1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
40 #include <asm/pgalloc.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
49 #include "hugetlb_vmemmap.h"
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
69 static unsigned long hugetlb_cma_size __initdata;
71 __initdata LIST_HEAD(huge_boot_pages);
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
84 DEFINE_SPINLOCK(hugetlb_lock);
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 struct hugepage_subpool *spool;
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
139 spin_lock_init(&spool->lock);
141 spool->max_hpages = max_hpages;
143 spool->min_hpages = min_hpages;
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
149 spool->rsv_hpages = min_hpages;
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
161 unlock_or_release_subpool(spool, flags);
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
180 spin_lock_irq(&spool->lock);
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
207 spin_unlock_irq(&spool->lock);
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
226 spin_lock_irqsave(&spool->lock, flags);
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
247 unlock_or_release_subpool(spool, flags);
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 return HUGETLBFS_SB(inode->i_sb)->spool;
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 return subpool_inode(file_inode(vma->vm_file));
263 * hugetlb vma_lock helper routines
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
274 down_read(&resv_map->rw_sema);
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
287 up_read(&resv_map->rw_sema);
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
300 down_write(&resv_map->rw_sema);
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
313 up_write(&resv_map->rw_sema);
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
327 return down_write_trylock(&resv_map->rw_sema);
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
342 lockdep_assert_held(&resv_map->rw_sema);
346 void hugetlb_vma_lock_release(struct kref *kref)
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 struct vm_area_struct *vma = vma_lock->vma;
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386 * Only present in sharable vmas.
388 if (!vma || !__vma_shareable_lock(vma))
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 struct hugetlb_vma_lock *vma_lock;
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
430 vma->vm_private_data = vma_lock;
433 /* Helper that removes a struct file_region from the resv_map cache and returns
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 struct file_region *nrg;
441 VM_BUG_ON(resv->region_cache_count <= 0);
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
456 #ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 struct resv_map *resv,
468 struct file_region *nrg)
470 #ifdef CONFIG_CGROUP_HUGETLB
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 nrg->reservation_counter = NULL;
499 static void put_uncharge_info(struct file_region *rg)
501 #ifdef CONFIG_CGROUP_HUGETLB
507 static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
510 #ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 struct file_region *nrg, *prg;
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
529 put_uncharge_info(rg);
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
541 put_uncharge_info(rg);
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
551 struct file_region *nrg;
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
559 *regions_needed += 1;
565 * Must be called with resv->lock held.
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
600 /* When we find a region that starts beyond our range, we've
603 if (iter->from >= t) {
604 rg = iter->link.prev;
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
617 last_accounted_offset = iter->to;
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634 static int allocate_file_region_entries(struct resv_map *resv,
636 __must_hold(&resv->lock)
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
642 VM_BUG_ON(regions_needed < 0);
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 list_add(&trg->link, &allocated_regions);
672 spin_lock(&resv->lock);
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
696 * regions_needed is the out value provided by a previous call to region_chg.
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
705 static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
709 long add = 0, actual_regions_needed = 0;
711 spin_lock(&resv->lock);
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
734 VM_BUG_ON(t - f <= 1);
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 resv->adds_in_progress -= in_regions_needed;
748 spin_unlock(&resv->lock);
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
772 static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
777 spin_lock(&resv->lock);
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
786 if (allocate_file_region_entries(resv, *out_regions_needed))
789 resv->adds_in_progress += *out_regions_needed;
791 spin_unlock(&resv->lock);
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
808 static void region_abort(struct resv_map *resv, long f, long t,
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
831 static long region_del(struct resv_map *resv, long f, long t)
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
854 if (f > rg->from && t < rg->to) { /* Must split region */
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
864 list_del(&nrg->link);
865 resv->region_cache_count--;
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
880 /* New entry for end of split region */
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 INIT_LIST_HEAD(&nrg->link);
888 /* Original entry is trimmed */
891 list_add(&nrg->link, &rg->link);
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
920 spin_unlock(&resv->lock);
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
934 void hugetlb_fix_reserve_counts(struct inode *inode)
936 struct hugepage_subpool *spool = subpool_inode(inode);
938 bool reserved = false;
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
944 if (!hugetlb_acct_memory(h, 1))
946 } else if (!rsv_adjust) {
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
958 static long region_count(struct resv_map *resv, long f, long t)
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
978 chg += seg_to - seg_from;
980 spin_unlock(&resv->lock);
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 unsigned long address)
999 return vma_hugecache_offset(hstate_vma(vma), vma, address);
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1010 * Return: The default size of the folios allocated when backing a VMA.
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1014 if (vma->vm_ops && vma->vm_ops->pagesize)
1015 return vma->vm_ops->pagesize(vma);
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1028 return vma_kernel_pagesize(vma);
1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1036 #define HPAGE_RESV_OWNER (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping. A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated. A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1061 return (unsigned long)vma->vm_private_data;
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 unsigned long value)
1067 vma->vm_private_data = (void *)value;
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 struct hugetlb_cgroup *h_cg,
1075 #ifdef CONFIG_CGROUP_HUGETLB
1077 resv_map->reservation_counter = NULL;
1078 resv_map->pages_per_hpage = 0;
1079 resv_map->css = NULL;
1081 resv_map->reservation_counter =
1082 &h_cg->rsvd_hugepage[hstate_index(h)];
1083 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 resv_map->css = &h_cg->css;
1089 struct resv_map *resv_map_alloc(void)
1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1094 if (!resv_map || !rg) {
1100 kref_init(&resv_map->refs);
1101 spin_lock_init(&resv_map->lock);
1102 INIT_LIST_HEAD(&resv_map->regions);
1103 init_rwsem(&resv_map->rw_sema);
1105 resv_map->adds_in_progress = 0;
1107 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 * fields don't do cgroup accounting. On private mappings, these will be
1109 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 * reservations are to be un-charged from here.
1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1114 INIT_LIST_HEAD(&resv_map->region_cache);
1115 list_add(&rg->link, &resv_map->region_cache);
1116 resv_map->region_cache_count = 1;
1121 void resv_map_release(struct kref *ref)
1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 struct list_head *head = &resv_map->region_cache;
1125 struct file_region *rg, *trg;
1127 /* Clear out any active regions before we release the map. */
1128 region_del(resv_map, 0, LONG_MAX);
1130 /* ... and any entries left in the cache */
1131 list_for_each_entry_safe(rg, trg, head, link) {
1132 list_del(&rg->link);
1136 VM_BUG_ON(resv_map->adds_in_progress);
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1144 * At inode evict time, i_mapping may not point to the original
1145 * address space within the inode. This original address space
1146 * contains the pointer to the resv_map. So, always use the
1147 * address space embedded within the inode.
1148 * The VERY common case is inode->mapping == &inode->i_data but,
1149 * this may not be true for device special inodes.
1151 return (struct resv_map *)(&inode->i_data)->private_data;
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 struct address_space *mapping = vma->vm_file->f_mapping;
1159 struct inode *inode = mapping->host;
1161 return inode_resv_map(inode);
1164 return (struct resv_map *)(get_vma_private_data(vma) &
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174 set_vma_private_data(vma, (unsigned long)map);
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1189 return (get_vma_private_data(vma) & flag) != 0;
1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 * Clear vm_private_data
1197 * - For shared mappings this is a per-vma semaphore that may be
1198 * allocated in a subsequent call to hugetlb_vm_op_open.
1199 * Before clearing, make sure pointer is not associated with vma
1200 * as this will leak the structure. This is the case when called
1201 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202 * been called to allocate a new structure.
1203 * - For MAP_PRIVATE mappings, this is the reserve map which does
1204 * not apply to children. Faults generated by the children are
1205 * not guaranteed to succeed, even if read-only.
1207 if (vma->vm_flags & VM_MAYSHARE) {
1208 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210 if (vma_lock && vma_lock->vma != vma)
1211 vma->vm_private_data = NULL;
1213 vma->vm_private_data = NULL;
1217 * Reset and decrement one ref on hugepage private reservation.
1218 * Called with mm->mmap_lock writer semaphore held.
1219 * This function should be only used by move_vma() and operate on
1220 * same sized vma. It should never come here with last ref on the
1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226 * Clear the old hugetlb private page reservation.
1227 * It has already been transferred to new_vma.
1229 * During a mremap() operation of a hugetlb vma we call move_vma()
1230 * which copies vma into new_vma and unmaps vma. After the copy
1231 * operation both new_vma and vma share a reference to the resv_map
1232 * struct, and at that point vma is about to be unmapped. We don't
1233 * want to return the reservation to the pool at unmap of vma because
1234 * the reservation still lives on in new_vma, so simply decrement the
1235 * ref here and remove the resv_map reference from this vma.
1237 struct resv_map *reservations = vma_resv_map(vma);
1239 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241 kref_put(&reservations->refs, resv_map_release);
1244 hugetlb_dup_vma_private(vma);
1247 /* Returns true if the VMA has associated reserve pages */
1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 if (vma->vm_flags & VM_NORESERVE) {
1252 * This address is already reserved by other process(chg == 0),
1253 * so, we should decrement reserved count. Without decrementing,
1254 * reserve count remains after releasing inode, because this
1255 * allocated page will go into page cache and is regarded as
1256 * coming from reserved pool in releasing step. Currently, we
1257 * don't have any other solution to deal with this situation
1258 * properly, so add work-around here.
1260 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1266 /* Shared mappings always use reserves */
1267 if (vma->vm_flags & VM_MAYSHARE) {
1269 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1270 * be a region map for all pages. The only situation where
1271 * there is no region map is if a hole was punched via
1272 * fallocate. In this case, there really are no reserves to
1273 * use. This situation is indicated if chg != 0.
1282 * Only the process that called mmap() has reserves for
1285 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 * Like the shared case above, a hole punch or truncate
1288 * could have been performed on the private mapping.
1289 * Examine the value of chg to determine if reserves
1290 * actually exist or were previously consumed.
1291 * Very Subtle - The value of chg comes from a previous
1292 * call to vma_needs_reserves(). The reserve map for
1293 * private mappings has different (opposite) semantics
1294 * than that of shared mappings. vma_needs_reserves()
1295 * has already taken this difference in semantics into
1296 * account. Therefore, the meaning of chg is the same
1297 * as in the shared case above. Code could easily be
1298 * combined, but keeping it separate draws attention to
1299 * subtle differences.
1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 int nid = folio_nid(folio);
1314 lockdep_assert_held(&hugetlb_lock);
1315 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318 h->free_huge_pages++;
1319 h->free_huge_pages_node[nid]++;
1320 folio_set_hugetlb_freed(folio);
1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 struct folio *folio;
1327 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329 lockdep_assert_held(&hugetlb_lock);
1330 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331 if (pin && !folio_is_longterm_pinnable(folio))
1334 if (folio_test_hwpoison(folio))
1337 list_move(&folio->lru, &h->hugepage_activelist);
1338 folio_ref_unfreeze(folio, 1);
1339 folio_clear_hugetlb_freed(folio);
1340 h->free_huge_pages--;
1341 h->free_huge_pages_node[nid]--;
1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349 int nid, nodemask_t *nmask)
1351 unsigned int cpuset_mems_cookie;
1352 struct zonelist *zonelist;
1355 int node = NUMA_NO_NODE;
1357 zonelist = node_zonelist(nid, gfp_mask);
1360 cpuset_mems_cookie = read_mems_allowed_begin();
1361 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362 struct folio *folio;
1364 if (!cpuset_zone_allowed(zone, gfp_mask))
1367 * no need to ask again on the same node. Pool is node rather than
1370 if (zone_to_nid(zone) == node)
1372 node = zone_to_nid(zone);
1374 folio = dequeue_hugetlb_folio_node_exact(h, node);
1378 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1384 static unsigned long available_huge_pages(struct hstate *h)
1386 return h->free_huge_pages - h->resv_huge_pages;
1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390 struct vm_area_struct *vma,
1391 unsigned long address, int avoid_reserve,
1394 struct folio *folio = NULL;
1395 struct mempolicy *mpol;
1397 nodemask_t *nodemask;
1401 * A child process with MAP_PRIVATE mappings created by their parent
1402 * have no page reserves. This check ensures that reservations are
1403 * not "stolen". The child may still get SIGKILLed
1405 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1408 /* If reserves cannot be used, ensure enough pages are in the pool */
1409 if (avoid_reserve && !available_huge_pages(h))
1412 gfp_mask = htlb_alloc_mask(h);
1413 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415 if (mpol_is_preferred_many(mpol)) {
1416 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1419 /* Fallback to all nodes if page==NULL */
1424 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1427 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428 folio_set_hugetlb_restore_reserve(folio);
1429 h->resv_huge_pages--;
1432 mpol_cond_put(mpol);
1440 * common helper functions for hstate_next_node_to_{alloc|free}.
1441 * We may have allocated or freed a huge page based on a different
1442 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443 * be outside of *nodes_allowed. Ensure that we use an allowed
1444 * node for alloc or free.
1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 nid = next_node_in(nid, *nodes_allowed);
1449 VM_BUG_ON(nid >= MAX_NUMNODES);
1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 if (!node_isset(nid, *nodes_allowed))
1457 nid = next_node_allowed(nid, nodes_allowed);
1462 * returns the previously saved node ["this node"] from which to
1463 * allocate a persistent huge page for the pool and advance the
1464 * next node from which to allocate, handling wrap at end of node
1467 static int hstate_next_node_to_alloc(struct hstate *h,
1468 nodemask_t *nodes_allowed)
1472 VM_BUG_ON(!nodes_allowed);
1474 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1481 * helper for remove_pool_huge_page() - return the previously saved
1482 * node ["this node"] from which to free a huge page. Advance the
1483 * next node id whether or not we find a free huge page to free so
1484 * that the next attempt to free addresses the next node.
1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1490 VM_BUG_ON(!nodes_allowed);
1492 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1499 for (nr_nodes = nodes_weight(*mask); \
1501 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1505 for (nr_nodes = nodes_weight(*mask); \
1507 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1510 /* used to demote non-gigantic_huge pages as well */
1511 static void __destroy_compound_gigantic_folio(struct folio *folio,
1512 unsigned int order, bool demote)
1515 int nr_pages = 1 << order;
1518 atomic_set(&folio->_entire_mapcount, 0);
1519 atomic_set(&folio->_nr_pages_mapped, 0);
1520 atomic_set(&folio->_pincount, 0);
1522 for (i = 1; i < nr_pages; i++) {
1523 p = folio_page(folio, i);
1524 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526 clear_compound_head(p);
1528 set_page_refcounted(p);
1531 __folio_clear_head(folio);
1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1537 __destroy_compound_gigantic_folio(folio, order, true);
1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541 static void destroy_compound_gigantic_folio(struct folio *folio,
1544 __destroy_compound_gigantic_folio(folio, order, false);
1547 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1550 * If the page isn't allocated using the cma allocator,
1551 * cma_release() returns false.
1554 int nid = folio_nid(folio);
1556 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1560 free_contig_range(folio_pfn(folio), 1 << order);
1563 #ifdef CONFIG_CONTIG_ALLOC
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1568 unsigned long nr_pages = pages_per_huge_page(h);
1569 if (nid == NUMA_NO_NODE)
1570 nid = numa_mem_id();
1576 if (hugetlb_cma[nid]) {
1577 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578 huge_page_order(h), true);
1580 return page_folio(page);
1583 if (!(gfp_mask & __GFP_THISNODE)) {
1584 for_each_node_mask(node, *nodemask) {
1585 if (node == nid || !hugetlb_cma[node])
1588 page = cma_alloc(hugetlb_cma[node], nr_pages,
1589 huge_page_order(h), true);
1591 return page_folio(page);
1597 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598 return page ? page_folio(page) : NULL;
1601 #else /* !CONFIG_CONTIG_ALLOC */
1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603 int nid, nodemask_t *nodemask)
1607 #endif /* CONFIG_CONTIG_ALLOC */
1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611 int nid, nodemask_t *nodemask)
1615 static inline void free_gigantic_folio(struct folio *folio,
1616 unsigned int order) { }
1617 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618 unsigned int order) { }
1621 static inline void __clear_hugetlb_destructor(struct hstate *h,
1622 struct folio *folio)
1624 lockdep_assert_held(&hugetlb_lock);
1626 folio_clear_hugetlb(folio);
1630 * Remove hugetlb folio from lists.
1631 * If vmemmap exists for the folio, update dtor so that the folio appears
1632 * as just a compound page. Otherwise, wait until after allocating vmemmap
1635 * A reference is held on the folio, except in the case of demote.
1637 * Must be called with hugetlb lock held.
1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640 bool adjust_surplus,
1643 int nid = folio_nid(folio);
1645 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648 lockdep_assert_held(&hugetlb_lock);
1649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1652 list_del(&folio->lru);
1654 if (folio_test_hugetlb_freed(folio)) {
1655 h->free_huge_pages--;
1656 h->free_huge_pages_node[nid]--;
1658 if (adjust_surplus) {
1659 h->surplus_huge_pages--;
1660 h->surplus_huge_pages_node[nid]--;
1664 * We can only clear the hugetlb destructor after allocating vmemmap
1665 * pages. Otherwise, someone (memory error handling) may try to write
1666 * to tail struct pages.
1668 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669 __clear_hugetlb_destructor(h, folio);
1672 * In the case of demote we do not ref count the page as it will soon
1673 * be turned into a page of smaller size.
1676 folio_ref_unfreeze(folio, 1);
1679 h->nr_huge_pages_node[nid]--;
1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683 bool adjust_surplus)
1685 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689 bool adjust_surplus)
1691 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695 bool adjust_surplus)
1698 int nid = folio_nid(folio);
1700 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702 lockdep_assert_held(&hugetlb_lock);
1704 INIT_LIST_HEAD(&folio->lru);
1706 h->nr_huge_pages_node[nid]++;
1708 if (adjust_surplus) {
1709 h->surplus_huge_pages++;
1710 h->surplus_huge_pages_node[nid]++;
1713 folio_set_hugetlb(folio);
1714 folio_change_private(folio, NULL);
1716 * We have to set hugetlb_vmemmap_optimized again as above
1717 * folio_change_private(folio, NULL) cleared it.
1719 folio_set_hugetlb_vmemmap_optimized(folio);
1722 * This folio is about to be managed by the hugetlb allocator and
1723 * should have no users. Drop our reference, and check for others
1726 zeroed = folio_put_testzero(folio);
1727 if (unlikely(!zeroed))
1729 * It is VERY unlikely soneone else has taken a ref
1730 * on the folio. In this case, we simply return as
1731 * free_huge_folio() will be called when this other ref
1736 arch_clear_hugepage_flags(&folio->page);
1737 enqueue_hugetlb_folio(h, folio);
1740 static void __update_and_free_hugetlb_folio(struct hstate *h,
1741 struct folio *folio)
1743 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1749 * If we don't know which subpages are hwpoisoned, we can't free
1750 * the hugepage, so it's leaked intentionally.
1752 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1755 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1756 spin_lock_irq(&hugetlb_lock);
1758 * If we cannot allocate vmemmap pages, just refuse to free the
1759 * page and put the page back on the hugetlb free list and treat
1760 * as a surplus page.
1762 add_hugetlb_folio(h, folio, true);
1763 spin_unlock_irq(&hugetlb_lock);
1768 * Move PageHWPoison flag from head page to the raw error pages,
1769 * which makes any healthy subpages reusable.
1771 if (unlikely(folio_test_hwpoison(folio)))
1772 folio_clear_hugetlb_hwpoison(folio);
1775 * If vmemmap pages were allocated above, then we need to clear the
1776 * hugetlb destructor under the hugetlb lock.
1779 spin_lock_irq(&hugetlb_lock);
1780 __clear_hugetlb_destructor(h, folio);
1781 spin_unlock_irq(&hugetlb_lock);
1785 * Non-gigantic pages demoted from CMA allocated gigantic pages
1786 * need to be given back to CMA in free_gigantic_folio.
1788 if (hstate_is_gigantic(h) ||
1789 hugetlb_cma_folio(folio, huge_page_order(h))) {
1790 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1791 free_gigantic_folio(folio, huge_page_order(h));
1793 __free_pages(&folio->page, huge_page_order(h));
1798 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1799 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1800 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1801 * the vmemmap pages.
1803 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1804 * freed and frees them one-by-one. As the page->mapping pointer is going
1805 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1806 * structure of a lockless linked list of huge pages to be freed.
1808 static LLIST_HEAD(hpage_freelist);
1810 static void free_hpage_workfn(struct work_struct *work)
1812 struct llist_node *node;
1814 node = llist_del_all(&hpage_freelist);
1820 page = container_of((struct address_space **)node,
1821 struct page, mapping);
1823 page->mapping = NULL;
1825 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1826 * folio_hstate() is going to trigger because a previous call to
1827 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1828 * not use folio_hstate() directly.
1830 h = size_to_hstate(page_size(page));
1832 __update_and_free_hugetlb_folio(h, page_folio(page));
1837 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1839 static inline void flush_free_hpage_work(struct hstate *h)
1841 if (hugetlb_vmemmap_optimizable(h))
1842 flush_work(&free_hpage_work);
1845 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1848 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1849 __update_and_free_hugetlb_folio(h, folio);
1854 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1856 * Only call schedule_work() if hpage_freelist is previously
1857 * empty. Otherwise, schedule_work() had been called but the workfn
1858 * hasn't retrieved the list yet.
1860 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1861 schedule_work(&free_hpage_work);
1864 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1866 struct page *page, *t_page;
1867 struct folio *folio;
1869 list_for_each_entry_safe(page, t_page, list, lru) {
1870 folio = page_folio(page);
1871 update_and_free_hugetlb_folio(h, folio, false);
1876 struct hstate *size_to_hstate(unsigned long size)
1880 for_each_hstate(h) {
1881 if (huge_page_size(h) == size)
1887 void free_huge_folio(struct folio *folio)
1890 * Can't pass hstate in here because it is called from the
1891 * compound page destructor.
1893 struct hstate *h = folio_hstate(folio);
1894 int nid = folio_nid(folio);
1895 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1896 bool restore_reserve;
1897 unsigned long flags;
1899 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1900 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1902 hugetlb_set_folio_subpool(folio, NULL);
1903 if (folio_test_anon(folio))
1904 __ClearPageAnonExclusive(&folio->page);
1905 folio->mapping = NULL;
1906 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1907 folio_clear_hugetlb_restore_reserve(folio);
1910 * If HPageRestoreReserve was set on page, page allocation consumed a
1911 * reservation. If the page was associated with a subpool, there
1912 * would have been a page reserved in the subpool before allocation
1913 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1914 * reservation, do not call hugepage_subpool_put_pages() as this will
1915 * remove the reserved page from the subpool.
1917 if (!restore_reserve) {
1919 * A return code of zero implies that the subpool will be
1920 * under its minimum size if the reservation is not restored
1921 * after page is free. Therefore, force restore_reserve
1924 if (hugepage_subpool_put_pages(spool, 1) == 0)
1925 restore_reserve = true;
1928 spin_lock_irqsave(&hugetlb_lock, flags);
1929 folio_clear_hugetlb_migratable(folio);
1930 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1931 pages_per_huge_page(h), folio);
1932 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1933 pages_per_huge_page(h), folio);
1934 if (restore_reserve)
1935 h->resv_huge_pages++;
1937 if (folio_test_hugetlb_temporary(folio)) {
1938 remove_hugetlb_folio(h, folio, false);
1939 spin_unlock_irqrestore(&hugetlb_lock, flags);
1940 update_and_free_hugetlb_folio(h, folio, true);
1941 } else if (h->surplus_huge_pages_node[nid]) {
1942 /* remove the page from active list */
1943 remove_hugetlb_folio(h, folio, true);
1944 spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 update_and_free_hugetlb_folio(h, folio, true);
1947 arch_clear_hugepage_flags(&folio->page);
1948 enqueue_hugetlb_folio(h, folio);
1949 spin_unlock_irqrestore(&hugetlb_lock, flags);
1954 * Must be called with the hugetlb lock held
1956 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1958 lockdep_assert_held(&hugetlb_lock);
1960 h->nr_huge_pages_node[nid]++;
1963 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1965 hugetlb_vmemmap_optimize(h, &folio->page);
1966 INIT_LIST_HEAD(&folio->lru);
1967 folio_set_hugetlb(folio);
1968 hugetlb_set_folio_subpool(folio, NULL);
1969 set_hugetlb_cgroup(folio, NULL);
1970 set_hugetlb_cgroup_rsvd(folio, NULL);
1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1975 __prep_new_hugetlb_folio(h, folio);
1976 spin_lock_irq(&hugetlb_lock);
1977 __prep_account_new_huge_page(h, nid);
1978 spin_unlock_irq(&hugetlb_lock);
1981 static bool __prep_compound_gigantic_folio(struct folio *folio,
1982 unsigned int order, bool demote)
1985 int nr_pages = 1 << order;
1988 __folio_clear_reserved(folio);
1989 for (i = 0; i < nr_pages; i++) {
1990 p = folio_page(folio, i);
1993 * For gigantic hugepages allocated through bootmem at
1994 * boot, it's safer to be consistent with the not-gigantic
1995 * hugepages and clear the PG_reserved bit from all tail pages
1996 * too. Otherwise drivers using get_user_pages() to access tail
1997 * pages may get the reference counting wrong if they see
1998 * PG_reserved set on a tail page (despite the head page not
1999 * having PG_reserved set). Enforcing this consistency between
2000 * head and tail pages allows drivers to optimize away a check
2001 * on the head page when they need know if put_page() is needed
2002 * after get_user_pages().
2004 if (i != 0) /* head page cleared above */
2005 __ClearPageReserved(p);
2007 * Subtle and very unlikely
2009 * Gigantic 'page allocators' such as memblock or cma will
2010 * return a set of pages with each page ref counted. We need
2011 * to turn this set of pages into a compound page with tail
2012 * page ref counts set to zero. Code such as speculative page
2013 * cache adding could take a ref on a 'to be' tail page.
2014 * We need to respect any increased ref count, and only set
2015 * the ref count to zero if count is currently 1. If count
2016 * is not 1, we return an error. An error return indicates
2017 * the set of pages can not be converted to a gigantic page.
2018 * The caller who allocated the pages should then discard the
2019 * pages using the appropriate free interface.
2021 * In the case of demote, the ref count will be zero.
2024 if (!page_ref_freeze(p, 1)) {
2025 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2029 VM_BUG_ON_PAGE(page_count(p), p);
2032 set_compound_head(p, &folio->page);
2034 __folio_set_head(folio);
2035 /* we rely on prep_new_hugetlb_folio to set the destructor */
2036 folio_set_order(folio, order);
2037 atomic_set(&folio->_entire_mapcount, -1);
2038 atomic_set(&folio->_nr_pages_mapped, 0);
2039 atomic_set(&folio->_pincount, 0);
2043 /* undo page modifications made above */
2044 for (j = 0; j < i; j++) {
2045 p = folio_page(folio, j);
2047 clear_compound_head(p);
2048 set_page_refcounted(p);
2050 /* need to clear PG_reserved on remaining tail pages */
2051 for (; j < nr_pages; j++) {
2052 p = folio_page(folio, j);
2053 __ClearPageReserved(p);
2058 static bool prep_compound_gigantic_folio(struct folio *folio,
2061 return __prep_compound_gigantic_folio(folio, order, false);
2064 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2067 return __prep_compound_gigantic_folio(folio, order, true);
2071 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2072 * transparent huge pages. See the PageTransHuge() documentation for more
2075 int PageHuge(struct page *page)
2077 struct folio *folio;
2079 if (!PageCompound(page))
2081 folio = page_folio(page);
2082 return folio_test_hugetlb(folio);
2084 EXPORT_SYMBOL_GPL(PageHuge);
2087 * Find and lock address space (mapping) in write mode.
2089 * Upon entry, the page is locked which means that page_mapping() is
2090 * stable. Due to locking order, we can only trylock_write. If we can
2091 * not get the lock, simply return NULL to caller.
2093 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2095 struct address_space *mapping = page_mapping(hpage);
2100 if (i_mmap_trylock_write(mapping))
2106 pgoff_t hugetlb_basepage_index(struct page *page)
2108 struct page *page_head = compound_head(page);
2109 pgoff_t index = page_index(page_head);
2110 unsigned long compound_idx;
2112 if (compound_order(page_head) > MAX_ORDER)
2113 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2115 compound_idx = page - page_head;
2117 return (index << compound_order(page_head)) + compound_idx;
2120 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2121 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2122 nodemask_t *node_alloc_noretry)
2124 int order = huge_page_order(h);
2126 bool alloc_try_hard = true;
2130 * By default we always try hard to allocate the page with
2131 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2132 * a loop (to adjust global huge page counts) and previous allocation
2133 * failed, do not continue to try hard on the same node. Use the
2134 * node_alloc_noretry bitmap to manage this state information.
2136 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2137 alloc_try_hard = false;
2138 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2140 gfp_mask |= __GFP_RETRY_MAYFAIL;
2141 if (nid == NUMA_NO_NODE)
2142 nid = numa_mem_id();
2144 page = __alloc_pages(gfp_mask, order, nid, nmask);
2146 /* Freeze head page */
2147 if (page && !page_ref_freeze(page, 1)) {
2148 __free_pages(page, order);
2149 if (retry) { /* retry once */
2153 /* WOW! twice in a row. */
2154 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2159 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2160 * indicates an overall state change. Clear bit so that we resume
2161 * normal 'try hard' allocations.
2163 if (node_alloc_noretry && page && !alloc_try_hard)
2164 node_clear(nid, *node_alloc_noretry);
2167 * If we tried hard to get a page but failed, set bit so that
2168 * subsequent attempts will not try as hard until there is an
2169 * overall state change.
2171 if (node_alloc_noretry && !page && alloc_try_hard)
2172 node_set(nid, *node_alloc_noretry);
2175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2179 __count_vm_event(HTLB_BUDDY_PGALLOC);
2180 return page_folio(page);
2184 * Common helper to allocate a fresh hugetlb page. All specific allocators
2185 * should use this function to get new hugetlb pages
2187 * Note that returned page is 'frozen': ref count of head page and all tail
2190 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2191 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2192 nodemask_t *node_alloc_noretry)
2194 struct folio *folio;
2198 if (hstate_is_gigantic(h))
2199 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2201 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2202 nid, nmask, node_alloc_noretry);
2205 if (hstate_is_gigantic(h)) {
2206 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2208 * Rare failure to convert pages to compound page.
2209 * Free pages and try again - ONCE!
2211 free_gigantic_folio(folio, huge_page_order(h));
2219 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2225 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2228 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2229 nodemask_t *node_alloc_noretry)
2231 struct folio *folio;
2233 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2235 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2236 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2237 nodes_allowed, node_alloc_noretry);
2239 free_huge_folio(folio); /* free it into the hugepage allocator */
2248 * Remove huge page from pool from next node to free. Attempt to keep
2249 * persistent huge pages more or less balanced over allowed nodes.
2250 * This routine only 'removes' the hugetlb page. The caller must make
2251 * an additional call to free the page to low level allocators.
2252 * Called with hugetlb_lock locked.
2254 static struct page *remove_pool_huge_page(struct hstate *h,
2255 nodemask_t *nodes_allowed,
2259 struct page *page = NULL;
2260 struct folio *folio;
2262 lockdep_assert_held(&hugetlb_lock);
2263 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265 * If we're returning unused surplus pages, only examine
2266 * nodes with surplus pages.
2268 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2269 !list_empty(&h->hugepage_freelists[node])) {
2270 page = list_entry(h->hugepage_freelists[node].next,
2272 folio = page_folio(page);
2273 remove_hugetlb_folio(h, folio, acct_surplus);
2282 * Dissolve a given free hugepage into free buddy pages. This function does
2283 * nothing for in-use hugepages and non-hugepages.
2284 * This function returns values like below:
2286 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2287 * when the system is under memory pressure and the feature of
2288 * freeing unused vmemmap pages associated with each hugetlb page
2290 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2291 * (allocated or reserved.)
2292 * 0: successfully dissolved free hugepages or the page is not a
2293 * hugepage (considered as already dissolved)
2295 int dissolve_free_huge_page(struct page *page)
2298 struct folio *folio = page_folio(page);
2301 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2302 if (!folio_test_hugetlb(folio))
2305 spin_lock_irq(&hugetlb_lock);
2306 if (!folio_test_hugetlb(folio)) {
2311 if (!folio_ref_count(folio)) {
2312 struct hstate *h = folio_hstate(folio);
2313 if (!available_huge_pages(h))
2317 * We should make sure that the page is already on the free list
2318 * when it is dissolved.
2320 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2321 spin_unlock_irq(&hugetlb_lock);
2325 * Theoretically, we should return -EBUSY when we
2326 * encounter this race. In fact, we have a chance
2327 * to successfully dissolve the page if we do a
2328 * retry. Because the race window is quite small.
2329 * If we seize this opportunity, it is an optimization
2330 * for increasing the success rate of dissolving page.
2335 remove_hugetlb_folio(h, folio, false);
2336 h->max_huge_pages--;
2337 spin_unlock_irq(&hugetlb_lock);
2340 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2341 * before freeing the page. update_and_free_hugtlb_folio will fail to
2342 * free the page if it can not allocate required vmemmap. We
2343 * need to adjust max_huge_pages if the page is not freed.
2344 * Attempt to allocate vmemmmap here so that we can take
2345 * appropriate action on failure.
2347 rc = hugetlb_vmemmap_restore(h, &folio->page);
2349 update_and_free_hugetlb_folio(h, folio, false);
2351 spin_lock_irq(&hugetlb_lock);
2352 add_hugetlb_folio(h, folio, false);
2353 h->max_huge_pages++;
2354 spin_unlock_irq(&hugetlb_lock);
2360 spin_unlock_irq(&hugetlb_lock);
2365 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2366 * make specified memory blocks removable from the system.
2367 * Note that this will dissolve a free gigantic hugepage completely, if any
2368 * part of it lies within the given range.
2369 * Also note that if dissolve_free_huge_page() returns with an error, all
2370 * free hugepages that were dissolved before that error are lost.
2372 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2380 if (!hugepages_supported())
2383 order = huge_page_order(&default_hstate);
2385 order = min(order, huge_page_order(h));
2387 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2388 page = pfn_to_page(pfn);
2389 rc = dissolve_free_huge_page(page);
2398 * Allocates a fresh surplus page from the page allocator.
2400 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2401 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2403 struct folio *folio = NULL;
2405 if (hstate_is_gigantic(h))
2408 spin_lock_irq(&hugetlb_lock);
2409 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2411 spin_unlock_irq(&hugetlb_lock);
2413 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2417 spin_lock_irq(&hugetlb_lock);
2419 * We could have raced with the pool size change.
2420 * Double check that and simply deallocate the new page
2421 * if we would end up overcommiting the surpluses. Abuse
2422 * temporary page to workaround the nasty free_huge_folio
2425 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2426 folio_set_hugetlb_temporary(folio);
2427 spin_unlock_irq(&hugetlb_lock);
2428 free_huge_folio(folio);
2432 h->surplus_huge_pages++;
2433 h->surplus_huge_pages_node[folio_nid(folio)]++;
2436 spin_unlock_irq(&hugetlb_lock);
2441 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2442 int nid, nodemask_t *nmask)
2444 struct folio *folio;
2446 if (hstate_is_gigantic(h))
2449 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2453 /* fresh huge pages are frozen */
2454 folio_ref_unfreeze(folio, 1);
2456 * We do not account these pages as surplus because they are only
2457 * temporary and will be released properly on the last reference
2459 folio_set_hugetlb_temporary(folio);
2465 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2468 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2469 struct vm_area_struct *vma, unsigned long addr)
2471 struct folio *folio = NULL;
2472 struct mempolicy *mpol;
2473 gfp_t gfp_mask = htlb_alloc_mask(h);
2475 nodemask_t *nodemask;
2477 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2478 if (mpol_is_preferred_many(mpol)) {
2479 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2481 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2482 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2484 /* Fallback to all nodes if page==NULL */
2489 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2490 mpol_cond_put(mpol);
2494 /* folio migration callback function */
2495 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2496 nodemask_t *nmask, gfp_t gfp_mask)
2498 spin_lock_irq(&hugetlb_lock);
2499 if (available_huge_pages(h)) {
2500 struct folio *folio;
2502 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2503 preferred_nid, nmask);
2505 spin_unlock_irq(&hugetlb_lock);
2509 spin_unlock_irq(&hugetlb_lock);
2511 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2514 /* mempolicy aware migration callback */
2515 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2516 unsigned long address)
2518 struct mempolicy *mpol;
2519 nodemask_t *nodemask;
2520 struct folio *folio;
2524 gfp_mask = htlb_alloc_mask(h);
2525 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2526 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2527 mpol_cond_put(mpol);
2533 * Increase the hugetlb pool such that it can accommodate a reservation
2536 static int gather_surplus_pages(struct hstate *h, long delta)
2537 __must_hold(&hugetlb_lock)
2539 LIST_HEAD(surplus_list);
2540 struct folio *folio, *tmp;
2543 long needed, allocated;
2544 bool alloc_ok = true;
2546 lockdep_assert_held(&hugetlb_lock);
2547 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2549 h->resv_huge_pages += delta;
2557 spin_unlock_irq(&hugetlb_lock);
2558 for (i = 0; i < needed; i++) {
2559 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2560 NUMA_NO_NODE, NULL);
2565 list_add(&folio->lru, &surplus_list);
2571 * After retaking hugetlb_lock, we need to recalculate 'needed'
2572 * because either resv_huge_pages or free_huge_pages may have changed.
2574 spin_lock_irq(&hugetlb_lock);
2575 needed = (h->resv_huge_pages + delta) -
2576 (h->free_huge_pages + allocated);
2581 * We were not able to allocate enough pages to
2582 * satisfy the entire reservation so we free what
2583 * we've allocated so far.
2588 * The surplus_list now contains _at_least_ the number of extra pages
2589 * needed to accommodate the reservation. Add the appropriate number
2590 * of pages to the hugetlb pool and free the extras back to the buddy
2591 * allocator. Commit the entire reservation here to prevent another
2592 * process from stealing the pages as they are added to the pool but
2593 * before they are reserved.
2595 needed += allocated;
2596 h->resv_huge_pages += delta;
2599 /* Free the needed pages to the hugetlb pool */
2600 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2603 /* Add the page to the hugetlb allocator */
2604 enqueue_hugetlb_folio(h, folio);
2607 spin_unlock_irq(&hugetlb_lock);
2610 * Free unnecessary surplus pages to the buddy allocator.
2611 * Pages have no ref count, call free_huge_folio directly.
2613 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2614 free_huge_folio(folio);
2615 spin_lock_irq(&hugetlb_lock);
2621 * This routine has two main purposes:
2622 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2623 * in unused_resv_pages. This corresponds to the prior adjustments made
2624 * to the associated reservation map.
2625 * 2) Free any unused surplus pages that may have been allocated to satisfy
2626 * the reservation. As many as unused_resv_pages may be freed.
2628 static void return_unused_surplus_pages(struct hstate *h,
2629 unsigned long unused_resv_pages)
2631 unsigned long nr_pages;
2633 LIST_HEAD(page_list);
2635 lockdep_assert_held(&hugetlb_lock);
2636 /* Uncommit the reservation */
2637 h->resv_huge_pages -= unused_resv_pages;
2639 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2643 * Part (or even all) of the reservation could have been backed
2644 * by pre-allocated pages. Only free surplus pages.
2646 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2649 * We want to release as many surplus pages as possible, spread
2650 * evenly across all nodes with memory. Iterate across these nodes
2651 * until we can no longer free unreserved surplus pages. This occurs
2652 * when the nodes with surplus pages have no free pages.
2653 * remove_pool_huge_page() will balance the freed pages across the
2654 * on-line nodes with memory and will handle the hstate accounting.
2656 while (nr_pages--) {
2657 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2661 list_add(&page->lru, &page_list);
2665 spin_unlock_irq(&hugetlb_lock);
2666 update_and_free_pages_bulk(h, &page_list);
2667 spin_lock_irq(&hugetlb_lock);
2672 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2673 * are used by the huge page allocation routines to manage reservations.
2675 * vma_needs_reservation is called to determine if the huge page at addr
2676 * within the vma has an associated reservation. If a reservation is
2677 * needed, the value 1 is returned. The caller is then responsible for
2678 * managing the global reservation and subpool usage counts. After
2679 * the huge page has been allocated, vma_commit_reservation is called
2680 * to add the page to the reservation map. If the page allocation fails,
2681 * the reservation must be ended instead of committed. vma_end_reservation
2682 * is called in such cases.
2684 * In the normal case, vma_commit_reservation returns the same value
2685 * as the preceding vma_needs_reservation call. The only time this
2686 * is not the case is if a reserve map was changed between calls. It
2687 * is the responsibility of the caller to notice the difference and
2688 * take appropriate action.
2690 * vma_add_reservation is used in error paths where a reservation must
2691 * be restored when a newly allocated huge page must be freed. It is
2692 * to be called after calling vma_needs_reservation to determine if a
2693 * reservation exists.
2695 * vma_del_reservation is used in error paths where an entry in the reserve
2696 * map was created during huge page allocation and must be removed. It is to
2697 * be called after calling vma_needs_reservation to determine if a reservation
2700 enum vma_resv_mode {
2707 static long __vma_reservation_common(struct hstate *h,
2708 struct vm_area_struct *vma, unsigned long addr,
2709 enum vma_resv_mode mode)
2711 struct resv_map *resv;
2714 long dummy_out_regions_needed;
2716 resv = vma_resv_map(vma);
2720 idx = vma_hugecache_offset(h, vma, addr);
2722 case VMA_NEEDS_RESV:
2723 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2724 /* We assume that vma_reservation_* routines always operate on
2725 * 1 page, and that adding to resv map a 1 page entry can only
2726 * ever require 1 region.
2728 VM_BUG_ON(dummy_out_regions_needed != 1);
2730 case VMA_COMMIT_RESV:
2731 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732 /* region_add calls of range 1 should never fail. */
2736 region_abort(resv, idx, idx + 1, 1);
2740 if (vma->vm_flags & VM_MAYSHARE) {
2741 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742 /* region_add calls of range 1 should never fail. */
2745 region_abort(resv, idx, idx + 1, 1);
2746 ret = region_del(resv, idx, idx + 1);
2750 if (vma->vm_flags & VM_MAYSHARE) {
2751 region_abort(resv, idx, idx + 1, 1);
2752 ret = region_del(resv, idx, idx + 1);
2754 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2755 /* region_add calls of range 1 should never fail. */
2763 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2766 * We know private mapping must have HPAGE_RESV_OWNER set.
2768 * In most cases, reserves always exist for private mappings.
2769 * However, a file associated with mapping could have been
2770 * hole punched or truncated after reserves were consumed.
2771 * As subsequent fault on such a range will not use reserves.
2772 * Subtle - The reserve map for private mappings has the
2773 * opposite meaning than that of shared mappings. If NO
2774 * entry is in the reserve map, it means a reservation exists.
2775 * If an entry exists in the reserve map, it means the
2776 * reservation has already been consumed. As a result, the
2777 * return value of this routine is the opposite of the
2778 * value returned from reserve map manipulation routines above.
2787 static long vma_needs_reservation(struct hstate *h,
2788 struct vm_area_struct *vma, unsigned long addr)
2790 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2793 static long vma_commit_reservation(struct hstate *h,
2794 struct vm_area_struct *vma, unsigned long addr)
2796 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2799 static void vma_end_reservation(struct hstate *h,
2800 struct vm_area_struct *vma, unsigned long addr)
2802 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2805 static long vma_add_reservation(struct hstate *h,
2806 struct vm_area_struct *vma, unsigned long addr)
2808 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2811 static long vma_del_reservation(struct hstate *h,
2812 struct vm_area_struct *vma, unsigned long addr)
2814 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2818 * This routine is called to restore reservation information on error paths.
2819 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2820 * and the hugetlb mutex should remain held when calling this routine.
2822 * It handles two specific cases:
2823 * 1) A reservation was in place and the folio consumed the reservation.
2824 * hugetlb_restore_reserve is set in the folio.
2825 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2826 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2828 * In case 1, free_huge_folio later in the error path will increment the
2829 * global reserve count. But, free_huge_folio does not have enough context
2830 * to adjust the reservation map. This case deals primarily with private
2831 * mappings. Adjust the reserve map here to be consistent with global
2832 * reserve count adjustments to be made by free_huge_folio. Make sure the
2833 * reserve map indicates there is a reservation present.
2835 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2837 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2838 unsigned long address, struct folio *folio)
2840 long rc = vma_needs_reservation(h, vma, address);
2842 if (folio_test_hugetlb_restore_reserve(folio)) {
2843 if (unlikely(rc < 0))
2845 * Rare out of memory condition in reserve map
2846 * manipulation. Clear hugetlb_restore_reserve so
2847 * that global reserve count will not be incremented
2848 * by free_huge_folio. This will make it appear
2849 * as though the reservation for this folio was
2850 * consumed. This may prevent the task from
2851 * faulting in the folio at a later time. This
2852 * is better than inconsistent global huge page
2853 * accounting of reserve counts.
2855 folio_clear_hugetlb_restore_reserve(folio);
2857 (void)vma_add_reservation(h, vma, address);
2859 vma_end_reservation(h, vma, address);
2863 * This indicates there is an entry in the reserve map
2864 * not added by alloc_hugetlb_folio. We know it was added
2865 * before the alloc_hugetlb_folio call, otherwise
2866 * hugetlb_restore_reserve would be set on the folio.
2867 * Remove the entry so that a subsequent allocation
2868 * does not consume a reservation.
2870 rc = vma_del_reservation(h, vma, address);
2873 * VERY rare out of memory condition. Since
2874 * we can not delete the entry, set
2875 * hugetlb_restore_reserve so that the reserve
2876 * count will be incremented when the folio
2877 * is freed. This reserve will be consumed
2878 * on a subsequent allocation.
2880 folio_set_hugetlb_restore_reserve(folio);
2881 } else if (rc < 0) {
2883 * Rare out of memory condition from
2884 * vma_needs_reservation call. Memory allocation is
2885 * only attempted if a new entry is needed. Therefore,
2886 * this implies there is not an entry in the
2889 * For shared mappings, no entry in the map indicates
2890 * no reservation. We are done.
2892 if (!(vma->vm_flags & VM_MAYSHARE))
2894 * For private mappings, no entry indicates
2895 * a reservation is present. Since we can
2896 * not add an entry, set hugetlb_restore_reserve
2897 * on the folio so reserve count will be
2898 * incremented when freed. This reserve will
2899 * be consumed on a subsequent allocation.
2901 folio_set_hugetlb_restore_reserve(folio);
2904 * No reservation present, do nothing
2906 vma_end_reservation(h, vma, address);
2911 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2913 * @h: struct hstate old page belongs to
2914 * @old_folio: Old folio to dissolve
2915 * @list: List to isolate the page in case we need to
2916 * Returns 0 on success, otherwise negated error.
2918 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2919 struct folio *old_folio, struct list_head *list)
2921 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2922 int nid = folio_nid(old_folio);
2923 struct folio *new_folio;
2927 * Before dissolving the folio, we need to allocate a new one for the
2928 * pool to remain stable. Here, we allocate the folio and 'prep' it
2929 * by doing everything but actually updating counters and adding to
2930 * the pool. This simplifies and let us do most of the processing
2933 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2936 __prep_new_hugetlb_folio(h, new_folio);
2939 spin_lock_irq(&hugetlb_lock);
2940 if (!folio_test_hugetlb(old_folio)) {
2942 * Freed from under us. Drop new_folio too.
2945 } else if (folio_ref_count(old_folio)) {
2949 * Someone has grabbed the folio, try to isolate it here.
2950 * Fail with -EBUSY if not possible.
2952 spin_unlock_irq(&hugetlb_lock);
2953 isolated = isolate_hugetlb(old_folio, list);
2954 ret = isolated ? 0 : -EBUSY;
2955 spin_lock_irq(&hugetlb_lock);
2957 } else if (!folio_test_hugetlb_freed(old_folio)) {
2959 * Folio's refcount is 0 but it has not been enqueued in the
2960 * freelist yet. Race window is small, so we can succeed here if
2963 spin_unlock_irq(&hugetlb_lock);
2968 * Ok, old_folio is still a genuine free hugepage. Remove it from
2969 * the freelist and decrease the counters. These will be
2970 * incremented again when calling __prep_account_new_huge_page()
2971 * and enqueue_hugetlb_folio() for new_folio. The counters will
2972 * remain stable since this happens under the lock.
2974 remove_hugetlb_folio(h, old_folio, false);
2977 * Ref count on new_folio is already zero as it was dropped
2978 * earlier. It can be directly added to the pool free list.
2980 __prep_account_new_huge_page(h, nid);
2981 enqueue_hugetlb_folio(h, new_folio);
2984 * Folio has been replaced, we can safely free the old one.
2986 spin_unlock_irq(&hugetlb_lock);
2987 update_and_free_hugetlb_folio(h, old_folio, false);
2993 spin_unlock_irq(&hugetlb_lock);
2994 /* Folio has a zero ref count, but needs a ref to be freed */
2995 folio_ref_unfreeze(new_folio, 1);
2996 update_and_free_hugetlb_folio(h, new_folio, false);
3001 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3004 struct folio *folio = page_folio(page);
3008 * The page might have been dissolved from under our feet, so make sure
3009 * to carefully check the state under the lock.
3010 * Return success when racing as if we dissolved the page ourselves.
3012 spin_lock_irq(&hugetlb_lock);
3013 if (folio_test_hugetlb(folio)) {
3014 h = folio_hstate(folio);
3016 spin_unlock_irq(&hugetlb_lock);
3019 spin_unlock_irq(&hugetlb_lock);
3022 * Fence off gigantic pages as there is a cyclic dependency between
3023 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3024 * of bailing out right away without further retrying.
3026 if (hstate_is_gigantic(h))
3029 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3031 else if (!folio_ref_count(folio))
3032 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3037 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3038 unsigned long addr, int avoid_reserve)
3040 struct hugepage_subpool *spool = subpool_vma(vma);
3041 struct hstate *h = hstate_vma(vma);
3042 struct folio *folio;
3043 long map_chg, map_commit;
3046 struct hugetlb_cgroup *h_cg = NULL;
3047 bool deferred_reserve;
3049 idx = hstate_index(h);
3051 * Examine the region/reserve map to determine if the process
3052 * has a reservation for the page to be allocated. A return
3053 * code of zero indicates a reservation exists (no change).
3055 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3057 return ERR_PTR(-ENOMEM);
3060 * Processes that did not create the mapping will have no
3061 * reserves as indicated by the region/reserve map. Check
3062 * that the allocation will not exceed the subpool limit.
3063 * Allocations for MAP_NORESERVE mappings also need to be
3064 * checked against any subpool limit.
3066 if (map_chg || avoid_reserve) {
3067 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3069 vma_end_reservation(h, vma, addr);
3070 return ERR_PTR(-ENOSPC);
3074 * Even though there was no reservation in the region/reserve
3075 * map, there could be reservations associated with the
3076 * subpool that can be used. This would be indicated if the
3077 * return value of hugepage_subpool_get_pages() is zero.
3078 * However, if avoid_reserve is specified we still avoid even
3079 * the subpool reservations.
3085 /* If this allocation is not consuming a reservation, charge it now.
3087 deferred_reserve = map_chg || avoid_reserve;
3088 if (deferred_reserve) {
3089 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3090 idx, pages_per_huge_page(h), &h_cg);
3092 goto out_subpool_put;
3095 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3097 goto out_uncharge_cgroup_reservation;
3099 spin_lock_irq(&hugetlb_lock);
3101 * glb_chg is passed to indicate whether or not a page must be taken
3102 * from the global free pool (global change). gbl_chg == 0 indicates
3103 * a reservation exists for the allocation.
3105 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3107 spin_unlock_irq(&hugetlb_lock);
3108 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3110 goto out_uncharge_cgroup;
3111 spin_lock_irq(&hugetlb_lock);
3112 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3113 folio_set_hugetlb_restore_reserve(folio);
3114 h->resv_huge_pages--;
3116 list_add(&folio->lru, &h->hugepage_activelist);
3117 folio_ref_unfreeze(folio, 1);
3121 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3122 /* If allocation is not consuming a reservation, also store the
3123 * hugetlb_cgroup pointer on the page.
3125 if (deferred_reserve) {
3126 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3130 spin_unlock_irq(&hugetlb_lock);
3132 hugetlb_set_folio_subpool(folio, spool);
3134 map_commit = vma_commit_reservation(h, vma, addr);
3135 if (unlikely(map_chg > map_commit)) {
3137 * The page was added to the reservation map between
3138 * vma_needs_reservation and vma_commit_reservation.
3139 * This indicates a race with hugetlb_reserve_pages.
3140 * Adjust for the subpool count incremented above AND
3141 * in hugetlb_reserve_pages for the same page. Also,
3142 * the reservation count added in hugetlb_reserve_pages
3143 * no longer applies.
3147 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3148 hugetlb_acct_memory(h, -rsv_adjust);
3149 if (deferred_reserve)
3150 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3151 pages_per_huge_page(h), folio);
3155 out_uncharge_cgroup:
3156 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3157 out_uncharge_cgroup_reservation:
3158 if (deferred_reserve)
3159 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3162 if (map_chg || avoid_reserve)
3163 hugepage_subpool_put_pages(spool, 1);
3164 vma_end_reservation(h, vma, addr);
3165 return ERR_PTR(-ENOSPC);
3168 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3170 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3172 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3175 /* do node specific alloc */
3176 if (nid != NUMA_NO_NODE) {
3177 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3178 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3183 /* allocate from next node when distributing huge pages */
3184 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3185 m = memblock_alloc_try_nid_raw(
3186 huge_page_size(h), huge_page_size(h),
3187 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3189 * Use the beginning of the huge page to store the
3190 * huge_bootmem_page struct (until gather_bootmem
3191 * puts them into the mem_map).
3199 /* Put them into a private list first because mem_map is not up yet */
3200 INIT_LIST_HEAD(&m->list);
3201 list_add(&m->list, &huge_boot_pages);
3207 * Put bootmem huge pages into the standard lists after mem_map is up.
3208 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3210 static void __init gather_bootmem_prealloc(void)
3212 struct huge_bootmem_page *m;
3214 list_for_each_entry(m, &huge_boot_pages, list) {
3215 struct page *page = virt_to_page(m);
3216 struct folio *folio = page_folio(page);
3217 struct hstate *h = m->hstate;
3219 VM_BUG_ON(!hstate_is_gigantic(h));
3220 WARN_ON(folio_ref_count(folio) != 1);
3221 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3222 WARN_ON(folio_test_reserved(folio));
3223 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3224 free_huge_folio(folio); /* add to the hugepage allocator */
3226 /* VERY unlikely inflated ref count on a tail page */
3227 free_gigantic_folio(folio, huge_page_order(h));
3231 * We need to restore the 'stolen' pages to totalram_pages
3232 * in order to fix confusing memory reports from free(1) and
3233 * other side-effects, like CommitLimit going negative.
3235 adjust_managed_page_count(page, pages_per_huge_page(h));
3239 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3244 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3245 if (hstate_is_gigantic(h)) {
3246 if (!alloc_bootmem_huge_page(h, nid))
3249 struct folio *folio;
3250 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3252 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3253 &node_states[N_MEMORY], NULL);
3256 free_huge_folio(folio); /* free it into the hugepage allocator */
3260 if (i == h->max_huge_pages_node[nid])
3263 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3264 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3265 h->max_huge_pages_node[nid], buf, nid, i);
3266 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3267 h->max_huge_pages_node[nid] = i;
3270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3273 nodemask_t *node_alloc_noretry;
3274 bool node_specific_alloc = false;
3276 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3277 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3278 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3282 /* do node specific alloc */
3283 for_each_online_node(i) {
3284 if (h->max_huge_pages_node[i] > 0) {
3285 hugetlb_hstate_alloc_pages_onenode(h, i);
3286 node_specific_alloc = true;
3290 if (node_specific_alloc)
3293 /* below will do all node balanced alloc */
3294 if (!hstate_is_gigantic(h)) {
3296 * Bit mask controlling how hard we retry per-node allocations.
3297 * Ignore errors as lower level routines can deal with
3298 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3299 * time, we are likely in bigger trouble.
3301 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3304 /* allocations done at boot time */
3305 node_alloc_noretry = NULL;
3308 /* bit mask controlling how hard we retry per-node allocations */
3309 if (node_alloc_noretry)
3310 nodes_clear(*node_alloc_noretry);
3312 for (i = 0; i < h->max_huge_pages; ++i) {
3313 if (hstate_is_gigantic(h)) {
3314 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3316 } else if (!alloc_pool_huge_page(h,
3317 &node_states[N_MEMORY],
3318 node_alloc_noretry))
3322 if (i < h->max_huge_pages) {
3325 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3326 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3327 h->max_huge_pages, buf, i);
3328 h->max_huge_pages = i;
3330 kfree(node_alloc_noretry);
3333 static void __init hugetlb_init_hstates(void)
3335 struct hstate *h, *h2;
3337 for_each_hstate(h) {
3338 /* oversize hugepages were init'ed in early boot */
3339 if (!hstate_is_gigantic(h))
3340 hugetlb_hstate_alloc_pages(h);
3343 * Set demote order for each hstate. Note that
3344 * h->demote_order is initially 0.
3345 * - We can not demote gigantic pages if runtime freeing
3346 * is not supported, so skip this.
3347 * - If CMA allocation is possible, we can not demote
3348 * HUGETLB_PAGE_ORDER or smaller size pages.
3350 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3352 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3354 for_each_hstate(h2) {
3357 if (h2->order < h->order &&
3358 h2->order > h->demote_order)
3359 h->demote_order = h2->order;
3364 static void __init report_hugepages(void)
3368 for_each_hstate(h) {
3371 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3372 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3373 buf, h->free_huge_pages);
3374 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3375 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3379 #ifdef CONFIG_HIGHMEM
3380 static void try_to_free_low(struct hstate *h, unsigned long count,
3381 nodemask_t *nodes_allowed)
3384 LIST_HEAD(page_list);
3386 lockdep_assert_held(&hugetlb_lock);
3387 if (hstate_is_gigantic(h))
3391 * Collect pages to be freed on a list, and free after dropping lock
3393 for_each_node_mask(i, *nodes_allowed) {
3394 struct page *page, *next;
3395 struct list_head *freel = &h->hugepage_freelists[i];
3396 list_for_each_entry_safe(page, next, freel, lru) {
3397 if (count >= h->nr_huge_pages)
3399 if (PageHighMem(page))
3401 remove_hugetlb_folio(h, page_folio(page), false);
3402 list_add(&page->lru, &page_list);
3407 spin_unlock_irq(&hugetlb_lock);
3408 update_and_free_pages_bulk(h, &page_list);
3409 spin_lock_irq(&hugetlb_lock);
3412 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3413 nodemask_t *nodes_allowed)
3419 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3420 * balanced by operating on them in a round-robin fashion.
3421 * Returns 1 if an adjustment was made.
3423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3428 lockdep_assert_held(&hugetlb_lock);
3429 VM_BUG_ON(delta != -1 && delta != 1);
3432 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3433 if (h->surplus_huge_pages_node[node])
3437 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3438 if (h->surplus_huge_pages_node[node] <
3439 h->nr_huge_pages_node[node])
3446 h->surplus_huge_pages += delta;
3447 h->surplus_huge_pages_node[node] += delta;
3451 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3452 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3453 nodemask_t *nodes_allowed)
3455 unsigned long min_count, ret;
3457 LIST_HEAD(page_list);
3458 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3461 * Bit mask controlling how hard we retry per-node allocations.
3462 * If we can not allocate the bit mask, do not attempt to allocate
3463 * the requested huge pages.
3465 if (node_alloc_noretry)
3466 nodes_clear(*node_alloc_noretry);
3471 * resize_lock mutex prevents concurrent adjustments to number of
3472 * pages in hstate via the proc/sysfs interfaces.
3474 mutex_lock(&h->resize_lock);
3475 flush_free_hpage_work(h);
3476 spin_lock_irq(&hugetlb_lock);
3479 * Check for a node specific request.
3480 * Changing node specific huge page count may require a corresponding
3481 * change to the global count. In any case, the passed node mask
3482 * (nodes_allowed) will restrict alloc/free to the specified node.
3484 if (nid != NUMA_NO_NODE) {
3485 unsigned long old_count = count;
3487 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3489 * User may have specified a large count value which caused the
3490 * above calculation to overflow. In this case, they wanted
3491 * to allocate as many huge pages as possible. Set count to
3492 * largest possible value to align with their intention.
3494 if (count < old_count)
3499 * Gigantic pages runtime allocation depend on the capability for large
3500 * page range allocation.
3501 * If the system does not provide this feature, return an error when
3502 * the user tries to allocate gigantic pages but let the user free the
3503 * boottime allocated gigantic pages.
3505 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3506 if (count > persistent_huge_pages(h)) {
3507 spin_unlock_irq(&hugetlb_lock);
3508 mutex_unlock(&h->resize_lock);
3509 NODEMASK_FREE(node_alloc_noretry);
3512 /* Fall through to decrease pool */
3516 * Increase the pool size
3517 * First take pages out of surplus state. Then make up the
3518 * remaining difference by allocating fresh huge pages.
3520 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3521 * to convert a surplus huge page to a normal huge page. That is
3522 * not critical, though, it just means the overall size of the
3523 * pool might be one hugepage larger than it needs to be, but
3524 * within all the constraints specified by the sysctls.
3526 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3527 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3531 while (count > persistent_huge_pages(h)) {
3533 * If this allocation races such that we no longer need the
3534 * page, free_huge_folio will handle it by freeing the page
3535 * and reducing the surplus.
3537 spin_unlock_irq(&hugetlb_lock);
3539 /* yield cpu to avoid soft lockup */
3542 ret = alloc_pool_huge_page(h, nodes_allowed,
3543 node_alloc_noretry);
3544 spin_lock_irq(&hugetlb_lock);
3548 /* Bail for signals. Probably ctrl-c from user */
3549 if (signal_pending(current))
3554 * Decrease the pool size
3555 * First return free pages to the buddy allocator (being careful
3556 * to keep enough around to satisfy reservations). Then place
3557 * pages into surplus state as needed so the pool will shrink
3558 * to the desired size as pages become free.
3560 * By placing pages into the surplus state independent of the
3561 * overcommit value, we are allowing the surplus pool size to
3562 * exceed overcommit. There are few sane options here. Since
3563 * alloc_surplus_hugetlb_folio() is checking the global counter,
3564 * though, we'll note that we're not allowed to exceed surplus
3565 * and won't grow the pool anywhere else. Not until one of the
3566 * sysctls are changed, or the surplus pages go out of use.
3568 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3569 min_count = max(count, min_count);
3570 try_to_free_low(h, min_count, nodes_allowed);
3573 * Collect pages to be removed on list without dropping lock
3575 while (min_count < persistent_huge_pages(h)) {
3576 page = remove_pool_huge_page(h, nodes_allowed, 0);
3580 list_add(&page->lru, &page_list);
3582 /* free the pages after dropping lock */
3583 spin_unlock_irq(&hugetlb_lock);
3584 update_and_free_pages_bulk(h, &page_list);
3585 flush_free_hpage_work(h);
3586 spin_lock_irq(&hugetlb_lock);
3588 while (count < persistent_huge_pages(h)) {
3589 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3593 h->max_huge_pages = persistent_huge_pages(h);
3594 spin_unlock_irq(&hugetlb_lock);
3595 mutex_unlock(&h->resize_lock);
3597 NODEMASK_FREE(node_alloc_noretry);
3602 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3604 int i, nid = folio_nid(folio);
3605 struct hstate *target_hstate;
3606 struct page *subpage;
3607 struct folio *inner_folio;
3610 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3612 remove_hugetlb_folio_for_demote(h, folio, false);
3613 spin_unlock_irq(&hugetlb_lock);
3615 rc = hugetlb_vmemmap_restore(h, &folio->page);
3617 /* Allocation of vmemmmap failed, we can not demote folio */
3618 spin_lock_irq(&hugetlb_lock);
3619 folio_ref_unfreeze(folio, 1);
3620 add_hugetlb_folio(h, folio, false);
3625 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3626 * sizes as it will not ref count folios.
3628 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3631 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3632 * Without the mutex, pages added to target hstate could be marked
3635 * Note that we already hold h->resize_lock. To prevent deadlock,
3636 * use the convention of always taking larger size hstate mutex first.
3638 mutex_lock(&target_hstate->resize_lock);
3639 for (i = 0; i < pages_per_huge_page(h);
3640 i += pages_per_huge_page(target_hstate)) {
3641 subpage = folio_page(folio, i);
3642 inner_folio = page_folio(subpage);
3643 if (hstate_is_gigantic(target_hstate))
3644 prep_compound_gigantic_folio_for_demote(inner_folio,
3645 target_hstate->order);
3647 prep_compound_page(subpage, target_hstate->order);
3648 folio_change_private(inner_folio, NULL);
3649 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3650 free_huge_folio(inner_folio);
3652 mutex_unlock(&target_hstate->resize_lock);
3654 spin_lock_irq(&hugetlb_lock);
3657 * Not absolutely necessary, but for consistency update max_huge_pages
3658 * based on pool changes for the demoted page.
3660 h->max_huge_pages--;
3661 target_hstate->max_huge_pages +=
3662 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3667 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3668 __must_hold(&hugetlb_lock)
3671 struct folio *folio;
3673 lockdep_assert_held(&hugetlb_lock);
3675 /* We should never get here if no demote order */
3676 if (!h->demote_order) {
3677 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3678 return -EINVAL; /* internal error */
3681 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3682 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3683 if (folio_test_hwpoison(folio))
3685 return demote_free_hugetlb_folio(h, folio);
3690 * Only way to get here is if all pages on free lists are poisoned.
3691 * Return -EBUSY so that caller will not retry.
3696 #define HSTATE_ATTR_RO(_name) \
3697 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3699 #define HSTATE_ATTR_WO(_name) \
3700 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3702 #define HSTATE_ATTR(_name) \
3703 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3705 static struct kobject *hugepages_kobj;
3706 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3708 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3710 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3714 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3715 if (hstate_kobjs[i] == kobj) {
3717 *nidp = NUMA_NO_NODE;
3721 return kobj_to_node_hstate(kobj, nidp);
3724 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3725 struct kobj_attribute *attr, char *buf)
3728 unsigned long nr_huge_pages;
3731 h = kobj_to_hstate(kobj, &nid);
3732 if (nid == NUMA_NO_NODE)
3733 nr_huge_pages = h->nr_huge_pages;
3735 nr_huge_pages = h->nr_huge_pages_node[nid];
3737 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3740 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3741 struct hstate *h, int nid,
3742 unsigned long count, size_t len)
3745 nodemask_t nodes_allowed, *n_mask;
3747 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3750 if (nid == NUMA_NO_NODE) {
3752 * global hstate attribute
3754 if (!(obey_mempolicy &&
3755 init_nodemask_of_mempolicy(&nodes_allowed)))
3756 n_mask = &node_states[N_MEMORY];
3758 n_mask = &nodes_allowed;
3761 * Node specific request. count adjustment happens in
3762 * set_max_huge_pages() after acquiring hugetlb_lock.
3764 init_nodemask_of_node(&nodes_allowed, nid);
3765 n_mask = &nodes_allowed;
3768 err = set_max_huge_pages(h, count, nid, n_mask);
3770 return err ? err : len;
3773 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3774 struct kobject *kobj, const char *buf,
3778 unsigned long count;
3782 err = kstrtoul(buf, 10, &count);
3786 h = kobj_to_hstate(kobj, &nid);
3787 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3790 static ssize_t nr_hugepages_show(struct kobject *kobj,
3791 struct kobj_attribute *attr, char *buf)
3793 return nr_hugepages_show_common(kobj, attr, buf);
3796 static ssize_t nr_hugepages_store(struct kobject *kobj,
3797 struct kobj_attribute *attr, const char *buf, size_t len)
3799 return nr_hugepages_store_common(false, kobj, buf, len);
3801 HSTATE_ATTR(nr_hugepages);
3806 * hstate attribute for optionally mempolicy-based constraint on persistent
3807 * huge page alloc/free.
3809 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3810 struct kobj_attribute *attr,
3813 return nr_hugepages_show_common(kobj, attr, buf);
3816 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3817 struct kobj_attribute *attr, const char *buf, size_t len)
3819 return nr_hugepages_store_common(true, kobj, buf, len);
3821 HSTATE_ATTR(nr_hugepages_mempolicy);
3825 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3826 struct kobj_attribute *attr, char *buf)
3828 struct hstate *h = kobj_to_hstate(kobj, NULL);
3829 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3832 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3833 struct kobj_attribute *attr, const char *buf, size_t count)
3836 unsigned long input;
3837 struct hstate *h = kobj_to_hstate(kobj, NULL);
3839 if (hstate_is_gigantic(h))
3842 err = kstrtoul(buf, 10, &input);
3846 spin_lock_irq(&hugetlb_lock);
3847 h->nr_overcommit_huge_pages = input;
3848 spin_unlock_irq(&hugetlb_lock);
3852 HSTATE_ATTR(nr_overcommit_hugepages);
3854 static ssize_t free_hugepages_show(struct kobject *kobj,
3855 struct kobj_attribute *attr, char *buf)
3858 unsigned long free_huge_pages;
3861 h = kobj_to_hstate(kobj, &nid);
3862 if (nid == NUMA_NO_NODE)
3863 free_huge_pages = h->free_huge_pages;
3865 free_huge_pages = h->free_huge_pages_node[nid];
3867 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3869 HSTATE_ATTR_RO(free_hugepages);
3871 static ssize_t resv_hugepages_show(struct kobject *kobj,
3872 struct kobj_attribute *attr, char *buf)
3874 struct hstate *h = kobj_to_hstate(kobj, NULL);
3875 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3877 HSTATE_ATTR_RO(resv_hugepages);
3879 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3880 struct kobj_attribute *attr, char *buf)
3883 unsigned long surplus_huge_pages;
3886 h = kobj_to_hstate(kobj, &nid);
3887 if (nid == NUMA_NO_NODE)
3888 surplus_huge_pages = h->surplus_huge_pages;
3890 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3892 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3894 HSTATE_ATTR_RO(surplus_hugepages);
3896 static ssize_t demote_store(struct kobject *kobj,
3897 struct kobj_attribute *attr, const char *buf, size_t len)
3899 unsigned long nr_demote;
3900 unsigned long nr_available;
3901 nodemask_t nodes_allowed, *n_mask;
3906 err = kstrtoul(buf, 10, &nr_demote);
3909 h = kobj_to_hstate(kobj, &nid);
3911 if (nid != NUMA_NO_NODE) {
3912 init_nodemask_of_node(&nodes_allowed, nid);
3913 n_mask = &nodes_allowed;
3915 n_mask = &node_states[N_MEMORY];
3918 /* Synchronize with other sysfs operations modifying huge pages */
3919 mutex_lock(&h->resize_lock);
3920 spin_lock_irq(&hugetlb_lock);
3924 * Check for available pages to demote each time thorough the
3925 * loop as demote_pool_huge_page will drop hugetlb_lock.
3927 if (nid != NUMA_NO_NODE)
3928 nr_available = h->free_huge_pages_node[nid];
3930 nr_available = h->free_huge_pages;
3931 nr_available -= h->resv_huge_pages;
3935 err = demote_pool_huge_page(h, n_mask);
3942 spin_unlock_irq(&hugetlb_lock);
3943 mutex_unlock(&h->resize_lock);
3949 HSTATE_ATTR_WO(demote);
3951 static ssize_t demote_size_show(struct kobject *kobj,
3952 struct kobj_attribute *attr, char *buf)
3954 struct hstate *h = kobj_to_hstate(kobj, NULL);
3955 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3957 return sysfs_emit(buf, "%lukB\n", demote_size);
3960 static ssize_t demote_size_store(struct kobject *kobj,
3961 struct kobj_attribute *attr,
3962 const char *buf, size_t count)
3964 struct hstate *h, *demote_hstate;
3965 unsigned long demote_size;
3966 unsigned int demote_order;
3968 demote_size = (unsigned long)memparse(buf, NULL);
3970 demote_hstate = size_to_hstate(demote_size);
3973 demote_order = demote_hstate->order;
3974 if (demote_order < HUGETLB_PAGE_ORDER)
3977 /* demote order must be smaller than hstate order */
3978 h = kobj_to_hstate(kobj, NULL);
3979 if (demote_order >= h->order)
3982 /* resize_lock synchronizes access to demote size and writes */
3983 mutex_lock(&h->resize_lock);
3984 h->demote_order = demote_order;
3985 mutex_unlock(&h->resize_lock);
3989 HSTATE_ATTR(demote_size);
3991 static struct attribute *hstate_attrs[] = {
3992 &nr_hugepages_attr.attr,
3993 &nr_overcommit_hugepages_attr.attr,
3994 &free_hugepages_attr.attr,
3995 &resv_hugepages_attr.attr,
3996 &surplus_hugepages_attr.attr,
3998 &nr_hugepages_mempolicy_attr.attr,
4003 static const struct attribute_group hstate_attr_group = {
4004 .attrs = hstate_attrs,
4007 static struct attribute *hstate_demote_attrs[] = {
4008 &demote_size_attr.attr,
4013 static const struct attribute_group hstate_demote_attr_group = {
4014 .attrs = hstate_demote_attrs,
4017 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4018 struct kobject **hstate_kobjs,
4019 const struct attribute_group *hstate_attr_group)
4022 int hi = hstate_index(h);
4024 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4025 if (!hstate_kobjs[hi])
4028 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4030 kobject_put(hstate_kobjs[hi]);
4031 hstate_kobjs[hi] = NULL;
4035 if (h->demote_order) {
4036 retval = sysfs_create_group(hstate_kobjs[hi],
4037 &hstate_demote_attr_group);
4039 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4040 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4041 kobject_put(hstate_kobjs[hi]);
4042 hstate_kobjs[hi] = NULL;
4051 static bool hugetlb_sysfs_initialized __ro_after_init;
4054 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4055 * with node devices in node_devices[] using a parallel array. The array
4056 * index of a node device or _hstate == node id.
4057 * This is here to avoid any static dependency of the node device driver, in
4058 * the base kernel, on the hugetlb module.
4060 struct node_hstate {
4061 struct kobject *hugepages_kobj;
4062 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4064 static struct node_hstate node_hstates[MAX_NUMNODES];
4067 * A subset of global hstate attributes for node devices
4069 static struct attribute *per_node_hstate_attrs[] = {
4070 &nr_hugepages_attr.attr,
4071 &free_hugepages_attr.attr,
4072 &surplus_hugepages_attr.attr,
4076 static const struct attribute_group per_node_hstate_attr_group = {
4077 .attrs = per_node_hstate_attrs,
4081 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4082 * Returns node id via non-NULL nidp.
4084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4088 for (nid = 0; nid < nr_node_ids; nid++) {
4089 struct node_hstate *nhs = &node_hstates[nid];
4091 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4092 if (nhs->hstate_kobjs[i] == kobj) {
4104 * Unregister hstate attributes from a single node device.
4105 * No-op if no hstate attributes attached.
4107 void hugetlb_unregister_node(struct node *node)
4110 struct node_hstate *nhs = &node_hstates[node->dev.id];
4112 if (!nhs->hugepages_kobj)
4113 return; /* no hstate attributes */
4115 for_each_hstate(h) {
4116 int idx = hstate_index(h);
4117 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4121 if (h->demote_order)
4122 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4123 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4124 kobject_put(hstate_kobj);
4125 nhs->hstate_kobjs[idx] = NULL;
4128 kobject_put(nhs->hugepages_kobj);
4129 nhs->hugepages_kobj = NULL;
4134 * Register hstate attributes for a single node device.
4135 * No-op if attributes already registered.
4137 void hugetlb_register_node(struct node *node)
4140 struct node_hstate *nhs = &node_hstates[node->dev.id];
4143 if (!hugetlb_sysfs_initialized)
4146 if (nhs->hugepages_kobj)
4147 return; /* already allocated */
4149 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4151 if (!nhs->hugepages_kobj)
4154 for_each_hstate(h) {
4155 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4157 &per_node_hstate_attr_group);
4159 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4160 h->name, node->dev.id);
4161 hugetlb_unregister_node(node);
4168 * hugetlb init time: register hstate attributes for all registered node
4169 * devices of nodes that have memory. All on-line nodes should have
4170 * registered their associated device by this time.
4172 static void __init hugetlb_register_all_nodes(void)
4176 for_each_online_node(nid)
4177 hugetlb_register_node(node_devices[nid]);
4179 #else /* !CONFIG_NUMA */
4181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4189 static void hugetlb_register_all_nodes(void) { }
4194 static void __init hugetlb_cma_check(void);
4196 static inline __init void hugetlb_cma_check(void)
4201 static void __init hugetlb_sysfs_init(void)
4206 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4207 if (!hugepages_kobj)
4210 for_each_hstate(h) {
4211 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4212 hstate_kobjs, &hstate_attr_group);
4214 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4218 hugetlb_sysfs_initialized = true;
4220 hugetlb_register_all_nodes();
4223 #ifdef CONFIG_SYSCTL
4224 static void hugetlb_sysctl_init(void);
4226 static inline void hugetlb_sysctl_init(void) { }
4229 static int __init hugetlb_init(void)
4233 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4236 if (!hugepages_supported()) {
4237 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4238 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4243 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4244 * architectures depend on setup being done here.
4246 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4247 if (!parsed_default_hugepagesz) {
4249 * If we did not parse a default huge page size, set
4250 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4251 * number of huge pages for this default size was implicitly
4252 * specified, set that here as well.
4253 * Note that the implicit setting will overwrite an explicit
4254 * setting. A warning will be printed in this case.
4256 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4257 if (default_hstate_max_huge_pages) {
4258 if (default_hstate.max_huge_pages) {
4261 string_get_size(huge_page_size(&default_hstate),
4262 1, STRING_UNITS_2, buf, 32);
4263 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4264 default_hstate.max_huge_pages, buf);
4265 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4266 default_hstate_max_huge_pages);
4268 default_hstate.max_huge_pages =
4269 default_hstate_max_huge_pages;
4271 for_each_online_node(i)
4272 default_hstate.max_huge_pages_node[i] =
4273 default_hugepages_in_node[i];
4277 hugetlb_cma_check();
4278 hugetlb_init_hstates();
4279 gather_bootmem_prealloc();
4282 hugetlb_sysfs_init();
4283 hugetlb_cgroup_file_init();
4284 hugetlb_sysctl_init();
4287 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4289 num_fault_mutexes = 1;
4291 hugetlb_fault_mutex_table =
4292 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4294 BUG_ON(!hugetlb_fault_mutex_table);
4296 for (i = 0; i < num_fault_mutexes; i++)
4297 mutex_init(&hugetlb_fault_mutex_table[i]);
4300 subsys_initcall(hugetlb_init);
4302 /* Overwritten by architectures with more huge page sizes */
4303 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4305 return size == HPAGE_SIZE;
4308 void __init hugetlb_add_hstate(unsigned int order)
4313 if (size_to_hstate(PAGE_SIZE << order)) {
4316 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4318 h = &hstates[hugetlb_max_hstate++];
4319 mutex_init(&h->resize_lock);
4321 h->mask = ~(huge_page_size(h) - 1);
4322 for (i = 0; i < MAX_NUMNODES; ++i)
4323 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4324 INIT_LIST_HEAD(&h->hugepage_activelist);
4325 h->next_nid_to_alloc = first_memory_node;
4326 h->next_nid_to_free = first_memory_node;
4327 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4328 huge_page_size(h)/SZ_1K);
4333 bool __init __weak hugetlb_node_alloc_supported(void)
4338 static void __init hugepages_clear_pages_in_node(void)
4340 if (!hugetlb_max_hstate) {
4341 default_hstate_max_huge_pages = 0;
4342 memset(default_hugepages_in_node, 0,
4343 sizeof(default_hugepages_in_node));
4345 parsed_hstate->max_huge_pages = 0;
4346 memset(parsed_hstate->max_huge_pages_node, 0,
4347 sizeof(parsed_hstate->max_huge_pages_node));
4352 * hugepages command line processing
4353 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4354 * specification. If not, ignore the hugepages value. hugepages can also
4355 * be the first huge page command line option in which case it implicitly
4356 * specifies the number of huge pages for the default size.
4358 static int __init hugepages_setup(char *s)
4361 static unsigned long *last_mhp;
4362 int node = NUMA_NO_NODE;
4367 if (!parsed_valid_hugepagesz) {
4368 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4369 parsed_valid_hugepagesz = true;
4374 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4375 * yet, so this hugepages= parameter goes to the "default hstate".
4376 * Otherwise, it goes with the previously parsed hugepagesz or
4377 * default_hugepagesz.
4379 else if (!hugetlb_max_hstate)
4380 mhp = &default_hstate_max_huge_pages;
4382 mhp = &parsed_hstate->max_huge_pages;
4384 if (mhp == last_mhp) {
4385 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4391 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4393 /* Parameter is node format */
4394 if (p[count] == ':') {
4395 if (!hugetlb_node_alloc_supported()) {
4396 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4399 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4401 node = array_index_nospec(tmp, MAX_NUMNODES);
4403 /* Parse hugepages */
4404 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4406 if (!hugetlb_max_hstate)
4407 default_hugepages_in_node[node] = tmp;
4409 parsed_hstate->max_huge_pages_node[node] = tmp;
4411 /* Go to parse next node*/
4412 if (p[count] == ',')
4425 * Global state is always initialized later in hugetlb_init.
4426 * But we need to allocate gigantic hstates here early to still
4427 * use the bootmem allocator.
4429 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4430 hugetlb_hstate_alloc_pages(parsed_hstate);
4437 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4438 hugepages_clear_pages_in_node();
4441 __setup("hugepages=", hugepages_setup);
4444 * hugepagesz command line processing
4445 * A specific huge page size can only be specified once with hugepagesz.
4446 * hugepagesz is followed by hugepages on the command line. The global
4447 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4448 * hugepagesz argument was valid.
4450 static int __init hugepagesz_setup(char *s)
4455 parsed_valid_hugepagesz = false;
4456 size = (unsigned long)memparse(s, NULL);
4458 if (!arch_hugetlb_valid_size(size)) {
4459 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4463 h = size_to_hstate(size);
4466 * hstate for this size already exists. This is normally
4467 * an error, but is allowed if the existing hstate is the
4468 * default hstate. More specifically, it is only allowed if
4469 * the number of huge pages for the default hstate was not
4470 * previously specified.
4472 if (!parsed_default_hugepagesz || h != &default_hstate ||
4473 default_hstate.max_huge_pages) {
4474 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4479 * No need to call hugetlb_add_hstate() as hstate already
4480 * exists. But, do set parsed_hstate so that a following
4481 * hugepages= parameter will be applied to this hstate.
4484 parsed_valid_hugepagesz = true;
4488 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4489 parsed_valid_hugepagesz = true;
4492 __setup("hugepagesz=", hugepagesz_setup);
4495 * default_hugepagesz command line input
4496 * Only one instance of default_hugepagesz allowed on command line.
4498 static int __init default_hugepagesz_setup(char *s)
4503 parsed_valid_hugepagesz = false;
4504 if (parsed_default_hugepagesz) {
4505 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4509 size = (unsigned long)memparse(s, NULL);
4511 if (!arch_hugetlb_valid_size(size)) {
4512 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4516 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4517 parsed_valid_hugepagesz = true;
4518 parsed_default_hugepagesz = true;
4519 default_hstate_idx = hstate_index(size_to_hstate(size));
4522 * The number of default huge pages (for this size) could have been
4523 * specified as the first hugetlb parameter: hugepages=X. If so,
4524 * then default_hstate_max_huge_pages is set. If the default huge
4525 * page size is gigantic (> MAX_ORDER), then the pages must be
4526 * allocated here from bootmem allocator.
4528 if (default_hstate_max_huge_pages) {
4529 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4530 for_each_online_node(i)
4531 default_hstate.max_huge_pages_node[i] =
4532 default_hugepages_in_node[i];
4533 if (hstate_is_gigantic(&default_hstate))
4534 hugetlb_hstate_alloc_pages(&default_hstate);
4535 default_hstate_max_huge_pages = 0;
4540 __setup("default_hugepagesz=", default_hugepagesz_setup);
4542 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4545 struct mempolicy *mpol = get_task_policy(current);
4548 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4549 * (from policy_nodemask) specifically for hugetlb case
4551 if (mpol->mode == MPOL_BIND &&
4552 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4553 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4554 return &mpol->nodes;
4559 static unsigned int allowed_mems_nr(struct hstate *h)
4562 unsigned int nr = 0;
4563 nodemask_t *mbind_nodemask;
4564 unsigned int *array = h->free_huge_pages_node;
4565 gfp_t gfp_mask = htlb_alloc_mask(h);
4567 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4568 for_each_node_mask(node, cpuset_current_mems_allowed) {
4569 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4576 #ifdef CONFIG_SYSCTL
4577 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4578 void *buffer, size_t *length,
4579 loff_t *ppos, unsigned long *out)
4581 struct ctl_table dup_table;
4584 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4585 * can duplicate the @table and alter the duplicate of it.
4588 dup_table.data = out;
4590 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4593 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4594 struct ctl_table *table, int write,
4595 void *buffer, size_t *length, loff_t *ppos)
4597 struct hstate *h = &default_hstate;
4598 unsigned long tmp = h->max_huge_pages;
4601 if (!hugepages_supported())
4604 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4610 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4611 NUMA_NO_NODE, tmp, *length);
4616 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4617 void *buffer, size_t *length, loff_t *ppos)
4620 return hugetlb_sysctl_handler_common(false, table, write,
4621 buffer, length, ppos);
4625 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4626 void *buffer, size_t *length, loff_t *ppos)
4628 return hugetlb_sysctl_handler_common(true, table, write,
4629 buffer, length, ppos);
4631 #endif /* CONFIG_NUMA */
4633 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4634 void *buffer, size_t *length, loff_t *ppos)
4636 struct hstate *h = &default_hstate;
4640 if (!hugepages_supported())
4643 tmp = h->nr_overcommit_huge_pages;
4645 if (write && hstate_is_gigantic(h))
4648 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4654 spin_lock_irq(&hugetlb_lock);
4655 h->nr_overcommit_huge_pages = tmp;
4656 spin_unlock_irq(&hugetlb_lock);
4662 static struct ctl_table hugetlb_table[] = {
4664 .procname = "nr_hugepages",
4666 .maxlen = sizeof(unsigned long),
4668 .proc_handler = hugetlb_sysctl_handler,
4672 .procname = "nr_hugepages_mempolicy",
4674 .maxlen = sizeof(unsigned long),
4676 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4680 .procname = "hugetlb_shm_group",
4681 .data = &sysctl_hugetlb_shm_group,
4682 .maxlen = sizeof(gid_t),
4684 .proc_handler = proc_dointvec,
4687 .procname = "nr_overcommit_hugepages",
4689 .maxlen = sizeof(unsigned long),
4691 .proc_handler = hugetlb_overcommit_handler,
4696 static void hugetlb_sysctl_init(void)
4698 register_sysctl_init("vm", hugetlb_table);
4700 #endif /* CONFIG_SYSCTL */
4702 void hugetlb_report_meminfo(struct seq_file *m)
4705 unsigned long total = 0;
4707 if (!hugepages_supported())
4710 for_each_hstate(h) {
4711 unsigned long count = h->nr_huge_pages;
4713 total += huge_page_size(h) * count;
4715 if (h == &default_hstate)
4717 "HugePages_Total: %5lu\n"
4718 "HugePages_Free: %5lu\n"
4719 "HugePages_Rsvd: %5lu\n"
4720 "HugePages_Surp: %5lu\n"
4721 "Hugepagesize: %8lu kB\n",
4725 h->surplus_huge_pages,
4726 huge_page_size(h) / SZ_1K);
4729 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4732 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4734 struct hstate *h = &default_hstate;
4736 if (!hugepages_supported())
4739 return sysfs_emit_at(buf, len,
4740 "Node %d HugePages_Total: %5u\n"
4741 "Node %d HugePages_Free: %5u\n"
4742 "Node %d HugePages_Surp: %5u\n",
4743 nid, h->nr_huge_pages_node[nid],
4744 nid, h->free_huge_pages_node[nid],
4745 nid, h->surplus_huge_pages_node[nid]);
4748 void hugetlb_show_meminfo_node(int nid)
4752 if (!hugepages_supported())
4756 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4758 h->nr_huge_pages_node[nid],
4759 h->free_huge_pages_node[nid],
4760 h->surplus_huge_pages_node[nid],
4761 huge_page_size(h) / SZ_1K);
4764 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4766 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4767 K(atomic_long_read(&mm->hugetlb_usage)));
4770 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4771 unsigned long hugetlb_total_pages(void)
4774 unsigned long nr_total_pages = 0;
4777 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4778 return nr_total_pages;
4781 static int hugetlb_acct_memory(struct hstate *h, long delta)
4788 spin_lock_irq(&hugetlb_lock);
4790 * When cpuset is configured, it breaks the strict hugetlb page
4791 * reservation as the accounting is done on a global variable. Such
4792 * reservation is completely rubbish in the presence of cpuset because
4793 * the reservation is not checked against page availability for the
4794 * current cpuset. Application can still potentially OOM'ed by kernel
4795 * with lack of free htlb page in cpuset that the task is in.
4796 * Attempt to enforce strict accounting with cpuset is almost
4797 * impossible (or too ugly) because cpuset is too fluid that
4798 * task or memory node can be dynamically moved between cpusets.
4800 * The change of semantics for shared hugetlb mapping with cpuset is
4801 * undesirable. However, in order to preserve some of the semantics,
4802 * we fall back to check against current free page availability as
4803 * a best attempt and hopefully to minimize the impact of changing
4804 * semantics that cpuset has.
4806 * Apart from cpuset, we also have memory policy mechanism that
4807 * also determines from which node the kernel will allocate memory
4808 * in a NUMA system. So similar to cpuset, we also should consider
4809 * the memory policy of the current task. Similar to the description
4813 if (gather_surplus_pages(h, delta) < 0)
4816 if (delta > allowed_mems_nr(h)) {
4817 return_unused_surplus_pages(h, delta);
4824 return_unused_surplus_pages(h, (unsigned long) -delta);
4827 spin_unlock_irq(&hugetlb_lock);
4831 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4833 struct resv_map *resv = vma_resv_map(vma);
4836 * HPAGE_RESV_OWNER indicates a private mapping.
4837 * This new VMA should share its siblings reservation map if present.
4838 * The VMA will only ever have a valid reservation map pointer where
4839 * it is being copied for another still existing VMA. As that VMA
4840 * has a reference to the reservation map it cannot disappear until
4841 * after this open call completes. It is therefore safe to take a
4842 * new reference here without additional locking.
4844 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4845 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4846 kref_get(&resv->refs);
4850 * vma_lock structure for sharable mappings is vma specific.
4851 * Clear old pointer (if copied via vm_area_dup) and allocate
4852 * new structure. Before clearing, make sure vma_lock is not
4855 if (vma->vm_flags & VM_MAYSHARE) {
4856 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4859 if (vma_lock->vma != vma) {
4860 vma->vm_private_data = NULL;
4861 hugetlb_vma_lock_alloc(vma);
4863 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4865 hugetlb_vma_lock_alloc(vma);
4869 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4871 struct hstate *h = hstate_vma(vma);
4872 struct resv_map *resv;
4873 struct hugepage_subpool *spool = subpool_vma(vma);
4874 unsigned long reserve, start, end;
4877 hugetlb_vma_lock_free(vma);
4879 resv = vma_resv_map(vma);
4880 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4883 start = vma_hugecache_offset(h, vma, vma->vm_start);
4884 end = vma_hugecache_offset(h, vma, vma->vm_end);
4886 reserve = (end - start) - region_count(resv, start, end);
4887 hugetlb_cgroup_uncharge_counter(resv, start, end);
4890 * Decrement reserve counts. The global reserve count may be
4891 * adjusted if the subpool has a minimum size.
4893 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4894 hugetlb_acct_memory(h, -gbl_reserve);
4897 kref_put(&resv->refs, resv_map_release);
4900 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4902 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4906 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4907 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4908 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4910 if (addr & ~PUD_MASK) {
4912 * hugetlb_vm_op_split is called right before we attempt to
4913 * split the VMA. We will need to unshare PMDs in the old and
4914 * new VMAs, so let's unshare before we split.
4916 unsigned long floor = addr & PUD_MASK;
4917 unsigned long ceil = floor + PUD_SIZE;
4919 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4920 hugetlb_unshare_pmds(vma, floor, ceil);
4926 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4928 return huge_page_size(hstate_vma(vma));
4932 * We cannot handle pagefaults against hugetlb pages at all. They cause
4933 * handle_mm_fault() to try to instantiate regular-sized pages in the
4934 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4937 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4944 * When a new function is introduced to vm_operations_struct and added
4945 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4946 * This is because under System V memory model, mappings created via
4947 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4948 * their original vm_ops are overwritten with shm_vm_ops.
4950 const struct vm_operations_struct hugetlb_vm_ops = {
4951 .fault = hugetlb_vm_op_fault,
4952 .open = hugetlb_vm_op_open,
4953 .close = hugetlb_vm_op_close,
4954 .may_split = hugetlb_vm_op_split,
4955 .pagesize = hugetlb_vm_op_pagesize,
4958 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4962 unsigned int shift = huge_page_shift(hstate_vma(vma));
4965 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4966 vma->vm_page_prot)));
4968 entry = huge_pte_wrprotect(mk_huge_pte(page,
4969 vma->vm_page_prot));
4971 entry = pte_mkyoung(entry);
4972 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4977 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4978 unsigned long address, pte_t *ptep)
4982 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4983 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4984 update_mmu_cache(vma, address, ptep);
4987 bool is_hugetlb_entry_migration(pte_t pte)
4991 if (huge_pte_none(pte) || pte_present(pte))
4993 swp = pte_to_swp_entry(pte);
4994 if (is_migration_entry(swp))
5000 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5004 if (huge_pte_none(pte) || pte_present(pte))
5006 swp = pte_to_swp_entry(pte);
5007 if (is_hwpoison_entry(swp))
5014 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5015 struct folio *new_folio, pte_t old, unsigned long sz)
5017 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5019 __folio_mark_uptodate(new_folio);
5020 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5021 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5022 newpte = huge_pte_mkuffd_wp(newpte);
5023 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5024 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5025 folio_set_hugetlb_migratable(new_folio);
5028 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5029 struct vm_area_struct *dst_vma,
5030 struct vm_area_struct *src_vma)
5032 pte_t *src_pte, *dst_pte, entry;
5033 struct folio *pte_folio;
5035 bool cow = is_cow_mapping(src_vma->vm_flags);
5036 struct hstate *h = hstate_vma(src_vma);
5037 unsigned long sz = huge_page_size(h);
5038 unsigned long npages = pages_per_huge_page(h);
5039 struct mmu_notifier_range range;
5040 unsigned long last_addr_mask;
5044 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5047 mmu_notifier_invalidate_range_start(&range);
5048 vma_assert_write_locked(src_vma);
5049 raw_write_seqcount_begin(&src->write_protect_seq);
5052 * For shared mappings the vma lock must be held before
5053 * calling hugetlb_walk() in the src vma. Otherwise, the
5054 * returned ptep could go away if part of a shared pmd and
5055 * another thread calls huge_pmd_unshare.
5057 hugetlb_vma_lock_read(src_vma);
5060 last_addr_mask = hugetlb_mask_last_page(h);
5061 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5062 spinlock_t *src_ptl, *dst_ptl;
5063 src_pte = hugetlb_walk(src_vma, addr, sz);
5065 addr |= last_addr_mask;
5068 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5075 * If the pagetables are shared don't copy or take references.
5077 * dst_pte == src_pte is the common case of src/dest sharing.
5078 * However, src could have 'unshared' and dst shares with
5079 * another vma. So page_count of ptep page is checked instead
5080 * to reliably determine whether pte is shared.
5082 if (page_count(virt_to_page(dst_pte)) > 1) {
5083 addr |= last_addr_mask;
5087 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5088 src_ptl = huge_pte_lockptr(h, src, src_pte);
5089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5090 entry = huge_ptep_get(src_pte);
5092 if (huge_pte_none(entry)) {
5094 * Skip if src entry none.
5097 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5098 if (!userfaultfd_wp(dst_vma))
5099 entry = huge_pte_clear_uffd_wp(entry);
5100 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5101 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5102 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5103 bool uffd_wp = pte_swp_uffd_wp(entry);
5105 if (!is_readable_migration_entry(swp_entry) && cow) {
5107 * COW mappings require pages in both
5108 * parent and child to be set to read.
5110 swp_entry = make_readable_migration_entry(
5111 swp_offset(swp_entry));
5112 entry = swp_entry_to_pte(swp_entry);
5113 if (userfaultfd_wp(src_vma) && uffd_wp)
5114 entry = pte_swp_mkuffd_wp(entry);
5115 set_huge_pte_at(src, addr, src_pte, entry, sz);
5117 if (!userfaultfd_wp(dst_vma))
5118 entry = huge_pte_clear_uffd_wp(entry);
5119 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5120 } else if (unlikely(is_pte_marker(entry))) {
5121 pte_marker marker = copy_pte_marker(
5122 pte_to_swp_entry(entry), dst_vma);
5125 set_huge_pte_at(dst, addr, dst_pte,
5126 make_pte_marker(marker), sz);
5128 entry = huge_ptep_get(src_pte);
5129 pte_folio = page_folio(pte_page(entry));
5130 folio_get(pte_folio);
5133 * Failing to duplicate the anon rmap is a rare case
5134 * where we see pinned hugetlb pages while they're
5135 * prone to COW. We need to do the COW earlier during
5138 * When pre-allocating the page or copying data, we
5139 * need to be without the pgtable locks since we could
5140 * sleep during the process.
5142 if (!folio_test_anon(pte_folio)) {
5143 page_dup_file_rmap(&pte_folio->page, true);
5144 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5146 pte_t src_pte_old = entry;
5147 struct folio *new_folio;
5149 spin_unlock(src_ptl);
5150 spin_unlock(dst_ptl);
5151 /* Do not use reserve as it's private owned */
5152 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5153 if (IS_ERR(new_folio)) {
5154 folio_put(pte_folio);
5155 ret = PTR_ERR(new_folio);
5158 ret = copy_user_large_folio(new_folio,
5161 folio_put(pte_folio);
5163 folio_put(new_folio);
5167 /* Install the new hugetlb folio if src pte stable */
5168 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5169 src_ptl = huge_pte_lockptr(h, src, src_pte);
5170 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5171 entry = huge_ptep_get(src_pte);
5172 if (!pte_same(src_pte_old, entry)) {
5173 restore_reserve_on_error(h, dst_vma, addr,
5175 folio_put(new_folio);
5176 /* huge_ptep of dst_pte won't change as in child */
5179 hugetlb_install_folio(dst_vma, dst_pte, addr,
5180 new_folio, src_pte_old, sz);
5181 spin_unlock(src_ptl);
5182 spin_unlock(dst_ptl);
5188 * No need to notify as we are downgrading page
5189 * table protection not changing it to point
5192 * See Documentation/mm/mmu_notifier.rst
5194 huge_ptep_set_wrprotect(src, addr, src_pte);
5195 entry = huge_pte_wrprotect(entry);
5198 if (!userfaultfd_wp(dst_vma))
5199 entry = huge_pte_clear_uffd_wp(entry);
5201 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5202 hugetlb_count_add(npages, dst);
5204 spin_unlock(src_ptl);
5205 spin_unlock(dst_ptl);
5209 raw_write_seqcount_end(&src->write_protect_seq);
5210 mmu_notifier_invalidate_range_end(&range);
5212 hugetlb_vma_unlock_read(src_vma);
5218 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5219 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5222 struct hstate *h = hstate_vma(vma);
5223 struct mm_struct *mm = vma->vm_mm;
5224 spinlock_t *src_ptl, *dst_ptl;
5227 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5228 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5231 * We don't have to worry about the ordering of src and dst ptlocks
5232 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5234 if (src_ptl != dst_ptl)
5235 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5237 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5238 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5240 if (src_ptl != dst_ptl)
5241 spin_unlock(src_ptl);
5242 spin_unlock(dst_ptl);
5245 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5246 struct vm_area_struct *new_vma,
5247 unsigned long old_addr, unsigned long new_addr,
5250 struct hstate *h = hstate_vma(vma);
5251 struct address_space *mapping = vma->vm_file->f_mapping;
5252 unsigned long sz = huge_page_size(h);
5253 struct mm_struct *mm = vma->vm_mm;
5254 unsigned long old_end = old_addr + len;
5255 unsigned long last_addr_mask;
5256 pte_t *src_pte, *dst_pte;
5257 struct mmu_notifier_range range;
5258 bool shared_pmd = false;
5260 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5262 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5264 * In case of shared PMDs, we should cover the maximum possible
5267 flush_cache_range(vma, range.start, range.end);
5269 mmu_notifier_invalidate_range_start(&range);
5270 last_addr_mask = hugetlb_mask_last_page(h);
5271 /* Prevent race with file truncation */
5272 hugetlb_vma_lock_write(vma);
5273 i_mmap_lock_write(mapping);
5274 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5275 src_pte = hugetlb_walk(vma, old_addr, sz);
5277 old_addr |= last_addr_mask;
5278 new_addr |= last_addr_mask;
5281 if (huge_pte_none(huge_ptep_get(src_pte)))
5284 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5286 old_addr |= last_addr_mask;
5287 new_addr |= last_addr_mask;
5291 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5295 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5299 flush_hugetlb_tlb_range(vma, range.start, range.end);
5301 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5302 mmu_notifier_invalidate_range_end(&range);
5303 i_mmap_unlock_write(mapping);
5304 hugetlb_vma_unlock_write(vma);
5306 return len + old_addr - old_end;
5309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5310 unsigned long start, unsigned long end,
5311 struct page *ref_page, zap_flags_t zap_flags)
5313 struct mm_struct *mm = vma->vm_mm;
5314 unsigned long address;
5319 struct hstate *h = hstate_vma(vma);
5320 unsigned long sz = huge_page_size(h);
5321 unsigned long last_addr_mask;
5322 bool force_flush = false;
5324 WARN_ON(!is_vm_hugetlb_page(vma));
5325 BUG_ON(start & ~huge_page_mask(h));
5326 BUG_ON(end & ~huge_page_mask(h));
5329 * This is a hugetlb vma, all the pte entries should point
5332 tlb_change_page_size(tlb, sz);
5333 tlb_start_vma(tlb, vma);
5335 last_addr_mask = hugetlb_mask_last_page(h);
5337 for (; address < end; address += sz) {
5338 ptep = hugetlb_walk(vma, address, sz);
5340 address |= last_addr_mask;
5344 ptl = huge_pte_lock(h, mm, ptep);
5345 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5347 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5349 address |= last_addr_mask;
5353 pte = huge_ptep_get(ptep);
5354 if (huge_pte_none(pte)) {
5360 * Migrating hugepage or HWPoisoned hugepage is already
5361 * unmapped and its refcount is dropped, so just clear pte here.
5363 if (unlikely(!pte_present(pte))) {
5365 * If the pte was wr-protected by uffd-wp in any of the
5366 * swap forms, meanwhile the caller does not want to
5367 * drop the uffd-wp bit in this zap, then replace the
5368 * pte with a marker.
5370 if (pte_swp_uffd_wp_any(pte) &&
5371 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5372 set_huge_pte_at(mm, address, ptep,
5373 make_pte_marker(PTE_MARKER_UFFD_WP),
5376 huge_pte_clear(mm, address, ptep, sz);
5381 page = pte_page(pte);
5383 * If a reference page is supplied, it is because a specific
5384 * page is being unmapped, not a range. Ensure the page we
5385 * are about to unmap is the actual page of interest.
5388 if (page != ref_page) {
5393 * Mark the VMA as having unmapped its page so that
5394 * future faults in this VMA will fail rather than
5395 * looking like data was lost
5397 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5400 pte = huge_ptep_get_and_clear(mm, address, ptep);
5401 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5402 if (huge_pte_dirty(pte))
5403 set_page_dirty(page);
5404 /* Leave a uffd-wp pte marker if needed */
5405 if (huge_pte_uffd_wp(pte) &&
5406 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5407 set_huge_pte_at(mm, address, ptep,
5408 make_pte_marker(PTE_MARKER_UFFD_WP),
5410 hugetlb_count_sub(pages_per_huge_page(h), mm);
5411 page_remove_rmap(page, vma, true);
5414 tlb_remove_page_size(tlb, page, huge_page_size(h));
5416 * Bail out after unmapping reference page if supplied
5421 tlb_end_vma(tlb, vma);
5424 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5425 * could defer the flush until now, since by holding i_mmap_rwsem we
5426 * guaranteed that the last refernece would not be dropped. But we must
5427 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5428 * dropped and the last reference to the shared PMDs page might be
5431 * In theory we could defer the freeing of the PMD pages as well, but
5432 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5433 * detect sharing, so we cannot defer the release of the page either.
5434 * Instead, do flush now.
5437 tlb_flush_mmu_tlbonly(tlb);
5440 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5441 unsigned long *start, unsigned long *end)
5443 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5446 adjust_range_if_pmd_sharing_possible(vma, start, end);
5447 hugetlb_vma_lock_write(vma);
5449 i_mmap_lock_write(vma->vm_file->f_mapping);
5452 void __hugetlb_zap_end(struct vm_area_struct *vma,
5453 struct zap_details *details)
5455 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5457 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5460 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5462 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5463 * When the vma_lock is freed, this makes the vma ineligible
5464 * for pmd sharing. And, i_mmap_rwsem is required to set up
5465 * pmd sharing. This is important as page tables for this
5466 * unmapped range will be asynchrously deleted. If the page
5467 * tables are shared, there will be issues when accessed by
5470 __hugetlb_vma_unlock_write_free(vma);
5472 hugetlb_vma_unlock_write(vma);
5476 i_mmap_unlock_write(vma->vm_file->f_mapping);
5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480 unsigned long end, struct page *ref_page,
5481 zap_flags_t zap_flags)
5483 struct mmu_notifier_range range;
5484 struct mmu_gather tlb;
5486 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5488 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489 mmu_notifier_invalidate_range_start(&range);
5490 tlb_gather_mmu(&tlb, vma->vm_mm);
5492 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5494 mmu_notifier_invalidate_range_end(&range);
5495 tlb_finish_mmu(&tlb);
5499 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500 * mapping it owns the reserve page for. The intention is to unmap the page
5501 * from other VMAs and let the children be SIGKILLed if they are faulting the
5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505 struct page *page, unsigned long address)
5507 struct hstate *h = hstate_vma(vma);
5508 struct vm_area_struct *iter_vma;
5509 struct address_space *mapping;
5513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514 * from page cache lookup which is in HPAGE_SIZE units.
5516 address = address & huge_page_mask(h);
5517 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5519 mapping = vma->vm_file->f_mapping;
5522 * Take the mapping lock for the duration of the table walk. As
5523 * this mapping should be shared between all the VMAs,
5524 * __unmap_hugepage_range() is called as the lock is already held
5526 i_mmap_lock_write(mapping);
5527 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528 /* Do not unmap the current VMA */
5529 if (iter_vma == vma)
5533 * Shared VMAs have their own reserves and do not affect
5534 * MAP_PRIVATE accounting but it is possible that a shared
5535 * VMA is using the same page so check and skip such VMAs.
5537 if (iter_vma->vm_flags & VM_MAYSHARE)
5541 * Unmap the page from other VMAs without their own reserves.
5542 * They get marked to be SIGKILLed if they fault in these
5543 * areas. This is because a future no-page fault on this VMA
5544 * could insert a zeroed page instead of the data existing
5545 * from the time of fork. This would look like data corruption
5547 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548 unmap_hugepage_range(iter_vma, address,
5549 address + huge_page_size(h), page, 0);
5551 i_mmap_unlock_write(mapping);
5555 * hugetlb_wp() should be called with page lock of the original hugepage held.
5556 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557 * cannot race with other handlers or page migration.
5558 * Keep the pte_same checks anyway to make transition from the mutex easier.
5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561 unsigned long address, pte_t *ptep, unsigned int flags,
5562 struct folio *pagecache_folio, spinlock_t *ptl)
5564 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565 pte_t pte = huge_ptep_get(ptep);
5566 struct hstate *h = hstate_vma(vma);
5567 struct folio *old_folio;
5568 struct folio *new_folio;
5569 int outside_reserve = 0;
5571 unsigned long haddr = address & huge_page_mask(h);
5572 struct mmu_notifier_range range;
5575 * Never handle CoW for uffd-wp protected pages. It should be only
5576 * handled when the uffd-wp protection is removed.
5578 * Note that only the CoW optimization path (in hugetlb_no_page())
5579 * can trigger this, because hugetlb_fault() will always resolve
5580 * uffd-wp bit first.
5582 if (!unshare && huge_pte_uffd_wp(pte))
5586 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587 * PTE mapped R/O such as maybe_mkwrite() would do.
5589 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590 return VM_FAULT_SIGSEGV;
5592 /* Let's take out MAP_SHARED mappings first. */
5593 if (vma->vm_flags & VM_MAYSHARE) {
5594 set_huge_ptep_writable(vma, haddr, ptep);
5598 old_folio = page_folio(pte_page(pte));
5600 delayacct_wpcopy_start();
5604 * If no-one else is actually using this page, we're the exclusive
5605 * owner and can reuse this page.
5607 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608 if (!PageAnonExclusive(&old_folio->page))
5609 page_move_anon_rmap(&old_folio->page, vma);
5610 if (likely(!unshare))
5611 set_huge_ptep_writable(vma, haddr, ptep);
5613 delayacct_wpcopy_end();
5616 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617 PageAnonExclusive(&old_folio->page), &old_folio->page);
5620 * If the process that created a MAP_PRIVATE mapping is about to
5621 * perform a COW due to a shared page count, attempt to satisfy
5622 * the allocation without using the existing reserves. The pagecache
5623 * page is used to determine if the reserve at this address was
5624 * consumed or not. If reserves were used, a partial faulted mapping
5625 * at the time of fork() could consume its reserves on COW instead
5626 * of the full address range.
5628 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629 old_folio != pagecache_folio)
5630 outside_reserve = 1;
5632 folio_get(old_folio);
5635 * Drop page table lock as buddy allocator may be called. It will
5636 * be acquired again before returning to the caller, as expected.
5639 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5641 if (IS_ERR(new_folio)) {
5643 * If a process owning a MAP_PRIVATE mapping fails to COW,
5644 * it is due to references held by a child and an insufficient
5645 * huge page pool. To guarantee the original mappers
5646 * reliability, unmap the page from child processes. The child
5647 * may get SIGKILLed if it later faults.
5649 if (outside_reserve) {
5650 struct address_space *mapping = vma->vm_file->f_mapping;
5654 folio_put(old_folio);
5656 * Drop hugetlb_fault_mutex and vma_lock before
5657 * unmapping. unmapping needs to hold vma_lock
5658 * in write mode. Dropping vma_lock in read mode
5659 * here is OK as COW mappings do not interact with
5662 * Reacquire both after unmap operation.
5664 idx = vma_hugecache_offset(h, vma, haddr);
5665 hash = hugetlb_fault_mutex_hash(mapping, idx);
5666 hugetlb_vma_unlock_read(vma);
5667 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5669 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5671 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672 hugetlb_vma_lock_read(vma);
5674 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5676 pte_same(huge_ptep_get(ptep), pte)))
5677 goto retry_avoidcopy;
5679 * race occurs while re-acquiring page table
5680 * lock, and our job is done.
5682 delayacct_wpcopy_end();
5686 ret = vmf_error(PTR_ERR(new_folio));
5687 goto out_release_old;
5691 * When the original hugepage is shared one, it does not have
5692 * anon_vma prepared.
5694 if (unlikely(anon_vma_prepare(vma))) {
5696 goto out_release_all;
5699 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700 ret = VM_FAULT_HWPOISON_LARGE;
5701 goto out_release_all;
5703 __folio_mark_uptodate(new_folio);
5705 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706 haddr + huge_page_size(h));
5707 mmu_notifier_invalidate_range_start(&range);
5710 * Retake the page table lock to check for racing updates
5711 * before the page tables are altered
5714 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5718 /* Break COW or unshare */
5719 huge_ptep_clear_flush(vma, haddr, ptep);
5720 page_remove_rmap(&old_folio->page, vma, true);
5721 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5722 if (huge_pte_uffd_wp(pte))
5723 newpte = huge_pte_mkuffd_wp(newpte);
5724 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5725 folio_set_hugetlb_migratable(new_folio);
5726 /* Make the old page be freed below */
5727 new_folio = old_folio;
5730 mmu_notifier_invalidate_range_end(&range);
5733 * No restore in case of successful pagetable update (Break COW or
5736 if (new_folio != old_folio)
5737 restore_reserve_on_error(h, vma, haddr, new_folio);
5738 folio_put(new_folio);
5740 folio_put(old_folio);
5742 spin_lock(ptl); /* Caller expects lock to be held */
5744 delayacct_wpcopy_end();
5749 * Return whether there is a pagecache page to back given address within VMA.
5751 static bool hugetlbfs_pagecache_present(struct hstate *h,
5752 struct vm_area_struct *vma, unsigned long address)
5754 struct address_space *mapping = vma->vm_file->f_mapping;
5755 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5756 struct folio *folio;
5758 folio = filemap_get_folio(mapping, idx);
5765 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5768 struct inode *inode = mapping->host;
5769 struct hstate *h = hstate_inode(inode);
5772 __folio_set_locked(folio);
5773 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5775 if (unlikely(err)) {
5776 __folio_clear_locked(folio);
5779 folio_clear_hugetlb_restore_reserve(folio);
5782 * mark folio dirty so that it will not be removed from cache/file
5783 * by non-hugetlbfs specific code paths.
5785 folio_mark_dirty(folio);
5787 spin_lock(&inode->i_lock);
5788 inode->i_blocks += blocks_per_huge_page(h);
5789 spin_unlock(&inode->i_lock);
5793 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5794 struct address_space *mapping,
5797 unsigned long haddr,
5799 unsigned long reason)
5802 struct vm_fault vmf = {
5805 .real_address = addr,
5809 * Hard to debug if it ends up being
5810 * used by a callee that assumes
5811 * something about the other
5812 * uninitialized fields... same as in
5818 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5819 * userfault. Also mmap_lock could be dropped due to handling
5820 * userfault, any vma operation should be careful from here.
5822 hugetlb_vma_unlock_read(vma);
5823 hash = hugetlb_fault_mutex_hash(mapping, idx);
5824 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5825 return handle_userfault(&vmf, reason);
5829 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5830 * false if pte changed or is changing.
5832 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5833 pte_t *ptep, pte_t old_pte)
5838 ptl = huge_pte_lock(h, mm, ptep);
5839 same = pte_same(huge_ptep_get(ptep), old_pte);
5845 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5846 struct vm_area_struct *vma,
5847 struct address_space *mapping, pgoff_t idx,
5848 unsigned long address, pte_t *ptep,
5849 pte_t old_pte, unsigned int flags)
5851 struct hstate *h = hstate_vma(vma);
5852 vm_fault_t ret = VM_FAULT_SIGBUS;
5855 struct folio *folio;
5858 unsigned long haddr = address & huge_page_mask(h);
5859 bool new_folio, new_pagecache_folio = false;
5860 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5863 * Currently, we are forced to kill the process in the event the
5864 * original mapper has unmapped pages from the child due to a failed
5865 * COW/unsharing. Warn that such a situation has occurred as it may not
5868 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5869 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5875 * Use page lock to guard against racing truncation
5876 * before we get page_table_lock.
5879 folio = filemap_lock_folio(mapping, idx);
5880 if (IS_ERR(folio)) {
5881 size = i_size_read(mapping->host) >> huge_page_shift(h);
5884 /* Check for page in userfault range */
5885 if (userfaultfd_missing(vma)) {
5887 * Since hugetlb_no_page() was examining pte
5888 * without pgtable lock, we need to re-test under
5889 * lock because the pte may not be stable and could
5890 * have changed from under us. Try to detect
5891 * either changed or during-changing ptes and retry
5892 * properly when needed.
5894 * Note that userfaultfd is actually fine with
5895 * false positives (e.g. caused by pte changed),
5896 * but not wrong logical events (e.g. caused by
5897 * reading a pte during changing). The latter can
5898 * confuse the userspace, so the strictness is very
5899 * much preferred. E.g., MISSING event should
5900 * never happen on the page after UFFDIO_COPY has
5901 * correctly installed the page and returned.
5903 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5908 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5913 folio = alloc_hugetlb_folio(vma, haddr, 0);
5914 if (IS_ERR(folio)) {
5916 * Returning error will result in faulting task being
5917 * sent SIGBUS. The hugetlb fault mutex prevents two
5918 * tasks from racing to fault in the same page which
5919 * could result in false unable to allocate errors.
5920 * Page migration does not take the fault mutex, but
5921 * does a clear then write of pte's under page table
5922 * lock. Page fault code could race with migration,
5923 * notice the clear pte and try to allocate a page
5924 * here. Before returning error, get ptl and make
5925 * sure there really is no pte entry.
5927 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5928 ret = vmf_error(PTR_ERR(folio));
5933 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5934 __folio_mark_uptodate(folio);
5937 if (vma->vm_flags & VM_MAYSHARE) {
5938 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5941 * err can't be -EEXIST which implies someone
5942 * else consumed the reservation since hugetlb
5943 * fault mutex is held when add a hugetlb page
5944 * to the page cache. So it's safe to call
5945 * restore_reserve_on_error() here.
5947 restore_reserve_on_error(h, vma, haddr, folio);
5951 new_pagecache_folio = true;
5954 if (unlikely(anon_vma_prepare(vma))) {
5956 goto backout_unlocked;
5962 * If memory error occurs between mmap() and fault, some process
5963 * don't have hwpoisoned swap entry for errored virtual address.
5964 * So we need to block hugepage fault by PG_hwpoison bit check.
5966 if (unlikely(folio_test_hwpoison(folio))) {
5967 ret = VM_FAULT_HWPOISON_LARGE |
5968 VM_FAULT_SET_HINDEX(hstate_index(h));
5969 goto backout_unlocked;
5972 /* Check for page in userfault range. */
5973 if (userfaultfd_minor(vma)) {
5974 folio_unlock(folio);
5976 /* See comment in userfaultfd_missing() block above */
5977 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5981 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5988 * If we are going to COW a private mapping later, we examine the
5989 * pending reservations for this page now. This will ensure that
5990 * any allocations necessary to record that reservation occur outside
5993 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5994 if (vma_needs_reservation(h, vma, haddr) < 0) {
5996 goto backout_unlocked;
5998 /* Just decrements count, does not deallocate */
5999 vma_end_reservation(h, vma, haddr);
6002 ptl = huge_pte_lock(h, mm, ptep);
6004 /* If pte changed from under us, retry */
6005 if (!pte_same(huge_ptep_get(ptep), old_pte))
6009 hugepage_add_new_anon_rmap(folio, vma, haddr);
6011 page_dup_file_rmap(&folio->page, true);
6012 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6013 && (vma->vm_flags & VM_SHARED)));
6015 * If this pte was previously wr-protected, keep it wr-protected even
6018 if (unlikely(pte_marker_uffd_wp(old_pte)))
6019 new_pte = huge_pte_mkuffd_wp(new_pte);
6020 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6022 hugetlb_count_add(pages_per_huge_page(h), mm);
6023 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6024 /* Optimization, do the COW without a second fault */
6025 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6031 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6032 * found in the pagecache may not have hugetlb_migratable if they have
6033 * been isolated for migration.
6036 folio_set_hugetlb_migratable(folio);
6038 folio_unlock(folio);
6040 hugetlb_vma_unlock_read(vma);
6041 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6047 if (new_folio && !new_pagecache_folio)
6048 restore_reserve_on_error(h, vma, haddr, folio);
6050 folio_unlock(folio);
6056 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6058 unsigned long key[2];
6061 key[0] = (unsigned long) mapping;
6064 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6066 return hash & (num_fault_mutexes - 1);
6070 * For uniprocessor systems we always use a single mutex, so just
6071 * return 0 and avoid the hashing overhead.
6073 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6079 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6080 unsigned long address, unsigned int flags)
6087 struct folio *folio = NULL;
6088 struct folio *pagecache_folio = NULL;
6089 struct hstate *h = hstate_vma(vma);
6090 struct address_space *mapping;
6091 int need_wait_lock = 0;
6092 unsigned long haddr = address & huge_page_mask(h);
6094 /* TODO: Handle faults under the VMA lock */
6095 if (flags & FAULT_FLAG_VMA_LOCK) {
6097 return VM_FAULT_RETRY;
6101 * Serialize hugepage allocation and instantiation, so that we don't
6102 * get spurious allocation failures if two CPUs race to instantiate
6103 * the same page in the page cache.
6105 mapping = vma->vm_file->f_mapping;
6106 idx = vma_hugecache_offset(h, vma, haddr);
6107 hash = hugetlb_fault_mutex_hash(mapping, idx);
6108 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6111 * Acquire vma lock before calling huge_pte_alloc and hold
6112 * until finished with ptep. This prevents huge_pmd_unshare from
6113 * being called elsewhere and making the ptep no longer valid.
6115 hugetlb_vma_lock_read(vma);
6116 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6118 hugetlb_vma_unlock_read(vma);
6119 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6120 return VM_FAULT_OOM;
6123 entry = huge_ptep_get(ptep);
6124 if (huge_pte_none_mostly(entry)) {
6125 if (is_pte_marker(entry)) {
6127 pte_marker_get(pte_to_swp_entry(entry));
6129 if (marker & PTE_MARKER_POISONED) {
6130 ret = VM_FAULT_HWPOISON_LARGE;
6136 * Other PTE markers should be handled the same way as none PTE.
6138 * hugetlb_no_page will drop vma lock and hugetlb fault
6139 * mutex internally, which make us return immediately.
6141 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6148 * entry could be a migration/hwpoison entry at this point, so this
6149 * check prevents the kernel from going below assuming that we have
6150 * an active hugepage in pagecache. This goto expects the 2nd page
6151 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6152 * properly handle it.
6154 if (!pte_present(entry)) {
6155 if (unlikely(is_hugetlb_entry_migration(entry))) {
6157 * Release the hugetlb fault lock now, but retain
6158 * the vma lock, because it is needed to guard the
6159 * huge_pte_lockptr() later in
6160 * migration_entry_wait_huge(). The vma lock will
6161 * be released there.
6163 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6164 migration_entry_wait_huge(vma, ptep);
6166 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6167 ret = VM_FAULT_HWPOISON_LARGE |
6168 VM_FAULT_SET_HINDEX(hstate_index(h));
6173 * If we are going to COW/unshare the mapping later, we examine the
6174 * pending reservations for this page now. This will ensure that any
6175 * allocations necessary to record that reservation occur outside the
6176 * spinlock. Also lookup the pagecache page now as it is used to
6177 * determine if a reservation has been consumed.
6179 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6180 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6181 if (vma_needs_reservation(h, vma, haddr) < 0) {
6185 /* Just decrements count, does not deallocate */
6186 vma_end_reservation(h, vma, haddr);
6188 pagecache_folio = filemap_lock_folio(mapping, idx);
6189 if (IS_ERR(pagecache_folio))
6190 pagecache_folio = NULL;
6193 ptl = huge_pte_lock(h, mm, ptep);
6195 /* Check for a racing update before calling hugetlb_wp() */
6196 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6199 /* Handle userfault-wp first, before trying to lock more pages */
6200 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6201 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6202 struct vm_fault vmf = {
6205 .real_address = address,
6210 if (pagecache_folio) {
6211 folio_unlock(pagecache_folio);
6212 folio_put(pagecache_folio);
6214 hugetlb_vma_unlock_read(vma);
6215 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6216 return handle_userfault(&vmf, VM_UFFD_WP);
6220 * hugetlb_wp() requires page locks of pte_page(entry) and
6221 * pagecache_folio, so here we need take the former one
6222 * when folio != pagecache_folio or !pagecache_folio.
6224 folio = page_folio(pte_page(entry));
6225 if (folio != pagecache_folio)
6226 if (!folio_trylock(folio)) {
6233 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6234 if (!huge_pte_write(entry)) {
6235 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6236 pagecache_folio, ptl);
6238 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6239 entry = huge_pte_mkdirty(entry);
6242 entry = pte_mkyoung(entry);
6243 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6244 flags & FAULT_FLAG_WRITE))
6245 update_mmu_cache(vma, haddr, ptep);
6247 if (folio != pagecache_folio)
6248 folio_unlock(folio);
6253 if (pagecache_folio) {
6254 folio_unlock(pagecache_folio);
6255 folio_put(pagecache_folio);
6258 hugetlb_vma_unlock_read(vma);
6259 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6261 * Generally it's safe to hold refcount during waiting page lock. But
6262 * here we just wait to defer the next page fault to avoid busy loop and
6263 * the page is not used after unlocked before returning from the current
6264 * page fault. So we are safe from accessing freed page, even if we wait
6265 * here without taking refcount.
6268 folio_wait_locked(folio);
6272 #ifdef CONFIG_USERFAULTFD
6274 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6275 * with modifications for hugetlb pages.
6277 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6278 struct vm_area_struct *dst_vma,
6279 unsigned long dst_addr,
6280 unsigned long src_addr,
6282 struct folio **foliop)
6284 struct mm_struct *dst_mm = dst_vma->vm_mm;
6285 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6286 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6287 struct hstate *h = hstate_vma(dst_vma);
6288 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6289 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6291 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6295 struct folio *folio;
6297 bool folio_in_pagecache = false;
6299 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6300 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6302 /* Don't overwrite any existing PTEs (even markers) */
6303 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6308 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6309 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6312 /* No need to invalidate - it was non-present before */
6313 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6321 folio = filemap_lock_folio(mapping, idx);
6324 folio_in_pagecache = true;
6325 } else if (!*foliop) {
6326 /* If a folio already exists, then it's UFFDIO_COPY for
6327 * a non-missing case. Return -EEXIST.
6330 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6335 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6336 if (IS_ERR(folio)) {
6341 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6344 /* fallback to copy_from_user outside mmap_lock */
6345 if (unlikely(ret)) {
6347 /* Free the allocated folio which may have
6348 * consumed a reservation.
6350 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6353 /* Allocate a temporary folio to hold the copied
6356 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6362 /* Set the outparam foliop and return to the caller to
6363 * copy the contents outside the lock. Don't free the
6370 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6377 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6378 if (IS_ERR(folio)) {
6384 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6394 * The memory barrier inside __folio_mark_uptodate makes sure that
6395 * preceding stores to the page contents become visible before
6396 * the set_pte_at() write.
6398 __folio_mark_uptodate(folio);
6400 /* Add shared, newly allocated pages to the page cache. */
6401 if (vm_shared && !is_continue) {
6402 size = i_size_read(mapping->host) >> huge_page_shift(h);
6405 goto out_release_nounlock;
6408 * Serialization between remove_inode_hugepages() and
6409 * hugetlb_add_to_page_cache() below happens through the
6410 * hugetlb_fault_mutex_table that here must be hold by
6413 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6415 goto out_release_nounlock;
6416 folio_in_pagecache = true;
6419 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6422 if (folio_test_hwpoison(folio))
6423 goto out_release_unlock;
6426 * We allow to overwrite a pte marker: consider when both MISSING|WP
6427 * registered, we firstly wr-protect a none pte which has no page cache
6428 * page backing it, then access the page.
6431 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6432 goto out_release_unlock;
6434 if (folio_in_pagecache)
6435 page_dup_file_rmap(&folio->page, true);
6437 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6440 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6441 * with wp flag set, don't set pte write bit.
6443 if (wp_enabled || (is_continue && !vm_shared))
6446 writable = dst_vma->vm_flags & VM_WRITE;
6448 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6450 * Always mark UFFDIO_COPY page dirty; note that this may not be
6451 * extremely important for hugetlbfs for now since swapping is not
6452 * supported, but we should still be clear in that this page cannot be
6453 * thrown away at will, even if write bit not set.
6455 _dst_pte = huge_pte_mkdirty(_dst_pte);
6456 _dst_pte = pte_mkyoung(_dst_pte);
6459 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6461 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6463 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6465 /* No need to invalidate - it was non-present before */
6466 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6470 folio_set_hugetlb_migratable(folio);
6471 if (vm_shared || is_continue)
6472 folio_unlock(folio);
6478 if (vm_shared || is_continue)
6479 folio_unlock(folio);
6480 out_release_nounlock:
6481 if (!folio_in_pagecache)
6482 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6486 #endif /* CONFIG_USERFAULTFD */
6488 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6489 unsigned long address, unsigned int flags,
6490 unsigned int *page_mask)
6492 struct hstate *h = hstate_vma(vma);
6493 struct mm_struct *mm = vma->vm_mm;
6494 unsigned long haddr = address & huge_page_mask(h);
6495 struct page *page = NULL;
6500 hugetlb_vma_lock_read(vma);
6501 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6505 ptl = huge_pte_lock(h, mm, pte);
6506 entry = huge_ptep_get(pte);
6507 if (pte_present(entry)) {
6508 page = pte_page(entry);
6510 if (!huge_pte_write(entry)) {
6511 if (flags & FOLL_WRITE) {
6516 if (gup_must_unshare(vma, flags, page)) {
6517 /* Tell the caller to do unsharing */
6518 page = ERR_PTR(-EMLINK);
6523 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6526 * Note that page may be a sub-page, and with vmemmap
6527 * optimizations the page struct may be read only.
6528 * try_grab_page() will increase the ref count on the
6529 * head page, so this will be OK.
6531 * try_grab_page() should always be able to get the page here,
6532 * because we hold the ptl lock and have verified pte_present().
6534 ret = try_grab_page(page, flags);
6536 if (WARN_ON_ONCE(ret)) {
6537 page = ERR_PTR(ret);
6541 *page_mask = (1U << huge_page_order(h)) - 1;
6546 hugetlb_vma_unlock_read(vma);
6549 * Fixup retval for dump requests: if pagecache doesn't exist,
6550 * don't try to allocate a new page but just skip it.
6552 if (!page && (flags & FOLL_DUMP) &&
6553 !hugetlbfs_pagecache_present(h, vma, address))
6554 page = ERR_PTR(-EFAULT);
6559 long hugetlb_change_protection(struct vm_area_struct *vma,
6560 unsigned long address, unsigned long end,
6561 pgprot_t newprot, unsigned long cp_flags)
6563 struct mm_struct *mm = vma->vm_mm;
6564 unsigned long start = address;
6567 struct hstate *h = hstate_vma(vma);
6568 long pages = 0, psize = huge_page_size(h);
6569 bool shared_pmd = false;
6570 struct mmu_notifier_range range;
6571 unsigned long last_addr_mask;
6572 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6573 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6576 * In the case of shared PMDs, the area to flush could be beyond
6577 * start/end. Set range.start/range.end to cover the maximum possible
6578 * range if PMD sharing is possible.
6580 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6582 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6584 BUG_ON(address >= end);
6585 flush_cache_range(vma, range.start, range.end);
6587 mmu_notifier_invalidate_range_start(&range);
6588 hugetlb_vma_lock_write(vma);
6589 i_mmap_lock_write(vma->vm_file->f_mapping);
6590 last_addr_mask = hugetlb_mask_last_page(h);
6591 for (; address < end; address += psize) {
6593 ptep = hugetlb_walk(vma, address, psize);
6596 address |= last_addr_mask;
6600 * Userfaultfd wr-protect requires pgtable
6601 * pre-allocations to install pte markers.
6603 ptep = huge_pte_alloc(mm, vma, address, psize);
6609 ptl = huge_pte_lock(h, mm, ptep);
6610 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6612 * When uffd-wp is enabled on the vma, unshare
6613 * shouldn't happen at all. Warn about it if it
6614 * happened due to some reason.
6616 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6620 address |= last_addr_mask;
6623 pte = huge_ptep_get(ptep);
6624 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6625 /* Nothing to do. */
6626 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6627 swp_entry_t entry = pte_to_swp_entry(pte);
6628 struct page *page = pfn_swap_entry_to_page(entry);
6631 if (is_writable_migration_entry(entry)) {
6633 entry = make_readable_exclusive_migration_entry(
6636 entry = make_readable_migration_entry(
6638 newpte = swp_entry_to_pte(entry);
6643 newpte = pte_swp_mkuffd_wp(newpte);
6644 else if (uffd_wp_resolve)
6645 newpte = pte_swp_clear_uffd_wp(newpte);
6646 if (!pte_same(pte, newpte))
6647 set_huge_pte_at(mm, address, ptep, newpte, psize);
6648 } else if (unlikely(is_pte_marker(pte))) {
6649 /* No other markers apply for now. */
6650 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6651 if (uffd_wp_resolve)
6652 /* Safe to modify directly (non-present->none). */
6653 huge_pte_clear(mm, address, ptep, psize);
6654 } else if (!huge_pte_none(pte)) {
6656 unsigned int shift = huge_page_shift(hstate_vma(vma));
6658 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6659 pte = huge_pte_modify(old_pte, newprot);
6660 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6662 pte = huge_pte_mkuffd_wp(pte);
6663 else if (uffd_wp_resolve)
6664 pte = huge_pte_clear_uffd_wp(pte);
6665 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6669 if (unlikely(uffd_wp))
6670 /* Safe to modify directly (none->non-present). */
6671 set_huge_pte_at(mm, address, ptep,
6672 make_pte_marker(PTE_MARKER_UFFD_WP),
6678 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6679 * may have cleared our pud entry and done put_page on the page table:
6680 * once we release i_mmap_rwsem, another task can do the final put_page
6681 * and that page table be reused and filled with junk. If we actually
6682 * did unshare a page of pmds, flush the range corresponding to the pud.
6685 flush_hugetlb_tlb_range(vma, range.start, range.end);
6687 flush_hugetlb_tlb_range(vma, start, end);
6689 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6690 * downgrading page table protection not changing it to point to a new
6693 * See Documentation/mm/mmu_notifier.rst
6695 i_mmap_unlock_write(vma->vm_file->f_mapping);
6696 hugetlb_vma_unlock_write(vma);
6697 mmu_notifier_invalidate_range_end(&range);
6699 return pages > 0 ? (pages << h->order) : pages;
6702 /* Return true if reservation was successful, false otherwise. */
6703 bool hugetlb_reserve_pages(struct inode *inode,
6705 struct vm_area_struct *vma,
6706 vm_flags_t vm_flags)
6708 long chg = -1, add = -1;
6709 struct hstate *h = hstate_inode(inode);
6710 struct hugepage_subpool *spool = subpool_inode(inode);
6711 struct resv_map *resv_map;
6712 struct hugetlb_cgroup *h_cg = NULL;
6713 long gbl_reserve, regions_needed = 0;
6715 /* This should never happen */
6717 VM_WARN(1, "%s called with a negative range\n", __func__);
6722 * vma specific semaphore used for pmd sharing and fault/truncation
6725 hugetlb_vma_lock_alloc(vma);
6728 * Only apply hugepage reservation if asked. At fault time, an
6729 * attempt will be made for VM_NORESERVE to allocate a page
6730 * without using reserves
6732 if (vm_flags & VM_NORESERVE)
6736 * Shared mappings base their reservation on the number of pages that
6737 * are already allocated on behalf of the file. Private mappings need
6738 * to reserve the full area even if read-only as mprotect() may be
6739 * called to make the mapping read-write. Assume !vma is a shm mapping
6741 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6743 * resv_map can not be NULL as hugetlb_reserve_pages is only
6744 * called for inodes for which resv_maps were created (see
6745 * hugetlbfs_get_inode).
6747 resv_map = inode_resv_map(inode);
6749 chg = region_chg(resv_map, from, to, ®ions_needed);
6751 /* Private mapping. */
6752 resv_map = resv_map_alloc();
6758 set_vma_resv_map(vma, resv_map);
6759 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6765 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6766 chg * pages_per_huge_page(h), &h_cg) < 0)
6769 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6770 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6773 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6777 * There must be enough pages in the subpool for the mapping. If
6778 * the subpool has a minimum size, there may be some global
6779 * reservations already in place (gbl_reserve).
6781 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6782 if (gbl_reserve < 0)
6783 goto out_uncharge_cgroup;
6786 * Check enough hugepages are available for the reservation.
6787 * Hand the pages back to the subpool if there are not
6789 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6793 * Account for the reservations made. Shared mappings record regions
6794 * that have reservations as they are shared by multiple VMAs.
6795 * When the last VMA disappears, the region map says how much
6796 * the reservation was and the page cache tells how much of
6797 * the reservation was consumed. Private mappings are per-VMA and
6798 * only the consumed reservations are tracked. When the VMA
6799 * disappears, the original reservation is the VMA size and the
6800 * consumed reservations are stored in the map. Hence, nothing
6801 * else has to be done for private mappings here
6803 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6804 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6806 if (unlikely(add < 0)) {
6807 hugetlb_acct_memory(h, -gbl_reserve);
6809 } else if (unlikely(chg > add)) {
6811 * pages in this range were added to the reserve
6812 * map between region_chg and region_add. This
6813 * indicates a race with alloc_hugetlb_folio. Adjust
6814 * the subpool and reserve counts modified above
6815 * based on the difference.
6820 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6821 * reference to h_cg->css. See comment below for detail.
6823 hugetlb_cgroup_uncharge_cgroup_rsvd(
6825 (chg - add) * pages_per_huge_page(h), h_cg);
6827 rsv_adjust = hugepage_subpool_put_pages(spool,
6829 hugetlb_acct_memory(h, -rsv_adjust);
6832 * The file_regions will hold their own reference to
6833 * h_cg->css. So we should release the reference held
6834 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6837 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6843 /* put back original number of pages, chg */
6844 (void)hugepage_subpool_put_pages(spool, chg);
6845 out_uncharge_cgroup:
6846 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6847 chg * pages_per_huge_page(h), h_cg);
6849 hugetlb_vma_lock_free(vma);
6850 if (!vma || vma->vm_flags & VM_MAYSHARE)
6851 /* Only call region_abort if the region_chg succeeded but the
6852 * region_add failed or didn't run.
6854 if (chg >= 0 && add < 0)
6855 region_abort(resv_map, from, to, regions_needed);
6856 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6857 kref_put(&resv_map->refs, resv_map_release);
6858 set_vma_resv_map(vma, NULL);
6863 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6866 struct hstate *h = hstate_inode(inode);
6867 struct resv_map *resv_map = inode_resv_map(inode);
6869 struct hugepage_subpool *spool = subpool_inode(inode);
6873 * Since this routine can be called in the evict inode path for all
6874 * hugetlbfs inodes, resv_map could be NULL.
6877 chg = region_del(resv_map, start, end);
6879 * region_del() can fail in the rare case where a region
6880 * must be split and another region descriptor can not be
6881 * allocated. If end == LONG_MAX, it will not fail.
6887 spin_lock(&inode->i_lock);
6888 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6889 spin_unlock(&inode->i_lock);
6892 * If the subpool has a minimum size, the number of global
6893 * reservations to be released may be adjusted.
6895 * Note that !resv_map implies freed == 0. So (chg - freed)
6896 * won't go negative.
6898 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6899 hugetlb_acct_memory(h, -gbl_reserve);
6904 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6905 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6906 struct vm_area_struct *vma,
6907 unsigned long addr, pgoff_t idx)
6909 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6911 unsigned long sbase = saddr & PUD_MASK;
6912 unsigned long s_end = sbase + PUD_SIZE;
6914 /* Allow segments to share if only one is marked locked */
6915 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6916 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6919 * match the virtual addresses, permission and the alignment of the
6922 * Also, vma_lock (vm_private_data) is required for sharing.
6924 if (pmd_index(addr) != pmd_index(saddr) ||
6925 vm_flags != svm_flags ||
6926 !range_in_vma(svma, sbase, s_end) ||
6927 !svma->vm_private_data)
6933 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6935 unsigned long start = addr & PUD_MASK;
6936 unsigned long end = start + PUD_SIZE;
6938 #ifdef CONFIG_USERFAULTFD
6939 if (uffd_disable_huge_pmd_share(vma))
6943 * check on proper vm_flags and page table alignment
6945 if (!(vma->vm_flags & VM_MAYSHARE))
6947 if (!vma->vm_private_data) /* vma lock required for sharing */
6949 if (!range_in_vma(vma, start, end))
6955 * Determine if start,end range within vma could be mapped by shared pmd.
6956 * If yes, adjust start and end to cover range associated with possible
6957 * shared pmd mappings.
6959 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6960 unsigned long *start, unsigned long *end)
6962 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6963 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6966 * vma needs to span at least one aligned PUD size, and the range
6967 * must be at least partially within in.
6969 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6970 (*end <= v_start) || (*start >= v_end))
6973 /* Extend the range to be PUD aligned for a worst case scenario */
6974 if (*start > v_start)
6975 *start = ALIGN_DOWN(*start, PUD_SIZE);
6978 *end = ALIGN(*end, PUD_SIZE);
6982 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6983 * and returns the corresponding pte. While this is not necessary for the
6984 * !shared pmd case because we can allocate the pmd later as well, it makes the
6985 * code much cleaner. pmd allocation is essential for the shared case because
6986 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6987 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6988 * bad pmd for sharing.
6990 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6991 unsigned long addr, pud_t *pud)
6993 struct address_space *mapping = vma->vm_file->f_mapping;
6994 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6996 struct vm_area_struct *svma;
6997 unsigned long saddr;
7001 i_mmap_lock_read(mapping);
7002 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7006 saddr = page_table_shareable(svma, vma, addr, idx);
7008 spte = hugetlb_walk(svma, saddr,
7009 vma_mmu_pagesize(svma));
7011 get_page(virt_to_page(spte));
7020 spin_lock(&mm->page_table_lock);
7021 if (pud_none(*pud)) {
7022 pud_populate(mm, pud,
7023 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7026 put_page(virt_to_page(spte));
7028 spin_unlock(&mm->page_table_lock);
7030 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7031 i_mmap_unlock_read(mapping);
7036 * unmap huge page backed by shared pte.
7038 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7039 * indicated by page_count > 1, unmap is achieved by clearing pud and
7040 * decrementing the ref count. If count == 1, the pte page is not shared.
7042 * Called with page table lock held.
7044 * returns: 1 successfully unmapped a shared pte page
7045 * 0 the underlying pte page is not shared, or it is the last user
7047 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7048 unsigned long addr, pte_t *ptep)
7050 pgd_t *pgd = pgd_offset(mm, addr);
7051 p4d_t *p4d = p4d_offset(pgd, addr);
7052 pud_t *pud = pud_offset(p4d, addr);
7054 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7055 hugetlb_vma_assert_locked(vma);
7056 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7057 if (page_count(virt_to_page(ptep)) == 1)
7061 put_page(virt_to_page(ptep));
7066 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7069 unsigned long addr, pud_t *pud)
7074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7075 unsigned long addr, pte_t *ptep)
7080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7081 unsigned long *start, unsigned long *end)
7085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7093 unsigned long addr, unsigned long sz)
7100 pgd = pgd_offset(mm, addr);
7101 p4d = p4d_alloc(mm, pgd, addr);
7104 pud = pud_alloc(mm, p4d, addr);
7106 if (sz == PUD_SIZE) {
7109 BUG_ON(sz != PMD_SIZE);
7110 if (want_pmd_share(vma, addr) && pud_none(*pud))
7111 pte = huge_pmd_share(mm, vma, addr, pud);
7113 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7118 pte_t pteval = ptep_get_lockless(pte);
7120 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7127 * huge_pte_offset() - Walk the page table to resolve the hugepage
7128 * entry at address @addr
7130 * Return: Pointer to page table entry (PUD or PMD) for
7131 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7132 * size @sz doesn't match the hugepage size at this level of the page
7135 pte_t *huge_pte_offset(struct mm_struct *mm,
7136 unsigned long addr, unsigned long sz)
7143 pgd = pgd_offset(mm, addr);
7144 if (!pgd_present(*pgd))
7146 p4d = p4d_offset(pgd, addr);
7147 if (!p4d_present(*p4d))
7150 pud = pud_offset(p4d, addr);
7152 /* must be pud huge, non-present or none */
7153 return (pte_t *)pud;
7154 if (!pud_present(*pud))
7156 /* must have a valid entry and size to go further */
7158 pmd = pmd_offset(pud, addr);
7159 /* must be pmd huge, non-present or none */
7160 return (pte_t *)pmd;
7164 * Return a mask that can be used to update an address to the last huge
7165 * page in a page table page mapping size. Used to skip non-present
7166 * page table entries when linearly scanning address ranges. Architectures
7167 * with unique huge page to page table relationships can define their own
7168 * version of this routine.
7170 unsigned long hugetlb_mask_last_page(struct hstate *h)
7172 unsigned long hp_size = huge_page_size(h);
7174 if (hp_size == PUD_SIZE)
7175 return P4D_SIZE - PUD_SIZE;
7176 else if (hp_size == PMD_SIZE)
7177 return PUD_SIZE - PMD_SIZE;
7184 /* See description above. Architectures can provide their own version. */
7185 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7187 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7188 if (huge_page_size(h) == PMD_SIZE)
7189 return PUD_SIZE - PMD_SIZE;
7194 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7197 * These functions are overwritable if your architecture needs its own
7200 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7204 spin_lock_irq(&hugetlb_lock);
7205 if (!folio_test_hugetlb(folio) ||
7206 !folio_test_hugetlb_migratable(folio) ||
7207 !folio_try_get(folio)) {
7211 folio_clear_hugetlb_migratable(folio);
7212 list_move_tail(&folio->lru, list);
7214 spin_unlock_irq(&hugetlb_lock);
7218 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7223 spin_lock_irq(&hugetlb_lock);
7224 if (folio_test_hugetlb(folio)) {
7226 if (folio_test_hugetlb_freed(folio))
7228 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7229 ret = folio_try_get(folio);
7233 spin_unlock_irq(&hugetlb_lock);
7237 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7238 bool *migratable_cleared)
7242 spin_lock_irq(&hugetlb_lock);
7243 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7244 spin_unlock_irq(&hugetlb_lock);
7248 void folio_putback_active_hugetlb(struct folio *folio)
7250 spin_lock_irq(&hugetlb_lock);
7251 folio_set_hugetlb_migratable(folio);
7252 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7253 spin_unlock_irq(&hugetlb_lock);
7257 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7259 struct hstate *h = folio_hstate(old_folio);
7261 hugetlb_cgroup_migrate(old_folio, new_folio);
7262 set_page_owner_migrate_reason(&new_folio->page, reason);
7265 * transfer temporary state of the new hugetlb folio. This is
7266 * reverse to other transitions because the newpage is going to
7267 * be final while the old one will be freed so it takes over
7268 * the temporary status.
7270 * Also note that we have to transfer the per-node surplus state
7271 * here as well otherwise the global surplus count will not match
7274 if (folio_test_hugetlb_temporary(new_folio)) {
7275 int old_nid = folio_nid(old_folio);
7276 int new_nid = folio_nid(new_folio);
7278 folio_set_hugetlb_temporary(old_folio);
7279 folio_clear_hugetlb_temporary(new_folio);
7283 * There is no need to transfer the per-node surplus state
7284 * when we do not cross the node.
7286 if (new_nid == old_nid)
7288 spin_lock_irq(&hugetlb_lock);
7289 if (h->surplus_huge_pages_node[old_nid]) {
7290 h->surplus_huge_pages_node[old_nid]--;
7291 h->surplus_huge_pages_node[new_nid]++;
7293 spin_unlock_irq(&hugetlb_lock);
7297 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7298 unsigned long start,
7301 struct hstate *h = hstate_vma(vma);
7302 unsigned long sz = huge_page_size(h);
7303 struct mm_struct *mm = vma->vm_mm;
7304 struct mmu_notifier_range range;
7305 unsigned long address;
7309 if (!(vma->vm_flags & VM_MAYSHARE))
7315 flush_cache_range(vma, start, end);
7317 * No need to call adjust_range_if_pmd_sharing_possible(), because
7318 * we have already done the PUD_SIZE alignment.
7320 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7322 mmu_notifier_invalidate_range_start(&range);
7323 hugetlb_vma_lock_write(vma);
7324 i_mmap_lock_write(vma->vm_file->f_mapping);
7325 for (address = start; address < end; address += PUD_SIZE) {
7326 ptep = hugetlb_walk(vma, address, sz);
7329 ptl = huge_pte_lock(h, mm, ptep);
7330 huge_pmd_unshare(mm, vma, address, ptep);
7333 flush_hugetlb_tlb_range(vma, start, end);
7334 i_mmap_unlock_write(vma->vm_file->f_mapping);
7335 hugetlb_vma_unlock_write(vma);
7337 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7338 * Documentation/mm/mmu_notifier.rst.
7340 mmu_notifier_invalidate_range_end(&range);
7344 * This function will unconditionally remove all the shared pmd pgtable entries
7345 * within the specific vma for a hugetlbfs memory range.
7347 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7349 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7350 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7354 static bool cma_reserve_called __initdata;
7356 static int __init cmdline_parse_hugetlb_cma(char *p)
7363 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7366 if (s[count] == ':') {
7367 if (tmp >= MAX_NUMNODES)
7369 nid = array_index_nospec(tmp, MAX_NUMNODES);
7372 tmp = memparse(s, &s);
7373 hugetlb_cma_size_in_node[nid] = tmp;
7374 hugetlb_cma_size += tmp;
7377 * Skip the separator if have one, otherwise
7378 * break the parsing.
7385 hugetlb_cma_size = memparse(p, &p);
7393 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7395 void __init hugetlb_cma_reserve(int order)
7397 unsigned long size, reserved, per_node;
7398 bool node_specific_cma_alloc = false;
7401 cma_reserve_called = true;
7403 if (!hugetlb_cma_size)
7406 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7407 if (hugetlb_cma_size_in_node[nid] == 0)
7410 if (!node_online(nid)) {
7411 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7412 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7413 hugetlb_cma_size_in_node[nid] = 0;
7417 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7418 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7419 nid, (PAGE_SIZE << order) / SZ_1M);
7420 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7421 hugetlb_cma_size_in_node[nid] = 0;
7423 node_specific_cma_alloc = true;
7427 /* Validate the CMA size again in case some invalid nodes specified. */
7428 if (!hugetlb_cma_size)
7431 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7432 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7433 (PAGE_SIZE << order) / SZ_1M);
7434 hugetlb_cma_size = 0;
7438 if (!node_specific_cma_alloc) {
7440 * If 3 GB area is requested on a machine with 4 numa nodes,
7441 * let's allocate 1 GB on first three nodes and ignore the last one.
7443 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7444 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7445 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7449 for_each_online_node(nid) {
7451 char name[CMA_MAX_NAME];
7453 if (node_specific_cma_alloc) {
7454 if (hugetlb_cma_size_in_node[nid] == 0)
7457 size = hugetlb_cma_size_in_node[nid];
7459 size = min(per_node, hugetlb_cma_size - reserved);
7462 size = round_up(size, PAGE_SIZE << order);
7464 snprintf(name, sizeof(name), "hugetlb%d", nid);
7466 * Note that 'order per bit' is based on smallest size that
7467 * may be returned to CMA allocator in the case of
7468 * huge page demotion.
7470 res = cma_declare_contiguous_nid(0, size, 0,
7471 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7473 &hugetlb_cma[nid], nid);
7475 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7481 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7484 if (reserved >= hugetlb_cma_size)
7490 * hugetlb_cma_size is used to determine if allocations from
7491 * cma are possible. Set to zero if no cma regions are set up.
7493 hugetlb_cma_size = 0;
7496 static void __init hugetlb_cma_check(void)
7498 if (!hugetlb_cma_size || cma_reserve_called)
7501 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7504 #endif /* CONFIG_CMA */