1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 struct hugepage_subpool *spool;
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 spin_lock_init(&spool->lock);
137 spool->max_hpages = max_hpages;
139 spool->min_hpages = min_hpages;
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 spool->rsv_hpages = min_hpages;
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
157 unlock_or_release_subpool(spool, flags);
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 spin_lock_irq(&spool->lock);
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
203 spin_unlock_irq(&spool->lock);
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
222 spin_lock_irqsave(&spool->lock, flags);
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
243 unlock_or_release_subpool(spool, flags);
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 return HUGETLBFS_SB(inode->i_sb)->spool;
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 return subpool_inode(file_inode(vma->vm_file));
258 /* Helper that removes a struct file_region from the resv_map cache and returns
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 struct file_region *nrg;
266 VM_BUG_ON(resv->region_cache_count <= 0);
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 list_del(&nrg->link);
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
281 #ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 struct resv_map *resv,
293 struct file_region *nrg)
295 #ifdef CONFIG_CGROUP_HUGETLB
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 nrg->reservation_counter = NULL;
324 static void put_uncharge_info(struct file_region *rg)
326 #ifdef CONFIG_CGROUP_HUGETLB
332 static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
335 #ifdef CONFIG_CGROUP_HUGETLB
336 return rg->reservation_counter == org->reservation_counter &&
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 struct file_region *nrg, *prg;
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
354 put_uncharge_info(rg);
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
366 put_uncharge_info(rg);
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
376 struct file_region *nrg;
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg);
382 coalesce_file_region(map, nrg);
384 *regions_needed += 1;
390 * Must be called with resv->lock held.
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 struct hugetlb_cgroup *h_cg,
399 struct hstate *h, long *regions_needed)
402 struct list_head *head = &resv->regions;
403 long last_accounted_offset = f;
404 struct file_region *iter, *trg = NULL;
405 struct list_head *rg = NULL;
410 /* In this loop, we essentially handle an entry for the range
411 * [last_accounted_offset, iter->from), at every iteration, with some
414 list_for_each_entry_safe(iter, trg, head, link) {
415 /* Skip irrelevant regions that start before our range. */
416 if (iter->from < f) {
417 /* If this region ends after the last accounted offset,
418 * then we need to update last_accounted_offset.
420 if (iter->to > last_accounted_offset)
421 last_accounted_offset = iter->to;
425 /* When we find a region that starts beyond our range, we've
428 if (iter->from >= t) {
429 rg = iter->link.prev;
433 /* Add an entry for last_accounted_offset -> iter->from, and
434 * update last_accounted_offset.
436 if (iter->from > last_accounted_offset)
437 add += hugetlb_resv_map_add(resv, iter->link.prev,
438 last_accounted_offset,
442 last_accounted_offset = iter->to;
445 /* Handle the case where our range extends beyond
446 * last_accounted_offset.
450 if (last_accounted_offset < t)
451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 t, h, h_cg, regions_needed);
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459 static int allocate_file_region_entries(struct resv_map *resv,
461 __must_hold(&resv->lock)
463 LIST_HEAD(allocated_regions);
464 int to_allocate = 0, i = 0;
465 struct file_region *trg = NULL, *rg = NULL;
467 VM_BUG_ON(regions_needed < 0);
470 * Check for sufficient descriptors in the cache to accommodate
471 * the number of in progress add operations plus regions_needed.
473 * This is a while loop because when we drop the lock, some other call
474 * to region_add or region_del may have consumed some region_entries,
475 * so we keep looping here until we finally have enough entries for
476 * (adds_in_progress + regions_needed).
478 while (resv->region_cache_count <
479 (resv->adds_in_progress + regions_needed)) {
480 to_allocate = resv->adds_in_progress + regions_needed -
481 resv->region_cache_count;
483 /* At this point, we should have enough entries in the cache
484 * for all the existing adds_in_progress. We should only be
485 * needing to allocate for regions_needed.
487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
489 spin_unlock(&resv->lock);
490 for (i = 0; i < to_allocate; i++) {
491 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
494 list_add(&trg->link, &allocated_regions);
497 spin_lock(&resv->lock);
499 list_splice(&allocated_regions, &resv->region_cache);
500 resv->region_cache_count += to_allocate;
506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
514 * Add the huge page range represented by [f, t) to the reserve
515 * map. Regions will be taken from the cache to fill in this range.
516 * Sufficient regions should exist in the cache due to the previous
517 * call to region_chg with the same range, but in some cases the cache will not
518 * have sufficient entries due to races with other code doing region_add or
519 * region_del. The extra needed entries will be allocated.
521 * regions_needed is the out value provided by a previous call to region_chg.
523 * Return the number of new huge pages added to the map. This number is greater
524 * than or equal to zero. If file_region entries needed to be allocated for
525 * this operation and we were not able to allocate, it returns -ENOMEM.
526 * region_add of regions of length 1 never allocate file_regions and cannot
527 * fail; region_chg will always allocate at least 1 entry and a region_add for
528 * 1 page will only require at most 1 entry.
530 static long region_add(struct resv_map *resv, long f, long t,
531 long in_regions_needed, struct hstate *h,
532 struct hugetlb_cgroup *h_cg)
534 long add = 0, actual_regions_needed = 0;
536 spin_lock(&resv->lock);
539 /* Count how many regions are actually needed to execute this add. */
540 add_reservation_in_range(resv, f, t, NULL, NULL,
541 &actual_regions_needed);
544 * Check for sufficient descriptors in the cache to accommodate
545 * this add operation. Note that actual_regions_needed may be greater
546 * than in_regions_needed, as the resv_map may have been modified since
547 * the region_chg call. In this case, we need to make sure that we
548 * allocate extra entries, such that we have enough for all the
549 * existing adds_in_progress, plus the excess needed for this
552 if (actual_regions_needed > in_regions_needed &&
553 resv->region_cache_count <
554 resv->adds_in_progress +
555 (actual_regions_needed - in_regions_needed)) {
556 /* region_add operation of range 1 should never need to
557 * allocate file_region entries.
559 VM_BUG_ON(t - f <= 1);
561 if (allocate_file_region_entries(
562 resv, actual_regions_needed - in_regions_needed)) {
569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
571 resv->adds_in_progress -= in_regions_needed;
573 spin_unlock(&resv->lock);
578 * Examine the existing reserve map and determine how many
579 * huge pages in the specified range [f, t) are NOT currently
580 * represented. This routine is called before a subsequent
581 * call to region_add that will actually modify the reserve
582 * map to add the specified range [f, t). region_chg does
583 * not change the number of huge pages represented by the
584 * map. A number of new file_region structures is added to the cache as a
585 * placeholder, for the subsequent region_add call to use. At least 1
586 * file_region structure is added.
588 * out_regions_needed is the number of regions added to the
589 * resv->adds_in_progress. This value needs to be provided to a follow up call
590 * to region_add or region_abort for proper accounting.
592 * Returns the number of huge pages that need to be added to the existing
593 * reservation map for the range [f, t). This number is greater or equal to
594 * zero. -ENOMEM is returned if a new file_region structure or cache entry
595 * is needed and can not be allocated.
597 static long region_chg(struct resv_map *resv, long f, long t,
598 long *out_regions_needed)
602 spin_lock(&resv->lock);
604 /* Count how many hugepages in this range are NOT represented. */
605 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
608 if (*out_regions_needed == 0)
609 *out_regions_needed = 1;
611 if (allocate_file_region_entries(resv, *out_regions_needed))
614 resv->adds_in_progress += *out_regions_needed;
616 spin_unlock(&resv->lock);
621 * Abort the in progress add operation. The adds_in_progress field
622 * of the resv_map keeps track of the operations in progress between
623 * calls to region_chg and region_add. Operations are sometimes
624 * aborted after the call to region_chg. In such cases, region_abort
625 * is called to decrement the adds_in_progress counter. regions_needed
626 * is the value returned by the region_chg call, it is used to decrement
627 * the adds_in_progress counter.
629 * NOTE: The range arguments [f, t) are not needed or used in this
630 * routine. They are kept to make reading the calling code easier as
631 * arguments will match the associated region_chg call.
633 static void region_abort(struct resv_map *resv, long f, long t,
636 spin_lock(&resv->lock);
637 VM_BUG_ON(!resv->region_cache_count);
638 resv->adds_in_progress -= regions_needed;
639 spin_unlock(&resv->lock);
643 * Delete the specified range [f, t) from the reserve map. If the
644 * t parameter is LONG_MAX, this indicates that ALL regions after f
645 * should be deleted. Locate the regions which intersect [f, t)
646 * and either trim, delete or split the existing regions.
648 * Returns the number of huge pages deleted from the reserve map.
649 * In the normal case, the return value is zero or more. In the
650 * case where a region must be split, a new region descriptor must
651 * be allocated. If the allocation fails, -ENOMEM will be returned.
652 * NOTE: If the parameter t == LONG_MAX, then we will never split
653 * a region and possibly return -ENOMEM. Callers specifying
654 * t == LONG_MAX do not need to check for -ENOMEM error.
656 static long region_del(struct resv_map *resv, long f, long t)
658 struct list_head *head = &resv->regions;
659 struct file_region *rg, *trg;
660 struct file_region *nrg = NULL;
664 spin_lock(&resv->lock);
665 list_for_each_entry_safe(rg, trg, head, link) {
667 * Skip regions before the range to be deleted. file_region
668 * ranges are normally of the form [from, to). However, there
669 * may be a "placeholder" entry in the map which is of the form
670 * (from, to) with from == to. Check for placeholder entries
671 * at the beginning of the range to be deleted.
673 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
679 if (f > rg->from && t < rg->to) { /* Must split region */
681 * Check for an entry in the cache before dropping
682 * lock and attempting allocation.
685 resv->region_cache_count > resv->adds_in_progress) {
686 nrg = list_first_entry(&resv->region_cache,
689 list_del(&nrg->link);
690 resv->region_cache_count--;
694 spin_unlock(&resv->lock);
695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
702 hugetlb_cgroup_uncharge_file_region(
703 resv, rg, t - f, false);
705 /* New entry for end of split region */
709 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
711 INIT_LIST_HEAD(&nrg->link);
713 /* Original entry is trimmed */
716 list_add(&nrg->link, &rg->link);
721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 del += rg->to - rg->from;
723 hugetlb_cgroup_uncharge_file_region(resv, rg,
724 rg->to - rg->from, true);
730 if (f <= rg->from) { /* Trim beginning of region */
731 hugetlb_cgroup_uncharge_file_region(resv, rg,
732 t - rg->from, false);
736 } else { /* Trim end of region */
737 hugetlb_cgroup_uncharge_file_region(resv, rg,
745 spin_unlock(&resv->lock);
751 * A rare out of memory error was encountered which prevented removal of
752 * the reserve map region for a page. The huge page itself was free'ed
753 * and removed from the page cache. This routine will adjust the subpool
754 * usage count, and the global reserve count if needed. By incrementing
755 * these counts, the reserve map entry which could not be deleted will
756 * appear as a "reserved" entry instead of simply dangling with incorrect
759 void hugetlb_fix_reserve_counts(struct inode *inode)
761 struct hugepage_subpool *spool = subpool_inode(inode);
763 bool reserved = false;
765 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 if (rsv_adjust > 0) {
767 struct hstate *h = hstate_inode(inode);
769 if (!hugetlb_acct_memory(h, 1))
771 } else if (!rsv_adjust) {
776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 * Count and return the number of huge pages in the reserve map
781 * that intersect with the range [f, t).
783 static long region_count(struct resv_map *resv, long f, long t)
785 struct list_head *head = &resv->regions;
786 struct file_region *rg;
789 spin_lock(&resv->lock);
790 /* Locate each segment we overlap with, and count that overlap. */
791 list_for_each_entry(rg, head, link) {
800 seg_from = max(rg->from, f);
801 seg_to = min(rg->to, t);
803 chg += seg_to - seg_from;
805 spin_unlock(&resv->lock);
811 * Convert the address within this vma to the page offset within
812 * the mapping, in pagecache page units; huge pages here.
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 struct vm_area_struct *vma, unsigned long address)
817 return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 (vma->vm_pgoff >> huge_page_order(h));
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 unsigned long address)
824 return vma_hugecache_offset(hstate_vma(vma), vma, address);
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
829 * Return the size of the pages allocated when backing a VMA. In the majority
830 * cases this will be same size as used by the page table entries.
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
834 if (vma->vm_ops && vma->vm_ops->pagesize)
835 return vma->vm_ops->pagesize(vma);
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
841 * Return the page size being used by the MMU to back a VMA. In the majority
842 * of cases, the page size used by the kernel matches the MMU size. On
843 * architectures where it differs, an architecture-specific 'strong'
844 * version of this symbol is required.
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
848 return vma_kernel_pagesize(vma);
852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
853 * bits of the reservation map pointer, which are always clear due to
856 #define HPAGE_RESV_OWNER (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
861 * These helpers are used to track how many pages are reserved for
862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863 * is guaranteed to have their future faults succeed.
865 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866 * the reserve counters are updated with the hugetlb_lock held. It is safe
867 * to reset the VMA at fork() time as it is not in use yet and there is no
868 * chance of the global counters getting corrupted as a result of the values.
870 * The private mapping reservation is represented in a subtly different
871 * manner to a shared mapping. A shared mapping has a region map associated
872 * with the underlying file, this region map represents the backing file
873 * pages which have ever had a reservation assigned which this persists even
874 * after the page is instantiated. A private mapping has a region map
875 * associated with the original mmap which is attached to all VMAs which
876 * reference it, this region map represents those offsets which have consumed
877 * reservation ie. where pages have been instantiated.
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
881 return (unsigned long)vma->vm_private_data;
884 static void set_vma_private_data(struct vm_area_struct *vma,
887 vma->vm_private_data = (void *)value;
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 struct hugetlb_cgroup *h_cg,
895 #ifdef CONFIG_CGROUP_HUGETLB
897 resv_map->reservation_counter = NULL;
898 resv_map->pages_per_hpage = 0;
899 resv_map->css = NULL;
901 resv_map->reservation_counter =
902 &h_cg->rsvd_hugepage[hstate_index(h)];
903 resv_map->pages_per_hpage = pages_per_huge_page(h);
904 resv_map->css = &h_cg->css;
909 struct resv_map *resv_map_alloc(void)
911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
914 if (!resv_map || !rg) {
920 kref_init(&resv_map->refs);
921 spin_lock_init(&resv_map->lock);
922 INIT_LIST_HEAD(&resv_map->regions);
924 resv_map->adds_in_progress = 0;
926 * Initialize these to 0. On shared mappings, 0's here indicate these
927 * fields don't do cgroup accounting. On private mappings, these will be
928 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 * reservations are to be un-charged from here.
931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
933 INIT_LIST_HEAD(&resv_map->region_cache);
934 list_add(&rg->link, &resv_map->region_cache);
935 resv_map->region_cache_count = 1;
940 void resv_map_release(struct kref *ref)
942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 struct list_head *head = &resv_map->region_cache;
944 struct file_region *rg, *trg;
946 /* Clear out any active regions before we release the map. */
947 region_del(resv_map, 0, LONG_MAX);
949 /* ... and any entries left in the cache */
950 list_for_each_entry_safe(rg, trg, head, link) {
955 VM_BUG_ON(resv_map->adds_in_progress);
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
963 * At inode evict time, i_mapping may not point to the original
964 * address space within the inode. This original address space
965 * contains the pointer to the resv_map. So, always use the
966 * address space embedded within the inode.
967 * The VERY common case is inode->mapping == &inode->i_data but,
968 * this may not be true for device special inodes.
970 return (struct resv_map *)(&inode->i_data)->private_data;
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 if (vma->vm_flags & VM_MAYSHARE) {
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
980 return inode_resv_map(inode);
983 return (struct resv_map *)(get_vma_private_data(vma) &
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
993 set_vma_private_data(vma, (get_vma_private_data(vma) &
994 HPAGE_RESV_MASK) | (unsigned long)map);
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1009 return (get_vma_private_data(vma) & flag) != 0;
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1016 * Clear vm_private_data
1017 * - For MAP_PRIVATE mappings, this is the reserve map which does
1018 * not apply to children. Faults generated by the children are
1019 * not guaranteed to succeed, even if read-only.
1020 * - For shared mappings this is a per-vma semaphore that may be
1021 * allocated in a subsequent call to hugetlb_vm_op_open.
1023 vma->vm_private_data = (void *)0;
1024 if (!(vma->vm_flags & VM_MAYSHARE))
1029 * Reset and decrement one ref on hugepage private reservation.
1030 * Called with mm->mmap_sem writer semaphore held.
1031 * This function should be only used by move_vma() and operate on
1032 * same sized vma. It should never come here with last ref on the
1035 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1038 * Clear the old hugetlb private page reservation.
1039 * It has already been transferred to new_vma.
1041 * During a mremap() operation of a hugetlb vma we call move_vma()
1042 * which copies vma into new_vma and unmaps vma. After the copy
1043 * operation both new_vma and vma share a reference to the resv_map
1044 * struct, and at that point vma is about to be unmapped. We don't
1045 * want to return the reservation to the pool at unmap of vma because
1046 * the reservation still lives on in new_vma, so simply decrement the
1047 * ref here and remove the resv_map reference from this vma.
1049 struct resv_map *reservations = vma_resv_map(vma);
1051 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1052 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1053 kref_put(&reservations->refs, resv_map_release);
1056 hugetlb_dup_vma_private(vma);
1059 /* Returns true if the VMA has associated reserve pages */
1060 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1062 if (vma->vm_flags & VM_NORESERVE) {
1064 * This address is already reserved by other process(chg == 0),
1065 * so, we should decrement reserved count. Without decrementing,
1066 * reserve count remains after releasing inode, because this
1067 * allocated page will go into page cache and is regarded as
1068 * coming from reserved pool in releasing step. Currently, we
1069 * don't have any other solution to deal with this situation
1070 * properly, so add work-around here.
1072 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1078 /* Shared mappings always use reserves */
1079 if (vma->vm_flags & VM_MAYSHARE) {
1081 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1082 * be a region map for all pages. The only situation where
1083 * there is no region map is if a hole was punched via
1084 * fallocate. In this case, there really are no reserves to
1085 * use. This situation is indicated if chg != 0.
1094 * Only the process that called mmap() has reserves for
1097 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1099 * Like the shared case above, a hole punch or truncate
1100 * could have been performed on the private mapping.
1101 * Examine the value of chg to determine if reserves
1102 * actually exist or were previously consumed.
1103 * Very Subtle - The value of chg comes from a previous
1104 * call to vma_needs_reserves(). The reserve map for
1105 * private mappings has different (opposite) semantics
1106 * than that of shared mappings. vma_needs_reserves()
1107 * has already taken this difference in semantics into
1108 * account. Therefore, the meaning of chg is the same
1109 * as in the shared case above. Code could easily be
1110 * combined, but keeping it separate draws attention to
1111 * subtle differences.
1122 static void enqueue_huge_page(struct hstate *h, struct page *page)
1124 int nid = page_to_nid(page);
1126 lockdep_assert_held(&hugetlb_lock);
1127 VM_BUG_ON_PAGE(page_count(page), page);
1129 list_move(&page->lru, &h->hugepage_freelists[nid]);
1130 h->free_huge_pages++;
1131 h->free_huge_pages_node[nid]++;
1132 SetHPageFreed(page);
1135 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1138 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1140 lockdep_assert_held(&hugetlb_lock);
1141 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1142 if (pin && !is_longterm_pinnable_page(page))
1145 if (PageHWPoison(page))
1148 list_move(&page->lru, &h->hugepage_activelist);
1149 set_page_refcounted(page);
1150 ClearHPageFreed(page);
1151 h->free_huge_pages--;
1152 h->free_huge_pages_node[nid]--;
1159 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1162 unsigned int cpuset_mems_cookie;
1163 struct zonelist *zonelist;
1166 int node = NUMA_NO_NODE;
1168 zonelist = node_zonelist(nid, gfp_mask);
1171 cpuset_mems_cookie = read_mems_allowed_begin();
1172 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1175 if (!cpuset_zone_allowed(zone, gfp_mask))
1178 * no need to ask again on the same node. Pool is node rather than
1181 if (zone_to_nid(zone) == node)
1183 node = zone_to_nid(zone);
1185 page = dequeue_huge_page_node_exact(h, node);
1189 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1195 static unsigned long available_huge_pages(struct hstate *h)
1197 return h->free_huge_pages - h->resv_huge_pages;
1200 static struct page *dequeue_huge_page_vma(struct hstate *h,
1201 struct vm_area_struct *vma,
1202 unsigned long address, int avoid_reserve,
1205 struct page *page = NULL;
1206 struct mempolicy *mpol;
1208 nodemask_t *nodemask;
1212 * A child process with MAP_PRIVATE mappings created by their parent
1213 * have no page reserves. This check ensures that reservations are
1214 * not "stolen". The child may still get SIGKILLed
1216 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1219 /* If reserves cannot be used, ensure enough pages are in the pool */
1220 if (avoid_reserve && !available_huge_pages(h))
1223 gfp_mask = htlb_alloc_mask(h);
1224 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1226 if (mpol_is_preferred_many(mpol)) {
1227 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1229 /* Fallback to all nodes if page==NULL */
1234 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1237 SetHPageRestoreReserve(page);
1238 h->resv_huge_pages--;
1241 mpol_cond_put(mpol);
1249 * common helper functions for hstate_next_node_to_{alloc|free}.
1250 * We may have allocated or freed a huge page based on a different
1251 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1252 * be outside of *nodes_allowed. Ensure that we use an allowed
1253 * node for alloc or free.
1255 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1257 nid = next_node_in(nid, *nodes_allowed);
1258 VM_BUG_ON(nid >= MAX_NUMNODES);
1263 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1265 if (!node_isset(nid, *nodes_allowed))
1266 nid = next_node_allowed(nid, nodes_allowed);
1271 * returns the previously saved node ["this node"] from which to
1272 * allocate a persistent huge page for the pool and advance the
1273 * next node from which to allocate, handling wrap at end of node
1276 static int hstate_next_node_to_alloc(struct hstate *h,
1277 nodemask_t *nodes_allowed)
1281 VM_BUG_ON(!nodes_allowed);
1283 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1284 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1290 * helper for remove_pool_huge_page() - return the previously saved
1291 * node ["this node"] from which to free a huge page. Advance the
1292 * next node id whether or not we find a free huge page to free so
1293 * that the next attempt to free addresses the next node.
1295 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1299 VM_BUG_ON(!nodes_allowed);
1301 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1302 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1307 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1308 for (nr_nodes = nodes_weight(*mask); \
1310 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1313 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1314 for (nr_nodes = nodes_weight(*mask); \
1316 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1319 /* used to demote non-gigantic_huge pages as well */
1320 static void __destroy_compound_gigantic_page(struct page *page,
1321 unsigned int order, bool demote)
1324 int nr_pages = 1 << order;
1327 atomic_set(compound_mapcount_ptr(page), 0);
1328 atomic_set(compound_pincount_ptr(page), 0);
1330 for (i = 1; i < nr_pages; i++) {
1331 p = nth_page(page, i);
1333 clear_compound_head(p);
1335 set_page_refcounted(p);
1338 set_compound_order(page, 0);
1340 page[1].compound_nr = 0;
1342 __ClearPageHead(page);
1345 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1348 __destroy_compound_gigantic_page(page, order, true);
1351 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1352 static void destroy_compound_gigantic_page(struct page *page,
1355 __destroy_compound_gigantic_page(page, order, false);
1358 static void free_gigantic_page(struct page *page, unsigned int order)
1361 * If the page isn't allocated using the cma allocator,
1362 * cma_release() returns false.
1365 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1369 free_contig_range(page_to_pfn(page), 1 << order);
1372 #ifdef CONFIG_CONTIG_ALLOC
1373 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1374 int nid, nodemask_t *nodemask)
1376 unsigned long nr_pages = pages_per_huge_page(h);
1377 if (nid == NUMA_NO_NODE)
1378 nid = numa_mem_id();
1385 if (hugetlb_cma[nid]) {
1386 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1387 huge_page_order(h), true);
1392 if (!(gfp_mask & __GFP_THISNODE)) {
1393 for_each_node_mask(node, *nodemask) {
1394 if (node == nid || !hugetlb_cma[node])
1397 page = cma_alloc(hugetlb_cma[node], nr_pages,
1398 huge_page_order(h), true);
1406 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1409 #else /* !CONFIG_CONTIG_ALLOC */
1410 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1411 int nid, nodemask_t *nodemask)
1415 #endif /* CONFIG_CONTIG_ALLOC */
1417 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 int nid, nodemask_t *nodemask)
1423 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1424 static inline void destroy_compound_gigantic_page(struct page *page,
1425 unsigned int order) { }
1429 * Remove hugetlb page from lists, and update dtor so that page appears
1430 * as just a compound page.
1432 * A reference is held on the page, except in the case of demote.
1434 * Must be called with hugetlb lock held.
1436 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1437 bool adjust_surplus,
1440 int nid = page_to_nid(page);
1442 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1443 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1445 lockdep_assert_held(&hugetlb_lock);
1446 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1449 list_del(&page->lru);
1451 if (HPageFreed(page)) {
1452 h->free_huge_pages--;
1453 h->free_huge_pages_node[nid]--;
1455 if (adjust_surplus) {
1456 h->surplus_huge_pages--;
1457 h->surplus_huge_pages_node[nid]--;
1463 * For non-gigantic pages set the destructor to the normal compound
1464 * page dtor. This is needed in case someone takes an additional
1465 * temporary ref to the page, and freeing is delayed until they drop
1468 * For gigantic pages set the destructor to the null dtor. This
1469 * destructor will never be called. Before freeing the gigantic
1470 * page destroy_compound_gigantic_page will turn the compound page
1471 * into a simple group of pages. After this the destructor does not
1474 * This handles the case where more than one ref is held when and
1475 * after update_and_free_page is called.
1477 * In the case of demote we do not ref count the page as it will soon
1478 * be turned into a page of smaller size.
1481 set_page_refcounted(page);
1482 if (hstate_is_gigantic(h))
1483 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1488 h->nr_huge_pages_node[nid]--;
1491 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1492 bool adjust_surplus)
1494 __remove_hugetlb_page(h, page, adjust_surplus, false);
1497 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1498 bool adjust_surplus)
1500 __remove_hugetlb_page(h, page, adjust_surplus, true);
1503 static void add_hugetlb_page(struct hstate *h, struct page *page,
1504 bool adjust_surplus)
1507 int nid = page_to_nid(page);
1509 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1511 lockdep_assert_held(&hugetlb_lock);
1513 INIT_LIST_HEAD(&page->lru);
1515 h->nr_huge_pages_node[nid]++;
1517 if (adjust_surplus) {
1518 h->surplus_huge_pages++;
1519 h->surplus_huge_pages_node[nid]++;
1522 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1523 set_page_private(page, 0);
1525 * We have to set HPageVmemmapOptimized again as above
1526 * set_page_private(page, 0) cleared it.
1528 SetHPageVmemmapOptimized(page);
1531 * This page is about to be managed by the hugetlb allocator and
1532 * should have no users. Drop our reference, and check for others
1535 zeroed = put_page_testzero(page);
1538 * It is VERY unlikely soneone else has taken a ref on
1539 * the page. In this case, we simply return as the
1540 * hugetlb destructor (free_huge_page) will be called
1541 * when this other ref is dropped.
1545 arch_clear_hugepage_flags(page);
1546 enqueue_huge_page(h, page);
1549 static void __update_and_free_page(struct hstate *h, struct page *page)
1552 struct page *subpage;
1554 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1558 * If we don't know which subpages are hwpoisoned, we can't free
1559 * the hugepage, so it's leaked intentionally.
1561 if (HPageRawHwpUnreliable(page))
1564 if (hugetlb_vmemmap_restore(h, page)) {
1565 spin_lock_irq(&hugetlb_lock);
1567 * If we cannot allocate vmemmap pages, just refuse to free the
1568 * page and put the page back on the hugetlb free list and treat
1569 * as a surplus page.
1571 add_hugetlb_page(h, page, true);
1572 spin_unlock_irq(&hugetlb_lock);
1577 * Move PageHWPoison flag from head page to the raw error pages,
1578 * which makes any healthy subpages reusable.
1580 if (unlikely(PageHWPoison(page)))
1581 hugetlb_clear_page_hwpoison(page);
1583 for (i = 0; i < pages_per_huge_page(h); i++) {
1584 subpage = nth_page(page, i);
1585 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1586 1 << PG_referenced | 1 << PG_dirty |
1587 1 << PG_active | 1 << PG_private |
1592 * Non-gigantic pages demoted from CMA allocated gigantic pages
1593 * need to be given back to CMA in free_gigantic_page.
1595 if (hstate_is_gigantic(h) ||
1596 hugetlb_cma_page(page, huge_page_order(h))) {
1597 destroy_compound_gigantic_page(page, huge_page_order(h));
1598 free_gigantic_page(page, huge_page_order(h));
1600 __free_pages(page, huge_page_order(h));
1605 * As update_and_free_page() can be called under any context, so we cannot
1606 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1607 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1608 * the vmemmap pages.
1610 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1611 * freed and frees them one-by-one. As the page->mapping pointer is going
1612 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1613 * structure of a lockless linked list of huge pages to be freed.
1615 static LLIST_HEAD(hpage_freelist);
1617 static void free_hpage_workfn(struct work_struct *work)
1619 struct llist_node *node;
1621 node = llist_del_all(&hpage_freelist);
1627 page = container_of((struct address_space **)node,
1628 struct page, mapping);
1630 page->mapping = NULL;
1632 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1633 * is going to trigger because a previous call to
1634 * remove_hugetlb_page() will set_compound_page_dtor(page,
1635 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1637 h = size_to_hstate(page_size(page));
1639 __update_and_free_page(h, page);
1644 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1646 static inline void flush_free_hpage_work(struct hstate *h)
1648 if (hugetlb_vmemmap_optimizable(h))
1649 flush_work(&free_hpage_work);
1652 static void update_and_free_page(struct hstate *h, struct page *page,
1655 if (!HPageVmemmapOptimized(page) || !atomic) {
1656 __update_and_free_page(h, page);
1661 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1663 * Only call schedule_work() if hpage_freelist is previously
1664 * empty. Otherwise, schedule_work() had been called but the workfn
1665 * hasn't retrieved the list yet.
1667 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1668 schedule_work(&free_hpage_work);
1671 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1673 struct page *page, *t_page;
1675 list_for_each_entry_safe(page, t_page, list, lru) {
1676 update_and_free_page(h, page, false);
1681 struct hstate *size_to_hstate(unsigned long size)
1685 for_each_hstate(h) {
1686 if (huge_page_size(h) == size)
1692 void free_huge_page(struct page *page)
1695 * Can't pass hstate in here because it is called from the
1696 * compound page destructor.
1698 struct hstate *h = page_hstate(page);
1699 int nid = page_to_nid(page);
1700 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1701 bool restore_reserve;
1702 unsigned long flags;
1704 VM_BUG_ON_PAGE(page_count(page), page);
1705 VM_BUG_ON_PAGE(page_mapcount(page), page);
1707 hugetlb_set_page_subpool(page, NULL);
1709 __ClearPageAnonExclusive(page);
1710 page->mapping = NULL;
1711 restore_reserve = HPageRestoreReserve(page);
1712 ClearHPageRestoreReserve(page);
1715 * If HPageRestoreReserve was set on page, page allocation consumed a
1716 * reservation. If the page was associated with a subpool, there
1717 * would have been a page reserved in the subpool before allocation
1718 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1719 * reservation, do not call hugepage_subpool_put_pages() as this will
1720 * remove the reserved page from the subpool.
1722 if (!restore_reserve) {
1724 * A return code of zero implies that the subpool will be
1725 * under its minimum size if the reservation is not restored
1726 * after page is free. Therefore, force restore_reserve
1729 if (hugepage_subpool_put_pages(spool, 1) == 0)
1730 restore_reserve = true;
1733 spin_lock_irqsave(&hugetlb_lock, flags);
1734 ClearHPageMigratable(page);
1735 hugetlb_cgroup_uncharge_page(hstate_index(h),
1736 pages_per_huge_page(h), page);
1737 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1738 pages_per_huge_page(h), page);
1739 if (restore_reserve)
1740 h->resv_huge_pages++;
1742 if (HPageTemporary(page)) {
1743 remove_hugetlb_page(h, page, false);
1744 spin_unlock_irqrestore(&hugetlb_lock, flags);
1745 update_and_free_page(h, page, true);
1746 } else if (h->surplus_huge_pages_node[nid]) {
1747 /* remove the page from active list */
1748 remove_hugetlb_page(h, page, true);
1749 spin_unlock_irqrestore(&hugetlb_lock, flags);
1750 update_and_free_page(h, page, true);
1752 arch_clear_hugepage_flags(page);
1753 enqueue_huge_page(h, page);
1754 spin_unlock_irqrestore(&hugetlb_lock, flags);
1759 * Must be called with the hugetlb lock held
1761 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1763 lockdep_assert_held(&hugetlb_lock);
1765 h->nr_huge_pages_node[nid]++;
1768 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1770 hugetlb_vmemmap_optimize(h, page);
1771 INIT_LIST_HEAD(&page->lru);
1772 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1773 hugetlb_set_page_subpool(page, NULL);
1774 set_hugetlb_cgroup(page, NULL);
1775 set_hugetlb_cgroup_rsvd(page, NULL);
1778 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1780 __prep_new_huge_page(h, page);
1781 spin_lock_irq(&hugetlb_lock);
1782 __prep_account_new_huge_page(h, nid);
1783 spin_unlock_irq(&hugetlb_lock);
1786 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1790 int nr_pages = 1 << order;
1793 /* we rely on prep_new_huge_page to set the destructor */
1794 set_compound_order(page, order);
1795 __SetPageHead(page);
1796 for (i = 0; i < nr_pages; i++) {
1797 p = nth_page(page, i);
1800 * For gigantic hugepages allocated through bootmem at
1801 * boot, it's safer to be consistent with the not-gigantic
1802 * hugepages and clear the PG_reserved bit from all tail pages
1803 * too. Otherwise drivers using get_user_pages() to access tail
1804 * pages may get the reference counting wrong if they see
1805 * PG_reserved set on a tail page (despite the head page not
1806 * having PG_reserved set). Enforcing this consistency between
1807 * head and tail pages allows drivers to optimize away a check
1808 * on the head page when they need know if put_page() is needed
1809 * after get_user_pages().
1811 __ClearPageReserved(p);
1813 * Subtle and very unlikely
1815 * Gigantic 'page allocators' such as memblock or cma will
1816 * return a set of pages with each page ref counted. We need
1817 * to turn this set of pages into a compound page with tail
1818 * page ref counts set to zero. Code such as speculative page
1819 * cache adding could take a ref on a 'to be' tail page.
1820 * We need to respect any increased ref count, and only set
1821 * the ref count to zero if count is currently 1. If count
1822 * is not 1, we return an error. An error return indicates
1823 * the set of pages can not be converted to a gigantic page.
1824 * The caller who allocated the pages should then discard the
1825 * pages using the appropriate free interface.
1827 * In the case of demote, the ref count will be zero.
1830 if (!page_ref_freeze(p, 1)) {
1831 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1835 VM_BUG_ON_PAGE(page_count(p), p);
1838 set_compound_head(p, page);
1840 atomic_set(compound_mapcount_ptr(page), -1);
1841 atomic_set(compound_pincount_ptr(page), 0);
1845 /* undo page modifications made above */
1846 for (j = 0; j < i; j++) {
1847 p = nth_page(page, j);
1849 clear_compound_head(p);
1850 set_page_refcounted(p);
1852 /* need to clear PG_reserved on remaining tail pages */
1853 for (; j < nr_pages; j++) {
1854 p = nth_page(page, j);
1855 __ClearPageReserved(p);
1857 set_compound_order(page, 0);
1859 page[1].compound_nr = 0;
1861 __ClearPageHead(page);
1865 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1867 return __prep_compound_gigantic_page(page, order, false);
1870 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1873 return __prep_compound_gigantic_page(page, order, true);
1877 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1878 * transparent huge pages. See the PageTransHuge() documentation for more
1881 int PageHuge(struct page *page)
1883 if (!PageCompound(page))
1886 page = compound_head(page);
1887 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1889 EXPORT_SYMBOL_GPL(PageHuge);
1892 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1893 * normal or transparent huge pages.
1895 int PageHeadHuge(struct page *page_head)
1897 if (!PageHead(page_head))
1900 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1902 EXPORT_SYMBOL_GPL(PageHeadHuge);
1905 * Find and lock address space (mapping) in write mode.
1907 * Upon entry, the page is locked which means that page_mapping() is
1908 * stable. Due to locking order, we can only trylock_write. If we can
1909 * not get the lock, simply return NULL to caller.
1911 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1913 struct address_space *mapping = page_mapping(hpage);
1918 if (i_mmap_trylock_write(mapping))
1924 pgoff_t hugetlb_basepage_index(struct page *page)
1926 struct page *page_head = compound_head(page);
1927 pgoff_t index = page_index(page_head);
1928 unsigned long compound_idx;
1930 if (compound_order(page_head) >= MAX_ORDER)
1931 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1933 compound_idx = page - page_head;
1935 return (index << compound_order(page_head)) + compound_idx;
1938 static struct page *alloc_buddy_huge_page(struct hstate *h,
1939 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1940 nodemask_t *node_alloc_noretry)
1942 int order = huge_page_order(h);
1944 bool alloc_try_hard = true;
1948 * By default we always try hard to allocate the page with
1949 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1950 * a loop (to adjust global huge page counts) and previous allocation
1951 * failed, do not continue to try hard on the same node. Use the
1952 * node_alloc_noretry bitmap to manage this state information.
1954 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1955 alloc_try_hard = false;
1956 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1958 gfp_mask |= __GFP_RETRY_MAYFAIL;
1959 if (nid == NUMA_NO_NODE)
1960 nid = numa_mem_id();
1962 page = __alloc_pages(gfp_mask, order, nid, nmask);
1964 /* Freeze head page */
1965 if (page && !page_ref_freeze(page, 1)) {
1966 __free_pages(page, order);
1967 if (retry) { /* retry once */
1971 /* WOW! twice in a row. */
1972 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1977 __count_vm_event(HTLB_BUDDY_PGALLOC);
1979 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1982 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1983 * indicates an overall state change. Clear bit so that we resume
1984 * normal 'try hard' allocations.
1986 if (node_alloc_noretry && page && !alloc_try_hard)
1987 node_clear(nid, *node_alloc_noretry);
1990 * If we tried hard to get a page but failed, set bit so that
1991 * subsequent attempts will not try as hard until there is an
1992 * overall state change.
1994 if (node_alloc_noretry && !page && alloc_try_hard)
1995 node_set(nid, *node_alloc_noretry);
2001 * Common helper to allocate a fresh hugetlb page. All specific allocators
2002 * should use this function to get new hugetlb pages
2004 * Note that returned page is 'frozen': ref count of head page and all tail
2007 static struct page *alloc_fresh_huge_page(struct hstate *h,
2008 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2009 nodemask_t *node_alloc_noretry)
2015 if (hstate_is_gigantic(h))
2016 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2018 page = alloc_buddy_huge_page(h, gfp_mask,
2019 nid, nmask, node_alloc_noretry);
2023 if (hstate_is_gigantic(h)) {
2024 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2026 * Rare failure to convert pages to compound page.
2027 * Free pages and try again - ONCE!
2029 free_gigantic_page(page, huge_page_order(h));
2037 prep_new_huge_page(h, page, page_to_nid(page));
2043 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2046 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2047 nodemask_t *node_alloc_noretry)
2051 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2053 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2054 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2055 node_alloc_noretry);
2063 free_huge_page(page); /* free it into the hugepage allocator */
2069 * Remove huge page from pool from next node to free. Attempt to keep
2070 * persistent huge pages more or less balanced over allowed nodes.
2071 * This routine only 'removes' the hugetlb page. The caller must make
2072 * an additional call to free the page to low level allocators.
2073 * Called with hugetlb_lock locked.
2075 static struct page *remove_pool_huge_page(struct hstate *h,
2076 nodemask_t *nodes_allowed,
2080 struct page *page = NULL;
2082 lockdep_assert_held(&hugetlb_lock);
2083 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2085 * If we're returning unused surplus pages, only examine
2086 * nodes with surplus pages.
2088 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2089 !list_empty(&h->hugepage_freelists[node])) {
2090 page = list_entry(h->hugepage_freelists[node].next,
2092 remove_hugetlb_page(h, page, acct_surplus);
2101 * Dissolve a given free hugepage into free buddy pages. This function does
2102 * nothing for in-use hugepages and non-hugepages.
2103 * This function returns values like below:
2105 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2106 * when the system is under memory pressure and the feature of
2107 * freeing unused vmemmap pages associated with each hugetlb page
2109 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2110 * (allocated or reserved.)
2111 * 0: successfully dissolved free hugepages or the page is not a
2112 * hugepage (considered as already dissolved)
2114 int dissolve_free_huge_page(struct page *page)
2119 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2120 if (!PageHuge(page))
2123 spin_lock_irq(&hugetlb_lock);
2124 if (!PageHuge(page)) {
2129 if (!page_count(page)) {
2130 struct page *head = compound_head(page);
2131 struct hstate *h = page_hstate(head);
2132 if (!available_huge_pages(h))
2136 * We should make sure that the page is already on the free list
2137 * when it is dissolved.
2139 if (unlikely(!HPageFreed(head))) {
2140 spin_unlock_irq(&hugetlb_lock);
2144 * Theoretically, we should return -EBUSY when we
2145 * encounter this race. In fact, we have a chance
2146 * to successfully dissolve the page if we do a
2147 * retry. Because the race window is quite small.
2148 * If we seize this opportunity, it is an optimization
2149 * for increasing the success rate of dissolving page.
2154 remove_hugetlb_page(h, head, false);
2155 h->max_huge_pages--;
2156 spin_unlock_irq(&hugetlb_lock);
2159 * Normally update_and_free_page will allocate required vmemmmap
2160 * before freeing the page. update_and_free_page will fail to
2161 * free the page if it can not allocate required vmemmap. We
2162 * need to adjust max_huge_pages if the page is not freed.
2163 * Attempt to allocate vmemmmap here so that we can take
2164 * appropriate action on failure.
2166 rc = hugetlb_vmemmap_restore(h, head);
2168 update_and_free_page(h, head, false);
2170 spin_lock_irq(&hugetlb_lock);
2171 add_hugetlb_page(h, head, false);
2172 h->max_huge_pages++;
2173 spin_unlock_irq(&hugetlb_lock);
2179 spin_unlock_irq(&hugetlb_lock);
2184 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2185 * make specified memory blocks removable from the system.
2186 * Note that this will dissolve a free gigantic hugepage completely, if any
2187 * part of it lies within the given range.
2188 * Also note that if dissolve_free_huge_page() returns with an error, all
2189 * free hugepages that were dissolved before that error are lost.
2191 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2199 if (!hugepages_supported())
2202 order = huge_page_order(&default_hstate);
2204 order = min(order, huge_page_order(h));
2206 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2207 page = pfn_to_page(pfn);
2208 rc = dissolve_free_huge_page(page);
2217 * Allocates a fresh surplus page from the page allocator.
2219 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2220 int nid, nodemask_t *nmask)
2222 struct page *page = NULL;
2224 if (hstate_is_gigantic(h))
2227 spin_lock_irq(&hugetlb_lock);
2228 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2230 spin_unlock_irq(&hugetlb_lock);
2232 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2236 spin_lock_irq(&hugetlb_lock);
2238 * We could have raced with the pool size change.
2239 * Double check that and simply deallocate the new page
2240 * if we would end up overcommiting the surpluses. Abuse
2241 * temporary page to workaround the nasty free_huge_page
2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2245 SetHPageTemporary(page);
2246 spin_unlock_irq(&hugetlb_lock);
2247 free_huge_page(page);
2251 h->surplus_huge_pages++;
2252 h->surplus_huge_pages_node[page_to_nid(page)]++;
2255 spin_unlock_irq(&hugetlb_lock);
2260 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2261 int nid, nodemask_t *nmask)
2265 if (hstate_is_gigantic(h))
2268 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2272 /* fresh huge pages are frozen */
2273 set_page_refcounted(page);
2276 * We do not account these pages as surplus because they are only
2277 * temporary and will be released properly on the last reference
2279 SetHPageTemporary(page);
2285 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2288 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2289 struct vm_area_struct *vma, unsigned long addr)
2291 struct page *page = NULL;
2292 struct mempolicy *mpol;
2293 gfp_t gfp_mask = htlb_alloc_mask(h);
2295 nodemask_t *nodemask;
2297 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2298 if (mpol_is_preferred_many(mpol)) {
2299 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2301 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2302 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2304 /* Fallback to all nodes if page==NULL */
2309 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2310 mpol_cond_put(mpol);
2314 /* page migration callback function */
2315 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2316 nodemask_t *nmask, gfp_t gfp_mask)
2318 spin_lock_irq(&hugetlb_lock);
2319 if (available_huge_pages(h)) {
2322 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2324 spin_unlock_irq(&hugetlb_lock);
2328 spin_unlock_irq(&hugetlb_lock);
2330 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2333 /* mempolicy aware migration callback */
2334 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2335 unsigned long address)
2337 struct mempolicy *mpol;
2338 nodemask_t *nodemask;
2343 gfp_mask = htlb_alloc_mask(h);
2344 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2345 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2346 mpol_cond_put(mpol);
2352 * Increase the hugetlb pool such that it can accommodate a reservation
2355 static int gather_surplus_pages(struct hstate *h, long delta)
2356 __must_hold(&hugetlb_lock)
2358 LIST_HEAD(surplus_list);
2359 struct page *page, *tmp;
2362 long needed, allocated;
2363 bool alloc_ok = true;
2365 lockdep_assert_held(&hugetlb_lock);
2366 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2368 h->resv_huge_pages += delta;
2376 spin_unlock_irq(&hugetlb_lock);
2377 for (i = 0; i < needed; i++) {
2378 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2379 NUMA_NO_NODE, NULL);
2384 list_add(&page->lru, &surplus_list);
2390 * After retaking hugetlb_lock, we need to recalculate 'needed'
2391 * because either resv_huge_pages or free_huge_pages may have changed.
2393 spin_lock_irq(&hugetlb_lock);
2394 needed = (h->resv_huge_pages + delta) -
2395 (h->free_huge_pages + allocated);
2400 * We were not able to allocate enough pages to
2401 * satisfy the entire reservation so we free what
2402 * we've allocated so far.
2407 * The surplus_list now contains _at_least_ the number of extra pages
2408 * needed to accommodate the reservation. Add the appropriate number
2409 * of pages to the hugetlb pool and free the extras back to the buddy
2410 * allocator. Commit the entire reservation here to prevent another
2411 * process from stealing the pages as they are added to the pool but
2412 * before they are reserved.
2414 needed += allocated;
2415 h->resv_huge_pages += delta;
2418 /* Free the needed pages to the hugetlb pool */
2419 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2422 /* Add the page to the hugetlb allocator */
2423 enqueue_huge_page(h, page);
2426 spin_unlock_irq(&hugetlb_lock);
2429 * Free unnecessary surplus pages to the buddy allocator.
2430 * Pages have no ref count, call free_huge_page directly.
2432 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2433 free_huge_page(page);
2434 spin_lock_irq(&hugetlb_lock);
2440 * This routine has two main purposes:
2441 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2442 * in unused_resv_pages. This corresponds to the prior adjustments made
2443 * to the associated reservation map.
2444 * 2) Free any unused surplus pages that may have been allocated to satisfy
2445 * the reservation. As many as unused_resv_pages may be freed.
2447 static void return_unused_surplus_pages(struct hstate *h,
2448 unsigned long unused_resv_pages)
2450 unsigned long nr_pages;
2452 LIST_HEAD(page_list);
2454 lockdep_assert_held(&hugetlb_lock);
2455 /* Uncommit the reservation */
2456 h->resv_huge_pages -= unused_resv_pages;
2458 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2462 * Part (or even all) of the reservation could have been backed
2463 * by pre-allocated pages. Only free surplus pages.
2465 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2468 * We want to release as many surplus pages as possible, spread
2469 * evenly across all nodes with memory. Iterate across these nodes
2470 * until we can no longer free unreserved surplus pages. This occurs
2471 * when the nodes with surplus pages have no free pages.
2472 * remove_pool_huge_page() will balance the freed pages across the
2473 * on-line nodes with memory and will handle the hstate accounting.
2475 while (nr_pages--) {
2476 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2480 list_add(&page->lru, &page_list);
2484 spin_unlock_irq(&hugetlb_lock);
2485 update_and_free_pages_bulk(h, &page_list);
2486 spin_lock_irq(&hugetlb_lock);
2491 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2492 * are used by the huge page allocation routines to manage reservations.
2494 * vma_needs_reservation is called to determine if the huge page at addr
2495 * within the vma has an associated reservation. If a reservation is
2496 * needed, the value 1 is returned. The caller is then responsible for
2497 * managing the global reservation and subpool usage counts. After
2498 * the huge page has been allocated, vma_commit_reservation is called
2499 * to add the page to the reservation map. If the page allocation fails,
2500 * the reservation must be ended instead of committed. vma_end_reservation
2501 * is called in such cases.
2503 * In the normal case, vma_commit_reservation returns the same value
2504 * as the preceding vma_needs_reservation call. The only time this
2505 * is not the case is if a reserve map was changed between calls. It
2506 * is the responsibility of the caller to notice the difference and
2507 * take appropriate action.
2509 * vma_add_reservation is used in error paths where a reservation must
2510 * be restored when a newly allocated huge page must be freed. It is
2511 * to be called after calling vma_needs_reservation to determine if a
2512 * reservation exists.
2514 * vma_del_reservation is used in error paths where an entry in the reserve
2515 * map was created during huge page allocation and must be removed. It is to
2516 * be called after calling vma_needs_reservation to determine if a reservation
2519 enum vma_resv_mode {
2526 static long __vma_reservation_common(struct hstate *h,
2527 struct vm_area_struct *vma, unsigned long addr,
2528 enum vma_resv_mode mode)
2530 struct resv_map *resv;
2533 long dummy_out_regions_needed;
2535 resv = vma_resv_map(vma);
2539 idx = vma_hugecache_offset(h, vma, addr);
2541 case VMA_NEEDS_RESV:
2542 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2543 /* We assume that vma_reservation_* routines always operate on
2544 * 1 page, and that adding to resv map a 1 page entry can only
2545 * ever require 1 region.
2547 VM_BUG_ON(dummy_out_regions_needed != 1);
2549 case VMA_COMMIT_RESV:
2550 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551 /* region_add calls of range 1 should never fail. */
2555 region_abort(resv, idx, idx + 1, 1);
2559 if (vma->vm_flags & VM_MAYSHARE) {
2560 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561 /* region_add calls of range 1 should never fail. */
2564 region_abort(resv, idx, idx + 1, 1);
2565 ret = region_del(resv, idx, idx + 1);
2569 if (vma->vm_flags & VM_MAYSHARE) {
2570 region_abort(resv, idx, idx + 1, 1);
2571 ret = region_del(resv, idx, idx + 1);
2573 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2574 /* region_add calls of range 1 should never fail. */
2582 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2585 * We know private mapping must have HPAGE_RESV_OWNER set.
2587 * In most cases, reserves always exist for private mappings.
2588 * However, a file associated with mapping could have been
2589 * hole punched or truncated after reserves were consumed.
2590 * As subsequent fault on such a range will not use reserves.
2591 * Subtle - The reserve map for private mappings has the
2592 * opposite meaning than that of shared mappings. If NO
2593 * entry is in the reserve map, it means a reservation exists.
2594 * If an entry exists in the reserve map, it means the
2595 * reservation has already been consumed. As a result, the
2596 * return value of this routine is the opposite of the
2597 * value returned from reserve map manipulation routines above.
2606 static long vma_needs_reservation(struct hstate *h,
2607 struct vm_area_struct *vma, unsigned long addr)
2609 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2612 static long vma_commit_reservation(struct hstate *h,
2613 struct vm_area_struct *vma, unsigned long addr)
2615 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2618 static void vma_end_reservation(struct hstate *h,
2619 struct vm_area_struct *vma, unsigned long addr)
2621 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2624 static long vma_add_reservation(struct hstate *h,
2625 struct vm_area_struct *vma, unsigned long addr)
2627 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2630 static long vma_del_reservation(struct hstate *h,
2631 struct vm_area_struct *vma, unsigned long addr)
2633 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2637 * This routine is called to restore reservation information on error paths.
2638 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2639 * the hugetlb mutex should remain held when calling this routine.
2641 * It handles two specific cases:
2642 * 1) A reservation was in place and the page consumed the reservation.
2643 * HPageRestoreReserve is set in the page.
2644 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2645 * not set. However, alloc_huge_page always updates the reserve map.
2647 * In case 1, free_huge_page later in the error path will increment the
2648 * global reserve count. But, free_huge_page does not have enough context
2649 * to adjust the reservation map. This case deals primarily with private
2650 * mappings. Adjust the reserve map here to be consistent with global
2651 * reserve count adjustments to be made by free_huge_page. Make sure the
2652 * reserve map indicates there is a reservation present.
2654 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2656 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2657 unsigned long address, struct page *page)
2659 long rc = vma_needs_reservation(h, vma, address);
2661 if (HPageRestoreReserve(page)) {
2662 if (unlikely(rc < 0))
2664 * Rare out of memory condition in reserve map
2665 * manipulation. Clear HPageRestoreReserve so that
2666 * global reserve count will not be incremented
2667 * by free_huge_page. This will make it appear
2668 * as though the reservation for this page was
2669 * consumed. This may prevent the task from
2670 * faulting in the page at a later time. This
2671 * is better than inconsistent global huge page
2672 * accounting of reserve counts.
2674 ClearHPageRestoreReserve(page);
2676 (void)vma_add_reservation(h, vma, address);
2678 vma_end_reservation(h, vma, address);
2682 * This indicates there is an entry in the reserve map
2683 * not added by alloc_huge_page. We know it was added
2684 * before the alloc_huge_page call, otherwise
2685 * HPageRestoreReserve would be set on the page.
2686 * Remove the entry so that a subsequent allocation
2687 * does not consume a reservation.
2689 rc = vma_del_reservation(h, vma, address);
2692 * VERY rare out of memory condition. Since
2693 * we can not delete the entry, set
2694 * HPageRestoreReserve so that the reserve
2695 * count will be incremented when the page
2696 * is freed. This reserve will be consumed
2697 * on a subsequent allocation.
2699 SetHPageRestoreReserve(page);
2700 } else if (rc < 0) {
2702 * Rare out of memory condition from
2703 * vma_needs_reservation call. Memory allocation is
2704 * only attempted if a new entry is needed. Therefore,
2705 * this implies there is not an entry in the
2708 * For shared mappings, no entry in the map indicates
2709 * no reservation. We are done.
2711 if (!(vma->vm_flags & VM_MAYSHARE))
2713 * For private mappings, no entry indicates
2714 * a reservation is present. Since we can
2715 * not add an entry, set SetHPageRestoreReserve
2716 * on the page so reserve count will be
2717 * incremented when freed. This reserve will
2718 * be consumed on a subsequent allocation.
2720 SetHPageRestoreReserve(page);
2723 * No reservation present, do nothing
2725 vma_end_reservation(h, vma, address);
2730 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2731 * @h: struct hstate old page belongs to
2732 * @old_page: Old page to dissolve
2733 * @list: List to isolate the page in case we need to
2734 * Returns 0 on success, otherwise negated error.
2736 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2737 struct list_head *list)
2739 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2740 int nid = page_to_nid(old_page);
2741 struct page *new_page;
2745 * Before dissolving the page, we need to allocate a new one for the
2746 * pool to remain stable. Here, we allocate the page and 'prep' it
2747 * by doing everything but actually updating counters and adding to
2748 * the pool. This simplifies and let us do most of the processing
2751 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2754 __prep_new_huge_page(h, new_page);
2757 spin_lock_irq(&hugetlb_lock);
2758 if (!PageHuge(old_page)) {
2760 * Freed from under us. Drop new_page too.
2763 } else if (page_count(old_page)) {
2765 * Someone has grabbed the page, try to isolate it here.
2766 * Fail with -EBUSY if not possible.
2768 spin_unlock_irq(&hugetlb_lock);
2769 ret = isolate_hugetlb(old_page, list);
2770 spin_lock_irq(&hugetlb_lock);
2772 } else if (!HPageFreed(old_page)) {
2774 * Page's refcount is 0 but it has not been enqueued in the
2775 * freelist yet. Race window is small, so we can succeed here if
2778 spin_unlock_irq(&hugetlb_lock);
2783 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 * the freelist and decrease the counters. These will be
2785 * incremented again when calling __prep_account_new_huge_page()
2786 * and enqueue_huge_page() for new_page. The counters will remain
2787 * stable since this happens under the lock.
2789 remove_hugetlb_page(h, old_page, false);
2792 * Ref count on new page is already zero as it was dropped
2793 * earlier. It can be directly added to the pool free list.
2795 __prep_account_new_huge_page(h, nid);
2796 enqueue_huge_page(h, new_page);
2799 * Pages have been replaced, we can safely free the old one.
2801 spin_unlock_irq(&hugetlb_lock);
2802 update_and_free_page(h, old_page, false);
2808 spin_unlock_irq(&hugetlb_lock);
2809 /* Page has a zero ref count, but needs a ref to be freed */
2810 set_page_refcounted(new_page);
2811 update_and_free_page(h, new_page, false);
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2823 * The page might have been dissolved from under our feet, so make sure
2824 * to carefully check the state under the lock.
2825 * Return success when racing as if we dissolved the page ourselves.
2827 spin_lock_irq(&hugetlb_lock);
2828 if (PageHuge(page)) {
2829 head = compound_head(page);
2830 h = page_hstate(head);
2832 spin_unlock_irq(&hugetlb_lock);
2835 spin_unlock_irq(&hugetlb_lock);
2838 * Fence off gigantic pages as there is a cyclic dependency between
2839 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 * of bailing out right away without further retrying.
2842 if (hstate_is_gigantic(h))
2845 if (page_count(head) && !isolate_hugetlb(head, list))
2847 else if (!page_count(head))
2848 ret = alloc_and_dissolve_huge_page(h, head, list);
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854 unsigned long addr, int avoid_reserve)
2856 struct hugepage_subpool *spool = subpool_vma(vma);
2857 struct hstate *h = hstate_vma(vma);
2859 long map_chg, map_commit;
2862 struct hugetlb_cgroup *h_cg;
2863 bool deferred_reserve;
2865 idx = hstate_index(h);
2867 * Examine the region/reserve map to determine if the process
2868 * has a reservation for the page to be allocated. A return
2869 * code of zero indicates a reservation exists (no change).
2871 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2873 return ERR_PTR(-ENOMEM);
2876 * Processes that did not create the mapping will have no
2877 * reserves as indicated by the region/reserve map. Check
2878 * that the allocation will not exceed the subpool limit.
2879 * Allocations for MAP_NORESERVE mappings also need to be
2880 * checked against any subpool limit.
2882 if (map_chg || avoid_reserve) {
2883 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2885 vma_end_reservation(h, vma, addr);
2886 return ERR_PTR(-ENOSPC);
2890 * Even though there was no reservation in the region/reserve
2891 * map, there could be reservations associated with the
2892 * subpool that can be used. This would be indicated if the
2893 * return value of hugepage_subpool_get_pages() is zero.
2894 * However, if avoid_reserve is specified we still avoid even
2895 * the subpool reservations.
2901 /* If this allocation is not consuming a reservation, charge it now.
2903 deferred_reserve = map_chg || avoid_reserve;
2904 if (deferred_reserve) {
2905 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 idx, pages_per_huge_page(h), &h_cg);
2908 goto out_subpool_put;
2911 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2913 goto out_uncharge_cgroup_reservation;
2915 spin_lock_irq(&hugetlb_lock);
2917 * glb_chg is passed to indicate whether or not a page must be taken
2918 * from the global free pool (global change). gbl_chg == 0 indicates
2919 * a reservation exists for the allocation.
2921 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2923 spin_unlock_irq(&hugetlb_lock);
2924 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2926 goto out_uncharge_cgroup;
2927 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928 SetHPageRestoreReserve(page);
2929 h->resv_huge_pages--;
2931 spin_lock_irq(&hugetlb_lock);
2932 list_add(&page->lru, &h->hugepage_activelist);
2933 set_page_refcounted(page);
2936 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937 /* If allocation is not consuming a reservation, also store the
2938 * hugetlb_cgroup pointer on the page.
2940 if (deferred_reserve) {
2941 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2945 spin_unlock_irq(&hugetlb_lock);
2947 hugetlb_set_page_subpool(page, spool);
2949 map_commit = vma_commit_reservation(h, vma, addr);
2950 if (unlikely(map_chg > map_commit)) {
2952 * The page was added to the reservation map between
2953 * vma_needs_reservation and vma_commit_reservation.
2954 * This indicates a race with hugetlb_reserve_pages.
2955 * Adjust for the subpool count incremented above AND
2956 * in hugetlb_reserve_pages for the same page. Also,
2957 * the reservation count added in hugetlb_reserve_pages
2958 * no longer applies.
2962 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963 hugetlb_acct_memory(h, -rsv_adjust);
2964 if (deferred_reserve)
2965 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966 pages_per_huge_page(h), page);
2970 out_uncharge_cgroup:
2971 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972 out_uncharge_cgroup_reservation:
2973 if (deferred_reserve)
2974 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2977 if (map_chg || avoid_reserve)
2978 hugepage_subpool_put_pages(spool, 1);
2979 vma_end_reservation(h, vma, addr);
2980 return ERR_PTR(-ENOSPC);
2983 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2987 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2990 /* do node specific alloc */
2991 if (nid != NUMA_NO_NODE) {
2992 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2998 /* allocate from next node when distributing huge pages */
2999 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000 m = memblock_alloc_try_nid_raw(
3001 huge_page_size(h), huge_page_size(h),
3002 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3004 * Use the beginning of the huge page to store the
3005 * huge_bootmem_page struct (until gather_bootmem
3006 * puts them into the mem_map).
3014 /* Put them into a private list first because mem_map is not up yet */
3015 INIT_LIST_HEAD(&m->list);
3016 list_add(&m->list, &huge_boot_pages);
3022 * Put bootmem huge pages into the standard lists after mem_map is up.
3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3025 static void __init gather_bootmem_prealloc(void)
3027 struct huge_bootmem_page *m;
3029 list_for_each_entry(m, &huge_boot_pages, list) {
3030 struct page *page = virt_to_page(m);
3031 struct hstate *h = m->hstate;
3033 VM_BUG_ON(!hstate_is_gigantic(h));
3034 WARN_ON(page_count(page) != 1);
3035 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036 WARN_ON(PageReserved(page));
3037 prep_new_huge_page(h, page, page_to_nid(page));
3038 free_huge_page(page); /* add to the hugepage allocator */
3040 /* VERY unlikely inflated ref count on a tail page */
3041 free_gigantic_page(page, huge_page_order(h));
3045 * We need to restore the 'stolen' pages to totalram_pages
3046 * in order to fix confusing memory reports from free(1) and
3047 * other side-effects, like CommitLimit going negative.
3049 adjust_managed_page_count(page, pages_per_huge_page(h));
3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3058 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059 if (hstate_is_gigantic(h)) {
3060 if (!alloc_bootmem_huge_page(h, nid))
3064 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3066 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067 &node_states[N_MEMORY], NULL);
3070 free_huge_page(page); /* free it into the hugepage allocator */
3074 if (i == h->max_huge_pages_node[nid])
3077 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3079 h->max_huge_pages_node[nid], buf, nid, i);
3080 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081 h->max_huge_pages_node[nid] = i;
3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3087 nodemask_t *node_alloc_noretry;
3088 bool node_specific_alloc = false;
3090 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3096 /* do node specific alloc */
3097 for_each_online_node(i) {
3098 if (h->max_huge_pages_node[i] > 0) {
3099 hugetlb_hstate_alloc_pages_onenode(h, i);
3100 node_specific_alloc = true;
3104 if (node_specific_alloc)
3107 /* below will do all node balanced alloc */
3108 if (!hstate_is_gigantic(h)) {
3110 * Bit mask controlling how hard we retry per-node allocations.
3111 * Ignore errors as lower level routines can deal with
3112 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3113 * time, we are likely in bigger trouble.
3115 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3118 /* allocations done at boot time */
3119 node_alloc_noretry = NULL;
3122 /* bit mask controlling how hard we retry per-node allocations */
3123 if (node_alloc_noretry)
3124 nodes_clear(*node_alloc_noretry);
3126 for (i = 0; i < h->max_huge_pages; ++i) {
3127 if (hstate_is_gigantic(h)) {
3128 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3130 } else if (!alloc_pool_huge_page(h,
3131 &node_states[N_MEMORY],
3132 node_alloc_noretry))
3136 if (i < h->max_huge_pages) {
3139 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3141 h->max_huge_pages, buf, i);
3142 h->max_huge_pages = i;
3144 kfree(node_alloc_noretry);
3147 static void __init hugetlb_init_hstates(void)
3149 struct hstate *h, *h2;
3151 for_each_hstate(h) {
3152 /* oversize hugepages were init'ed in early boot */
3153 if (!hstate_is_gigantic(h))
3154 hugetlb_hstate_alloc_pages(h);
3157 * Set demote order for each hstate. Note that
3158 * h->demote_order is initially 0.
3159 * - We can not demote gigantic pages if runtime freeing
3160 * is not supported, so skip this.
3161 * - If CMA allocation is possible, we can not demote
3162 * HUGETLB_PAGE_ORDER or smaller size pages.
3164 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3166 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3168 for_each_hstate(h2) {
3171 if (h2->order < h->order &&
3172 h2->order > h->demote_order)
3173 h->demote_order = h2->order;
3178 static void __init report_hugepages(void)
3182 for_each_hstate(h) {
3185 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3186 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3187 buf, h->free_huge_pages);
3188 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3189 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3193 #ifdef CONFIG_HIGHMEM
3194 static void try_to_free_low(struct hstate *h, unsigned long count,
3195 nodemask_t *nodes_allowed)
3198 LIST_HEAD(page_list);
3200 lockdep_assert_held(&hugetlb_lock);
3201 if (hstate_is_gigantic(h))
3205 * Collect pages to be freed on a list, and free after dropping lock
3207 for_each_node_mask(i, *nodes_allowed) {
3208 struct page *page, *next;
3209 struct list_head *freel = &h->hugepage_freelists[i];
3210 list_for_each_entry_safe(page, next, freel, lru) {
3211 if (count >= h->nr_huge_pages)
3213 if (PageHighMem(page))
3215 remove_hugetlb_page(h, page, false);
3216 list_add(&page->lru, &page_list);
3221 spin_unlock_irq(&hugetlb_lock);
3222 update_and_free_pages_bulk(h, &page_list);
3223 spin_lock_irq(&hugetlb_lock);
3226 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3227 nodemask_t *nodes_allowed)
3233 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3234 * balanced by operating on them in a round-robin fashion.
3235 * Returns 1 if an adjustment was made.
3237 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3242 lockdep_assert_held(&hugetlb_lock);
3243 VM_BUG_ON(delta != -1 && delta != 1);
3246 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3247 if (h->surplus_huge_pages_node[node])
3251 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3252 if (h->surplus_huge_pages_node[node] <
3253 h->nr_huge_pages_node[node])
3260 h->surplus_huge_pages += delta;
3261 h->surplus_huge_pages_node[node] += delta;
3265 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3266 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3267 nodemask_t *nodes_allowed)
3269 unsigned long min_count, ret;
3271 LIST_HEAD(page_list);
3272 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3275 * Bit mask controlling how hard we retry per-node allocations.
3276 * If we can not allocate the bit mask, do not attempt to allocate
3277 * the requested huge pages.
3279 if (node_alloc_noretry)
3280 nodes_clear(*node_alloc_noretry);
3285 * resize_lock mutex prevents concurrent adjustments to number of
3286 * pages in hstate via the proc/sysfs interfaces.
3288 mutex_lock(&h->resize_lock);
3289 flush_free_hpage_work(h);
3290 spin_lock_irq(&hugetlb_lock);
3293 * Check for a node specific request.
3294 * Changing node specific huge page count may require a corresponding
3295 * change to the global count. In any case, the passed node mask
3296 * (nodes_allowed) will restrict alloc/free to the specified node.
3298 if (nid != NUMA_NO_NODE) {
3299 unsigned long old_count = count;
3301 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3303 * User may have specified a large count value which caused the
3304 * above calculation to overflow. In this case, they wanted
3305 * to allocate as many huge pages as possible. Set count to
3306 * largest possible value to align with their intention.
3308 if (count < old_count)
3313 * Gigantic pages runtime allocation depend on the capability for large
3314 * page range allocation.
3315 * If the system does not provide this feature, return an error when
3316 * the user tries to allocate gigantic pages but let the user free the
3317 * boottime allocated gigantic pages.
3319 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3320 if (count > persistent_huge_pages(h)) {
3321 spin_unlock_irq(&hugetlb_lock);
3322 mutex_unlock(&h->resize_lock);
3323 NODEMASK_FREE(node_alloc_noretry);
3326 /* Fall through to decrease pool */
3330 * Increase the pool size
3331 * First take pages out of surplus state. Then make up the
3332 * remaining difference by allocating fresh huge pages.
3334 * We might race with alloc_surplus_huge_page() here and be unable
3335 * to convert a surplus huge page to a normal huge page. That is
3336 * not critical, though, it just means the overall size of the
3337 * pool might be one hugepage larger than it needs to be, but
3338 * within all the constraints specified by the sysctls.
3340 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3341 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3345 while (count > persistent_huge_pages(h)) {
3347 * If this allocation races such that we no longer need the
3348 * page, free_huge_page will handle it by freeing the page
3349 * and reducing the surplus.
3351 spin_unlock_irq(&hugetlb_lock);
3353 /* yield cpu to avoid soft lockup */
3356 ret = alloc_pool_huge_page(h, nodes_allowed,
3357 node_alloc_noretry);
3358 spin_lock_irq(&hugetlb_lock);
3362 /* Bail for signals. Probably ctrl-c from user */
3363 if (signal_pending(current))
3368 * Decrease the pool size
3369 * First return free pages to the buddy allocator (being careful
3370 * to keep enough around to satisfy reservations). Then place
3371 * pages into surplus state as needed so the pool will shrink
3372 * to the desired size as pages become free.
3374 * By placing pages into the surplus state independent of the
3375 * overcommit value, we are allowing the surplus pool size to
3376 * exceed overcommit. There are few sane options here. Since
3377 * alloc_surplus_huge_page() is checking the global counter,
3378 * though, we'll note that we're not allowed to exceed surplus
3379 * and won't grow the pool anywhere else. Not until one of the
3380 * sysctls are changed, or the surplus pages go out of use.
3382 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3383 min_count = max(count, min_count);
3384 try_to_free_low(h, min_count, nodes_allowed);
3387 * Collect pages to be removed on list without dropping lock
3389 while (min_count < persistent_huge_pages(h)) {
3390 page = remove_pool_huge_page(h, nodes_allowed, 0);
3394 list_add(&page->lru, &page_list);
3396 /* free the pages after dropping lock */
3397 spin_unlock_irq(&hugetlb_lock);
3398 update_and_free_pages_bulk(h, &page_list);
3399 flush_free_hpage_work(h);
3400 spin_lock_irq(&hugetlb_lock);
3402 while (count < persistent_huge_pages(h)) {
3403 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3407 h->max_huge_pages = persistent_huge_pages(h);
3408 spin_unlock_irq(&hugetlb_lock);
3409 mutex_unlock(&h->resize_lock);
3411 NODEMASK_FREE(node_alloc_noretry);
3416 static int demote_free_huge_page(struct hstate *h, struct page *page)
3418 int i, nid = page_to_nid(page);
3419 struct hstate *target_hstate;
3420 struct page *subpage;
3423 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3425 remove_hugetlb_page_for_demote(h, page, false);
3426 spin_unlock_irq(&hugetlb_lock);
3428 rc = hugetlb_vmemmap_restore(h, page);
3430 /* Allocation of vmemmmap failed, we can not demote page */
3431 spin_lock_irq(&hugetlb_lock);
3432 set_page_refcounted(page);
3433 add_hugetlb_page(h, page, false);
3438 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439 * sizes as it will not ref count pages.
3441 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3444 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445 * Without the mutex, pages added to target hstate could be marked
3448 * Note that we already hold h->resize_lock. To prevent deadlock,
3449 * use the convention of always taking larger size hstate mutex first.
3451 mutex_lock(&target_hstate->resize_lock);
3452 for (i = 0; i < pages_per_huge_page(h);
3453 i += pages_per_huge_page(target_hstate)) {
3454 subpage = nth_page(page, i);
3455 if (hstate_is_gigantic(target_hstate))
3456 prep_compound_gigantic_page_for_demote(subpage,
3457 target_hstate->order);
3459 prep_compound_page(subpage, target_hstate->order);
3460 set_page_private(subpage, 0);
3461 prep_new_huge_page(target_hstate, subpage, nid);
3462 free_huge_page(subpage);
3464 mutex_unlock(&target_hstate->resize_lock);
3466 spin_lock_irq(&hugetlb_lock);
3469 * Not absolutely necessary, but for consistency update max_huge_pages
3470 * based on pool changes for the demoted page.
3472 h->max_huge_pages--;
3473 target_hstate->max_huge_pages +=
3474 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480 __must_hold(&hugetlb_lock)
3485 lockdep_assert_held(&hugetlb_lock);
3487 /* We should never get here if no demote order */
3488 if (!h->demote_order) {
3489 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490 return -EINVAL; /* internal error */
3493 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495 if (PageHWPoison(page))
3498 return demote_free_huge_page(h, page);
3503 * Only way to get here is if all pages on free lists are poisoned.
3504 * Return -EBUSY so that caller will not retry.
3509 #define HSTATE_ATTR_RO(_name) \
3510 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3512 #define HSTATE_ATTR_WO(_name) \
3513 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3515 #define HSTATE_ATTR(_name) \
3516 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3518 static struct kobject *hugepages_kobj;
3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3527 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528 if (hstate_kobjs[i] == kobj) {
3530 *nidp = NUMA_NO_NODE;
3534 return kobj_to_node_hstate(kobj, nidp);
3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538 struct kobj_attribute *attr, char *buf)
3541 unsigned long nr_huge_pages;
3544 h = kobj_to_hstate(kobj, &nid);
3545 if (nid == NUMA_NO_NODE)
3546 nr_huge_pages = h->nr_huge_pages;
3548 nr_huge_pages = h->nr_huge_pages_node[nid];
3550 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554 struct hstate *h, int nid,
3555 unsigned long count, size_t len)
3558 nodemask_t nodes_allowed, *n_mask;
3560 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3563 if (nid == NUMA_NO_NODE) {
3565 * global hstate attribute
3567 if (!(obey_mempolicy &&
3568 init_nodemask_of_mempolicy(&nodes_allowed)))
3569 n_mask = &node_states[N_MEMORY];
3571 n_mask = &nodes_allowed;
3574 * Node specific request. count adjustment happens in
3575 * set_max_huge_pages() after acquiring hugetlb_lock.
3577 init_nodemask_of_node(&nodes_allowed, nid);
3578 n_mask = &nodes_allowed;
3581 err = set_max_huge_pages(h, count, nid, n_mask);
3583 return err ? err : len;
3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587 struct kobject *kobj, const char *buf,
3591 unsigned long count;
3595 err = kstrtoul(buf, 10, &count);
3599 h = kobj_to_hstate(kobj, &nid);
3600 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3603 static ssize_t nr_hugepages_show(struct kobject *kobj,
3604 struct kobj_attribute *attr, char *buf)
3606 return nr_hugepages_show_common(kobj, attr, buf);
3609 static ssize_t nr_hugepages_store(struct kobject *kobj,
3610 struct kobj_attribute *attr, const char *buf, size_t len)
3612 return nr_hugepages_store_common(false, kobj, buf, len);
3614 HSTATE_ATTR(nr_hugepages);
3619 * hstate attribute for optionally mempolicy-based constraint on persistent
3620 * huge page alloc/free.
3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623 struct kobj_attribute *attr,
3626 return nr_hugepages_show_common(kobj, attr, buf);
3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630 struct kobj_attribute *attr, const char *buf, size_t len)
3632 return nr_hugepages_store_common(true, kobj, buf, len);
3634 HSTATE_ATTR(nr_hugepages_mempolicy);
3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639 struct kobj_attribute *attr, char *buf)
3641 struct hstate *h = kobj_to_hstate(kobj, NULL);
3642 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646 struct kobj_attribute *attr, const char *buf, size_t count)
3649 unsigned long input;
3650 struct hstate *h = kobj_to_hstate(kobj, NULL);
3652 if (hstate_is_gigantic(h))
3655 err = kstrtoul(buf, 10, &input);
3659 spin_lock_irq(&hugetlb_lock);
3660 h->nr_overcommit_huge_pages = input;
3661 spin_unlock_irq(&hugetlb_lock);
3665 HSTATE_ATTR(nr_overcommit_hugepages);
3667 static ssize_t free_hugepages_show(struct kobject *kobj,
3668 struct kobj_attribute *attr, char *buf)
3671 unsigned long free_huge_pages;
3674 h = kobj_to_hstate(kobj, &nid);
3675 if (nid == NUMA_NO_NODE)
3676 free_huge_pages = h->free_huge_pages;
3678 free_huge_pages = h->free_huge_pages_node[nid];
3680 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3682 HSTATE_ATTR_RO(free_hugepages);
3684 static ssize_t resv_hugepages_show(struct kobject *kobj,
3685 struct kobj_attribute *attr, char *buf)
3687 struct hstate *h = kobj_to_hstate(kobj, NULL);
3688 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3690 HSTATE_ATTR_RO(resv_hugepages);
3692 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3696 unsigned long surplus_huge_pages;
3699 h = kobj_to_hstate(kobj, &nid);
3700 if (nid == NUMA_NO_NODE)
3701 surplus_huge_pages = h->surplus_huge_pages;
3703 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3705 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3707 HSTATE_ATTR_RO(surplus_hugepages);
3709 static ssize_t demote_store(struct kobject *kobj,
3710 struct kobj_attribute *attr, const char *buf, size_t len)
3712 unsigned long nr_demote;
3713 unsigned long nr_available;
3714 nodemask_t nodes_allowed, *n_mask;
3719 err = kstrtoul(buf, 10, &nr_demote);
3722 h = kobj_to_hstate(kobj, &nid);
3724 if (nid != NUMA_NO_NODE) {
3725 init_nodemask_of_node(&nodes_allowed, nid);
3726 n_mask = &nodes_allowed;
3728 n_mask = &node_states[N_MEMORY];
3731 /* Synchronize with other sysfs operations modifying huge pages */
3732 mutex_lock(&h->resize_lock);
3733 spin_lock_irq(&hugetlb_lock);
3737 * Check for available pages to demote each time thorough the
3738 * loop as demote_pool_huge_page will drop hugetlb_lock.
3740 if (nid != NUMA_NO_NODE)
3741 nr_available = h->free_huge_pages_node[nid];
3743 nr_available = h->free_huge_pages;
3744 nr_available -= h->resv_huge_pages;
3748 err = demote_pool_huge_page(h, n_mask);
3755 spin_unlock_irq(&hugetlb_lock);
3756 mutex_unlock(&h->resize_lock);
3762 HSTATE_ATTR_WO(demote);
3764 static ssize_t demote_size_show(struct kobject *kobj,
3765 struct kobj_attribute *attr, char *buf)
3767 struct hstate *h = kobj_to_hstate(kobj, NULL);
3768 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3770 return sysfs_emit(buf, "%lukB\n", demote_size);
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774 struct kobj_attribute *attr,
3775 const char *buf, size_t count)
3777 struct hstate *h, *demote_hstate;
3778 unsigned long demote_size;
3779 unsigned int demote_order;
3781 demote_size = (unsigned long)memparse(buf, NULL);
3783 demote_hstate = size_to_hstate(demote_size);
3786 demote_order = demote_hstate->order;
3787 if (demote_order < HUGETLB_PAGE_ORDER)
3790 /* demote order must be smaller than hstate order */
3791 h = kobj_to_hstate(kobj, NULL);
3792 if (demote_order >= h->order)
3795 /* resize_lock synchronizes access to demote size and writes */
3796 mutex_lock(&h->resize_lock);
3797 h->demote_order = demote_order;
3798 mutex_unlock(&h->resize_lock);
3802 HSTATE_ATTR(demote_size);
3804 static struct attribute *hstate_attrs[] = {
3805 &nr_hugepages_attr.attr,
3806 &nr_overcommit_hugepages_attr.attr,
3807 &free_hugepages_attr.attr,
3808 &resv_hugepages_attr.attr,
3809 &surplus_hugepages_attr.attr,
3811 &nr_hugepages_mempolicy_attr.attr,
3816 static const struct attribute_group hstate_attr_group = {
3817 .attrs = hstate_attrs,
3820 static struct attribute *hstate_demote_attrs[] = {
3821 &demote_size_attr.attr,
3826 static const struct attribute_group hstate_demote_attr_group = {
3827 .attrs = hstate_demote_attrs,
3830 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3831 struct kobject **hstate_kobjs,
3832 const struct attribute_group *hstate_attr_group)
3835 int hi = hstate_index(h);
3837 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3838 if (!hstate_kobjs[hi])
3841 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3843 kobject_put(hstate_kobjs[hi]);
3844 hstate_kobjs[hi] = NULL;
3848 if (h->demote_order) {
3849 retval = sysfs_create_group(hstate_kobjs[hi],
3850 &hstate_demote_attr_group);
3852 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3854 kobject_put(hstate_kobjs[hi]);
3855 hstate_kobjs[hi] = NULL;
3864 static bool hugetlb_sysfs_initialized __ro_after_init;
3867 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3868 * with node devices in node_devices[] using a parallel array. The array
3869 * index of a node device or _hstate == node id.
3870 * This is here to avoid any static dependency of the node device driver, in
3871 * the base kernel, on the hugetlb module.
3873 struct node_hstate {
3874 struct kobject *hugepages_kobj;
3875 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3877 static struct node_hstate node_hstates[MAX_NUMNODES];
3880 * A subset of global hstate attributes for node devices
3882 static struct attribute *per_node_hstate_attrs[] = {
3883 &nr_hugepages_attr.attr,
3884 &free_hugepages_attr.attr,
3885 &surplus_hugepages_attr.attr,
3889 static const struct attribute_group per_node_hstate_attr_group = {
3890 .attrs = per_node_hstate_attrs,
3894 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3895 * Returns node id via non-NULL nidp.
3897 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3901 for (nid = 0; nid < nr_node_ids; nid++) {
3902 struct node_hstate *nhs = &node_hstates[nid];
3904 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3905 if (nhs->hstate_kobjs[i] == kobj) {
3917 * Unregister hstate attributes from a single node device.
3918 * No-op if no hstate attributes attached.
3920 void hugetlb_unregister_node(struct node *node)
3923 struct node_hstate *nhs = &node_hstates[node->dev.id];
3925 if (!nhs->hugepages_kobj)
3926 return; /* no hstate attributes */
3928 for_each_hstate(h) {
3929 int idx = hstate_index(h);
3930 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3934 if (h->demote_order)
3935 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3936 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3937 kobject_put(hstate_kobj);
3938 nhs->hstate_kobjs[idx] = NULL;
3941 kobject_put(nhs->hugepages_kobj);
3942 nhs->hugepages_kobj = NULL;
3947 * Register hstate attributes for a single node device.
3948 * No-op if attributes already registered.
3950 void hugetlb_register_node(struct node *node)
3953 struct node_hstate *nhs = &node_hstates[node->dev.id];
3956 if (!hugetlb_sysfs_initialized)
3959 if (nhs->hugepages_kobj)
3960 return; /* already allocated */
3962 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3964 if (!nhs->hugepages_kobj)
3967 for_each_hstate(h) {
3968 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3970 &per_node_hstate_attr_group);
3972 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3973 h->name, node->dev.id);
3974 hugetlb_unregister_node(node);
3981 * hugetlb init time: register hstate attributes for all registered node
3982 * devices of nodes that have memory. All on-line nodes should have
3983 * registered their associated device by this time.
3985 static void __init hugetlb_register_all_nodes(void)
3989 for_each_online_node(nid)
3990 hugetlb_register_node(node_devices[nid]);
3992 #else /* !CONFIG_NUMA */
3994 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4002 static void hugetlb_register_all_nodes(void) { }
4007 static void __init hugetlb_cma_check(void);
4009 static inline __init void hugetlb_cma_check(void)
4014 static void __init hugetlb_sysfs_init(void)
4019 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4020 if (!hugepages_kobj)
4023 for_each_hstate(h) {
4024 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4025 hstate_kobjs, &hstate_attr_group);
4027 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4031 hugetlb_sysfs_initialized = true;
4033 hugetlb_register_all_nodes();
4036 static int __init hugetlb_init(void)
4040 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4043 if (!hugepages_supported()) {
4044 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4045 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4050 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4051 * architectures depend on setup being done here.
4053 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4054 if (!parsed_default_hugepagesz) {
4056 * If we did not parse a default huge page size, set
4057 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4058 * number of huge pages for this default size was implicitly
4059 * specified, set that here as well.
4060 * Note that the implicit setting will overwrite an explicit
4061 * setting. A warning will be printed in this case.
4063 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4064 if (default_hstate_max_huge_pages) {
4065 if (default_hstate.max_huge_pages) {
4068 string_get_size(huge_page_size(&default_hstate),
4069 1, STRING_UNITS_2, buf, 32);
4070 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4071 default_hstate.max_huge_pages, buf);
4072 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4073 default_hstate_max_huge_pages);
4075 default_hstate.max_huge_pages =
4076 default_hstate_max_huge_pages;
4078 for_each_online_node(i)
4079 default_hstate.max_huge_pages_node[i] =
4080 default_hugepages_in_node[i];
4084 hugetlb_cma_check();
4085 hugetlb_init_hstates();
4086 gather_bootmem_prealloc();
4089 hugetlb_sysfs_init();
4090 hugetlb_cgroup_file_init();
4093 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4095 num_fault_mutexes = 1;
4097 hugetlb_fault_mutex_table =
4098 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4100 BUG_ON(!hugetlb_fault_mutex_table);
4102 for (i = 0; i < num_fault_mutexes; i++)
4103 mutex_init(&hugetlb_fault_mutex_table[i]);
4106 subsys_initcall(hugetlb_init);
4108 /* Overwritten by architectures with more huge page sizes */
4109 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4111 return size == HPAGE_SIZE;
4114 void __init hugetlb_add_hstate(unsigned int order)
4119 if (size_to_hstate(PAGE_SIZE << order)) {
4122 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4124 h = &hstates[hugetlb_max_hstate++];
4125 mutex_init(&h->resize_lock);
4127 h->mask = ~(huge_page_size(h) - 1);
4128 for (i = 0; i < MAX_NUMNODES; ++i)
4129 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4130 INIT_LIST_HEAD(&h->hugepage_activelist);
4131 h->next_nid_to_alloc = first_memory_node;
4132 h->next_nid_to_free = first_memory_node;
4133 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4134 huge_page_size(h)/SZ_1K);
4139 bool __init __weak hugetlb_node_alloc_supported(void)
4144 static void __init hugepages_clear_pages_in_node(void)
4146 if (!hugetlb_max_hstate) {
4147 default_hstate_max_huge_pages = 0;
4148 memset(default_hugepages_in_node, 0,
4149 sizeof(default_hugepages_in_node));
4151 parsed_hstate->max_huge_pages = 0;
4152 memset(parsed_hstate->max_huge_pages_node, 0,
4153 sizeof(parsed_hstate->max_huge_pages_node));
4158 * hugepages command line processing
4159 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4160 * specification. If not, ignore the hugepages value. hugepages can also
4161 * be the first huge page command line option in which case it implicitly
4162 * specifies the number of huge pages for the default size.
4164 static int __init hugepages_setup(char *s)
4167 static unsigned long *last_mhp;
4168 int node = NUMA_NO_NODE;
4173 if (!parsed_valid_hugepagesz) {
4174 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4175 parsed_valid_hugepagesz = true;
4180 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4181 * yet, so this hugepages= parameter goes to the "default hstate".
4182 * Otherwise, it goes with the previously parsed hugepagesz or
4183 * default_hugepagesz.
4185 else if (!hugetlb_max_hstate)
4186 mhp = &default_hstate_max_huge_pages;
4188 mhp = &parsed_hstate->max_huge_pages;
4190 if (mhp == last_mhp) {
4191 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4197 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4199 /* Parameter is node format */
4200 if (p[count] == ':') {
4201 if (!hugetlb_node_alloc_supported()) {
4202 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4205 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4207 node = array_index_nospec(tmp, MAX_NUMNODES);
4209 /* Parse hugepages */
4210 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4212 if (!hugetlb_max_hstate)
4213 default_hugepages_in_node[node] = tmp;
4215 parsed_hstate->max_huge_pages_node[node] = tmp;
4217 /* Go to parse next node*/
4218 if (p[count] == ',')
4231 * Global state is always initialized later in hugetlb_init.
4232 * But we need to allocate gigantic hstates here early to still
4233 * use the bootmem allocator.
4235 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4236 hugetlb_hstate_alloc_pages(parsed_hstate);
4243 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4244 hugepages_clear_pages_in_node();
4247 __setup("hugepages=", hugepages_setup);
4250 * hugepagesz command line processing
4251 * A specific huge page size can only be specified once with hugepagesz.
4252 * hugepagesz is followed by hugepages on the command line. The global
4253 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4254 * hugepagesz argument was valid.
4256 static int __init hugepagesz_setup(char *s)
4261 parsed_valid_hugepagesz = false;
4262 size = (unsigned long)memparse(s, NULL);
4264 if (!arch_hugetlb_valid_size(size)) {
4265 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4269 h = size_to_hstate(size);
4272 * hstate for this size already exists. This is normally
4273 * an error, but is allowed if the existing hstate is the
4274 * default hstate. More specifically, it is only allowed if
4275 * the number of huge pages for the default hstate was not
4276 * previously specified.
4278 if (!parsed_default_hugepagesz || h != &default_hstate ||
4279 default_hstate.max_huge_pages) {
4280 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4285 * No need to call hugetlb_add_hstate() as hstate already
4286 * exists. But, do set parsed_hstate so that a following
4287 * hugepages= parameter will be applied to this hstate.
4290 parsed_valid_hugepagesz = true;
4294 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4295 parsed_valid_hugepagesz = true;
4298 __setup("hugepagesz=", hugepagesz_setup);
4301 * default_hugepagesz command line input
4302 * Only one instance of default_hugepagesz allowed on command line.
4304 static int __init default_hugepagesz_setup(char *s)
4309 parsed_valid_hugepagesz = false;
4310 if (parsed_default_hugepagesz) {
4311 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4315 size = (unsigned long)memparse(s, NULL);
4317 if (!arch_hugetlb_valid_size(size)) {
4318 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4322 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4323 parsed_valid_hugepagesz = true;
4324 parsed_default_hugepagesz = true;
4325 default_hstate_idx = hstate_index(size_to_hstate(size));
4328 * The number of default huge pages (for this size) could have been
4329 * specified as the first hugetlb parameter: hugepages=X. If so,
4330 * then default_hstate_max_huge_pages is set. If the default huge
4331 * page size is gigantic (>= MAX_ORDER), then the pages must be
4332 * allocated here from bootmem allocator.
4334 if (default_hstate_max_huge_pages) {
4335 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4336 for_each_online_node(i)
4337 default_hstate.max_huge_pages_node[i] =
4338 default_hugepages_in_node[i];
4339 if (hstate_is_gigantic(&default_hstate))
4340 hugetlb_hstate_alloc_pages(&default_hstate);
4341 default_hstate_max_huge_pages = 0;
4346 __setup("default_hugepagesz=", default_hugepagesz_setup);
4348 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4351 struct mempolicy *mpol = get_task_policy(current);
4354 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4355 * (from policy_nodemask) specifically for hugetlb case
4357 if (mpol->mode == MPOL_BIND &&
4358 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4359 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4360 return &mpol->nodes;
4365 static unsigned int allowed_mems_nr(struct hstate *h)
4368 unsigned int nr = 0;
4369 nodemask_t *mbind_nodemask;
4370 unsigned int *array = h->free_huge_pages_node;
4371 gfp_t gfp_mask = htlb_alloc_mask(h);
4373 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4374 for_each_node_mask(node, cpuset_current_mems_allowed) {
4375 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4382 #ifdef CONFIG_SYSCTL
4383 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4384 void *buffer, size_t *length,
4385 loff_t *ppos, unsigned long *out)
4387 struct ctl_table dup_table;
4390 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4391 * can duplicate the @table and alter the duplicate of it.
4394 dup_table.data = out;
4396 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4399 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4400 struct ctl_table *table, int write,
4401 void *buffer, size_t *length, loff_t *ppos)
4403 struct hstate *h = &default_hstate;
4404 unsigned long tmp = h->max_huge_pages;
4407 if (!hugepages_supported())
4410 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4416 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4417 NUMA_NO_NODE, tmp, *length);
4422 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4423 void *buffer, size_t *length, loff_t *ppos)
4426 return hugetlb_sysctl_handler_common(false, table, write,
4427 buffer, length, ppos);
4431 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4432 void *buffer, size_t *length, loff_t *ppos)
4434 return hugetlb_sysctl_handler_common(true, table, write,
4435 buffer, length, ppos);
4437 #endif /* CONFIG_NUMA */
4439 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4440 void *buffer, size_t *length, loff_t *ppos)
4442 struct hstate *h = &default_hstate;
4446 if (!hugepages_supported())
4449 tmp = h->nr_overcommit_huge_pages;
4451 if (write && hstate_is_gigantic(h))
4454 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4460 spin_lock_irq(&hugetlb_lock);
4461 h->nr_overcommit_huge_pages = tmp;
4462 spin_unlock_irq(&hugetlb_lock);
4468 #endif /* CONFIG_SYSCTL */
4470 void hugetlb_report_meminfo(struct seq_file *m)
4473 unsigned long total = 0;
4475 if (!hugepages_supported())
4478 for_each_hstate(h) {
4479 unsigned long count = h->nr_huge_pages;
4481 total += huge_page_size(h) * count;
4483 if (h == &default_hstate)
4485 "HugePages_Total: %5lu\n"
4486 "HugePages_Free: %5lu\n"
4487 "HugePages_Rsvd: %5lu\n"
4488 "HugePages_Surp: %5lu\n"
4489 "Hugepagesize: %8lu kB\n",
4493 h->surplus_huge_pages,
4494 huge_page_size(h) / SZ_1K);
4497 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4500 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4502 struct hstate *h = &default_hstate;
4504 if (!hugepages_supported())
4507 return sysfs_emit_at(buf, len,
4508 "Node %d HugePages_Total: %5u\n"
4509 "Node %d HugePages_Free: %5u\n"
4510 "Node %d HugePages_Surp: %5u\n",
4511 nid, h->nr_huge_pages_node[nid],
4512 nid, h->free_huge_pages_node[nid],
4513 nid, h->surplus_huge_pages_node[nid]);
4516 void hugetlb_show_meminfo_node(int nid)
4520 if (!hugepages_supported())
4524 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4526 h->nr_huge_pages_node[nid],
4527 h->free_huge_pages_node[nid],
4528 h->surplus_huge_pages_node[nid],
4529 huge_page_size(h) / SZ_1K);
4532 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4534 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4535 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4538 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4539 unsigned long hugetlb_total_pages(void)
4542 unsigned long nr_total_pages = 0;
4545 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4546 return nr_total_pages;
4549 static int hugetlb_acct_memory(struct hstate *h, long delta)
4556 spin_lock_irq(&hugetlb_lock);
4558 * When cpuset is configured, it breaks the strict hugetlb page
4559 * reservation as the accounting is done on a global variable. Such
4560 * reservation is completely rubbish in the presence of cpuset because
4561 * the reservation is not checked against page availability for the
4562 * current cpuset. Application can still potentially OOM'ed by kernel
4563 * with lack of free htlb page in cpuset that the task is in.
4564 * Attempt to enforce strict accounting with cpuset is almost
4565 * impossible (or too ugly) because cpuset is too fluid that
4566 * task or memory node can be dynamically moved between cpusets.
4568 * The change of semantics for shared hugetlb mapping with cpuset is
4569 * undesirable. However, in order to preserve some of the semantics,
4570 * we fall back to check against current free page availability as
4571 * a best attempt and hopefully to minimize the impact of changing
4572 * semantics that cpuset has.
4574 * Apart from cpuset, we also have memory policy mechanism that
4575 * also determines from which node the kernel will allocate memory
4576 * in a NUMA system. So similar to cpuset, we also should consider
4577 * the memory policy of the current task. Similar to the description
4581 if (gather_surplus_pages(h, delta) < 0)
4584 if (delta > allowed_mems_nr(h)) {
4585 return_unused_surplus_pages(h, delta);
4592 return_unused_surplus_pages(h, (unsigned long) -delta);
4595 spin_unlock_irq(&hugetlb_lock);
4599 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4601 struct resv_map *resv = vma_resv_map(vma);
4604 * This new VMA should share its siblings reservation map if present.
4605 * The VMA will only ever have a valid reservation map pointer where
4606 * it is being copied for another still existing VMA. As that VMA
4607 * has a reference to the reservation map it cannot disappear until
4608 * after this open call completes. It is therefore safe to take a
4609 * new reference here without additional locking.
4611 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4612 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4613 kref_get(&resv->refs);
4617 * vma_lock structure for sharable mappings is vma specific.
4618 * Clear old pointer (if copied via vm_area_dup) and create new.
4620 if (vma->vm_flags & VM_MAYSHARE) {
4621 vma->vm_private_data = NULL;
4622 hugetlb_vma_lock_alloc(vma);
4626 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4628 struct hstate *h = hstate_vma(vma);
4629 struct resv_map *resv;
4630 struct hugepage_subpool *spool = subpool_vma(vma);
4631 unsigned long reserve, start, end;
4634 hugetlb_vma_lock_free(vma);
4636 resv = vma_resv_map(vma);
4637 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4640 start = vma_hugecache_offset(h, vma, vma->vm_start);
4641 end = vma_hugecache_offset(h, vma, vma->vm_end);
4643 reserve = (end - start) - region_count(resv, start, end);
4644 hugetlb_cgroup_uncharge_counter(resv, start, end);
4647 * Decrement reserve counts. The global reserve count may be
4648 * adjusted if the subpool has a minimum size.
4650 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4651 hugetlb_acct_memory(h, -gbl_reserve);
4654 kref_put(&resv->refs, resv_map_release);
4657 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4659 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4664 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4666 return huge_page_size(hstate_vma(vma));
4670 * We cannot handle pagefaults against hugetlb pages at all. They cause
4671 * handle_mm_fault() to try to instantiate regular-sized pages in the
4672 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4675 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4682 * When a new function is introduced to vm_operations_struct and added
4683 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4684 * This is because under System V memory model, mappings created via
4685 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4686 * their original vm_ops are overwritten with shm_vm_ops.
4688 const struct vm_operations_struct hugetlb_vm_ops = {
4689 .fault = hugetlb_vm_op_fault,
4690 .open = hugetlb_vm_op_open,
4691 .close = hugetlb_vm_op_close,
4692 .may_split = hugetlb_vm_op_split,
4693 .pagesize = hugetlb_vm_op_pagesize,
4696 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4700 unsigned int shift = huge_page_shift(hstate_vma(vma));
4703 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4704 vma->vm_page_prot)));
4706 entry = huge_pte_wrprotect(mk_huge_pte(page,
4707 vma->vm_page_prot));
4709 entry = pte_mkyoung(entry);
4710 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4715 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4716 unsigned long address, pte_t *ptep)
4720 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4721 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4722 update_mmu_cache(vma, address, ptep);
4725 bool is_hugetlb_entry_migration(pte_t pte)
4729 if (huge_pte_none(pte) || pte_present(pte))
4731 swp = pte_to_swp_entry(pte);
4732 if (is_migration_entry(swp))
4738 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4742 if (huge_pte_none(pte) || pte_present(pte))
4744 swp = pte_to_swp_entry(pte);
4745 if (is_hwpoison_entry(swp))
4752 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4753 struct page *new_page)
4755 __SetPageUptodate(new_page);
4756 hugepage_add_new_anon_rmap(new_page, vma, addr);
4757 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4758 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4759 ClearHPageRestoreReserve(new_page);
4760 SetHPageMigratable(new_page);
4763 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4764 struct vm_area_struct *dst_vma,
4765 struct vm_area_struct *src_vma)
4767 pte_t *src_pte, *dst_pte, entry;
4768 struct page *ptepage;
4770 bool cow = is_cow_mapping(src_vma->vm_flags);
4771 struct hstate *h = hstate_vma(src_vma);
4772 unsigned long sz = huge_page_size(h);
4773 unsigned long npages = pages_per_huge_page(h);
4774 struct mmu_notifier_range range;
4775 unsigned long last_addr_mask;
4779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4782 mmu_notifier_invalidate_range_start(&range);
4783 mmap_assert_write_locked(src);
4784 raw_write_seqcount_begin(&src->write_protect_seq);
4787 * For shared mappings the vma lock must be held before
4788 * calling huge_pte_offset in the src vma. Otherwise, the
4789 * returned ptep could go away if part of a shared pmd and
4790 * another thread calls huge_pmd_unshare.
4792 hugetlb_vma_lock_read(src_vma);
4795 last_addr_mask = hugetlb_mask_last_page(h);
4796 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4797 spinlock_t *src_ptl, *dst_ptl;
4798 src_pte = huge_pte_offset(src, addr, sz);
4800 addr |= last_addr_mask;
4803 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4810 * If the pagetables are shared don't copy or take references.
4812 * dst_pte == src_pte is the common case of src/dest sharing.
4813 * However, src could have 'unshared' and dst shares with
4814 * another vma. So page_count of ptep page is checked instead
4815 * to reliably determine whether pte is shared.
4817 if (page_count(virt_to_page(dst_pte)) > 1) {
4818 addr |= last_addr_mask;
4822 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4823 src_ptl = huge_pte_lockptr(h, src, src_pte);
4824 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4825 entry = huge_ptep_get(src_pte);
4827 if (huge_pte_none(entry)) {
4829 * Skip if src entry none.
4832 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4833 bool uffd_wp = huge_pte_uffd_wp(entry);
4835 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4836 entry = huge_pte_clear_uffd_wp(entry);
4837 set_huge_pte_at(dst, addr, dst_pte, entry);
4838 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4839 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4840 bool uffd_wp = huge_pte_uffd_wp(entry);
4842 if (!is_readable_migration_entry(swp_entry) && cow) {
4844 * COW mappings require pages in both
4845 * parent and child to be set to read.
4847 swp_entry = make_readable_migration_entry(
4848 swp_offset(swp_entry));
4849 entry = swp_entry_to_pte(swp_entry);
4850 if (userfaultfd_wp(src_vma) && uffd_wp)
4851 entry = huge_pte_mkuffd_wp(entry);
4852 set_huge_pte_at(src, addr, src_pte, entry);
4854 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855 entry = huge_pte_clear_uffd_wp(entry);
4856 set_huge_pte_at(dst, addr, dst_pte, entry);
4857 } else if (unlikely(is_pte_marker(entry))) {
4859 * We copy the pte marker only if the dst vma has
4862 if (userfaultfd_wp(dst_vma))
4863 set_huge_pte_at(dst, addr, dst_pte, entry);
4865 entry = huge_ptep_get(src_pte);
4866 ptepage = pte_page(entry);
4870 * Failing to duplicate the anon rmap is a rare case
4871 * where we see pinned hugetlb pages while they're
4872 * prone to COW. We need to do the COW earlier during
4875 * When pre-allocating the page or copying data, we
4876 * need to be without the pgtable locks since we could
4877 * sleep during the process.
4879 if (!PageAnon(ptepage)) {
4880 page_dup_file_rmap(ptepage, true);
4881 } else if (page_try_dup_anon_rmap(ptepage, true,
4883 pte_t src_pte_old = entry;
4886 spin_unlock(src_ptl);
4887 spin_unlock(dst_ptl);
4888 /* Do not use reserve as it's private owned */
4889 new = alloc_huge_page(dst_vma, addr, 1);
4895 copy_user_huge_page(new, ptepage, addr, dst_vma,
4899 /* Install the new huge page if src pte stable */
4900 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4901 src_ptl = huge_pte_lockptr(h, src, src_pte);
4902 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4903 entry = huge_ptep_get(src_pte);
4904 if (!pte_same(src_pte_old, entry)) {
4905 restore_reserve_on_error(h, dst_vma, addr,
4908 /* huge_ptep of dst_pte won't change as in child */
4911 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4912 spin_unlock(src_ptl);
4913 spin_unlock(dst_ptl);
4919 * No need to notify as we are downgrading page
4920 * table protection not changing it to point
4923 * See Documentation/mm/mmu_notifier.rst
4925 huge_ptep_set_wrprotect(src, addr, src_pte);
4926 entry = huge_pte_wrprotect(entry);
4929 set_huge_pte_at(dst, addr, dst_pte, entry);
4930 hugetlb_count_add(npages, dst);
4932 spin_unlock(src_ptl);
4933 spin_unlock(dst_ptl);
4937 raw_write_seqcount_end(&src->write_protect_seq);
4938 mmu_notifier_invalidate_range_end(&range);
4940 hugetlb_vma_unlock_read(src_vma);
4946 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4947 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4949 struct hstate *h = hstate_vma(vma);
4950 struct mm_struct *mm = vma->vm_mm;
4951 spinlock_t *src_ptl, *dst_ptl;
4954 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4955 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4958 * We don't have to worry about the ordering of src and dst ptlocks
4959 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4961 if (src_ptl != dst_ptl)
4962 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4964 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4965 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4967 if (src_ptl != dst_ptl)
4968 spin_unlock(src_ptl);
4969 spin_unlock(dst_ptl);
4972 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4973 struct vm_area_struct *new_vma,
4974 unsigned long old_addr, unsigned long new_addr,
4977 struct hstate *h = hstate_vma(vma);
4978 struct address_space *mapping = vma->vm_file->f_mapping;
4979 unsigned long sz = huge_page_size(h);
4980 struct mm_struct *mm = vma->vm_mm;
4981 unsigned long old_end = old_addr + len;
4982 unsigned long last_addr_mask;
4983 pte_t *src_pte, *dst_pte;
4984 struct mmu_notifier_range range;
4985 bool shared_pmd = false;
4987 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4989 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4991 * In case of shared PMDs, we should cover the maximum possible
4994 flush_cache_range(vma, range.start, range.end);
4996 mmu_notifier_invalidate_range_start(&range);
4997 last_addr_mask = hugetlb_mask_last_page(h);
4998 /* Prevent race with file truncation */
4999 hugetlb_vma_lock_write(vma);
5000 i_mmap_lock_write(mapping);
5001 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5002 src_pte = huge_pte_offset(mm, old_addr, sz);
5004 old_addr |= last_addr_mask;
5005 new_addr |= last_addr_mask;
5008 if (huge_pte_none(huge_ptep_get(src_pte)))
5011 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5013 old_addr |= last_addr_mask;
5014 new_addr |= last_addr_mask;
5018 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5022 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5026 flush_tlb_range(vma, range.start, range.end);
5028 flush_tlb_range(vma, old_end - len, old_end);
5029 mmu_notifier_invalidate_range_end(&range);
5030 i_mmap_unlock_write(mapping);
5031 hugetlb_vma_unlock_write(vma);
5033 return len + old_addr - old_end;
5036 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5037 unsigned long start, unsigned long end,
5038 struct page *ref_page, zap_flags_t zap_flags)
5040 struct mm_struct *mm = vma->vm_mm;
5041 unsigned long address;
5046 struct hstate *h = hstate_vma(vma);
5047 unsigned long sz = huge_page_size(h);
5048 struct mmu_notifier_range range;
5049 unsigned long last_addr_mask;
5050 bool force_flush = false;
5052 WARN_ON(!is_vm_hugetlb_page(vma));
5053 BUG_ON(start & ~huge_page_mask(h));
5054 BUG_ON(end & ~huge_page_mask(h));
5057 * This is a hugetlb vma, all the pte entries should point
5060 tlb_change_page_size(tlb, sz);
5061 tlb_start_vma(tlb, vma);
5064 * If sharing possible, alert mmu notifiers of worst case.
5066 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5068 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5069 mmu_notifier_invalidate_range_start(&range);
5070 last_addr_mask = hugetlb_mask_last_page(h);
5072 for (; address < end; address += sz) {
5073 ptep = huge_pte_offset(mm, address, sz);
5075 address |= last_addr_mask;
5079 ptl = huge_pte_lock(h, mm, ptep);
5080 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5082 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5084 address |= last_addr_mask;
5088 pte = huge_ptep_get(ptep);
5089 if (huge_pte_none(pte)) {
5095 * Migrating hugepage or HWPoisoned hugepage is already
5096 * unmapped and its refcount is dropped, so just clear pte here.
5098 if (unlikely(!pte_present(pte))) {
5099 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5101 * If the pte was wr-protected by uffd-wp in any of the
5102 * swap forms, meanwhile the caller does not want to
5103 * drop the uffd-wp bit in this zap, then replace the
5104 * pte with a marker.
5106 if (pte_swp_uffd_wp_any(pte) &&
5107 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5108 set_huge_pte_at(mm, address, ptep,
5109 make_pte_marker(PTE_MARKER_UFFD_WP));
5112 huge_pte_clear(mm, address, ptep, sz);
5117 page = pte_page(pte);
5119 * If a reference page is supplied, it is because a specific
5120 * page is being unmapped, not a range. Ensure the page we
5121 * are about to unmap is the actual page of interest.
5124 if (page != ref_page) {
5129 * Mark the VMA as having unmapped its page so that
5130 * future faults in this VMA will fail rather than
5131 * looking like data was lost
5133 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5136 pte = huge_ptep_get_and_clear(mm, address, ptep);
5137 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5138 if (huge_pte_dirty(pte))
5139 set_page_dirty(page);
5140 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5141 /* Leave a uffd-wp pte marker if needed */
5142 if (huge_pte_uffd_wp(pte) &&
5143 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5144 set_huge_pte_at(mm, address, ptep,
5145 make_pte_marker(PTE_MARKER_UFFD_WP));
5147 hugetlb_count_sub(pages_per_huge_page(h), mm);
5148 page_remove_rmap(page, vma, true);
5151 tlb_remove_page_size(tlb, page, huge_page_size(h));
5153 * Bail out after unmapping reference page if supplied
5158 mmu_notifier_invalidate_range_end(&range);
5159 tlb_end_vma(tlb, vma);
5162 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5163 * could defer the flush until now, since by holding i_mmap_rwsem we
5164 * guaranteed that the last refernece would not be dropped. But we must
5165 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5166 * dropped and the last reference to the shared PMDs page might be
5169 * In theory we could defer the freeing of the PMD pages as well, but
5170 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5171 * detect sharing, so we cannot defer the release of the page either.
5172 * Instead, do flush now.
5175 tlb_flush_mmu_tlbonly(tlb);
5178 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5179 struct vm_area_struct *vma, unsigned long start,
5180 unsigned long end, struct page *ref_page,
5181 zap_flags_t zap_flags)
5183 hugetlb_vma_lock_write(vma);
5184 i_mmap_lock_write(vma->vm_file->f_mapping);
5186 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5189 * Unlock and free the vma lock before releasing i_mmap_rwsem. When
5190 * the vma_lock is freed, this makes the vma ineligible for pmd
5191 * sharing. And, i_mmap_rwsem is required to set up pmd sharing.
5192 * This is important as page tables for this unmapped range will
5193 * be asynchrously deleted. If the page tables are shared, there
5194 * will be issues when accessed by someone else.
5196 __hugetlb_vma_unlock_write_free(vma);
5198 i_mmap_unlock_write(vma->vm_file->f_mapping);
5201 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5202 unsigned long end, struct page *ref_page,
5203 zap_flags_t zap_flags)
5205 struct mmu_gather tlb;
5207 tlb_gather_mmu(&tlb, vma->vm_mm);
5208 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5209 tlb_finish_mmu(&tlb);
5213 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5214 * mapping it owns the reserve page for. The intention is to unmap the page
5215 * from other VMAs and let the children be SIGKILLed if they are faulting the
5218 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5219 struct page *page, unsigned long address)
5221 struct hstate *h = hstate_vma(vma);
5222 struct vm_area_struct *iter_vma;
5223 struct address_space *mapping;
5227 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5228 * from page cache lookup which is in HPAGE_SIZE units.
5230 address = address & huge_page_mask(h);
5231 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5233 mapping = vma->vm_file->f_mapping;
5236 * Take the mapping lock for the duration of the table walk. As
5237 * this mapping should be shared between all the VMAs,
5238 * __unmap_hugepage_range() is called as the lock is already held
5240 i_mmap_lock_write(mapping);
5241 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5242 /* Do not unmap the current VMA */
5243 if (iter_vma == vma)
5247 * Shared VMAs have their own reserves and do not affect
5248 * MAP_PRIVATE accounting but it is possible that a shared
5249 * VMA is using the same page so check and skip such VMAs.
5251 if (iter_vma->vm_flags & VM_MAYSHARE)
5255 * Unmap the page from other VMAs without their own reserves.
5256 * They get marked to be SIGKILLed if they fault in these
5257 * areas. This is because a future no-page fault on this VMA
5258 * could insert a zeroed page instead of the data existing
5259 * from the time of fork. This would look like data corruption
5261 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5262 unmap_hugepage_range(iter_vma, address,
5263 address + huge_page_size(h), page, 0);
5265 i_mmap_unlock_write(mapping);
5269 * hugetlb_wp() should be called with page lock of the original hugepage held.
5270 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5271 * cannot race with other handlers or page migration.
5272 * Keep the pte_same checks anyway to make transition from the mutex easier.
5274 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5275 unsigned long address, pte_t *ptep, unsigned int flags,
5276 struct page *pagecache_page, spinlock_t *ptl)
5278 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5280 struct hstate *h = hstate_vma(vma);
5281 struct page *old_page, *new_page;
5282 int outside_reserve = 0;
5284 unsigned long haddr = address & huge_page_mask(h);
5285 struct mmu_notifier_range range;
5287 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5288 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5291 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5292 * PTE mapped R/O such as maybe_mkwrite() would do.
5294 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5295 return VM_FAULT_SIGSEGV;
5297 /* Let's take out MAP_SHARED mappings first. */
5298 if (vma->vm_flags & VM_MAYSHARE) {
5299 if (unlikely(unshare))
5301 set_huge_ptep_writable(vma, haddr, ptep);
5305 pte = huge_ptep_get(ptep);
5306 old_page = pte_page(pte);
5308 delayacct_wpcopy_start();
5312 * If no-one else is actually using this page, we're the exclusive
5313 * owner and can reuse this page.
5315 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5316 if (!PageAnonExclusive(old_page))
5317 page_move_anon_rmap(old_page, vma);
5318 if (likely(!unshare))
5319 set_huge_ptep_writable(vma, haddr, ptep);
5321 delayacct_wpcopy_end();
5324 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5328 * If the process that created a MAP_PRIVATE mapping is about to
5329 * perform a COW due to a shared page count, attempt to satisfy
5330 * the allocation without using the existing reserves. The pagecache
5331 * page is used to determine if the reserve at this address was
5332 * consumed or not. If reserves were used, a partial faulted mapping
5333 * at the time of fork() could consume its reserves on COW instead
5334 * of the full address range.
5336 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5337 old_page != pagecache_page)
5338 outside_reserve = 1;
5343 * Drop page table lock as buddy allocator may be called. It will
5344 * be acquired again before returning to the caller, as expected.
5347 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5349 if (IS_ERR(new_page)) {
5351 * If a process owning a MAP_PRIVATE mapping fails to COW,
5352 * it is due to references held by a child and an insufficient
5353 * huge page pool. To guarantee the original mappers
5354 * reliability, unmap the page from child processes. The child
5355 * may get SIGKILLed if it later faults.
5357 if (outside_reserve) {
5358 struct address_space *mapping = vma->vm_file->f_mapping;
5364 * Drop hugetlb_fault_mutex and vma_lock before
5365 * unmapping. unmapping needs to hold vma_lock
5366 * in write mode. Dropping vma_lock in read mode
5367 * here is OK as COW mappings do not interact with
5370 * Reacquire both after unmap operation.
5372 idx = vma_hugecache_offset(h, vma, haddr);
5373 hash = hugetlb_fault_mutex_hash(mapping, idx);
5374 hugetlb_vma_unlock_read(vma);
5375 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5377 unmap_ref_private(mm, vma, old_page, haddr);
5379 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5380 hugetlb_vma_lock_read(vma);
5382 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5384 pte_same(huge_ptep_get(ptep), pte)))
5385 goto retry_avoidcopy;
5387 * race occurs while re-acquiring page table
5388 * lock, and our job is done.
5390 delayacct_wpcopy_end();
5394 ret = vmf_error(PTR_ERR(new_page));
5395 goto out_release_old;
5399 * When the original hugepage is shared one, it does not have
5400 * anon_vma prepared.
5402 if (unlikely(anon_vma_prepare(vma))) {
5404 goto out_release_all;
5407 copy_user_huge_page(new_page, old_page, address, vma,
5408 pages_per_huge_page(h));
5409 __SetPageUptodate(new_page);
5411 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5412 haddr + huge_page_size(h));
5413 mmu_notifier_invalidate_range_start(&range);
5416 * Retake the page table lock to check for racing updates
5417 * before the page tables are altered
5420 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5421 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5422 ClearHPageRestoreReserve(new_page);
5424 /* Break COW or unshare */
5425 huge_ptep_clear_flush(vma, haddr, ptep);
5426 mmu_notifier_invalidate_range(mm, range.start, range.end);
5427 page_remove_rmap(old_page, vma, true);
5428 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5429 set_huge_pte_at(mm, haddr, ptep,
5430 make_huge_pte(vma, new_page, !unshare));
5431 SetHPageMigratable(new_page);
5432 /* Make the old page be freed below */
5433 new_page = old_page;
5436 mmu_notifier_invalidate_range_end(&range);
5439 * No restore in case of successful pagetable update (Break COW or
5442 if (new_page != old_page)
5443 restore_reserve_on_error(h, vma, haddr, new_page);
5448 spin_lock(ptl); /* Caller expects lock to be held */
5450 delayacct_wpcopy_end();
5455 * Return whether there is a pagecache page to back given address within VMA.
5456 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5458 static bool hugetlbfs_pagecache_present(struct hstate *h,
5459 struct vm_area_struct *vma, unsigned long address)
5461 struct address_space *mapping;
5465 mapping = vma->vm_file->f_mapping;
5466 idx = vma_hugecache_offset(h, vma, address);
5468 page = find_get_page(mapping, idx);
5471 return page != NULL;
5474 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5477 struct folio *folio = page_folio(page);
5478 struct inode *inode = mapping->host;
5479 struct hstate *h = hstate_inode(inode);
5482 __folio_set_locked(folio);
5483 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5485 if (unlikely(err)) {
5486 __folio_clear_locked(folio);
5489 ClearHPageRestoreReserve(page);
5492 * mark folio dirty so that it will not be removed from cache/file
5493 * by non-hugetlbfs specific code paths.
5495 folio_mark_dirty(folio);
5497 spin_lock(&inode->i_lock);
5498 inode->i_blocks += blocks_per_huge_page(h);
5499 spin_unlock(&inode->i_lock);
5503 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5504 struct address_space *mapping,
5507 unsigned long haddr,
5509 unsigned long reason)
5512 struct vm_fault vmf = {
5515 .real_address = addr,
5519 * Hard to debug if it ends up being
5520 * used by a callee that assumes
5521 * something about the other
5522 * uninitialized fields... same as in
5528 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5529 * userfault. Also mmap_lock could be dropped due to handling
5530 * userfault, any vma operation should be careful from here.
5532 hugetlb_vma_unlock_read(vma);
5533 hash = hugetlb_fault_mutex_hash(mapping, idx);
5534 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5535 return handle_userfault(&vmf, reason);
5539 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5540 * false if pte changed or is changing.
5542 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5543 pte_t *ptep, pte_t old_pte)
5548 ptl = huge_pte_lock(h, mm, ptep);
5549 same = pte_same(huge_ptep_get(ptep), old_pte);
5555 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5556 struct vm_area_struct *vma,
5557 struct address_space *mapping, pgoff_t idx,
5558 unsigned long address, pte_t *ptep,
5559 pte_t old_pte, unsigned int flags)
5561 struct hstate *h = hstate_vma(vma);
5562 vm_fault_t ret = VM_FAULT_SIGBUS;
5568 unsigned long haddr = address & huge_page_mask(h);
5569 bool new_page, new_pagecache_page = false;
5570 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5573 * Currently, we are forced to kill the process in the event the
5574 * original mapper has unmapped pages from the child due to a failed
5575 * COW/unsharing. Warn that such a situation has occurred as it may not
5578 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5579 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5585 * Use page lock to guard against racing truncation
5586 * before we get page_table_lock.
5589 page = find_lock_page(mapping, idx);
5591 size = i_size_read(mapping->host) >> huge_page_shift(h);
5594 /* Check for page in userfault range */
5595 if (userfaultfd_missing(vma)) {
5597 * Since hugetlb_no_page() was examining pte
5598 * without pgtable lock, we need to re-test under
5599 * lock because the pte may not be stable and could
5600 * have changed from under us. Try to detect
5601 * either changed or during-changing ptes and retry
5602 * properly when needed.
5604 * Note that userfaultfd is actually fine with
5605 * false positives (e.g. caused by pte changed),
5606 * but not wrong logical events (e.g. caused by
5607 * reading a pte during changing). The latter can
5608 * confuse the userspace, so the strictness is very
5609 * much preferred. E.g., MISSING event should
5610 * never happen on the page after UFFDIO_COPY has
5611 * correctly installed the page and returned.
5613 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5618 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5623 page = alloc_huge_page(vma, haddr, 0);
5626 * Returning error will result in faulting task being
5627 * sent SIGBUS. The hugetlb fault mutex prevents two
5628 * tasks from racing to fault in the same page which
5629 * could result in false unable to allocate errors.
5630 * Page migration does not take the fault mutex, but
5631 * does a clear then write of pte's under page table
5632 * lock. Page fault code could race with migration,
5633 * notice the clear pte and try to allocate a page
5634 * here. Before returning error, get ptl and make
5635 * sure there really is no pte entry.
5637 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5638 ret = vmf_error(PTR_ERR(page));
5643 clear_huge_page(page, address, pages_per_huge_page(h));
5644 __SetPageUptodate(page);
5647 if (vma->vm_flags & VM_MAYSHARE) {
5648 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5651 * err can't be -EEXIST which implies someone
5652 * else consumed the reservation since hugetlb
5653 * fault mutex is held when add a hugetlb page
5654 * to the page cache. So it's safe to call
5655 * restore_reserve_on_error() here.
5657 restore_reserve_on_error(h, vma, haddr, page);
5661 new_pagecache_page = true;
5664 if (unlikely(anon_vma_prepare(vma))) {
5666 goto backout_unlocked;
5672 * If memory error occurs between mmap() and fault, some process
5673 * don't have hwpoisoned swap entry for errored virtual address.
5674 * So we need to block hugepage fault by PG_hwpoison bit check.
5676 if (unlikely(PageHWPoison(page))) {
5677 ret = VM_FAULT_HWPOISON_LARGE |
5678 VM_FAULT_SET_HINDEX(hstate_index(h));
5679 goto backout_unlocked;
5682 /* Check for page in userfault range. */
5683 if (userfaultfd_minor(vma)) {
5686 /* See comment in userfaultfd_missing() block above */
5687 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5691 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5698 * If we are going to COW a private mapping later, we examine the
5699 * pending reservations for this page now. This will ensure that
5700 * any allocations necessary to record that reservation occur outside
5703 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5704 if (vma_needs_reservation(h, vma, haddr) < 0) {
5706 goto backout_unlocked;
5708 /* Just decrements count, does not deallocate */
5709 vma_end_reservation(h, vma, haddr);
5712 ptl = huge_pte_lock(h, mm, ptep);
5714 /* If pte changed from under us, retry */
5715 if (!pte_same(huge_ptep_get(ptep), old_pte))
5719 ClearHPageRestoreReserve(page);
5720 hugepage_add_new_anon_rmap(page, vma, haddr);
5722 page_dup_file_rmap(page, true);
5723 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5724 && (vma->vm_flags & VM_SHARED)));
5726 * If this pte was previously wr-protected, keep it wr-protected even
5729 if (unlikely(pte_marker_uffd_wp(old_pte)))
5730 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5731 set_huge_pte_at(mm, haddr, ptep, new_pte);
5733 hugetlb_count_add(pages_per_huge_page(h), mm);
5734 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5735 /* Optimization, do the COW without a second fault */
5736 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5742 * Only set HPageMigratable in newly allocated pages. Existing pages
5743 * found in the pagecache may not have HPageMigratableset if they have
5744 * been isolated for migration.
5747 SetHPageMigratable(page);
5751 hugetlb_vma_unlock_read(vma);
5752 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5758 if (new_page && !new_pagecache_page)
5759 restore_reserve_on_error(h, vma, haddr, page);
5767 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5769 unsigned long key[2];
5772 key[0] = (unsigned long) mapping;
5775 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5777 return hash & (num_fault_mutexes - 1);
5781 * For uniprocessor systems we always use a single mutex, so just
5782 * return 0 and avoid the hashing overhead.
5784 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5790 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5791 unsigned long address, unsigned int flags)
5798 struct page *page = NULL;
5799 struct page *pagecache_page = NULL;
5800 struct hstate *h = hstate_vma(vma);
5801 struct address_space *mapping;
5802 int need_wait_lock = 0;
5803 unsigned long haddr = address & huge_page_mask(h);
5805 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5808 * Since we hold no locks, ptep could be stale. That is
5809 * OK as we are only making decisions based on content and
5810 * not actually modifying content here.
5812 entry = huge_ptep_get(ptep);
5813 if (unlikely(is_hugetlb_entry_migration(entry))) {
5814 migration_entry_wait_huge(vma, ptep);
5816 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5817 return VM_FAULT_HWPOISON_LARGE |
5818 VM_FAULT_SET_HINDEX(hstate_index(h));
5822 * Serialize hugepage allocation and instantiation, so that we don't
5823 * get spurious allocation failures if two CPUs race to instantiate
5824 * the same page in the page cache.
5826 mapping = vma->vm_file->f_mapping;
5827 idx = vma_hugecache_offset(h, vma, haddr);
5828 hash = hugetlb_fault_mutex_hash(mapping, idx);
5829 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5832 * Acquire vma lock before calling huge_pte_alloc and hold
5833 * until finished with ptep. This prevents huge_pmd_unshare from
5834 * being called elsewhere and making the ptep no longer valid.
5836 * ptep could have already be assigned via huge_pte_offset. That
5837 * is OK, as huge_pte_alloc will return the same value unless
5838 * something has changed.
5840 hugetlb_vma_lock_read(vma);
5841 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5843 hugetlb_vma_unlock_read(vma);
5844 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5845 return VM_FAULT_OOM;
5848 entry = huge_ptep_get(ptep);
5849 /* PTE markers should be handled the same way as none pte */
5850 if (huge_pte_none_mostly(entry))
5852 * hugetlb_no_page will drop vma lock and hugetlb fault
5853 * mutex internally, which make us return immediately.
5855 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5861 * entry could be a migration/hwpoison entry at this point, so this
5862 * check prevents the kernel from going below assuming that we have
5863 * an active hugepage in pagecache. This goto expects the 2nd page
5864 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5865 * properly handle it.
5867 if (!pte_present(entry))
5871 * If we are going to COW/unshare the mapping later, we examine the
5872 * pending reservations for this page now. This will ensure that any
5873 * allocations necessary to record that reservation occur outside the
5874 * spinlock. Also lookup the pagecache page now as it is used to
5875 * determine if a reservation has been consumed.
5877 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5878 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5879 if (vma_needs_reservation(h, vma, haddr) < 0) {
5883 /* Just decrements count, does not deallocate */
5884 vma_end_reservation(h, vma, haddr);
5886 pagecache_page = find_lock_page(mapping, idx);
5889 ptl = huge_pte_lock(h, mm, ptep);
5891 /* Check for a racing update before calling hugetlb_wp() */
5892 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5895 /* Handle userfault-wp first, before trying to lock more pages */
5896 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5897 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5898 struct vm_fault vmf = {
5901 .real_address = address,
5906 if (pagecache_page) {
5907 unlock_page(pagecache_page);
5908 put_page(pagecache_page);
5910 hugetlb_vma_unlock_read(vma);
5911 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5912 return handle_userfault(&vmf, VM_UFFD_WP);
5916 * hugetlb_wp() requires page locks of pte_page(entry) and
5917 * pagecache_page, so here we need take the former one
5918 * when page != pagecache_page or !pagecache_page.
5920 page = pte_page(entry);
5921 if (page != pagecache_page)
5922 if (!trylock_page(page)) {
5929 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5930 if (!huge_pte_write(entry)) {
5931 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5932 pagecache_page, ptl);
5934 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5935 entry = huge_pte_mkdirty(entry);
5938 entry = pte_mkyoung(entry);
5939 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5940 flags & FAULT_FLAG_WRITE))
5941 update_mmu_cache(vma, haddr, ptep);
5943 if (page != pagecache_page)
5949 if (pagecache_page) {
5950 unlock_page(pagecache_page);
5951 put_page(pagecache_page);
5954 hugetlb_vma_unlock_read(vma);
5955 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5957 * Generally it's safe to hold refcount during waiting page lock. But
5958 * here we just wait to defer the next page fault to avoid busy loop and
5959 * the page is not used after unlocked before returning from the current
5960 * page fault. So we are safe from accessing freed page, even if we wait
5961 * here without taking refcount.
5964 wait_on_page_locked(page);
5968 #ifdef CONFIG_USERFAULTFD
5970 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5971 * modifications for huge pages.
5973 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5975 struct vm_area_struct *dst_vma,
5976 unsigned long dst_addr,
5977 unsigned long src_addr,
5978 enum mcopy_atomic_mode mode,
5979 struct page **pagep,
5982 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5983 struct hstate *h = hstate_vma(dst_vma);
5984 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5985 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5987 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5993 bool page_in_pagecache = false;
5997 page = find_lock_page(mapping, idx);
6000 page_in_pagecache = true;
6001 } else if (!*pagep) {
6002 /* If a page already exists, then it's UFFDIO_COPY for
6003 * a non-missing case. Return -EEXIST.
6006 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6011 page = alloc_huge_page(dst_vma, dst_addr, 0);
6017 ret = copy_huge_page_from_user(page,
6018 (const void __user *) src_addr,
6019 pages_per_huge_page(h), false);
6021 /* fallback to copy_from_user outside mmap_lock */
6022 if (unlikely(ret)) {
6024 /* Free the allocated page which may have
6025 * consumed a reservation.
6027 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6030 /* Allocate a temporary page to hold the copied
6033 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6039 /* Set the outparam pagep and return to the caller to
6040 * copy the contents outside the lock. Don't free the
6047 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6054 page = alloc_huge_page(dst_vma, dst_addr, 0);
6061 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6062 pages_per_huge_page(h));
6068 * The memory barrier inside __SetPageUptodate makes sure that
6069 * preceding stores to the page contents become visible before
6070 * the set_pte_at() write.
6072 __SetPageUptodate(page);
6074 /* Add shared, newly allocated pages to the page cache. */
6075 if (vm_shared && !is_continue) {
6076 size = i_size_read(mapping->host) >> huge_page_shift(h);
6079 goto out_release_nounlock;
6082 * Serialization between remove_inode_hugepages() and
6083 * hugetlb_add_to_page_cache() below happens through the
6084 * hugetlb_fault_mutex_table that here must be hold by
6087 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6089 goto out_release_nounlock;
6090 page_in_pagecache = true;
6093 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6096 * We allow to overwrite a pte marker: consider when both MISSING|WP
6097 * registered, we firstly wr-protect a none pte which has no page cache
6098 * page backing it, then access the page.
6101 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6102 goto out_release_unlock;
6104 if (page_in_pagecache) {
6105 page_dup_file_rmap(page, true);
6107 ClearHPageRestoreReserve(page);
6108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6112 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6113 * with wp flag set, don't set pte write bit.
6115 if (wp_copy || (is_continue && !vm_shared))
6118 writable = dst_vma->vm_flags & VM_WRITE;
6120 _dst_pte = make_huge_pte(dst_vma, page, writable);
6122 * Always mark UFFDIO_COPY page dirty; note that this may not be
6123 * extremely important for hugetlbfs for now since swapping is not
6124 * supported, but we should still be clear in that this page cannot be
6125 * thrown away at will, even if write bit not set.
6127 _dst_pte = huge_pte_mkdirty(_dst_pte);
6128 _dst_pte = pte_mkyoung(_dst_pte);
6131 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6133 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6135 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6137 /* No need to invalidate - it was non-present before */
6138 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6142 SetHPageMigratable(page);
6143 if (vm_shared || is_continue)
6150 if (vm_shared || is_continue)
6152 out_release_nounlock:
6153 if (!page_in_pagecache)
6154 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6158 #endif /* CONFIG_USERFAULTFD */
6160 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6161 int refs, struct page **pages,
6162 struct vm_area_struct **vmas)
6166 for (nr = 0; nr < refs; nr++) {
6168 pages[nr] = nth_page(page, nr);
6174 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6177 pte_t pteval = huge_ptep_get(pte);
6180 if (is_swap_pte(pteval))
6182 if (huge_pte_write(pteval))
6184 if (flags & FOLL_WRITE)
6186 if (gup_must_unshare(flags, pte_page(pteval))) {
6193 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6194 struct page **pages, struct vm_area_struct **vmas,
6195 unsigned long *position, unsigned long *nr_pages,
6196 long i, unsigned int flags, int *locked)
6198 unsigned long pfn_offset;
6199 unsigned long vaddr = *position;
6200 unsigned long remainder = *nr_pages;
6201 struct hstate *h = hstate_vma(vma);
6202 int err = -EFAULT, refs;
6204 while (vaddr < vma->vm_end && remainder) {
6206 spinlock_t *ptl = NULL;
6207 bool unshare = false;
6212 * If we have a pending SIGKILL, don't keep faulting pages and
6213 * potentially allocating memory.
6215 if (fatal_signal_pending(current)) {
6221 * Some archs (sparc64, sh*) have multiple pte_ts to
6222 * each hugepage. We have to make sure we get the
6223 * first, for the page indexing below to work.
6225 * Note that page table lock is not held when pte is null.
6227 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6230 ptl = huge_pte_lock(h, mm, pte);
6231 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6234 * When coredumping, it suits get_dump_page if we just return
6235 * an error where there's an empty slot with no huge pagecache
6236 * to back it. This way, we avoid allocating a hugepage, and
6237 * the sparse dumpfile avoids allocating disk blocks, but its
6238 * huge holes still show up with zeroes where they need to be.
6240 if (absent && (flags & FOLL_DUMP) &&
6241 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6249 * We need call hugetlb_fault for both hugepages under migration
6250 * (in which case hugetlb_fault waits for the migration,) and
6251 * hwpoisoned hugepages (in which case we need to prevent the
6252 * caller from accessing to them.) In order to do this, we use
6253 * here is_swap_pte instead of is_hugetlb_entry_migration and
6254 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6255 * both cases, and because we can't follow correct pages
6256 * directly from any kind of swap entries.
6259 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6261 unsigned int fault_flags = 0;
6265 if (flags & FOLL_WRITE)
6266 fault_flags |= FAULT_FLAG_WRITE;
6268 fault_flags |= FAULT_FLAG_UNSHARE;
6270 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6271 FAULT_FLAG_KILLABLE;
6272 if (flags & FOLL_NOWAIT)
6273 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6274 FAULT_FLAG_RETRY_NOWAIT;
6275 if (flags & FOLL_TRIED) {
6277 * Note: FAULT_FLAG_ALLOW_RETRY and
6278 * FAULT_FLAG_TRIED can co-exist
6280 fault_flags |= FAULT_FLAG_TRIED;
6282 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6283 if (ret & VM_FAULT_ERROR) {
6284 err = vm_fault_to_errno(ret, flags);
6288 if (ret & VM_FAULT_RETRY) {
6290 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6294 * VM_FAULT_RETRY must not return an
6295 * error, it will return zero
6298 * No need to update "position" as the
6299 * caller will not check it after
6300 * *nr_pages is set to 0.
6307 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6308 page = pte_page(huge_ptep_get(pte));
6310 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6311 !PageAnonExclusive(page), page);
6314 * If subpage information not requested, update counters
6315 * and skip the same_page loop below.
6317 if (!pages && !vmas && !pfn_offset &&
6318 (vaddr + huge_page_size(h) < vma->vm_end) &&
6319 (remainder >= pages_per_huge_page(h))) {
6320 vaddr += huge_page_size(h);
6321 remainder -= pages_per_huge_page(h);
6322 i += pages_per_huge_page(h);
6327 /* vaddr may not be aligned to PAGE_SIZE */
6328 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6329 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6332 record_subpages_vmas(nth_page(page, pfn_offset),
6334 likely(pages) ? pages + i : NULL,
6335 vmas ? vmas + i : NULL);
6339 * try_grab_folio() should always succeed here,
6340 * because: a) we hold the ptl lock, and b) we've just
6341 * checked that the huge page is present in the page
6342 * tables. If the huge page is present, then the tail
6343 * pages must also be present. The ptl prevents the
6344 * head page and tail pages from being rearranged in
6345 * any way. So this page must be available at this
6346 * point, unless the page refcount overflowed:
6348 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6357 vaddr += (refs << PAGE_SHIFT);
6363 *nr_pages = remainder;
6365 * setting position is actually required only if remainder is
6366 * not zero but it's faster not to add a "if (remainder)"
6374 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6375 unsigned long address, unsigned long end,
6376 pgprot_t newprot, unsigned long cp_flags)
6378 struct mm_struct *mm = vma->vm_mm;
6379 unsigned long start = address;
6382 struct hstate *h = hstate_vma(vma);
6383 unsigned long pages = 0, psize = huge_page_size(h);
6384 bool shared_pmd = false;
6385 struct mmu_notifier_range range;
6386 unsigned long last_addr_mask;
6387 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6388 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6391 * In the case of shared PMDs, the area to flush could be beyond
6392 * start/end. Set range.start/range.end to cover the maximum possible
6393 * range if PMD sharing is possible.
6395 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6396 0, vma, mm, start, end);
6397 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6399 BUG_ON(address >= end);
6400 flush_cache_range(vma, range.start, range.end);
6402 mmu_notifier_invalidate_range_start(&range);
6403 hugetlb_vma_lock_write(vma);
6404 i_mmap_lock_write(vma->vm_file->f_mapping);
6405 last_addr_mask = hugetlb_mask_last_page(h);
6406 for (; address < end; address += psize) {
6408 ptep = huge_pte_offset(mm, address, psize);
6410 address |= last_addr_mask;
6413 ptl = huge_pte_lock(h, mm, ptep);
6414 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6416 * When uffd-wp is enabled on the vma, unshare
6417 * shouldn't happen at all. Warn about it if it
6418 * happened due to some reason.
6420 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6424 address |= last_addr_mask;
6427 pte = huge_ptep_get(ptep);
6428 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6432 if (unlikely(is_hugetlb_entry_migration(pte))) {
6433 swp_entry_t entry = pte_to_swp_entry(pte);
6434 struct page *page = pfn_swap_entry_to_page(entry);
6436 if (!is_readable_migration_entry(entry)) {
6440 entry = make_readable_exclusive_migration_entry(
6443 entry = make_readable_migration_entry(
6445 newpte = swp_entry_to_pte(entry);
6447 newpte = pte_swp_mkuffd_wp(newpte);
6448 else if (uffd_wp_resolve)
6449 newpte = pte_swp_clear_uffd_wp(newpte);
6450 set_huge_pte_at(mm, address, ptep, newpte);
6456 if (unlikely(pte_marker_uffd_wp(pte))) {
6458 * This is changing a non-present pte into a none pte,
6459 * no need for huge_ptep_modify_prot_start/commit().
6461 if (uffd_wp_resolve)
6462 huge_pte_clear(mm, address, ptep, psize);
6464 if (!huge_pte_none(pte)) {
6466 unsigned int shift = huge_page_shift(hstate_vma(vma));
6468 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6469 pte = huge_pte_modify(old_pte, newprot);
6470 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6472 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6473 else if (uffd_wp_resolve)
6474 pte = huge_pte_clear_uffd_wp(pte);
6475 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6479 if (unlikely(uffd_wp))
6480 /* Safe to modify directly (none->non-present). */
6481 set_huge_pte_at(mm, address, ptep,
6482 make_pte_marker(PTE_MARKER_UFFD_WP));
6487 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6488 * may have cleared our pud entry and done put_page on the page table:
6489 * once we release i_mmap_rwsem, another task can do the final put_page
6490 * and that page table be reused and filled with junk. If we actually
6491 * did unshare a page of pmds, flush the range corresponding to the pud.
6494 flush_hugetlb_tlb_range(vma, range.start, range.end);
6496 flush_hugetlb_tlb_range(vma, start, end);
6498 * No need to call mmu_notifier_invalidate_range() we are downgrading
6499 * page table protection not changing it to point to a new page.
6501 * See Documentation/mm/mmu_notifier.rst
6503 i_mmap_unlock_write(vma->vm_file->f_mapping);
6504 hugetlb_vma_unlock_write(vma);
6505 mmu_notifier_invalidate_range_end(&range);
6507 return pages << h->order;
6510 /* Return true if reservation was successful, false otherwise. */
6511 bool hugetlb_reserve_pages(struct inode *inode,
6513 struct vm_area_struct *vma,
6514 vm_flags_t vm_flags)
6517 struct hstate *h = hstate_inode(inode);
6518 struct hugepage_subpool *spool = subpool_inode(inode);
6519 struct resv_map *resv_map;
6520 struct hugetlb_cgroup *h_cg = NULL;
6521 long gbl_reserve, regions_needed = 0;
6523 /* This should never happen */
6525 VM_WARN(1, "%s called with a negative range\n", __func__);
6530 * vma specific semaphore used for pmd sharing synchronization
6532 hugetlb_vma_lock_alloc(vma);
6535 * Only apply hugepage reservation if asked. At fault time, an
6536 * attempt will be made for VM_NORESERVE to allocate a page
6537 * without using reserves
6539 if (vm_flags & VM_NORESERVE)
6543 * Shared mappings base their reservation on the number of pages that
6544 * are already allocated on behalf of the file. Private mappings need
6545 * to reserve the full area even if read-only as mprotect() may be
6546 * called to make the mapping read-write. Assume !vma is a shm mapping
6548 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6550 * resv_map can not be NULL as hugetlb_reserve_pages is only
6551 * called for inodes for which resv_maps were created (see
6552 * hugetlbfs_get_inode).
6554 resv_map = inode_resv_map(inode);
6556 chg = region_chg(resv_map, from, to, ®ions_needed);
6558 /* Private mapping. */
6559 resv_map = resv_map_alloc();
6565 set_vma_resv_map(vma, resv_map);
6566 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6572 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6573 chg * pages_per_huge_page(h), &h_cg) < 0)
6576 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6577 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6580 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6584 * There must be enough pages in the subpool for the mapping. If
6585 * the subpool has a minimum size, there may be some global
6586 * reservations already in place (gbl_reserve).
6588 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6589 if (gbl_reserve < 0)
6590 goto out_uncharge_cgroup;
6593 * Check enough hugepages are available for the reservation.
6594 * Hand the pages back to the subpool if there are not
6596 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6600 * Account for the reservations made. Shared mappings record regions
6601 * that have reservations as they are shared by multiple VMAs.
6602 * When the last VMA disappears, the region map says how much
6603 * the reservation was and the page cache tells how much of
6604 * the reservation was consumed. Private mappings are per-VMA and
6605 * only the consumed reservations are tracked. When the VMA
6606 * disappears, the original reservation is the VMA size and the
6607 * consumed reservations are stored in the map. Hence, nothing
6608 * else has to be done for private mappings here
6610 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6611 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6613 if (unlikely(add < 0)) {
6614 hugetlb_acct_memory(h, -gbl_reserve);
6616 } else if (unlikely(chg > add)) {
6618 * pages in this range were added to the reserve
6619 * map between region_chg and region_add. This
6620 * indicates a race with alloc_huge_page. Adjust
6621 * the subpool and reserve counts modified above
6622 * based on the difference.
6627 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6628 * reference to h_cg->css. See comment below for detail.
6630 hugetlb_cgroup_uncharge_cgroup_rsvd(
6632 (chg - add) * pages_per_huge_page(h), h_cg);
6634 rsv_adjust = hugepage_subpool_put_pages(spool,
6636 hugetlb_acct_memory(h, -rsv_adjust);
6639 * The file_regions will hold their own reference to
6640 * h_cg->css. So we should release the reference held
6641 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6644 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6650 /* put back original number of pages, chg */
6651 (void)hugepage_subpool_put_pages(spool, chg);
6652 out_uncharge_cgroup:
6653 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6654 chg * pages_per_huge_page(h), h_cg);
6656 hugetlb_vma_lock_free(vma);
6657 if (!vma || vma->vm_flags & VM_MAYSHARE)
6658 /* Only call region_abort if the region_chg succeeded but the
6659 * region_add failed or didn't run.
6661 if (chg >= 0 && add < 0)
6662 region_abort(resv_map, from, to, regions_needed);
6663 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6664 kref_put(&resv_map->refs, resv_map_release);
6668 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6671 struct hstate *h = hstate_inode(inode);
6672 struct resv_map *resv_map = inode_resv_map(inode);
6674 struct hugepage_subpool *spool = subpool_inode(inode);
6678 * Since this routine can be called in the evict inode path for all
6679 * hugetlbfs inodes, resv_map could be NULL.
6682 chg = region_del(resv_map, start, end);
6684 * region_del() can fail in the rare case where a region
6685 * must be split and another region descriptor can not be
6686 * allocated. If end == LONG_MAX, it will not fail.
6692 spin_lock(&inode->i_lock);
6693 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6694 spin_unlock(&inode->i_lock);
6697 * If the subpool has a minimum size, the number of global
6698 * reservations to be released may be adjusted.
6700 * Note that !resv_map implies freed == 0. So (chg - freed)
6701 * won't go negative.
6703 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6704 hugetlb_acct_memory(h, -gbl_reserve);
6709 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6710 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6711 struct vm_area_struct *vma,
6712 unsigned long addr, pgoff_t idx)
6714 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6716 unsigned long sbase = saddr & PUD_MASK;
6717 unsigned long s_end = sbase + PUD_SIZE;
6719 /* Allow segments to share if only one is marked locked */
6720 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6721 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6724 * match the virtual addresses, permission and the alignment of the
6727 * Also, vma_lock (vm_private_data) is required for sharing.
6729 if (pmd_index(addr) != pmd_index(saddr) ||
6730 vm_flags != svm_flags ||
6731 !range_in_vma(svma, sbase, s_end) ||
6732 !svma->vm_private_data)
6738 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6740 unsigned long start = addr & PUD_MASK;
6741 unsigned long end = start + PUD_SIZE;
6743 #ifdef CONFIG_USERFAULTFD
6744 if (uffd_disable_huge_pmd_share(vma))
6748 * check on proper vm_flags and page table alignment
6750 if (!(vma->vm_flags & VM_MAYSHARE))
6752 if (!vma->vm_private_data) /* vma lock required for sharing */
6754 if (!range_in_vma(vma, start, end))
6760 * Determine if start,end range within vma could be mapped by shared pmd.
6761 * If yes, adjust start and end to cover range associated with possible
6762 * shared pmd mappings.
6764 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6765 unsigned long *start, unsigned long *end)
6767 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6768 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6771 * vma needs to span at least one aligned PUD size, and the range
6772 * must be at least partially within in.
6774 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6775 (*end <= v_start) || (*start >= v_end))
6778 /* Extend the range to be PUD aligned for a worst case scenario */
6779 if (*start > v_start)
6780 *start = ALIGN_DOWN(*start, PUD_SIZE);
6783 *end = ALIGN(*end, PUD_SIZE);
6786 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6788 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6789 vma->vm_private_data;
6792 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6794 if (__vma_shareable_flags_pmd(vma)) {
6795 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6797 down_read(&vma_lock->rw_sema);
6801 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6803 if (__vma_shareable_flags_pmd(vma)) {
6804 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6806 up_read(&vma_lock->rw_sema);
6810 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6812 if (__vma_shareable_flags_pmd(vma)) {
6813 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6815 down_write(&vma_lock->rw_sema);
6819 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6821 if (__vma_shareable_flags_pmd(vma)) {
6822 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6824 up_write(&vma_lock->rw_sema);
6828 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6830 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6832 if (!__vma_shareable_flags_pmd(vma))
6835 return down_write_trylock(&vma_lock->rw_sema);
6838 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6840 if (__vma_shareable_flags_pmd(vma)) {
6841 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6843 lockdep_assert_held(&vma_lock->rw_sema);
6847 void hugetlb_vma_lock_release(struct kref *kref)
6849 struct hugetlb_vma_lock *vma_lock = container_of(kref,
6850 struct hugetlb_vma_lock, refs);
6855 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6857 struct vm_area_struct *vma = vma_lock->vma;
6860 * vma_lock structure may or not be released as a result of put,
6861 * it certainly will no longer be attached to vma so clear pointer.
6862 * Semaphore synchronizes access to vma_lock->vma field.
6864 vma_lock->vma = NULL;
6865 vma->vm_private_data = NULL;
6866 up_write(&vma_lock->rw_sema);
6867 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6870 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6872 if (__vma_shareable_flags_pmd(vma)) {
6873 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6875 __hugetlb_vma_unlock_write_put(vma_lock);
6879 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6882 * Only present in sharable vmas.
6884 if (!vma || !__vma_shareable_flags_pmd(vma))
6887 if (vma->vm_private_data) {
6888 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6890 down_write(&vma_lock->rw_sema);
6891 __hugetlb_vma_unlock_write_put(vma_lock);
6895 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6897 struct hugetlb_vma_lock *vma_lock;
6899 /* Only establish in (flags) sharable vmas */
6900 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6903 /* Should never get here with non-NULL vm_private_data */
6904 if (vma->vm_private_data)
6907 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6910 * If we can not allocate structure, then vma can not
6911 * participate in pmd sharing. This is only a possible
6912 * performance enhancement and memory saving issue.
6913 * However, the lock is also used to synchronize page
6914 * faults with truncation. If the lock is not present,
6915 * unlikely races could leave pages in a file past i_size
6916 * until the file is removed. Warn in the unlikely case of
6917 * allocation failure.
6919 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6923 kref_init(&vma_lock->refs);
6924 init_rwsem(&vma_lock->rw_sema);
6925 vma_lock->vma = vma;
6926 vma->vm_private_data = vma_lock;
6930 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6931 * and returns the corresponding pte. While this is not necessary for the
6932 * !shared pmd case because we can allocate the pmd later as well, it makes the
6933 * code much cleaner. pmd allocation is essential for the shared case because
6934 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6935 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6936 * bad pmd for sharing.
6938 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6939 unsigned long addr, pud_t *pud)
6941 struct address_space *mapping = vma->vm_file->f_mapping;
6942 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6944 struct vm_area_struct *svma;
6945 unsigned long saddr;
6950 i_mmap_lock_read(mapping);
6951 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6955 saddr = page_table_shareable(svma, vma, addr, idx);
6957 spte = huge_pte_offset(svma->vm_mm, saddr,
6958 vma_mmu_pagesize(svma));
6960 get_page(virt_to_page(spte));
6969 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6970 if (pud_none(*pud)) {
6971 pud_populate(mm, pud,
6972 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6975 put_page(virt_to_page(spte));
6979 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6980 i_mmap_unlock_read(mapping);
6985 * unmap huge page backed by shared pte.
6987 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6988 * indicated by page_count > 1, unmap is achieved by clearing pud and
6989 * decrementing the ref count. If count == 1, the pte page is not shared.
6991 * Called with page table lock held.
6993 * returns: 1 successfully unmapped a shared pte page
6994 * 0 the underlying pte page is not shared, or it is the last user
6996 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6997 unsigned long addr, pte_t *ptep)
6999 pgd_t *pgd = pgd_offset(mm, addr);
7000 p4d_t *p4d = p4d_offset(pgd, addr);
7001 pud_t *pud = pud_offset(p4d, addr);
7003 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7004 hugetlb_vma_assert_locked(vma);
7005 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7006 if (page_count(virt_to_page(ptep)) == 1)
7010 put_page(virt_to_page(ptep));
7015 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7017 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7021 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7025 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7029 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7033 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7038 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7042 void hugetlb_vma_lock_release(struct kref *kref)
7046 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7050 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7054 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7058 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7059 unsigned long addr, pud_t *pud)
7064 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7065 unsigned long addr, pte_t *ptep)
7070 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7071 unsigned long *start, unsigned long *end)
7075 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7079 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7081 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7082 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7083 unsigned long addr, unsigned long sz)
7090 pgd = pgd_offset(mm, addr);
7091 p4d = p4d_alloc(mm, pgd, addr);
7094 pud = pud_alloc(mm, p4d, addr);
7096 if (sz == PUD_SIZE) {
7099 BUG_ON(sz != PMD_SIZE);
7100 if (want_pmd_share(vma, addr) && pud_none(*pud))
7101 pte = huge_pmd_share(mm, vma, addr, pud);
7103 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7106 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7112 * huge_pte_offset() - Walk the page table to resolve the hugepage
7113 * entry at address @addr
7115 * Return: Pointer to page table entry (PUD or PMD) for
7116 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7117 * size @sz doesn't match the hugepage size at this level of the page
7120 pte_t *huge_pte_offset(struct mm_struct *mm,
7121 unsigned long addr, unsigned long sz)
7128 pgd = pgd_offset(mm, addr);
7129 if (!pgd_present(*pgd))
7131 p4d = p4d_offset(pgd, addr);
7132 if (!p4d_present(*p4d))
7135 pud = pud_offset(p4d, addr);
7137 /* must be pud huge, non-present or none */
7138 return (pte_t *)pud;
7139 if (!pud_present(*pud))
7141 /* must have a valid entry and size to go further */
7143 pmd = pmd_offset(pud, addr);
7144 /* must be pmd huge, non-present or none */
7145 return (pte_t *)pmd;
7149 * Return a mask that can be used to update an address to the last huge
7150 * page in a page table page mapping size. Used to skip non-present
7151 * page table entries when linearly scanning address ranges. Architectures
7152 * with unique huge page to page table relationships can define their own
7153 * version of this routine.
7155 unsigned long hugetlb_mask_last_page(struct hstate *h)
7157 unsigned long hp_size = huge_page_size(h);
7159 if (hp_size == PUD_SIZE)
7160 return P4D_SIZE - PUD_SIZE;
7161 else if (hp_size == PMD_SIZE)
7162 return PUD_SIZE - PMD_SIZE;
7169 /* See description above. Architectures can provide their own version. */
7170 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7172 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7173 if (huge_page_size(h) == PMD_SIZE)
7174 return PUD_SIZE - PMD_SIZE;
7179 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7182 * These functions are overwritable if your architecture needs its own
7185 struct page * __weak
7186 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7189 return ERR_PTR(-EINVAL);
7192 struct page * __weak
7193 follow_huge_pd(struct vm_area_struct *vma,
7194 unsigned long address, hugepd_t hpd, int flags, int pdshift)
7196 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7200 struct page * __weak
7201 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7203 struct hstate *h = hstate_vma(vma);
7204 struct mm_struct *mm = vma->vm_mm;
7205 struct page *page = NULL;
7210 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7211 * follow_hugetlb_page().
7213 if (WARN_ON_ONCE(flags & FOLL_PIN))
7217 ptep = huge_pte_offset(mm, address, huge_page_size(h));
7221 ptl = huge_pte_lock(h, mm, ptep);
7222 pte = huge_ptep_get(ptep);
7223 if (pte_present(pte)) {
7224 page = pte_page(pte) +
7225 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7227 * try_grab_page() should always succeed here, because: a) we
7228 * hold the pmd (ptl) lock, and b) we've just checked that the
7229 * huge pmd (head) page is present in the page tables. The ptl
7230 * prevents the head page and tail pages from being rearranged
7231 * in any way. So this page must be available at this point,
7232 * unless the page refcount overflowed:
7234 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7239 if (is_hugetlb_entry_migration(pte)) {
7241 __migration_entry_wait_huge(ptep, ptl);
7245 * hwpoisoned entry is treated as no_page_table in
7246 * follow_page_mask().
7254 struct page * __weak
7255 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7256 pud_t *pud, int flags)
7258 struct page *page = NULL;
7262 if (WARN_ON_ONCE(flags & FOLL_PIN))
7266 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7267 if (!pud_huge(*pud))
7269 pte = huge_ptep_get((pte_t *)pud);
7270 if (pte_present(pte)) {
7271 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7272 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7277 if (is_hugetlb_entry_migration(pte)) {
7279 __migration_entry_wait(mm, (pte_t *)pud, ptl);
7283 * hwpoisoned entry is treated as no_page_table in
7284 * follow_page_mask().
7292 struct page * __weak
7293 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7295 if (flags & (FOLL_GET | FOLL_PIN))
7298 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7301 int isolate_hugetlb(struct page *page, struct list_head *list)
7305 spin_lock_irq(&hugetlb_lock);
7306 if (!PageHeadHuge(page) ||
7307 !HPageMigratable(page) ||
7308 !get_page_unless_zero(page)) {
7312 ClearHPageMigratable(page);
7313 list_move_tail(&page->lru, list);
7315 spin_unlock_irq(&hugetlb_lock);
7319 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7324 spin_lock_irq(&hugetlb_lock);
7325 if (PageHeadHuge(page)) {
7327 if (HPageFreed(page))
7329 else if (HPageMigratable(page))
7330 ret = get_page_unless_zero(page);
7334 spin_unlock_irq(&hugetlb_lock);
7338 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7342 spin_lock_irq(&hugetlb_lock);
7343 ret = __get_huge_page_for_hwpoison(pfn, flags);
7344 spin_unlock_irq(&hugetlb_lock);
7348 void putback_active_hugepage(struct page *page)
7350 spin_lock_irq(&hugetlb_lock);
7351 SetHPageMigratable(page);
7352 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7353 spin_unlock_irq(&hugetlb_lock);
7357 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7359 struct hstate *h = page_hstate(oldpage);
7361 hugetlb_cgroup_migrate(oldpage, newpage);
7362 set_page_owner_migrate_reason(newpage, reason);
7365 * transfer temporary state of the new huge page. This is
7366 * reverse to other transitions because the newpage is going to
7367 * be final while the old one will be freed so it takes over
7368 * the temporary status.
7370 * Also note that we have to transfer the per-node surplus state
7371 * here as well otherwise the global surplus count will not match
7374 if (HPageTemporary(newpage)) {
7375 int old_nid = page_to_nid(oldpage);
7376 int new_nid = page_to_nid(newpage);
7378 SetHPageTemporary(oldpage);
7379 ClearHPageTemporary(newpage);
7382 * There is no need to transfer the per-node surplus state
7383 * when we do not cross the node.
7385 if (new_nid == old_nid)
7387 spin_lock_irq(&hugetlb_lock);
7388 if (h->surplus_huge_pages_node[old_nid]) {
7389 h->surplus_huge_pages_node[old_nid]--;
7390 h->surplus_huge_pages_node[new_nid]++;
7392 spin_unlock_irq(&hugetlb_lock);
7397 * This function will unconditionally remove all the shared pmd pgtable entries
7398 * within the specific vma for a hugetlbfs memory range.
7400 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7402 struct hstate *h = hstate_vma(vma);
7403 unsigned long sz = huge_page_size(h);
7404 struct mm_struct *mm = vma->vm_mm;
7405 struct mmu_notifier_range range;
7406 unsigned long address, start, end;
7410 if (!(vma->vm_flags & VM_MAYSHARE))
7413 start = ALIGN(vma->vm_start, PUD_SIZE);
7414 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7419 flush_cache_range(vma, start, end);
7421 * No need to call adjust_range_if_pmd_sharing_possible(), because
7422 * we have already done the PUD_SIZE alignment.
7424 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7426 mmu_notifier_invalidate_range_start(&range);
7427 hugetlb_vma_lock_write(vma);
7428 i_mmap_lock_write(vma->vm_file->f_mapping);
7429 for (address = start; address < end; address += PUD_SIZE) {
7430 ptep = huge_pte_offset(mm, address, sz);
7433 ptl = huge_pte_lock(h, mm, ptep);
7434 huge_pmd_unshare(mm, vma, address, ptep);
7437 flush_hugetlb_tlb_range(vma, start, end);
7438 i_mmap_unlock_write(vma->vm_file->f_mapping);
7439 hugetlb_vma_unlock_write(vma);
7441 * No need to call mmu_notifier_invalidate_range(), see
7442 * Documentation/mm/mmu_notifier.rst.
7444 mmu_notifier_invalidate_range_end(&range);
7448 static bool cma_reserve_called __initdata;
7450 static int __init cmdline_parse_hugetlb_cma(char *p)
7457 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7460 if (s[count] == ':') {
7461 if (tmp >= MAX_NUMNODES)
7463 nid = array_index_nospec(tmp, MAX_NUMNODES);
7466 tmp = memparse(s, &s);
7467 hugetlb_cma_size_in_node[nid] = tmp;
7468 hugetlb_cma_size += tmp;
7471 * Skip the separator if have one, otherwise
7472 * break the parsing.
7479 hugetlb_cma_size = memparse(p, &p);
7487 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7489 void __init hugetlb_cma_reserve(int order)
7491 unsigned long size, reserved, per_node;
7492 bool node_specific_cma_alloc = false;
7495 cma_reserve_called = true;
7497 if (!hugetlb_cma_size)
7500 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7501 if (hugetlb_cma_size_in_node[nid] == 0)
7504 if (!node_online(nid)) {
7505 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7506 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7507 hugetlb_cma_size_in_node[nid] = 0;
7511 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7512 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7513 nid, (PAGE_SIZE << order) / SZ_1M);
7514 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7515 hugetlb_cma_size_in_node[nid] = 0;
7517 node_specific_cma_alloc = true;
7521 /* Validate the CMA size again in case some invalid nodes specified. */
7522 if (!hugetlb_cma_size)
7525 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7526 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7527 (PAGE_SIZE << order) / SZ_1M);
7528 hugetlb_cma_size = 0;
7532 if (!node_specific_cma_alloc) {
7534 * If 3 GB area is requested on a machine with 4 numa nodes,
7535 * let's allocate 1 GB on first three nodes and ignore the last one.
7537 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7538 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7539 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7543 for_each_online_node(nid) {
7545 char name[CMA_MAX_NAME];
7547 if (node_specific_cma_alloc) {
7548 if (hugetlb_cma_size_in_node[nid] == 0)
7551 size = hugetlb_cma_size_in_node[nid];
7553 size = min(per_node, hugetlb_cma_size - reserved);
7556 size = round_up(size, PAGE_SIZE << order);
7558 snprintf(name, sizeof(name), "hugetlb%d", nid);
7560 * Note that 'order per bit' is based on smallest size that
7561 * may be returned to CMA allocator in the case of
7562 * huge page demotion.
7564 res = cma_declare_contiguous_nid(0, size, 0,
7565 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7567 &hugetlb_cma[nid], nid);
7569 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7575 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7578 if (reserved >= hugetlb_cma_size)
7584 * hugetlb_cma_size is used to determine if allocations from
7585 * cma are possible. Set to zero if no cma regions are set up.
7587 hugetlb_cma_size = 0;
7590 static void __init hugetlb_cma_check(void)
7592 if (!hugetlb_cma_size || cma_reserve_called)
7595 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7598 #endif /* CONFIG_CMA */