Merge tag 'libnvdimm-for-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264         struct file_region *nrg;
265
266         VM_BUG_ON(resv->region_cache_count <= 0);
267
268         resv->region_cache_count--;
269         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270         list_del(&nrg->link);
271
272         nrg->from = from;
273         nrg->to = to;
274
275         return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279                                               struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         nrg->reservation_counter = rg->reservation_counter;
283         nrg->css = rg->css;
284         if (rg->css)
285                 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291                                                 struct hstate *h,
292                                                 struct resv_map *resv,
293                                                 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296         if (h_cg) {
297                 nrg->reservation_counter =
298                         &h_cg->rsvd_hugepage[hstate_index(h)];
299                 nrg->css = &h_cg->css;
300                 /*
301                  * The caller will hold exactly one h_cg->css reference for the
302                  * whole contiguous reservation region. But this area might be
303                  * scattered when there are already some file_regions reside in
304                  * it. As a result, many file_regions may share only one css
305                  * reference. In order to ensure that one file_region must hold
306                  * exactly one h_cg->css reference, we should do css_get for
307                  * each file_region and leave the reference held by caller
308                  * untouched.
309                  */
310                 css_get(&h_cg->css);
311                 if (!resv->pages_per_hpage)
312                         resv->pages_per_hpage = pages_per_huge_page(h);
313                 /* pages_per_hpage should be the same for all entries in
314                  * a resv_map.
315                  */
316                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317         } else {
318                 nrg->reservation_counter = NULL;
319                 nrg->css = NULL;
320         }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327         if (rg->css)
328                 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333                                    struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336         return rg->reservation_counter == org->reservation_counter &&
337                rg->css == org->css;
338
339 #else
340         return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346         struct file_region *nrg, *prg;
347
348         prg = list_prev_entry(rg, link);
349         if (&prg->link != &resv->regions && prg->to == rg->from &&
350             has_same_uncharge_info(prg, rg)) {
351                 prg->to = rg->to;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356
357                 rg = prg;
358         }
359
360         nrg = list_next_entry(rg, link);
361         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362             has_same_uncharge_info(nrg, rg)) {
363                 nrg->from = rg->from;
364
365                 list_del(&rg->link);
366                 put_uncharge_info(rg);
367                 kfree(rg);
368         }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
374                      long *regions_needed)
375 {
376         struct file_region *nrg;
377
378         if (!regions_needed) {
379                 nrg = get_file_region_entry_from_cache(map, from, to);
380                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381                 list_add(&nrg->link, rg);
382                 coalesce_file_region(map, nrg);
383         } else
384                 *regions_needed += 1;
385
386         return to - from;
387 }
388
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398                                      struct hugetlb_cgroup *h_cg,
399                                      struct hstate *h, long *regions_needed)
400 {
401         long add = 0;
402         struct list_head *head = &resv->regions;
403         long last_accounted_offset = f;
404         struct file_region *iter, *trg = NULL;
405         struct list_head *rg = NULL;
406
407         if (regions_needed)
408                 *regions_needed = 0;
409
410         /* In this loop, we essentially handle an entry for the range
411          * [last_accounted_offset, iter->from), at every iteration, with some
412          * bounds checking.
413          */
414         list_for_each_entry_safe(iter, trg, head, link) {
415                 /* Skip irrelevant regions that start before our range. */
416                 if (iter->from < f) {
417                         /* If this region ends after the last accounted offset,
418                          * then we need to update last_accounted_offset.
419                          */
420                         if (iter->to > last_accounted_offset)
421                                 last_accounted_offset = iter->to;
422                         continue;
423                 }
424
425                 /* When we find a region that starts beyond our range, we've
426                  * finished.
427                  */
428                 if (iter->from >= t) {
429                         rg = iter->link.prev;
430                         break;
431                 }
432
433                 /* Add an entry for last_accounted_offset -> iter->from, and
434                  * update last_accounted_offset.
435                  */
436                 if (iter->from > last_accounted_offset)
437                         add += hugetlb_resv_map_add(resv, iter->link.prev,
438                                                     last_accounted_offset,
439                                                     iter->from, h, h_cg,
440                                                     regions_needed);
441
442                 last_accounted_offset = iter->to;
443         }
444
445         /* Handle the case where our range extends beyond
446          * last_accounted_offset.
447          */
448         if (!rg)
449                 rg = head->prev;
450         if (last_accounted_offset < t)
451                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452                                             t, h, h_cg, regions_needed);
453
454         return add;
455 }
456
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460                                         int regions_needed)
461         __must_hold(&resv->lock)
462 {
463         LIST_HEAD(allocated_regions);
464         int to_allocate = 0, i = 0;
465         struct file_region *trg = NULL, *rg = NULL;
466
467         VM_BUG_ON(regions_needed < 0);
468
469         /*
470          * Check for sufficient descriptors in the cache to accommodate
471          * the number of in progress add operations plus regions_needed.
472          *
473          * This is a while loop because when we drop the lock, some other call
474          * to region_add or region_del may have consumed some region_entries,
475          * so we keep looping here until we finally have enough entries for
476          * (adds_in_progress + regions_needed).
477          */
478         while (resv->region_cache_count <
479                (resv->adds_in_progress + regions_needed)) {
480                 to_allocate = resv->adds_in_progress + regions_needed -
481                               resv->region_cache_count;
482
483                 /* At this point, we should have enough entries in the cache
484                  * for all the existing adds_in_progress. We should only be
485                  * needing to allocate for regions_needed.
486                  */
487                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489                 spin_unlock(&resv->lock);
490                 for (i = 0; i < to_allocate; i++) {
491                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492                         if (!trg)
493                                 goto out_of_memory;
494                         list_add(&trg->link, &allocated_regions);
495                 }
496
497                 spin_lock(&resv->lock);
498
499                 list_splice(&allocated_regions, &resv->region_cache);
500                 resv->region_cache_count += to_allocate;
501         }
502
503         return 0;
504
505 out_of_memory:
506         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507                 list_del(&rg->link);
508                 kfree(rg);
509         }
510         return -ENOMEM;
511 }
512
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531                        long in_regions_needed, struct hstate *h,
532                        struct hugetlb_cgroup *h_cg)
533 {
534         long add = 0, actual_regions_needed = 0;
535
536         spin_lock(&resv->lock);
537 retry:
538
539         /* Count how many regions are actually needed to execute this add. */
540         add_reservation_in_range(resv, f, t, NULL, NULL,
541                                  &actual_regions_needed);
542
543         /*
544          * Check for sufficient descriptors in the cache to accommodate
545          * this add operation. Note that actual_regions_needed may be greater
546          * than in_regions_needed, as the resv_map may have been modified since
547          * the region_chg call. In this case, we need to make sure that we
548          * allocate extra entries, such that we have enough for all the
549          * existing adds_in_progress, plus the excess needed for this
550          * operation.
551          */
552         if (actual_regions_needed > in_regions_needed &&
553             resv->region_cache_count <
554                     resv->adds_in_progress +
555                             (actual_regions_needed - in_regions_needed)) {
556                 /* region_add operation of range 1 should never need to
557                  * allocate file_region entries.
558                  */
559                 VM_BUG_ON(t - f <= 1);
560
561                 if (allocate_file_region_entries(
562                             resv, actual_regions_needed - in_regions_needed)) {
563                         return -ENOMEM;
564                 }
565
566                 goto retry;
567         }
568
569         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570
571         resv->adds_in_progress -= in_regions_needed;
572
573         spin_unlock(&resv->lock);
574         return add;
575 }
576
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598                        long *out_regions_needed)
599 {
600         long chg = 0;
601
602         spin_lock(&resv->lock);
603
604         /* Count how many hugepages in this range are NOT represented. */
605         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606                                        out_regions_needed);
607
608         if (*out_regions_needed == 0)
609                 *out_regions_needed = 1;
610
611         if (allocate_file_region_entries(resv, *out_regions_needed))
612                 return -ENOMEM;
613
614         resv->adds_in_progress += *out_regions_needed;
615
616         spin_unlock(&resv->lock);
617         return chg;
618 }
619
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634                          long regions_needed)
635 {
636         spin_lock(&resv->lock);
637         VM_BUG_ON(!resv->region_cache_count);
638         resv->adds_in_progress -= regions_needed;
639         spin_unlock(&resv->lock);
640 }
641
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658         struct list_head *head = &resv->regions;
659         struct file_region *rg, *trg;
660         struct file_region *nrg = NULL;
661         long del = 0;
662
663 retry:
664         spin_lock(&resv->lock);
665         list_for_each_entry_safe(rg, trg, head, link) {
666                 /*
667                  * Skip regions before the range to be deleted.  file_region
668                  * ranges are normally of the form [from, to).  However, there
669                  * may be a "placeholder" entry in the map which is of the form
670                  * (from, to) with from == to.  Check for placeholder entries
671                  * at the beginning of the range to be deleted.
672                  */
673                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674                         continue;
675
676                 if (rg->from >= t)
677                         break;
678
679                 if (f > rg->from && t < rg->to) { /* Must split region */
680                         /*
681                          * Check for an entry in the cache before dropping
682                          * lock and attempting allocation.
683                          */
684                         if (!nrg &&
685                             resv->region_cache_count > resv->adds_in_progress) {
686                                 nrg = list_first_entry(&resv->region_cache,
687                                                         struct file_region,
688                                                         link);
689                                 list_del(&nrg->link);
690                                 resv->region_cache_count--;
691                         }
692
693                         if (!nrg) {
694                                 spin_unlock(&resv->lock);
695                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696                                 if (!nrg)
697                                         return -ENOMEM;
698                                 goto retry;
699                         }
700
701                         del += t - f;
702                         hugetlb_cgroup_uncharge_file_region(
703                                 resv, rg, t - f, false);
704
705                         /* New entry for end of split region */
706                         nrg->from = t;
707                         nrg->to = rg->to;
708
709                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
711                         INIT_LIST_HEAD(&nrg->link);
712
713                         /* Original entry is trimmed */
714                         rg->to = f;
715
716                         list_add(&nrg->link, &rg->link);
717                         nrg = NULL;
718                         break;
719                 }
720
721                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722                         del += rg->to - rg->from;
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - rg->from, true);
725                         list_del(&rg->link);
726                         kfree(rg);
727                         continue;
728                 }
729
730                 if (f <= rg->from) {    /* Trim beginning of region */
731                         hugetlb_cgroup_uncharge_file_region(resv, rg,
732                                                             t - rg->from, false);
733
734                         del += t - rg->from;
735                         rg->from = t;
736                 } else {                /* Trim end of region */
737                         hugetlb_cgroup_uncharge_file_region(resv, rg,
738                                                             rg->to - f, false);
739
740                         del += rg->to - f;
741                         rg->to = f;
742                 }
743         }
744
745         spin_unlock(&resv->lock);
746         kfree(nrg);
747         return del;
748 }
749
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761         struct hugepage_subpool *spool = subpool_inode(inode);
762         long rsv_adjust;
763         bool reserved = false;
764
765         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766         if (rsv_adjust > 0) {
767                 struct hstate *h = hstate_inode(inode);
768
769                 if (!hugetlb_acct_memory(h, 1))
770                         reserved = true;
771         } else if (!rsv_adjust) {
772                 reserved = true;
773         }
774
775         if (!reserved)
776                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785         struct list_head *head = &resv->regions;
786         struct file_region *rg;
787         long chg = 0;
788
789         spin_lock(&resv->lock);
790         /* Locate each segment we overlap with, and count that overlap. */
791         list_for_each_entry(rg, head, link) {
792                 long seg_from;
793                 long seg_to;
794
795                 if (rg->to <= f)
796                         continue;
797                 if (rg->from >= t)
798                         break;
799
800                 seg_from = max(rg->from, f);
801                 seg_to = min(rg->to, t);
802
803                 chg += seg_to - seg_from;
804         }
805         spin_unlock(&resv->lock);
806
807         return chg;
808 }
809
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815                         struct vm_area_struct *vma, unsigned long address)
816 {
817         return ((address - vma->vm_start) >> huge_page_shift(h)) +
818                         (vma->vm_pgoff >> huge_page_order(h));
819 }
820
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822                                      unsigned long address)
823 {
824         return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834         if (vma->vm_ops && vma->vm_ops->pagesize)
835                 return vma->vm_ops->pagesize(vma);
836         return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848         return vma_kernel_pagesize(vma);
849 }
850
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881         return (unsigned long)vma->vm_private_data;
882 }
883
884 static void set_vma_private_data(struct vm_area_struct *vma,
885                                                         unsigned long value)
886 {
887         vma->vm_private_data = (void *)value;
888 }
889
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892                                           struct hugetlb_cgroup *h_cg,
893                                           struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896         if (!h_cg || !h) {
897                 resv_map->reservation_counter = NULL;
898                 resv_map->pages_per_hpage = 0;
899                 resv_map->css = NULL;
900         } else {
901                 resv_map->reservation_counter =
902                         &h_cg->rsvd_hugepage[hstate_index(h)];
903                 resv_map->pages_per_hpage = pages_per_huge_page(h);
904                 resv_map->css = &h_cg->css;
905         }
906 #endif
907 }
908
909 struct resv_map *resv_map_alloc(void)
910 {
911         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914         if (!resv_map || !rg) {
915                 kfree(resv_map);
916                 kfree(rg);
917                 return NULL;
918         }
919
920         kref_init(&resv_map->refs);
921         spin_lock_init(&resv_map->lock);
922         INIT_LIST_HEAD(&resv_map->regions);
923
924         resv_map->adds_in_progress = 0;
925         /*
926          * Initialize these to 0. On shared mappings, 0's here indicate these
927          * fields don't do cgroup accounting. On private mappings, these will be
928          * re-initialized to the proper values, to indicate that hugetlb cgroup
929          * reservations are to be un-charged from here.
930          */
931         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932
933         INIT_LIST_HEAD(&resv_map->region_cache);
934         list_add(&rg->link, &resv_map->region_cache);
935         resv_map->region_cache_count = 1;
936
937         return resv_map;
938 }
939
940 void resv_map_release(struct kref *ref)
941 {
942         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943         struct list_head *head = &resv_map->region_cache;
944         struct file_region *rg, *trg;
945
946         /* Clear out any active regions before we release the map. */
947         region_del(resv_map, 0, LONG_MAX);
948
949         /* ... and any entries left in the cache */
950         list_for_each_entry_safe(rg, trg, head, link) {
951                 list_del(&rg->link);
952                 kfree(rg);
953         }
954
955         VM_BUG_ON(resv_map->adds_in_progress);
956
957         kfree(resv_map);
958 }
959
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962         /*
963          * At inode evict time, i_mapping may not point to the original
964          * address space within the inode.  This original address space
965          * contains the pointer to the resv_map.  So, always use the
966          * address space embedded within the inode.
967          * The VERY common case is inode->mapping == &inode->i_data but,
968          * this may not be true for device special inodes.
969          */
970         return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         if (vma->vm_flags & VM_MAYSHARE) {
977                 struct address_space *mapping = vma->vm_file->f_mapping;
978                 struct inode *inode = mapping->host;
979
980                 return inode_resv_map(inode);
981
982         } else {
983                 return (struct resv_map *)(get_vma_private_data(vma) &
984                                                         ~HPAGE_RESV_MASK);
985         }
986 }
987
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992
993         set_vma_private_data(vma, (get_vma_private_data(vma) &
994                                 HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001
1002         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008
1009         return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015         /*
1016          * Clear vm_private_data
1017          * - For MAP_PRIVATE mappings, this is the reserve map which does
1018          *   not apply to children.  Faults generated by the children are
1019          *   not guaranteed to succeed, even if read-only.
1020          * - For shared mappings this is a per-vma semaphore that may be
1021          *   allocated in a subsequent call to hugetlb_vm_op_open.
1022          */
1023         vma->vm_private_data = (void *)0;
1024         if (!(vma->vm_flags & VM_MAYSHARE))
1025                 return;
1026 }
1027
1028 /*
1029  * Reset and decrement one ref on hugepage private reservation.
1030  * Called with mm->mmap_sem writer semaphore held.
1031  * This function should be only used by move_vma() and operate on
1032  * same sized vma. It should never come here with last ref on the
1033  * reservation.
1034  */
1035 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1036 {
1037         /*
1038          * Clear the old hugetlb private page reservation.
1039          * It has already been transferred to new_vma.
1040          *
1041          * During a mremap() operation of a hugetlb vma we call move_vma()
1042          * which copies vma into new_vma and unmaps vma. After the copy
1043          * operation both new_vma and vma share a reference to the resv_map
1044          * struct, and at that point vma is about to be unmapped. We don't
1045          * want to return the reservation to the pool at unmap of vma because
1046          * the reservation still lives on in new_vma, so simply decrement the
1047          * ref here and remove the resv_map reference from this vma.
1048          */
1049         struct resv_map *reservations = vma_resv_map(vma);
1050
1051         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1052                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1053                 kref_put(&reservations->refs, resv_map_release);
1054         }
1055
1056         hugetlb_dup_vma_private(vma);
1057 }
1058
1059 /* Returns true if the VMA has associated reserve pages */
1060 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1061 {
1062         if (vma->vm_flags & VM_NORESERVE) {
1063                 /*
1064                  * This address is already reserved by other process(chg == 0),
1065                  * so, we should decrement reserved count. Without decrementing,
1066                  * reserve count remains after releasing inode, because this
1067                  * allocated page will go into page cache and is regarded as
1068                  * coming from reserved pool in releasing step.  Currently, we
1069                  * don't have any other solution to deal with this situation
1070                  * properly, so add work-around here.
1071                  */
1072                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1073                         return true;
1074                 else
1075                         return false;
1076         }
1077
1078         /* Shared mappings always use reserves */
1079         if (vma->vm_flags & VM_MAYSHARE) {
1080                 /*
1081                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1082                  * be a region map for all pages.  The only situation where
1083                  * there is no region map is if a hole was punched via
1084                  * fallocate.  In this case, there really are no reserves to
1085                  * use.  This situation is indicated if chg != 0.
1086                  */
1087                 if (chg)
1088                         return false;
1089                 else
1090                         return true;
1091         }
1092
1093         /*
1094          * Only the process that called mmap() has reserves for
1095          * private mappings.
1096          */
1097         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1098                 /*
1099                  * Like the shared case above, a hole punch or truncate
1100                  * could have been performed on the private mapping.
1101                  * Examine the value of chg to determine if reserves
1102                  * actually exist or were previously consumed.
1103                  * Very Subtle - The value of chg comes from a previous
1104                  * call to vma_needs_reserves().  The reserve map for
1105                  * private mappings has different (opposite) semantics
1106                  * than that of shared mappings.  vma_needs_reserves()
1107                  * has already taken this difference in semantics into
1108                  * account.  Therefore, the meaning of chg is the same
1109                  * as in the shared case above.  Code could easily be
1110                  * combined, but keeping it separate draws attention to
1111                  * subtle differences.
1112                  */
1113                 if (chg)
1114                         return false;
1115                 else
1116                         return true;
1117         }
1118
1119         return false;
1120 }
1121
1122 static void enqueue_huge_page(struct hstate *h, struct page *page)
1123 {
1124         int nid = page_to_nid(page);
1125
1126         lockdep_assert_held(&hugetlb_lock);
1127         VM_BUG_ON_PAGE(page_count(page), page);
1128
1129         list_move(&page->lru, &h->hugepage_freelists[nid]);
1130         h->free_huge_pages++;
1131         h->free_huge_pages_node[nid]++;
1132         SetHPageFreed(page);
1133 }
1134
1135 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1136 {
1137         struct page *page;
1138         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1139
1140         lockdep_assert_held(&hugetlb_lock);
1141         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1142                 if (pin && !is_longterm_pinnable_page(page))
1143                         continue;
1144
1145                 if (PageHWPoison(page))
1146                         continue;
1147
1148                 list_move(&page->lru, &h->hugepage_activelist);
1149                 set_page_refcounted(page);
1150                 ClearHPageFreed(page);
1151                 h->free_huge_pages--;
1152                 h->free_huge_pages_node[nid]--;
1153                 return page;
1154         }
1155
1156         return NULL;
1157 }
1158
1159 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1160                 nodemask_t *nmask)
1161 {
1162         unsigned int cpuset_mems_cookie;
1163         struct zonelist *zonelist;
1164         struct zone *zone;
1165         struct zoneref *z;
1166         int node = NUMA_NO_NODE;
1167
1168         zonelist = node_zonelist(nid, gfp_mask);
1169
1170 retry_cpuset:
1171         cpuset_mems_cookie = read_mems_allowed_begin();
1172         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1173                 struct page *page;
1174
1175                 if (!cpuset_zone_allowed(zone, gfp_mask))
1176                         continue;
1177                 /*
1178                  * no need to ask again on the same node. Pool is node rather than
1179                  * zone aware
1180                  */
1181                 if (zone_to_nid(zone) == node)
1182                         continue;
1183                 node = zone_to_nid(zone);
1184
1185                 page = dequeue_huge_page_node_exact(h, node);
1186                 if (page)
1187                         return page;
1188         }
1189         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1190                 goto retry_cpuset;
1191
1192         return NULL;
1193 }
1194
1195 static unsigned long available_huge_pages(struct hstate *h)
1196 {
1197         return h->free_huge_pages - h->resv_huge_pages;
1198 }
1199
1200 static struct page *dequeue_huge_page_vma(struct hstate *h,
1201                                 struct vm_area_struct *vma,
1202                                 unsigned long address, int avoid_reserve,
1203                                 long chg)
1204 {
1205         struct page *page = NULL;
1206         struct mempolicy *mpol;
1207         gfp_t gfp_mask;
1208         nodemask_t *nodemask;
1209         int nid;
1210
1211         /*
1212          * A child process with MAP_PRIVATE mappings created by their parent
1213          * have no page reserves. This check ensures that reservations are
1214          * not "stolen". The child may still get SIGKILLed
1215          */
1216         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1217                 goto err;
1218
1219         /* If reserves cannot be used, ensure enough pages are in the pool */
1220         if (avoid_reserve && !available_huge_pages(h))
1221                 goto err;
1222
1223         gfp_mask = htlb_alloc_mask(h);
1224         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1225
1226         if (mpol_is_preferred_many(mpol)) {
1227                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1228
1229                 /* Fallback to all nodes if page==NULL */
1230                 nodemask = NULL;
1231         }
1232
1233         if (!page)
1234                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1235
1236         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1237                 SetHPageRestoreReserve(page);
1238                 h->resv_huge_pages--;
1239         }
1240
1241         mpol_cond_put(mpol);
1242         return page;
1243
1244 err:
1245         return NULL;
1246 }
1247
1248 /*
1249  * common helper functions for hstate_next_node_to_{alloc|free}.
1250  * We may have allocated or freed a huge page based on a different
1251  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1252  * be outside of *nodes_allowed.  Ensure that we use an allowed
1253  * node for alloc or free.
1254  */
1255 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1256 {
1257         nid = next_node_in(nid, *nodes_allowed);
1258         VM_BUG_ON(nid >= MAX_NUMNODES);
1259
1260         return nid;
1261 }
1262
1263 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265         if (!node_isset(nid, *nodes_allowed))
1266                 nid = next_node_allowed(nid, nodes_allowed);
1267         return nid;
1268 }
1269
1270 /*
1271  * returns the previously saved node ["this node"] from which to
1272  * allocate a persistent huge page for the pool and advance the
1273  * next node from which to allocate, handling wrap at end of node
1274  * mask.
1275  */
1276 static int hstate_next_node_to_alloc(struct hstate *h,
1277                                         nodemask_t *nodes_allowed)
1278 {
1279         int nid;
1280
1281         VM_BUG_ON(!nodes_allowed);
1282
1283         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1284         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1285
1286         return nid;
1287 }
1288
1289 /*
1290  * helper for remove_pool_huge_page() - return the previously saved
1291  * node ["this node"] from which to free a huge page.  Advance the
1292  * next node id whether or not we find a free huge page to free so
1293  * that the next attempt to free addresses the next node.
1294  */
1295 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1296 {
1297         int nid;
1298
1299         VM_BUG_ON(!nodes_allowed);
1300
1301         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1302         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1303
1304         return nid;
1305 }
1306
1307 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1308         for (nr_nodes = nodes_weight(*mask);                            \
1309                 nr_nodes > 0 &&                                         \
1310                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1311                 nr_nodes--)
1312
1313 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1314         for (nr_nodes = nodes_weight(*mask);                            \
1315                 nr_nodes > 0 &&                                         \
1316                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1317                 nr_nodes--)
1318
1319 /* used to demote non-gigantic_huge pages as well */
1320 static void __destroy_compound_gigantic_page(struct page *page,
1321                                         unsigned int order, bool demote)
1322 {
1323         int i;
1324         int nr_pages = 1 << order;
1325         struct page *p;
1326
1327         atomic_set(compound_mapcount_ptr(page), 0);
1328         atomic_set(compound_pincount_ptr(page), 0);
1329
1330         for (i = 1; i < nr_pages; i++) {
1331                 p = nth_page(page, i);
1332                 p->mapping = NULL;
1333                 clear_compound_head(p);
1334                 if (!demote)
1335                         set_page_refcounted(p);
1336         }
1337
1338         set_compound_order(page, 0);
1339 #ifdef CONFIG_64BIT
1340         page[1].compound_nr = 0;
1341 #endif
1342         __ClearPageHead(page);
1343 }
1344
1345 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1346                                         unsigned int order)
1347 {
1348         __destroy_compound_gigantic_page(page, order, true);
1349 }
1350
1351 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1352 static void destroy_compound_gigantic_page(struct page *page,
1353                                         unsigned int order)
1354 {
1355         __destroy_compound_gigantic_page(page, order, false);
1356 }
1357
1358 static void free_gigantic_page(struct page *page, unsigned int order)
1359 {
1360         /*
1361          * If the page isn't allocated using the cma allocator,
1362          * cma_release() returns false.
1363          */
1364 #ifdef CONFIG_CMA
1365         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1366                 return;
1367 #endif
1368
1369         free_contig_range(page_to_pfn(page), 1 << order);
1370 }
1371
1372 #ifdef CONFIG_CONTIG_ALLOC
1373 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1374                 int nid, nodemask_t *nodemask)
1375 {
1376         unsigned long nr_pages = pages_per_huge_page(h);
1377         if (nid == NUMA_NO_NODE)
1378                 nid = numa_mem_id();
1379
1380 #ifdef CONFIG_CMA
1381         {
1382                 struct page *page;
1383                 int node;
1384
1385                 if (hugetlb_cma[nid]) {
1386                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1387                                         huge_page_order(h), true);
1388                         if (page)
1389                                 return page;
1390                 }
1391
1392                 if (!(gfp_mask & __GFP_THISNODE)) {
1393                         for_each_node_mask(node, *nodemask) {
1394                                 if (node == nid || !hugetlb_cma[node])
1395                                         continue;
1396
1397                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1398                                                 huge_page_order(h), true);
1399                                 if (page)
1400                                         return page;
1401                         }
1402                 }
1403         }
1404 #endif
1405
1406         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1407 }
1408
1409 #else /* !CONFIG_CONTIG_ALLOC */
1410 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1411                                         int nid, nodemask_t *nodemask)
1412 {
1413         return NULL;
1414 }
1415 #endif /* CONFIG_CONTIG_ALLOC */
1416
1417 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419                                         int nid, nodemask_t *nodemask)
1420 {
1421         return NULL;
1422 }
1423 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1424 static inline void destroy_compound_gigantic_page(struct page *page,
1425                                                 unsigned int order) { }
1426 #endif
1427
1428 /*
1429  * Remove hugetlb page from lists, and update dtor so that page appears
1430  * as just a compound page.
1431  *
1432  * A reference is held on the page, except in the case of demote.
1433  *
1434  * Must be called with hugetlb lock held.
1435  */
1436 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1437                                                         bool adjust_surplus,
1438                                                         bool demote)
1439 {
1440         int nid = page_to_nid(page);
1441
1442         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1443         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1444
1445         lockdep_assert_held(&hugetlb_lock);
1446         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1447                 return;
1448
1449         list_del(&page->lru);
1450
1451         if (HPageFreed(page)) {
1452                 h->free_huge_pages--;
1453                 h->free_huge_pages_node[nid]--;
1454         }
1455         if (adjust_surplus) {
1456                 h->surplus_huge_pages--;
1457                 h->surplus_huge_pages_node[nid]--;
1458         }
1459
1460         /*
1461          * Very subtle
1462          *
1463          * For non-gigantic pages set the destructor to the normal compound
1464          * page dtor.  This is needed in case someone takes an additional
1465          * temporary ref to the page, and freeing is delayed until they drop
1466          * their reference.
1467          *
1468          * For gigantic pages set the destructor to the null dtor.  This
1469          * destructor will never be called.  Before freeing the gigantic
1470          * page destroy_compound_gigantic_page will turn the compound page
1471          * into a simple group of pages.  After this the destructor does not
1472          * apply.
1473          *
1474          * This handles the case where more than one ref is held when and
1475          * after update_and_free_page is called.
1476          *
1477          * In the case of demote we do not ref count the page as it will soon
1478          * be turned into a page of smaller size.
1479          */
1480         if (!demote)
1481                 set_page_refcounted(page);
1482         if (hstate_is_gigantic(h))
1483                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1484         else
1485                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1486
1487         h->nr_huge_pages--;
1488         h->nr_huge_pages_node[nid]--;
1489 }
1490
1491 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1492                                                         bool adjust_surplus)
1493 {
1494         __remove_hugetlb_page(h, page, adjust_surplus, false);
1495 }
1496
1497 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1498                                                         bool adjust_surplus)
1499 {
1500         __remove_hugetlb_page(h, page, adjust_surplus, true);
1501 }
1502
1503 static void add_hugetlb_page(struct hstate *h, struct page *page,
1504                              bool adjust_surplus)
1505 {
1506         int zeroed;
1507         int nid = page_to_nid(page);
1508
1509         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1510
1511         lockdep_assert_held(&hugetlb_lock);
1512
1513         INIT_LIST_HEAD(&page->lru);
1514         h->nr_huge_pages++;
1515         h->nr_huge_pages_node[nid]++;
1516
1517         if (adjust_surplus) {
1518                 h->surplus_huge_pages++;
1519                 h->surplus_huge_pages_node[nid]++;
1520         }
1521
1522         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1523         set_page_private(page, 0);
1524         /*
1525          * We have to set HPageVmemmapOptimized again as above
1526          * set_page_private(page, 0) cleared it.
1527          */
1528         SetHPageVmemmapOptimized(page);
1529
1530         /*
1531          * This page is about to be managed by the hugetlb allocator and
1532          * should have no users.  Drop our reference, and check for others
1533          * just in case.
1534          */
1535         zeroed = put_page_testzero(page);
1536         if (!zeroed)
1537                 /*
1538                  * It is VERY unlikely soneone else has taken a ref on
1539                  * the page.  In this case, we simply return as the
1540                  * hugetlb destructor (free_huge_page) will be called
1541                  * when this other ref is dropped.
1542                  */
1543                 return;
1544
1545         arch_clear_hugepage_flags(page);
1546         enqueue_huge_page(h, page);
1547 }
1548
1549 static void __update_and_free_page(struct hstate *h, struct page *page)
1550 {
1551         int i;
1552         struct page *subpage;
1553
1554         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1555                 return;
1556
1557         /*
1558          * If we don't know which subpages are hwpoisoned, we can't free
1559          * the hugepage, so it's leaked intentionally.
1560          */
1561         if (HPageRawHwpUnreliable(page))
1562                 return;
1563
1564         if (hugetlb_vmemmap_restore(h, page)) {
1565                 spin_lock_irq(&hugetlb_lock);
1566                 /*
1567                  * If we cannot allocate vmemmap pages, just refuse to free the
1568                  * page and put the page back on the hugetlb free list and treat
1569                  * as a surplus page.
1570                  */
1571                 add_hugetlb_page(h, page, true);
1572                 spin_unlock_irq(&hugetlb_lock);
1573                 return;
1574         }
1575
1576         /*
1577          * Move PageHWPoison flag from head page to the raw error pages,
1578          * which makes any healthy subpages reusable.
1579          */
1580         if (unlikely(PageHWPoison(page)))
1581                 hugetlb_clear_page_hwpoison(page);
1582
1583         for (i = 0; i < pages_per_huge_page(h); i++) {
1584                 subpage = nth_page(page, i);
1585                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1586                                 1 << PG_referenced | 1 << PG_dirty |
1587                                 1 << PG_active | 1 << PG_private |
1588                                 1 << PG_writeback);
1589         }
1590
1591         /*
1592          * Non-gigantic pages demoted from CMA allocated gigantic pages
1593          * need to be given back to CMA in free_gigantic_page.
1594          */
1595         if (hstate_is_gigantic(h) ||
1596             hugetlb_cma_page(page, huge_page_order(h))) {
1597                 destroy_compound_gigantic_page(page, huge_page_order(h));
1598                 free_gigantic_page(page, huge_page_order(h));
1599         } else {
1600                 __free_pages(page, huge_page_order(h));
1601         }
1602 }
1603
1604 /*
1605  * As update_and_free_page() can be called under any context, so we cannot
1606  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1607  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1608  * the vmemmap pages.
1609  *
1610  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1611  * freed and frees them one-by-one. As the page->mapping pointer is going
1612  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1613  * structure of a lockless linked list of huge pages to be freed.
1614  */
1615 static LLIST_HEAD(hpage_freelist);
1616
1617 static void free_hpage_workfn(struct work_struct *work)
1618 {
1619         struct llist_node *node;
1620
1621         node = llist_del_all(&hpage_freelist);
1622
1623         while (node) {
1624                 struct page *page;
1625                 struct hstate *h;
1626
1627                 page = container_of((struct address_space **)node,
1628                                      struct page, mapping);
1629                 node = node->next;
1630                 page->mapping = NULL;
1631                 /*
1632                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1633                  * is going to trigger because a previous call to
1634                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1635                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1636                  */
1637                 h = size_to_hstate(page_size(page));
1638
1639                 __update_and_free_page(h, page);
1640
1641                 cond_resched();
1642         }
1643 }
1644 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1645
1646 static inline void flush_free_hpage_work(struct hstate *h)
1647 {
1648         if (hugetlb_vmemmap_optimizable(h))
1649                 flush_work(&free_hpage_work);
1650 }
1651
1652 static void update_and_free_page(struct hstate *h, struct page *page,
1653                                  bool atomic)
1654 {
1655         if (!HPageVmemmapOptimized(page) || !atomic) {
1656                 __update_and_free_page(h, page);
1657                 return;
1658         }
1659
1660         /*
1661          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1662          *
1663          * Only call schedule_work() if hpage_freelist is previously
1664          * empty. Otherwise, schedule_work() had been called but the workfn
1665          * hasn't retrieved the list yet.
1666          */
1667         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1668                 schedule_work(&free_hpage_work);
1669 }
1670
1671 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1672 {
1673         struct page *page, *t_page;
1674
1675         list_for_each_entry_safe(page, t_page, list, lru) {
1676                 update_and_free_page(h, page, false);
1677                 cond_resched();
1678         }
1679 }
1680
1681 struct hstate *size_to_hstate(unsigned long size)
1682 {
1683         struct hstate *h;
1684
1685         for_each_hstate(h) {
1686                 if (huge_page_size(h) == size)
1687                         return h;
1688         }
1689         return NULL;
1690 }
1691
1692 void free_huge_page(struct page *page)
1693 {
1694         /*
1695          * Can't pass hstate in here because it is called from the
1696          * compound page destructor.
1697          */
1698         struct hstate *h = page_hstate(page);
1699         int nid = page_to_nid(page);
1700         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1701         bool restore_reserve;
1702         unsigned long flags;
1703
1704         VM_BUG_ON_PAGE(page_count(page), page);
1705         VM_BUG_ON_PAGE(page_mapcount(page), page);
1706
1707         hugetlb_set_page_subpool(page, NULL);
1708         if (PageAnon(page))
1709                 __ClearPageAnonExclusive(page);
1710         page->mapping = NULL;
1711         restore_reserve = HPageRestoreReserve(page);
1712         ClearHPageRestoreReserve(page);
1713
1714         /*
1715          * If HPageRestoreReserve was set on page, page allocation consumed a
1716          * reservation.  If the page was associated with a subpool, there
1717          * would have been a page reserved in the subpool before allocation
1718          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1719          * reservation, do not call hugepage_subpool_put_pages() as this will
1720          * remove the reserved page from the subpool.
1721          */
1722         if (!restore_reserve) {
1723                 /*
1724                  * A return code of zero implies that the subpool will be
1725                  * under its minimum size if the reservation is not restored
1726                  * after page is free.  Therefore, force restore_reserve
1727                  * operation.
1728                  */
1729                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1730                         restore_reserve = true;
1731         }
1732
1733         spin_lock_irqsave(&hugetlb_lock, flags);
1734         ClearHPageMigratable(page);
1735         hugetlb_cgroup_uncharge_page(hstate_index(h),
1736                                      pages_per_huge_page(h), page);
1737         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1738                                           pages_per_huge_page(h), page);
1739         if (restore_reserve)
1740                 h->resv_huge_pages++;
1741
1742         if (HPageTemporary(page)) {
1743                 remove_hugetlb_page(h, page, false);
1744                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1745                 update_and_free_page(h, page, true);
1746         } else if (h->surplus_huge_pages_node[nid]) {
1747                 /* remove the page from active list */
1748                 remove_hugetlb_page(h, page, true);
1749                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1750                 update_and_free_page(h, page, true);
1751         } else {
1752                 arch_clear_hugepage_flags(page);
1753                 enqueue_huge_page(h, page);
1754                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1755         }
1756 }
1757
1758 /*
1759  * Must be called with the hugetlb lock held
1760  */
1761 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1762 {
1763         lockdep_assert_held(&hugetlb_lock);
1764         h->nr_huge_pages++;
1765         h->nr_huge_pages_node[nid]++;
1766 }
1767
1768 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1769 {
1770         hugetlb_vmemmap_optimize(h, page);
1771         INIT_LIST_HEAD(&page->lru);
1772         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1773         hugetlb_set_page_subpool(page, NULL);
1774         set_hugetlb_cgroup(page, NULL);
1775         set_hugetlb_cgroup_rsvd(page, NULL);
1776 }
1777
1778 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1779 {
1780         __prep_new_huge_page(h, page);
1781         spin_lock_irq(&hugetlb_lock);
1782         __prep_account_new_huge_page(h, nid);
1783         spin_unlock_irq(&hugetlb_lock);
1784 }
1785
1786 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1787                                                                 bool demote)
1788 {
1789         int i, j;
1790         int nr_pages = 1 << order;
1791         struct page *p;
1792
1793         /* we rely on prep_new_huge_page to set the destructor */
1794         set_compound_order(page, order);
1795         __SetPageHead(page);
1796         for (i = 0; i < nr_pages; i++) {
1797                 p = nth_page(page, i);
1798
1799                 /*
1800                  * For gigantic hugepages allocated through bootmem at
1801                  * boot, it's safer to be consistent with the not-gigantic
1802                  * hugepages and clear the PG_reserved bit from all tail pages
1803                  * too.  Otherwise drivers using get_user_pages() to access tail
1804                  * pages may get the reference counting wrong if they see
1805                  * PG_reserved set on a tail page (despite the head page not
1806                  * having PG_reserved set).  Enforcing this consistency between
1807                  * head and tail pages allows drivers to optimize away a check
1808                  * on the head page when they need know if put_page() is needed
1809                  * after get_user_pages().
1810                  */
1811                 __ClearPageReserved(p);
1812                 /*
1813                  * Subtle and very unlikely
1814                  *
1815                  * Gigantic 'page allocators' such as memblock or cma will
1816                  * return a set of pages with each page ref counted.  We need
1817                  * to turn this set of pages into a compound page with tail
1818                  * page ref counts set to zero.  Code such as speculative page
1819                  * cache adding could take a ref on a 'to be' tail page.
1820                  * We need to respect any increased ref count, and only set
1821                  * the ref count to zero if count is currently 1.  If count
1822                  * is not 1, we return an error.  An error return indicates
1823                  * the set of pages can not be converted to a gigantic page.
1824                  * The caller who allocated the pages should then discard the
1825                  * pages using the appropriate free interface.
1826                  *
1827                  * In the case of demote, the ref count will be zero.
1828                  */
1829                 if (!demote) {
1830                         if (!page_ref_freeze(p, 1)) {
1831                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1832                                 goto out_error;
1833                         }
1834                 } else {
1835                         VM_BUG_ON_PAGE(page_count(p), p);
1836                 }
1837                 if (i != 0)
1838                         set_compound_head(p, page);
1839         }
1840         atomic_set(compound_mapcount_ptr(page), -1);
1841         atomic_set(compound_pincount_ptr(page), 0);
1842         return true;
1843
1844 out_error:
1845         /* undo page modifications made above */
1846         for (j = 0; j < i; j++) {
1847                 p = nth_page(page, j);
1848                 if (j != 0)
1849                         clear_compound_head(p);
1850                 set_page_refcounted(p);
1851         }
1852         /* need to clear PG_reserved on remaining tail pages  */
1853         for (; j < nr_pages; j++) {
1854                 p = nth_page(page, j);
1855                 __ClearPageReserved(p);
1856         }
1857         set_compound_order(page, 0);
1858 #ifdef CONFIG_64BIT
1859         page[1].compound_nr = 0;
1860 #endif
1861         __ClearPageHead(page);
1862         return false;
1863 }
1864
1865 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1866 {
1867         return __prep_compound_gigantic_page(page, order, false);
1868 }
1869
1870 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1871                                                         unsigned int order)
1872 {
1873         return __prep_compound_gigantic_page(page, order, true);
1874 }
1875
1876 /*
1877  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1878  * transparent huge pages.  See the PageTransHuge() documentation for more
1879  * details.
1880  */
1881 int PageHuge(struct page *page)
1882 {
1883         if (!PageCompound(page))
1884                 return 0;
1885
1886         page = compound_head(page);
1887         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1888 }
1889 EXPORT_SYMBOL_GPL(PageHuge);
1890
1891 /*
1892  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1893  * normal or transparent huge pages.
1894  */
1895 int PageHeadHuge(struct page *page_head)
1896 {
1897         if (!PageHead(page_head))
1898                 return 0;
1899
1900         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1901 }
1902 EXPORT_SYMBOL_GPL(PageHeadHuge);
1903
1904 /*
1905  * Find and lock address space (mapping) in write mode.
1906  *
1907  * Upon entry, the page is locked which means that page_mapping() is
1908  * stable.  Due to locking order, we can only trylock_write.  If we can
1909  * not get the lock, simply return NULL to caller.
1910  */
1911 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1912 {
1913         struct address_space *mapping = page_mapping(hpage);
1914
1915         if (!mapping)
1916                 return mapping;
1917
1918         if (i_mmap_trylock_write(mapping))
1919                 return mapping;
1920
1921         return NULL;
1922 }
1923
1924 pgoff_t hugetlb_basepage_index(struct page *page)
1925 {
1926         struct page *page_head = compound_head(page);
1927         pgoff_t index = page_index(page_head);
1928         unsigned long compound_idx;
1929
1930         if (compound_order(page_head) >= MAX_ORDER)
1931                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1932         else
1933                 compound_idx = page - page_head;
1934
1935         return (index << compound_order(page_head)) + compound_idx;
1936 }
1937
1938 static struct page *alloc_buddy_huge_page(struct hstate *h,
1939                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1940                 nodemask_t *node_alloc_noretry)
1941 {
1942         int order = huge_page_order(h);
1943         struct page *page;
1944         bool alloc_try_hard = true;
1945         bool retry = true;
1946
1947         /*
1948          * By default we always try hard to allocate the page with
1949          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1950          * a loop (to adjust global huge page counts) and previous allocation
1951          * failed, do not continue to try hard on the same node.  Use the
1952          * node_alloc_noretry bitmap to manage this state information.
1953          */
1954         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1955                 alloc_try_hard = false;
1956         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1957         if (alloc_try_hard)
1958                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1959         if (nid == NUMA_NO_NODE)
1960                 nid = numa_mem_id();
1961 retry:
1962         page = __alloc_pages(gfp_mask, order, nid, nmask);
1963
1964         /* Freeze head page */
1965         if (page && !page_ref_freeze(page, 1)) {
1966                 __free_pages(page, order);
1967                 if (retry) {    /* retry once */
1968                         retry = false;
1969                         goto retry;
1970                 }
1971                 /* WOW!  twice in a row. */
1972                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1973                 page = NULL;
1974         }
1975
1976         if (page)
1977                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1978         else
1979                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1980
1981         /*
1982          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1983          * indicates an overall state change.  Clear bit so that we resume
1984          * normal 'try hard' allocations.
1985          */
1986         if (node_alloc_noretry && page && !alloc_try_hard)
1987                 node_clear(nid, *node_alloc_noretry);
1988
1989         /*
1990          * If we tried hard to get a page but failed, set bit so that
1991          * subsequent attempts will not try as hard until there is an
1992          * overall state change.
1993          */
1994         if (node_alloc_noretry && !page && alloc_try_hard)
1995                 node_set(nid, *node_alloc_noretry);
1996
1997         return page;
1998 }
1999
2000 /*
2001  * Common helper to allocate a fresh hugetlb page. All specific allocators
2002  * should use this function to get new hugetlb pages
2003  *
2004  * Note that returned page is 'frozen':  ref count of head page and all tail
2005  * pages is zero.
2006  */
2007 static struct page *alloc_fresh_huge_page(struct hstate *h,
2008                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2009                 nodemask_t *node_alloc_noretry)
2010 {
2011         struct page *page;
2012         bool retry = false;
2013
2014 retry:
2015         if (hstate_is_gigantic(h))
2016                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2017         else
2018                 page = alloc_buddy_huge_page(h, gfp_mask,
2019                                 nid, nmask, node_alloc_noretry);
2020         if (!page)
2021                 return NULL;
2022
2023         if (hstate_is_gigantic(h)) {
2024                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2025                         /*
2026                          * Rare failure to convert pages to compound page.
2027                          * Free pages and try again - ONCE!
2028                          */
2029                         free_gigantic_page(page, huge_page_order(h));
2030                         if (!retry) {
2031                                 retry = true;
2032                                 goto retry;
2033                         }
2034                         return NULL;
2035                 }
2036         }
2037         prep_new_huge_page(h, page, page_to_nid(page));
2038
2039         return page;
2040 }
2041
2042 /*
2043  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2044  * manner.
2045  */
2046 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2047                                 nodemask_t *node_alloc_noretry)
2048 {
2049         struct page *page;
2050         int nr_nodes, node;
2051         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2052
2053         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2054                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2055                                                 node_alloc_noretry);
2056                 if (page)
2057                         break;
2058         }
2059
2060         if (!page)
2061                 return 0;
2062
2063         free_huge_page(page); /* free it into the hugepage allocator */
2064
2065         return 1;
2066 }
2067
2068 /*
2069  * Remove huge page from pool from next node to free.  Attempt to keep
2070  * persistent huge pages more or less balanced over allowed nodes.
2071  * This routine only 'removes' the hugetlb page.  The caller must make
2072  * an additional call to free the page to low level allocators.
2073  * Called with hugetlb_lock locked.
2074  */
2075 static struct page *remove_pool_huge_page(struct hstate *h,
2076                                                 nodemask_t *nodes_allowed,
2077                                                  bool acct_surplus)
2078 {
2079         int nr_nodes, node;
2080         struct page *page = NULL;
2081
2082         lockdep_assert_held(&hugetlb_lock);
2083         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2084                 /*
2085                  * If we're returning unused surplus pages, only examine
2086                  * nodes with surplus pages.
2087                  */
2088                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2089                     !list_empty(&h->hugepage_freelists[node])) {
2090                         page = list_entry(h->hugepage_freelists[node].next,
2091                                           struct page, lru);
2092                         remove_hugetlb_page(h, page, acct_surplus);
2093                         break;
2094                 }
2095         }
2096
2097         return page;
2098 }
2099
2100 /*
2101  * Dissolve a given free hugepage into free buddy pages. This function does
2102  * nothing for in-use hugepages and non-hugepages.
2103  * This function returns values like below:
2104  *
2105  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2106  *           when the system is under memory pressure and the feature of
2107  *           freeing unused vmemmap pages associated with each hugetlb page
2108  *           is enabled.
2109  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2110  *           (allocated or reserved.)
2111  *       0:  successfully dissolved free hugepages or the page is not a
2112  *           hugepage (considered as already dissolved)
2113  */
2114 int dissolve_free_huge_page(struct page *page)
2115 {
2116         int rc = -EBUSY;
2117
2118 retry:
2119         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2120         if (!PageHuge(page))
2121                 return 0;
2122
2123         spin_lock_irq(&hugetlb_lock);
2124         if (!PageHuge(page)) {
2125                 rc = 0;
2126                 goto out;
2127         }
2128
2129         if (!page_count(page)) {
2130                 struct page *head = compound_head(page);
2131                 struct hstate *h = page_hstate(head);
2132                 if (!available_huge_pages(h))
2133                         goto out;
2134
2135                 /*
2136                  * We should make sure that the page is already on the free list
2137                  * when it is dissolved.
2138                  */
2139                 if (unlikely(!HPageFreed(head))) {
2140                         spin_unlock_irq(&hugetlb_lock);
2141                         cond_resched();
2142
2143                         /*
2144                          * Theoretically, we should return -EBUSY when we
2145                          * encounter this race. In fact, we have a chance
2146                          * to successfully dissolve the page if we do a
2147                          * retry. Because the race window is quite small.
2148                          * If we seize this opportunity, it is an optimization
2149                          * for increasing the success rate of dissolving page.
2150                          */
2151                         goto retry;
2152                 }
2153
2154                 remove_hugetlb_page(h, head, false);
2155                 h->max_huge_pages--;
2156                 spin_unlock_irq(&hugetlb_lock);
2157
2158                 /*
2159                  * Normally update_and_free_page will allocate required vmemmmap
2160                  * before freeing the page.  update_and_free_page will fail to
2161                  * free the page if it can not allocate required vmemmap.  We
2162                  * need to adjust max_huge_pages if the page is not freed.
2163                  * Attempt to allocate vmemmmap here so that we can take
2164                  * appropriate action on failure.
2165                  */
2166                 rc = hugetlb_vmemmap_restore(h, head);
2167                 if (!rc) {
2168                         update_and_free_page(h, head, false);
2169                 } else {
2170                         spin_lock_irq(&hugetlb_lock);
2171                         add_hugetlb_page(h, head, false);
2172                         h->max_huge_pages++;
2173                         spin_unlock_irq(&hugetlb_lock);
2174                 }
2175
2176                 return rc;
2177         }
2178 out:
2179         spin_unlock_irq(&hugetlb_lock);
2180         return rc;
2181 }
2182
2183 /*
2184  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2185  * make specified memory blocks removable from the system.
2186  * Note that this will dissolve a free gigantic hugepage completely, if any
2187  * part of it lies within the given range.
2188  * Also note that if dissolve_free_huge_page() returns with an error, all
2189  * free hugepages that were dissolved before that error are lost.
2190  */
2191 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2192 {
2193         unsigned long pfn;
2194         struct page *page;
2195         int rc = 0;
2196         unsigned int order;
2197         struct hstate *h;
2198
2199         if (!hugepages_supported())
2200                 return rc;
2201
2202         order = huge_page_order(&default_hstate);
2203         for_each_hstate(h)
2204                 order = min(order, huge_page_order(h));
2205
2206         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2207                 page = pfn_to_page(pfn);
2208                 rc = dissolve_free_huge_page(page);
2209                 if (rc)
2210                         break;
2211         }
2212
2213         return rc;
2214 }
2215
2216 /*
2217  * Allocates a fresh surplus page from the page allocator.
2218  */
2219 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2220                                                 int nid, nodemask_t *nmask)
2221 {
2222         struct page *page = NULL;
2223
2224         if (hstate_is_gigantic(h))
2225                 return NULL;
2226
2227         spin_lock_irq(&hugetlb_lock);
2228         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2229                 goto out_unlock;
2230         spin_unlock_irq(&hugetlb_lock);
2231
2232         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2233         if (!page)
2234                 return NULL;
2235
2236         spin_lock_irq(&hugetlb_lock);
2237         /*
2238          * We could have raced with the pool size change.
2239          * Double check that and simply deallocate the new page
2240          * if we would end up overcommiting the surpluses. Abuse
2241          * temporary page to workaround the nasty free_huge_page
2242          * codeflow
2243          */
2244         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2245                 SetHPageTemporary(page);
2246                 spin_unlock_irq(&hugetlb_lock);
2247                 free_huge_page(page);
2248                 return NULL;
2249         }
2250
2251         h->surplus_huge_pages++;
2252         h->surplus_huge_pages_node[page_to_nid(page)]++;
2253
2254 out_unlock:
2255         spin_unlock_irq(&hugetlb_lock);
2256
2257         return page;
2258 }
2259
2260 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2261                                      int nid, nodemask_t *nmask)
2262 {
2263         struct page *page;
2264
2265         if (hstate_is_gigantic(h))
2266                 return NULL;
2267
2268         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2269         if (!page)
2270                 return NULL;
2271
2272         /* fresh huge pages are frozen */
2273         set_page_refcounted(page);
2274
2275         /*
2276          * We do not account these pages as surplus because they are only
2277          * temporary and will be released properly on the last reference
2278          */
2279         SetHPageTemporary(page);
2280
2281         return page;
2282 }
2283
2284 /*
2285  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2286  */
2287 static
2288 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2289                 struct vm_area_struct *vma, unsigned long addr)
2290 {
2291         struct page *page = NULL;
2292         struct mempolicy *mpol;
2293         gfp_t gfp_mask = htlb_alloc_mask(h);
2294         int nid;
2295         nodemask_t *nodemask;
2296
2297         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2298         if (mpol_is_preferred_many(mpol)) {
2299                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2300
2301                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2302                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2303
2304                 /* Fallback to all nodes if page==NULL */
2305                 nodemask = NULL;
2306         }
2307
2308         if (!page)
2309                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2310         mpol_cond_put(mpol);
2311         return page;
2312 }
2313
2314 /* page migration callback function */
2315 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2316                 nodemask_t *nmask, gfp_t gfp_mask)
2317 {
2318         spin_lock_irq(&hugetlb_lock);
2319         if (available_huge_pages(h)) {
2320                 struct page *page;
2321
2322                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2323                 if (page) {
2324                         spin_unlock_irq(&hugetlb_lock);
2325                         return page;
2326                 }
2327         }
2328         spin_unlock_irq(&hugetlb_lock);
2329
2330         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2331 }
2332
2333 /* mempolicy aware migration callback */
2334 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2335                 unsigned long address)
2336 {
2337         struct mempolicy *mpol;
2338         nodemask_t *nodemask;
2339         struct page *page;
2340         gfp_t gfp_mask;
2341         int node;
2342
2343         gfp_mask = htlb_alloc_mask(h);
2344         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2345         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2346         mpol_cond_put(mpol);
2347
2348         return page;
2349 }
2350
2351 /*
2352  * Increase the hugetlb pool such that it can accommodate a reservation
2353  * of size 'delta'.
2354  */
2355 static int gather_surplus_pages(struct hstate *h, long delta)
2356         __must_hold(&hugetlb_lock)
2357 {
2358         LIST_HEAD(surplus_list);
2359         struct page *page, *tmp;
2360         int ret;
2361         long i;
2362         long needed, allocated;
2363         bool alloc_ok = true;
2364
2365         lockdep_assert_held(&hugetlb_lock);
2366         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2367         if (needed <= 0) {
2368                 h->resv_huge_pages += delta;
2369                 return 0;
2370         }
2371
2372         allocated = 0;
2373
2374         ret = -ENOMEM;
2375 retry:
2376         spin_unlock_irq(&hugetlb_lock);
2377         for (i = 0; i < needed; i++) {
2378                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2379                                 NUMA_NO_NODE, NULL);
2380                 if (!page) {
2381                         alloc_ok = false;
2382                         break;
2383                 }
2384                 list_add(&page->lru, &surplus_list);
2385                 cond_resched();
2386         }
2387         allocated += i;
2388
2389         /*
2390          * After retaking hugetlb_lock, we need to recalculate 'needed'
2391          * because either resv_huge_pages or free_huge_pages may have changed.
2392          */
2393         spin_lock_irq(&hugetlb_lock);
2394         needed = (h->resv_huge_pages + delta) -
2395                         (h->free_huge_pages + allocated);
2396         if (needed > 0) {
2397                 if (alloc_ok)
2398                         goto retry;
2399                 /*
2400                  * We were not able to allocate enough pages to
2401                  * satisfy the entire reservation so we free what
2402                  * we've allocated so far.
2403                  */
2404                 goto free;
2405         }
2406         /*
2407          * The surplus_list now contains _at_least_ the number of extra pages
2408          * needed to accommodate the reservation.  Add the appropriate number
2409          * of pages to the hugetlb pool and free the extras back to the buddy
2410          * allocator.  Commit the entire reservation here to prevent another
2411          * process from stealing the pages as they are added to the pool but
2412          * before they are reserved.
2413          */
2414         needed += allocated;
2415         h->resv_huge_pages += delta;
2416         ret = 0;
2417
2418         /* Free the needed pages to the hugetlb pool */
2419         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2420                 if ((--needed) < 0)
2421                         break;
2422                 /* Add the page to the hugetlb allocator */
2423                 enqueue_huge_page(h, page);
2424         }
2425 free:
2426         spin_unlock_irq(&hugetlb_lock);
2427
2428         /*
2429          * Free unnecessary surplus pages to the buddy allocator.
2430          * Pages have no ref count, call free_huge_page directly.
2431          */
2432         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2433                 free_huge_page(page);
2434         spin_lock_irq(&hugetlb_lock);
2435
2436         return ret;
2437 }
2438
2439 /*
2440  * This routine has two main purposes:
2441  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2442  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2443  *    to the associated reservation map.
2444  * 2) Free any unused surplus pages that may have been allocated to satisfy
2445  *    the reservation.  As many as unused_resv_pages may be freed.
2446  */
2447 static void return_unused_surplus_pages(struct hstate *h,
2448                                         unsigned long unused_resv_pages)
2449 {
2450         unsigned long nr_pages;
2451         struct page *page;
2452         LIST_HEAD(page_list);
2453
2454         lockdep_assert_held(&hugetlb_lock);
2455         /* Uncommit the reservation */
2456         h->resv_huge_pages -= unused_resv_pages;
2457
2458         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2459                 goto out;
2460
2461         /*
2462          * Part (or even all) of the reservation could have been backed
2463          * by pre-allocated pages. Only free surplus pages.
2464          */
2465         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2466
2467         /*
2468          * We want to release as many surplus pages as possible, spread
2469          * evenly across all nodes with memory. Iterate across these nodes
2470          * until we can no longer free unreserved surplus pages. This occurs
2471          * when the nodes with surplus pages have no free pages.
2472          * remove_pool_huge_page() will balance the freed pages across the
2473          * on-line nodes with memory and will handle the hstate accounting.
2474          */
2475         while (nr_pages--) {
2476                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2477                 if (!page)
2478                         goto out;
2479
2480                 list_add(&page->lru, &page_list);
2481         }
2482
2483 out:
2484         spin_unlock_irq(&hugetlb_lock);
2485         update_and_free_pages_bulk(h, &page_list);
2486         spin_lock_irq(&hugetlb_lock);
2487 }
2488
2489
2490 /*
2491  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2492  * are used by the huge page allocation routines to manage reservations.
2493  *
2494  * vma_needs_reservation is called to determine if the huge page at addr
2495  * within the vma has an associated reservation.  If a reservation is
2496  * needed, the value 1 is returned.  The caller is then responsible for
2497  * managing the global reservation and subpool usage counts.  After
2498  * the huge page has been allocated, vma_commit_reservation is called
2499  * to add the page to the reservation map.  If the page allocation fails,
2500  * the reservation must be ended instead of committed.  vma_end_reservation
2501  * is called in such cases.
2502  *
2503  * In the normal case, vma_commit_reservation returns the same value
2504  * as the preceding vma_needs_reservation call.  The only time this
2505  * is not the case is if a reserve map was changed between calls.  It
2506  * is the responsibility of the caller to notice the difference and
2507  * take appropriate action.
2508  *
2509  * vma_add_reservation is used in error paths where a reservation must
2510  * be restored when a newly allocated huge page must be freed.  It is
2511  * to be called after calling vma_needs_reservation to determine if a
2512  * reservation exists.
2513  *
2514  * vma_del_reservation is used in error paths where an entry in the reserve
2515  * map was created during huge page allocation and must be removed.  It is to
2516  * be called after calling vma_needs_reservation to determine if a reservation
2517  * exists.
2518  */
2519 enum vma_resv_mode {
2520         VMA_NEEDS_RESV,
2521         VMA_COMMIT_RESV,
2522         VMA_END_RESV,
2523         VMA_ADD_RESV,
2524         VMA_DEL_RESV,
2525 };
2526 static long __vma_reservation_common(struct hstate *h,
2527                                 struct vm_area_struct *vma, unsigned long addr,
2528                                 enum vma_resv_mode mode)
2529 {
2530         struct resv_map *resv;
2531         pgoff_t idx;
2532         long ret;
2533         long dummy_out_regions_needed;
2534
2535         resv = vma_resv_map(vma);
2536         if (!resv)
2537                 return 1;
2538
2539         idx = vma_hugecache_offset(h, vma, addr);
2540         switch (mode) {
2541         case VMA_NEEDS_RESV:
2542                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2543                 /* We assume that vma_reservation_* routines always operate on
2544                  * 1 page, and that adding to resv map a 1 page entry can only
2545                  * ever require 1 region.
2546                  */
2547                 VM_BUG_ON(dummy_out_regions_needed != 1);
2548                 break;
2549         case VMA_COMMIT_RESV:
2550                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551                 /* region_add calls of range 1 should never fail. */
2552                 VM_BUG_ON(ret < 0);
2553                 break;
2554         case VMA_END_RESV:
2555                 region_abort(resv, idx, idx + 1, 1);
2556                 ret = 0;
2557                 break;
2558         case VMA_ADD_RESV:
2559                 if (vma->vm_flags & VM_MAYSHARE) {
2560                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561                         /* region_add calls of range 1 should never fail. */
2562                         VM_BUG_ON(ret < 0);
2563                 } else {
2564                         region_abort(resv, idx, idx + 1, 1);
2565                         ret = region_del(resv, idx, idx + 1);
2566                 }
2567                 break;
2568         case VMA_DEL_RESV:
2569                 if (vma->vm_flags & VM_MAYSHARE) {
2570                         region_abort(resv, idx, idx + 1, 1);
2571                         ret = region_del(resv, idx, idx + 1);
2572                 } else {
2573                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2574                         /* region_add calls of range 1 should never fail. */
2575                         VM_BUG_ON(ret < 0);
2576                 }
2577                 break;
2578         default:
2579                 BUG();
2580         }
2581
2582         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2583                 return ret;
2584         /*
2585          * We know private mapping must have HPAGE_RESV_OWNER set.
2586          *
2587          * In most cases, reserves always exist for private mappings.
2588          * However, a file associated with mapping could have been
2589          * hole punched or truncated after reserves were consumed.
2590          * As subsequent fault on such a range will not use reserves.
2591          * Subtle - The reserve map for private mappings has the
2592          * opposite meaning than that of shared mappings.  If NO
2593          * entry is in the reserve map, it means a reservation exists.
2594          * If an entry exists in the reserve map, it means the
2595          * reservation has already been consumed.  As a result, the
2596          * return value of this routine is the opposite of the
2597          * value returned from reserve map manipulation routines above.
2598          */
2599         if (ret > 0)
2600                 return 0;
2601         if (ret == 0)
2602                 return 1;
2603         return ret;
2604 }
2605
2606 static long vma_needs_reservation(struct hstate *h,
2607                         struct vm_area_struct *vma, unsigned long addr)
2608 {
2609         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2610 }
2611
2612 static long vma_commit_reservation(struct hstate *h,
2613                         struct vm_area_struct *vma, unsigned long addr)
2614 {
2615         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2616 }
2617
2618 static void vma_end_reservation(struct hstate *h,
2619                         struct vm_area_struct *vma, unsigned long addr)
2620 {
2621         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2622 }
2623
2624 static long vma_add_reservation(struct hstate *h,
2625                         struct vm_area_struct *vma, unsigned long addr)
2626 {
2627         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2628 }
2629
2630 static long vma_del_reservation(struct hstate *h,
2631                         struct vm_area_struct *vma, unsigned long addr)
2632 {
2633         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2634 }
2635
2636 /*
2637  * This routine is called to restore reservation information on error paths.
2638  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2639  * the hugetlb mutex should remain held when calling this routine.
2640  *
2641  * It handles two specific cases:
2642  * 1) A reservation was in place and the page consumed the reservation.
2643  *    HPageRestoreReserve is set in the page.
2644  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2645  *    not set.  However, alloc_huge_page always updates the reserve map.
2646  *
2647  * In case 1, free_huge_page later in the error path will increment the
2648  * global reserve count.  But, free_huge_page does not have enough context
2649  * to adjust the reservation map.  This case deals primarily with private
2650  * mappings.  Adjust the reserve map here to be consistent with global
2651  * reserve count adjustments to be made by free_huge_page.  Make sure the
2652  * reserve map indicates there is a reservation present.
2653  *
2654  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2655  */
2656 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2657                         unsigned long address, struct page *page)
2658 {
2659         long rc = vma_needs_reservation(h, vma, address);
2660
2661         if (HPageRestoreReserve(page)) {
2662                 if (unlikely(rc < 0))
2663                         /*
2664                          * Rare out of memory condition in reserve map
2665                          * manipulation.  Clear HPageRestoreReserve so that
2666                          * global reserve count will not be incremented
2667                          * by free_huge_page.  This will make it appear
2668                          * as though the reservation for this page was
2669                          * consumed.  This may prevent the task from
2670                          * faulting in the page at a later time.  This
2671                          * is better than inconsistent global huge page
2672                          * accounting of reserve counts.
2673                          */
2674                         ClearHPageRestoreReserve(page);
2675                 else if (rc)
2676                         (void)vma_add_reservation(h, vma, address);
2677                 else
2678                         vma_end_reservation(h, vma, address);
2679         } else {
2680                 if (!rc) {
2681                         /*
2682                          * This indicates there is an entry in the reserve map
2683                          * not added by alloc_huge_page.  We know it was added
2684                          * before the alloc_huge_page call, otherwise
2685                          * HPageRestoreReserve would be set on the page.
2686                          * Remove the entry so that a subsequent allocation
2687                          * does not consume a reservation.
2688                          */
2689                         rc = vma_del_reservation(h, vma, address);
2690                         if (rc < 0)
2691                                 /*
2692                                  * VERY rare out of memory condition.  Since
2693                                  * we can not delete the entry, set
2694                                  * HPageRestoreReserve so that the reserve
2695                                  * count will be incremented when the page
2696                                  * is freed.  This reserve will be consumed
2697                                  * on a subsequent allocation.
2698                                  */
2699                                 SetHPageRestoreReserve(page);
2700                 } else if (rc < 0) {
2701                         /*
2702                          * Rare out of memory condition from
2703                          * vma_needs_reservation call.  Memory allocation is
2704                          * only attempted if a new entry is needed.  Therefore,
2705                          * this implies there is not an entry in the
2706                          * reserve map.
2707                          *
2708                          * For shared mappings, no entry in the map indicates
2709                          * no reservation.  We are done.
2710                          */
2711                         if (!(vma->vm_flags & VM_MAYSHARE))
2712                                 /*
2713                                  * For private mappings, no entry indicates
2714                                  * a reservation is present.  Since we can
2715                                  * not add an entry, set SetHPageRestoreReserve
2716                                  * on the page so reserve count will be
2717                                  * incremented when freed.  This reserve will
2718                                  * be consumed on a subsequent allocation.
2719                                  */
2720                                 SetHPageRestoreReserve(page);
2721                 } else
2722                         /*
2723                          * No reservation present, do nothing
2724                          */
2725                          vma_end_reservation(h, vma, address);
2726         }
2727 }
2728
2729 /*
2730  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2731  * @h: struct hstate old page belongs to
2732  * @old_page: Old page to dissolve
2733  * @list: List to isolate the page in case we need to
2734  * Returns 0 on success, otherwise negated error.
2735  */
2736 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2737                                         struct list_head *list)
2738 {
2739         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2740         int nid = page_to_nid(old_page);
2741         struct page *new_page;
2742         int ret = 0;
2743
2744         /*
2745          * Before dissolving the page, we need to allocate a new one for the
2746          * pool to remain stable.  Here, we allocate the page and 'prep' it
2747          * by doing everything but actually updating counters and adding to
2748          * the pool.  This simplifies and let us do most of the processing
2749          * under the lock.
2750          */
2751         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2752         if (!new_page)
2753                 return -ENOMEM;
2754         __prep_new_huge_page(h, new_page);
2755
2756 retry:
2757         spin_lock_irq(&hugetlb_lock);
2758         if (!PageHuge(old_page)) {
2759                 /*
2760                  * Freed from under us. Drop new_page too.
2761                  */
2762                 goto free_new;
2763         } else if (page_count(old_page)) {
2764                 /*
2765                  * Someone has grabbed the page, try to isolate it here.
2766                  * Fail with -EBUSY if not possible.
2767                  */
2768                 spin_unlock_irq(&hugetlb_lock);
2769                 ret = isolate_hugetlb(old_page, list);
2770                 spin_lock_irq(&hugetlb_lock);
2771                 goto free_new;
2772         } else if (!HPageFreed(old_page)) {
2773                 /*
2774                  * Page's refcount is 0 but it has not been enqueued in the
2775                  * freelist yet. Race window is small, so we can succeed here if
2776                  * we retry.
2777                  */
2778                 spin_unlock_irq(&hugetlb_lock);
2779                 cond_resched();
2780                 goto retry;
2781         } else {
2782                 /*
2783                  * Ok, old_page is still a genuine free hugepage. Remove it from
2784                  * the freelist and decrease the counters. These will be
2785                  * incremented again when calling __prep_account_new_huge_page()
2786                  * and enqueue_huge_page() for new_page. The counters will remain
2787                  * stable since this happens under the lock.
2788                  */
2789                 remove_hugetlb_page(h, old_page, false);
2790
2791                 /*
2792                  * Ref count on new page is already zero as it was dropped
2793                  * earlier.  It can be directly added to the pool free list.
2794                  */
2795                 __prep_account_new_huge_page(h, nid);
2796                 enqueue_huge_page(h, new_page);
2797
2798                 /*
2799                  * Pages have been replaced, we can safely free the old one.
2800                  */
2801                 spin_unlock_irq(&hugetlb_lock);
2802                 update_and_free_page(h, old_page, false);
2803         }
2804
2805         return ret;
2806
2807 free_new:
2808         spin_unlock_irq(&hugetlb_lock);
2809         /* Page has a zero ref count, but needs a ref to be freed */
2810         set_page_refcounted(new_page);
2811         update_and_free_page(h, new_page, false);
2812
2813         return ret;
2814 }
2815
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818         struct hstate *h;
2819         struct page *head;
2820         int ret = -EBUSY;
2821
2822         /*
2823          * The page might have been dissolved from under our feet, so make sure
2824          * to carefully check the state under the lock.
2825          * Return success when racing as if we dissolved the page ourselves.
2826          */
2827         spin_lock_irq(&hugetlb_lock);
2828         if (PageHuge(page)) {
2829                 head = compound_head(page);
2830                 h = page_hstate(head);
2831         } else {
2832                 spin_unlock_irq(&hugetlb_lock);
2833                 return 0;
2834         }
2835         spin_unlock_irq(&hugetlb_lock);
2836
2837         /*
2838          * Fence off gigantic pages as there is a cyclic dependency between
2839          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840          * of bailing out right away without further retrying.
2841          */
2842         if (hstate_is_gigantic(h))
2843                 return -ENOMEM;
2844
2845         if (page_count(head) && !isolate_hugetlb(head, list))
2846                 ret = 0;
2847         else if (!page_count(head))
2848                 ret = alloc_and_dissolve_huge_page(h, head, list);
2849
2850         return ret;
2851 }
2852
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854                                     unsigned long addr, int avoid_reserve)
2855 {
2856         struct hugepage_subpool *spool = subpool_vma(vma);
2857         struct hstate *h = hstate_vma(vma);
2858         struct page *page;
2859         long map_chg, map_commit;
2860         long gbl_chg;
2861         int ret, idx;
2862         struct hugetlb_cgroup *h_cg;
2863         bool deferred_reserve;
2864
2865         idx = hstate_index(h);
2866         /*
2867          * Examine the region/reserve map to determine if the process
2868          * has a reservation for the page to be allocated.  A return
2869          * code of zero indicates a reservation exists (no change).
2870          */
2871         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872         if (map_chg < 0)
2873                 return ERR_PTR(-ENOMEM);
2874
2875         /*
2876          * Processes that did not create the mapping will have no
2877          * reserves as indicated by the region/reserve map. Check
2878          * that the allocation will not exceed the subpool limit.
2879          * Allocations for MAP_NORESERVE mappings also need to be
2880          * checked against any subpool limit.
2881          */
2882         if (map_chg || avoid_reserve) {
2883                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884                 if (gbl_chg < 0) {
2885                         vma_end_reservation(h, vma, addr);
2886                         return ERR_PTR(-ENOSPC);
2887                 }
2888
2889                 /*
2890                  * Even though there was no reservation in the region/reserve
2891                  * map, there could be reservations associated with the
2892                  * subpool that can be used.  This would be indicated if the
2893                  * return value of hugepage_subpool_get_pages() is zero.
2894                  * However, if avoid_reserve is specified we still avoid even
2895                  * the subpool reservations.
2896                  */
2897                 if (avoid_reserve)
2898                         gbl_chg = 1;
2899         }
2900
2901         /* If this allocation is not consuming a reservation, charge it now.
2902          */
2903         deferred_reserve = map_chg || avoid_reserve;
2904         if (deferred_reserve) {
2905                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906                         idx, pages_per_huge_page(h), &h_cg);
2907                 if (ret)
2908                         goto out_subpool_put;
2909         }
2910
2911         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912         if (ret)
2913                 goto out_uncharge_cgroup_reservation;
2914
2915         spin_lock_irq(&hugetlb_lock);
2916         /*
2917          * glb_chg is passed to indicate whether or not a page must be taken
2918          * from the global free pool (global change).  gbl_chg == 0 indicates
2919          * a reservation exists for the allocation.
2920          */
2921         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922         if (!page) {
2923                 spin_unlock_irq(&hugetlb_lock);
2924                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925                 if (!page)
2926                         goto out_uncharge_cgroup;
2927                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928                         SetHPageRestoreReserve(page);
2929                         h->resv_huge_pages--;
2930                 }
2931                 spin_lock_irq(&hugetlb_lock);
2932                 list_add(&page->lru, &h->hugepage_activelist);
2933                 set_page_refcounted(page);
2934                 /* Fall through */
2935         }
2936         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937         /* If allocation is not consuming a reservation, also store the
2938          * hugetlb_cgroup pointer on the page.
2939          */
2940         if (deferred_reserve) {
2941                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2942                                                   h_cg, page);
2943         }
2944
2945         spin_unlock_irq(&hugetlb_lock);
2946
2947         hugetlb_set_page_subpool(page, spool);
2948
2949         map_commit = vma_commit_reservation(h, vma, addr);
2950         if (unlikely(map_chg > map_commit)) {
2951                 /*
2952                  * The page was added to the reservation map between
2953                  * vma_needs_reservation and vma_commit_reservation.
2954                  * This indicates a race with hugetlb_reserve_pages.
2955                  * Adjust for the subpool count incremented above AND
2956                  * in hugetlb_reserve_pages for the same page.  Also,
2957                  * the reservation count added in hugetlb_reserve_pages
2958                  * no longer applies.
2959                  */
2960                 long rsv_adjust;
2961
2962                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963                 hugetlb_acct_memory(h, -rsv_adjust);
2964                 if (deferred_reserve)
2965                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966                                         pages_per_huge_page(h), page);
2967         }
2968         return page;
2969
2970 out_uncharge_cgroup:
2971         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972 out_uncharge_cgroup_reservation:
2973         if (deferred_reserve)
2974                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2975                                                     h_cg);
2976 out_subpool_put:
2977         if (map_chg || avoid_reserve)
2978                 hugepage_subpool_put_pages(spool, 1);
2979         vma_end_reservation(h, vma, addr);
2980         return ERR_PTR(-ENOSPC);
2981 }
2982
2983 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2986 {
2987         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2988         int nr_nodes, node;
2989
2990         /* do node specific alloc */
2991         if (nid != NUMA_NO_NODE) {
2992                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2994                 if (!m)
2995                         return 0;
2996                 goto found;
2997         }
2998         /* allocate from next node when distributing huge pages */
2999         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000                 m = memblock_alloc_try_nid_raw(
3001                                 huge_page_size(h), huge_page_size(h),
3002                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3003                 /*
3004                  * Use the beginning of the huge page to store the
3005                  * huge_bootmem_page struct (until gather_bootmem
3006                  * puts them into the mem_map).
3007                  */
3008                 if (!m)
3009                         return 0;
3010                 goto found;
3011         }
3012
3013 found:
3014         /* Put them into a private list first because mem_map is not up yet */
3015         INIT_LIST_HEAD(&m->list);
3016         list_add(&m->list, &huge_boot_pages);
3017         m->hstate = h;
3018         return 1;
3019 }
3020
3021 /*
3022  * Put bootmem huge pages into the standard lists after mem_map is up.
3023  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024  */
3025 static void __init gather_bootmem_prealloc(void)
3026 {
3027         struct huge_bootmem_page *m;
3028
3029         list_for_each_entry(m, &huge_boot_pages, list) {
3030                 struct page *page = virt_to_page(m);
3031                 struct hstate *h = m->hstate;
3032
3033                 VM_BUG_ON(!hstate_is_gigantic(h));
3034                 WARN_ON(page_count(page) != 1);
3035                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036                         WARN_ON(PageReserved(page));
3037                         prep_new_huge_page(h, page, page_to_nid(page));
3038                         free_huge_page(page); /* add to the hugepage allocator */
3039                 } else {
3040                         /* VERY unlikely inflated ref count on a tail page */
3041                         free_gigantic_page(page, huge_page_order(h));
3042                 }
3043
3044                 /*
3045                  * We need to restore the 'stolen' pages to totalram_pages
3046                  * in order to fix confusing memory reports from free(1) and
3047                  * other side-effects, like CommitLimit going negative.
3048                  */
3049                 adjust_managed_page_count(page, pages_per_huge_page(h));
3050                 cond_resched();
3051         }
3052 }
3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3054 {
3055         unsigned long i;
3056         char buf[32];
3057
3058         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059                 if (hstate_is_gigantic(h)) {
3060                         if (!alloc_bootmem_huge_page(h, nid))
3061                                 break;
3062                 } else {
3063                         struct page *page;
3064                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065
3066                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067                                         &node_states[N_MEMORY], NULL);
3068                         if (!page)
3069                                 break;
3070                         free_huge_page(page); /* free it into the hugepage allocator */
3071                 }
3072                 cond_resched();
3073         }
3074         if (i == h->max_huge_pages_node[nid])
3075                 return;
3076
3077         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3079                 h->max_huge_pages_node[nid], buf, nid, i);
3080         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081         h->max_huge_pages_node[nid] = i;
3082 }
3083
3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3085 {
3086         unsigned long i;
3087         nodemask_t *node_alloc_noretry;
3088         bool node_specific_alloc = false;
3089
3090         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3093                 return;
3094         }
3095
3096         /* do node specific alloc */
3097         for_each_online_node(i) {
3098                 if (h->max_huge_pages_node[i] > 0) {
3099                         hugetlb_hstate_alloc_pages_onenode(h, i);
3100                         node_specific_alloc = true;
3101                 }
3102         }
3103
3104         if (node_specific_alloc)
3105                 return;
3106
3107         /* below will do all node balanced alloc */
3108         if (!hstate_is_gigantic(h)) {
3109                 /*
3110                  * Bit mask controlling how hard we retry per-node allocations.
3111                  * Ignore errors as lower level routines can deal with
3112                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3113                  * time, we are likely in bigger trouble.
3114                  */
3115                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3116                                                 GFP_KERNEL);
3117         } else {
3118                 /* allocations done at boot time */
3119                 node_alloc_noretry = NULL;
3120         }
3121
3122         /* bit mask controlling how hard we retry per-node allocations */
3123         if (node_alloc_noretry)
3124                 nodes_clear(*node_alloc_noretry);
3125
3126         for (i = 0; i < h->max_huge_pages; ++i) {
3127                 if (hstate_is_gigantic(h)) {
3128                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3129                                 break;
3130                 } else if (!alloc_pool_huge_page(h,
3131                                          &node_states[N_MEMORY],
3132                                          node_alloc_noretry))
3133                         break;
3134                 cond_resched();
3135         }
3136         if (i < h->max_huge_pages) {
3137                 char buf[32];
3138
3139                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3141                         h->max_huge_pages, buf, i);
3142                 h->max_huge_pages = i;
3143         }
3144         kfree(node_alloc_noretry);
3145 }
3146
3147 static void __init hugetlb_init_hstates(void)
3148 {
3149         struct hstate *h, *h2;
3150
3151         for_each_hstate(h) {
3152                 /* oversize hugepages were init'ed in early boot */
3153                 if (!hstate_is_gigantic(h))
3154                         hugetlb_hstate_alloc_pages(h);
3155
3156                 /*
3157                  * Set demote order for each hstate.  Note that
3158                  * h->demote_order is initially 0.
3159                  * - We can not demote gigantic pages if runtime freeing
3160                  *   is not supported, so skip this.
3161                  * - If CMA allocation is possible, we can not demote
3162                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3163                  */
3164                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3165                         continue;
3166                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3167                         continue;
3168                 for_each_hstate(h2) {
3169                         if (h2 == h)
3170                                 continue;
3171                         if (h2->order < h->order &&
3172                             h2->order > h->demote_order)
3173                                 h->demote_order = h2->order;
3174                 }
3175         }
3176 }
3177
3178 static void __init report_hugepages(void)
3179 {
3180         struct hstate *h;
3181
3182         for_each_hstate(h) {
3183                 char buf[32];
3184
3185                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3186                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3187                         buf, h->free_huge_pages);
3188                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3189                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3190         }
3191 }
3192
3193 #ifdef CONFIG_HIGHMEM
3194 static void try_to_free_low(struct hstate *h, unsigned long count,
3195                                                 nodemask_t *nodes_allowed)
3196 {
3197         int i;
3198         LIST_HEAD(page_list);
3199
3200         lockdep_assert_held(&hugetlb_lock);
3201         if (hstate_is_gigantic(h))
3202                 return;
3203
3204         /*
3205          * Collect pages to be freed on a list, and free after dropping lock
3206          */
3207         for_each_node_mask(i, *nodes_allowed) {
3208                 struct page *page, *next;
3209                 struct list_head *freel = &h->hugepage_freelists[i];
3210                 list_for_each_entry_safe(page, next, freel, lru) {
3211                         if (count >= h->nr_huge_pages)
3212                                 goto out;
3213                         if (PageHighMem(page))
3214                                 continue;
3215                         remove_hugetlb_page(h, page, false);
3216                         list_add(&page->lru, &page_list);
3217                 }
3218         }
3219
3220 out:
3221         spin_unlock_irq(&hugetlb_lock);
3222         update_and_free_pages_bulk(h, &page_list);
3223         spin_lock_irq(&hugetlb_lock);
3224 }
3225 #else
3226 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3227                                                 nodemask_t *nodes_allowed)
3228 {
3229 }
3230 #endif
3231
3232 /*
3233  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3234  * balanced by operating on them in a round-robin fashion.
3235  * Returns 1 if an adjustment was made.
3236  */
3237 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3238                                 int delta)
3239 {
3240         int nr_nodes, node;
3241
3242         lockdep_assert_held(&hugetlb_lock);
3243         VM_BUG_ON(delta != -1 && delta != 1);
3244
3245         if (delta < 0) {
3246                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3247                         if (h->surplus_huge_pages_node[node])
3248                                 goto found;
3249                 }
3250         } else {
3251                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3252                         if (h->surplus_huge_pages_node[node] <
3253                                         h->nr_huge_pages_node[node])
3254                                 goto found;
3255                 }
3256         }
3257         return 0;
3258
3259 found:
3260         h->surplus_huge_pages += delta;
3261         h->surplus_huge_pages_node[node] += delta;
3262         return 1;
3263 }
3264
3265 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3266 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3267                               nodemask_t *nodes_allowed)
3268 {
3269         unsigned long min_count, ret;
3270         struct page *page;
3271         LIST_HEAD(page_list);
3272         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3273
3274         /*
3275          * Bit mask controlling how hard we retry per-node allocations.
3276          * If we can not allocate the bit mask, do not attempt to allocate
3277          * the requested huge pages.
3278          */
3279         if (node_alloc_noretry)
3280                 nodes_clear(*node_alloc_noretry);
3281         else
3282                 return -ENOMEM;
3283
3284         /*
3285          * resize_lock mutex prevents concurrent adjustments to number of
3286          * pages in hstate via the proc/sysfs interfaces.
3287          */
3288         mutex_lock(&h->resize_lock);
3289         flush_free_hpage_work(h);
3290         spin_lock_irq(&hugetlb_lock);
3291
3292         /*
3293          * Check for a node specific request.
3294          * Changing node specific huge page count may require a corresponding
3295          * change to the global count.  In any case, the passed node mask
3296          * (nodes_allowed) will restrict alloc/free to the specified node.
3297          */
3298         if (nid != NUMA_NO_NODE) {
3299                 unsigned long old_count = count;
3300
3301                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3302                 /*
3303                  * User may have specified a large count value which caused the
3304                  * above calculation to overflow.  In this case, they wanted
3305                  * to allocate as many huge pages as possible.  Set count to
3306                  * largest possible value to align with their intention.
3307                  */
3308                 if (count < old_count)
3309                         count = ULONG_MAX;
3310         }
3311
3312         /*
3313          * Gigantic pages runtime allocation depend on the capability for large
3314          * page range allocation.
3315          * If the system does not provide this feature, return an error when
3316          * the user tries to allocate gigantic pages but let the user free the
3317          * boottime allocated gigantic pages.
3318          */
3319         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3320                 if (count > persistent_huge_pages(h)) {
3321                         spin_unlock_irq(&hugetlb_lock);
3322                         mutex_unlock(&h->resize_lock);
3323                         NODEMASK_FREE(node_alloc_noretry);
3324                         return -EINVAL;
3325                 }
3326                 /* Fall through to decrease pool */
3327         }
3328
3329         /*
3330          * Increase the pool size
3331          * First take pages out of surplus state.  Then make up the
3332          * remaining difference by allocating fresh huge pages.
3333          *
3334          * We might race with alloc_surplus_huge_page() here and be unable
3335          * to convert a surplus huge page to a normal huge page. That is
3336          * not critical, though, it just means the overall size of the
3337          * pool might be one hugepage larger than it needs to be, but
3338          * within all the constraints specified by the sysctls.
3339          */
3340         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3341                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3342                         break;
3343         }
3344
3345         while (count > persistent_huge_pages(h)) {
3346                 /*
3347                  * If this allocation races such that we no longer need the
3348                  * page, free_huge_page will handle it by freeing the page
3349                  * and reducing the surplus.
3350                  */
3351                 spin_unlock_irq(&hugetlb_lock);
3352
3353                 /* yield cpu to avoid soft lockup */
3354                 cond_resched();
3355
3356                 ret = alloc_pool_huge_page(h, nodes_allowed,
3357                                                 node_alloc_noretry);
3358                 spin_lock_irq(&hugetlb_lock);
3359                 if (!ret)
3360                         goto out;
3361
3362                 /* Bail for signals. Probably ctrl-c from user */
3363                 if (signal_pending(current))
3364                         goto out;
3365         }
3366
3367         /*
3368          * Decrease the pool size
3369          * First return free pages to the buddy allocator (being careful
3370          * to keep enough around to satisfy reservations).  Then place
3371          * pages into surplus state as needed so the pool will shrink
3372          * to the desired size as pages become free.
3373          *
3374          * By placing pages into the surplus state independent of the
3375          * overcommit value, we are allowing the surplus pool size to
3376          * exceed overcommit. There are few sane options here. Since
3377          * alloc_surplus_huge_page() is checking the global counter,
3378          * though, we'll note that we're not allowed to exceed surplus
3379          * and won't grow the pool anywhere else. Not until one of the
3380          * sysctls are changed, or the surplus pages go out of use.
3381          */
3382         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3383         min_count = max(count, min_count);
3384         try_to_free_low(h, min_count, nodes_allowed);
3385
3386         /*
3387          * Collect pages to be removed on list without dropping lock
3388          */
3389         while (min_count < persistent_huge_pages(h)) {
3390                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3391                 if (!page)
3392                         break;
3393
3394                 list_add(&page->lru, &page_list);
3395         }
3396         /* free the pages after dropping lock */
3397         spin_unlock_irq(&hugetlb_lock);
3398         update_and_free_pages_bulk(h, &page_list);
3399         flush_free_hpage_work(h);
3400         spin_lock_irq(&hugetlb_lock);
3401
3402         while (count < persistent_huge_pages(h)) {
3403                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3404                         break;
3405         }
3406 out:
3407         h->max_huge_pages = persistent_huge_pages(h);
3408         spin_unlock_irq(&hugetlb_lock);
3409         mutex_unlock(&h->resize_lock);
3410
3411         NODEMASK_FREE(node_alloc_noretry);
3412
3413         return 0;
3414 }
3415
3416 static int demote_free_huge_page(struct hstate *h, struct page *page)
3417 {
3418         int i, nid = page_to_nid(page);
3419         struct hstate *target_hstate;
3420         struct page *subpage;
3421         int rc = 0;
3422
3423         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424
3425         remove_hugetlb_page_for_demote(h, page, false);
3426         spin_unlock_irq(&hugetlb_lock);
3427
3428         rc = hugetlb_vmemmap_restore(h, page);
3429         if (rc) {
3430                 /* Allocation of vmemmmap failed, we can not demote page */
3431                 spin_lock_irq(&hugetlb_lock);
3432                 set_page_refcounted(page);
3433                 add_hugetlb_page(h, page, false);
3434                 return rc;
3435         }
3436
3437         /*
3438          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439          * sizes as it will not ref count pages.
3440          */
3441         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442
3443         /*
3444          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445          * Without the mutex, pages added to target hstate could be marked
3446          * as surplus.
3447          *
3448          * Note that we already hold h->resize_lock.  To prevent deadlock,
3449          * use the convention of always taking larger size hstate mutex first.
3450          */
3451         mutex_lock(&target_hstate->resize_lock);
3452         for (i = 0; i < pages_per_huge_page(h);
3453                                 i += pages_per_huge_page(target_hstate)) {
3454                 subpage = nth_page(page, i);
3455                 if (hstate_is_gigantic(target_hstate))
3456                         prep_compound_gigantic_page_for_demote(subpage,
3457                                                         target_hstate->order);
3458                 else
3459                         prep_compound_page(subpage, target_hstate->order);
3460                 set_page_private(subpage, 0);
3461                 prep_new_huge_page(target_hstate, subpage, nid);
3462                 free_huge_page(subpage);
3463         }
3464         mutex_unlock(&target_hstate->resize_lock);
3465
3466         spin_lock_irq(&hugetlb_lock);
3467
3468         /*
3469          * Not absolutely necessary, but for consistency update max_huge_pages
3470          * based on pool changes for the demoted page.
3471          */
3472         h->max_huge_pages--;
3473         target_hstate->max_huge_pages +=
3474                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3475
3476         return rc;
3477 }
3478
3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480         __must_hold(&hugetlb_lock)
3481 {
3482         int nr_nodes, node;
3483         struct page *page;
3484
3485         lockdep_assert_held(&hugetlb_lock);
3486
3487         /* We should never get here if no demote order */
3488         if (!h->demote_order) {
3489                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490                 return -EINVAL;         /* internal error */
3491         }
3492
3493         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495                         if (PageHWPoison(page))
3496                                 continue;
3497
3498                         return demote_free_huge_page(h, page);
3499                 }
3500         }
3501
3502         /*
3503          * Only way to get here is if all pages on free lists are poisoned.
3504          * Return -EBUSY so that caller will not retry.
3505          */
3506         return -EBUSY;
3507 }
3508
3509 #define HSTATE_ATTR_RO(_name) \
3510         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511
3512 #define HSTATE_ATTR_WO(_name) \
3513         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514
3515 #define HSTATE_ATTR(_name) \
3516         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3517
3518 static struct kobject *hugepages_kobj;
3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520
3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522
3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3524 {
3525         int i;
3526
3527         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528                 if (hstate_kobjs[i] == kobj) {
3529                         if (nidp)
3530                                 *nidp = NUMA_NO_NODE;
3531                         return &hstates[i];
3532                 }
3533
3534         return kobj_to_node_hstate(kobj, nidp);
3535 }
3536
3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538                                         struct kobj_attribute *attr, char *buf)
3539 {
3540         struct hstate *h;
3541         unsigned long nr_huge_pages;
3542         int nid;
3543
3544         h = kobj_to_hstate(kobj, &nid);
3545         if (nid == NUMA_NO_NODE)
3546                 nr_huge_pages = h->nr_huge_pages;
3547         else
3548                 nr_huge_pages = h->nr_huge_pages_node[nid];
3549
3550         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3551 }
3552
3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554                                            struct hstate *h, int nid,
3555                                            unsigned long count, size_t len)
3556 {
3557         int err;
3558         nodemask_t nodes_allowed, *n_mask;
3559
3560         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3561                 return -EINVAL;
3562
3563         if (nid == NUMA_NO_NODE) {
3564                 /*
3565                  * global hstate attribute
3566                  */
3567                 if (!(obey_mempolicy &&
3568                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3569                         n_mask = &node_states[N_MEMORY];
3570                 else
3571                         n_mask = &nodes_allowed;
3572         } else {
3573                 /*
3574                  * Node specific request.  count adjustment happens in
3575                  * set_max_huge_pages() after acquiring hugetlb_lock.
3576                  */
3577                 init_nodemask_of_node(&nodes_allowed, nid);
3578                 n_mask = &nodes_allowed;
3579         }
3580
3581         err = set_max_huge_pages(h, count, nid, n_mask);
3582
3583         return err ? err : len;
3584 }
3585
3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587                                          struct kobject *kobj, const char *buf,
3588                                          size_t len)
3589 {
3590         struct hstate *h;
3591         unsigned long count;
3592         int nid;
3593         int err;
3594
3595         err = kstrtoul(buf, 10, &count);
3596         if (err)
3597                 return err;
3598
3599         h = kobj_to_hstate(kobj, &nid);
3600         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3601 }
3602
3603 static ssize_t nr_hugepages_show(struct kobject *kobj,
3604                                        struct kobj_attribute *attr, char *buf)
3605 {
3606         return nr_hugepages_show_common(kobj, attr, buf);
3607 }
3608
3609 static ssize_t nr_hugepages_store(struct kobject *kobj,
3610                struct kobj_attribute *attr, const char *buf, size_t len)
3611 {
3612         return nr_hugepages_store_common(false, kobj, buf, len);
3613 }
3614 HSTATE_ATTR(nr_hugepages);
3615
3616 #ifdef CONFIG_NUMA
3617
3618 /*
3619  * hstate attribute for optionally mempolicy-based constraint on persistent
3620  * huge page alloc/free.
3621  */
3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623                                            struct kobj_attribute *attr,
3624                                            char *buf)
3625 {
3626         return nr_hugepages_show_common(kobj, attr, buf);
3627 }
3628
3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630                struct kobj_attribute *attr, const char *buf, size_t len)
3631 {
3632         return nr_hugepages_store_common(true, kobj, buf, len);
3633 }
3634 HSTATE_ATTR(nr_hugepages_mempolicy);
3635 #endif
3636
3637
3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639                                         struct kobj_attribute *attr, char *buf)
3640 {
3641         struct hstate *h = kobj_to_hstate(kobj, NULL);
3642         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3643 }
3644
3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646                 struct kobj_attribute *attr, const char *buf, size_t count)
3647 {
3648         int err;
3649         unsigned long input;
3650         struct hstate *h = kobj_to_hstate(kobj, NULL);
3651
3652         if (hstate_is_gigantic(h))
3653                 return -EINVAL;
3654
3655         err = kstrtoul(buf, 10, &input);
3656         if (err)
3657                 return err;
3658
3659         spin_lock_irq(&hugetlb_lock);
3660         h->nr_overcommit_huge_pages = input;
3661         spin_unlock_irq(&hugetlb_lock);
3662
3663         return count;
3664 }
3665 HSTATE_ATTR(nr_overcommit_hugepages);
3666
3667 static ssize_t free_hugepages_show(struct kobject *kobj,
3668                                         struct kobj_attribute *attr, char *buf)
3669 {
3670         struct hstate *h;
3671         unsigned long free_huge_pages;
3672         int nid;
3673
3674         h = kobj_to_hstate(kobj, &nid);
3675         if (nid == NUMA_NO_NODE)
3676                 free_huge_pages = h->free_huge_pages;
3677         else
3678                 free_huge_pages = h->free_huge_pages_node[nid];
3679
3680         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3681 }
3682 HSTATE_ATTR_RO(free_hugepages);
3683
3684 static ssize_t resv_hugepages_show(struct kobject *kobj,
3685                                         struct kobj_attribute *attr, char *buf)
3686 {
3687         struct hstate *h = kobj_to_hstate(kobj, NULL);
3688         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3689 }
3690 HSTATE_ATTR_RO(resv_hugepages);
3691
3692 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693                                         struct kobj_attribute *attr, char *buf)
3694 {
3695         struct hstate *h;
3696         unsigned long surplus_huge_pages;
3697         int nid;
3698
3699         h = kobj_to_hstate(kobj, &nid);
3700         if (nid == NUMA_NO_NODE)
3701                 surplus_huge_pages = h->surplus_huge_pages;
3702         else
3703                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704
3705         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3706 }
3707 HSTATE_ATTR_RO(surplus_hugepages);
3708
3709 static ssize_t demote_store(struct kobject *kobj,
3710                struct kobj_attribute *attr, const char *buf, size_t len)
3711 {
3712         unsigned long nr_demote;
3713         unsigned long nr_available;
3714         nodemask_t nodes_allowed, *n_mask;
3715         struct hstate *h;
3716         int err;
3717         int nid;
3718
3719         err = kstrtoul(buf, 10, &nr_demote);
3720         if (err)
3721                 return err;
3722         h = kobj_to_hstate(kobj, &nid);
3723
3724         if (nid != NUMA_NO_NODE) {
3725                 init_nodemask_of_node(&nodes_allowed, nid);
3726                 n_mask = &nodes_allowed;
3727         } else {
3728                 n_mask = &node_states[N_MEMORY];
3729         }
3730
3731         /* Synchronize with other sysfs operations modifying huge pages */
3732         mutex_lock(&h->resize_lock);
3733         spin_lock_irq(&hugetlb_lock);
3734
3735         while (nr_demote) {
3736                 /*
3737                  * Check for available pages to demote each time thorough the
3738                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3739                  */
3740                 if (nid != NUMA_NO_NODE)
3741                         nr_available = h->free_huge_pages_node[nid];
3742                 else
3743                         nr_available = h->free_huge_pages;
3744                 nr_available -= h->resv_huge_pages;
3745                 if (!nr_available)
3746                         break;
3747
3748                 err = demote_pool_huge_page(h, n_mask);
3749                 if (err)
3750                         break;
3751
3752                 nr_demote--;
3753         }
3754
3755         spin_unlock_irq(&hugetlb_lock);
3756         mutex_unlock(&h->resize_lock);
3757
3758         if (err)
3759                 return err;
3760         return len;
3761 }
3762 HSTATE_ATTR_WO(demote);
3763
3764 static ssize_t demote_size_show(struct kobject *kobj,
3765                                         struct kobj_attribute *attr, char *buf)
3766 {
3767         struct hstate *h = kobj_to_hstate(kobj, NULL);
3768         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769
3770         return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774                                         struct kobj_attribute *attr,
3775                                         const char *buf, size_t count)
3776 {
3777         struct hstate *h, *demote_hstate;
3778         unsigned long demote_size;
3779         unsigned int demote_order;
3780
3781         demote_size = (unsigned long)memparse(buf, NULL);
3782
3783         demote_hstate = size_to_hstate(demote_size);
3784         if (!demote_hstate)
3785                 return -EINVAL;
3786         demote_order = demote_hstate->order;
3787         if (demote_order < HUGETLB_PAGE_ORDER)
3788                 return -EINVAL;
3789
3790         /* demote order must be smaller than hstate order */
3791         h = kobj_to_hstate(kobj, NULL);
3792         if (demote_order >= h->order)
3793                 return -EINVAL;
3794
3795         /* resize_lock synchronizes access to demote size and writes */
3796         mutex_lock(&h->resize_lock);
3797         h->demote_order = demote_order;
3798         mutex_unlock(&h->resize_lock);
3799
3800         return count;
3801 }
3802 HSTATE_ATTR(demote_size);
3803
3804 static struct attribute *hstate_attrs[] = {
3805         &nr_hugepages_attr.attr,
3806         &nr_overcommit_hugepages_attr.attr,
3807         &free_hugepages_attr.attr,
3808         &resv_hugepages_attr.attr,
3809         &surplus_hugepages_attr.attr,
3810 #ifdef CONFIG_NUMA
3811         &nr_hugepages_mempolicy_attr.attr,
3812 #endif
3813         NULL,
3814 };
3815
3816 static const struct attribute_group hstate_attr_group = {
3817         .attrs = hstate_attrs,
3818 };
3819
3820 static struct attribute *hstate_demote_attrs[] = {
3821         &demote_size_attr.attr,
3822         &demote_attr.attr,
3823         NULL,
3824 };
3825
3826 static const struct attribute_group hstate_demote_attr_group = {
3827         .attrs = hstate_demote_attrs,
3828 };
3829
3830 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3831                                     struct kobject **hstate_kobjs,
3832                                     const struct attribute_group *hstate_attr_group)
3833 {
3834         int retval;
3835         int hi = hstate_index(h);
3836
3837         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3838         if (!hstate_kobjs[hi])
3839                 return -ENOMEM;
3840
3841         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3842         if (retval) {
3843                 kobject_put(hstate_kobjs[hi]);
3844                 hstate_kobjs[hi] = NULL;
3845                 return retval;
3846         }
3847
3848         if (h->demote_order) {
3849                 retval = sysfs_create_group(hstate_kobjs[hi],
3850                                             &hstate_demote_attr_group);
3851                 if (retval) {
3852                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3854                         kobject_put(hstate_kobjs[hi]);
3855                         hstate_kobjs[hi] = NULL;
3856                         return retval;
3857                 }
3858         }
3859
3860         return 0;
3861 }
3862
3863 #ifdef CONFIG_NUMA
3864 static bool hugetlb_sysfs_initialized __ro_after_init;
3865
3866 /*
3867  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3868  * with node devices in node_devices[] using a parallel array.  The array
3869  * index of a node device or _hstate == node id.
3870  * This is here to avoid any static dependency of the node device driver, in
3871  * the base kernel, on the hugetlb module.
3872  */
3873 struct node_hstate {
3874         struct kobject          *hugepages_kobj;
3875         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3876 };
3877 static struct node_hstate node_hstates[MAX_NUMNODES];
3878
3879 /*
3880  * A subset of global hstate attributes for node devices
3881  */
3882 static struct attribute *per_node_hstate_attrs[] = {
3883         &nr_hugepages_attr.attr,
3884         &free_hugepages_attr.attr,
3885         &surplus_hugepages_attr.attr,
3886         NULL,
3887 };
3888
3889 static const struct attribute_group per_node_hstate_attr_group = {
3890         .attrs = per_node_hstate_attrs,
3891 };
3892
3893 /*
3894  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3895  * Returns node id via non-NULL nidp.
3896  */
3897 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3898 {
3899         int nid;
3900
3901         for (nid = 0; nid < nr_node_ids; nid++) {
3902                 struct node_hstate *nhs = &node_hstates[nid];
3903                 int i;
3904                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3905                         if (nhs->hstate_kobjs[i] == kobj) {
3906                                 if (nidp)
3907                                         *nidp = nid;
3908                                 return &hstates[i];
3909                         }
3910         }
3911
3912         BUG();
3913         return NULL;
3914 }
3915
3916 /*
3917  * Unregister hstate attributes from a single node device.
3918  * No-op if no hstate attributes attached.
3919  */
3920 void hugetlb_unregister_node(struct node *node)
3921 {
3922         struct hstate *h;
3923         struct node_hstate *nhs = &node_hstates[node->dev.id];
3924
3925         if (!nhs->hugepages_kobj)
3926                 return;         /* no hstate attributes */
3927
3928         for_each_hstate(h) {
3929                 int idx = hstate_index(h);
3930                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3931
3932                 if (!hstate_kobj)
3933                         continue;
3934                 if (h->demote_order)
3935                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3936                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3937                 kobject_put(hstate_kobj);
3938                 nhs->hstate_kobjs[idx] = NULL;
3939         }
3940
3941         kobject_put(nhs->hugepages_kobj);
3942         nhs->hugepages_kobj = NULL;
3943 }
3944
3945
3946 /*
3947  * Register hstate attributes for a single node device.
3948  * No-op if attributes already registered.
3949  */
3950 void hugetlb_register_node(struct node *node)
3951 {
3952         struct hstate *h;
3953         struct node_hstate *nhs = &node_hstates[node->dev.id];
3954         int err;
3955
3956         if (!hugetlb_sysfs_initialized)
3957                 return;
3958
3959         if (nhs->hugepages_kobj)
3960                 return;         /* already allocated */
3961
3962         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3963                                                         &node->dev.kobj);
3964         if (!nhs->hugepages_kobj)
3965                 return;
3966
3967         for_each_hstate(h) {
3968                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3969                                                 nhs->hstate_kobjs,
3970                                                 &per_node_hstate_attr_group);
3971                 if (err) {
3972                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3973                                 h->name, node->dev.id);
3974                         hugetlb_unregister_node(node);
3975                         break;
3976                 }
3977         }
3978 }
3979
3980 /*
3981  * hugetlb init time:  register hstate attributes for all registered node
3982  * devices of nodes that have memory.  All on-line nodes should have
3983  * registered their associated device by this time.
3984  */
3985 static void __init hugetlb_register_all_nodes(void)
3986 {
3987         int nid;
3988
3989         for_each_online_node(nid)
3990                 hugetlb_register_node(node_devices[nid]);
3991 }
3992 #else   /* !CONFIG_NUMA */
3993
3994 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3995 {
3996         BUG();
3997         if (nidp)
3998                 *nidp = -1;
3999         return NULL;
4000 }
4001
4002 static void hugetlb_register_all_nodes(void) { }
4003
4004 #endif
4005
4006 #ifdef CONFIG_CMA
4007 static void __init hugetlb_cma_check(void);
4008 #else
4009 static inline __init void hugetlb_cma_check(void)
4010 {
4011 }
4012 #endif
4013
4014 static void __init hugetlb_sysfs_init(void)
4015 {
4016         struct hstate *h;
4017         int err;
4018
4019         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4020         if (!hugepages_kobj)
4021                 return;
4022
4023         for_each_hstate(h) {
4024                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4025                                          hstate_kobjs, &hstate_attr_group);
4026                 if (err)
4027                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4028         }
4029
4030 #ifdef CONFIG_NUMA
4031         hugetlb_sysfs_initialized = true;
4032 #endif
4033         hugetlb_register_all_nodes();
4034 }
4035
4036 static int __init hugetlb_init(void)
4037 {
4038         int i;
4039
4040         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4041                         __NR_HPAGEFLAGS);
4042
4043         if (!hugepages_supported()) {
4044                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4045                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4046                 return 0;
4047         }
4048
4049         /*
4050          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4051          * architectures depend on setup being done here.
4052          */
4053         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4054         if (!parsed_default_hugepagesz) {
4055                 /*
4056                  * If we did not parse a default huge page size, set
4057                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4058                  * number of huge pages for this default size was implicitly
4059                  * specified, set that here as well.
4060                  * Note that the implicit setting will overwrite an explicit
4061                  * setting.  A warning will be printed in this case.
4062                  */
4063                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4064                 if (default_hstate_max_huge_pages) {
4065                         if (default_hstate.max_huge_pages) {
4066                                 char buf[32];
4067
4068                                 string_get_size(huge_page_size(&default_hstate),
4069                                         1, STRING_UNITS_2, buf, 32);
4070                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4071                                         default_hstate.max_huge_pages, buf);
4072                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4073                                         default_hstate_max_huge_pages);
4074                         }
4075                         default_hstate.max_huge_pages =
4076                                 default_hstate_max_huge_pages;
4077
4078                         for_each_online_node(i)
4079                                 default_hstate.max_huge_pages_node[i] =
4080                                         default_hugepages_in_node[i];
4081                 }
4082         }
4083
4084         hugetlb_cma_check();
4085         hugetlb_init_hstates();
4086         gather_bootmem_prealloc();
4087         report_hugepages();
4088
4089         hugetlb_sysfs_init();
4090         hugetlb_cgroup_file_init();
4091
4092 #ifdef CONFIG_SMP
4093         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4094 #else
4095         num_fault_mutexes = 1;
4096 #endif
4097         hugetlb_fault_mutex_table =
4098                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4099                               GFP_KERNEL);
4100         BUG_ON(!hugetlb_fault_mutex_table);
4101
4102         for (i = 0; i < num_fault_mutexes; i++)
4103                 mutex_init(&hugetlb_fault_mutex_table[i]);
4104         return 0;
4105 }
4106 subsys_initcall(hugetlb_init);
4107
4108 /* Overwritten by architectures with more huge page sizes */
4109 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4110 {
4111         return size == HPAGE_SIZE;
4112 }
4113
4114 void __init hugetlb_add_hstate(unsigned int order)
4115 {
4116         struct hstate *h;
4117         unsigned long i;
4118
4119         if (size_to_hstate(PAGE_SIZE << order)) {
4120                 return;
4121         }
4122         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4123         BUG_ON(order == 0);
4124         h = &hstates[hugetlb_max_hstate++];
4125         mutex_init(&h->resize_lock);
4126         h->order = order;
4127         h->mask = ~(huge_page_size(h) - 1);
4128         for (i = 0; i < MAX_NUMNODES; ++i)
4129                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4130         INIT_LIST_HEAD(&h->hugepage_activelist);
4131         h->next_nid_to_alloc = first_memory_node;
4132         h->next_nid_to_free = first_memory_node;
4133         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4134                                         huge_page_size(h)/SZ_1K);
4135
4136         parsed_hstate = h;
4137 }
4138
4139 bool __init __weak hugetlb_node_alloc_supported(void)
4140 {
4141         return true;
4142 }
4143
4144 static void __init hugepages_clear_pages_in_node(void)
4145 {
4146         if (!hugetlb_max_hstate) {
4147                 default_hstate_max_huge_pages = 0;
4148                 memset(default_hugepages_in_node, 0,
4149                         sizeof(default_hugepages_in_node));
4150         } else {
4151                 parsed_hstate->max_huge_pages = 0;
4152                 memset(parsed_hstate->max_huge_pages_node, 0,
4153                         sizeof(parsed_hstate->max_huge_pages_node));
4154         }
4155 }
4156
4157 /*
4158  * hugepages command line processing
4159  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4160  * specification.  If not, ignore the hugepages value.  hugepages can also
4161  * be the first huge page command line  option in which case it implicitly
4162  * specifies the number of huge pages for the default size.
4163  */
4164 static int __init hugepages_setup(char *s)
4165 {
4166         unsigned long *mhp;
4167         static unsigned long *last_mhp;
4168         int node = NUMA_NO_NODE;
4169         int count;
4170         unsigned long tmp;
4171         char *p = s;
4172
4173         if (!parsed_valid_hugepagesz) {
4174                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4175                 parsed_valid_hugepagesz = true;
4176                 return 1;
4177         }
4178
4179         /*
4180          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4181          * yet, so this hugepages= parameter goes to the "default hstate".
4182          * Otherwise, it goes with the previously parsed hugepagesz or
4183          * default_hugepagesz.
4184          */
4185         else if (!hugetlb_max_hstate)
4186                 mhp = &default_hstate_max_huge_pages;
4187         else
4188                 mhp = &parsed_hstate->max_huge_pages;
4189
4190         if (mhp == last_mhp) {
4191                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4192                 return 1;
4193         }
4194
4195         while (*p) {
4196                 count = 0;
4197                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4198                         goto invalid;
4199                 /* Parameter is node format */
4200                 if (p[count] == ':') {
4201                         if (!hugetlb_node_alloc_supported()) {
4202                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4203                                 return 1;
4204                         }
4205                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4206                                 goto invalid;
4207                         node = array_index_nospec(tmp, MAX_NUMNODES);
4208                         p += count + 1;
4209                         /* Parse hugepages */
4210                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4211                                 goto invalid;
4212                         if (!hugetlb_max_hstate)
4213                                 default_hugepages_in_node[node] = tmp;
4214                         else
4215                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4216                         *mhp += tmp;
4217                         /* Go to parse next node*/
4218                         if (p[count] == ',')
4219                                 p += count + 1;
4220                         else
4221                                 break;
4222                 } else {
4223                         if (p != s)
4224                                 goto invalid;
4225                         *mhp = tmp;
4226                         break;
4227                 }
4228         }
4229
4230         /*
4231          * Global state is always initialized later in hugetlb_init.
4232          * But we need to allocate gigantic hstates here early to still
4233          * use the bootmem allocator.
4234          */
4235         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4236                 hugetlb_hstate_alloc_pages(parsed_hstate);
4237
4238         last_mhp = mhp;
4239
4240         return 1;
4241
4242 invalid:
4243         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4244         hugepages_clear_pages_in_node();
4245         return 1;
4246 }
4247 __setup("hugepages=", hugepages_setup);
4248
4249 /*
4250  * hugepagesz command line processing
4251  * A specific huge page size can only be specified once with hugepagesz.
4252  * hugepagesz is followed by hugepages on the command line.  The global
4253  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4254  * hugepagesz argument was valid.
4255  */
4256 static int __init hugepagesz_setup(char *s)
4257 {
4258         unsigned long size;
4259         struct hstate *h;
4260
4261         parsed_valid_hugepagesz = false;
4262         size = (unsigned long)memparse(s, NULL);
4263
4264         if (!arch_hugetlb_valid_size(size)) {
4265                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4266                 return 1;
4267         }
4268
4269         h = size_to_hstate(size);
4270         if (h) {
4271                 /*
4272                  * hstate for this size already exists.  This is normally
4273                  * an error, but is allowed if the existing hstate is the
4274                  * default hstate.  More specifically, it is only allowed if
4275                  * the number of huge pages for the default hstate was not
4276                  * previously specified.
4277                  */
4278                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4279                     default_hstate.max_huge_pages) {
4280                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4281                         return 1;
4282                 }
4283
4284                 /*
4285                  * No need to call hugetlb_add_hstate() as hstate already
4286                  * exists.  But, do set parsed_hstate so that a following
4287                  * hugepages= parameter will be applied to this hstate.
4288                  */
4289                 parsed_hstate = h;
4290                 parsed_valid_hugepagesz = true;
4291                 return 1;
4292         }
4293
4294         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4295         parsed_valid_hugepagesz = true;
4296         return 1;
4297 }
4298 __setup("hugepagesz=", hugepagesz_setup);
4299
4300 /*
4301  * default_hugepagesz command line input
4302  * Only one instance of default_hugepagesz allowed on command line.
4303  */
4304 static int __init default_hugepagesz_setup(char *s)
4305 {
4306         unsigned long size;
4307         int i;
4308
4309         parsed_valid_hugepagesz = false;
4310         if (parsed_default_hugepagesz) {
4311                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4312                 return 1;
4313         }
4314
4315         size = (unsigned long)memparse(s, NULL);
4316
4317         if (!arch_hugetlb_valid_size(size)) {
4318                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4319                 return 1;
4320         }
4321
4322         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4323         parsed_valid_hugepagesz = true;
4324         parsed_default_hugepagesz = true;
4325         default_hstate_idx = hstate_index(size_to_hstate(size));
4326
4327         /*
4328          * The number of default huge pages (for this size) could have been
4329          * specified as the first hugetlb parameter: hugepages=X.  If so,
4330          * then default_hstate_max_huge_pages is set.  If the default huge
4331          * page size is gigantic (>= MAX_ORDER), then the pages must be
4332          * allocated here from bootmem allocator.
4333          */
4334         if (default_hstate_max_huge_pages) {
4335                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4336                 for_each_online_node(i)
4337                         default_hstate.max_huge_pages_node[i] =
4338                                 default_hugepages_in_node[i];
4339                 if (hstate_is_gigantic(&default_hstate))
4340                         hugetlb_hstate_alloc_pages(&default_hstate);
4341                 default_hstate_max_huge_pages = 0;
4342         }
4343
4344         return 1;
4345 }
4346 __setup("default_hugepagesz=", default_hugepagesz_setup);
4347
4348 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4349 {
4350 #ifdef CONFIG_NUMA
4351         struct mempolicy *mpol = get_task_policy(current);
4352
4353         /*
4354          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4355          * (from policy_nodemask) specifically for hugetlb case
4356          */
4357         if (mpol->mode == MPOL_BIND &&
4358                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4359                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4360                 return &mpol->nodes;
4361 #endif
4362         return NULL;
4363 }
4364
4365 static unsigned int allowed_mems_nr(struct hstate *h)
4366 {
4367         int node;
4368         unsigned int nr = 0;
4369         nodemask_t *mbind_nodemask;
4370         unsigned int *array = h->free_huge_pages_node;
4371         gfp_t gfp_mask = htlb_alloc_mask(h);
4372
4373         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4374         for_each_node_mask(node, cpuset_current_mems_allowed) {
4375                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4376                         nr += array[node];
4377         }
4378
4379         return nr;
4380 }
4381
4382 #ifdef CONFIG_SYSCTL
4383 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4384                                           void *buffer, size_t *length,
4385                                           loff_t *ppos, unsigned long *out)
4386 {
4387         struct ctl_table dup_table;
4388
4389         /*
4390          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4391          * can duplicate the @table and alter the duplicate of it.
4392          */
4393         dup_table = *table;
4394         dup_table.data = out;
4395
4396         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4397 }
4398
4399 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4400                          struct ctl_table *table, int write,
4401                          void *buffer, size_t *length, loff_t *ppos)
4402 {
4403         struct hstate *h = &default_hstate;
4404         unsigned long tmp = h->max_huge_pages;
4405         int ret;
4406
4407         if (!hugepages_supported())
4408                 return -EOPNOTSUPP;
4409
4410         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4411                                              &tmp);
4412         if (ret)
4413                 goto out;
4414
4415         if (write)
4416                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4417                                                   NUMA_NO_NODE, tmp, *length);
4418 out:
4419         return ret;
4420 }
4421
4422 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4423                           void *buffer, size_t *length, loff_t *ppos)
4424 {
4425
4426         return hugetlb_sysctl_handler_common(false, table, write,
4427                                                         buffer, length, ppos);
4428 }
4429
4430 #ifdef CONFIG_NUMA
4431 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4432                           void *buffer, size_t *length, loff_t *ppos)
4433 {
4434         return hugetlb_sysctl_handler_common(true, table, write,
4435                                                         buffer, length, ppos);
4436 }
4437 #endif /* CONFIG_NUMA */
4438
4439 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4440                 void *buffer, size_t *length, loff_t *ppos)
4441 {
4442         struct hstate *h = &default_hstate;
4443         unsigned long tmp;
4444         int ret;
4445
4446         if (!hugepages_supported())
4447                 return -EOPNOTSUPP;
4448
4449         tmp = h->nr_overcommit_huge_pages;
4450
4451         if (write && hstate_is_gigantic(h))
4452                 return -EINVAL;
4453
4454         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4455                                              &tmp);
4456         if (ret)
4457                 goto out;
4458
4459         if (write) {
4460                 spin_lock_irq(&hugetlb_lock);
4461                 h->nr_overcommit_huge_pages = tmp;
4462                 spin_unlock_irq(&hugetlb_lock);
4463         }
4464 out:
4465         return ret;
4466 }
4467
4468 #endif /* CONFIG_SYSCTL */
4469
4470 void hugetlb_report_meminfo(struct seq_file *m)
4471 {
4472         struct hstate *h;
4473         unsigned long total = 0;
4474
4475         if (!hugepages_supported())
4476                 return;
4477
4478         for_each_hstate(h) {
4479                 unsigned long count = h->nr_huge_pages;
4480
4481                 total += huge_page_size(h) * count;
4482
4483                 if (h == &default_hstate)
4484                         seq_printf(m,
4485                                    "HugePages_Total:   %5lu\n"
4486                                    "HugePages_Free:    %5lu\n"
4487                                    "HugePages_Rsvd:    %5lu\n"
4488                                    "HugePages_Surp:    %5lu\n"
4489                                    "Hugepagesize:   %8lu kB\n",
4490                                    count,
4491                                    h->free_huge_pages,
4492                                    h->resv_huge_pages,
4493                                    h->surplus_huge_pages,
4494                                    huge_page_size(h) / SZ_1K);
4495         }
4496
4497         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4498 }
4499
4500 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4501 {
4502         struct hstate *h = &default_hstate;
4503
4504         if (!hugepages_supported())
4505                 return 0;
4506
4507         return sysfs_emit_at(buf, len,
4508                              "Node %d HugePages_Total: %5u\n"
4509                              "Node %d HugePages_Free:  %5u\n"
4510                              "Node %d HugePages_Surp:  %5u\n",
4511                              nid, h->nr_huge_pages_node[nid],
4512                              nid, h->free_huge_pages_node[nid],
4513                              nid, h->surplus_huge_pages_node[nid]);
4514 }
4515
4516 void hugetlb_show_meminfo_node(int nid)
4517 {
4518         struct hstate *h;
4519
4520         if (!hugepages_supported())
4521                 return;
4522
4523         for_each_hstate(h)
4524                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4525                         nid,
4526                         h->nr_huge_pages_node[nid],
4527                         h->free_huge_pages_node[nid],
4528                         h->surplus_huge_pages_node[nid],
4529                         huge_page_size(h) / SZ_1K);
4530 }
4531
4532 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4533 {
4534         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4535                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4536 }
4537
4538 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4539 unsigned long hugetlb_total_pages(void)
4540 {
4541         struct hstate *h;
4542         unsigned long nr_total_pages = 0;
4543
4544         for_each_hstate(h)
4545                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4546         return nr_total_pages;
4547 }
4548
4549 static int hugetlb_acct_memory(struct hstate *h, long delta)
4550 {
4551         int ret = -ENOMEM;
4552
4553         if (!delta)
4554                 return 0;
4555
4556         spin_lock_irq(&hugetlb_lock);
4557         /*
4558          * When cpuset is configured, it breaks the strict hugetlb page
4559          * reservation as the accounting is done on a global variable. Such
4560          * reservation is completely rubbish in the presence of cpuset because
4561          * the reservation is not checked against page availability for the
4562          * current cpuset. Application can still potentially OOM'ed by kernel
4563          * with lack of free htlb page in cpuset that the task is in.
4564          * Attempt to enforce strict accounting with cpuset is almost
4565          * impossible (or too ugly) because cpuset is too fluid that
4566          * task or memory node can be dynamically moved between cpusets.
4567          *
4568          * The change of semantics for shared hugetlb mapping with cpuset is
4569          * undesirable. However, in order to preserve some of the semantics,
4570          * we fall back to check against current free page availability as
4571          * a best attempt and hopefully to minimize the impact of changing
4572          * semantics that cpuset has.
4573          *
4574          * Apart from cpuset, we also have memory policy mechanism that
4575          * also determines from which node the kernel will allocate memory
4576          * in a NUMA system. So similar to cpuset, we also should consider
4577          * the memory policy of the current task. Similar to the description
4578          * above.
4579          */
4580         if (delta > 0) {
4581                 if (gather_surplus_pages(h, delta) < 0)
4582                         goto out;
4583
4584                 if (delta > allowed_mems_nr(h)) {
4585                         return_unused_surplus_pages(h, delta);
4586                         goto out;
4587                 }
4588         }
4589
4590         ret = 0;
4591         if (delta < 0)
4592                 return_unused_surplus_pages(h, (unsigned long) -delta);
4593
4594 out:
4595         spin_unlock_irq(&hugetlb_lock);
4596         return ret;
4597 }
4598
4599 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4600 {
4601         struct resv_map *resv = vma_resv_map(vma);
4602
4603         /*
4604          * This new VMA should share its siblings reservation map if present.
4605          * The VMA will only ever have a valid reservation map pointer where
4606          * it is being copied for another still existing VMA.  As that VMA
4607          * has a reference to the reservation map it cannot disappear until
4608          * after this open call completes.  It is therefore safe to take a
4609          * new reference here without additional locking.
4610          */
4611         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4612                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4613                 kref_get(&resv->refs);
4614         }
4615
4616         /*
4617          * vma_lock structure for sharable mappings is vma specific.
4618          * Clear old pointer (if copied via vm_area_dup) and create new.
4619          */
4620         if (vma->vm_flags & VM_MAYSHARE) {
4621                 vma->vm_private_data = NULL;
4622                 hugetlb_vma_lock_alloc(vma);
4623         }
4624 }
4625
4626 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4627 {
4628         struct hstate *h = hstate_vma(vma);
4629         struct resv_map *resv;
4630         struct hugepage_subpool *spool = subpool_vma(vma);
4631         unsigned long reserve, start, end;
4632         long gbl_reserve;
4633
4634         hugetlb_vma_lock_free(vma);
4635
4636         resv = vma_resv_map(vma);
4637         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4638                 return;
4639
4640         start = vma_hugecache_offset(h, vma, vma->vm_start);
4641         end = vma_hugecache_offset(h, vma, vma->vm_end);
4642
4643         reserve = (end - start) - region_count(resv, start, end);
4644         hugetlb_cgroup_uncharge_counter(resv, start, end);
4645         if (reserve) {
4646                 /*
4647                  * Decrement reserve counts.  The global reserve count may be
4648                  * adjusted if the subpool has a minimum size.
4649                  */
4650                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4651                 hugetlb_acct_memory(h, -gbl_reserve);
4652         }
4653
4654         kref_put(&resv->refs, resv_map_release);
4655 }
4656
4657 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4658 {
4659         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4660                 return -EINVAL;
4661         return 0;
4662 }
4663
4664 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4665 {
4666         return huge_page_size(hstate_vma(vma));
4667 }
4668
4669 /*
4670  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4671  * handle_mm_fault() to try to instantiate regular-sized pages in the
4672  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4673  * this far.
4674  */
4675 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4676 {
4677         BUG();
4678         return 0;
4679 }
4680
4681 /*
4682  * When a new function is introduced to vm_operations_struct and added
4683  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4684  * This is because under System V memory model, mappings created via
4685  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4686  * their original vm_ops are overwritten with shm_vm_ops.
4687  */
4688 const struct vm_operations_struct hugetlb_vm_ops = {
4689         .fault = hugetlb_vm_op_fault,
4690         .open = hugetlb_vm_op_open,
4691         .close = hugetlb_vm_op_close,
4692         .may_split = hugetlb_vm_op_split,
4693         .pagesize = hugetlb_vm_op_pagesize,
4694 };
4695
4696 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4697                                 int writable)
4698 {
4699         pte_t entry;
4700         unsigned int shift = huge_page_shift(hstate_vma(vma));
4701
4702         if (writable) {
4703                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4704                                          vma->vm_page_prot)));
4705         } else {
4706                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4707                                            vma->vm_page_prot));
4708         }
4709         entry = pte_mkyoung(entry);
4710         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4711
4712         return entry;
4713 }
4714
4715 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4716                                    unsigned long address, pte_t *ptep)
4717 {
4718         pte_t entry;
4719
4720         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4721         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4722                 update_mmu_cache(vma, address, ptep);
4723 }
4724
4725 bool is_hugetlb_entry_migration(pte_t pte)
4726 {
4727         swp_entry_t swp;
4728
4729         if (huge_pte_none(pte) || pte_present(pte))
4730                 return false;
4731         swp = pte_to_swp_entry(pte);
4732         if (is_migration_entry(swp))
4733                 return true;
4734         else
4735                 return false;
4736 }
4737
4738 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4739 {
4740         swp_entry_t swp;
4741
4742         if (huge_pte_none(pte) || pte_present(pte))
4743                 return false;
4744         swp = pte_to_swp_entry(pte);
4745         if (is_hwpoison_entry(swp))
4746                 return true;
4747         else
4748                 return false;
4749 }
4750
4751 static void
4752 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4753                      struct page *new_page)
4754 {
4755         __SetPageUptodate(new_page);
4756         hugepage_add_new_anon_rmap(new_page, vma, addr);
4757         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4758         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4759         ClearHPageRestoreReserve(new_page);
4760         SetHPageMigratable(new_page);
4761 }
4762
4763 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4764                             struct vm_area_struct *dst_vma,
4765                             struct vm_area_struct *src_vma)
4766 {
4767         pte_t *src_pte, *dst_pte, entry;
4768         struct page *ptepage;
4769         unsigned long addr;
4770         bool cow = is_cow_mapping(src_vma->vm_flags);
4771         struct hstate *h = hstate_vma(src_vma);
4772         unsigned long sz = huge_page_size(h);
4773         unsigned long npages = pages_per_huge_page(h);
4774         struct mmu_notifier_range range;
4775         unsigned long last_addr_mask;
4776         int ret = 0;
4777
4778         if (cow) {
4779                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4780                                         src_vma->vm_start,
4781                                         src_vma->vm_end);
4782                 mmu_notifier_invalidate_range_start(&range);
4783                 mmap_assert_write_locked(src);
4784                 raw_write_seqcount_begin(&src->write_protect_seq);
4785         } else {
4786                 /*
4787                  * For shared mappings the vma lock must be held before
4788                  * calling huge_pte_offset in the src vma. Otherwise, the
4789                  * returned ptep could go away if part of a shared pmd and
4790                  * another thread calls huge_pmd_unshare.
4791                  */
4792                 hugetlb_vma_lock_read(src_vma);
4793         }
4794
4795         last_addr_mask = hugetlb_mask_last_page(h);
4796         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4797                 spinlock_t *src_ptl, *dst_ptl;
4798                 src_pte = huge_pte_offset(src, addr, sz);
4799                 if (!src_pte) {
4800                         addr |= last_addr_mask;
4801                         continue;
4802                 }
4803                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4804                 if (!dst_pte) {
4805                         ret = -ENOMEM;
4806                         break;
4807                 }
4808
4809                 /*
4810                  * If the pagetables are shared don't copy or take references.
4811                  *
4812                  * dst_pte == src_pte is the common case of src/dest sharing.
4813                  * However, src could have 'unshared' and dst shares with
4814                  * another vma. So page_count of ptep page is checked instead
4815                  * to reliably determine whether pte is shared.
4816                  */
4817                 if (page_count(virt_to_page(dst_pte)) > 1) {
4818                         addr |= last_addr_mask;
4819                         continue;
4820                 }
4821
4822                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4823                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4824                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4825                 entry = huge_ptep_get(src_pte);
4826 again:
4827                 if (huge_pte_none(entry)) {
4828                         /*
4829                          * Skip if src entry none.
4830                          */
4831                         ;
4832                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4833                         bool uffd_wp = huge_pte_uffd_wp(entry);
4834
4835                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4836                                 entry = huge_pte_clear_uffd_wp(entry);
4837                         set_huge_pte_at(dst, addr, dst_pte, entry);
4838                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4839                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4840                         bool uffd_wp = huge_pte_uffd_wp(entry);
4841
4842                         if (!is_readable_migration_entry(swp_entry) && cow) {
4843                                 /*
4844                                  * COW mappings require pages in both
4845                                  * parent and child to be set to read.
4846                                  */
4847                                 swp_entry = make_readable_migration_entry(
4848                                                         swp_offset(swp_entry));
4849                                 entry = swp_entry_to_pte(swp_entry);
4850                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4851                                         entry = huge_pte_mkuffd_wp(entry);
4852                                 set_huge_pte_at(src, addr, src_pte, entry);
4853                         }
4854                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855                                 entry = huge_pte_clear_uffd_wp(entry);
4856                         set_huge_pte_at(dst, addr, dst_pte, entry);
4857                 } else if (unlikely(is_pte_marker(entry))) {
4858                         /*
4859                          * We copy the pte marker only if the dst vma has
4860                          * uffd-wp enabled.
4861                          */
4862                         if (userfaultfd_wp(dst_vma))
4863                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4864                 } else {
4865                         entry = huge_ptep_get(src_pte);
4866                         ptepage = pte_page(entry);
4867                         get_page(ptepage);
4868
4869                         /*
4870                          * Failing to duplicate the anon rmap is a rare case
4871                          * where we see pinned hugetlb pages while they're
4872                          * prone to COW. We need to do the COW earlier during
4873                          * fork.
4874                          *
4875                          * When pre-allocating the page or copying data, we
4876                          * need to be without the pgtable locks since we could
4877                          * sleep during the process.
4878                          */
4879                         if (!PageAnon(ptepage)) {
4880                                 page_dup_file_rmap(ptepage, true);
4881                         } else if (page_try_dup_anon_rmap(ptepage, true,
4882                                                           src_vma)) {
4883                                 pte_t src_pte_old = entry;
4884                                 struct page *new;
4885
4886                                 spin_unlock(src_ptl);
4887                                 spin_unlock(dst_ptl);
4888                                 /* Do not use reserve as it's private owned */
4889                                 new = alloc_huge_page(dst_vma, addr, 1);
4890                                 if (IS_ERR(new)) {
4891                                         put_page(ptepage);
4892                                         ret = PTR_ERR(new);
4893                                         break;
4894                                 }
4895                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4896                                                     npages);
4897                                 put_page(ptepage);
4898
4899                                 /* Install the new huge page if src pte stable */
4900                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4901                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4902                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4903                                 entry = huge_ptep_get(src_pte);
4904                                 if (!pte_same(src_pte_old, entry)) {
4905                                         restore_reserve_on_error(h, dst_vma, addr,
4906                                                                 new);
4907                                         put_page(new);
4908                                         /* huge_ptep of dst_pte won't change as in child */
4909                                         goto again;
4910                                 }
4911                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4912                                 spin_unlock(src_ptl);
4913                                 spin_unlock(dst_ptl);
4914                                 continue;
4915                         }
4916
4917                         if (cow) {
4918                                 /*
4919                                  * No need to notify as we are downgrading page
4920                                  * table protection not changing it to point
4921                                  * to a new page.
4922                                  *
4923                                  * See Documentation/mm/mmu_notifier.rst
4924                                  */
4925                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4926                                 entry = huge_pte_wrprotect(entry);
4927                         }
4928
4929                         set_huge_pte_at(dst, addr, dst_pte, entry);
4930                         hugetlb_count_add(npages, dst);
4931                 }
4932                 spin_unlock(src_ptl);
4933                 spin_unlock(dst_ptl);
4934         }
4935
4936         if (cow) {
4937                 raw_write_seqcount_end(&src->write_protect_seq);
4938                 mmu_notifier_invalidate_range_end(&range);
4939         } else {
4940                 hugetlb_vma_unlock_read(src_vma);
4941         }
4942
4943         return ret;
4944 }
4945
4946 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4947                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4948 {
4949         struct hstate *h = hstate_vma(vma);
4950         struct mm_struct *mm = vma->vm_mm;
4951         spinlock_t *src_ptl, *dst_ptl;
4952         pte_t pte;
4953
4954         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4955         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4956
4957         /*
4958          * We don't have to worry about the ordering of src and dst ptlocks
4959          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4960          */
4961         if (src_ptl != dst_ptl)
4962                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4963
4964         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4965         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4966
4967         if (src_ptl != dst_ptl)
4968                 spin_unlock(src_ptl);
4969         spin_unlock(dst_ptl);
4970 }
4971
4972 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4973                              struct vm_area_struct *new_vma,
4974                              unsigned long old_addr, unsigned long new_addr,
4975                              unsigned long len)
4976 {
4977         struct hstate *h = hstate_vma(vma);
4978         struct address_space *mapping = vma->vm_file->f_mapping;
4979         unsigned long sz = huge_page_size(h);
4980         struct mm_struct *mm = vma->vm_mm;
4981         unsigned long old_end = old_addr + len;
4982         unsigned long last_addr_mask;
4983         pte_t *src_pte, *dst_pte;
4984         struct mmu_notifier_range range;
4985         bool shared_pmd = false;
4986
4987         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4988                                 old_end);
4989         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4990         /*
4991          * In case of shared PMDs, we should cover the maximum possible
4992          * range.
4993          */
4994         flush_cache_range(vma, range.start, range.end);
4995
4996         mmu_notifier_invalidate_range_start(&range);
4997         last_addr_mask = hugetlb_mask_last_page(h);
4998         /* Prevent race with file truncation */
4999         hugetlb_vma_lock_write(vma);
5000         i_mmap_lock_write(mapping);
5001         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5002                 src_pte = huge_pte_offset(mm, old_addr, sz);
5003                 if (!src_pte) {
5004                         old_addr |= last_addr_mask;
5005                         new_addr |= last_addr_mask;
5006                         continue;
5007                 }
5008                 if (huge_pte_none(huge_ptep_get(src_pte)))
5009                         continue;
5010
5011                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5012                         shared_pmd = true;
5013                         old_addr |= last_addr_mask;
5014                         new_addr |= last_addr_mask;
5015                         continue;
5016                 }
5017
5018                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5019                 if (!dst_pte)
5020                         break;
5021
5022                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5023         }
5024
5025         if (shared_pmd)
5026                 flush_tlb_range(vma, range.start, range.end);
5027         else
5028                 flush_tlb_range(vma, old_end - len, old_end);
5029         mmu_notifier_invalidate_range_end(&range);
5030         i_mmap_unlock_write(mapping);
5031         hugetlb_vma_unlock_write(vma);
5032
5033         return len + old_addr - old_end;
5034 }
5035
5036 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5037                                    unsigned long start, unsigned long end,
5038                                    struct page *ref_page, zap_flags_t zap_flags)
5039 {
5040         struct mm_struct *mm = vma->vm_mm;
5041         unsigned long address;
5042         pte_t *ptep;
5043         pte_t pte;
5044         spinlock_t *ptl;
5045         struct page *page;
5046         struct hstate *h = hstate_vma(vma);
5047         unsigned long sz = huge_page_size(h);
5048         struct mmu_notifier_range range;
5049         unsigned long last_addr_mask;
5050         bool force_flush = false;
5051
5052         WARN_ON(!is_vm_hugetlb_page(vma));
5053         BUG_ON(start & ~huge_page_mask(h));
5054         BUG_ON(end & ~huge_page_mask(h));
5055
5056         /*
5057          * This is a hugetlb vma, all the pte entries should point
5058          * to huge page.
5059          */
5060         tlb_change_page_size(tlb, sz);
5061         tlb_start_vma(tlb, vma);
5062
5063         /*
5064          * If sharing possible, alert mmu notifiers of worst case.
5065          */
5066         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5067                                 end);
5068         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5069         mmu_notifier_invalidate_range_start(&range);
5070         last_addr_mask = hugetlb_mask_last_page(h);
5071         address = start;
5072         for (; address < end; address += sz) {
5073                 ptep = huge_pte_offset(mm, address, sz);
5074                 if (!ptep) {
5075                         address |= last_addr_mask;
5076                         continue;
5077                 }
5078
5079                 ptl = huge_pte_lock(h, mm, ptep);
5080                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5081                         spin_unlock(ptl);
5082                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5083                         force_flush = true;
5084                         address |= last_addr_mask;
5085                         continue;
5086                 }
5087
5088                 pte = huge_ptep_get(ptep);
5089                 if (huge_pte_none(pte)) {
5090                         spin_unlock(ptl);
5091                         continue;
5092                 }
5093
5094                 /*
5095                  * Migrating hugepage or HWPoisoned hugepage is already
5096                  * unmapped and its refcount is dropped, so just clear pte here.
5097                  */
5098                 if (unlikely(!pte_present(pte))) {
5099 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5100                         /*
5101                          * If the pte was wr-protected by uffd-wp in any of the
5102                          * swap forms, meanwhile the caller does not want to
5103                          * drop the uffd-wp bit in this zap, then replace the
5104                          * pte with a marker.
5105                          */
5106                         if (pte_swp_uffd_wp_any(pte) &&
5107                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5108                                 set_huge_pte_at(mm, address, ptep,
5109                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5110                         else
5111 #endif
5112                                 huge_pte_clear(mm, address, ptep, sz);
5113                         spin_unlock(ptl);
5114                         continue;
5115                 }
5116
5117                 page = pte_page(pte);
5118                 /*
5119                  * If a reference page is supplied, it is because a specific
5120                  * page is being unmapped, not a range. Ensure the page we
5121                  * are about to unmap is the actual page of interest.
5122                  */
5123                 if (ref_page) {
5124                         if (page != ref_page) {
5125                                 spin_unlock(ptl);
5126                                 continue;
5127                         }
5128                         /*
5129                          * Mark the VMA as having unmapped its page so that
5130                          * future faults in this VMA will fail rather than
5131                          * looking like data was lost
5132                          */
5133                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5134                 }
5135
5136                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5137                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5138                 if (huge_pte_dirty(pte))
5139                         set_page_dirty(page);
5140 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5141                 /* Leave a uffd-wp pte marker if needed */
5142                 if (huge_pte_uffd_wp(pte) &&
5143                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5144                         set_huge_pte_at(mm, address, ptep,
5145                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5146 #endif
5147                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5148                 page_remove_rmap(page, vma, true);
5149
5150                 spin_unlock(ptl);
5151                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5152                 /*
5153                  * Bail out after unmapping reference page if supplied
5154                  */
5155                 if (ref_page)
5156                         break;
5157         }
5158         mmu_notifier_invalidate_range_end(&range);
5159         tlb_end_vma(tlb, vma);
5160
5161         /*
5162          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5163          * could defer the flush until now, since by holding i_mmap_rwsem we
5164          * guaranteed that the last refernece would not be dropped. But we must
5165          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5166          * dropped and the last reference to the shared PMDs page might be
5167          * dropped as well.
5168          *
5169          * In theory we could defer the freeing of the PMD pages as well, but
5170          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5171          * detect sharing, so we cannot defer the release of the page either.
5172          * Instead, do flush now.
5173          */
5174         if (force_flush)
5175                 tlb_flush_mmu_tlbonly(tlb);
5176 }
5177
5178 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5179                           struct vm_area_struct *vma, unsigned long start,
5180                           unsigned long end, struct page *ref_page,
5181                           zap_flags_t zap_flags)
5182 {
5183         hugetlb_vma_lock_write(vma);
5184         i_mmap_lock_write(vma->vm_file->f_mapping);
5185
5186         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5187
5188         /*
5189          * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5190          * the vma_lock is freed, this makes the vma ineligible for pmd
5191          * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5192          * This is important as page tables for this unmapped range will
5193          * be asynchrously deleted.  If the page tables are shared, there
5194          * will be issues when accessed by someone else.
5195          */
5196         __hugetlb_vma_unlock_write_free(vma);
5197
5198         i_mmap_unlock_write(vma->vm_file->f_mapping);
5199 }
5200
5201 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5202                           unsigned long end, struct page *ref_page,
5203                           zap_flags_t zap_flags)
5204 {
5205         struct mmu_gather tlb;
5206
5207         tlb_gather_mmu(&tlb, vma->vm_mm);
5208         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5209         tlb_finish_mmu(&tlb);
5210 }
5211
5212 /*
5213  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5214  * mapping it owns the reserve page for. The intention is to unmap the page
5215  * from other VMAs and let the children be SIGKILLed if they are faulting the
5216  * same region.
5217  */
5218 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5219                               struct page *page, unsigned long address)
5220 {
5221         struct hstate *h = hstate_vma(vma);
5222         struct vm_area_struct *iter_vma;
5223         struct address_space *mapping;
5224         pgoff_t pgoff;
5225
5226         /*
5227          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5228          * from page cache lookup which is in HPAGE_SIZE units.
5229          */
5230         address = address & huge_page_mask(h);
5231         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5232                         vma->vm_pgoff;
5233         mapping = vma->vm_file->f_mapping;
5234
5235         /*
5236          * Take the mapping lock for the duration of the table walk. As
5237          * this mapping should be shared between all the VMAs,
5238          * __unmap_hugepage_range() is called as the lock is already held
5239          */
5240         i_mmap_lock_write(mapping);
5241         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5242                 /* Do not unmap the current VMA */
5243                 if (iter_vma == vma)
5244                         continue;
5245
5246                 /*
5247                  * Shared VMAs have their own reserves and do not affect
5248                  * MAP_PRIVATE accounting but it is possible that a shared
5249                  * VMA is using the same page so check and skip such VMAs.
5250                  */
5251                 if (iter_vma->vm_flags & VM_MAYSHARE)
5252                         continue;
5253
5254                 /*
5255                  * Unmap the page from other VMAs without their own reserves.
5256                  * They get marked to be SIGKILLed if they fault in these
5257                  * areas. This is because a future no-page fault on this VMA
5258                  * could insert a zeroed page instead of the data existing
5259                  * from the time of fork. This would look like data corruption
5260                  */
5261                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5262                         unmap_hugepage_range(iter_vma, address,
5263                                              address + huge_page_size(h), page, 0);
5264         }
5265         i_mmap_unlock_write(mapping);
5266 }
5267
5268 /*
5269  * hugetlb_wp() should be called with page lock of the original hugepage held.
5270  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5271  * cannot race with other handlers or page migration.
5272  * Keep the pte_same checks anyway to make transition from the mutex easier.
5273  */
5274 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5275                        unsigned long address, pte_t *ptep, unsigned int flags,
5276                        struct page *pagecache_page, spinlock_t *ptl)
5277 {
5278         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5279         pte_t pte;
5280         struct hstate *h = hstate_vma(vma);
5281         struct page *old_page, *new_page;
5282         int outside_reserve = 0;
5283         vm_fault_t ret = 0;
5284         unsigned long haddr = address & huge_page_mask(h);
5285         struct mmu_notifier_range range;
5286
5287         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5288         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5289
5290         /*
5291          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5292          * PTE mapped R/O such as maybe_mkwrite() would do.
5293          */
5294         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5295                 return VM_FAULT_SIGSEGV;
5296
5297         /* Let's take out MAP_SHARED mappings first. */
5298         if (vma->vm_flags & VM_MAYSHARE) {
5299                 if (unlikely(unshare))
5300                         return 0;
5301                 set_huge_ptep_writable(vma, haddr, ptep);
5302                 return 0;
5303         }
5304
5305         pte = huge_ptep_get(ptep);
5306         old_page = pte_page(pte);
5307
5308         delayacct_wpcopy_start();
5309
5310 retry_avoidcopy:
5311         /*
5312          * If no-one else is actually using this page, we're the exclusive
5313          * owner and can reuse this page.
5314          */
5315         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5316                 if (!PageAnonExclusive(old_page))
5317                         page_move_anon_rmap(old_page, vma);
5318                 if (likely(!unshare))
5319                         set_huge_ptep_writable(vma, haddr, ptep);
5320
5321                 delayacct_wpcopy_end();
5322                 return 0;
5323         }
5324         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5325                        old_page);
5326
5327         /*
5328          * If the process that created a MAP_PRIVATE mapping is about to
5329          * perform a COW due to a shared page count, attempt to satisfy
5330          * the allocation without using the existing reserves. The pagecache
5331          * page is used to determine if the reserve at this address was
5332          * consumed or not. If reserves were used, a partial faulted mapping
5333          * at the time of fork() could consume its reserves on COW instead
5334          * of the full address range.
5335          */
5336         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5337                         old_page != pagecache_page)
5338                 outside_reserve = 1;
5339
5340         get_page(old_page);
5341
5342         /*
5343          * Drop page table lock as buddy allocator may be called. It will
5344          * be acquired again before returning to the caller, as expected.
5345          */
5346         spin_unlock(ptl);
5347         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5348
5349         if (IS_ERR(new_page)) {
5350                 /*
5351                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5352                  * it is due to references held by a child and an insufficient
5353                  * huge page pool. To guarantee the original mappers
5354                  * reliability, unmap the page from child processes. The child
5355                  * may get SIGKILLed if it later faults.
5356                  */
5357                 if (outside_reserve) {
5358                         struct address_space *mapping = vma->vm_file->f_mapping;
5359                         pgoff_t idx;
5360                         u32 hash;
5361
5362                         put_page(old_page);
5363                         /*
5364                          * Drop hugetlb_fault_mutex and vma_lock before
5365                          * unmapping.  unmapping needs to hold vma_lock
5366                          * in write mode.  Dropping vma_lock in read mode
5367                          * here is OK as COW mappings do not interact with
5368                          * PMD sharing.
5369                          *
5370                          * Reacquire both after unmap operation.
5371                          */
5372                         idx = vma_hugecache_offset(h, vma, haddr);
5373                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5374                         hugetlb_vma_unlock_read(vma);
5375                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5376
5377                         unmap_ref_private(mm, vma, old_page, haddr);
5378
5379                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5380                         hugetlb_vma_lock_read(vma);
5381                         spin_lock(ptl);
5382                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5383                         if (likely(ptep &&
5384                                    pte_same(huge_ptep_get(ptep), pte)))
5385                                 goto retry_avoidcopy;
5386                         /*
5387                          * race occurs while re-acquiring page table
5388                          * lock, and our job is done.
5389                          */
5390                         delayacct_wpcopy_end();
5391                         return 0;
5392                 }
5393
5394                 ret = vmf_error(PTR_ERR(new_page));
5395                 goto out_release_old;
5396         }
5397
5398         /*
5399          * When the original hugepage is shared one, it does not have
5400          * anon_vma prepared.
5401          */
5402         if (unlikely(anon_vma_prepare(vma))) {
5403                 ret = VM_FAULT_OOM;
5404                 goto out_release_all;
5405         }
5406
5407         copy_user_huge_page(new_page, old_page, address, vma,
5408                             pages_per_huge_page(h));
5409         __SetPageUptodate(new_page);
5410
5411         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5412                                 haddr + huge_page_size(h));
5413         mmu_notifier_invalidate_range_start(&range);
5414
5415         /*
5416          * Retake the page table lock to check for racing updates
5417          * before the page tables are altered
5418          */
5419         spin_lock(ptl);
5420         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5421         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5422                 ClearHPageRestoreReserve(new_page);
5423
5424                 /* Break COW or unshare */
5425                 huge_ptep_clear_flush(vma, haddr, ptep);
5426                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5427                 page_remove_rmap(old_page, vma, true);
5428                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5429                 set_huge_pte_at(mm, haddr, ptep,
5430                                 make_huge_pte(vma, new_page, !unshare));
5431                 SetHPageMigratable(new_page);
5432                 /* Make the old page be freed below */
5433                 new_page = old_page;
5434         }
5435         spin_unlock(ptl);
5436         mmu_notifier_invalidate_range_end(&range);
5437 out_release_all:
5438         /*
5439          * No restore in case of successful pagetable update (Break COW or
5440          * unshare)
5441          */
5442         if (new_page != old_page)
5443                 restore_reserve_on_error(h, vma, haddr, new_page);
5444         put_page(new_page);
5445 out_release_old:
5446         put_page(old_page);
5447
5448         spin_lock(ptl); /* Caller expects lock to be held */
5449
5450         delayacct_wpcopy_end();
5451         return ret;
5452 }
5453
5454 /*
5455  * Return whether there is a pagecache page to back given address within VMA.
5456  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5457  */
5458 static bool hugetlbfs_pagecache_present(struct hstate *h,
5459                         struct vm_area_struct *vma, unsigned long address)
5460 {
5461         struct address_space *mapping;
5462         pgoff_t idx;
5463         struct page *page;
5464
5465         mapping = vma->vm_file->f_mapping;
5466         idx = vma_hugecache_offset(h, vma, address);
5467
5468         page = find_get_page(mapping, idx);
5469         if (page)
5470                 put_page(page);
5471         return page != NULL;
5472 }
5473
5474 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5475                            pgoff_t idx)
5476 {
5477         struct folio *folio = page_folio(page);
5478         struct inode *inode = mapping->host;
5479         struct hstate *h = hstate_inode(inode);
5480         int err;
5481
5482         __folio_set_locked(folio);
5483         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5484
5485         if (unlikely(err)) {
5486                 __folio_clear_locked(folio);
5487                 return err;
5488         }
5489         ClearHPageRestoreReserve(page);
5490
5491         /*
5492          * mark folio dirty so that it will not be removed from cache/file
5493          * by non-hugetlbfs specific code paths.
5494          */
5495         folio_mark_dirty(folio);
5496
5497         spin_lock(&inode->i_lock);
5498         inode->i_blocks += blocks_per_huge_page(h);
5499         spin_unlock(&inode->i_lock);
5500         return 0;
5501 }
5502
5503 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5504                                                   struct address_space *mapping,
5505                                                   pgoff_t idx,
5506                                                   unsigned int flags,
5507                                                   unsigned long haddr,
5508                                                   unsigned long addr,
5509                                                   unsigned long reason)
5510 {
5511         u32 hash;
5512         struct vm_fault vmf = {
5513                 .vma = vma,
5514                 .address = haddr,
5515                 .real_address = addr,
5516                 .flags = flags,
5517
5518                 /*
5519                  * Hard to debug if it ends up being
5520                  * used by a callee that assumes
5521                  * something about the other
5522                  * uninitialized fields... same as in
5523                  * memory.c
5524                  */
5525         };
5526
5527         /*
5528          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5529          * userfault. Also mmap_lock could be dropped due to handling
5530          * userfault, any vma operation should be careful from here.
5531          */
5532         hugetlb_vma_unlock_read(vma);
5533         hash = hugetlb_fault_mutex_hash(mapping, idx);
5534         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5535         return handle_userfault(&vmf, reason);
5536 }
5537
5538 /*
5539  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5540  * false if pte changed or is changing.
5541  */
5542 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5543                                pte_t *ptep, pte_t old_pte)
5544 {
5545         spinlock_t *ptl;
5546         bool same;
5547
5548         ptl = huge_pte_lock(h, mm, ptep);
5549         same = pte_same(huge_ptep_get(ptep), old_pte);
5550         spin_unlock(ptl);
5551
5552         return same;
5553 }
5554
5555 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5556                         struct vm_area_struct *vma,
5557                         struct address_space *mapping, pgoff_t idx,
5558                         unsigned long address, pte_t *ptep,
5559                         pte_t old_pte, unsigned int flags)
5560 {
5561         struct hstate *h = hstate_vma(vma);
5562         vm_fault_t ret = VM_FAULT_SIGBUS;
5563         int anon_rmap = 0;
5564         unsigned long size;
5565         struct page *page;
5566         pte_t new_pte;
5567         spinlock_t *ptl;
5568         unsigned long haddr = address & huge_page_mask(h);
5569         bool new_page, new_pagecache_page = false;
5570         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5571
5572         /*
5573          * Currently, we are forced to kill the process in the event the
5574          * original mapper has unmapped pages from the child due to a failed
5575          * COW/unsharing. Warn that such a situation has occurred as it may not
5576          * be obvious.
5577          */
5578         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5579                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5580                            current->pid);
5581                 goto out;
5582         }
5583
5584         /*
5585          * Use page lock to guard against racing truncation
5586          * before we get page_table_lock.
5587          */
5588         new_page = false;
5589         page = find_lock_page(mapping, idx);
5590         if (!page) {
5591                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5592                 if (idx >= size)
5593                         goto out;
5594                 /* Check for page in userfault range */
5595                 if (userfaultfd_missing(vma)) {
5596                         /*
5597                          * Since hugetlb_no_page() was examining pte
5598                          * without pgtable lock, we need to re-test under
5599                          * lock because the pte may not be stable and could
5600                          * have changed from under us.  Try to detect
5601                          * either changed or during-changing ptes and retry
5602                          * properly when needed.
5603                          *
5604                          * Note that userfaultfd is actually fine with
5605                          * false positives (e.g. caused by pte changed),
5606                          * but not wrong logical events (e.g. caused by
5607                          * reading a pte during changing).  The latter can
5608                          * confuse the userspace, so the strictness is very
5609                          * much preferred.  E.g., MISSING event should
5610                          * never happen on the page after UFFDIO_COPY has
5611                          * correctly installed the page and returned.
5612                          */
5613                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5614                                 ret = 0;
5615                                 goto out;
5616                         }
5617
5618                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5619                                                         haddr, address,
5620                                                         VM_UFFD_MISSING);
5621                 }
5622
5623                 page = alloc_huge_page(vma, haddr, 0);
5624                 if (IS_ERR(page)) {
5625                         /*
5626                          * Returning error will result in faulting task being
5627                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5628                          * tasks from racing to fault in the same page which
5629                          * could result in false unable to allocate errors.
5630                          * Page migration does not take the fault mutex, but
5631                          * does a clear then write of pte's under page table
5632                          * lock.  Page fault code could race with migration,
5633                          * notice the clear pte and try to allocate a page
5634                          * here.  Before returning error, get ptl and make
5635                          * sure there really is no pte entry.
5636                          */
5637                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5638                                 ret = vmf_error(PTR_ERR(page));
5639                         else
5640                                 ret = 0;
5641                         goto out;
5642                 }
5643                 clear_huge_page(page, address, pages_per_huge_page(h));
5644                 __SetPageUptodate(page);
5645                 new_page = true;
5646
5647                 if (vma->vm_flags & VM_MAYSHARE) {
5648                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5649                         if (err) {
5650                                 /*
5651                                  * err can't be -EEXIST which implies someone
5652                                  * else consumed the reservation since hugetlb
5653                                  * fault mutex is held when add a hugetlb page
5654                                  * to the page cache. So it's safe to call
5655                                  * restore_reserve_on_error() here.
5656                                  */
5657                                 restore_reserve_on_error(h, vma, haddr, page);
5658                                 put_page(page);
5659                                 goto out;
5660                         }
5661                         new_pagecache_page = true;
5662                 } else {
5663                         lock_page(page);
5664                         if (unlikely(anon_vma_prepare(vma))) {
5665                                 ret = VM_FAULT_OOM;
5666                                 goto backout_unlocked;
5667                         }
5668                         anon_rmap = 1;
5669                 }
5670         } else {
5671                 /*
5672                  * If memory error occurs between mmap() and fault, some process
5673                  * don't have hwpoisoned swap entry for errored virtual address.
5674                  * So we need to block hugepage fault by PG_hwpoison bit check.
5675                  */
5676                 if (unlikely(PageHWPoison(page))) {
5677                         ret = VM_FAULT_HWPOISON_LARGE |
5678                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5679                         goto backout_unlocked;
5680                 }
5681
5682                 /* Check for page in userfault range. */
5683                 if (userfaultfd_minor(vma)) {
5684                         unlock_page(page);
5685                         put_page(page);
5686                         /* See comment in userfaultfd_missing() block above */
5687                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5688                                 ret = 0;
5689                                 goto out;
5690                         }
5691                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5692                                                         haddr, address,
5693                                                         VM_UFFD_MINOR);
5694                 }
5695         }
5696
5697         /*
5698          * If we are going to COW a private mapping later, we examine the
5699          * pending reservations for this page now. This will ensure that
5700          * any allocations necessary to record that reservation occur outside
5701          * the spinlock.
5702          */
5703         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5704                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5705                         ret = VM_FAULT_OOM;
5706                         goto backout_unlocked;
5707                 }
5708                 /* Just decrements count, does not deallocate */
5709                 vma_end_reservation(h, vma, haddr);
5710         }
5711
5712         ptl = huge_pte_lock(h, mm, ptep);
5713         ret = 0;
5714         /* If pte changed from under us, retry */
5715         if (!pte_same(huge_ptep_get(ptep), old_pte))
5716                 goto backout;
5717
5718         if (anon_rmap) {
5719                 ClearHPageRestoreReserve(page);
5720                 hugepage_add_new_anon_rmap(page, vma, haddr);
5721         } else
5722                 page_dup_file_rmap(page, true);
5723         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5724                                 && (vma->vm_flags & VM_SHARED)));
5725         /*
5726          * If this pte was previously wr-protected, keep it wr-protected even
5727          * if populated.
5728          */
5729         if (unlikely(pte_marker_uffd_wp(old_pte)))
5730                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5731         set_huge_pte_at(mm, haddr, ptep, new_pte);
5732
5733         hugetlb_count_add(pages_per_huge_page(h), mm);
5734         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5735                 /* Optimization, do the COW without a second fault */
5736                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5737         }
5738
5739         spin_unlock(ptl);
5740
5741         /*
5742          * Only set HPageMigratable in newly allocated pages.  Existing pages
5743          * found in the pagecache may not have HPageMigratableset if they have
5744          * been isolated for migration.
5745          */
5746         if (new_page)
5747                 SetHPageMigratable(page);
5748
5749         unlock_page(page);
5750 out:
5751         hugetlb_vma_unlock_read(vma);
5752         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5753         return ret;
5754
5755 backout:
5756         spin_unlock(ptl);
5757 backout_unlocked:
5758         if (new_page && !new_pagecache_page)
5759                 restore_reserve_on_error(h, vma, haddr, page);
5760
5761         unlock_page(page);
5762         put_page(page);
5763         goto out;
5764 }
5765
5766 #ifdef CONFIG_SMP
5767 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5768 {
5769         unsigned long key[2];
5770         u32 hash;
5771
5772         key[0] = (unsigned long) mapping;
5773         key[1] = idx;
5774
5775         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5776
5777         return hash & (num_fault_mutexes - 1);
5778 }
5779 #else
5780 /*
5781  * For uniprocessor systems we always use a single mutex, so just
5782  * return 0 and avoid the hashing overhead.
5783  */
5784 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5785 {
5786         return 0;
5787 }
5788 #endif
5789
5790 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5791                         unsigned long address, unsigned int flags)
5792 {
5793         pte_t *ptep, entry;
5794         spinlock_t *ptl;
5795         vm_fault_t ret;
5796         u32 hash;
5797         pgoff_t idx;
5798         struct page *page = NULL;
5799         struct page *pagecache_page = NULL;
5800         struct hstate *h = hstate_vma(vma);
5801         struct address_space *mapping;
5802         int need_wait_lock = 0;
5803         unsigned long haddr = address & huge_page_mask(h);
5804
5805         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5806         if (ptep) {
5807                 /*
5808                  * Since we hold no locks, ptep could be stale.  That is
5809                  * OK as we are only making decisions based on content and
5810                  * not actually modifying content here.
5811                  */
5812                 entry = huge_ptep_get(ptep);
5813                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5814                         migration_entry_wait_huge(vma, ptep);
5815                         return 0;
5816                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5817                         return VM_FAULT_HWPOISON_LARGE |
5818                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5819         }
5820
5821         /*
5822          * Serialize hugepage allocation and instantiation, so that we don't
5823          * get spurious allocation failures if two CPUs race to instantiate
5824          * the same page in the page cache.
5825          */
5826         mapping = vma->vm_file->f_mapping;
5827         idx = vma_hugecache_offset(h, vma, haddr);
5828         hash = hugetlb_fault_mutex_hash(mapping, idx);
5829         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5830
5831         /*
5832          * Acquire vma lock before calling huge_pte_alloc and hold
5833          * until finished with ptep.  This prevents huge_pmd_unshare from
5834          * being called elsewhere and making the ptep no longer valid.
5835          *
5836          * ptep could have already be assigned via huge_pte_offset.  That
5837          * is OK, as huge_pte_alloc will return the same value unless
5838          * something has changed.
5839          */
5840         hugetlb_vma_lock_read(vma);
5841         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5842         if (!ptep) {
5843                 hugetlb_vma_unlock_read(vma);
5844                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5845                 return VM_FAULT_OOM;
5846         }
5847
5848         entry = huge_ptep_get(ptep);
5849         /* PTE markers should be handled the same way as none pte */
5850         if (huge_pte_none_mostly(entry))
5851                 /*
5852                  * hugetlb_no_page will drop vma lock and hugetlb fault
5853                  * mutex internally, which make us return immediately.
5854                  */
5855                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5856                                       entry, flags);
5857
5858         ret = 0;
5859
5860         /*
5861          * entry could be a migration/hwpoison entry at this point, so this
5862          * check prevents the kernel from going below assuming that we have
5863          * an active hugepage in pagecache. This goto expects the 2nd page
5864          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5865          * properly handle it.
5866          */
5867         if (!pte_present(entry))
5868                 goto out_mutex;
5869
5870         /*
5871          * If we are going to COW/unshare the mapping later, we examine the
5872          * pending reservations for this page now. This will ensure that any
5873          * allocations necessary to record that reservation occur outside the
5874          * spinlock. Also lookup the pagecache page now as it is used to
5875          * determine if a reservation has been consumed.
5876          */
5877         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5878             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5879                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5880                         ret = VM_FAULT_OOM;
5881                         goto out_mutex;
5882                 }
5883                 /* Just decrements count, does not deallocate */
5884                 vma_end_reservation(h, vma, haddr);
5885
5886                 pagecache_page = find_lock_page(mapping, idx);
5887         }
5888
5889         ptl = huge_pte_lock(h, mm, ptep);
5890
5891         /* Check for a racing update before calling hugetlb_wp() */
5892         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5893                 goto out_ptl;
5894
5895         /* Handle userfault-wp first, before trying to lock more pages */
5896         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5897             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5898                 struct vm_fault vmf = {
5899                         .vma = vma,
5900                         .address = haddr,
5901                         .real_address = address,
5902                         .flags = flags,
5903                 };
5904
5905                 spin_unlock(ptl);
5906                 if (pagecache_page) {
5907                         unlock_page(pagecache_page);
5908                         put_page(pagecache_page);
5909                 }
5910                 hugetlb_vma_unlock_read(vma);
5911                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5912                 return handle_userfault(&vmf, VM_UFFD_WP);
5913         }
5914
5915         /*
5916          * hugetlb_wp() requires page locks of pte_page(entry) and
5917          * pagecache_page, so here we need take the former one
5918          * when page != pagecache_page or !pagecache_page.
5919          */
5920         page = pte_page(entry);
5921         if (page != pagecache_page)
5922                 if (!trylock_page(page)) {
5923                         need_wait_lock = 1;
5924                         goto out_ptl;
5925                 }
5926
5927         get_page(page);
5928
5929         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5930                 if (!huge_pte_write(entry)) {
5931                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5932                                          pagecache_page, ptl);
5933                         goto out_put_page;
5934                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5935                         entry = huge_pte_mkdirty(entry);
5936                 }
5937         }
5938         entry = pte_mkyoung(entry);
5939         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5940                                                 flags & FAULT_FLAG_WRITE))
5941                 update_mmu_cache(vma, haddr, ptep);
5942 out_put_page:
5943         if (page != pagecache_page)
5944                 unlock_page(page);
5945         put_page(page);
5946 out_ptl:
5947         spin_unlock(ptl);
5948
5949         if (pagecache_page) {
5950                 unlock_page(pagecache_page);
5951                 put_page(pagecache_page);
5952         }
5953 out_mutex:
5954         hugetlb_vma_unlock_read(vma);
5955         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5956         /*
5957          * Generally it's safe to hold refcount during waiting page lock. But
5958          * here we just wait to defer the next page fault to avoid busy loop and
5959          * the page is not used after unlocked before returning from the current
5960          * page fault. So we are safe from accessing freed page, even if we wait
5961          * here without taking refcount.
5962          */
5963         if (need_wait_lock)
5964                 wait_on_page_locked(page);
5965         return ret;
5966 }
5967
5968 #ifdef CONFIG_USERFAULTFD
5969 /*
5970  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5971  * modifications for huge pages.
5972  */
5973 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5974                             pte_t *dst_pte,
5975                             struct vm_area_struct *dst_vma,
5976                             unsigned long dst_addr,
5977                             unsigned long src_addr,
5978                             enum mcopy_atomic_mode mode,
5979                             struct page **pagep,
5980                             bool wp_copy)
5981 {
5982         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5983         struct hstate *h = hstate_vma(dst_vma);
5984         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5985         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5986         unsigned long size;
5987         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5988         pte_t _dst_pte;
5989         spinlock_t *ptl;
5990         int ret = -ENOMEM;
5991         struct page *page;
5992         int writable;
5993         bool page_in_pagecache = false;
5994
5995         if (is_continue) {
5996                 ret = -EFAULT;
5997                 page = find_lock_page(mapping, idx);
5998                 if (!page)
5999                         goto out;
6000                 page_in_pagecache = true;
6001         } else if (!*pagep) {
6002                 /* If a page already exists, then it's UFFDIO_COPY for
6003                  * a non-missing case. Return -EEXIST.
6004                  */
6005                 if (vm_shared &&
6006                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6007                         ret = -EEXIST;
6008                         goto out;
6009                 }
6010
6011                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6012                 if (IS_ERR(page)) {
6013                         ret = -ENOMEM;
6014                         goto out;
6015                 }
6016
6017                 ret = copy_huge_page_from_user(page,
6018                                                 (const void __user *) src_addr,
6019                                                 pages_per_huge_page(h), false);
6020
6021                 /* fallback to copy_from_user outside mmap_lock */
6022                 if (unlikely(ret)) {
6023                         ret = -ENOENT;
6024                         /* Free the allocated page which may have
6025                          * consumed a reservation.
6026                          */
6027                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6028                         put_page(page);
6029
6030                         /* Allocate a temporary page to hold the copied
6031                          * contents.
6032                          */
6033                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6034                         if (!page) {
6035                                 ret = -ENOMEM;
6036                                 goto out;
6037                         }
6038                         *pagep = page;
6039                         /* Set the outparam pagep and return to the caller to
6040                          * copy the contents outside the lock. Don't free the
6041                          * page.
6042                          */
6043                         goto out;
6044                 }
6045         } else {
6046                 if (vm_shared &&
6047                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6048                         put_page(*pagep);
6049                         ret = -EEXIST;
6050                         *pagep = NULL;
6051                         goto out;
6052                 }
6053
6054                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6055                 if (IS_ERR(page)) {
6056                         put_page(*pagep);
6057                         ret = -ENOMEM;
6058                         *pagep = NULL;
6059                         goto out;
6060                 }
6061                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6062                                     pages_per_huge_page(h));
6063                 put_page(*pagep);
6064                 *pagep = NULL;
6065         }
6066
6067         /*
6068          * The memory barrier inside __SetPageUptodate makes sure that
6069          * preceding stores to the page contents become visible before
6070          * the set_pte_at() write.
6071          */
6072         __SetPageUptodate(page);
6073
6074         /* Add shared, newly allocated pages to the page cache. */
6075         if (vm_shared && !is_continue) {
6076                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6077                 ret = -EFAULT;
6078                 if (idx >= size)
6079                         goto out_release_nounlock;
6080
6081                 /*
6082                  * Serialization between remove_inode_hugepages() and
6083                  * hugetlb_add_to_page_cache() below happens through the
6084                  * hugetlb_fault_mutex_table that here must be hold by
6085                  * the caller.
6086                  */
6087                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6088                 if (ret)
6089                         goto out_release_nounlock;
6090                 page_in_pagecache = true;
6091         }
6092
6093         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6094
6095         /*
6096          * We allow to overwrite a pte marker: consider when both MISSING|WP
6097          * registered, we firstly wr-protect a none pte which has no page cache
6098          * page backing it, then access the page.
6099          */
6100         ret = -EEXIST;
6101         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6102                 goto out_release_unlock;
6103
6104         if (page_in_pagecache) {
6105                 page_dup_file_rmap(page, true);
6106         } else {
6107                 ClearHPageRestoreReserve(page);
6108                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6109         }
6110
6111         /*
6112          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6113          * with wp flag set, don't set pte write bit.
6114          */
6115         if (wp_copy || (is_continue && !vm_shared))
6116                 writable = 0;
6117         else
6118                 writable = dst_vma->vm_flags & VM_WRITE;
6119
6120         _dst_pte = make_huge_pte(dst_vma, page, writable);
6121         /*
6122          * Always mark UFFDIO_COPY page dirty; note that this may not be
6123          * extremely important for hugetlbfs for now since swapping is not
6124          * supported, but we should still be clear in that this page cannot be
6125          * thrown away at will, even if write bit not set.
6126          */
6127         _dst_pte = huge_pte_mkdirty(_dst_pte);
6128         _dst_pte = pte_mkyoung(_dst_pte);
6129
6130         if (wp_copy)
6131                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6132
6133         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6134
6135         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6136
6137         /* No need to invalidate - it was non-present before */
6138         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6139
6140         spin_unlock(ptl);
6141         if (!is_continue)
6142                 SetHPageMigratable(page);
6143         if (vm_shared || is_continue)
6144                 unlock_page(page);
6145         ret = 0;
6146 out:
6147         return ret;
6148 out_release_unlock:
6149         spin_unlock(ptl);
6150         if (vm_shared || is_continue)
6151                 unlock_page(page);
6152 out_release_nounlock:
6153         if (!page_in_pagecache)
6154                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6155         put_page(page);
6156         goto out;
6157 }
6158 #endif /* CONFIG_USERFAULTFD */
6159
6160 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6161                                  int refs, struct page **pages,
6162                                  struct vm_area_struct **vmas)
6163 {
6164         int nr;
6165
6166         for (nr = 0; nr < refs; nr++) {
6167                 if (likely(pages))
6168                         pages[nr] = nth_page(page, nr);
6169                 if (vmas)
6170                         vmas[nr] = vma;
6171         }
6172 }
6173
6174 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6175                                                bool *unshare)
6176 {
6177         pte_t pteval = huge_ptep_get(pte);
6178
6179         *unshare = false;
6180         if (is_swap_pte(pteval))
6181                 return true;
6182         if (huge_pte_write(pteval))
6183                 return false;
6184         if (flags & FOLL_WRITE)
6185                 return true;
6186         if (gup_must_unshare(flags, pte_page(pteval))) {
6187                 *unshare = true;
6188                 return true;
6189         }
6190         return false;
6191 }
6192
6193 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6194                          struct page **pages, struct vm_area_struct **vmas,
6195                          unsigned long *position, unsigned long *nr_pages,
6196                          long i, unsigned int flags, int *locked)
6197 {
6198         unsigned long pfn_offset;
6199         unsigned long vaddr = *position;
6200         unsigned long remainder = *nr_pages;
6201         struct hstate *h = hstate_vma(vma);
6202         int err = -EFAULT, refs;
6203
6204         while (vaddr < vma->vm_end && remainder) {
6205                 pte_t *pte;
6206                 spinlock_t *ptl = NULL;
6207                 bool unshare = false;
6208                 int absent;
6209                 struct page *page;
6210
6211                 /*
6212                  * If we have a pending SIGKILL, don't keep faulting pages and
6213                  * potentially allocating memory.
6214                  */
6215                 if (fatal_signal_pending(current)) {
6216                         remainder = 0;
6217                         break;
6218                 }
6219
6220                 /*
6221                  * Some archs (sparc64, sh*) have multiple pte_ts to
6222                  * each hugepage.  We have to make sure we get the
6223                  * first, for the page indexing below to work.
6224                  *
6225                  * Note that page table lock is not held when pte is null.
6226                  */
6227                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6228                                       huge_page_size(h));
6229                 if (pte)
6230                         ptl = huge_pte_lock(h, mm, pte);
6231                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6232
6233                 /*
6234                  * When coredumping, it suits get_dump_page if we just return
6235                  * an error where there's an empty slot with no huge pagecache
6236                  * to back it.  This way, we avoid allocating a hugepage, and
6237                  * the sparse dumpfile avoids allocating disk blocks, but its
6238                  * huge holes still show up with zeroes where they need to be.
6239                  */
6240                 if (absent && (flags & FOLL_DUMP) &&
6241                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6242                         if (pte)
6243                                 spin_unlock(ptl);
6244                         remainder = 0;
6245                         break;
6246                 }
6247
6248                 /*
6249                  * We need call hugetlb_fault for both hugepages under migration
6250                  * (in which case hugetlb_fault waits for the migration,) and
6251                  * hwpoisoned hugepages (in which case we need to prevent the
6252                  * caller from accessing to them.) In order to do this, we use
6253                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6254                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6255                  * both cases, and because we can't follow correct pages
6256                  * directly from any kind of swap entries.
6257                  */
6258                 if (absent ||
6259                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6260                         vm_fault_t ret;
6261                         unsigned int fault_flags = 0;
6262
6263                         if (pte)
6264                                 spin_unlock(ptl);
6265                         if (flags & FOLL_WRITE)
6266                                 fault_flags |= FAULT_FLAG_WRITE;
6267                         else if (unshare)
6268                                 fault_flags |= FAULT_FLAG_UNSHARE;
6269                         if (locked)
6270                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6271                                         FAULT_FLAG_KILLABLE;
6272                         if (flags & FOLL_NOWAIT)
6273                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6274                                         FAULT_FLAG_RETRY_NOWAIT;
6275                         if (flags & FOLL_TRIED) {
6276                                 /*
6277                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6278                                  * FAULT_FLAG_TRIED can co-exist
6279                                  */
6280                                 fault_flags |= FAULT_FLAG_TRIED;
6281                         }
6282                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6283                         if (ret & VM_FAULT_ERROR) {
6284                                 err = vm_fault_to_errno(ret, flags);
6285                                 remainder = 0;
6286                                 break;
6287                         }
6288                         if (ret & VM_FAULT_RETRY) {
6289                                 if (locked &&
6290                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6291                                         *locked = 0;
6292                                 *nr_pages = 0;
6293                                 /*
6294                                  * VM_FAULT_RETRY must not return an
6295                                  * error, it will return zero
6296                                  * instead.
6297                                  *
6298                                  * No need to update "position" as the
6299                                  * caller will not check it after
6300                                  * *nr_pages is set to 0.
6301                                  */
6302                                 return i;
6303                         }
6304                         continue;
6305                 }
6306
6307                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6308                 page = pte_page(huge_ptep_get(pte));
6309
6310                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6311                                !PageAnonExclusive(page), page);
6312
6313                 /*
6314                  * If subpage information not requested, update counters
6315                  * and skip the same_page loop below.
6316                  */
6317                 if (!pages && !vmas && !pfn_offset &&
6318                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6319                     (remainder >= pages_per_huge_page(h))) {
6320                         vaddr += huge_page_size(h);
6321                         remainder -= pages_per_huge_page(h);
6322                         i += pages_per_huge_page(h);
6323                         spin_unlock(ptl);
6324                         continue;
6325                 }
6326
6327                 /* vaddr may not be aligned to PAGE_SIZE */
6328                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6329                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6330
6331                 if (pages || vmas)
6332                         record_subpages_vmas(nth_page(page, pfn_offset),
6333                                              vma, refs,
6334                                              likely(pages) ? pages + i : NULL,
6335                                              vmas ? vmas + i : NULL);
6336
6337                 if (pages) {
6338                         /*
6339                          * try_grab_folio() should always succeed here,
6340                          * because: a) we hold the ptl lock, and b) we've just
6341                          * checked that the huge page is present in the page
6342                          * tables. If the huge page is present, then the tail
6343                          * pages must also be present. The ptl prevents the
6344                          * head page and tail pages from being rearranged in
6345                          * any way. So this page must be available at this
6346                          * point, unless the page refcount overflowed:
6347                          */
6348                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6349                                                          flags))) {
6350                                 spin_unlock(ptl);
6351                                 remainder = 0;
6352                                 err = -ENOMEM;
6353                                 break;
6354                         }
6355                 }
6356
6357                 vaddr += (refs << PAGE_SHIFT);
6358                 remainder -= refs;
6359                 i += refs;
6360
6361                 spin_unlock(ptl);
6362         }
6363         *nr_pages = remainder;
6364         /*
6365          * setting position is actually required only if remainder is
6366          * not zero but it's faster not to add a "if (remainder)"
6367          * branch.
6368          */
6369         *position = vaddr;
6370
6371         return i ? i : err;
6372 }
6373
6374 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6375                 unsigned long address, unsigned long end,
6376                 pgprot_t newprot, unsigned long cp_flags)
6377 {
6378         struct mm_struct *mm = vma->vm_mm;
6379         unsigned long start = address;
6380         pte_t *ptep;
6381         pte_t pte;
6382         struct hstate *h = hstate_vma(vma);
6383         unsigned long pages = 0, psize = huge_page_size(h);
6384         bool shared_pmd = false;
6385         struct mmu_notifier_range range;
6386         unsigned long last_addr_mask;
6387         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6388         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6389
6390         /*
6391          * In the case of shared PMDs, the area to flush could be beyond
6392          * start/end.  Set range.start/range.end to cover the maximum possible
6393          * range if PMD sharing is possible.
6394          */
6395         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6396                                 0, vma, mm, start, end);
6397         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6398
6399         BUG_ON(address >= end);
6400         flush_cache_range(vma, range.start, range.end);
6401
6402         mmu_notifier_invalidate_range_start(&range);
6403         hugetlb_vma_lock_write(vma);
6404         i_mmap_lock_write(vma->vm_file->f_mapping);
6405         last_addr_mask = hugetlb_mask_last_page(h);
6406         for (; address < end; address += psize) {
6407                 spinlock_t *ptl;
6408                 ptep = huge_pte_offset(mm, address, psize);
6409                 if (!ptep) {
6410                         address |= last_addr_mask;
6411                         continue;
6412                 }
6413                 ptl = huge_pte_lock(h, mm, ptep);
6414                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6415                         /*
6416                          * When uffd-wp is enabled on the vma, unshare
6417                          * shouldn't happen at all.  Warn about it if it
6418                          * happened due to some reason.
6419                          */
6420                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6421                         pages++;
6422                         spin_unlock(ptl);
6423                         shared_pmd = true;
6424                         address |= last_addr_mask;
6425                         continue;
6426                 }
6427                 pte = huge_ptep_get(ptep);
6428                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6429                         spin_unlock(ptl);
6430                         continue;
6431                 }
6432                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6433                         swp_entry_t entry = pte_to_swp_entry(pte);
6434                         struct page *page = pfn_swap_entry_to_page(entry);
6435
6436                         if (!is_readable_migration_entry(entry)) {
6437                                 pte_t newpte;
6438
6439                                 if (PageAnon(page))
6440                                         entry = make_readable_exclusive_migration_entry(
6441                                                                 swp_offset(entry));
6442                                 else
6443                                         entry = make_readable_migration_entry(
6444                                                                 swp_offset(entry));
6445                                 newpte = swp_entry_to_pte(entry);
6446                                 if (uffd_wp)
6447                                         newpte = pte_swp_mkuffd_wp(newpte);
6448                                 else if (uffd_wp_resolve)
6449                                         newpte = pte_swp_clear_uffd_wp(newpte);
6450                                 set_huge_pte_at(mm, address, ptep, newpte);
6451                                 pages++;
6452                         }
6453                         spin_unlock(ptl);
6454                         continue;
6455                 }
6456                 if (unlikely(pte_marker_uffd_wp(pte))) {
6457                         /*
6458                          * This is changing a non-present pte into a none pte,
6459                          * no need for huge_ptep_modify_prot_start/commit().
6460                          */
6461                         if (uffd_wp_resolve)
6462                                 huge_pte_clear(mm, address, ptep, psize);
6463                 }
6464                 if (!huge_pte_none(pte)) {
6465                         pte_t old_pte;
6466                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6467
6468                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6469                         pte = huge_pte_modify(old_pte, newprot);
6470                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6471                         if (uffd_wp)
6472                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6473                         else if (uffd_wp_resolve)
6474                                 pte = huge_pte_clear_uffd_wp(pte);
6475                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6476                         pages++;
6477                 } else {
6478                         /* None pte */
6479                         if (unlikely(uffd_wp))
6480                                 /* Safe to modify directly (none->non-present). */
6481                                 set_huge_pte_at(mm, address, ptep,
6482                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6483                 }
6484                 spin_unlock(ptl);
6485         }
6486         /*
6487          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6488          * may have cleared our pud entry and done put_page on the page table:
6489          * once we release i_mmap_rwsem, another task can do the final put_page
6490          * and that page table be reused and filled with junk.  If we actually
6491          * did unshare a page of pmds, flush the range corresponding to the pud.
6492          */
6493         if (shared_pmd)
6494                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6495         else
6496                 flush_hugetlb_tlb_range(vma, start, end);
6497         /*
6498          * No need to call mmu_notifier_invalidate_range() we are downgrading
6499          * page table protection not changing it to point to a new page.
6500          *
6501          * See Documentation/mm/mmu_notifier.rst
6502          */
6503         i_mmap_unlock_write(vma->vm_file->f_mapping);
6504         hugetlb_vma_unlock_write(vma);
6505         mmu_notifier_invalidate_range_end(&range);
6506
6507         return pages << h->order;
6508 }
6509
6510 /* Return true if reservation was successful, false otherwise.  */
6511 bool hugetlb_reserve_pages(struct inode *inode,
6512                                         long from, long to,
6513                                         struct vm_area_struct *vma,
6514                                         vm_flags_t vm_flags)
6515 {
6516         long chg, add = -1;
6517         struct hstate *h = hstate_inode(inode);
6518         struct hugepage_subpool *spool = subpool_inode(inode);
6519         struct resv_map *resv_map;
6520         struct hugetlb_cgroup *h_cg = NULL;
6521         long gbl_reserve, regions_needed = 0;
6522
6523         /* This should never happen */
6524         if (from > to) {
6525                 VM_WARN(1, "%s called with a negative range\n", __func__);
6526                 return false;
6527         }
6528
6529         /*
6530          * vma specific semaphore used for pmd sharing synchronization
6531          */
6532         hugetlb_vma_lock_alloc(vma);
6533
6534         /*
6535          * Only apply hugepage reservation if asked. At fault time, an
6536          * attempt will be made for VM_NORESERVE to allocate a page
6537          * without using reserves
6538          */
6539         if (vm_flags & VM_NORESERVE)
6540                 return true;
6541
6542         /*
6543          * Shared mappings base their reservation on the number of pages that
6544          * are already allocated on behalf of the file. Private mappings need
6545          * to reserve the full area even if read-only as mprotect() may be
6546          * called to make the mapping read-write. Assume !vma is a shm mapping
6547          */
6548         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6549                 /*
6550                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6551                  * called for inodes for which resv_maps were created (see
6552                  * hugetlbfs_get_inode).
6553                  */
6554                 resv_map = inode_resv_map(inode);
6555
6556                 chg = region_chg(resv_map, from, to, &regions_needed);
6557         } else {
6558                 /* Private mapping. */
6559                 resv_map = resv_map_alloc();
6560                 if (!resv_map)
6561                         goto out_err;
6562
6563                 chg = to - from;
6564
6565                 set_vma_resv_map(vma, resv_map);
6566                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6567         }
6568
6569         if (chg < 0)
6570                 goto out_err;
6571
6572         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6573                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6574                 goto out_err;
6575
6576         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6577                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6578                  * of the resv_map.
6579                  */
6580                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6581         }
6582
6583         /*
6584          * There must be enough pages in the subpool for the mapping. If
6585          * the subpool has a minimum size, there may be some global
6586          * reservations already in place (gbl_reserve).
6587          */
6588         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6589         if (gbl_reserve < 0)
6590                 goto out_uncharge_cgroup;
6591
6592         /*
6593          * Check enough hugepages are available for the reservation.
6594          * Hand the pages back to the subpool if there are not
6595          */
6596         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6597                 goto out_put_pages;
6598
6599         /*
6600          * Account for the reservations made. Shared mappings record regions
6601          * that have reservations as they are shared by multiple VMAs.
6602          * When the last VMA disappears, the region map says how much
6603          * the reservation was and the page cache tells how much of
6604          * the reservation was consumed. Private mappings are per-VMA and
6605          * only the consumed reservations are tracked. When the VMA
6606          * disappears, the original reservation is the VMA size and the
6607          * consumed reservations are stored in the map. Hence, nothing
6608          * else has to be done for private mappings here
6609          */
6610         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6611                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6612
6613                 if (unlikely(add < 0)) {
6614                         hugetlb_acct_memory(h, -gbl_reserve);
6615                         goto out_put_pages;
6616                 } else if (unlikely(chg > add)) {
6617                         /*
6618                          * pages in this range were added to the reserve
6619                          * map between region_chg and region_add.  This
6620                          * indicates a race with alloc_huge_page.  Adjust
6621                          * the subpool and reserve counts modified above
6622                          * based on the difference.
6623                          */
6624                         long rsv_adjust;
6625
6626                         /*
6627                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6628                          * reference to h_cg->css. See comment below for detail.
6629                          */
6630                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6631                                 hstate_index(h),
6632                                 (chg - add) * pages_per_huge_page(h), h_cg);
6633
6634                         rsv_adjust = hugepage_subpool_put_pages(spool,
6635                                                                 chg - add);
6636                         hugetlb_acct_memory(h, -rsv_adjust);
6637                 } else if (h_cg) {
6638                         /*
6639                          * The file_regions will hold their own reference to
6640                          * h_cg->css. So we should release the reference held
6641                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6642                          * done.
6643                          */
6644                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6645                 }
6646         }
6647         return true;
6648
6649 out_put_pages:
6650         /* put back original number of pages, chg */
6651         (void)hugepage_subpool_put_pages(spool, chg);
6652 out_uncharge_cgroup:
6653         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6654                                             chg * pages_per_huge_page(h), h_cg);
6655 out_err:
6656         hugetlb_vma_lock_free(vma);
6657         if (!vma || vma->vm_flags & VM_MAYSHARE)
6658                 /* Only call region_abort if the region_chg succeeded but the
6659                  * region_add failed or didn't run.
6660                  */
6661                 if (chg >= 0 && add < 0)
6662                         region_abort(resv_map, from, to, regions_needed);
6663         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6664                 kref_put(&resv_map->refs, resv_map_release);
6665         return false;
6666 }
6667
6668 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6669                                                                 long freed)
6670 {
6671         struct hstate *h = hstate_inode(inode);
6672         struct resv_map *resv_map = inode_resv_map(inode);
6673         long chg = 0;
6674         struct hugepage_subpool *spool = subpool_inode(inode);
6675         long gbl_reserve;
6676
6677         /*
6678          * Since this routine can be called in the evict inode path for all
6679          * hugetlbfs inodes, resv_map could be NULL.
6680          */
6681         if (resv_map) {
6682                 chg = region_del(resv_map, start, end);
6683                 /*
6684                  * region_del() can fail in the rare case where a region
6685                  * must be split and another region descriptor can not be
6686                  * allocated.  If end == LONG_MAX, it will not fail.
6687                  */
6688                 if (chg < 0)
6689                         return chg;
6690         }
6691
6692         spin_lock(&inode->i_lock);
6693         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6694         spin_unlock(&inode->i_lock);
6695
6696         /*
6697          * If the subpool has a minimum size, the number of global
6698          * reservations to be released may be adjusted.
6699          *
6700          * Note that !resv_map implies freed == 0. So (chg - freed)
6701          * won't go negative.
6702          */
6703         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6704         hugetlb_acct_memory(h, -gbl_reserve);
6705
6706         return 0;
6707 }
6708
6709 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6710 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6711                                 struct vm_area_struct *vma,
6712                                 unsigned long addr, pgoff_t idx)
6713 {
6714         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6715                                 svma->vm_start;
6716         unsigned long sbase = saddr & PUD_MASK;
6717         unsigned long s_end = sbase + PUD_SIZE;
6718
6719         /* Allow segments to share if only one is marked locked */
6720         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6721         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6722
6723         /*
6724          * match the virtual addresses, permission and the alignment of the
6725          * page table page.
6726          *
6727          * Also, vma_lock (vm_private_data) is required for sharing.
6728          */
6729         if (pmd_index(addr) != pmd_index(saddr) ||
6730             vm_flags != svm_flags ||
6731             !range_in_vma(svma, sbase, s_end) ||
6732             !svma->vm_private_data)
6733                 return 0;
6734
6735         return saddr;
6736 }
6737
6738 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6739 {
6740         unsigned long start = addr & PUD_MASK;
6741         unsigned long end = start + PUD_SIZE;
6742
6743 #ifdef CONFIG_USERFAULTFD
6744         if (uffd_disable_huge_pmd_share(vma))
6745                 return false;
6746 #endif
6747         /*
6748          * check on proper vm_flags and page table alignment
6749          */
6750         if (!(vma->vm_flags & VM_MAYSHARE))
6751                 return false;
6752         if (!vma->vm_private_data)      /* vma lock required for sharing */
6753                 return false;
6754         if (!range_in_vma(vma, start, end))
6755                 return false;
6756         return true;
6757 }
6758
6759 /*
6760  * Determine if start,end range within vma could be mapped by shared pmd.
6761  * If yes, adjust start and end to cover range associated with possible
6762  * shared pmd mappings.
6763  */
6764 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6765                                 unsigned long *start, unsigned long *end)
6766 {
6767         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6768                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6769
6770         /*
6771          * vma needs to span at least one aligned PUD size, and the range
6772          * must be at least partially within in.
6773          */
6774         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6775                 (*end <= v_start) || (*start >= v_end))
6776                 return;
6777
6778         /* Extend the range to be PUD aligned for a worst case scenario */
6779         if (*start > v_start)
6780                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6781
6782         if (*end < v_end)
6783                 *end = ALIGN(*end, PUD_SIZE);
6784 }
6785
6786 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6787 {
6788         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6789                 vma->vm_private_data;
6790 }
6791
6792 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6793 {
6794         if (__vma_shareable_flags_pmd(vma)) {
6795                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6796
6797                 down_read(&vma_lock->rw_sema);
6798         }
6799 }
6800
6801 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6802 {
6803         if (__vma_shareable_flags_pmd(vma)) {
6804                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6805
6806                 up_read(&vma_lock->rw_sema);
6807         }
6808 }
6809
6810 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6811 {
6812         if (__vma_shareable_flags_pmd(vma)) {
6813                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6814
6815                 down_write(&vma_lock->rw_sema);
6816         }
6817 }
6818
6819 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6820 {
6821         if (__vma_shareable_flags_pmd(vma)) {
6822                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6823
6824                 up_write(&vma_lock->rw_sema);
6825         }
6826 }
6827
6828 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6829 {
6830         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6831
6832         if (!__vma_shareable_flags_pmd(vma))
6833                 return 1;
6834
6835         return down_write_trylock(&vma_lock->rw_sema);
6836 }
6837
6838 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6839 {
6840         if (__vma_shareable_flags_pmd(vma)) {
6841                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6842
6843                 lockdep_assert_held(&vma_lock->rw_sema);
6844         }
6845 }
6846
6847 void hugetlb_vma_lock_release(struct kref *kref)
6848 {
6849         struct hugetlb_vma_lock *vma_lock = container_of(kref,
6850                         struct hugetlb_vma_lock, refs);
6851
6852         kfree(vma_lock);
6853 }
6854
6855 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6856 {
6857         struct vm_area_struct *vma = vma_lock->vma;
6858
6859         /*
6860          * vma_lock structure may or not be released as a result of put,
6861          * it certainly will no longer be attached to vma so clear pointer.
6862          * Semaphore synchronizes access to vma_lock->vma field.
6863          */
6864         vma_lock->vma = NULL;
6865         vma->vm_private_data = NULL;
6866         up_write(&vma_lock->rw_sema);
6867         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6868 }
6869
6870 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6871 {
6872         if (__vma_shareable_flags_pmd(vma)) {
6873                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6874
6875                 __hugetlb_vma_unlock_write_put(vma_lock);
6876         }
6877 }
6878
6879 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6880 {
6881         /*
6882          * Only present in sharable vmas.
6883          */
6884         if (!vma || !__vma_shareable_flags_pmd(vma))
6885                 return;
6886
6887         if (vma->vm_private_data) {
6888                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6889
6890                 down_write(&vma_lock->rw_sema);
6891                 __hugetlb_vma_unlock_write_put(vma_lock);
6892         }
6893 }
6894
6895 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6896 {
6897         struct hugetlb_vma_lock *vma_lock;
6898
6899         /* Only establish in (flags) sharable vmas */
6900         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6901                 return;
6902
6903         /* Should never get here with non-NULL vm_private_data */
6904         if (vma->vm_private_data)
6905                 return;
6906
6907         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6908         if (!vma_lock) {
6909                 /*
6910                  * If we can not allocate structure, then vma can not
6911                  * participate in pmd sharing.  This is only a possible
6912                  * performance enhancement and memory saving issue.
6913                  * However, the lock is also used to synchronize page
6914                  * faults with truncation.  If the lock is not present,
6915                  * unlikely races could leave pages in a file past i_size
6916                  * until the file is removed.  Warn in the unlikely case of
6917                  * allocation failure.
6918                  */
6919                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6920                 return;
6921         }
6922
6923         kref_init(&vma_lock->refs);
6924         init_rwsem(&vma_lock->rw_sema);
6925         vma_lock->vma = vma;
6926         vma->vm_private_data = vma_lock;
6927 }
6928
6929 /*
6930  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6931  * and returns the corresponding pte. While this is not necessary for the
6932  * !shared pmd case because we can allocate the pmd later as well, it makes the
6933  * code much cleaner. pmd allocation is essential for the shared case because
6934  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6935  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6936  * bad pmd for sharing.
6937  */
6938 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6939                       unsigned long addr, pud_t *pud)
6940 {
6941         struct address_space *mapping = vma->vm_file->f_mapping;
6942         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6943                         vma->vm_pgoff;
6944         struct vm_area_struct *svma;
6945         unsigned long saddr;
6946         pte_t *spte = NULL;
6947         pte_t *pte;
6948         spinlock_t *ptl;
6949
6950         i_mmap_lock_read(mapping);
6951         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6952                 if (svma == vma)
6953                         continue;
6954
6955                 saddr = page_table_shareable(svma, vma, addr, idx);
6956                 if (saddr) {
6957                         spte = huge_pte_offset(svma->vm_mm, saddr,
6958                                                vma_mmu_pagesize(svma));
6959                         if (spte) {
6960                                 get_page(virt_to_page(spte));
6961                                 break;
6962                         }
6963                 }
6964         }
6965
6966         if (!spte)
6967                 goto out;
6968
6969         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6970         if (pud_none(*pud)) {
6971                 pud_populate(mm, pud,
6972                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6973                 mm_inc_nr_pmds(mm);
6974         } else {
6975                 put_page(virt_to_page(spte));
6976         }
6977         spin_unlock(ptl);
6978 out:
6979         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6980         i_mmap_unlock_read(mapping);
6981         return pte;
6982 }
6983
6984 /*
6985  * unmap huge page backed by shared pte.
6986  *
6987  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6988  * indicated by page_count > 1, unmap is achieved by clearing pud and
6989  * decrementing the ref count. If count == 1, the pte page is not shared.
6990  *
6991  * Called with page table lock held.
6992  *
6993  * returns: 1 successfully unmapped a shared pte page
6994  *          0 the underlying pte page is not shared, or it is the last user
6995  */
6996 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6997                                         unsigned long addr, pte_t *ptep)
6998 {
6999         pgd_t *pgd = pgd_offset(mm, addr);
7000         p4d_t *p4d = p4d_offset(pgd, addr);
7001         pud_t *pud = pud_offset(p4d, addr);
7002
7003         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7004         hugetlb_vma_assert_locked(vma);
7005         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7006         if (page_count(virt_to_page(ptep)) == 1)
7007                 return 0;
7008
7009         pud_clear(pud);
7010         put_page(virt_to_page(ptep));
7011         mm_dec_nr_pmds(mm);
7012         return 1;
7013 }
7014
7015 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7016
7017 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7018 {
7019 }
7020
7021 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7022 {
7023 }
7024
7025 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7026 {
7027 }
7028
7029 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7030 {
7031 }
7032
7033 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7034 {
7035         return 1;
7036 }
7037
7038 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7039 {
7040 }
7041
7042 void hugetlb_vma_lock_release(struct kref *kref)
7043 {
7044 }
7045
7046 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7047 {
7048 }
7049
7050 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7051 {
7052 }
7053
7054 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7055 {
7056 }
7057
7058 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7059                       unsigned long addr, pud_t *pud)
7060 {
7061         return NULL;
7062 }
7063
7064 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7065                                 unsigned long addr, pte_t *ptep)
7066 {
7067         return 0;
7068 }
7069
7070 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7071                                 unsigned long *start, unsigned long *end)
7072 {
7073 }
7074
7075 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7076 {
7077         return false;
7078 }
7079 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7080
7081 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7082 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7083                         unsigned long addr, unsigned long sz)
7084 {
7085         pgd_t *pgd;
7086         p4d_t *p4d;
7087         pud_t *pud;
7088         pte_t *pte = NULL;
7089
7090         pgd = pgd_offset(mm, addr);
7091         p4d = p4d_alloc(mm, pgd, addr);
7092         if (!p4d)
7093                 return NULL;
7094         pud = pud_alloc(mm, p4d, addr);
7095         if (pud) {
7096                 if (sz == PUD_SIZE) {
7097                         pte = (pte_t *)pud;
7098                 } else {
7099                         BUG_ON(sz != PMD_SIZE);
7100                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7101                                 pte = huge_pmd_share(mm, vma, addr, pud);
7102                         else
7103                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7104                 }
7105         }
7106         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7107
7108         return pte;
7109 }
7110
7111 /*
7112  * huge_pte_offset() - Walk the page table to resolve the hugepage
7113  * entry at address @addr
7114  *
7115  * Return: Pointer to page table entry (PUD or PMD) for
7116  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7117  * size @sz doesn't match the hugepage size at this level of the page
7118  * table.
7119  */
7120 pte_t *huge_pte_offset(struct mm_struct *mm,
7121                        unsigned long addr, unsigned long sz)
7122 {
7123         pgd_t *pgd;
7124         p4d_t *p4d;
7125         pud_t *pud;
7126         pmd_t *pmd;
7127
7128         pgd = pgd_offset(mm, addr);
7129         if (!pgd_present(*pgd))
7130                 return NULL;
7131         p4d = p4d_offset(pgd, addr);
7132         if (!p4d_present(*p4d))
7133                 return NULL;
7134
7135         pud = pud_offset(p4d, addr);
7136         if (sz == PUD_SIZE)
7137                 /* must be pud huge, non-present or none */
7138                 return (pte_t *)pud;
7139         if (!pud_present(*pud))
7140                 return NULL;
7141         /* must have a valid entry and size to go further */
7142
7143         pmd = pmd_offset(pud, addr);
7144         /* must be pmd huge, non-present or none */
7145         return (pte_t *)pmd;
7146 }
7147
7148 /*
7149  * Return a mask that can be used to update an address to the last huge
7150  * page in a page table page mapping size.  Used to skip non-present
7151  * page table entries when linearly scanning address ranges.  Architectures
7152  * with unique huge page to page table relationships can define their own
7153  * version of this routine.
7154  */
7155 unsigned long hugetlb_mask_last_page(struct hstate *h)
7156 {
7157         unsigned long hp_size = huge_page_size(h);
7158
7159         if (hp_size == PUD_SIZE)
7160                 return P4D_SIZE - PUD_SIZE;
7161         else if (hp_size == PMD_SIZE)
7162                 return PUD_SIZE - PMD_SIZE;
7163         else
7164                 return 0UL;
7165 }
7166
7167 #else
7168
7169 /* See description above.  Architectures can provide their own version. */
7170 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7171 {
7172 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7173         if (huge_page_size(h) == PMD_SIZE)
7174                 return PUD_SIZE - PMD_SIZE;
7175 #endif
7176         return 0UL;
7177 }
7178
7179 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7180
7181 /*
7182  * These functions are overwritable if your architecture needs its own
7183  * behavior.
7184  */
7185 struct page * __weak
7186 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7187                               int write)
7188 {
7189         return ERR_PTR(-EINVAL);
7190 }
7191
7192 struct page * __weak
7193 follow_huge_pd(struct vm_area_struct *vma,
7194                unsigned long address, hugepd_t hpd, int flags, int pdshift)
7195 {
7196         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7197         return NULL;
7198 }
7199
7200 struct page * __weak
7201 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7202 {
7203         struct hstate *h = hstate_vma(vma);
7204         struct mm_struct *mm = vma->vm_mm;
7205         struct page *page = NULL;
7206         spinlock_t *ptl;
7207         pte_t *ptep, pte;
7208
7209         /*
7210          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7211          * follow_hugetlb_page().
7212          */
7213         if (WARN_ON_ONCE(flags & FOLL_PIN))
7214                 return NULL;
7215
7216 retry:
7217         ptep = huge_pte_offset(mm, address, huge_page_size(h));
7218         if (!ptep)
7219                 return NULL;
7220
7221         ptl = huge_pte_lock(h, mm, ptep);
7222         pte = huge_ptep_get(ptep);
7223         if (pte_present(pte)) {
7224                 page = pte_page(pte) +
7225                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7226                 /*
7227                  * try_grab_page() should always succeed here, because: a) we
7228                  * hold the pmd (ptl) lock, and b) we've just checked that the
7229                  * huge pmd (head) page is present in the page tables. The ptl
7230                  * prevents the head page and tail pages from being rearranged
7231                  * in any way. So this page must be available at this point,
7232                  * unless the page refcount overflowed:
7233                  */
7234                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7235                         page = NULL;
7236                         goto out;
7237                 }
7238         } else {
7239                 if (is_hugetlb_entry_migration(pte)) {
7240                         spin_unlock(ptl);
7241                         __migration_entry_wait_huge(ptep, ptl);
7242                         goto retry;
7243                 }
7244                 /*
7245                  * hwpoisoned entry is treated as no_page_table in
7246                  * follow_page_mask().
7247                  */
7248         }
7249 out:
7250         spin_unlock(ptl);
7251         return page;
7252 }
7253
7254 struct page * __weak
7255 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7256                 pud_t *pud, int flags)
7257 {
7258         struct page *page = NULL;
7259         spinlock_t *ptl;
7260         pte_t pte;
7261
7262         if (WARN_ON_ONCE(flags & FOLL_PIN))
7263                 return NULL;
7264
7265 retry:
7266         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7267         if (!pud_huge(*pud))
7268                 goto out;
7269         pte = huge_ptep_get((pte_t *)pud);
7270         if (pte_present(pte)) {
7271                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7272                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7273                         page = NULL;
7274                         goto out;
7275                 }
7276         } else {
7277                 if (is_hugetlb_entry_migration(pte)) {
7278                         spin_unlock(ptl);
7279                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7280                         goto retry;
7281                 }
7282                 /*
7283                  * hwpoisoned entry is treated as no_page_table in
7284                  * follow_page_mask().
7285                  */
7286         }
7287 out:
7288         spin_unlock(ptl);
7289         return page;
7290 }
7291
7292 struct page * __weak
7293 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7294 {
7295         if (flags & (FOLL_GET | FOLL_PIN))
7296                 return NULL;
7297
7298         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7299 }
7300
7301 int isolate_hugetlb(struct page *page, struct list_head *list)
7302 {
7303         int ret = 0;
7304
7305         spin_lock_irq(&hugetlb_lock);
7306         if (!PageHeadHuge(page) ||
7307             !HPageMigratable(page) ||
7308             !get_page_unless_zero(page)) {
7309                 ret = -EBUSY;
7310                 goto unlock;
7311         }
7312         ClearHPageMigratable(page);
7313         list_move_tail(&page->lru, list);
7314 unlock:
7315         spin_unlock_irq(&hugetlb_lock);
7316         return ret;
7317 }
7318
7319 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7320 {
7321         int ret = 0;
7322
7323         *hugetlb = false;
7324         spin_lock_irq(&hugetlb_lock);
7325         if (PageHeadHuge(page)) {
7326                 *hugetlb = true;
7327                 if (HPageFreed(page))
7328                         ret = 0;
7329                 else if (HPageMigratable(page))
7330                         ret = get_page_unless_zero(page);
7331                 else
7332                         ret = -EBUSY;
7333         }
7334         spin_unlock_irq(&hugetlb_lock);
7335         return ret;
7336 }
7337
7338 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7339 {
7340         int ret;
7341
7342         spin_lock_irq(&hugetlb_lock);
7343         ret = __get_huge_page_for_hwpoison(pfn, flags);
7344         spin_unlock_irq(&hugetlb_lock);
7345         return ret;
7346 }
7347
7348 void putback_active_hugepage(struct page *page)
7349 {
7350         spin_lock_irq(&hugetlb_lock);
7351         SetHPageMigratable(page);
7352         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7353         spin_unlock_irq(&hugetlb_lock);
7354         put_page(page);
7355 }
7356
7357 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7358 {
7359         struct hstate *h = page_hstate(oldpage);
7360
7361         hugetlb_cgroup_migrate(oldpage, newpage);
7362         set_page_owner_migrate_reason(newpage, reason);
7363
7364         /*
7365          * transfer temporary state of the new huge page. This is
7366          * reverse to other transitions because the newpage is going to
7367          * be final while the old one will be freed so it takes over
7368          * the temporary status.
7369          *
7370          * Also note that we have to transfer the per-node surplus state
7371          * here as well otherwise the global surplus count will not match
7372          * the per-node's.
7373          */
7374         if (HPageTemporary(newpage)) {
7375                 int old_nid = page_to_nid(oldpage);
7376                 int new_nid = page_to_nid(newpage);
7377
7378                 SetHPageTemporary(oldpage);
7379                 ClearHPageTemporary(newpage);
7380
7381                 /*
7382                  * There is no need to transfer the per-node surplus state
7383                  * when we do not cross the node.
7384                  */
7385                 if (new_nid == old_nid)
7386                         return;
7387                 spin_lock_irq(&hugetlb_lock);
7388                 if (h->surplus_huge_pages_node[old_nid]) {
7389                         h->surplus_huge_pages_node[old_nid]--;
7390                         h->surplus_huge_pages_node[new_nid]++;
7391                 }
7392                 spin_unlock_irq(&hugetlb_lock);
7393         }
7394 }
7395
7396 /*
7397  * This function will unconditionally remove all the shared pmd pgtable entries
7398  * within the specific vma for a hugetlbfs memory range.
7399  */
7400 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7401 {
7402         struct hstate *h = hstate_vma(vma);
7403         unsigned long sz = huge_page_size(h);
7404         struct mm_struct *mm = vma->vm_mm;
7405         struct mmu_notifier_range range;
7406         unsigned long address, start, end;
7407         spinlock_t *ptl;
7408         pte_t *ptep;
7409
7410         if (!(vma->vm_flags & VM_MAYSHARE))
7411                 return;
7412
7413         start = ALIGN(vma->vm_start, PUD_SIZE);
7414         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7415
7416         if (start >= end)
7417                 return;
7418
7419         flush_cache_range(vma, start, end);
7420         /*
7421          * No need to call adjust_range_if_pmd_sharing_possible(), because
7422          * we have already done the PUD_SIZE alignment.
7423          */
7424         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7425                                 start, end);
7426         mmu_notifier_invalidate_range_start(&range);
7427         hugetlb_vma_lock_write(vma);
7428         i_mmap_lock_write(vma->vm_file->f_mapping);
7429         for (address = start; address < end; address += PUD_SIZE) {
7430                 ptep = huge_pte_offset(mm, address, sz);
7431                 if (!ptep)
7432                         continue;
7433                 ptl = huge_pte_lock(h, mm, ptep);
7434                 huge_pmd_unshare(mm, vma, address, ptep);
7435                 spin_unlock(ptl);
7436         }
7437         flush_hugetlb_tlb_range(vma, start, end);
7438         i_mmap_unlock_write(vma->vm_file->f_mapping);
7439         hugetlb_vma_unlock_write(vma);
7440         /*
7441          * No need to call mmu_notifier_invalidate_range(), see
7442          * Documentation/mm/mmu_notifier.rst.
7443          */
7444         mmu_notifier_invalidate_range_end(&range);
7445 }
7446
7447 #ifdef CONFIG_CMA
7448 static bool cma_reserve_called __initdata;
7449
7450 static int __init cmdline_parse_hugetlb_cma(char *p)
7451 {
7452         int nid, count = 0;
7453         unsigned long tmp;
7454         char *s = p;
7455
7456         while (*s) {
7457                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7458                         break;
7459
7460                 if (s[count] == ':') {
7461                         if (tmp >= MAX_NUMNODES)
7462                                 break;
7463                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7464
7465                         s += count + 1;
7466                         tmp = memparse(s, &s);
7467                         hugetlb_cma_size_in_node[nid] = tmp;
7468                         hugetlb_cma_size += tmp;
7469
7470                         /*
7471                          * Skip the separator if have one, otherwise
7472                          * break the parsing.
7473                          */
7474                         if (*s == ',')
7475                                 s++;
7476                         else
7477                                 break;
7478                 } else {
7479                         hugetlb_cma_size = memparse(p, &p);
7480                         break;
7481                 }
7482         }
7483
7484         return 0;
7485 }
7486
7487 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7488
7489 void __init hugetlb_cma_reserve(int order)
7490 {
7491         unsigned long size, reserved, per_node;
7492         bool node_specific_cma_alloc = false;
7493         int nid;
7494
7495         cma_reserve_called = true;
7496
7497         if (!hugetlb_cma_size)
7498                 return;
7499
7500         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7501                 if (hugetlb_cma_size_in_node[nid] == 0)
7502                         continue;
7503
7504                 if (!node_online(nid)) {
7505                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7506                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7507                         hugetlb_cma_size_in_node[nid] = 0;
7508                         continue;
7509                 }
7510
7511                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7512                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7513                                 nid, (PAGE_SIZE << order) / SZ_1M);
7514                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7515                         hugetlb_cma_size_in_node[nid] = 0;
7516                 } else {
7517                         node_specific_cma_alloc = true;
7518                 }
7519         }
7520
7521         /* Validate the CMA size again in case some invalid nodes specified. */
7522         if (!hugetlb_cma_size)
7523                 return;
7524
7525         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7526                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7527                         (PAGE_SIZE << order) / SZ_1M);
7528                 hugetlb_cma_size = 0;
7529                 return;
7530         }
7531
7532         if (!node_specific_cma_alloc) {
7533                 /*
7534                  * If 3 GB area is requested on a machine with 4 numa nodes,
7535                  * let's allocate 1 GB on first three nodes and ignore the last one.
7536                  */
7537                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7538                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7539                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7540         }
7541
7542         reserved = 0;
7543         for_each_online_node(nid) {
7544                 int res;
7545                 char name[CMA_MAX_NAME];
7546
7547                 if (node_specific_cma_alloc) {
7548                         if (hugetlb_cma_size_in_node[nid] == 0)
7549                                 continue;
7550
7551                         size = hugetlb_cma_size_in_node[nid];
7552                 } else {
7553                         size = min(per_node, hugetlb_cma_size - reserved);
7554                 }
7555
7556                 size = round_up(size, PAGE_SIZE << order);
7557
7558                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7559                 /*
7560                  * Note that 'order per bit' is based on smallest size that
7561                  * may be returned to CMA allocator in the case of
7562                  * huge page demotion.
7563                  */
7564                 res = cma_declare_contiguous_nid(0, size, 0,
7565                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7566                                                  0, false, name,
7567                                                  &hugetlb_cma[nid], nid);
7568                 if (res) {
7569                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7570                                 res, nid);
7571                         continue;
7572                 }
7573
7574                 reserved += size;
7575                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7576                         size / SZ_1M, nid);
7577
7578                 if (reserved >= hugetlb_cma_size)
7579                         break;
7580         }
7581
7582         if (!reserved)
7583                 /*
7584                  * hugetlb_cma_size is used to determine if allocations from
7585                  * cma are possible.  Set to zero if no cma regions are set up.
7586                  */
7587                 hugetlb_cma_size = 0;
7588 }
7589
7590 static void __init hugetlb_cma_check(void)
7591 {
7592         if (!hugetlb_cma_size || cma_reserve_called)
7593                 return;
7594
7595         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7596 }
7597
7598 #endif /* CONFIG_CMA */