
1892                 return 0;
1893
1894         page = compound_head(page);
1895         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1896 }
1897 EXPORT_SYMBOL_GPL(PageHuge);
1898
1899 /*
1900  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1901  * normal or transparent huge pages.
1902  */
1903 int PageHeadHuge(struct page *page_head)
1904 {
1905         if (!PageHead(page_head))
1906                 return 0;
1907
1908         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1909 }
1910 EXPORT_SYMBOL_GPL(PageHeadHuge);
1911
1912 /*
1913  * Find and lock address space (mapping) in write mode.
1914  *
1915  * Upon entry, the page is locked which means that page_mapping() is
1916  * stable.  Due to locking order, we can only trylock_write.  If we can
1917  * not get the lock, simply return NULL to caller.
1918  */
1919 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1920 {
1921         struct address_space *mapping = page_mapping(hpage);
1922
1923         if (!mapping)
1924                 return mapping;
1925
1926         if (i_mmap_trylock_write(mapping))
1927                 return mapping;
1928
1929         return NULL;
1930 }
1931
1932 pgoff_t hugetlb_basepage_index(struct page *page)
1933 {
1934         struct page *page_head = compound_head(page);
1935         pgoff_t index = page_index(page_head);
1936         unsigned long compound_idx;
1937
1938         if (compound_order(page_head) >= MAX_ORDER)
1939                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1940         else
1941                 compound_idx = page - page_head;
1942
1943         return (index << compound_order(page_head)) + compound_idx;
1944 }
1945
1946 static struct page *alloc_buddy_huge_page(struct hstate *h,
1947                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948                 nodemask_t *node_alloc_noretry)
1949 {
1950         int order = huge_page_order(h);
1951         struct page *page;
1952         bool alloc_try_hard = true;
1953         bool retry = true;
1954
1955         /*
1956          * By default we always try hard to allocate the page with
1957          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1958          * a loop (to adjust global huge page counts) and previous allocation
1959          * failed, do not continue to try hard on the same node.  Use the
1960          * node_alloc_noretry bitmap to manage this state information.
1961          */
1962         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963                 alloc_try_hard = false;
1964         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1965         if (alloc_try_hard)
1966                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1967         if (nid == NUMA_NO_NODE)
1968                 nid = numa_mem_id();
1969 retry:
1970         page = __alloc_pages(gfp_mask, order, nid, nmask);
1971
1972         /* Freeze head page */
1973         if (page && !page_ref_freeze(page, 1)) {
1974                 __free_pages(page, order);
1975                 if (retry) {    /* retry once */
1976                         retry = false;
1977                         goto retry;
1978                 }
1979                 /* WOW!  twice in a row. */
1980                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1981                 page = NULL;
1982         }
1983
1984         if (page)
1985                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1986         else
1987                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1988
1989         /*
1990          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1991          * indicates an overall state change.  Clear bit so that we resume
1992          * normal 'try hard' allocations.
1993          */
1994         if (node_alloc_noretry && page && !alloc_try_hard)
1995                 node_clear(nid, *node_alloc_noretry);
1996
1997         /*
1998          * If we tried hard to get a page but failed, set bit so that
1999          * subsequent attempts will not try as hard until there is an
2000          * overall state change.
2001          */
2002         if (node_alloc_noretry && !page && alloc_try_hard)
2003                 node_set(nid, *node_alloc_noretry);
2004
2005         return page;
2006 }
2007
2008 /*
2009  * Common helper to allocate a fresh hugetlb page. All specific allocators
2010  * should use this function to get new hugetlb pages
2011  *
2012  * Note that returned page is 'frozen':  ref count of head page and all tail
2013  * pages is zero.
2014  */
2015 static struct page *alloc_fresh_huge_page(struct hstate *h,
2016                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2017                 nodemask_t *node_alloc_noretry)
2018 {
2019         struct page *page;
2020         bool retry = false;
2021
2022 retry:
2023         if (hstate_is_gigantic(h))
2024                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2025         else
2026                 page = alloc_buddy_huge_page(h, gfp_mask,
2027                                 nid, nmask, node_alloc_noretry);
2028         if (!page)
2029                 return NULL;
2030
2031         if (hstate_is_gigantic(h)) {
2032                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2033                         /*
2034                          * Rare failure to convert pages to compound page.
2035                          * Free pages and try again - ONCE!
2036                          */
2037                         free_gigantic_page(page, huge_page_order(h));
2038                         if (!retry) {
2039                                 retry = true;
2040                                 goto retry;
2041                         }
2042                         return NULL;
2043                 }
2044         }
2045         prep_new_huge_page(h, page, page_to_nid(page));
2046
2047         return page;
2048 }
2049
2050 /*
2051  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2052  * manner.
2053  */
2054 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2055                                 nodemask_t *node_alloc_noretry)
2056 {
2057         struct page *page;
2058         int nr_nodes, node;
2059         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2060
2061         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2062                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2063                                                 node_alloc_noretry);
2064                 if (page)
2065                         break;
2066         }
2067
2068         if (!page)
2069                 return 0;
2070
2071         free_huge_page(page); /* free it into the hugepage allocator */
2072
2073         return 1;
2074 }
2075
2076 /*
2077  * Remove huge page from pool from next node to free.  Attempt to keep
2078  * persistent huge pages more or less balanced over allowed nodes.
2079  * This routine only 'removes' the hugetlb page.  The caller must make
2080  * an additional call to free the page to low level allocators.
2081  * Called with hugetlb_lock locked.
2082  */
2083 static struct page *remove_pool_huge_page(struct hstate *h,
2084                                                 nodemask_t *nodes_allowed,
2085                                                  bool acct_surplus)
2086 {
2087         int nr_nodes, node;
2088         struct page *page = NULL;
2089
2090         lockdep_assert_held(&hugetlb_lock);
2091         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2092                 /*
2093                  * If we're returning unused surplus pages, only examine
2094                  * nodes with surplus pages.
2095                  */
2096                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2097                     !list_empty(&h->hugepage_freelists[node])) {
2098                         page = list_entry(h->hugepage_freelists[node].next,
2099                                           struct page, lru);
2100                         remove_hugetlb_page(h, page, acct_surplus);
2101                         break;
2102                 }
2103         }
2104
2105         return page;
2106 }
2107
2108 /*
2109  * Dissolve a given free hugepage into free buddy pages. This function does
2110  * nothing for in-use hugepages and non-hugepages.
2111  * This function returns values like below:
2112  *
2113  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2114  *           when the system is under memory pressure and the feature of
2115  *           freeing unused vmemmap pages associated with each hugetlb page
2116  *           is enabled.
2117  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2118  *           (allocated or reserved.)
2119  *       0:  successfully dissolved free hugepages or the page is not a
2120  *           hugepage (considered as already dissolved)
2121  */
2122 int dissolve_free_huge_page(struct page *page)
2123 {
2124         int rc = -EBUSY;
2125
2126 retry:
2127         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2128         if (!PageHuge(page))
2129                 return 0;
2130
2131         spin_lock_irq(&hugetlb_lock);
2132         if (!PageHuge(page)) {
2133                 rc = 0;
2134                 goto out;
2135         }
2136
2137         if (!page_count(page)) {
2138                 struct page *head = compound_head(page);
2139                 struct hstate *h = page_hstate(head);
2140                 if (!available_huge_pages(h))
2141                         goto out;
2142
2143                 /*
2144                  * We should make sure that the page is already on the free list
2145                  * when it is dissolved.
2146                  */
2147                 if (unlikely(!HPageFreed(head))) {
2148                         spin_unlock_irq(&hugetlb_lock);
2149                         cond_resched();
2150
2151                         /*
2152                          * Theoretically, we should return -EBUSY when we
2153                          * encounter this race. In fact, we have a chance
2154                          * to successfully dissolve the page if we do a
2155                          * retry. Because the race window is quite small.
2156                          * If we seize this opportunity, it is an optimization
2157                          * for increasing the success rate of dissolving page.
2158                          */
2159                         goto retry;
2160                 }
2161
2162                 remove_hugetlb_page(h, head, false);
2163                 h->max_huge_pages--;
2164                 spin_unlock_irq(&hugetlb_lock);
2165
2166                 /*
2167                  * Normally update_and_free_page will allocate required vmemmmap
2168                  * before freeing the page.  update_and_free_page will fail to
2169                  * free the page if it can not allocate required vmemmap.  We
2170                  * need to adjust max_huge_pages if the page is not freed.
2171                  * Attempt to allocate vmemmmap here so that we can take
2172                  * appropriate action on failure.
2173                  */
2174                 rc = hugetlb_vmemmap_restore(h, head);
2175                 if (!rc) {
2176                         update_and_free_page(h, head, false);
2177                 } else {
2178                         spin_lock_irq(&hugetlb_lock);
2179                         add_hugetlb_page(h, head, false);
2180                         h->max_huge_pages++;
2181                         spin_unlock_irq(&hugetlb_lock);
2182                 }
2183
2184                 return rc;
2185         }
2186 out:
2187         spin_unlock_irq(&hugetlb_lock);
2188         return rc;
2189 }
2190
2191 /*
2192  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2193  * make specified memory blocks removable from the system.
2194  * Note that this will dissolve a free gigantic hugepage completely, if any
2195  * part of it lies within the given range.
2196  * Also note that if dissolve_free_huge_page() returns with an error, all
2197  * free hugepages that were dissolved before that error are lost.
2198  */
2199 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2200 {
2201         unsigned long pfn;
2202         struct page *page;
2203         int rc = 0;
2204         unsigned int order;
2205         struct hstate *h;
2206
2207         if (!hugepages_supported())
2208                 return rc;
2209
2210         order = huge_page_order(&default_hstate);
2211         for_each_hstate(h)
2212                 order = min(order, huge_page_order(h));
2213
2214         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2215                 page = pfn_to_page(pfn);
2216                 rc = dissolve_free_huge_page(page);
2217                 if (rc)
2218                         break;
2219         }
2220
2221         return rc;
2222 }
2223
2224 /*
2225  * Allocates a fresh surplus page from the page allocator.
2226  */
2227 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2228                                                 int nid, nodemask_t *nmask)
2229 {
2230         struct page *page = NULL;
2231
2232         if (hstate_is_gigantic(h))
2233                 return NULL;
2234
2235         spin_lock_irq(&hugetlb_lock);
2236         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2237                 goto out_unlock;
2238         spin_unlock_irq(&hugetlb_lock);
2239
2240         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2241         if (!page)
2242                 return NULL;
2243
2244         spin_lock_irq(&hugetlb_lock);
2245         /*
2246          * We could have raced with the pool size change.
2247          * Double check that and simply deallocate the new page
2248          * if we would end up overcommiting the surpluses. Abuse
2249          * temporary page to workaround the nasty free_huge_page
2250          * codeflow
2251          */
2252         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2253                 SetHPageTemporary(page);
2254                 spin_unlock_irq(&hugetlb_lock);
2255                 free_huge_page(page);
2256                 return NULL;
2257         }
2258
2259         h->surplus_huge_pages++;
2260         h->surplus_huge_pages_node[page_to_nid(page)]++;
2261
2262 out_unlock:
2263         spin_unlock_irq(&hugetlb_lock);
2264
2265         return page;
2266 }
2267
2268 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2269                                      int nid, nodemask_t *nmask)
2270 {
2271         struct page *page;
2272
2273         if (hstate_is_gigantic(h))
2274                 return NULL;
2275
2276         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2277         if (!page)
2278                 return NULL;
2279
2280         /* fresh huge pages are frozen */
2281         set_page_refcounted(page);
2282
2283         /*
2284          * We do not account these pages as surplus because they are only
2285          * temporary and will be released properly on the last reference
2286          */
2287         SetHPageTemporary(page);
2288
2289         return page;
2290 }
2291
2292 /*
2293  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2294  */
2295 static
2296 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2297                 struct vm_area_struct *vma, unsigned long addr)
2298 {
2299         struct page *page = NULL;
2300         struct mempolicy *mpol;
2301         gfp_t gfp_mask = htlb_alloc_mask(h);
2302         int nid;
2303         nodemask_t *nodemask;
2304
2305         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2306         if (mpol_is_preferred_many(mpol)) {
2307                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2308
2309                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2310                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2311
2312                 /* Fallback to all nodes if page==NULL */
2313                 nodemask = NULL;
2314         }
2315
2316         if (!page)
2317                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2318         mpol_cond_put(mpol);
2319         return page;
2320 }
2321
2322 /* page migration callback function */
2323 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2324                 nodemask_t *nmask, gfp_t gfp_mask)
2325 {
2326         spin_lock_irq(&hugetlb_lock);
2327         if (available_huge_pages(h)) {
2328                 struct page *page;
2329
2330                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2331                 if (page) {
2332                         spin_unlock_irq(&hugetlb_lock);
2333                         return page;
2334                 }
2335         }
2336         spin_unlock_irq(&hugetlb_lock);
2337
2338         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2339 }
2340
2341 /* mempolicy aware migration callback */
2342 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2343                 unsigned long address)
2344 {
2345         struct mempolicy *mpol;
2346         nodemask_t *nodemask;
2347         struct page *page;
2348         gfp_t gfp_mask;
2349         int node;
2350
2351         gfp_mask = htlb_alloc_mask(h);
2352         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2353         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2354         mpol_cond_put(mpol);
2355
2356         return page;
2357 }
2358
2359 /*
2360  * Increase the hugetlb pool such that it can accommodate a reservation
2361  * of size 'delta'.
2362  */
2363 static int gather_surplus_pages(struct hstate *h, long delta)
2364         __must_hold(&hugetlb_lock)
2365 {
2366         LIST_HEAD(surplus_list);
2367         struct page *page, *tmp;
2368         int ret;
2369         long i;
2370         long needed, allocated;
2371         bool alloc_ok = true;
2372
2373         lockdep_assert_held(&hugetlb_lock);
2374         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2375         if (needed <= 0) {
2376                 h->resv_huge_pages += delta;
2377                 return 0;
2378         }
2379
2380         allocated = 0;
2381
2382         ret = -ENOMEM;
2383 retry:
2384         spin_unlock_irq(&hugetlb_lock);
2385         for (i = 0; i < needed; i++) {
2386                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2387                                 NUMA_NO_NODE, NULL);
2388                 if (!page) {
2389                         alloc_ok = false;
2390                         break;
2391                 }
2392                 list_add(&page->lru, &surplus_list);
2393                 cond_resched();
2394         }
2395         allocated += i;
2396
2397         /*
2398          * After retaking hugetlb_lock, we need to recalculate 'needed'
2399          * because either resv_huge_pages or free_huge_pages may have changed.
2400          */
2401         spin_lock_irq(&hugetlb_lock);
2402         needed = (h->resv_huge_pages + delta) -
2403                         (h->free_huge_pages + allocated);
2404         if (needed > 0) {
2405                 if (alloc_ok)
2406                         goto retry;
2407                 /*
2408                  * We were not able to allocate enough pages to
2409                  * satisfy the entire reservation so we free what
2410                  * we've allocated so far.
2411                  */
2412                 goto free;
2413         }
2414         /*
2415          * The surplus_list now contains _at_least_ the number of extra pages
2416          * needed to accommodate the reservation.  Add the appropriate number
2417          * of pages to the hugetlb pool and free the extras back to the buddy
2418          * allocator.  Commit the entire reservation here to prevent another
2419          * process from stealing the pages as they are added to the pool but
2420          * before they are reserved.
2421          */
2422         needed += allocated;
2423         h->resv_huge_pages += delta;
2424         ret = 0;
2425
2426         /* Free the needed pages to the hugetlb pool */
2427         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2428                 if ((--needed) < 0)
2429                         break;
2430                 /* Add the page to the hugetlb allocator */
2431                 enqueue_huge_page(h, page);
2432         }
2433 free:
2434         spin_unlock_irq(&hugetlb_lock);
2435
2436         /*
2437          * Free unnecessary surplus pages to the buddy allocator.
2438          * Pages have no ref count, call free_huge_page directly.
2439          */
2440         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2441                 free_huge_page(page);
2442         spin_lock_irq(&hugetlb_lock);
2443
2444         return ret;
2445 }
2446
2447 /*
2448  * This routine has two main purposes:
2449  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2450  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2451  *    to the associated reservation map.
2452  * 2) Free any unused surplus pages that may have been allocated to satisfy
2453  *    the reservation.  As many as unused_resv_pages may be freed.
2454  */
2455 static void return_unused_surplus_pages(struct hstate *h,
2456                                         unsigned long unused_resv_pages)
2457 {
2458         unsigned long nr_pages;
2459         struct page *page;
2460         LIST_HEAD(page_list);
2461
2462         lockdep_assert_held(&hugetlb_lock);
2463         /* Uncommit the reservation */
2464         h->resv_huge_pages -= unused_resv_pages;
2465
2466         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2467                 goto out;
2468
2469         /*
2470          * Part (or even all) of the reservation could have been backed
2471          * by pre-allocated pages. Only free surplus pages.
2472          */
2473         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2474
2475         /*
2476          * We want to release as many surplus pages as possible, spread
2477          * evenly across all nodes with memory. Iterate across these nodes
2478          * until we can no longer free unreserved surplus pages. This occurs
2479          * when the nodes with surplus pages have no free pages.
2480          * remove_pool_huge_page() will balance the freed pages across the
2481          * on-line nodes with memory and will handle the hstate accounting.
2482          */
2483         while (nr_pages--) {
2484                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2485                 if (!page)
2486                         goto out;
2487
2488                 list_add(&page->lru, &page_list);
2489         }
2490
2491 out:
2492         spin_unlock_irq(&hugetlb_lock);
2493         update_and_free_pages_bulk(h, &page_list);
2494         spin_lock_irq(&hugetlb_lock);
2495 }
2496
2497
2498 /*
2499  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2500  * are used by the huge page allocation routines to manage reservations.
2501  *
2502  * vma_needs_reservation is called to determine if the huge page at addr
2503  * within the vma has an associated reservation.  If a reservation is
2504  * needed, the value 1 is returned.  The caller is then responsible for
2505  * managing the global reservation and subpool usage counts.  After
2506  * the huge page has been allocated, vma_commit_reservation is called
2507  * to add the page to the reservation map.  If the page allocation fails,
2508  * the reservation must be ended instead of committed.  vma_end_reservation
2509  * is called in such cases.
2510  *
2511  * In the normal case, vma_commit_reservation returns the same value
2512  * as the preceding vma_needs_reservation call.  The only time this
2513  * is not the case is if a reserve map was changed between calls.  It
2514  * is the responsibility of the caller to notice the difference and
2515  * take appropriate action.
2516  *
2517  * vma_add_reservation is used in error paths where a reservation must
2518  * be restored when a newly allocated huge page must be freed.  It is
2519  * to be called after calling vma_needs_reservation to determine if a
2520  * reservation exists.
2521  *
2522  * vma_del_reservation is used in error paths where an entry in the reserve
2523  * map was created during huge page allocation and must be removed.  It is to
2524  * be called after calling vma_needs_reservation to determine if a reservation
2525  * exists.
2526  */
2527 enum vma_resv_mode {
2528         VMA_NEEDS_RESV,
2529         VMA_COMMIT_RESV,
2530         VMA_END_RESV,
2531         VMA_ADD_RESV,
2532         VMA_DEL_RESV,
2533 };
2534 static long __vma_reservation_common(struct hstate *h,
2535                                 struct vm_area_struct *vma, unsigned long addr,
2536                                 enum vma_resv_mode mode)
2537 {
2538         struct resv_map *resv;
2539         pgoff_t idx;
2540         long ret;
2541         long dummy_out_regions_needed;
2542
2543         resv = vma_resv_map(vma);
2544         if (!resv)
2545                 return 1;
2546
2547         idx = vma_hugecache_offset(h, vma, addr);
2548         switch (mode) {
2549         case VMA_NEEDS_RESV:
2550                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2551                 /* We assume that vma_reservation_* routines always operate on
2552                  * 1 page, and that adding to resv map a 1 page entry can only
2553                  * ever require 1 region.
2554                  */
2555                 VM_BUG_ON(dummy_out_regions_needed != 1);
2556                 break;
2557         case VMA_COMMIT_RESV:
2558                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2559                 /* region_add calls of range 1 should never fail. */
2560                 VM_BUG_ON(ret < 0);
2561                 break;
2562         case VMA_END_RESV:
2563                 region_abort(resv, idx, idx + 1, 1);
2564                 ret = 0;
2565                 break;
2566         case VMA_ADD_RESV:
2567                 if (vma->vm_flags & VM_MAYSHARE) {
2568                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2569                         /* region_add calls of range 1 should never fail. */
2570                         VM_BUG_ON(ret < 0);
2571                 } else {
2572                         region_abort(resv, idx, idx + 1, 1);
2573                         ret = region_del(resv, idx, idx + 1);
2574                 }
2575                 break;
2576         case VMA_DEL_RESV:
2577                 if (vma->vm_flags & VM_MAYSHARE) {
2578                         region_abort(resv, idx, idx + 1, 1);
2579                         ret = region_del(resv, idx, idx + 1);
2580                 } else {
2581                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2582                         /* region_add calls of range 1 should never fail. */
2583                         VM_BUG_ON(ret < 0);
2584                 }
2585                 break;
2586         default:
2587                 BUG();
2588         }
2589
2590         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2591                 return ret;
2592         /*
2593          * We know private mapping must have HPAGE_RESV_OWNER set.
2594          *
2595          * In most cases, reserves always exist for private mappings.
2596          * However, a file associated with mapping could have been
2597          * hole punched or truncated after reserves were consumed.
2598          * As subsequent fault on such a range will not use reserves.
2599          * Subtle - The reserve map for private mappings has the
2600          * opposite meaning than that of shared mappings.  If NO
2601          * entry is in the reserve map, it means a reservation exists.
2602          * If an entry exists in the reserve map, it means the
2603          * reservation has already been consumed.  As a result, the
2604          * return value of this routine is the opposite of the
2605          * value returned from reserve map manipulation routines above.
2606          */
2607         if (ret > 0)
2608                 return 0;
2609         if (ret == 0)
2610                 return 1;
2611         return ret;
2612 }
2613
2614 static long vma_needs_reservation(struct hstate *h,
2615                         struct vm_area_struct *vma, unsigned long addr)
2616 {
2617         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2618 }
2619
2620 static long vma_commit_reservation(struct hstate *h,
2621                         struct vm_area_struct *vma, unsigned long addr)
2622 {
2623         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2624 }
2625
2626 static void vma_end_reservation(struct hstate *h,
2627                         struct vm_area_struct *vma, unsigned long addr)
2628 {
2629         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2630 }
2631
2632 static long vma_add_reservation(struct hstate *h,
2633                         struct vm_area_struct *vma, unsigned long addr)
2634 {
2635         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2636 }
2637
2638 static long vma_del_reservation(struct hstate *h,
2639                         struct vm_area_struct *vma, unsigned long addr)
2640 {
2641         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2642 }
2643
2644 /*
2645  * This routine is called to restore reservation information on error paths.
2646  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2647  * the hugetlb mutex should remain held when calling this routine.
2648  *
2649  * It handles two specific cases:
2650  * 1) A reservation was in place and the page consumed the reservation.
2651  *    HPageRestoreReserve is set in the page.
2652  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2653  *    not set.  However, alloc_huge_page always updates the reserve map.
2654  *
2655  * In case 1, free_huge_page later in the error path will increment the
2656  * global reserve count.  But, free_huge_page does not have enough context
2657  * to adjust the reservation map.  This case deals primarily with private
2658  * mappings.  Adjust the reserve map here to be consistent with global
2659  * reserve count adjustments to be made by free_huge_page.  Make sure the
2660  * reserve map indicates there is a reservation present.
2661  *
2662  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2663  */
2664 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2665                         unsigned long address, struct page *page)
2666 {
2667         long rc = vma_needs_reservation(h, vma, address);
2668
2669         if (HPageRestoreReserve(page)) {
2670                 if (unlikely(rc < 0))
2671                         /*
2672                          * Rare out of memory condition in reserve map
2673                          * manipulation.  Clear HPageRestoreReserve so that
2674                          * global reserve count will not be incremented
2675                          * by free_huge_page.  This will make it appear
2676                          * as though the reservation for this page was
2677                          * consumed.  This may prevent the task from
2678                          * faulting in the page at a later time.  This
2679                          * is better than inconsistent global huge page
2680                          * accounting of reserve counts.
2681                          */
2682                         ClearHPageRestoreReserve(page);
2683                 else if (rc)
2684                         (void)vma_add_reservation(h, vma, address);
2685                 else
2686                         vma_end_reservation(h, vma, address);
2687         } else {
2688                 if (!rc) {
2689                         /*
2690                          * This indicates there is an entry in the reserve map
2691                          * not added by alloc_huge_page.  We know it was added
2692                          * before the alloc_huge_page call, otherwise
2693                          * HPageRestoreReserve would be set on the page.
2694                          * Remove the entry so that a subsequent allocation
2695                          * does not consume a reservation.
2696                          */
2697                         rc = vma_del_reservation(h, vma, address);
2698                         if (rc < 0)
2699                                 /*
2700                                  * VERY rare out of memory condition.  Since
2701                                  * we can not delete the entry, set
2702                                  * HPageRestoreReserve so that the reserve
2703                                  * count will be incremented when the page
2704                                  * is freed.  This reserve will be consumed
2705                                  * on a subsequent allocation.
2706                                  */
2707                                 SetHPageRestoreReserve(page);
2708                 } else if (rc < 0) {
2709                         /*
2710                          * Rare out of memory condition from
2711                          * vma_needs_reservation call.  Memory allocation is
2712                          * only attempted if a new entry is needed.  Therefore,
2713                          * this implies there is not an entry in the
2714                          * reserve map.
2715                          *
2716                          * For shared mappings, no entry in the map indicates
2717                          * no reservation.  We are done.
2718                          */
2719                         if (!(vma->vm_flags & VM_MAYSHARE))
2720                                 /*
2721                                  * For private mappings, no entry indicates
2722                                  * a reservation is present.  Since we can
2723                                  * not add an entry, set SetHPageRestoreReserve
2724                                  * on the page so reserve count will be
2725                                  * incremented when freed.  This reserve will
2726                                  * be consumed on a subsequent allocation.
2727                                  */
2728                                 SetHPageRestoreReserve(page);
2729                 } else
2730                         /*
2731                          * No reservation present, do nothing
2732                          */
2733                          vma_end_reservation(h, vma, address);
2734         }
2735 }
2736
2737 /*
2738  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2739  * @h: struct hstate old page belongs to
2740  * @old_page: Old page to dissolve
2741  * @list: List to isolate the page in case we need to
2742  * Returns 0 on success, otherwise negated error.
2743  */
2744 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2745                                         struct list_head *list)
2746 {
2747         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2748         int nid = page_to_nid(old_page);
2749         struct page *new_page;
2750         int ret = 0;
2751
2752         /*
2753          * Before dissolving the page, we need to allocate a new one for the
2754          * pool to remain stable.  Here, we allocate the page and 'prep' it
2755          * by doing everything but actually updating counters and adding to
2756          * the pool.  This simplifies and let us do most of the processing
2757          * under the lock.
2758          */
2759         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2760         if (!new_page)
2761                 return -ENOMEM;
2762         __prep_new_huge_page(h, new_page);
2763
2764 retry:
2765         spin_lock_irq(&hugetlb_lock);
2766         if (!PageHuge(old_page)) {
2767                 /*
2768                  * Freed from under us. Drop new_page too.
2769                  */
2770                 goto free_new;
2771         } else if (page_count(old_page)) {
2772                 /*
2773                  * Someone has grabbed the page, try to isolate it here.
2774                  * Fail with -EBUSY if not possible.
2775                  */
2776                 spin_unlock_irq(&hugetlb_lock);
2777                 ret = isolate_hugetlb(old_page, list);
2778                 spin_lock_irq(&hugetlb_lock);
2779                 goto free_new;
2780         } else if (!HPageFreed(old_page)) {
2781                 /*
2782                  * Page's refcount is 0 but it has not been enqueued in the
2783                  * freelist yet. Race window is small, so we can succeed here if
2784                  * we retry.
2785                  */
2786                 spin_unlock_irq(&hugetlb_lock);
2787                 cond_resched();
2788                 goto retry;
2789         } else {
2790                 /*
2791                  * Ok, old_page is still a genuine free hugepage. Remove it from
2792                  * the freelist and decrease the counters. These will be
2793                  * incremented again when calling __prep_account_new_huge_page()
2794                  * and enqueue_huge_page() for new_page. The counters will remain
2795                  * stable since this happens under the lock.
2796                  */
2797                 remove_hugetlb_page(h, old_page, false);
2798
2799                 /*
2800                  * Ref count on new page is already zero as it was dropped
2801                  * earlier.  It can be directly added to the pool free list.
2802                  */
2803                 __prep_account_new_huge_page(h, nid);
2804                 enqueue_huge_page(h, new_page);
2805
2806                 /*
2807                  * Pages have been replaced, we can safely free the old one.
2808                  */
2809                 spin_unlock_irq(&hugetlb_lock);
2810                 update_and_free_page(h, old_page, false);
2811         }
2812
2813         return ret;
2814
2815 free_new:
2816         spin_unlock_irq(&hugetlb_lock);
2817         /* Page has a zero ref count, but needs a ref to be freed */
2818         set_page_refcounted(new_page);
2819         update_and_free_page(h, new_page, false);
2820
2821         return ret;
2822 }
2823
2824 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2825 {
2826         struct hstate *h;
2827         struct page *head;
2828         int ret = -EBUSY;
2829
2830         /*
2831          * The page might have been dissolved from under our feet, so make sure
2832          * to carefully check the state under the lock.
2833          * Return success when racing as if we dissolved the page ourselves.
2834          */
2835         spin_lock_irq(&hugetlb_lock);
2836         if (PageHuge(page)) {
2837                 head = compound_head(page);
2838                 h = page_hstate(head);
2839         } else {
2840                 spin_unlock_irq(&hugetlb_lock);
2841                 return 0;
2842         }
2843         spin_unlock_irq(&hugetlb_lock);
2844
2845         /*
2846          * Fence off gigantic pages as there is a cyclic dependency between
2847          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2848          * of bailing out right away without further retrying.
2849          */
2850         if (hstate_is_gigantic(h))
2851                 return -ENOMEM;
2852
2853         if (page_count(head) && !isolate_hugetlb(head, list))
2854                 ret = 0;
2855         else if (!page_count(head))
2856                 ret = alloc_and_dissolve_huge_page(h, head, list);
2857
2858         return ret;
2859 }
2860
2861 struct page *alloc_huge_page(struct vm_area_struct *vma,
2862                                     unsigned long addr, int avoid_reserve)
2863 {
2864         struct hugepage_subpool *spool = subpool_vma(vma);
2865         struct hstate *h = hstate_vma(vma);
2866         struct page *page;
2867         long map_chg, map_commit;
2868         long gbl_chg;
2869         int ret, idx;
2870         struct hugetlb_cgroup *h_cg;
2871         bool deferred_reserve;
2872
2873         idx = hstate_index(h);
2874         /*
2875          * Examine the region/reserve map to determine if the process
2876          * has a reservation for the page to be allocated.  A return
2877          * code of zero indicates a reservation exists (no change).
2878          */
2879         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2880         if (map_chg < 0)
2881                 return ERR_PTR(-ENOMEM);
2882
2883         /*
2884          * Processes that did not create the mapping will have no
2885          * reserves as indicated by the region/reserve map. Check
2886          * that the allocation will not exceed the subpool limit.
2887          * Allocations for MAP_NORESERVE mappings also need to be
2888          * checked against any subpool limit.
2889          */
2890         if (map_chg || avoid_reserve) {
2891                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2892                 if (gbl_chg < 0) {
2893                         vma_end_reservation(h, vma, addr);
2894                         return ERR_PTR(-ENOSPC);
2895                 }
2896
2897                 /*
2898                  * Even though there was no reservation in the region/reserve
2899                  * map, there could be reservations associated with the
2900                  * subpool that can be used.  This would be indicated if the
2901                  * return value of hugepage_subpool_get_pages() is zero.
2902                  * However, if avoid_reserve is specified we still avoid even
2903                  * the subpool reservations.
2904                  */
2905                 if (avoid_reserve)
2906                         gbl_chg = 1;
2907         }
2908
2909         /* If this allocation is not consuming a reservation, charge it now.
2910          */
2911         deferred_reserve = map_chg || avoid_reserve;
2912         if (deferred_reserve) {
2913                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2914                         idx, pages_per_huge_page(h), &h_cg);
2915                 if (ret)
2916                         goto out_subpool_put;
2917         }
2918
2919         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2920         if (ret)
2921                 goto out_uncharge_cgroup_reservation;
2922
2923         spin_lock_irq(&hugetlb_lock);
2924         /*
2925          * glb_chg is passed to indicate whether or not a page must be taken
2926          * from the global free pool (global change).  gbl_chg == 0 indicates
2927          * a reservation exists for the allocation.
2928          */
2929         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2930         if (!page) {
2931                 spin_unlock_irq(&hugetlb_lock);
2932                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2933                 if (!page)
2934                         goto out_uncharge_cgroup;
2935                 spin_lock_irq(&hugetlb_lock);
2936                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2937                         SetHPageRestoreReserve(page);
2938                         h->resv_huge_pages--;
2939                 }
2940                 list_add(&page->lru, &h->hugepage_activelist);
2941                 set_page_refcounted(page);
2942                 /* Fall through */
2943         }
2944         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2945         /* If allocation is not consuming a reservation, also store the
2946          * hugetlb_cgroup pointer on the page.
2947          */
2948         if (deferred_reserve) {
2949                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2950                                                   h_cg, page);
2951         }
2952
2953         spin_unlock_irq(&hugetlb_lock);
2954
2955         hugetlb_set_page_subpool(page, spool);
2956
2957         map_commit = vma_commit_reservation(h, vma, addr);
2958         if (unlikely(map_chg > map_commit)) {
2959                 /*
2960                  * The page was added to the reservation map between
2961                  * vma_needs_reservation and vma_commit_reservation.
2962                  * This indicates a race with hugetlb_reserve_pages.
2963                  * Adjust for the subpool count incremented above AND
2964                  * in hugetlb_reserve_pages for the same page.  Also,
2965                  * the reservation count added in hugetlb_reserve_pages
2966                  * no longer applies.
2967                  */
2968                 long rsv_adjust;
2969
2970                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2971                 hugetlb_acct_memory(h, -rsv_adjust);
2972                 if (deferred_reserve)
2973                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2974                                         pages_per_huge_page(h), page);
2975         }
2976         return page;
2977
2978 out_uncharge_cgroup:
2979         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2980 out_uncharge_cgroup_reservation:
2981         if (deferred_reserve)
2982                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2983                                                     h_cg);
2984 out_subpool_put:
2985         if (map_chg || avoid_reserve)
2986                 hugepage_subpool_put_pages(spool, 1);
2987         vma_end_reservation(h, vma, addr);
2988         return ERR_PTR(-ENOSPC);
2989 }
2990
2991 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2992         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2993 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2994 {
2995         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2996         int nr_nodes, node;
2997
2998         /* do node specific alloc */
2999         if (nid != NUMA_NO_NODE) {
3000                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3001                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3002                 if (!m)
3003                         return 0;
3004                 goto found;
3005         }
3006         /* allocate from next node when distributing huge pages */
3007         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3008                 m = memblock_alloc_try_nid_raw(
3009                                 huge_page_size(h), huge_page_size(h),
3010                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3011                 /*
3012                  * Use the beginning of the huge page to store the
3013                  * huge_bootmem_page struct (until gather_bootmem
3014                  * puts them into the mem_map).
3015                  */
3016                 if (!m)
3017                         return 0;
3018                 goto found;
3019         }
3020
3021 found:
3022         /* Put them into a private list first because mem_map is not up yet */
3023         INIT_LIST_HEAD(&m->list);
3024         list_add(&m->list, &huge_boot_pages);
3025         m->hstate = h;
3026         return 1;
3027 }
3028
3029 /*
3030  * Put bootmem huge pages into the standard lists after mem_map is up.
3031  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3032  */
3033 static void __init gather_bootmem_prealloc(void)
3034 {
3035         struct huge_bootmem_page *m;
3036
3037         list_for_each_entry(m, &huge_boot_pages, list) {
3038                 struct page *page = virt_to_page(m);
3039                 struct hstate *h = m->hstate;
3040
3041                 VM_BUG_ON(!hstate_is_gigantic(h));
3042                 WARN_ON(page_count(page) != 1);
3043                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3044                         WARN_ON(PageReserved(page));
3045                         prep_new_huge_page(h, page, page_to_nid(page));
3046                         free_huge_page(page); /* add to the hugepage allocator */
3047                 } else {
3048                         /* VERY unlikely inflated ref count on a tail page */
3049                         free_gigantic_page(page, huge_page_order(h));
3050                 }
3051
3052                 /*
3053                  * We need to restore the 'stolen' pages to totalram_pages
3054                  * in order to fix confusing memory reports from free(1) and
3055                  * other side-effects, like CommitLimit going negative.
3056                  */
3057                 adjust_managed_page_count(page, pages_per_huge_page(h));
3058                 cond_resched();
3059         }
3060 }
3061 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3062 {
3063         unsigned long i;
3064         char buf[32];
3065
3066         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3067                 if (hstate_is_gigantic(h)) {
3068                         if (!alloc_bootmem_huge_page(h, nid))
3069                                 break;
3070                 } else {
3071                         struct page *page;
3072                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3073
3074                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3075                                         &node_states[N_MEMORY], NULL);
3076                         if (!page)
3077                                 break;
3078                         free_huge_page(page); /* free it into the hugepage allocator */
3079                 }
3080                 cond_resched();
3081         }
3082         if (i == h->max_huge_pages_node[nid])
3083                 return;
3084
3085         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3086         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3087                 h->max_huge_pages_node[nid], buf, nid, i);
3088         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3089         h->max_huge_pages_node[nid] = i;
3090 }
3091
3092 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3093 {
3094         unsigned long i;
3095         nodemask_t *node_alloc_noretry;
3096         bool node_specific_alloc = false;
3097
3098         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3099         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3100                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3101                 return;
3102         }
3103
3104         /* do node specific alloc */
3105         for_each_online_node(i) {
3106                 if (h->max_huge_pages_node[i] > 0) {
3107                         hugetlb_hstate_alloc_pages_onenode(h, i);
3108                         node_specific_alloc = true;
3109                 }
3110         }
3111
3112         if (node_specific_alloc)
3113                 return;
3114
3115         /* below will do all node balanced alloc */
3116         if (!hstate_is_gigantic(h)) {
3117                 /*
3118                  * Bit mask controlling how hard we retry per-node allocations.
3119                  * Ignore errors as lower level routines can deal with
3120                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3121                  * time, we are likely in bigger trouble.
3122                  */
3123                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3124                                                 GFP_KERNEL);
3125         } else {
3126                 /* allocations done at boot time */
3127                 node_alloc_noretry = NULL;
3128         }
3129
3130         /* bit mask controlling how hard we retry per-node allocations */
3131         if (node_alloc_noretry)
3132                 nodes_clear(*node_alloc_noretry);
3133
3134         for (i = 0; i < h->max_huge_pages; ++i) {
3135                 if (hstate_is_gigantic(h)) {
3136                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3137                                 break;
3138                 } else if (!alloc_pool_huge_page(h,
3139                                          &node_states[N_MEMORY],
3140                                          node_alloc_noretry))
3141                         break;
3142                 cond_resched();
3143         }
3144         if (i < h->max_huge_pages) {
3145                 char buf[32];
3146
3147                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3148                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3149                         h->max_huge_pages, buf, i);
3150                 h->max_huge_pages = i;
3151         }
3152         kfree(node_alloc_noretry);
3153 }
3154
3155 static void __init hugetlb_init_hstates(void)
3156 {
3157         struct hstate *h, *h2;
3158
3159         for_each_hstate(h) {
3160                 /* oversize hugepages were init'ed in early boot */
3161                 if (!hstate_is_gigantic(h))
3162                         hugetlb_hstate_alloc_pages(h);
3163
3164                 /*
3165                  * Set demote order for each hstate.  Note that
3166                  * h->demote_order is initially 0.
3167                  * - We can not demote gigantic pages if runtime freeing
3168                  *   is not supported, so skip this.
3169                  * - If CMA allocation is possible, we can not demote
3170                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3171                  */
3172                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3173                         continue;
3174                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3175                         continue;
3176                 for_each_hstate(h2) {
3177                         if (h2 == h)
3178                                 continue;
3179                         if (h2->order < h->order &&
3180                             h2->order > h->demote_order)
3181                                 h->demote_order = h2->order;
3182                 }
3183         }
3184 }
3185
3186 static void __init report_hugepages(void)
3187 {
3188         struct hstate *h;
3189
3190         for_each_hstate(h) {
3191                 char buf[32];
3192
3193                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3194                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3195                         buf, h->free_huge_pages);
3196                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3197                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3198         }
3199 }
3200
3201 #ifdef CONFIG_HIGHMEM
3202 static void try_to_free_low(struct hstate *h, unsigned long count,
3203                                                 nodemask_t *nodes_allowed)
3204 {
3205         int i;
3206         LIST_HEAD(page_list);
3207
3208         lockdep_assert_held(&hugetlb_lock);
3209         if (hstate_is_gigantic(h))
3210                 return;
3211
3212         /*
3213          * Collect pages to be freed on a list, and free after dropping lock
3214          */
3215         for_each_node_mask(i, *nodes_allowed) {
3216                 struct page *page, *next;
3217                 struct list_head *freel = &h->hugepage_freelists[i];
3218                 list_for_each_entry_safe(page, next, freel, lru) {
3219                         if (count >= h->nr_huge_pages)
3220                                 goto out;
3221                         if (PageHighMem(page))
3222                                 continue;
3223                         remove_hugetlb_page(h, page, false);
3224                         list_add(&page->lru, &page_list);
3225                 }
3226         }
3227
3228 out:
3229         spin_unlock_irq(&hugetlb_lock);
3230         update_and_free_pages_bulk(h, &page_list);
3231         spin_lock_irq(&hugetlb_lock);
3232 }
3233 #else
3234 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3235                                                 nodemask_t *nodes_allowed)
3236 {
3237 }
3238 #endif
3239
3240 /*
3241  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3242  * balanced by operating on them in a round-robin fashion.
3243  * Returns 1 if an adjustment was made.
3244  */
3245 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3246                                 int delta)
3247 {
3248         int nr_nodes, node;
3249
3250         lockdep_assert_held(&hugetlb_lock);
3251         VM_BUG_ON(delta != -1 && delta != 1);
3252
3253         if (delta < 0) {
3254                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3255                         if (h->surplus_huge_pages_node[node])
3256                                 goto found;
3257                 }
3258         } else {
3259                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3260                         if (h->surplus_huge_pages_node[node] <
3261                                         h->nr_huge_pages_node[node])
3262                                 goto found;
3263                 }
3264         }
3265         return 0;
3266
3267 found:
3268         h->surplus_huge_pages += delta;
3269         h->surplus_huge_pages_node[node] += delta;
3270         return 1;
3271 }
3272
3273 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3274 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3275                               nodemask_t *nodes_allowed)
3276 {
3277         unsigned long min_count, ret;
3278         struct page *page;
3279         LIST_HEAD(page_list);
3280         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3281
3282         /*
3283          * Bit mask controlling how hard we retry per-node allocations.
3284          * If we can not allocate the bit mask, do not attempt to allocate
3285          * the requested huge pages.
3286          */
3287         if (node_alloc_noretry)
3288                 nodes_clear(*node_alloc_noretry);
3289         else
3290                 return -ENOMEM;
3291
3292         /*
3293          * resize_lock mutex prevents concurrent adjustments to number of
3294          * pages in hstate via the proc/sysfs interfaces.
3295          */
3296         mutex_lock(&h->resize_lock);
3297         flush_free_hpage_work(h);
3298         spin_lock_irq(&hugetlb_lock);
3299
3300         /*
3301          * Check for a node specific request.
3302          * Changing node specific huge page count may require a corresponding
3303          * change to the global count.  In any case, the passed node mask
3304          * (nodes_allowed) will restrict alloc/free to the specified node.
3305          */
3306         if (nid != NUMA_NO_NODE) {
3307                 unsigned long old_count = count;
3308
3309                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3310                 /*
3311                  * User may have specified a large count value which caused the
3312                  * above calculation to overflow.  In this case, they wanted
3313                  * to allocate as many huge pages as possible.  Set count to
3314                  * largest possible value to align with their intention.
3315                  */
3316                 if (count < old_count)
3317                         count = ULONG_MAX;
3318         }
3319
3320         /*
3321          * Gigantic pages runtime allocation depend on the capability for large
3322          * page range allocation.
3323          * If the system does not provide this feature, return an error when
3324          * the user tries to allocate gigantic pages but let the user free the
3325          * boottime allocated gigantic pages.
3326          */
3327         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3328                 if (count > persistent_huge_pages(h)) {
3329                         spin_unlock_irq(&hugetlb_lock);
3330                         mutex_unlock(&h->resize_lock);
3331                         NODEMASK_FREE(node_alloc_noretry);
3332                         return -EINVAL;
3333                 }
3334                 /* Fall through to decrease pool */
3335         }
3336
3337         /*
3338          * Increase the pool size
3339          * First take pages out of surplus state.  Then make up the
3340          * remaining difference by allocating fresh huge pages.
3341          *
3342          * We might race with alloc_surplus_huge_page() here and be unable
3343          * to convert a surplus huge page to a normal huge page. That is
3344          * not critical, though, it just means the overall size of the
3345          * pool might be one hugepage larger than it needs to be, but
3346          * within all the constraints specified by the sysctls.
3347          */
3348         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3349                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3350                         break;
3351         }
3352
3353         while (count > persistent_huge_pages(h)) {
3354                 /*
3355                  * If this allocation races such that we no longer need the
3356                  * page, free_huge_page will handle it by freeing the page
3357                  * and reducing the surplus.
3358                  */
3359                 spin_unlock_irq(&hugetlb_lock);
3360
3361                 /* yield cpu to avoid soft lockup */
3362                 cond_resched();
3363
3364                 ret = alloc_pool_huge_page(h, nodes_allowed,
3365                                                 node_alloc_noretry);
3366                 spin_lock_irq(&hugetlb_lock);
3367                 if (!ret)
3368                         goto out;
3369
3370                 /* Bail for signals. Probably ctrl-c from user */
3371                 if (signal_pending(current))
3372                         goto out;
3373         }
3374
3375         /*
3376          * Decrease the pool size
3377          * First return free pages to the buddy allocator (being careful
3378          * to keep enough around to satisfy reservations).  Then place
3379          * pages into surplus state as needed so the pool will shrink
3380          * to the desired size as pages become free.
3381          *
3382          * By placing pages into the surplus state independent of the
3383          * overcommit value, we are allowing the surplus pool size to
3384          * exceed overcommit. There are few sane options here. Since
3385          * alloc_surplus_huge_page() is checking the global counter,
3386          * though, we'll note that we're not allowed to exceed surplus
3387          * and won't grow the pool anywhere else. Not until one of the
3388          * sysctls are changed, or the surplus pages go out of use.
3389          */
3390         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3391         min_count = max(count, min_count);
3392         try_to_free_low(h, min_count, nodes_allowed);
3393
3394         /*
3395          * Collect pages to be removed on list without dropping lock
3396          */
3397         while (min_count < persistent_huge_pages(h)) {
3398                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3399                 if (!page)
3400                         break;
3401
3402                 list_add(&page->lru, &page_list);
3403         }
3404         /* free the pages after dropping lock */
3405         spin_unlock_irq(&hugetlb_lock);
3406         update_and_free_pages_bulk(h, &page_list);
3407         flush_free_hpage_work(h);
3408         spin_lock_irq(&hugetlb_lock);
3409
3410         while (count < persistent_huge_pages(h)) {
3411                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3412                         break;
3413         }
3414 out:
3415         h->max_huge_pages = persistent_huge_pages(h);
3416         spin_unlock_irq(&hugetlb_lock);
3417         mutex_unlock(&h->resize_lock);
3418
3419         NODEMASK_FREE(node_alloc_noretry);
3420
3421         return 0;
3422 }
3423
3424 static int demote_free_huge_page(struct hstate *h, struct page *page)
3425 {
3426         int i, nid = page_to_nid(page);
3427         struct hstate *target_hstate;
3428         struct page *subpage;
3429         int rc = 0;
3430
3431         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3432
3433         remove_hugetlb_page_for_demote(h, page, false);
3434         spin_unlock_irq(&hugetlb_lock);
3435
3436         rc = hugetlb_vmemmap_restore(h, page);
3437         if (rc) {
3438                 /* Allocation of vmemmmap failed, we can not demote page */
3439                 spin_lock_irq(&hugetlb_lock);
3440                 set_page_refcounted(page);
3441                 add_hugetlb_page(h, page, false);
3442                 return rc;
3443         }
3444
3445         /*
3446          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3447          * sizes as it will not ref count pages.
3448          */
3449         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3450
3451         /*
3452          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3453          * Without the mutex, pages added to target hstate could be marked
3454          * as surplus.
3455          *
3456          * Note that we already hold h->resize_lock.  To prevent deadlock,
3457          * use the convention of always taking larger size hstate mutex first.
3458          */
3459         mutex_lock(&target_hstate->resize_lock);
3460         for (i = 0; i < pages_per_huge_page(h);
3461                                 i += pages_per_huge_page(target_hstate)) {
3462                 subpage = nth_page(page, i);
3463                 if (hstate_is_gigantic(target_hstate))
3464                         prep_compound_gigantic_page_for_demote(subpage,
3465                                                         target_hstate->order);
3466                 else
3467                         prep_compound_page(subpage, target_hstate->order);
3468                 set_page_private(subpage, 0);
3469                 prep_new_huge_page(target_hstate, subpage, nid);
3470                 free_huge_page(subpage);
3471         }
3472         mutex_unlock(&target_hstate->resize_lock);
3473
3474         spin_lock_irq(&hugetlb_lock);
3475
3476         /*
3477          * Not absolutely necessary, but for consistency update max_huge_pages
3478          * based on pool changes for the demoted page.
3479          */
3480         h->max_huge_pages--;
3481         target_hstate->max_huge_pages +=
3482                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3483
3484         return rc;
3485 }
3486
3487 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3488         __must_hold(&hugetlb_lock)
3489 {
3490         int nr_nodes, node;
3491         struct page *page;
3492
3493         lockdep_assert_held(&hugetlb_lock);
3494
3495         /* We should never get here if no demote order */
3496         if (!h->demote_order) {
3497                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3498                 return -EINVAL;         /* internal error */
3499         }
3500
3501         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3502                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3503                         if (PageHWPoison(page))
3504                                 continue;
3505
3506                         return demote_free_huge_page(h, page);
3507                 }
3508         }
3509
3510         /*
3511          * Only way to get here is if all pages on free lists are poisoned.
3512          * Return -EBUSY so that caller will not retry.
3513          */
3514         return -EBUSY;
3515 }
3516
3517 #define HSTATE_ATTR_RO(_name) \
3518         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3519
3520 #define HSTATE_ATTR_WO(_name) \
3521         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3522
3523 #define HSTATE_ATTR(_name) \
3524         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3525
3526 static struct kobject *hugepages_kobj;
3527 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3528
3529 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3530
3531 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3532 {
3533         int i;
3534
3535         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3536                 if (hstate_kobjs[i] == kobj) {
3537                         if (nidp)
3538                                 *nidp = NUMA_NO_NODE;
3539                         return &hstates[i];
3540                 }
3541
3542         return kobj_to_node_hstate(kobj, nidp);
3543 }
3544
3545 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3546                                         struct kobj_attribute *attr, char *buf)
3547 {
3548         struct hstate *h;
3549         unsigned long nr_huge_pages;
3550         int nid;
3551
3552         h = kobj_to_hstate(kobj, &nid);
3553         if (nid == NUMA_NO_NODE)
3554                 nr_huge_pages = h->nr_huge_pages;
3555         else
3556                 nr_huge_pages = h->nr_huge_pages_node[nid];
3557
3558         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3559 }
3560
3561 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3562                                            struct hstate *h, int nid,
3563                                            unsigned long count, size_t len)
3564 {
3565         int err;
3566         nodemask_t nodes_allowed, *n_mask;
3567
3568         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3569                 return -EINVAL;
3570
3571         if (nid == NUMA_NO_NODE) {
3572                 /*
3573                  * global hstate attribute
3574                  */
3575                 if (!(obey_mempolicy &&
3576                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3577                         n_mask = &node_states[N_MEMORY];
3578                 else
3579                         n_mask = &nodes_allowed;
3580         } else {
3581                 /*
3582                  * Node specific request.  count adjustment happens in
3583                  * set_max_huge_pages() after acquiring hugetlb_lock.
3584                  */
3585                 init_nodemask_of_node(&nodes_allowed, nid);
3586                 n_mask = &nodes_allowed;
3587         }
3588
3589         err = set_max_huge_pages(h, count, nid, n_mask);
3590
3591         return err ? err : len;
3592 }
3593
3594 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3595                                          struct kobject *kobj, const char *buf,
3596                                          size_t len)
3597 {
3598         struct hstate *h;
3599         unsigned long count;
3600         int nid;
3601         int err;
3602
3603         err = kstrtoul(buf, 10, &count);
3604         if (err)
3605                 return err;
3606
3607         h = kobj_to_hstate(kobj, &nid);
3608         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3609 }
3610
3611 static ssize_t nr_hugepages_show(struct kobject *kobj,
3612                                        struct kobj_attribute *attr, char *buf)
3613 {
3614         return nr_hugepages_show_common(kobj, attr, buf);
3615 }
3616
3617 static ssize_t nr_hugepages_store(struct kobject *kobj,
3618                struct kobj_attribute *attr, const char *buf, size_t len)
3619 {
3620         return nr_hugepages_store_common(false, kobj, buf, len);
3621 }
3622 HSTATE_ATTR(nr_hugepages);
3623
3624 #ifdef CONFIG_NUMA
3625
3626 /*
3627  * hstate attribute for optionally mempolicy-based constraint on persistent
3628  * huge page alloc/free.
3629  */
3630 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3631                                            struct kobj_attribute *attr,
3632                                            char *buf)
3633 {
3634         return nr_hugepages_show_common(kobj, attr, buf);
3635 }
3636
3637 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3638                struct kobj_attribute *attr, const char *buf, size_t len)
3639 {
3640         return nr_hugepages_store_common(true, kobj, buf, len);
3641 }
3642 HSTATE_ATTR(nr_hugepages_mempolicy);
3643 #endif
3644
3645
3646 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3647                                         struct kobj_attribute *attr, char *buf)
3648 {
3649         struct hstate *h = kobj_to_hstate(kobj, NULL);
3650         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3651 }
3652
3653 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3654                 struct kobj_attribute *attr, const char *buf, size_t count)
3655 {
3656         int err;
3657         unsigned long input;
3658         struct hstate *h = kobj_to_hstate(kobj, NULL);
3659
3660         if (hstate_is_gigantic(h))
3661                 return -EINVAL;
3662
3663         err = kstrtoul(buf, 10, &input);
3664         if (err)
3665                 return err;
3666
3667         spin_lock_irq(&hugetlb_lock);
3668         h->nr_overcommit_huge_pages = input;
3669         spin_unlock_irq(&hugetlb_lock);
3670
3671         return count;
3672 }
3673 HSTATE_ATTR(nr_overcommit_hugepages);
3674
3675 static ssize_t free_hugepages_show(struct kobject *kobj,
3676                                         struct kobj_attribute *attr, char *buf)
3677 {
3678         struct hstate *h;
3679         unsigned long free_huge_pages;
3680         int nid;
3681
3682         h = kobj_to_hstate(kobj, &nid);
3683         if (nid == NUMA_NO_NODE)
3684                 free_huge_pages = h->free_huge_pages;
3685         else
3686                 free_huge_pages = h->free_huge_pages_node[nid];
3687
3688         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3689 }
3690 HSTATE_ATTR_RO(free_hugepages);
3691
3692 static ssize_t resv_hugepages_show(struct kobject *kobj,
3693                                         struct kobj_attribute *attr, char *buf)
3694 {
3695         struct hstate *h = kobj_to_hstate(kobj, NULL);
3696         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3697 }
3698 HSTATE_ATTR_RO(resv_hugepages);
3699
3700 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3701                                         struct kobj_attribute *attr, char *buf)
3702 {
3703         struct hstate *h;
3704         unsigned long surplus_huge_pages;
3705         int nid;
3706
3707         h = kobj_to_hstate(kobj, &nid);
3708         if (nid == NUMA_NO_NODE)
3709                 surplus_huge_pages = h->surplus_huge_pages;
3710         else
3711                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3712
3713         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3714 }
3715 HSTATE_ATTR_RO(surplus_hugepages);
3716
3717 static ssize_t demote_store(struct kobject *kobj,
3718                struct kobj_attribute *attr, const char *buf, size_t len)
3719 {
3720         unsigned long nr_demote;
3721         unsigned long nr_available;
3722         nodemask_t nodes_allowed, *n_mask;
3723         struct hstate *h;
3724         int err;
3725         int nid;
3726
3727         err = kstrtoul(buf, 10, &nr_demote);
3728         if (err)
3729                 return err;
3730         h = kobj_to_hstate(kobj, &nid);
3731
3732         if (nid != NUMA_NO_NODE) {
3733                 init_nodemask_of_node(&nodes_allowed, nid);
3734                 n_mask = &nodes_allowed;
3735         } else {
3736                 n_mask = &node_states[N_MEMORY];
3737         }
3738
3739         /* Synchronize with other sysfs operations modifying huge pages */
3740         mutex_lock(&h->resize_lock);
3741         spin_lock_irq(&hugetlb_lock);
3742
3743         while (nr_demote) {
3744                 /*
3745                  * Check for available pages to demote each time thorough the
3746                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3747                  */
3748                 if (nid != NUMA_NO_NODE)
3749                         nr_available = h->free_huge_pages_node[nid];
3750                 else
3751                         nr_available = h->free_huge_pages;
3752                 nr_available -= h->resv_huge_pages;
3753                 if (!nr_available)
3754                         break;
3755
3756                 err = demote_pool_huge_page(h, n_mask);
3757                 if (err)
3758                         break;
3759
3760                 nr_demote--;
3761         }
3762
3763         spin_unlock_irq(&hugetlb_lock);
3764         mutex_unlock(&h->resize_lock);
3765
3766         if (err)
3767                 return err;
3768         return len;
3769 }
3770 HSTATE_ATTR_WO(demote);
3771
3772 static ssize_t demote_size_show(struct kobject *kobj,
3773                                         struct kobj_attribute *attr, char *buf)
3774 {
3775         struct hstate *h = kobj_to_hstate(kobj, NULL);
3776         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3777
3778         return sysfs_emit(buf, "%lukB\n", demote_size);
3779 }
3780
3781 static ssize_t demote_size_store(struct kobject *kobj,
3782                                         struct kobj_attribute *attr,
3783                                         const char *buf, size_t count)
3784 {
3785         struct hstate *h, *demote_hstate;
3786         unsigned long demote_size;
3787         unsigned int demote_order;
3788
3789         demote_size = (unsigned long)memparse(buf, NULL);
3790
3791         demote_hstate = size_to_hstate(demote_size);
3792         if (!demote_hstate)
3793                 return -EINVAL;
3794         demote_order = demote_hstate->order;
3795         if (demote_order < HUGETLB_PAGE_ORDER)
3796                 return -EINVAL;
3797
3798         /* demote order must be smaller than hstate order */
3799         h = kobj_to_hstate(kobj, NULL);
3800         if (demote_order >= h->order)
3801                 return -EINVAL;
3802
3803         /* resize_lock synchronizes access to demote size and writes */
3804         mutex_lock(&h->resize_lock);
3805         h->demote_order = demote_order;
3806         mutex_unlock(&h->resize_lock);
3807
3808         return count;
3809 }
3810 HSTATE_ATTR(demote_size);
3811
3812 static struct attribute *hstate_attrs[] = {
3813         &nr_hugepages_attr.attr,
3814         &nr_overcommit_hugepages_attr.attr,
3815         &free_hugepages_attr.attr,
3816         &resv_hugepages_attr.attr,
3817         &surplus_hugepages_attr.attr,
3818 #ifdef CONFIG_NUMA
3819         &nr_hugepages_mempolicy_attr.attr,
3820 #endif
3821         NULL,
3822 };
3823
3824 static const struct attribute_group hstate_attr_group = {
3825         .attrs = hstate_attrs,
3826 };
3827
3828 static struct attribute *hstate_demote_attrs[] = {
3829         &demote_size_attr.attr,
3830         &demote_attr.attr,
3831         NULL,
3832 };
3833
3834 static const struct attribute_group hstate_demote_attr_group = {
3835         .attrs = hstate_demote_attrs,
3836 };
3837
3838 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3839                                     struct kobject **hstate_kobjs,
3840                                     const struct attribute_group *hstate_attr_group)
3841 {
3842         int retval;
3843         int hi = hstate_index(h);
3844
3845         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3846         if (!hstate_kobjs[hi])
3847                 return -ENOMEM;
3848
3849         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3850         if (retval) {
3851                 kobject_put(hstate_kobjs[hi]);
3852                 hstate_kobjs[hi] = NULL;
3853                 return retval;
3854         }
3855
3856         if (h->demote_order) {
3857                 retval = sysfs_create_group(hstate_kobjs[hi],
3858                                             &hstate_demote_attr_group);
3859                 if (retval) {
3860                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3861                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3862                         kobject_put(hstate_kobjs[hi]);
3863                         hstate_kobjs[hi] = NULL;
3864                         return retval;
3865                 }
3866         }
3867
3868         return 0;
3869 }
3870
3871 #ifdef CONFIG_NUMA
3872 static bool hugetlb_sysfs_initialized __ro_after_init;
3873
3874 /*
3875  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3876  * with node devices in node_devices[] using a parallel array.  The array
3877  * index of a node device or _hstate == node id.
3878  * This is here to avoid any static dependency of the node device driver, in
3879  * the base kernel, on the hugetlb module.
3880  */
3881 struct node_hstate {
3882         struct kobject          *hugepages_kobj;
3883         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3884 };
3885 static struct node_hstate node_hstates[MAX_NUMNODES];
3886
3887 /*
3888  * A subset of global hstate attributes for node devices
3889  */
3890 static struct attribute *per_node_hstate_attrs[] = {
3891         &nr_hugepages_attr.attr,
3892         &free_hugepages_attr.attr,
3893         &surplus_hugepages_attr.attr,
3894         NULL,
3895 };
3896
3897 static const struct attribute_group per_node_hstate_attr_group = {
3898         .attrs = per_node_hstate_attrs,
3899 };
3900
3901 /*
3902  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3903  * Returns node id via non-NULL nidp.
3904  */
3905 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3906 {
3907         int nid;
3908
3909         for (nid = 0; nid < nr_node_ids; nid++) {
3910                 struct node_hstate *nhs = &node_hstates[nid];
3911                 int i;
3912                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3913                         if (nhs->hstate_kobjs[i] == kobj) {
3914                                 if (nidp)
3915                                         *nidp = nid;
3916                                 return &hstates[i];
3917                         }
3918         }
3919
3920         BUG();
3921         return NULL;
3922 }
3923
3924 /*
3925  * Unregister hstate attributes from a single node device.
3926  * No-op if no hstate attributes attached.
3927  */
3928 void hugetlb_unregister_node(struct node *node)
3929 {
3930         struct hstate *h;
3931         struct node_hstate *nhs = &node_hstates[node->dev.id];
3932
3933         if (!nhs->hugepages_kobj)
3934                 return;         /* no hstate attributes */
3935
3936         for_each_hstate(h) {
3937                 int idx = hstate_index(h);
3938                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3939
3940                 if (!hstate_kobj)
3941                         continue;
3942                 if (h->demote_order)
3943                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3944                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3945                 kobject_put(hstate_kobj);
3946                 nhs->hstate_kobjs[idx] = NULL;
3947         }
3948
3949         kobject_put(nhs->hugepages_kobj);
3950         nhs->hugepages_kobj = NULL;
3951 }
3952
3953
3954 /*
3955  * Register hstate attributes for a single node device.
3956  * No-op if attributes already registered.
3957  */
3958 void hugetlb_register_node(struct node *node)
3959 {
3960         struct hstate *h;
3961         struct node_hstate *nhs = &node_hstates[node->dev.id];
3962         int err;
3963
3964         if (!hugetlb_sysfs_initialized)
3965                 return;
3966
3967         if (nhs->hugepages_kobj)
3968                 return;         /* already allocated */
3969
3970         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3971                                                         &node->dev.kobj);
3972         if (!nhs->hugepages_kobj)
3973                 return;
3974
3975         for_each_hstate(h) {
3976                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3977                                                 nhs->hstate_kobjs,
3978                                                 &per_node_hstate_attr_group);
3979                 if (err) {
3980                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3981                                 h->name, node->dev.id);
3982                         hugetlb_unregister_node(node);
3983                         break;
3984                 }
3985         }
3986 }
3987
3988 /*
3989  * hugetlb init time:  register hstate attributes for all registered node
3990  * devices of nodes that have memory.  All on-line nodes should have
3991  * registered their associated device by this time.
3992  */
3993 static void __init hugetlb_register_all_nodes(void)
3994 {
3995         int nid;
3996
3997         for_each_online_node(nid)
3998                 hugetlb_register_node(node_devices[nid]);
3999 }
4000 #else   /* !CONFIG_NUMA */
4001
4002 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4003 {
4004         BUG();
4005         if (nidp)
4006                 *nidp = -1;
4007         return NULL;
4008 }
4009
4010 static void hugetlb_register_all_nodes(void) { }
4011
4012 #endif
4013
4014 #ifdef CONFIG_CMA
4015 static void __init hugetlb_cma_check(void);
4016 #else
4017 static inline __init void hugetlb_cma_check(void)
4018 {
4019 }
4020 #endif
4021
4022 static void __init hugetlb_sysfs_init(void)
4023 {
4024         struct hstate *h;
4025         int err;
4026
4027         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4028         if (!hugepages_kobj)
4029                 return;
4030
4031         for_each_hstate(h) {
4032                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4033                                          hstate_kobjs, &hstate_attr_group);
4034                 if (err)
4035                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4036         }
4037
4038 #ifdef CONFIG_NUMA
4039         hugetlb_sysfs_initialized = true;
4040 #endif
4041         hugetlb_register_all_nodes();
4042 }
4043
4044 static int __init hugetlb_init(void)
4045 {
4046         int i;
4047
4048         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4049                         __NR_HPAGEFLAGS);
4050
4051         if (!hugepages_supported()) {
4052                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4053                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4054                 return 0;
4055         }
4056
4057         /*
4058          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4059          * architectures depend on setup being done here.
4060          */
4061         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4062         if (!parsed_default_hugepagesz) {
4063                 /*
4064                  * If we did not parse a default huge page size, set
4065                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4066                  * number of huge pages for this default size was implicitly
4067                  * specified, set that here as well.
4068                  * Note that the implicit setting will overwrite an explicit
4069                  * setting.  A warning will be printed in this case.
4070                  */
4071                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4072                 if (default_hstate_max_huge_pages) {
4073                         if (default_hstate.max_huge_pages) {
4074                                 char buf[32];
4075
4076                                 string_get_size(huge_page_size(&default_hstate),
4077                                         1, STRING_UNITS_2, buf, 32);
4078                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4079                                         default_hstate.max_huge_pages, buf);
4080                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4081                                         default_hstate_max_huge_pages);
4082                         }
4083                         default_hstate.max_huge_pages =
4084                                 default_hstate_max_huge_pages;
4085
4086                         for_each_online_node(i)
4087                                 default_hstate.max_huge_pages_node[i] =
4088                                         default_hugepages_in_node[i];
4089                 }
4090         }
4091
4092         hugetlb_cma_check();
4093         hugetlb_init_hstates();
4094         gather_bootmem_prealloc();
4095         report_hugepages();
4096
4097         hugetlb_sysfs_init();
4098         hugetlb_cgroup_file_init();
4099
4100 #ifdef CONFIG_SMP
4101         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4102 #else
4103         num_fault_mutexes = 1;
4104 #endif
4105         hugetlb_fault_mutex_table =
4106                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4107                               GFP_KERNEL);
4108         BUG_ON(!hugetlb_fault_mutex_table);
4109
4110         for (i = 0; i < num_fault_mutexes; i++)
4111                 mutex_init(&hugetlb_fault_mutex_table[i]);
4112         return 0;
4113 }
4114 subsys_initcall(hugetlb_init);
4115
4116 /* Overwritten by architectures with more huge page sizes */
4117 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4118 {
4119         return size == HPAGE_SIZE;
4120 }
4121
4122 void __init hugetlb_add_hstate(unsigned int order)
4123 {
4124         struct hstate *h;
4125         unsigned long i;
4126
4127         if (size_to_hstate(PAGE_SIZE << order)) {
4128                 return;
4129         }
4130         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4131         BUG_ON(order == 0);
4132         h = &hstates[hugetlb_max_hstate++];
4133         mutex_init(&h->resize_lock);
4134         h->order = order;
4135         h->mask = ~(huge_page_size(h) - 1);
4136         for (i = 0; i < MAX_NUMNODES; ++i)
4137                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4138         INIT_LIST_HEAD(&h->hugepage_activelist);
4139         h->next_nid_to_alloc = first_memory_node;
4140         h->next_nid_to_free = first_memory_node;
4141         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4142                                         huge_page_size(h)/SZ_1K);
4143
4144         parsed_hstate = h;
4145 }
4146
4147 bool __init __weak hugetlb_node_alloc_supported(void)
4148 {
4149         return true;
4150 }
4151
4152 static void __init hugepages_clear_pages_in_node(void)
4153 {
4154         if (!hugetlb_max_hstate) {
4155                 default_hstate_max_huge_pages = 0;
4156                 memset(default_hugepages_in_node, 0,
4157                         sizeof(default_hugepages_in_node));
4158         } else {
4159                 parsed_hstate->max_huge_pages = 0;
4160                 memset(parsed_hstate->max_huge_pages_node, 0,
4161                         sizeof(parsed_hstate->max_huge_pages_node));
4162         }
4163 }
4164
4165 /*
4166  * hugepages command line processing
4167  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4168  * specification.  If not, ignore the hugepages value.  hugepages can also
4169  * be the first huge page command line  option in which case it implicitly
4170  * specifies the number of huge pages for the default size.
4171  */
4172 static int __init hugepages_setup(char *s)
4173 {
4174         unsigned long *mhp;
4175         static unsigned long *last_mhp;
4176         int node = NUMA_NO_NODE;
4177         int count;
4178         unsigned long tmp;
4179         char *p = s;
4180
4181         if (!parsed_valid_hugepagesz) {
4182                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4183                 parsed_valid_hugepagesz = true;
4184                 return 1;
4185         }
4186
4187         /*
4188          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4189          * yet, so this hugepages= parameter goes to the "default hstate".
4190          * Otherwise, it goes with the previously parsed hugepagesz or
4191          * default_hugepagesz.
4192          */
4193         else if (!hugetlb_max_hstate)
4194                 mhp = &default_hstate_max_huge_pages;
4195         else
4196                 mhp = &parsed_hstate->max_huge_pages;
4197
4198         if (mhp == last_mhp) {
4199                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4200                 return 1;
4201         }
4202
4203         while (*p) {
4204                 count = 0;
4205                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4206                         goto invalid;
4207                 /* Parameter is node format */
4208                 if (p[count] == ':') {
4209                         if (!hugetlb_node_alloc_supported()) {
4210                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4211                                 return 1;
4212                         }
4213                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4214                                 goto invalid;
4215                         node = array_index_nospec(tmp, MAX_NUMNODES);
4216                         p += count + 1;
4217                         /* Parse hugepages */
4218                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4219                                 goto invalid;
4220                         if (!hugetlb_max_hstate)
4221                                 default_hugepages_in_node[node] = tmp;
4222                         else
4223                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4224                         *mhp += tmp;
4225                         /* Go to parse next node*/
4226                         if (p[count] == ',')
4227                                 p += count + 1;
4228                         else
4229                                 break;
4230                 } else {
4231                         if (p != s)
4232                                 goto invalid;
4233                         *mhp = tmp;
4234                         break;
4235                 }
4236         }
4237
4238         /*
4239          * Global state is always initialized later in hugetlb_init.
4240          * But we need to allocate gigantic hstates here early to still
4241          * use the bootmem allocator.
4242          */
4243         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4244                 hugetlb_hstate_alloc_pages(parsed_hstate);
4245
4246         last_mhp = mhp;
4247
4248         return 1;
4249
4250 invalid:
4251         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4252         hugepages_clear_pages_in_node();
4253         return 1;
4254 }
4255 __setup("hugepages=", hugepages_setup);
4256
4257 /*
4258  * hugepagesz command line processing
4259  * A specific huge page size can only be specified once with hugepagesz.
4260  * hugepagesz is followed by hugepages on the command line.  The global
4261  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4262  * hugepagesz argument was valid.
4263  */
4264 static int __init hugepagesz_setup(char *s)
4265 {
4266         unsigned long size;
4267         struct hstate *h;
4268
4269         parsed_valid_hugepagesz = false;
4270         size = (unsigned long)memparse(s, NULL);
4271
4272         if (!arch_hugetlb_valid_size(size)) {
4273                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4274                 return 1;
4275         }
4276
4277         h = size_to_hstate(size);
4278         if (h) {
4279                 /*
4280                  * hstate for this size already exists.  This is normally
4281                  * an error, but is allowed if the existing hstate is the
4282                  * default hstate.  More specifically, it is only allowed if
4283                  * the number of huge pages for the default hstate was not
4284                  * previously specified.
4285                  */
4286                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4287                     default_hstate.max_huge_pages) {
4288                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4289                         return 1;
4290                 }
4291
4292                 /*
4293                  * No need to call hugetlb_add_hstate() as hstate already
4294                  * exists.  But, do set parsed_hstate so that a following
4295                  * hugepages= parameter will be applied to this hstate.
4296                  */
4297                 parsed_hstate = h;
4298                 parsed_valid_hugepagesz = true;
4299                 return 1;
4300         }
4301
4302         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4303         parsed_valid_hugepagesz = true;
4304         return 1;
4305 }
4306 __setup("hugepagesz=", hugepagesz_setup);
4307
4308 /*
4309  * default_hugepagesz command line input
4310  * Only one instance of default_hugepagesz allowed on command line.
4311  */
4312 static int __init default_hugepagesz_setup(char *s)
4313 {
4314         unsigned long size;
4315         int i;
4316
4317         parsed_valid_hugepagesz = false;
4318         if (parsed_default_hugepagesz) {
4319                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4320                 return 1;
4321         }
4322
4323         size = (unsigned long)memparse(s, NULL);
4324
4325         if (!arch_hugetlb_valid_size(size)) {
4326                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4327                 return 1;
4328         }
4329
4330         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4331         parsed_valid_hugepagesz = true;
4332         parsed_default_hugepagesz = true;
4333         default_hstate_idx = hstate_index(size_to_hstate(size));
4334
4335         /*
4336          * The number of default huge pages (for this size) could have been
4337          * specified as the first hugetlb parameter: hugepages=X.  If so,
4338          * then default_hstate_max_huge_pages is set.  If the default huge
4339          * page size is gigantic (>= MAX_ORDER), then the pages must be
4340          * allocated here from bootmem allocator.
4341          */
4342         if (default_hstate_max_huge_pages) {
4343                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4344                 for_each_online_node(i)
4345                         default_hstate.max_huge_pages_node[i] =
4346                                 default_hugepages_in_node[i];
4347                 if (hstate_is_gigantic(&default_hstate))
4348                         hugetlb_hstate_alloc_pages(&default_hstate);
4349                 default_hstate_max_huge_pages = 0;
4350         }
4351
4352         return 1;
4353 }
4354 __setup("default_hugepagesz=", default_hugepagesz_setup);
4355
4356 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4357 {
4358 #ifdef CONFIG_NUMA
4359         struct mempolicy *mpol = get_task_policy(current);
4360
4361         /*
4362          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4363          * (from policy_nodemask) specifically for hugetlb case
4364          */
4365         if (mpol->mode == MPOL_BIND &&
4366                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4367                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4368                 return &mpol->nodes;
4369 #endif
4370         return NULL;
4371 }
4372
4373 static unsigned int allowed_mems_nr(struct hstate *h)
4374 {
4375         int node;
4376         unsigned int nr = 0;
4377         nodemask_t *mbind_nodemask;
4378         unsigned int *array = h->free_huge_pages_node;
4379         gfp_t gfp_mask = htlb_alloc_mask(h);
4380
4381         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4382         for_each_node_mask(node, cpuset_current_mems_allowed) {
4383                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4384                         nr += array[node];
4385         }
4386
4387         return nr;
4388 }
4389
4390 #ifdef CONFIG_SYSCTL
4391 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4392                                           void *buffer, size_t *length,
4393                                           loff_t *ppos, unsigned long *out)
4394 {
4395         struct ctl_table dup_table;
4396
4397         /*
4398          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4399          * can duplicate the @table and alter the duplicate of it.
4400          */
4401         dup_table = *table;
4402         dup_table.data = out;
4403
4404         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4405 }
4406
4407 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4408                          struct ctl_table *table, int write,
4409                          void *buffer, size_t *length, loff_t *ppos)
4410 {
4411         struct hstate *h = &default_hstate;
4412         unsigned long tmp = h->max_huge_pages;
4413         int ret;
4414
4415         if (!hugepages_supported())
4416                 return -EOPNOTSUPP;
4417
4418         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4419                                              &tmp);
4420         if (ret)
4421                 goto out;
4422
4423         if (write)
4424                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4425                                                   NUMA_NO_NODE, tmp, *length);
4426 out:
4427         return ret;
4428 }
4429
4430 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4431                           void *buffer, size_t *length, loff_t *ppos)
4432 {
4433
4434         return hugetlb_sysctl_handler_common(false, table, write,
4435                                                         buffer, length, ppos);
4436 }
4437
4438 #ifdef CONFIG_NUMA
4439 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4440                           void *buffer, size_t *length, loff_t *ppos)
4441 {
4442         return hugetlb_sysctl_handler_common(true, table, write,
4443                                                         buffer, length, ppos);
4444 }
4445 #endif /* CONFIG_NUMA */
4446
4447 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4448                 void *buffer, size_t *length, loff_t *ppos)
4449 {
4450         struct hstate *h = &default_hstate;
4451         unsigned long tmp;
4452         int ret;
4453
4454         if (!hugepages_supported())
4455                 return -EOPNOTSUPP;
4456
4457         tmp = h->nr_overcommit_huge_pages;
4458
4459         if (write && hstate_is_gigantic(h))
4460                 return -EINVAL;
4461
4462         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4463                                              &tmp);
4464         if (ret)
4465                 goto out;
4466
4467         if (write) {
4468                 spin_lock_irq(&hugetlb_lock);
4469                 h->nr_overcommit_huge_pages = tmp;
4470                 spin_unlock_irq(&hugetlb_lock);
4471         }
4472 out:
4473         return ret;
4474 }
4475
4476 #endif /* CONFIG_SYSCTL */
4477
4478 void hugetlb_report_meminfo(struct seq_file *m)
4479 {
4480         struct hstate *h;
4481         unsigned long total = 0;
4482
4483         if (!hugepages_supported())
4484                 return;
4485
4486         for_each_hstate(h) {
4487                 unsigned long count = h->nr_huge_pages;
4488
4489                 total += huge_page_size(h) * count;
4490
4491                 if (h == &default_hstate)
4492                         seq_printf(m,
4493                                    "HugePages_Total:   %5lu\n"
4494                                    "HugePages_Free:    %5lu\n"
4495                                    "HugePages_Rsvd:    %5lu\n"
4496                                    "HugePages_Surp:    %5lu\n"
4497                                    "Hugepagesize:   %8lu kB\n",
4498                                    count,
4499                                    h->free_huge_pages,
4500                                    h->resv_huge_pages,
4501                                    h->surplus_huge_pages,
4502                                    huge_page_size(h) / SZ_1K);
4503         }
4504
4505         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4506 }
4507
4508 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4509 {
4510         struct hstate *h = &default_hstate;
4511
4512         if (!hugepages_supported())
4513                 return 0;
4514
4515         return sysfs_emit_at(buf, len,
4516                              "Node %d HugePages_Total: %5u\n"
4517                              "Node %d HugePages_Free:  %5u\n"
4518                              "Node %d HugePages_Surp:  %5u\n",
4519                              nid, h->nr_huge_pages_node[nid],
4520                              nid, h->free_huge_pages_node[nid],
4521                              nid, h->surplus_huge_pages_node[nid]);
4522 }
4523
4524 void hugetlb_show_meminfo_node(int nid)
4525 {
4526         struct hstate *h;
4527
4528         if (!hugepages_supported())
4529                 return;
4530
4531         for_each_hstate(h)
4532                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4533                         nid,
4534                         h->nr_huge_pages_node[nid],
4535                         h->free_huge_pages_node[nid],
4536                         h->surplus_huge_pages_node[nid],
4537                         huge_page_size(h) / SZ_1K);
4538 }
4539
4540 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4541 {
4542         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4543                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4544 }
4545
4546 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4547 unsigned long hugetlb_total_pages(void)
4548 {
4549         struct hstate *h;
4550         unsigned long nr_total_pages = 0;
4551
4552         for_each_hstate(h)
4553                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4554         return nr_total_pages;
4555 }
4556
4557 static int hugetlb_acct_memory(struct hstate *h, long delta)
4558 {
4559         int ret = -ENOMEM;
4560
4561         if (!delta)
4562                 return 0;
4563
4564         spin_lock_irq(&hugetlb_lock);
4565         /*
4566          * When cpuset is configured, it breaks the strict hugetlb page
4567          * reservation as the accounting is done on a global variable. Such
4568          * reservation is completely rubbish in the presence of cpuset because
4569          * the reservation is not checked against page availability for the
4570          * current cpuset. Application can still potentially OOM'ed by kernel
4571          * with lack of free htlb page in cpuset that the task is in.
4572          * Attempt to enforce strict accounting with cpuset is almost
4573          * impossible (or too ugly) because cpuset is too fluid that
4574          * task or memory node can be dynamically moved between cpusets.
4575          *
4576          * The change of semantics for shared hugetlb mapping with cpuset is
4577          * undesirable. However, in order to preserve some of the semantics,
4578          * we fall back to check against current free page availability as
4579          * a best attempt and hopefully to minimize the impact of changing
4580          * semantics that cpuset has.
4581          *
4582          * Apart from cpuset, we also have memory policy mechanism that
4583          * also determines from which node the kernel will allocate memory
4584          * in a NUMA system. So similar to cpuset, we also should consider
4585          * the memory policy of the current task. Similar to the description
4586          * above.
4587          */
4588         if (delta > 0) {
4589                 if (gather_surplus_pages(h, delta) < 0)
4590                         goto out;
4591
4592                 if (delta > allowed_mems_nr(h)) {
4593                         return_unused_surplus_pages(h, delta);
4594                         goto out;
4595                 }
4596         }
4597
4598         ret = 0;
4599         if (delta < 0)
4600                 return_unused_surplus_pages(h, (unsigned long) -delta);
4601
4602 out:
4603         spin_unlock_irq(&hugetlb_lock);
4604         return ret;
4605 }
4606
4607 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4608 {
4609         struct resv_map *resv = vma_resv_map(vma);
4610
4611         /*
4612          * HPAGE_RESV_OWNER indicates a private mapping.
4613          * This new VMA should share its siblings reservation map if present.
4614          * The VMA will only ever have a valid reservation map pointer where
4615          * it is being copied for another still existing VMA.  As that VMA
4616          * has a reference to the reservation map it cannot disappear until
4617          * after this open call completes.  It is therefore safe to take a
4618          * new reference here without additional locking.
4619          */
4620         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4621                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4622                 kref_get(&resv->refs);
4623         }
4624
4625         /*
4626          * vma_lock structure for sharable mappings is vma specific.
4627          * Clear old pointer (if copied via vm_area_dup) and allocate
4628          * new structure.  Before clearing, make sure vma_lock is not
4629          * for this vma.
4630          */
4631         if (vma->vm_flags & VM_MAYSHARE) {
4632                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4633
4634                 if (vma_lock) {
4635                         if (vma_lock->vma != vma) {
4636                                 vma->vm_private_data = NULL;
4637                                 hugetlb_vma_lock_alloc(vma);
4638                         } else
4639                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4640                 } else
4641                         hugetlb_vma_lock_alloc(vma);
4642         }
4643 }
4644
4645 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4646 {
4647         struct hstate *h = hstate_vma(vma);
4648         struct resv_map *resv;
4649         struct hugepage_subpool *spool = subpool_vma(vma);
4650         unsigned long reserve, start, end;
4651         long gbl_reserve;
4652
4653         hugetlb_vma_lock_free(vma);
4654
4655         resv = vma_resv_map(vma);
4656         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4657                 return;
4658
4659         start = vma_hugecache_offset(h, vma, vma->vm_start);
4660         end = vma_hugecache_offset(h, vma, vma->vm_end);
4661
4662         reserve = (end - start) - region_count(resv, start, end);
4663         hugetlb_cgroup_uncharge_counter(resv, start, end);
4664         if (reserve) {
4665                 /*
4666                  * Decrement reserve counts.  The global reserve count may be
4667                  * adjusted if the subpool has a minimum size.
4668                  */
4669                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4670                 hugetlb_acct_memory(h, -gbl_reserve);
4671         }
4672
4673         kref_put(&resv->refs, resv_map_release);
4674 }
4675
4676 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4677 {
4678         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4679                 return -EINVAL;
4680         return 0;
4681 }
4682
4683 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4684 {
4685         return huge_page_size(hstate_vma(vma));
4686 }
4687
4688 /*
4689  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4690  * handle_mm_fault() to try to instantiate regular-sized pages in the
4691  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4692  * this far.
4693  */
4694 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4695 {
4696         BUG();
4697         return 0;
4698 }
4699
4700 /*
4701  * When a new function is introduced to vm_operations_struct and added
4702  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4703  * This is because under System V memory model, mappings created via
4704  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4705  * their original vm_ops are overwritten with shm_vm_ops.
4706  */
4707 const struct vm_operations_struct hugetlb_vm_ops = {
4708         .fault = hugetlb_vm_op_fault,
4709         .open = hugetlb_vm_op_open,
4710         .close = hugetlb_vm_op_close,
4711         .may_split = hugetlb_vm_op_split,
4712         .pagesize = hugetlb_vm_op_pagesize,
4713 };
4714
4715 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4716                                 int writable)
4717 {
4718         pte_t entry;
4719         unsigned int shift = huge_page_shift(hstate_vma(vma));
4720
4721         if (writable) {
4722                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4723                                          vma->vm_page_prot)));
4724         } else {
4725                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4726                                            vma->vm_page_prot));
4727         }
4728         entry = pte_mkyoung(entry);
4729         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4730
4731         return entry;
4732 }
4733
4734 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4735                                    unsigned long address, pte_t *ptep)
4736 {
4737         pte_t entry;
4738
4739         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4740         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4741                 update_mmu_cache(vma, address, ptep);
4742 }
4743
4744 bool is_hugetlb_entry_migration(pte_t pte)
4745 {
4746         swp_entry_t swp;
4747
4748         if (huge_pte_none(pte) || pte_present(pte))
4749                 return false;
4750         swp = pte_to_swp_entry(pte);
4751         if (is_migration_entry(swp))
4752                 return true;
4753         else
4754                 return false;
4755 }
4756
4757 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4758 {
4759         swp_entry_t swp;
4760
4761         if (huge_pte_none(pte) || pte_present(pte))
4762                 return false;
4763         swp = pte_to_swp_entry(pte);
4764         if (is_hwpoison_entry(swp))
4765                 return true;
4766         else
4767                 return false;
4768 }
4769
4770 static void
4771 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4772                      struct page *new_page)
4773 {
4774         __SetPageUptodate(new_page);
4775         hugepage_add_new_anon_rmap(new_page, vma, addr);
4776         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4777         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4778         ClearHPageRestoreReserve(new_page);
4779         SetHPageMigratable(new_page);
4780 }
4781
4782 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4783                             struct vm_area_struct *dst_vma,
4784                             struct vm_area_struct *src_vma)
4785 {
4786         pte_t *src_pte, *dst_pte, entry;
4787         struct page *ptepage;
4788         unsigned long addr;
4789         bool cow = is_cow_mapping(src_vma->vm_flags);
4790         struct hstate *h = hstate_vma(src_vma);
4791         unsigned long sz = huge_page_size(h);
4792         unsigned long npages = pages_per_huge_page(h);
4793         struct mmu_notifier_range range;
4794         unsigned long last_addr_mask;
4795         int ret = 0;
4796
4797         if (cow) {
4798                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4799                                         src_vma->vm_start,
4800                                         src_vma->vm_end);
4801                 mmu_notifier_invalidate_range_start(&range);
4802                 mmap_assert_write_locked(src);
4803                 raw_write_seqcount_begin(&src->write_protect_seq);
4804         } else {
4805                 /*
4806                  * For shared mappings the vma lock must be held before
4807                  * calling huge_pte_offset in the src vma. Otherwise, the
4808                  * returned ptep could go away if part of a shared pmd and
4809                  * another thread calls huge_pmd_unshare.
4810                  */
4811                 hugetlb_vma_lock_read(src_vma);
4812         }
4813
4814         last_addr_mask = hugetlb_mask_last_page(h);
4815         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4816                 spinlock_t *src_ptl, *dst_ptl;
4817                 src_pte = huge_pte_offset(src, addr, sz);
4818                 if (!src_pte) {
4819                         addr |= last_addr_mask;
4820                         continue;
4821                 }
4822                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4823                 if (!dst_pte) {
4824                         ret = -ENOMEM;
4825                         break;
4826                 }
4827
4828                 /*
4829                  * If the pagetables are shared don't copy or take references.
4830                  *
4831                  * dst_pte == src_pte is the common case of src/dest sharing.
4832                  * However, src could have 'unshared' and dst shares with
4833                  * another vma. So page_count of ptep page is checked instead
4834                  * to reliably determine whether pte is shared.
4835                  */
4836                 if (page_count(virt_to_page(dst_pte)) > 1) {
4837                         addr |= last_addr_mask;
4838                         continue;
4839                 }
4840
4841                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4842                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4843                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4844                 entry = huge_ptep_get(src_pte);
4845 again:
4846                 if (huge_pte_none(entry)) {
4847                         /*
4848                          * Skip if src entry none.
4849                          */
4850                         ;
4851                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4852                         bool uffd_wp = huge_pte_uffd_wp(entry);
4853
4854                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855                                 entry = huge_pte_clear_uffd_wp(entry);
4856                         set_huge_pte_at(dst, addr, dst_pte, entry);
4857                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4858                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4859                         bool uffd_wp = huge_pte_uffd_wp(entry);
4860
4861                         if (!is_readable_migration_entry(swp_entry) && cow) {
4862                                 /*
4863                                  * COW mappings require pages in both
4864                                  * parent and child to be set to read.
4865                                  */
4866                                 swp_entry = make_readable_migration_entry(
4867                                                         swp_offset(swp_entry));
4868                                 entry = swp_entry_to_pte(swp_entry);
4869                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4870                                         entry = huge_pte_mkuffd_wp(entry);
4871                                 set_huge_pte_at(src, addr, src_pte, entry);
4872                         }
4873                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4874                                 entry = huge_pte_clear_uffd_wp(entry);
4875                         set_huge_pte_at(dst, addr, dst_pte, entry);
4876                 } else if (unlikely(is_pte_marker(entry))) {
4877                         /*
4878                          * We copy the pte marker only if the dst vma has
4879                          * uffd-wp enabled.
4880                          */
4881                         if (userfaultfd_wp(dst_vma))
4882                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4883                 } else {
4884                         entry = huge_ptep_get(src_pte);
4885                         ptepage = pte_page(entry);
4886                         get_page(ptepage);
4887
4888                         /*
4889                          * Failing to duplicate the anon rmap is a rare case
4890                          * where we see pinned hugetlb pages while they're
4891                          * prone to COW. We need to do the COW earlier during
4892                          * fork.
4893                          *
4894                          * When pre-allocating the page or copying data, we
4895                          * need to be without the pgtable locks since we could
4896                          * sleep during the process.
4897                          */
4898                         if (!PageAnon(ptepage)) {
4899                                 page_dup_file_rmap(ptepage, true);
4900                         } else if (page_try_dup_anon_rmap(ptepage, true,
4901                                                           src_vma)) {
4902                                 pte_t src_pte_old = entry;
4903                                 struct page *new;
4904
4905                                 spin_unlock(src_ptl);
4906                                 spin_unlock(dst_ptl);
4907                                 /* Do not use reserve as it's private owned */
4908                                 new = alloc_huge_page(dst_vma, addr, 1);
4909                                 if (IS_ERR(new)) {
4910                                         put_page(ptepage);
4911                                         ret = PTR_ERR(new);
4912                                         break;
4913                                 }
4914                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4915                                                     npages);
4916                                 put_page(ptepage);
4917
4918                                 /* Install the new huge page if src pte stable */
4919                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4920                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4921                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4922                                 entry = huge_ptep_get(src_pte);
4923                                 if (!pte_same(src_pte_old, entry)) {
4924                                         restore_reserve_on_error(h, dst_vma, addr,
4925                                                                 new);
4926                                         put_page(new);
4927                                         /* huge_ptep of dst_pte won't change as in child */
4928                                         goto again;
4929                                 }
4930                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4931                                 spin_unlock(src_ptl);
4932                                 spin_unlock(dst_ptl);
4933                                 continue;
4934                         }
4935
4936                         if (cow) {
4937                                 /*
4938                                  * No need to notify as we are downgrading page
4939                                  * table protection not changing it to point
4940                                  * to a new page.
4941                                  *
4942                                  * See Documentation/mm/mmu_notifier.rst
4943                                  */
4944                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4945                                 entry = huge_pte_wrprotect(entry);
4946                         }
4947
4948                         set_huge_pte_at(dst, addr, dst_pte, entry);
4949                         hugetlb_count_add(npages, dst);
4950                 }
4951                 spin_unlock(src_ptl);
4952                 spin_unlock(dst_ptl);
4953         }
4954
4955         if (cow) {
4956                 raw_write_seqcount_end(&src->write_protect_seq);
4957                 mmu_notifier_invalidate_range_end(&range);
4958         } else {
4959                 hugetlb_vma_unlock_read(src_vma);
4960         }
4961
4962         return ret;
4963 }
4964
4965 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4966                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4967 {
4968         struct hstate *h = hstate_vma(vma);
4969         struct mm_struct *mm = vma->vm_mm;
4970         spinlock_t *src_ptl, *dst_ptl;
4971         pte_t pte;
4972
4973         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4974         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4975
4976         /*
4977          * We don't have to worry about the ordering of src and dst ptlocks
4978          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4979          */
4980         if (src_ptl != dst_ptl)
4981                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4982
4983         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4984         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4985
4986         if (src_ptl != dst_ptl)
4987                 spin_unlock(src_ptl);
4988         spin_unlock(dst_ptl);
4989 }
4990
4991 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4992                              struct vm_area_struct *new_vma,
4993                              unsigned long old_addr, unsigned long new_addr,
4994                              unsigned long len)
4995 {
4996         struct hstate *h = hstate_vma(vma);
4997         struct address_space *mapping = vma->vm_file->f_mapping;
4998         unsigned long sz = huge_page_size(h);
4999         struct mm_struct *mm = vma->vm_mm;
5000         unsigned long old_end = old_addr + len;
5001         unsigned long last_addr_mask;
5002         pte_t *src_pte, *dst_pte;
5003         struct mmu_notifier_range range;
5004         bool shared_pmd = false;
5005
5006         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5007                                 old_end);
5008         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5009         /*
5010          * In case of shared PMDs, we should cover the maximum possible
5011          * range.
5012          */
5013         flush_cache_range(vma, range.start, range.end);
5014
5015         mmu_notifier_invalidate_range_start(&range);
5016         last_addr_mask = hugetlb_mask_last_page(h);
5017         /* Prevent race with file truncation */
5018         hugetlb_vma_lock_write(vma);
5019         i_mmap_lock_write(mapping);
5020         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5021                 src_pte = huge_pte_offset(mm, old_addr, sz);
5022                 if (!src_pte) {
5023                         old_addr |= last_addr_mask;
5024                         new_addr |= last_addr_mask;
5025                         continue;
5026                 }
5027                 if (huge_pte_none(huge_ptep_get(src_pte)))
5028                         continue;
5029
5030                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5031                         shared_pmd = true;
5032                         old_addr |= last_addr_mask;
5033                         new_addr |= last_addr_mask;
5034                         continue;
5035                 }
5036
5037                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5038                 if (!dst_pte)
5039                         break;
5040
5041                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5042         }
5043
5044         if (shared_pmd)
5045                 flush_tlb_range(vma, range.start, range.end);
5046         else
5047                 flush_tlb_range(vma, old_end - len, old_end);
5048         mmu_notifier_invalidate_range_end(&range);
5049         i_mmap_unlock_write(mapping);
5050         hugetlb_vma_unlock_write(vma);
5051
5052         return len + old_addr - old_end;
5053 }
5054
5055 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5056                                    unsigned long start, unsigned long end,
5057                                    struct page *ref_page, zap_flags_t zap_flags)
5058 {
5059         struct mm_struct *mm = vma->vm_mm;
5060         unsigned long address;
5061         pte_t *ptep;
5062         pte_t pte;
5063         spinlock_t *ptl;
5064         struct page *page;
5065         struct hstate *h = hstate_vma(vma);
5066         unsigned long sz = huge_page_size(h);
5067         struct mmu_notifier_range range;
5068         unsigned long last_addr_mask;
5069         bool force_flush = false;
5070
5071         WARN_ON(!is_vm_hugetlb_page(vma));
5072         BUG_ON(start & ~huge_page_mask(h));
5073         BUG_ON(end & ~huge_page_mask(h));
5074
5075         /*
5076          * This is a hugetlb vma, all the pte entries should point
5077          * to huge page.
5078          */
5079         tlb_change_page_size(tlb, sz);
5080         tlb_start_vma(tlb, vma);
5081
5082         /*
5083          * If sharing possible, alert mmu notifiers of worst case.
5084          */
5085         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5086                                 end);
5087         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5088         mmu_notifier_invalidate_range_start(&range);
5089         last_addr_mask = hugetlb_mask_last_page(h);
5090         address = start;
5091         for (; address < end; address += sz) {
5092                 ptep = huge_pte_offset(mm, address, sz);
5093                 if (!ptep) {
5094                         address |= last_addr_mask;
5095                         continue;
5096                 }
5097
5098                 ptl = huge_pte_lock(h, mm, ptep);
5099                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5100                         spin_unlock(ptl);
5101                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5102                         force_flush = true;
5103                         address |= last_addr_mask;
5104                         continue;
5105                 }
5106
5107                 pte = huge_ptep_get(ptep);
5108                 if (huge_pte_none(pte)) {
5109                         spin_unlock(ptl);
5110                         continue;
5111                 }
5112
5113                 /*
5114                  * Migrating hugepage or HWPoisoned hugepage is already
5115                  * unmapped and its refcount is dropped, so just clear pte here.
5116                  */
5117                 if (unlikely(!pte_present(pte))) {
5118 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5119                         /*
5120                          * If the pte was wr-protected by uffd-wp in any of the
5121                          * swap forms, meanwhile the caller does not want to
5122                          * drop the uffd-wp bit in this zap, then replace the
5123                          * pte with a marker.
5124                          */
5125                         if (pte_swp_uffd_wp_any(pte) &&
5126                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5127                                 set_huge_pte_at(mm, address, ptep,
5128                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5129                         else
5130 #endif
5131                                 huge_pte_clear(mm, address, ptep, sz);
5132                         spin_unlock(ptl);
5133                         continue;
5134                 }
5135
5136                 page = pte_page(pte);
5137                 /*
5138                  * If a reference page is supplied, it is because a specific
5139                  * page is being unmapped, not a range. Ensure the page we
5140                  * are about to unmap is the actual page of interest.
5141                  */
5142                 if (ref_page) {
5143                         if (page != ref_page) {
5144                                 spin_unlock(ptl);
5145                                 continue;
5146                         }
5147                         /*
5148                          * Mark the VMA as having unmapped its page so that
5149                          * future faults in this VMA will fail rather than
5150                          * looking like data was lost
5151                          */
5152                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5153                 }
5154
5155                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5156                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5157                 if (huge_pte_dirty(pte))
5158                         set_page_dirty(page);
5159 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5160                 /* Leave a uffd-wp pte marker if needed */
5161                 if (huge_pte_uffd_wp(pte) &&
5162                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5163                         set_huge_pte_at(mm, address, ptep,
5164                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5165 #endif
5166                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5167                 page_remove_rmap(page, vma, true);
5168
5169                 spin_unlock(ptl);
5170                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5171                 /*
5172                  * Bail out after unmapping reference page if supplied
5173                  */
5174                 if (ref_page)
5175                         break;
5176         }
5177         mmu_notifier_invalidate_range_end(&range);
5178         tlb_end_vma(tlb, vma);
5179
5180         /*
5181          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5182          * could defer the flush until now, since by holding i_mmap_rwsem we
5183          * guaranteed that the last refernece would not be dropped. But we must
5184          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5185          * dropped and the last reference to the shared PMDs page might be
5186          * dropped as well.
5187          *
5188          * In theory we could defer the freeing of the PMD pages as well, but
5189          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5190          * detect sharing, so we cannot defer the release of the page either.
5191          * Instead, do flush now.
5192          */
5193         if (force_flush)
5194                 tlb_flush_mmu_tlbonly(tlb);
5195 }
5196
5197 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5198                           struct vm_area_struct *vma, unsigned long start,
5199                           unsigned long end, struct page *ref_page,
5200                           zap_flags_t zap_flags)
5201 {
5202         hugetlb_vma_lock_write(vma);
5203         i_mmap_lock_write(vma->vm_file->f_mapping);
5204
5205         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5206
5207         /*
5208          * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5209          * the vma_lock is freed, this makes the vma ineligible for pmd
5210          * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5211          * This is important as page tables for this unmapped range will
5212          * be asynchrously deleted.  If the page tables are shared, there
5213          * will be issues when accessed by someone else.
5214          */
5215         __hugetlb_vma_unlock_write_free(vma);
5216
5217         i_mmap_unlock_write(vma->vm_file->f_mapping);
5218 }
5219
5220 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5221                           unsigned long end, struct page *ref_page,
5222                           zap_flags_t zap_flags)
5223 {
5224         struct mmu_gather tlb;
5225
5226         tlb_gather_mmu(&tlb, vma->vm_mm);
5227         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5228         tlb_finish_mmu(&tlb);
5229 }
5230
5231 /*
5232  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5233  * mapping it owns the reserve page for. The intention is to unmap the page
5234  * from other VMAs and let the children be SIGKILLed if they are faulting the
5235  * same region.
5236  */
5237 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5238                               struct page *page, unsigned long address)
5239 {
5240         struct hstate *h = hstate_vma(vma);
5241         struct vm_area_struct *iter_vma;
5242         struct address_space *mapping;
5243         pgoff_t pgoff;
5244
5245         /*
5246          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5247          * from page cache lookup which is in HPAGE_SIZE units.
5248          */
5249         address = address & huge_page_mask(h);
5250         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5251                         vma->vm_pgoff;
5252         mapping = vma->vm_file->f_mapping;
5253
5254         /*
5255          * Take the mapping lock for the duration of the table walk. As
5256          * this mapping should be shared between all the VMAs,
5257          * __unmap_hugepage_range() is called as the lock is already held
5258          */
5259         i_mmap_lock_write(mapping);
5260         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5261                 /* Do not unmap the current VMA */
5262                 if (iter_vma == vma)
5263                         continue;
5264
5265                 /*
5266                  * Shared VMAs have their own reserves and do not affect
5267                  * MAP_PRIVATE accounting but it is possible that a shared
5268                  * VMA is using the same page so check and skip such VMAs.
5269                  */
5270                 if (iter_vma->vm_flags & VM_MAYSHARE)
5271                         continue;
5272
5273                 /*
5274                  * Unmap the page from other VMAs without their own reserves.
5275                  * They get marked to be SIGKILLed if they fault in these
5276                  * areas. This is because a future no-page fault on this VMA
5277                  * could insert a zeroed page instead of the data existing
5278                  * from the time of fork. This would look like data corruption
5279                  */
5280                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5281                         unmap_hugepage_range(iter_vma, address,
5282                                              address + huge_page_size(h), page, 0);
5283         }
5284         i_mmap_unlock_write(mapping);
5285 }
5286
5287 /*
5288  * hugetlb_wp() should be called with page lock of the original hugepage held.
5289  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5290  * cannot race with other handlers or page migration.
5291  * Keep the pte_same checks anyway to make transition from the mutex easier.
5292  */
5293 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5294                        unsigned long address, pte_t *ptep, unsigned int flags,
5295                        struct page *pagecache_page, spinlock_t *ptl)
5296 {
5297         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5298         pte_t pte;
5299         struct hstate *h = hstate_vma(vma);
5300         struct page *old_page, *new_page;
5301         int outside_reserve = 0;
5302         vm_fault_t ret = 0;
5303         unsigned long haddr = address & huge_page_mask(h);
5304         struct mmu_notifier_range range;
5305
5306         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5307         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5308
5309         /*
5310          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5311          * PTE mapped R/O such as maybe_mkwrite() would do.
5312          */
5313         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5314                 return VM_FAULT_SIGSEGV;
5315
5316         /* Let's take out MAP_SHARED mappings first. */
5317         if (vma->vm_flags & VM_MAYSHARE) {
5318                 if (unlikely(unshare))
5319                         return 0;
5320                 set_huge_ptep_writable(vma, haddr, ptep);
5321                 return 0;
5322         }
5323
5324         pte = huge_ptep_get(ptep);
5325         old_page = pte_page(pte);
5326
5327         delayacct_wpcopy_start();
5328
5329 retry_avoidcopy:
5330         /*
5331          * If no-one else is actually using this page, we're the exclusive
5332          * owner and can reuse this page.
5333          */
5334         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5335                 if (!PageAnonExclusive(old_page))
5336                         page_move_anon_rmap(old_page, vma);
5337                 if (likely(!unshare))
5338                         set_huge_ptep_writable(vma, haddr, ptep);
5339
5340                 delayacct_wpcopy_end();
5341                 return 0;
5342         }
5343         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5344                        old_page);
5345
5346         /*
5347          * If the process that created a MAP_PRIVATE mapping is about to
5348          * perform a COW due to a shared page count, attempt to satisfy
5349          * the allocation without using the existing reserves. The pagecache
5350          * page is used to determine if the reserve at this address was
5351          * consumed or not. If reserves were used, a partial faulted mapping
5352          * at the time of fork() could consume its reserves on COW instead
5353          * of the full address range.
5354          */
5355         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5356                         old_page != pagecache_page)
5357                 outside_reserve = 1;
5358
5359         get_page(old_page);
5360
5361         /*
5362          * Drop page table lock as buddy allocator may be called. It will
5363          * be acquired again before returning to the caller, as expected.
5364          */
5365         spin_unlock(ptl);
5366         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5367
5368         if (IS_ERR(new_page)) {
5369                 /*
5370                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5371                  * it is due to references held by a child and an insufficient
5372                  * huge page pool. To guarantee the original mappers
5373                  * reliability, unmap the page from child processes. The child
5374                  * may get SIGKILLed if it later faults.
5375                  */
5376                 if (outside_reserve) {
5377                         struct address_space *mapping = vma->vm_file->f_mapping;
5378                         pgoff_t idx;
5379                         u32 hash;
5380
5381                         put_page(old_page);
5382                         /*
5383                          * Drop hugetlb_fault_mutex and vma_lock before
5384                          * unmapping.  unmapping needs to hold vma_lock
5385                          * in write mode.  Dropping vma_lock in read mode
5386                          * here is OK as COW mappings do not interact with
5387                          * PMD sharing.
5388                          *
5389                          * Reacquire both after unmap operation.
5390                          */
5391                         idx = vma_hugecache_offset(h, vma, haddr);
5392                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5393                         hugetlb_vma_unlock_read(vma);
5394                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5395
5396                         unmap_ref_private(mm, vma, old_page, haddr);
5397
5398                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5399                         hugetlb_vma_lock_read(vma);
5400                         spin_lock(ptl);
5401                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5402                         if (likely(ptep &&
5403                                    pte_same(huge_ptep_get(ptep), pte)))
5404                                 goto retry_avoidcopy;
5405                         /*
5406                          * race occurs while re-acquiring page table
5407                          * lock, and our job is done.
5408                          */
5409                         delayacct_wpcopy_end();
5410                         return 0;
5411                 }
5412
5413                 ret = vmf_error(PTR_ERR(new_page));
5414                 goto out_release_old;
5415         }
5416
5417         /*
5418          * When the original hugepage is shared one, it does not have
5419          * anon_vma prepared.
5420          */
5421         if (unlikely(anon_vma_prepare(vma))) {
5422                 ret = VM_FAULT_OOM;
5423                 goto out_release_all;
5424         }
5425
5426         copy_user_huge_page(new_page, old_page, address, vma,
5427                             pages_per_huge_page(h));
5428         __SetPageUptodate(new_page);
5429
5430         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5431                                 haddr + huge_page_size(h));
5432         mmu_notifier_invalidate_range_start(&range);
5433
5434         /*
5435          * Retake the page table lock to check for racing updates
5436          * before the page tables are altered
5437          */
5438         spin_lock(ptl);
5439         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5440         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5441                 ClearHPageRestoreReserve(new_page);
5442
5443                 /* Break COW or unshare */
5444                 huge_ptep_clear_flush(vma, haddr, ptep);
5445                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5446                 page_remove_rmap(old_page, vma, true);
5447                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5448                 set_huge_pte_at(mm, haddr, ptep,
5449                                 make_huge_pte(vma, new_page, !unshare));
5450                 SetHPageMigratable(new_page);
5451                 /* Make the old page be freed below */
5452                 new_page = old_page;
5453         }
5454         spin_unlock(ptl);
5455         mmu_notifier_invalidate_range_end(&range);
5456 out_release_all:
5457         /*
5458          * No restore in case of successful pagetable update (Break COW or
5459          * unshare)
5460          */
5461         if (new_page != old_page)
5462                 restore_reserve_on_error(h, vma, haddr, new_page);
5463         put_page(new_page);
5464 out_release_old:
5465         put_page(old_page);
5466
5467         spin_lock(ptl); /* Caller expects lock to be held */
5468
5469         delayacct_wpcopy_end();
5470         return ret;
5471 }
5472
5473 /*
5474  * Return whether there is a pagecache page to back given address within VMA.
5475  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5476  */
5477 static bool hugetlbfs_pagecache_present(struct hstate *h,
5478                         struct vm_area_struct *vma, unsigned long address)
5479 {
5480         struct address_space *mapping;
5481         pgoff_t idx;
5482         struct page *page;
5483
5484         mapping = vma->vm_file->f_mapping;
5485         idx = vma_hugecache_offset(h, vma, address);
5486
5487         page = find_get_page(mapping, idx);
5488         if (page)
5489                 put_page(page);
5490         return page != NULL;
5491 }
5492
5493 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5494                            pgoff_t idx)
5495 {
5496         struct folio *folio = page_folio(page);
5497         struct inode *inode = mapping->host;
5498         struct hstate *h = hstate_inode(inode);
5499         int err;
5500
5501         __folio_set_locked(folio);
5502         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5503
5504         if (unlikely(err)) {
5505                 __folio_clear_locked(folio);
5506                 return err;
5507         }
5508         ClearHPageRestoreReserve(page);
5509
5510         /*
5511          * mark folio dirty so that it will not be removed from cache/file
5512          * by non-hugetlbfs specific code paths.
5513          */
5514         folio_mark_dirty(folio);
5515
5516         spin_lock(&inode->i_lock);
5517         inode->i_blocks += blocks_per_huge_page(h);
5518         spin_unlock(&inode->i_lock);
5519         return 0;
5520 }
5521
5522 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5523                                                   struct address_space *mapping,
5524                                                   pgoff_t idx,
5525                                                   unsigned int flags,
5526                                                   unsigned long haddr,
5527                                                   unsigned long addr,
5528                                                   unsigned long reason)
5529 {
5530         u32 hash;
5531         struct vm_fault vmf = {
5532                 .vma = vma,
5533                 .address = haddr,
5534                 .real_address = addr,
5535                 .flags = flags,
5536
5537                 /*
5538                  * Hard to debug if it ends up being
5539                  * used by a callee that assumes
5540                  * something about the other
5541                  * uninitialized fields... same as in
5542                  * memory.c
5543                  */
5544         };
5545
5546         /*
5547          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5548          * userfault. Also mmap_lock could be dropped due to handling
5549          * userfault, any vma operation should be careful from here.
5550          */
5551         hugetlb_vma_unlock_read(vma);
5552         hash = hugetlb_fault_mutex_hash(mapping, idx);
5553         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5554         return handle_userfault(&vmf, reason);
5555 }
5556
5557 /*
5558  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5559  * false if pte changed or is changing.
5560  */
5561 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5562                                pte_t *ptep, pte_t old_pte)
5563 {
5564         spinlock_t *ptl;
5565         bool same;
5566
5567         ptl = huge_pte_lock(h, mm, ptep);
5568         same = pte_same(huge_ptep_get(ptep), old_pte);
5569         spin_unlock(ptl);
5570
5571         return same;
5572 }
5573
5574 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5575                         struct vm_area_struct *vma,
5576                         struct address_space *mapping, pgoff_t idx,
5577                         unsigned long address, pte_t *ptep,
5578                         pte_t old_pte, unsigned int flags)
5579 {
5580         struct hstate *h = hstate_vma(vma);
5581         vm_fault_t ret = VM_FAULT_SIGBUS;
5582         int anon_rmap = 0;
5583         unsigned long size;
5584         struct page *page;
5585         pte_t new_pte;
5586         spinlock_t *ptl;
5587         unsigned long haddr = address & huge_page_mask(h);
5588         bool new_page, new_pagecache_page = false;
5589         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5590
5591         /*
5592          * Currently, we are forced to kill the process in the event the
5593          * original mapper has unmapped pages from the child due to a failed
5594          * COW/unsharing. Warn that such a situation has occurred as it may not
5595          * be obvious.
5596          */
5597         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5598                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5599                            current->pid);
5600                 goto out;
5601         }
5602
5603         /*
5604          * Use page lock to guard against racing truncation
5605          * before we get page_table_lock.
5606          */
5607         new_page = false;
5608         page = find_lock_page(mapping, idx);
5609         if (!page) {
5610                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5611                 if (idx >= size)
5612                         goto out;
5613                 /* Check for page in userfault range */
5614                 if (userfaultfd_missing(vma)) {
5615                         /*
5616                          * Since hugetlb_no_page() was examining pte
5617                          * without pgtable lock, we need to re-test under
5618                          * lock because the pte may not be stable and could
5619                          * have changed from under us.  Try to detect
5620                          * either changed or during-changing ptes and retry
5621                          * properly when needed.
5622                          *
5623                          * Note that userfaultfd is actually fine with
5624                          * false positives (e.g. caused by pte changed),
5625                          * but not wrong logical events (e.g. caused by
5626                          * reading a pte during changing).  The latter can
5627                          * confuse the userspace, so the strictness is very
5628                          * much preferred.  E.g., MISSING event should
5629                          * never happen on the page after UFFDIO_COPY has
5630                          * correctly installed the page and returned.
5631                          */
5632                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5633                                 ret = 0;
5634                                 goto out;
5635                         }
5636
5637                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5638                                                         haddr, address,
5639                                                         VM_UFFD_MISSING);
5640                 }
5641
5642                 page = alloc_huge_page(vma, haddr, 0);
5643                 if (IS_ERR(page)) {
5644                         /*
5645                          * Returning error will result in faulting task being
5646                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5647                          * tasks from racing to fault in the same page which
5648                          * could result in false unable to allocate errors.
5649                          * Page migration does not take the fault mutex, but
5650                          * does a clear then write of pte's under page table
5651                          * lock.  Page fault code could race with migration,
5652                          * notice the clear pte and try to allocate a page
5653                          * here.  Before returning error, get ptl and make
5654                          * sure there really is no pte entry.
5655                          */
5656                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5657                                 ret = vmf_error(PTR_ERR(page));
5658                         else
5659                                 ret = 0;
5660                         goto out;
5661                 }
5662                 clear_huge_page(page, address, pages_per_huge_page(h));
5663                 __SetPageUptodate(page);
5664                 new_page = true;
5665
5666                 if (vma->vm_flags & VM_MAYSHARE) {
5667                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5668                         if (err) {
5669                                 /*
5670                                  * err can't be -EEXIST which implies someone
5671                                  * else consumed the reservation since hugetlb
5672                                  * fault mutex is held when add a hugetlb page
5673                                  * to the page cache. So it's safe to call
5674                                  * restore_reserve_on_error() here.
5675                                  */
5676                                 restore_reserve_on_error(h, vma, haddr, page);
5677                                 put_page(page);
5678                                 goto out;
5679                         }
5680                         new_pagecache_page = true;
5681                 } else {
5682                         lock_page(page);
5683                         if (unlikely(anon_vma_prepare(vma))) {
5684                                 ret = VM_FAULT_OOM;
5685                                 goto backout_unlocked;
5686                         }
5687                         anon_rmap = 1;
5688                 }
5689         } else {
5690                 /*
5691                  * If memory error occurs between mmap() and fault, some process
5692                  * don't have hwpoisoned swap entry for errored virtual address.
5693                  * So we need to block hugepage fault by PG_hwpoison bit check.
5694                  */
5695                 if (unlikely(PageHWPoison(page))) {
5696                         ret = VM_FAULT_HWPOISON_LARGE |
5697                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5698                         goto backout_unlocked;
5699                 }
5700
5701                 /* Check for page in userfault range. */
5702                 if (userfaultfd_minor(vma)) {
5703                         unlock_page(page);
5704                         put_page(page);
5705                         /* See comment in userfaultfd_missing() block above */
5706                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5707                                 ret = 0;
5708                                 goto out;
5709                         }
5710                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5711                                                         haddr, address,
5712                                                         VM_UFFD_MINOR);
5713                 }
5714         }
5715
5716         /*
5717          * If we are going to COW a private mapping later, we examine the
5718          * pending reservations for this page now. This will ensure that
5719          * any allocations necessary to record that reservation occur outside
5720          * the spinlock.
5721          */
5722         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5723                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5724                         ret = VM_FAULT_OOM;
5725                         goto backout_unlocked;
5726                 }
5727                 /* Just decrements count, does not deallocate */
5728                 vma_end_reservation(h, vma, haddr);
5729         }
5730
5731         ptl = huge_pte_lock(h, mm, ptep);
5732         ret = 0;
5733         /* If pte changed from under us, retry */
5734         if (!pte_same(huge_ptep_get(ptep), old_pte))
5735                 goto backout;
5736
5737         if (anon_rmap) {
5738                 ClearHPageRestoreReserve(page);
5739                 hugepage_add_new_anon_rmap(page, vma, haddr);
5740         } else
5741                 page_dup_file_rmap(page, true);
5742         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5743                                 && (vma->vm_flags & VM_SHARED)));
5744         /*
5745          * If this pte was previously wr-protected, keep it wr-protected even
5746          * if populated.
5747          */
5748         if (unlikely(pte_marker_uffd_wp(old_pte)))
5749                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5750         set_huge_pte_at(mm, haddr, ptep, new_pte);
5751
5752         hugetlb_count_add(pages_per_huge_page(h), mm);
5753         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5754                 /* Optimization, do the COW without a second fault */
5755                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5756         }
5757
5758         spin_unlock(ptl);
5759
5760         /*
5761          * Only set HPageMigratable in newly allocated pages.  Existing pages
5762          * found in the pagecache may not have HPageMigratableset if they have
5763          * been isolated for migration.
5764          */
5765         if (new_page)
5766                 SetHPageMigratable(page);
5767
5768         unlock_page(page);
5769 out:
5770         hugetlb_vma_unlock_read(vma);
5771         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5772         return ret;
5773
5774 backout:
5775         spin_unlock(ptl);
5776 backout_unlocked:
5777         if (new_page && !new_pagecache_page)
5778                 restore_reserve_on_error(h, vma, haddr, page);
5779
5780         unlock_page(page);
5781         put_page(page);
5782         goto out;
5783 }
5784
5785 #ifdef CONFIG_SMP
5786 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5787 {
5788         unsigned long key[2];
5789         u32 hash;
5790
5791         key[0] = (unsigned long) mapping;
5792         key[1] = idx;
5793
5794         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5795
5796         return hash & (num_fault_mutexes - 1);
5797 }
5798 #else
5799 /*
5800  * For uniprocessor systems we always use a single mutex, so just
5801  * return 0 and avoid the hashing overhead.
5802  */
5803 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5804 {
5805         return 0;
5806 }
5807 #endif
5808
5809 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5810                         unsigned long address, unsigned int flags)
5811 {
5812         pte_t *ptep, entry;
5813         spinlock_t *ptl;
5814         vm_fault_t ret;
5815         u32 hash;
5816         pgoff_t idx;
5817         struct page *page = NULL;
5818         struct page *pagecache_page = NULL;
5819         struct hstate *h = hstate_vma(vma);
5820         struct address_space *mapping;
5821         int need_wait_lock = 0;
5822         unsigned long haddr = address & huge_page_mask(h);
5823
5824         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5825         if (ptep) {
5826                 /*
5827                  * Since we hold no locks, ptep could be stale.  That is
5828                  * OK as we are only making decisions based on content and
5829                  * not actually modifying content here.
5830                  */
5831                 entry = huge_ptep_get(ptep);
5832                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5833                         migration_entry_wait_huge(vma, ptep);
5834                         return 0;
5835                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5836                         return VM_FAULT_HWPOISON_LARGE |
5837                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5838         }
5839
5840         /*
5841          * Serialize hugepage allocation and instantiation, so that we don't
5842          * get spurious allocation failures if two CPUs race to instantiate
5843          * the same page in the page cache.
5844          */
5845         mapping = vma->vm_file->f_mapping;
5846         idx = vma_hugecache_offset(h, vma, haddr);
5847         hash = hugetlb_fault_mutex_hash(mapping, idx);
5848         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5849
5850         /*
5851          * Acquire vma lock before calling huge_pte_alloc and hold
5852          * until finished with ptep.  This prevents huge_pmd_unshare from
5853          * being called elsewhere and making the ptep no longer valid.
5854          *
5855          * ptep could have already be assigned via huge_pte_offset.  That
5856          * is OK, as huge_pte_alloc will return the same value unless
5857          * something has changed.
5858          */
5859         hugetlb_vma_lock_read(vma);
5860         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5861         if (!ptep) {
5862                 hugetlb_vma_unlock_read(vma);
5863                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5864                 return VM_FAULT_OOM;
5865         }
5866
5867         entry = huge_ptep_get(ptep);
5868         /* PTE markers should be handled the same way as none pte */
5869         if (huge_pte_none_mostly(entry))
5870                 /*
5871                  * hugetlb_no_page will drop vma lock and hugetlb fault
5872                  * mutex internally, which make us return immediately.
5873                  */
5874                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5875                                       entry, flags);
5876
5877         ret = 0;
5878
5879         /*
5880          * entry could be a migration/hwpoison entry at this point, so this
5881          * check prevents the kernel from going below assuming that we have
5882          * an active hugepage in pagecache. This goto expects the 2nd page
5883          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5884          * properly handle it.
5885          */
5886         if (!pte_present(entry))
5887                 goto out_mutex;
5888
5889         /*
5890          * If we are going to COW/unshare the mapping later, we examine the
5891          * pending reservations for this page now. This will ensure that any
5892          * allocations necessary to record that reservation occur outside the
5893          * spinlock. Also lookup the pagecache page now as it is used to
5894          * determine if a reservation has been consumed.
5895          */
5896         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5897             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5898                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5899                         ret = VM_FAULT_OOM;
5900                         goto out_mutex;
5901                 }
5902                 /* Just decrements count, does not deallocate */
5903                 vma_end_reservation(h, vma, haddr);
5904
5905                 pagecache_page = find_lock_page(mapping, idx);
5906         }
5907
5908         ptl = huge_pte_lock(h, mm, ptep);
5909
5910         /* Check for a racing update before calling hugetlb_wp() */
5911         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5912                 goto out_ptl;
5913
5914         /* Handle userfault-wp first, before trying to lock more pages */
5915         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5916             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5917                 struct vm_fault vmf = {
5918                         .vma = vma,
5919                         .address = haddr,
5920                         .real_address = address,
5921                         .flags = flags,
5922                 };
5923
5924                 spin_unlock(ptl);
5925                 if (pagecache_page) {
5926                         unlock_page(pagecache_page);
5927                         put_page(pagecache_page);
5928                 }
5929                 hugetlb_vma_unlock_read(vma);
5930                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5931                 return handle_userfault(&vmf, VM_UFFD_WP);
5932         }
5933
5934         /*
5935          * hugetlb_wp() requires page locks of pte_page(entry) and
5936          * pagecache_page, so here we need take the former one
5937          * when page != pagecache_page or !pagecache_page.
5938          */
5939         page = pte_page(entry);
5940         if (page != pagecache_page)
5941                 if (!trylock_page(page)) {
5942                         need_wait_lock = 1;
5943                         goto out_ptl;
5944                 }
5945
5946         get_page(page);
5947
5948         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5949                 if (!huge_pte_write(entry)) {
5950                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5951                                          pagecache_page, ptl);
5952                         goto out_put_page;
5953                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5954                         entry = huge_pte_mkdirty(entry);
5955                 }
5956         }
5957         entry = pte_mkyoung(entry);
5958         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5959                                                 flags & FAULT_FLAG_WRITE))
5960                 update_mmu_cache(vma, haddr, ptep);
5961 out_put_page:
5962         if (page != pagecache_page)
5963                 unlock_page(page);
5964         put_page(page);
5965 out_ptl:
5966         spin_unlock(ptl);
5967
5968         if (pagecache_page) {
5969                 unlock_page(pagecache_page);
5970                 put_page(pagecache_page);
5971         }
5972 out_mutex:
5973         hugetlb_vma_unlock_read(vma);
5974         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5975         /*
5976          * Generally it's safe to hold refcount during waiting page lock. But
5977          * here we just wait to defer the next page fault to avoid busy loop and
5978          * the page is not used after unlocked before returning from the current
5979          * page fault. So we are safe from accessing freed page, even if we wait
5980          * here without taking refcount.
5981          */
5982         if (need_wait_lock)
5983                 wait_on_page_locked(page);
5984         return ret;
5985 }
5986
5987 #ifdef CONFIG_USERFAULTFD
5988 /*
5989  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5990  * modifications for huge pages.
5991  */
5992 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5993                             pte_t *dst_pte,
5994                             struct vm_area_struct *dst_vma,
5995                             unsigned long dst_addr,
5996                             unsigned long src_addr,
5997                             enum mcopy_atomic_mode mode,
5998                             struct page **pagep,
5999                             bool wp_copy)
6000 {
6001         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6002         struct hstate *h = hstate_vma(dst_vma);
6003         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6004         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6005         unsigned long size;
6006         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6007         pte_t _dst_pte;
6008         spinlock_t *ptl;
6009         int ret = -ENOMEM;
6010         struct page *page;
6011         int writable;
6012         bool page_in_pagecache = false;
6013
6014         if (is_continue) {
6015                 ret = -EFAULT;
6016                 page = find_lock_page(mapping, idx);
6017                 if (!page)
6018                         goto out;
6019                 page_in_pagecache = true;
6020         } else if (!*pagep) {
6021                 /* If a page already exists, then it's UFFDIO_COPY for
6022                  * a non-missing case. Return -EEXIST.
6023                  */
6024                 if (vm_shared &&
6025                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6026                         ret = -EEXIST;
6027                         goto out;
6028                 }
6029
6030                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6031                 if (IS_ERR(page)) {
6032                         ret = -ENOMEM;
6033                         goto out;
6034                 }
6035
6036                 ret = copy_huge_page_from_user(page,
6037                                                 (const void __user *) src_addr,
6038                                                 pages_per_huge_page(h), false);
6039
6040                 /* fallback to copy_from_user outside mmap_lock */
6041                 if (unlikely(ret)) {
6042                         ret = -ENOENT;
6043                         /* Free the allocated page which may have
6044                          * consumed a reservation.
6045                          */
6046                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6047                         put_page(page);
6048
6049                         /* Allocate a temporary page to hold the copied
6050                          * contents.
6051                          */
6052                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6053                         if (!page) {
6054                                 ret = -ENOMEM;
6055                                 goto out;
6056                         }
6057                         *pagep = page;
6058                         /* Set the outparam pagep and return to the caller to
6059                          * copy the contents outside the lock. Don't free the
6060                          * page.
6061                          */
6062                         goto out;
6063                 }
6064         } else {
6065                 if (vm_shared &&
6066                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6067                         put_page(*pagep);
6068                         ret = -EEXIST;
6069                         *pagep = NULL;
6070                         goto out;
6071                 }
6072
6073                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6074                 if (IS_ERR(page)) {
6075                         put_page(*pagep);
6076                         ret = -ENOMEM;
6077                         *pagep = NULL;
6078                         goto out;
6079                 }
6080                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6081                                     pages_per_huge_page(h));
6082                 put_page(*pagep);
6083                 *pagep = NULL;
6084         }
6085
6086         /*
6087          * The memory barrier inside __SetPageUptodate makes sure that
6088          * preceding stores to the page contents become visible before
6089          * the set_pte_at() write.
6090          */
6091         __SetPageUptodate(page);
6092
6093         /* Add shared, newly allocated pages to the page cache. */
6094         if (vm_shared && !is_continue) {
6095                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6096                 ret = -EFAULT;
6097                 if (idx >= size)
6098                         goto out_release_nounlock;
6099
6100                 /*
6101                  * Serialization between remove_inode_hugepages() and
6102                  * hugetlb_add_to_page_cache() below happens through the
6103                  * hugetlb_fault_mutex_table that here must be hold by
6104                  * the caller.
6105                  */
6106                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6107                 if (ret)
6108                         goto out_release_nounlock;
6109                 page_in_pagecache = true;
6110         }
6111
6112         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6113
6114         ret = -EIO;
6115         if (PageHWPoison(page))
6116                 goto out_release_unlock;
6117
6118         /*
6119          * We allow to overwrite a pte marker: consider when both MISSING|WP
6120          * registered, we firstly wr-protect a none pte which has no page cache
6121          * page backing it, then access the page.
6122          */
6123         ret = -EEXIST;
6124         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6125                 goto out_release_unlock;
6126
6127         if (page_in_pagecache) {
6128                 page_dup_file_rmap(page, true);
6129         } else {
6130                 ClearHPageRestoreReserve(page);
6131                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6132         }
6133
6134         /*
6135          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6136          * with wp flag set, don't set pte write bit.
6137          */
6138         if (wp_copy || (is_continue && !vm_shared))
6139                 writable = 0;
6140         else
6141                 writable = dst_vma->vm_flags & VM_WRITE;
6142
6143         _dst_pte = make_huge_pte(dst_vma, page, writable);
6144         /*
6145          * Always mark UFFDIO_COPY page dirty; note that this may not be
6146          * extremely important for hugetlbfs for now since swapping is not
6147          * supported, but we should still be clear in that this page cannot be
6148          * thrown away at will, even if write bit not set.
6149          */
6150         _dst_pte = huge_pte_mkdirty(_dst_pte);
6151         _dst_pte = pte_mkyoung(_dst_pte);
6152
6153         if (wp_copy)
6154                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6155
6156         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6157
6158         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6159
6160         /* No need to invalidate - it was non-present before */
6161         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6162
6163         spin_unlock(ptl);
6164         if (!is_continue)
6165                 SetHPageMigratable(page);
6166         if (vm_shared || is_continue)
6167                 unlock_page(page);
6168         ret = 0;
6169 out:
6170         return ret;
6171 out_release_unlock:
6172         spin_unlock(ptl);
6173         if (vm_shared || is_continue)
6174                 unlock_page(page);
6175 out_release_nounlock:
6176         if (!page_in_pagecache)
6177                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6178         put_page(page);
6179         goto out;
6180 }
6181 #endif /* CONFIG_USERFAULTFD */
6182
6183 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6184                                  int refs, struct page **pages,
6185                                  struct vm_area_struct **vmas)
6186 {
6187         int nr;
6188
6189         for (nr = 0; nr < refs; nr++) {
6190                 if (likely(pages))
6191                         pages[nr] = nth_page(page, nr);
6192                 if (vmas)
6193                         vmas[nr] = vma;
6194         }
6195 }
6196
6197 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6198                                                bool *unshare)
6199 {
6200         pte_t pteval = huge_ptep_get(pte);
6201
6202         *unshare = false;
6203         if (is_swap_pte(pteval))
6204                 return true;
6205         if (huge_pte_write(pteval))
6206                 return false;
6207         if (flags & FOLL_WRITE)
6208                 return true;
6209         if (gup_must_unshare(flags, pte_page(pteval))) {
6210                 *unshare = true;
6211                 return true;
6212         }
6213         return false;
6214 }
6215
6216 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6217                          struct page **pages, struct vm_area_struct **vmas,
6218                          unsigned long *position, unsigned long *nr_pages,
6219                          long i, unsigned int flags, int *locked)
6220 {
6221         unsigned long pfn_offset;
6222         unsigned long vaddr = *position;
6223         unsigned long remainder = *nr_pages;
6224         struct hstate *h = hstate_vma(vma);
6225         int err = -EFAULT, refs;
6226
6227         while (vaddr < vma->vm_end && remainder) {
6228                 pte_t *pte;
6229                 spinlock_t *ptl = NULL;
6230                 bool unshare = false;
6231                 int absent;
6232                 struct page *page;
6233
6234                 /*
6235                  * If we have a pending SIGKILL, don't keep faulting pages and
6236                  * potentially allocating memory.
6237                  */
6238                 if (fatal_signal_pending(current)) {
6239                         remainder = 0;
6240                         break;
6241                 }
6242
6243                 /*
6244                  * Some archs (sparc64, sh*) have multiple pte_ts to
6245                  * each hugepage.  We have to make sure we get the
6246                  * first, for the page indexing below to work.
6247                  *
6248                  * Note that page table lock is not held when pte is null.
6249                  */
6250                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6251                                       huge_page_size(h));
6252                 if (pte)
6253                         ptl = huge_pte_lock(h, mm, pte);
6254                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6255
6256                 /*
6257                  * When coredumping, it suits get_dump_page if we just return
6258                  * an error where there's an empty slot with no huge pagecache
6259                  * to back it.  This way, we avoid allocating a hugepage, and
6260                  * the sparse dumpfile avoids allocating disk blocks, but its
6261                  * huge holes still show up with zeroes where they need to be.
6262                  */
6263                 if (absent && (flags & FOLL_DUMP) &&
6264                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6265                         if (pte)
6266                                 spin_unlock(ptl);
6267                         remainder = 0;
6268                         break;
6269                 }
6270
6271                 /*
6272                  * We need call hugetlb_fault for both hugepages under migration
6273                  * (in which case hugetlb_fault waits for the migration,) and
6274                  * hwpoisoned hugepages (in which case we need to prevent the
6275                  * caller from accessing to them.) In order to do this, we use
6276                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6277                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6278                  * both cases, and because we can't follow correct pages
6279                  * directly from any kind of swap entries.
6280                  */
6281                 if (absent ||
6282                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6283                         vm_fault_t ret;
6284                         unsigned int fault_flags = 0;
6285
6286                         if (pte)
6287                                 spin_unlock(ptl);
6288                         if (flags & FOLL_WRITE)
6289                                 fault_flags |= FAULT_FLAG_WRITE;
6290                         else if (unshare)
6291                                 fault_flags |= FAULT_FLAG_UNSHARE;
6292                         if (locked)
6293                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6294                                         FAULT_FLAG_KILLABLE;
6295                         if (flags & FOLL_NOWAIT)
6296                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6297                                         FAULT_FLAG_RETRY_NOWAIT;
6298                         if (flags & FOLL_TRIED) {
6299                                 /*
6300                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6301                                  * FAULT_FLAG_TRIED can co-exist
6302                                  */
6303                                 fault_flags |= FAULT_FLAG_TRIED;
6304                         }
6305                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6306                         if (ret & VM_FAULT_ERROR) {
6307                                 err = vm_fault_to_errno(ret, flags);
6308                                 remainder = 0;
6309                                 break;
6310                         }
6311                         if (ret & VM_FAULT_RETRY) {
6312                                 if (locked &&
6313                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6314                                         *locked = 0;
6315                                 *nr_pages = 0;
6316                                 /*
6317                                  * VM_FAULT_RETRY must not return an
6318                                  * error, it will return zero
6319                                  * instead.
6320                                  *
6321                                  * No need to update "position" as the
6322                                  * caller will not check it after
6323                                  * *nr_pages is set to 0.
6324                                  */
6325                                 return i;
6326                         }
6327                         continue;
6328                 }
6329
6330                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6331                 page = pte_page(huge_ptep_get(pte));
6332
6333                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6334                                !PageAnonExclusive(page), page);
6335
6336                 /*
6337                  * If subpage information not requested, update counters
6338                  * and skip the same_page loop below.
6339                  */
6340                 if (!pages && !vmas && !pfn_offset &&
6341                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6342                     (remainder >= pages_per_huge_page(h))) {
6343                         vaddr += huge_page_size(h);
6344                         remainder -= pages_per_huge_page(h);
6345                         i += pages_per_huge_page(h);
6346                         spin_unlock(ptl);
6347                         continue;
6348                 }
6349
6350                 /* vaddr may not be aligned to PAGE_SIZE */
6351                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6352                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6353
6354                 if (pages || vmas)
6355                         record_subpages_vmas(nth_page(page, pfn_offset),
6356                                              vma, refs,
6357                                              likely(pages) ? pages + i : NULL,
6358                                              vmas ? vmas + i : NULL);
6359
6360                 if (pages) {
6361                         /*
6362                          * try_grab_folio() should always succeed here,
6363                          * because: a) we hold the ptl lock, and b) we've just
6364                          * checked that the huge page is present in the page
6365                          * tables. If the huge page is present, then the tail
6366                          * pages must also be present. The ptl prevents the
6367                          * head page and tail pages from being rearranged in
6368                          * any way. So this page must be available at this
6369                          * point, unless the page refcount overflowed:
6370                          */
6371                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6372                                                          flags))) {
6373                                 spin_unlock(ptl);
6374                                 remainder = 0;
6375                                 err = -ENOMEM;
6376                                 break;
6377                         }
6378                 }
6379
6380                 vaddr += (refs << PAGE_SHIFT);
6381                 remainder -= refs;
6382                 i += refs;
6383
6384                 spin_unlock(ptl);
6385         }
6386         *nr_pages = remainder;
6387         /*
6388          * setting position is actually required only if remainder is
6389          * not zero but it's faster not to add a "if (remainder)"
6390          * branch.
6391          */
6392         *position = vaddr;
6393
6394         return i ? i : err;
6395 }
6396
6397 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6398                 unsigned long address, unsigned long end,
6399                 pgprot_t newprot, unsigned long cp_flags)
6400 {
6401         struct mm_struct *mm = vma->vm_mm;
6402         unsigned long start = address;
6403         pte_t *ptep;
6404         pte_t pte;
6405         struct hstate *h = hstate_vma(vma);
6406         unsigned long pages = 0, psize = huge_page_size(h);
6407         bool shared_pmd = false;
6408         struct mmu_notifier_range range;
6409         unsigned long last_addr_mask;
6410         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6411         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6412
6413         /*
6414          * In the case of shared PMDs, the area to flush could be beyond
6415          * start/end.  Set range.start/range.end to cover the maximum possible
6416          * range if PMD sharing is possible.
6417          */
6418         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6419                                 0, vma, mm, start, end);
6420         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6421
6422         BUG_ON(address >= end);
6423         flush_cache_range(vma, range.start, range.end);
6424
6425         mmu_notifier_invalidate_range_start(&range);
6426         hugetlb_vma_lock_write(vma);
6427         i_mmap_lock_write(vma->vm_file->f_mapping);
6428         last_addr_mask = hugetlb_mask_last_page(h);
6429         for (; address < end; address += psize) {
6430                 spinlock_t *ptl;
6431                 ptep = huge_pte_offset(mm, address, psize);
6432                 if (!ptep) {
6433                         address |= last_addr_mask;
6434                         continue;
6435                 }
6436                 ptl = huge_pte_lock(h, mm, ptep);
6437                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6438                         /*
6439                          * When uffd-wp is enabled on the vma, unshare
6440                          * shouldn't happen at all.  Warn about it if it
6441                          * happened due to some reason.
6442                          */
6443                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6444                         pages++;
6445                         spin_unlock(ptl);
6446                         shared_pmd = true;
6447                         address |= last_addr_mask;
6448                         continue;
6449                 }
6450                 pte = huge_ptep_get(ptep);
6451                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6452                         spin_unlock(ptl);
6453                         continue;
6454                 }
6455                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6456                         swp_entry_t entry = pte_to_swp_entry(pte);
6457                         struct page *page = pfn_swap_entry_to_page(entry);
6458
6459                         if (!is_readable_migration_entry(entry)) {
6460                                 pte_t newpte;
6461
6462                                 if (PageAnon(page))
6463                                         entry = make_readable_exclusive_migration_entry(
6464                                                                 swp_offset(entry));
6465                                 else
6466                                         entry = make_readable_migration_entry(
6467                                                                 swp_offset(entry));
6468                                 newpte = swp_entry_to_pte(entry);
6469                                 if (uffd_wp)
6470                                         newpte = pte_swp_mkuffd_wp(newpte);
6471                                 else if (uffd_wp_resolve)
6472                                         newpte = pte_swp_clear_uffd_wp(newpte);
6473                                 set_huge_pte_at(mm, address, ptep, newpte);
6474                                 pages++;
6475                         }
6476                         spin_unlock(ptl);
6477                         continue;
6478                 }
6479                 if (unlikely(pte_marker_uffd_wp(pte))) {
6480                         /*
6481                          * This is changing a non-present pte into a none pte,
6482                          * no need for huge_ptep_modify_prot_start/commit().
6483                          */
6484                         if (uffd_wp_resolve)
6485                                 huge_pte_clear(mm, address, ptep, psize);
6486                 }
6487                 if (!huge_pte_none(pte)) {
6488                         pte_t old_pte;
6489                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6490
6491                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6492                         pte = huge_pte_modify(old_pte, newprot);
6493                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6494                         if (uffd_wp)
6495                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6496                         else if (uffd_wp_resolve)
6497                                 pte = huge_pte_clear_uffd_wp(pte);
6498                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6499                         pages++;
6500                 } else {
6501                         /* None pte */
6502                         if (unlikely(uffd_wp))
6503                                 /* Safe to modify directly (none->non-present). */
6504                                 set_huge_pte_at(mm, address, ptep,
6505                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6506                 }
6507                 spin_unlock(ptl);
6508         }
6509         /*
6510          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6511          * may have cleared our pud entry and done put_page on the page table:
6512          * once we release i_mmap_rwsem, another task can do the final put_page
6513          * and that page table be reused and filled with junk.  If we actually
6514          * did unshare a page of pmds, flush the range corresponding to the pud.
6515          */
6516         if (shared_pmd)
6517                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6518         else
6519                 flush_hugetlb_tlb_range(vma, start, end);
6520         /*
6521          * No need to call mmu_notifier_invalidate_range() we are downgrading
6522          * page table protection not changing it to point to a new page.
6523          *
6524          * See Documentation/mm/mmu_notifier.rst
6525          */
6526         i_mmap_unlock_write(vma->vm_file->f_mapping);
6527         hugetlb_vma_unlock_write(vma);
6528         mmu_notifier_invalidate_range_end(&range);
6529
6530         return pages << h->order;
6531 }
6532
6533 /* Return true if reservation was successful, false otherwise.  */
6534 bool hugetlb_reserve_pages(struct inode *inode,
6535                                         long from, long to,
6536                                         struct vm_area_struct *vma,
6537                                         vm_flags_t vm_flags)
6538 {
6539         long chg, add = -1;
6540         struct hstate *h = hstate_inode(inode);
6541         struct hugepage_subpool *spool = subpool_inode(inode);
6542         struct resv_map *resv_map;
6543         struct hugetlb_cgroup *h_cg = NULL;
6544         long gbl_reserve, regions_needed = 0;
6545
6546         /* This should never happen */
6547         if (from > to) {
6548                 VM_WARN(1, "%s called with a negative range\n", __func__);
6549                 return false;
6550         }
6551
6552         /*
6553          * vma specific semaphore used for pmd sharing synchronization
6554          */
6555         hugetlb_vma_lock_alloc(vma);
6556
6557         /*
6558          * Only apply hugepage reservation if asked. At fault time, an
6559          * attempt will be made for VM_NORESERVE to allocate a page
6560          * without using reserves
6561          */
6562         if (vm_flags & VM_NORESERVE)
6563                 return true;
6564
6565         /*
6566          * Shared mappings base their reservation on the number of pages that
6567          * are already allocated on behalf of the file. Private mappings need
6568          * to reserve the full area even if read-only as mprotect() may be
6569          * called to make the mapping read-write. Assume !vma is a shm mapping
6570          */
6571         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6572                 /*
6573                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6574                  * called for inodes for which resv_maps were created (see
6575                  * hugetlbfs_get_inode).
6576                  */
6577                 resv_map = inode_resv_map(inode);
6578
6579                 chg = region_chg(resv_map, from, to, &regions_needed);
6580         } else {
6581                 /* Private mapping. */
6582                 resv_map = resv_map_alloc();
6583                 if (!resv_map)
6584                         goto out_err;
6585
6586                 chg = to - from;
6587
6588                 set_vma_resv_map(vma, resv_map);
6589                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6590         }
6591
6592         if (chg < 0)
6593                 goto out_err;
6594
6595         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6596                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6597                 goto out_err;
6598
6599         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6600                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6601                  * of the resv_map.
6602                  */
6603                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6604         }
6605
6606         /*
6607          * There must be enough pages in the subpool for the mapping. If
6608          * the subpool has a minimum size, there may be some global
6609          * reservations already in place (gbl_reserve).
6610          */
6611         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6612         if (gbl_reserve < 0)
6613                 goto out_uncharge_cgroup;
6614
6615         /*
6616          * Check enough hugepages are available for the reservation.
6617          * Hand the pages back to the subpool if there are not
6618          */
6619         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6620                 goto out_put_pages;
6621
6622         /*
6623          * Account for the reservations made. Shared mappings record regions
6624          * that have reservations as they are shared by multiple VMAs.
6625          * When the last VMA disappears, the region map says how much
6626          * the reservation was and the page cache tells how much of
6627          * the reservation was consumed. Private mappings are per-VMA and
6628          * only the consumed reservations are tracked. When the VMA
6629          * disappears, the original reservation is the VMA size and the
6630          * consumed reservations are stored in the map. Hence, nothing
6631          * else has to be done for private mappings here
6632          */
6633         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6634                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6635
6636                 if (unlikely(add < 0)) {
6637                         hugetlb_acct_memory(h, -gbl_reserve);
6638                         goto out_put_pages;
6639                 } else if (unlikely(chg > add)) {
6640                         /*
6641                          * pages in this range were added to the reserve
6642                          * map between region_chg and region_add.  This
6643                          * indicates a race with alloc_huge_page.  Adjust
6644                          * the subpool and reserve counts modified above
6645                          * based on the difference.
6646                          */
6647                         long rsv_adjust;
6648
6649                         /*
6650                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6651                          * reference to h_cg->css. See comment below for detail.
6652                          */
6653                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6654                                 hstate_index(h),
6655                                 (chg - add) * pages_per_huge_page(h), h_cg);
6656
6657                         rsv_adjust = hugepage_subpool_put_pages(spool,
6658                                                                 chg - add);
6659                         hugetlb_acct_memory(h, -rsv_adjust);
6660                 } else if (h_cg) {
6661                         /*
6662                          * The file_regions will hold their own reference to
6663                          * h_cg->css. So we should release the reference held
6664                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6665                          * done.
6666                          */
6667                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6668                 }
6669         }
6670         return true;
6671
6672 out_put_pages:
6673         /* put back original number of pages, chg */
6674         (void)hugepage_subpool_put_pages(spool, chg);
6675 out_uncharge_cgroup:
6676         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6677                                             chg * pages_per_huge_page(h), h_cg);
6678 out_err:
6679         hugetlb_vma_lock_free(vma);
6680         if (!vma || vma->vm_flags & VM_MAYSHARE)
6681                 /* Only call region_abort if the region_chg succeeded but the
6682                  * region_add failed or didn't run.
6683                  */
6684                 if (chg >= 0 && add < 0)
6685                         region_abort(resv_map, from, to, regions_needed);
6686         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6687                 kref_put(&resv_map->refs, resv_map_release);
6688         return false;
6689 }
6690
6691 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6692                                                                 long freed)
6693 {
6694         struct hstate *h = hstate_inode(inode);
6695         struct resv_map *resv_map = inode_resv_map(inode);
6696         long chg = 0;
6697         struct hugepage_subpool *spool = subpool_inode(inode);
6698         long gbl_reserve;
6699
6700         /*
6701          * Since this routine can be called in the evict inode path for all
6702          * hugetlbfs inodes, resv_map could be NULL.
6703          */
6704         if (resv_map) {
6705                 chg = region_del(resv_map, start, end);
6706                 /*
6707                  * region_del() can fail in the rare case where a region
6708                  * must be split and another region descriptor can not be
6709                  * allocated.  If end == LONG_MAX, it will not fail.
6710                  */
6711                 if (chg < 0)
6712                         return chg;
6713         }
6714
6715         spin_lock(&inode->i_lock);
6716         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6717         spin_unlock(&inode->i_lock);
6718
6719         /*
6720          * If the subpool has a minimum size, the number of global
6721          * reservations to be released may be adjusted.
6722          *
6723          * Note that !resv_map implies freed == 0. So (chg - freed)
6724          * won't go negative.
6725          */
6726         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6727         hugetlb_acct_memory(h, -gbl_reserve);
6728
6729         return 0;
6730 }
6731
6732 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6733 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6734                                 struct vm_area_struct *vma,
6735                                 unsigned long addr, pgoff_t idx)
6736 {
6737         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6738                                 svma->vm_start;
6739         unsigned long sbase = saddr & PUD_MASK;
6740         unsigned long s_end = sbase + PUD_SIZE;
6741
6742         /* Allow segments to share if only one is marked locked */
6743         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6744         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6745
6746         /*
6747          * match the virtual addresses, permission and the alignment of the
6748          * page table page.
6749          *
6750          * Also, vma_lock (vm_private_data) is required for sharing.
6751          */
6752         if (pmd_index(addr) != pmd_index(saddr) ||
6753             vm_flags != svm_flags ||
6754             !range_in_vma(svma, sbase, s_end) ||
6755             !svma->vm_private_data)
6756                 return 0;
6757
6758         return saddr;
6759 }
6760
6761 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6762 {
6763         unsigned long start = addr & PUD_MASK;
6764         unsigned long end = start + PUD_SIZE;
6765
6766 #ifdef CONFIG_USERFAULTFD
6767         if (uffd_disable_huge_pmd_share(vma))
6768                 return false;
6769 #endif
6770         /*
6771          * check on proper vm_flags and page table alignment
6772          */
6773         if (!(vma->vm_flags & VM_MAYSHARE))
6774                 return false;
6775         if (!vma->vm_private_data)      /* vma lock required for sharing */
6776                 return false;
6777         if (!range_in_vma(vma, start, end))
6778                 return false;
6779         return true;
6780 }
6781
6782 /*
6783  * Determine if start,end range within vma could be mapped by shared pmd.
6784  * If yes, adjust start and end to cover range associated with possible
6785  * shared pmd mappings.
6786  */
6787 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6788                                 unsigned long *start, unsigned long *end)
6789 {
6790         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6791                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6792
6793         /*
6794          * vma needs to span at least one aligned PUD size, and the range
6795          * must be at least partially within in.
6796          */
6797         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6798                 (*end <= v_start) || (*start >= v_end))
6799                 return;
6800
6801         /* Extend the range to be PUD aligned for a worst case scenario */
6802         if (*start > v_start)
6803                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6804
6805         if (*end < v_end)
6806                 *end = ALIGN(*end, PUD_SIZE);
6807 }
6808
6809 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6810 {
6811         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6812                 vma->vm_private_data;
6813 }
6814
6815 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6816 {
6817         if (__vma_shareable_flags_pmd(vma)) {
6818                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6819
6820                 down_read(&vma_lock->rw_sema);
6821         }
6822 }
6823
6824 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6825 {
6826         if (__vma_shareable_flags_pmd(vma)) {
6827                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6828
6829                 up_read(&vma_lock->rw_sema);
6830         }
6831 }
6832
6833 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6834 {
6835         if (__vma_shareable_flags_pmd(vma)) {
6836                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6837
6838                 down_write(&vma_lock->rw_sema);
6839         }
6840 }
6841
6842 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6843 {
6844         if (__vma_shareable_flags_pmd(vma)) {
6845                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6846
6847                 up_write(&vma_lock->rw_sema);
6848         }
6849 }
6850
6851 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6852 {
6853         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6854
6855         if (!__vma_shareable_flags_pmd(vma))
6856                 return 1;
6857
6858         return down_write_trylock(&vma_lock->rw_sema);
6859 }
6860
6861 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6862 {
6863         if (__vma_shareable_flags_pmd(vma)) {
6864                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6865
6866                 lockdep_assert_held(&vma_lock->rw_sema);
6867         }
6868 }
6869
6870 void hugetlb_vma_lock_release(struct kref *kref)
6871 {
6872         struct hugetlb_vma_lock *vma_lock = container_of(kref,
6873                         struct hugetlb_vma_lock, refs);
6874
6875         kfree(vma_lock);
6876 }
6877
6878 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6879 {
6880         struct vm_area_struct *vma = vma_lock->vma;
6881
6882         /*
6883          * vma_lock structure may or not be released as a result of put,
6884          * it certainly will no longer be attached to vma so clear pointer.
6885          * Semaphore synchronizes access to vma_lock->vma field.
6886          */
6887         vma_lock->vma = NULL;
6888         vma->vm_private_data = NULL;
6889         up_write(&vma_lock->rw_sema);
6890         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6891 }
6892
6893 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6894 {
6895         if (__vma_shareable_flags_pmd(vma)) {
6896                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6897
6898                 __hugetlb_vma_unlock_write_put(vma_lock);
6899         }
6900 }
6901
6902 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6903 {
6904         /*
6905          * Only present in sharable vmas.
6906          */
6907         if (!vma || !__vma_shareable_flags_pmd(vma))
6908                 return;
6909
6910         if (vma->vm_private_data) {
6911                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6912
6913                 down_write(&vma_lock->rw_sema);
6914                 __hugetlb_vma_unlock_write_put(vma_lock);
6915         }
6916 }
6917
6918 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6919 {
6920         struct hugetlb_vma_lock *vma_lock;
6921
6922         /* Only establish in (flags) sharable vmas */
6923         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6924                 return;
6925
6926         /* Should never get here with non-NULL vm_private_data */
6927         if (vma->vm_private_data)
6928                 return;
6929
6930         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6931         if (!vma_lock) {
6932                 /*
6933                  * If we can not allocate structure, then vma can not
6934                  * participate in pmd sharing.  This is only a possible
6935                  * performance enhancement and memory saving issue.
6936                  * However, the lock is also used to synchronize page
6937                  * faults with truncation.  If the lock is not present,
6938                  * unlikely races could leave pages in a file past i_size
6939                  * until the file is removed.  Warn in the unlikely case of
6940                  * allocation failure.
6941                  */
6942                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6943                 return;
6944         }
6945
6946         kref_init(&vma_lock->refs);
6947         init_rwsem(&vma_lock->rw_sema);
6948         vma_lock->vma = vma;
6949         vma->vm_private_data = vma_lock;
6950 }
6951
6952 /*
6953  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6954  * and returns the corresponding pte. While this is not necessary for the
6955  * !shared pmd case because we can allocate the pmd later as well, it makes the
6956  * code much cleaner. pmd allocation is essential for the shared case because
6957  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6958  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6959  * bad pmd for sharing.
6960  */
6961 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6962                       unsigned long addr, pud_t *pud)
6963 {
6964         struct address_space *mapping = vma->vm_file->f_mapping;
6965         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6966                         vma->vm_pgoff;
6967         struct vm_area_struct *svma;
6968         unsigned long saddr;
6969         pte_t *spte = NULL;
6970         pte_t *pte;
6971         spinlock_t *ptl;
6972
6973         i_mmap_lock_read(mapping);
6974         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6975                 if (svma == vma)
6976                         continue;
6977
6978                 saddr = page_table_shareable(svma, vma, addr, idx);
6979                 if (saddr) {
6980                         spte = huge_pte_offset(svma->vm_mm, saddr,
6981                                                vma_mmu_pagesize(svma));
6982                         if (spte) {
6983                                 get_page(virt_to_page(spte));
6984                                 break;
6985                         }
6986                 }
6987         }
6988
6989         if (!spte)
6990                 goto out;
6991
6992         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6993         if (pud_none(*pud)) {
6994                 pud_populate(mm, pud,
6995                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6996                 mm_inc_nr_pmds(mm);
6997         } else {
6998                 put_page(virt_to_page(spte));
6999         }
7000         spin_unlock(ptl);
7001 out:
7002         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7003         i_mmap_unlock_read(mapping);
7004         return pte;
7005 }
7006
7007 /*
7008  * unmap huge page backed by shared pte.
7009  *
7010  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7011  * indicated by page_count > 1, unmap is achieved by clearing pud and
7012  * decrementing the ref count. If count == 1, the pte page is not shared.
7013  *
7014  * Called with page table lock held.
7015  *
7016  * returns: 1 successfully unmapped a shared pte page
7017  *          0 the underlying pte page is not shared, or it is the last user
7018  */
7019 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7020                                         unsigned long addr, pte_t *ptep)
7021 {
7022         pgd_t *pgd = pgd_offset(mm, addr);
7023         p4d_t *p4d = p4d_offset(pgd, addr);
7024         pud_t *pud = pud_offset(p4d, addr);
7025
7026         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7027         hugetlb_vma_assert_locked(vma);
7028         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7029         if (page_count(virt_to_page(ptep)) == 1)
7030                 return 0;
7031
7032         pud_clear(pud);
7033         put_page(virt_to_page(ptep));
7034         mm_dec_nr_pmds(mm);
7035         return 1;
7036 }
7037
7038 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7039
7040 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7041 {
7042 }
7043
7044 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7045 {
7046 }
7047
7048 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7049 {
7050 }
7051
7052 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7053 {
7054 }
7055
7056 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7057 {
7058         return 1;
7059 }
7060
7061 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7062 {
7063 }
7064
7065 void hugetlb_vma_lock_release(struct kref *kref)
7066 {
7067 }
7068
7069 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7070 {
7071 }
7072
7073 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7074 {
7075 }
7076
7077 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7078 {
7079 }
7080
7081 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7082                       unsigned long addr, pud_t *pud)
7083 {
7084         return NULL;
7085 }
7086
7087 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7088                                 unsigned long addr, pte_t *ptep)
7089 {
7090         return 0;
7091 }
7092
7093 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7094                                 unsigned long *start, unsigned long *end)
7095 {
7096 }
7097
7098 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7099 {
7100         return false;
7101 }
7102 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7103
7104 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7105 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7106                         unsigned long addr, unsigned long sz)
7107 {
7108         pgd_t *pgd;
7109         p4d_t *p4d;
7110         pud_t *pud;
7111         pte_t *pte = NULL;
7112
7113         pgd = pgd_offset(mm, addr);
7114         p4d = p4d_alloc(mm, pgd, addr);
7115         if (!p4d)
7116                 return NULL;
7117         pud = pud_alloc(mm, p4d, addr);
7118         if (pud) {
7119                 if (sz == PUD_SIZE) {
7120                         pte = (pte_t *)pud;
7121                 } else {
7122                         BUG_ON(sz != PMD_SIZE);
7123                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7124                                 pte = huge_pmd_share(mm, vma, addr, pud);
7125                         else
7126                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7127                 }
7128         }
7129         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7130
7131         return pte;
7132 }
7133
7134 /*
7135  * huge_pte_offset() - Walk the page table to resolve the hugepage
7136  * entry at address @addr
7137  *
7138  * Return: Pointer to page table entry (PUD or PMD) for
7139  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7140  * size @sz doesn't match the hugepage size at this level of the page
7141  * table.
7142  */
7143 pte_t *huge_pte_offset(struct mm_struct *mm,
7144                        unsigned long addr, unsigned long sz)
7145 {
7146         pgd_t *pgd;
7147         p4d_t *p4d;
7148         pud_t *pud;
7149         pmd_t *pmd;
7150
7151         pgd = pgd_offset(mm, addr);
7152         if (!pgd_present(*pgd))
7153                 return NULL;
7154         p4d = p4d_offset(pgd, addr);
7155         if (!p4d_present(*p4d))
7156                 return NULL;
7157
7158         pud = pud_offset(p4d, addr);
7159         if (sz == PUD_SIZE)
7160                 /* must be pud huge, non-present or none */
7161                 return (pte_t *)pud;
7162         if (!pud_present(*pud))
7163                 return NULL;
7164         /* must have a valid entry and size to go further */
7165
7166         pmd = pmd_offset(pud, addr);
7167         /* must be pmd huge, non-present or none */
7168         return (pte_t *)pmd;
7169 }
7170
7171 /*
7172  * Return a mask that can be used to update an address to the last huge
7173  * page in a page table page mapping size.  Used to skip non-present
7174  * page table entries when linearly scanning address ranges.  Architectures
7175  * with unique huge page to page table relationships can define their own
7176  * version of this routine.
7177  */
7178 unsigned long hugetlb_mask_last_page(struct hstate *h)
7179 {
7180         unsigned long hp_size = huge_page_size(h);
7181
7182         if (hp_size == PUD_SIZE)
7183                 return P4D_SIZE - PUD_SIZE;
7184         else if (hp_size == PMD_SIZE)
7185                 return PUD_SIZE - PMD_SIZE;
7186         else
7187                 return 0UL;
7188 }
7189
7190 #else
7191
7192 /* See description above.  Architectures can provide their own version. */
7193 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7194 {
7195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7196         if (huge_page_size(h) == PMD_SIZE)
7197                 return PUD_SIZE - PMD_SIZE;
7198 #endif
7199         return 0UL;
7200 }
7201
7202 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7203
7204 /*
7205  * These functions are overwritable if your architecture needs its own
7206  * behavior.
7207  */
7208 struct page * __weak
7209 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7210                               int write)
7211 {
7212         return ERR_PTR(-EINVAL);
7213 }
7214
7215 struct page * __weak
7216 follow_huge_pd(struct vm_area_struct *vma,
7217                unsigned long address, hugepd_t hpd, int flags, int pdshift)
7218 {
7219         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7220         return NULL;
7221 }
7222
7223 struct page * __weak
7224 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7225 {
7226         struct hstate *h = hstate_vma(vma);
7227         struct mm_struct *mm = vma->vm_mm;
7228         struct page *page = NULL;
7229         spinlock_t *ptl;
7230         pte_t *ptep, pte;
7231
7232         /*
7233          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7234          * follow_hugetlb_page().
7235          */
7236         if (WARN_ON_ONCE(flags & FOLL_PIN))
7237                 return NULL;
7238
7239 retry:
7240         ptep = huge_pte_offset(mm, address, huge_page_size(h));
7241         if (!ptep)
7242                 return NULL;
7243
7244         ptl = huge_pte_lock(h, mm, ptep);
7245         pte = huge_ptep_get(ptep);
7246         if (pte_present(pte)) {
7247                 page = pte_page(pte) +
7248                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7249                 /*
7250                  * try_grab_page() should always succeed here, because: a) we
7251                  * hold the pmd (ptl) lock, and b) we've just checked that the
7252                  * huge pmd (head) page is present in the page tables. The ptl
7253                  * prevents the head page and tail pages from being rearranged
7254                  * in any way. So this page must be available at this point,
7255                  * unless the page refcount overflowed:
7256                  */
7257                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7258                         page = NULL;
7259                         goto out;
7260                 }
7261         } else {
7262                 if (is_hugetlb_entry_migration(pte)) {
7263                         spin_unlock(ptl);
7264                         __migration_entry_wait_huge(ptep, ptl);
7265                         goto retry;
7266                 }
7267                 /*
7268                  * hwpoisoned entry is treated as no_page_table in
7269                  * follow_page_mask().
7270                  */
7271         }
7272 out:
7273         spin_unlock(ptl);
7274         return page;
7275 }
7276
7277 struct page * __weak
7278 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7279                 pud_t *pud, int flags)
7280 {
7281         struct page *page = NULL;
7282         spinlock_t *ptl;
7283         pte_t pte;
7284
7285         if (WARN_ON_ONCE(flags & FOLL_PIN))
7286                 return NULL;
7287
7288 retry:
7289         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7290         if (!pud_huge(*pud))
7291                 goto out;
7292         pte = huge_ptep_get((pte_t *)pud);
7293         if (pte_present(pte)) {
7294                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7295                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7296                         page = NULL;
7297                         goto out;
7298                 }
7299         } else {
7300                 if (is_hugetlb_entry_migration(pte)) {
7301                         spin_unlock(ptl);
7302                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7303                         goto retry;
7304                 }
7305                 /*
7306                  * hwpoisoned entry is treated as no_page_table in
7307                  * follow_page_mask().
7308                  */
7309         }
7310 out:
7311         spin_unlock(ptl);
7312         return page;
7313 }
7314
7315 struct page * __weak
7316 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7317 {
7318         if (flags & (FOLL_GET | FOLL_PIN))
7319                 return NULL;
7320
7321         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7322 }
7323
7324 int isolate_hugetlb(struct page *page, struct list_head *list)
7325 {
7326         int ret = 0;
7327
7328         spin_lock_irq(&hugetlb_lock);
7329         if (!PageHeadHuge(page) ||
7330             !HPageMigratable(page) ||
7331             !get_page_unless_zero(page)) {
7332                 ret = -EBUSY;
7333                 goto unlock;
7334         }
7335         ClearHPageMigratable(page);
7336         list_move_tail(&page->lru, list);
7337 unlock:
7338         spin_unlock_irq(&hugetlb_lock);
7339         return ret;
7340 }
7341
7342 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7343 {
7344         int ret = 0;
7345
7346         *hugetlb = false;
7347         spin_lock_irq(&hugetlb_lock);
7348         if (PageHeadHuge(page)) {
7349                 *hugetlb = true;
7350                 if (HPageFreed(page))
7351                         ret = 0;
7352                 else if (HPageMigratable(page))
7353                         ret = get_page_unless_zero(page);
7354                 else
7355                         ret = -EBUSY;
7356         }
7357         spin_unlock_irq(&hugetlb_lock);
7358         return ret;
7359 }
7360
7361 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7362 {
7363         int ret;
7364
7365         spin_lock_irq(&hugetlb_lock);
7366         ret = __get_huge_page_for_hwpoison(pfn, flags);
7367         spin_unlock_irq(&hugetlb_lock);
7368         return ret;
7369 }
7370
7371 void putback_active_hugepage(struct page *page)
7372 {
7373         spin_lock_irq(&hugetlb_lock);
7374         SetHPageMigratable(page);
7375         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7376         spin_unlock_irq(&hugetlb_lock);
7377         put_page(page);
7378 }
7379
7380 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7381 {
7382         struct hstate *h = page_hstate(oldpage);
7383
7384         hugetlb_cgroup_migrate(oldpage, newpage);
7385         set_page_owner_migrate_reason(newpage, reason);
7386
7387         /*
7388          * transfer temporary state of the new huge page. This is
7389          * reverse to other transitions because the newpage is going to
7390          * be final while the old one will be freed so it takes over
7391          * the temporary status.
7392          *
7393          * Also note that we have to transfer the per-node surplus state
7394          * here as well otherwise the global surplus count will not match
7395          * the per-node's.
7396          */
7397         if (HPageTemporary(newpage)) {
7398                 int old_nid = page_to_nid(oldpage);
7399                 int new_nid = page_to_nid(newpage);
7400
7401                 SetHPageTemporary(oldpage);
7402                 ClearHPageTemporary(newpage);
7403
7404                 /*
7405                  * There is no need to transfer the per-node surplus state
7406                  * when we do not cross the node.
7407                  */
7408                 if (new_nid == old_nid)
7409                         return;
7410                 spin_lock_irq(&hugetlb_lock);
7411                 if (h->surplus_huge_pages_node[old_nid]) {
7412                         h->surplus_huge_pages_node[old_nid]--;
7413                         h->surplus_huge_pages_node[new_nid]++;
7414                 }
7415                 spin_unlock_irq(&hugetlb_lock);
7416         }
7417 }
7418
7419 /*
7420  * This function will unconditionally remove all the shared pmd pgtable entries
7421  * within the specific vma for a hugetlbfs memory range.
7422  */
7423 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7424 {
7425         struct hstate *h = hstate_vma(vma);
7426         unsigned long sz = huge_page_size(h);
7427         struct mm_struct *mm = vma->vm_mm;
7428         struct mmu_notifier_range range;
7429         unsigned long address, start, end;
7430         spinlock_t *ptl;
7431         pte_t *ptep;
7432
7433         if (!(vma->vm_flags & VM_MAYSHARE))
7434                 return;
7435
7436         start = ALIGN(vma->vm_start, PUD_SIZE);
7437         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7438
7439         if (start >= end)
7440                 return;
7441
7442         flush_cache_range(vma, start, end);
7443         /*
7444          * No need to call adjust_range_if_pmd_sharing_possible(), because
7445          * we have already done the PUD_SIZE alignment.
7446          */
7447         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7448                                 start, end);
7449         mmu_notifier_invalidate_range_start(&range);
7450         hugetlb_vma_lock_write(vma);
7451         i_mmap_lock_write(vma->vm_file->f_mapping);
7452         for (address = start; address < end; address += PUD_SIZE) {
7453                 ptep = huge_pte_offset(mm, address, sz);
7454                 if (!ptep)
7455                         continue;
7456                 ptl = huge_pte_lock(h, mm, ptep);
7457                 huge_pmd_unshare(mm, vma, address, ptep);
7458                 spin_unlock(ptl);
7459         }
7460         flush_hugetlb_tlb_range(vma, start, end);
7461         i_mmap_unlock_write(vma->vm_file->f_mapping);
7462         hugetlb_vma_unlock_write(vma);
7463         /*
7464          * No need to call mmu_notifier_invalidate_range(), see
7465          * Documentation/mm/mmu_notifier.rst.
7466          */
7467         mmu_notifier_invalidate_range_end(&range);
7468 }
7469
7470 #ifdef CONFIG_CMA
7471 static bool cma_reserve_called __initdata;
7472
7473 static int __init cmdline_parse_hugetlb_cma(char *p)
7474 {
7475         int nid, count = 0;
7476         unsigned long tmp;
7477         char *s = p;
7478
7479         while (*s) {
7480                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7481                         break;
7482
7483                 if (s[count] == ':') {
7484                         if (tmp >= MAX_NUMNODES)
7485                                 break;
7486                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7487
7488                         s += count + 1;
7489                         tmp = memparse(s, &s);
7490                         hugetlb_cma_size_in_node[nid] = tmp;
7491                         hugetlb_cma_size += tmp;
7492
7493                         /*
7494                          * Skip the separator if have one, otherwise
7495                          * break the parsing.
7496                          */
7497                         if (*s == ',')
7498                                 s++;
7499                         else
7500                                 break;
7501                 } else {
7502                         hugetlb_cma_size = memparse(p, &p);
7503                         break;
7504                 }
7505         }
7506
7507         return 0;
7508 }
7509
7510 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7511
7512 void __init hugetlb_cma_reserve(int order)
7513 {
7514         unsigned long size, reserved, per_node;
7515         bool node_specific_cma_alloc = false;
7516         int nid;
7517
7518         cma_reserve_called = true;
7519
7520         if (!hugetlb_cma_size)
7521                 return;
7522
7523         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7524                 if (hugetlb_cma_size_in_node[nid] == 0)
7525                         continue;
7526
7527                 if (!node_online(nid)) {
7528                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7529                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7530                         hugetlb_cma_size_in_node[nid] = 0;
7531                         continue;
7532                 }
7533
7534                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7535                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7536                                 nid, (PAGE_SIZE << order) / SZ_1M);
7537                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7538                         hugetlb_cma_size_in_node[nid] = 0;
7539                 } else {
7540                         node_specific_cma_alloc = true;
7541                 }
7542         }
7543
7544         /* Validate the CMA size again in case some invalid nodes specified. */
7545         if (!hugetlb_cma_size)
7546                 return;
7547
7548         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7549                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7550                         (PAGE_SIZE << order) / SZ_1M);
7551                 hugetlb_cma_size = 0;
7552                 return;
7553         }
7554
7555         if (!node_specific_cma_alloc) {
7556                 /*
7557                  * If 3 GB area is requested on a machine with 4 numa nodes,
7558                  * let's allocate 1 GB on first three nodes and ignore the last one.
7559                  */
7560                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7561                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7562                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7563         }
7564
7565         reserved = 0;
7566         for_each_online_node(nid) {
7567                 int res;
7568                 char name[CMA_MAX_NAME];
7569
7570                 if (node_specific_cma_alloc) {
7571                         if (hugetlb_cma_size_in_node[nid] == 0)
7572                                 continue;
7573
7574                         size = hugetlb_cma_size_in_node[nid];
7575                 } else {
7576                         size = min(per_node, hugetlb_cma_size - reserved);
7577                 }
7578
7579                 size = round_up(size, PAGE_SIZE << order);
7580
7581                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7582                 /*
7583                  * Note that 'order per bit' is based on smallest size that
7584                  * may be returned to CMA allocator in the case of
7585                  * huge page demotion.
7586                  */
7587                 res = cma_declare_contiguous_nid(0, size, 0,
7588                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7589                                                  0, false, name,
7590                                                  &hugetlb_cma[nid], nid);
7591                 if (res) {
7592                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7593                                 res, nid);
7594                         continue;
7595                 }
7596
7597                 reserved += size;
7598                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7599                         size / SZ_1M, nid);
7600
7601                 if (reserved >= hugetlb_cma_size)
7602                         break;
7603         }
7604
7605         if (!reserved)
7606                 /*
7607                  * hugetlb_cma_size is used to determine if allocations from
7608                  * cma are possible.  Set to zero if no cma regions are set up.
7609                  */
7610                 hugetlb_cma_size = 0;
7611 }
7612
7613 static void __init hugetlb_cma_check(void)
7614 {
7615         if (!hugetlb_cma_size || cma_reserve_called)
7616                 return;
7617
7618         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7619 }
7620
7621 #endif /* CONFIG_CMA */