mm/hugetlb: remove redundant check in preparing and destroying gigantic page
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102         bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104         spin_unlock(&spool->lock);
105
106         /* If no pages are used, and no other handles to the subpool
107          * remain, give up any reservations based on minimum size and
108          * free the subpool */
109         if (free) {
110                 if (spool->min_hpages != -1)
111                         hugetlb_acct_memory(spool->hstate,
112                                                 -spool->min_hpages);
113                 kfree(spool);
114         }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118                                                 long min_hpages)
119 {
120         struct hugepage_subpool *spool;
121
122         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123         if (!spool)
124                 return NULL;
125
126         spin_lock_init(&spool->lock);
127         spool->count = 1;
128         spool->max_hpages = max_hpages;
129         spool->hstate = h;
130         spool->min_hpages = min_hpages;
131
132         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133                 kfree(spool);
134                 return NULL;
135         }
136         spool->rsv_hpages = min_hpages;
137
138         return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143         spin_lock(&spool->lock);
144         BUG_ON(!spool->count);
145         spool->count--;
146         unlock_or_release_subpool(spool);
147 }
148
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158                                       long delta)
159 {
160         long ret = delta;
161
162         if (!spool)
163                 return ret;
164
165         spin_lock(&spool->lock);
166
167         if (spool->max_hpages != -1) {          /* maximum size accounting */
168                 if ((spool->used_hpages + delta) <= spool->max_hpages)
169                         spool->used_hpages += delta;
170                 else {
171                         ret = -ENOMEM;
172                         goto unlock_ret;
173                 }
174         }
175
176         /* minimum size accounting */
177         if (spool->min_hpages != -1 && spool->rsv_hpages) {
178                 if (delta > spool->rsv_hpages) {
179                         /*
180                          * Asking for more reserves than those already taken on
181                          * behalf of subpool.  Return difference.
182                          */
183                         ret = delta - spool->rsv_hpages;
184                         spool->rsv_hpages = 0;
185                 } else {
186                         ret = 0;        /* reserves already accounted for */
187                         spool->rsv_hpages -= delta;
188                 }
189         }
190
191 unlock_ret:
192         spin_unlock(&spool->lock);
193         return ret;
194 }
195
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203                                        long delta)
204 {
205         long ret = delta;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock(&spool->lock);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 /*
361  * Must be called with resv->lock held.
362  *
363  * Calling this with regions_needed != NULL will count the number of pages
364  * to be added but will not modify the linked list. And regions_needed will
365  * indicate the number of file_regions needed in the cache to carry out to add
366  * the regions for this range.
367  */
368 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369                                      struct hugetlb_cgroup *h_cg,
370                                      struct hstate *h, long *regions_needed)
371 {
372         long add = 0;
373         struct list_head *head = &resv->regions;
374         long last_accounted_offset = f;
375         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
377         if (regions_needed)
378                 *regions_needed = 0;
379
380         /* In this loop, we essentially handle an entry for the range
381          * [last_accounted_offset, rg->from), at every iteration, with some
382          * bounds checking.
383          */
384         list_for_each_entry_safe(rg, trg, head, link) {
385                 /* Skip irrelevant regions that start before our range. */
386                 if (rg->from < f) {
387                         /* If this region ends after the last accounted offset,
388                          * then we need to update last_accounted_offset.
389                          */
390                         if (rg->to > last_accounted_offset)
391                                 last_accounted_offset = rg->to;
392                         continue;
393                 }
394
395                 /* When we find a region that starts beyond our range, we've
396                  * finished.
397                  */
398                 if (rg->from > t)
399                         break;
400
401                 /* Add an entry for last_accounted_offset -> rg->from, and
402                  * update last_accounted_offset.
403                  */
404                 if (rg->from > last_accounted_offset) {
405                         add += rg->from - last_accounted_offset;
406                         if (!regions_needed) {
407                                 nrg = get_file_region_entry_from_cache(
408                                         resv, last_accounted_offset, rg->from);
409                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
410                                                                     resv, nrg);
411                                 list_add(&nrg->link, rg->link.prev);
412                                 coalesce_file_region(resv, nrg);
413                         } else
414                                 *regions_needed += 1;
415                 }
416
417                 last_accounted_offset = rg->to;
418         }
419
420         /* Handle the case where our range extends beyond
421          * last_accounted_offset.
422          */
423         if (last_accounted_offset < t) {
424                 add += t - last_accounted_offset;
425                 if (!regions_needed) {
426                         nrg = get_file_region_entry_from_cache(
427                                 resv, last_accounted_offset, t);
428                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429                         list_add(&nrg->link, rg->link.prev);
430                         coalesce_file_region(resv, nrg);
431                 } else
432                         *regions_needed += 1;
433         }
434
435         VM_BUG_ON(add < 0);
436         return add;
437 }
438
439 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440  */
441 static int allocate_file_region_entries(struct resv_map *resv,
442                                         int regions_needed)
443         __must_hold(&resv->lock)
444 {
445         struct list_head allocated_regions;
446         int to_allocate = 0, i = 0;
447         struct file_region *trg = NULL, *rg = NULL;
448
449         VM_BUG_ON(regions_needed < 0);
450
451         INIT_LIST_HEAD(&allocated_regions);
452
453         /*
454          * Check for sufficient descriptors in the cache to accommodate
455          * the number of in progress add operations plus regions_needed.
456          *
457          * This is a while loop because when we drop the lock, some other call
458          * to region_add or region_del may have consumed some region_entries,
459          * so we keep looping here until we finally have enough entries for
460          * (adds_in_progress + regions_needed).
461          */
462         while (resv->region_cache_count <
463                (resv->adds_in_progress + regions_needed)) {
464                 to_allocate = resv->adds_in_progress + regions_needed -
465                               resv->region_cache_count;
466
467                 /* At this point, we should have enough entries in the cache
468                  * for all the existings adds_in_progress. We should only be
469                  * needing to allocate for regions_needed.
470                  */
471                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473                 spin_unlock(&resv->lock);
474                 for (i = 0; i < to_allocate; i++) {
475                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476                         if (!trg)
477                                 goto out_of_memory;
478                         list_add(&trg->link, &allocated_regions);
479                 }
480
481                 spin_lock(&resv->lock);
482
483                 list_splice(&allocated_regions, &resv->region_cache);
484                 resv->region_cache_count += to_allocate;
485         }
486
487         return 0;
488
489 out_of_memory:
490         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491                 list_del(&rg->link);
492                 kfree(rg);
493         }
494         return -ENOMEM;
495 }
496
497 /*
498  * Add the huge page range represented by [f, t) to the reserve
499  * map.  Regions will be taken from the cache to fill in this range.
500  * Sufficient regions should exist in the cache due to the previous
501  * call to region_chg with the same range, but in some cases the cache will not
502  * have sufficient entries due to races with other code doing region_add or
503  * region_del.  The extra needed entries will be allocated.
504  *
505  * regions_needed is the out value provided by a previous call to region_chg.
506  *
507  * Return the number of new huge pages added to the map.  This number is greater
508  * than or equal to zero.  If file_region entries needed to be allocated for
509  * this operation and we were not able to allocate, it returns -ENOMEM.
510  * region_add of regions of length 1 never allocate file_regions and cannot
511  * fail; region_chg will always allocate at least 1 entry and a region_add for
512  * 1 page will only require at most 1 entry.
513  */
514 static long region_add(struct resv_map *resv, long f, long t,
515                        long in_regions_needed, struct hstate *h,
516                        struct hugetlb_cgroup *h_cg)
517 {
518         long add = 0, actual_regions_needed = 0;
519
520         spin_lock(&resv->lock);
521 retry:
522
523         /* Count how many regions are actually needed to execute this add. */
524         add_reservation_in_range(resv, f, t, NULL, NULL,
525                                  &actual_regions_needed);
526
527         /*
528          * Check for sufficient descriptors in the cache to accommodate
529          * this add operation. Note that actual_regions_needed may be greater
530          * than in_regions_needed, as the resv_map may have been modified since
531          * the region_chg call. In this case, we need to make sure that we
532          * allocate extra entries, such that we have enough for all the
533          * existing adds_in_progress, plus the excess needed for this
534          * operation.
535          */
536         if (actual_regions_needed > in_regions_needed &&
537             resv->region_cache_count <
538                     resv->adds_in_progress +
539                             (actual_regions_needed - in_regions_needed)) {
540                 /* region_add operation of range 1 should never need to
541                  * allocate file_region entries.
542                  */
543                 VM_BUG_ON(t - f <= 1);
544
545                 if (allocate_file_region_entries(
546                             resv, actual_regions_needed - in_regions_needed)) {
547                         return -ENOMEM;
548                 }
549
550                 goto retry;
551         }
552
553         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554
555         resv->adds_in_progress -= in_regions_needed;
556
557         spin_unlock(&resv->lock);
558         VM_BUG_ON(add < 0);
559         return add;
560 }
561
562 /*
563  * Examine the existing reserve map and determine how many
564  * huge pages in the specified range [f, t) are NOT currently
565  * represented.  This routine is called before a subsequent
566  * call to region_add that will actually modify the reserve
567  * map to add the specified range [f, t).  region_chg does
568  * not change the number of huge pages represented by the
569  * map.  A number of new file_region structures is added to the cache as a
570  * placeholder, for the subsequent region_add call to use. At least 1
571  * file_region structure is added.
572  *
573  * out_regions_needed is the number of regions added to the
574  * resv->adds_in_progress.  This value needs to be provided to a follow up call
575  * to region_add or region_abort for proper accounting.
576  *
577  * Returns the number of huge pages that need to be added to the existing
578  * reservation map for the range [f, t).  This number is greater or equal to
579  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580  * is needed and can not be allocated.
581  */
582 static long region_chg(struct resv_map *resv, long f, long t,
583                        long *out_regions_needed)
584 {
585         long chg = 0;
586
587         spin_lock(&resv->lock);
588
589         /* Count how many hugepages in this range are NOT represented. */
590         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591                                        out_regions_needed);
592
593         if (*out_regions_needed == 0)
594                 *out_regions_needed = 1;
595
596         if (allocate_file_region_entries(resv, *out_regions_needed))
597                 return -ENOMEM;
598
599         resv->adds_in_progress += *out_regions_needed;
600
601         spin_unlock(&resv->lock);
602         return chg;
603 }
604
605 /*
606  * Abort the in progress add operation.  The adds_in_progress field
607  * of the resv_map keeps track of the operations in progress between
608  * calls to region_chg and region_add.  Operations are sometimes
609  * aborted after the call to region_chg.  In such cases, region_abort
610  * is called to decrement the adds_in_progress counter. regions_needed
611  * is the value returned by the region_chg call, it is used to decrement
612  * the adds_in_progress counter.
613  *
614  * NOTE: The range arguments [f, t) are not needed or used in this
615  * routine.  They are kept to make reading the calling code easier as
616  * arguments will match the associated region_chg call.
617  */
618 static void region_abort(struct resv_map *resv, long f, long t,
619                          long regions_needed)
620 {
621         spin_lock(&resv->lock);
622         VM_BUG_ON(!resv->region_cache_count);
623         resv->adds_in_progress -= regions_needed;
624         spin_unlock(&resv->lock);
625 }
626
627 /*
628  * Delete the specified range [f, t) from the reserve map.  If the
629  * t parameter is LONG_MAX, this indicates that ALL regions after f
630  * should be deleted.  Locate the regions which intersect [f, t)
631  * and either trim, delete or split the existing regions.
632  *
633  * Returns the number of huge pages deleted from the reserve map.
634  * In the normal case, the return value is zero or more.  In the
635  * case where a region must be split, a new region descriptor must
636  * be allocated.  If the allocation fails, -ENOMEM will be returned.
637  * NOTE: If the parameter t == LONG_MAX, then we will never split
638  * a region and possibly return -ENOMEM.  Callers specifying
639  * t == LONG_MAX do not need to check for -ENOMEM error.
640  */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643         struct list_head *head = &resv->regions;
644         struct file_region *rg, *trg;
645         struct file_region *nrg = NULL;
646         long del = 0;
647
648 retry:
649         spin_lock(&resv->lock);
650         list_for_each_entry_safe(rg, trg, head, link) {
651                 /*
652                  * Skip regions before the range to be deleted.  file_region
653                  * ranges are normally of the form [from, to).  However, there
654                  * may be a "placeholder" entry in the map which is of the form
655                  * (from, to) with from == to.  Check for placeholder entries
656                  * at the beginning of the range to be deleted.
657                  */
658                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659                         continue;
660
661                 if (rg->from >= t)
662                         break;
663
664                 if (f > rg->from && t < rg->to) { /* Must split region */
665                         /*
666                          * Check for an entry in the cache before dropping
667                          * lock and attempting allocation.
668                          */
669                         if (!nrg &&
670                             resv->region_cache_count > resv->adds_in_progress) {
671                                 nrg = list_first_entry(&resv->region_cache,
672                                                         struct file_region,
673                                                         link);
674                                 list_del(&nrg->link);
675                                 resv->region_cache_count--;
676                         }
677
678                         if (!nrg) {
679                                 spin_unlock(&resv->lock);
680                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681                                 if (!nrg)
682                                         return -ENOMEM;
683                                 goto retry;
684                         }
685
686                         del += t - f;
687                         hugetlb_cgroup_uncharge_file_region(
688                                 resv, rg, t - f, false);
689
690                         /* New entry for end of split region */
691                         nrg->from = t;
692                         nrg->to = rg->to;
693
694                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696                         INIT_LIST_HEAD(&nrg->link);
697
698                         /* Original entry is trimmed */
699                         rg->to = f;
700
701                         list_add(&nrg->link, &rg->link);
702                         nrg = NULL;
703                         break;
704                 }
705
706                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707                         del += rg->to - rg->from;
708                         hugetlb_cgroup_uncharge_file_region(resv, rg,
709                                                             rg->to - rg->from, true);
710                         list_del(&rg->link);
711                         kfree(rg);
712                         continue;
713                 }
714
715                 if (f <= rg->from) {    /* Trim beginning of region */
716                         hugetlb_cgroup_uncharge_file_region(resv, rg,
717                                                             t - rg->from, false);
718
719                         del += t - rg->from;
720                         rg->from = t;
721                 } else {                /* Trim end of region */
722                         hugetlb_cgroup_uncharge_file_region(resv, rg,
723                                                             rg->to - f, false);
724
725                         del += rg->to - f;
726                         rg->to = f;
727                 }
728         }
729
730         spin_unlock(&resv->lock);
731         kfree(nrg);
732         return del;
733 }
734
735 /*
736  * A rare out of memory error was encountered which prevented removal of
737  * the reserve map region for a page.  The huge page itself was free'ed
738  * and removed from the page cache.  This routine will adjust the subpool
739  * usage count, and the global reserve count if needed.  By incrementing
740  * these counts, the reserve map entry which could not be deleted will
741  * appear as a "reserved" entry instead of simply dangling with incorrect
742  * counts.
743  */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746         struct hugepage_subpool *spool = subpool_inode(inode);
747         long rsv_adjust;
748         bool reserved = false;
749
750         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751         if (rsv_adjust > 0) {
752                 struct hstate *h = hstate_inode(inode);
753
754                 if (!hugetlb_acct_memory(h, 1))
755                         reserved = true;
756         } else if (!rsv_adjust) {
757                 reserved = true;
758         }
759
760         if (!reserved)
761                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763
764 /*
765  * Count and return the number of huge pages in the reserve map
766  * that intersect with the range [f, t).
767  */
768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770         struct list_head *head = &resv->regions;
771         struct file_region *rg;
772         long chg = 0;
773
774         spin_lock(&resv->lock);
775         /* Locate each segment we overlap with, and count that overlap. */
776         list_for_each_entry(rg, head, link) {
777                 long seg_from;
778                 long seg_to;
779
780                 if (rg->to <= f)
781                         continue;
782                 if (rg->from >= t)
783                         break;
784
785                 seg_from = max(rg->from, f);
786                 seg_to = min(rg->to, t);
787
788                 chg += seg_to - seg_from;
789         }
790         spin_unlock(&resv->lock);
791
792         return chg;
793 }
794
795 /*
796  * Convert the address within this vma to the page offset within
797  * the mapping, in pagecache page units; huge pages here.
798  */
799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800                         struct vm_area_struct *vma, unsigned long address)
801 {
802         return ((address - vma->vm_start) >> huge_page_shift(h)) +
803                         (vma->vm_pgoff >> huge_page_order(h));
804 }
805
806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807                                      unsigned long address)
808 {
809         return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813 /*
814  * Return the size of the pages allocated when backing a VMA. In the majority
815  * cases this will be same size as used by the page table entries.
816  */
817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819         if (vma->vm_ops && vma->vm_ops->pagesize)
820                 return vma->vm_ops->pagesize(vma);
821         return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825 /*
826  * Return the page size being used by the MMU to back a VMA. In the majority
827  * of cases, the page size used by the kernel matches the MMU size. On
828  * architectures where it differs, an architecture-specific 'strong'
829  * version of this symbol is required.
830  */
831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833         return vma_kernel_pagesize(vma);
834 }
835
836 /*
837  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838  * bits of the reservation map pointer, which are always clear due to
839  * alignment.
840  */
841 #define HPAGE_RESV_OWNER    (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845 /*
846  * These helpers are used to track how many pages are reserved for
847  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848  * is guaranteed to have their future faults succeed.
849  *
850  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851  * the reserve counters are updated with the hugetlb_lock held. It is safe
852  * to reset the VMA at fork() time as it is not in use yet and there is no
853  * chance of the global counters getting corrupted as a result of the values.
854  *
855  * The private mapping reservation is represented in a subtly different
856  * manner to a shared mapping.  A shared mapping has a region map associated
857  * with the underlying file, this region map represents the backing file
858  * pages which have ever had a reservation assigned which this persists even
859  * after the page is instantiated.  A private mapping has a region map
860  * associated with the original mmap which is attached to all VMAs which
861  * reference it, this region map represents those offsets which have consumed
862  * reservation ie. where pages have been instantiated.
863  */
864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866         return (unsigned long)vma->vm_private_data;
867 }
868
869 static void set_vma_private_data(struct vm_area_struct *vma,
870                                                         unsigned long value)
871 {
872         vma->vm_private_data = (void *)value;
873 }
874
875 static void
876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877                                           struct hugetlb_cgroup *h_cg,
878                                           struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881         if (!h_cg || !h) {
882                 resv_map->reservation_counter = NULL;
883                 resv_map->pages_per_hpage = 0;
884                 resv_map->css = NULL;
885         } else {
886                 resv_map->reservation_counter =
887                         &h_cg->rsvd_hugepage[hstate_index(h)];
888                 resv_map->pages_per_hpage = pages_per_huge_page(h);
889                 resv_map->css = &h_cg->css;
890         }
891 #endif
892 }
893
894 struct resv_map *resv_map_alloc(void)
895 {
896         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899         if (!resv_map || !rg) {
900                 kfree(resv_map);
901                 kfree(rg);
902                 return NULL;
903         }
904
905         kref_init(&resv_map->refs);
906         spin_lock_init(&resv_map->lock);
907         INIT_LIST_HEAD(&resv_map->regions);
908
909         resv_map->adds_in_progress = 0;
910         /*
911          * Initialize these to 0. On shared mappings, 0's here indicate these
912          * fields don't do cgroup accounting. On private mappings, these will be
913          * re-initialized to the proper values, to indicate that hugetlb cgroup
914          * reservations are to be un-charged from here.
915          */
916         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918         INIT_LIST_HEAD(&resv_map->region_cache);
919         list_add(&rg->link, &resv_map->region_cache);
920         resv_map->region_cache_count = 1;
921
922         return resv_map;
923 }
924
925 void resv_map_release(struct kref *ref)
926 {
927         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928         struct list_head *head = &resv_map->region_cache;
929         struct file_region *rg, *trg;
930
931         /* Clear out any active regions before we release the map. */
932         region_del(resv_map, 0, LONG_MAX);
933
934         /* ... and any entries left in the cache */
935         list_for_each_entry_safe(rg, trg, head, link) {
936                 list_del(&rg->link);
937                 kfree(rg);
938         }
939
940         VM_BUG_ON(resv_map->adds_in_progress);
941
942         kfree(resv_map);
943 }
944
945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947         /*
948          * At inode evict time, i_mapping may not point to the original
949          * address space within the inode.  This original address space
950          * contains the pointer to the resv_map.  So, always use the
951          * address space embedded within the inode.
952          * The VERY common case is inode->mapping == &inode->i_data but,
953          * this may not be true for device special inodes.
954          */
955         return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957
958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961         if (vma->vm_flags & VM_MAYSHARE) {
962                 struct address_space *mapping = vma->vm_file->f_mapping;
963                 struct inode *inode = mapping->host;
964
965                 return inode_resv_map(inode);
966
967         } else {
968                 return (struct resv_map *)(get_vma_private_data(vma) &
969                                                         ~HPAGE_RESV_MASK);
970         }
971 }
972
973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978         set_vma_private_data(vma, (get_vma_private_data(vma) &
979                                 HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981
982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989
990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994         return (get_vma_private_data(vma) & flag) != 0;
995 }
996
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001         if (!(vma->vm_flags & VM_MAYSHARE))
1002                 vma->vm_private_data = (void *)0;
1003 }
1004
1005 /* Returns true if the VMA has associated reserve pages */
1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008         if (vma->vm_flags & VM_NORESERVE) {
1009                 /*
1010                  * This address is already reserved by other process(chg == 0),
1011                  * so, we should decrement reserved count. Without decrementing,
1012                  * reserve count remains after releasing inode, because this
1013                  * allocated page will go into page cache and is regarded as
1014                  * coming from reserved pool in releasing step.  Currently, we
1015                  * don't have any other solution to deal with this situation
1016                  * properly, so add work-around here.
1017                  */
1018                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019                         return true;
1020                 else
1021                         return false;
1022         }
1023
1024         /* Shared mappings always use reserves */
1025         if (vma->vm_flags & VM_MAYSHARE) {
1026                 /*
1027                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028                  * be a region map for all pages.  The only situation where
1029                  * there is no region map is if a hole was punched via
1030                  * fallocate.  In this case, there really are no reserves to
1031                  * use.  This situation is indicated if chg != 0.
1032                  */
1033                 if (chg)
1034                         return false;
1035                 else
1036                         return true;
1037         }
1038
1039         /*
1040          * Only the process that called mmap() has reserves for
1041          * private mappings.
1042          */
1043         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044                 /*
1045                  * Like the shared case above, a hole punch or truncate
1046                  * could have been performed on the private mapping.
1047                  * Examine the value of chg to determine if reserves
1048                  * actually exist or were previously consumed.
1049                  * Very Subtle - The value of chg comes from a previous
1050                  * call to vma_needs_reserves().  The reserve map for
1051                  * private mappings has different (opposite) semantics
1052                  * than that of shared mappings.  vma_needs_reserves()
1053                  * has already taken this difference in semantics into
1054                  * account.  Therefore, the meaning of chg is the same
1055                  * as in the shared case above.  Code could easily be
1056                  * combined, but keeping it separate draws attention to
1057                  * subtle differences.
1058                  */
1059                 if (chg)
1060                         return false;
1061                 else
1062                         return true;
1063         }
1064
1065         return false;
1066 }
1067
1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070         int nid = page_to_nid(page);
1071         list_move(&page->lru, &h->hugepage_freelists[nid]);
1072         h->free_huge_pages++;
1073         h->free_huge_pages_node[nid]++;
1074         SetPageHugeFreed(page);
1075 }
1076
1077 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1078 {
1079         struct page *page;
1080         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1081
1082         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1083                 if (nocma && is_migrate_cma_page(page))
1084                         continue;
1085
1086                 if (PageHWPoison(page))
1087                         continue;
1088
1089                 list_move(&page->lru, &h->hugepage_activelist);
1090                 set_page_refcounted(page);
1091                 ClearPageHugeFreed(page);
1092                 h->free_huge_pages--;
1093                 h->free_huge_pages_node[nid]--;
1094                 return page;
1095         }
1096
1097         return NULL;
1098 }
1099
1100 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1101                 nodemask_t *nmask)
1102 {
1103         unsigned int cpuset_mems_cookie;
1104         struct zonelist *zonelist;
1105         struct zone *zone;
1106         struct zoneref *z;
1107         int node = NUMA_NO_NODE;
1108
1109         zonelist = node_zonelist(nid, gfp_mask);
1110
1111 retry_cpuset:
1112         cpuset_mems_cookie = read_mems_allowed_begin();
1113         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1114                 struct page *page;
1115
1116                 if (!cpuset_zone_allowed(zone, gfp_mask))
1117                         continue;
1118                 /*
1119                  * no need to ask again on the same node. Pool is node rather than
1120                  * zone aware
1121                  */
1122                 if (zone_to_nid(zone) == node)
1123                         continue;
1124                 node = zone_to_nid(zone);
1125
1126                 page = dequeue_huge_page_node_exact(h, node);
1127                 if (page)
1128                         return page;
1129         }
1130         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1131                 goto retry_cpuset;
1132
1133         return NULL;
1134 }
1135
1136 static struct page *dequeue_huge_page_vma(struct hstate *h,
1137                                 struct vm_area_struct *vma,
1138                                 unsigned long address, int avoid_reserve,
1139                                 long chg)
1140 {
1141         struct page *page;
1142         struct mempolicy *mpol;
1143         gfp_t gfp_mask;
1144         nodemask_t *nodemask;
1145         int nid;
1146
1147         /*
1148          * A child process with MAP_PRIVATE mappings created by their parent
1149          * have no page reserves. This check ensures that reservations are
1150          * not "stolen". The child may still get SIGKILLed
1151          */
1152         if (!vma_has_reserves(vma, chg) &&
1153                         h->free_huge_pages - h->resv_huge_pages == 0)
1154                 goto err;
1155
1156         /* If reserves cannot be used, ensure enough pages are in the pool */
1157         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1158                 goto err;
1159
1160         gfp_mask = htlb_alloc_mask(h);
1161         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1162         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1163         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1164                 SetPagePrivate(page);
1165                 h->resv_huge_pages--;
1166         }
1167
1168         mpol_cond_put(mpol);
1169         return page;
1170
1171 err:
1172         return NULL;
1173 }
1174
1175 /*
1176  * common helper functions for hstate_next_node_to_{alloc|free}.
1177  * We may have allocated or freed a huge page based on a different
1178  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1179  * be outside of *nodes_allowed.  Ensure that we use an allowed
1180  * node for alloc or free.
1181  */
1182 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1183 {
1184         nid = next_node_in(nid, *nodes_allowed);
1185         VM_BUG_ON(nid >= MAX_NUMNODES);
1186
1187         return nid;
1188 }
1189
1190 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1191 {
1192         if (!node_isset(nid, *nodes_allowed))
1193                 nid = next_node_allowed(nid, nodes_allowed);
1194         return nid;
1195 }
1196
1197 /*
1198  * returns the previously saved node ["this node"] from which to
1199  * allocate a persistent huge page for the pool and advance the
1200  * next node from which to allocate, handling wrap at end of node
1201  * mask.
1202  */
1203 static int hstate_next_node_to_alloc(struct hstate *h,
1204                                         nodemask_t *nodes_allowed)
1205 {
1206         int nid;
1207
1208         VM_BUG_ON(!nodes_allowed);
1209
1210         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1211         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1212
1213         return nid;
1214 }
1215
1216 /*
1217  * helper for free_pool_huge_page() - return the previously saved
1218  * node ["this node"] from which to free a huge page.  Advance the
1219  * next node id whether or not we find a free huge page to free so
1220  * that the next attempt to free addresses the next node.
1221  */
1222 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1223 {
1224         int nid;
1225
1226         VM_BUG_ON(!nodes_allowed);
1227
1228         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1229         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1230
1231         return nid;
1232 }
1233
1234 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1235         for (nr_nodes = nodes_weight(*mask);                            \
1236                 nr_nodes > 0 &&                                         \
1237                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1238                 nr_nodes--)
1239
1240 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1241         for (nr_nodes = nodes_weight(*mask);                            \
1242                 nr_nodes > 0 &&                                         \
1243                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1244                 nr_nodes--)
1245
1246 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1247 static void destroy_compound_gigantic_page(struct page *page,
1248                                         unsigned int order)
1249 {
1250         int i;
1251         int nr_pages = 1 << order;
1252         struct page *p = page + 1;
1253
1254         atomic_set(compound_mapcount_ptr(page), 0);
1255         atomic_set(compound_pincount_ptr(page), 0);
1256
1257         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1258                 clear_compound_head(p);
1259                 set_page_refcounted(p);
1260         }
1261
1262         set_compound_order(page, 0);
1263         page[1].compound_nr = 0;
1264         __ClearPageHead(page);
1265 }
1266
1267 static void free_gigantic_page(struct page *page, unsigned int order)
1268 {
1269         /*
1270          * If the page isn't allocated using the cma allocator,
1271          * cma_release() returns false.
1272          */
1273 #ifdef CONFIG_CMA
1274         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1275                 return;
1276 #endif
1277
1278         free_contig_range(page_to_pfn(page), 1 << order);
1279 }
1280
1281 #ifdef CONFIG_CONTIG_ALLOC
1282 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1283                 int nid, nodemask_t *nodemask)
1284 {
1285         unsigned long nr_pages = 1UL << huge_page_order(h);
1286         if (nid == NUMA_NO_NODE)
1287                 nid = numa_mem_id();
1288
1289 #ifdef CONFIG_CMA
1290         {
1291                 struct page *page;
1292                 int node;
1293
1294                 if (hugetlb_cma[nid]) {
1295                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1296                                         huge_page_order(h), true);
1297                         if (page)
1298                                 return page;
1299                 }
1300
1301                 if (!(gfp_mask & __GFP_THISNODE)) {
1302                         for_each_node_mask(node, *nodemask) {
1303                                 if (node == nid || !hugetlb_cma[node])
1304                                         continue;
1305
1306                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1307                                                 huge_page_order(h), true);
1308                                 if (page)
1309                                         return page;
1310                         }
1311                 }
1312         }
1313 #endif
1314
1315         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1316 }
1317
1318 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1319 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1320 #else /* !CONFIG_CONTIG_ALLOC */
1321 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1322                                         int nid, nodemask_t *nodemask)
1323 {
1324         return NULL;
1325 }
1326 #endif /* CONFIG_CONTIG_ALLOC */
1327
1328 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1329 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1330                                         int nid, nodemask_t *nodemask)
1331 {
1332         return NULL;
1333 }
1334 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1335 static inline void destroy_compound_gigantic_page(struct page *page,
1336                                                 unsigned int order) { }
1337 #endif
1338
1339 static void update_and_free_page(struct hstate *h, struct page *page)
1340 {
1341         int i;
1342         struct page *subpage = page;
1343
1344         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1345                 return;
1346
1347         h->nr_huge_pages--;
1348         h->nr_huge_pages_node[page_to_nid(page)]--;
1349         for (i = 0; i < pages_per_huge_page(h);
1350              i++, subpage = mem_map_next(subpage, page, i)) {
1351                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1352                                 1 << PG_referenced | 1 << PG_dirty |
1353                                 1 << PG_active | 1 << PG_private |
1354                                 1 << PG_writeback);
1355         }
1356         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1357         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1358         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1359         set_page_refcounted(page);
1360         if (hstate_is_gigantic(h)) {
1361                 /*
1362                  * Temporarily drop the hugetlb_lock, because
1363                  * we might block in free_gigantic_page().
1364                  */
1365                 spin_unlock(&hugetlb_lock);
1366                 destroy_compound_gigantic_page(page, huge_page_order(h));
1367                 free_gigantic_page(page, huge_page_order(h));
1368                 spin_lock(&hugetlb_lock);
1369         } else {
1370                 __free_pages(page, huge_page_order(h));
1371         }
1372 }
1373
1374 struct hstate *size_to_hstate(unsigned long size)
1375 {
1376         struct hstate *h;
1377
1378         for_each_hstate(h) {
1379                 if (huge_page_size(h) == size)
1380                         return h;
1381         }
1382         return NULL;
1383 }
1384
1385 /*
1386  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1387  * to hstate->hugepage_activelist.)
1388  *
1389  * This function can be called for tail pages, but never returns true for them.
1390  */
1391 bool page_huge_active(struct page *page)
1392 {
1393         return PageHeadHuge(page) && PagePrivate(&page[1]);
1394 }
1395
1396 /* never called for tail page */
1397 void set_page_huge_active(struct page *page)
1398 {
1399         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1400         SetPagePrivate(&page[1]);
1401 }
1402
1403 static void clear_page_huge_active(struct page *page)
1404 {
1405         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1406         ClearPagePrivate(&page[1]);
1407 }
1408
1409 /*
1410  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1411  * code
1412  */
1413 static inline bool PageHugeTemporary(struct page *page)
1414 {
1415         if (!PageHuge(page))
1416                 return false;
1417
1418         return (unsigned long)page[2].mapping == -1U;
1419 }
1420
1421 static inline void SetPageHugeTemporary(struct page *page)
1422 {
1423         page[2].mapping = (void *)-1U;
1424 }
1425
1426 static inline void ClearPageHugeTemporary(struct page *page)
1427 {
1428         page[2].mapping = NULL;
1429 }
1430
1431 static void __free_huge_page(struct page *page)
1432 {
1433         /*
1434          * Can't pass hstate in here because it is called from the
1435          * compound page destructor.
1436          */
1437         struct hstate *h = page_hstate(page);
1438         int nid = page_to_nid(page);
1439         struct hugepage_subpool *spool =
1440                 (struct hugepage_subpool *)page_private(page);
1441         bool restore_reserve;
1442
1443         VM_BUG_ON_PAGE(page_count(page), page);
1444         VM_BUG_ON_PAGE(page_mapcount(page), page);
1445
1446         set_page_private(page, 0);
1447         page->mapping = NULL;
1448         restore_reserve = PagePrivate(page);
1449         ClearPagePrivate(page);
1450
1451         /*
1452          * If PagePrivate() was set on page, page allocation consumed a
1453          * reservation.  If the page was associated with a subpool, there
1454          * would have been a page reserved in the subpool before allocation
1455          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1456          * reservtion, do not call hugepage_subpool_put_pages() as this will
1457          * remove the reserved page from the subpool.
1458          */
1459         if (!restore_reserve) {
1460                 /*
1461                  * A return code of zero implies that the subpool will be
1462                  * under its minimum size if the reservation is not restored
1463                  * after page is free.  Therefore, force restore_reserve
1464                  * operation.
1465                  */
1466                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1467                         restore_reserve = true;
1468         }
1469
1470         spin_lock(&hugetlb_lock);
1471         clear_page_huge_active(page);
1472         hugetlb_cgroup_uncharge_page(hstate_index(h),
1473                                      pages_per_huge_page(h), page);
1474         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1475                                           pages_per_huge_page(h), page);
1476         if (restore_reserve)
1477                 h->resv_huge_pages++;
1478
1479         if (PageHugeTemporary(page)) {
1480                 list_del(&page->lru);
1481                 ClearPageHugeTemporary(page);
1482                 update_and_free_page(h, page);
1483         } else if (h->surplus_huge_pages_node[nid]) {
1484                 /* remove the page from active list */
1485                 list_del(&page->lru);
1486                 update_and_free_page(h, page);
1487                 h->surplus_huge_pages--;
1488                 h->surplus_huge_pages_node[nid]--;
1489         } else {
1490                 arch_clear_hugepage_flags(page);
1491                 enqueue_huge_page(h, page);
1492         }
1493         spin_unlock(&hugetlb_lock);
1494 }
1495
1496 /*
1497  * As free_huge_page() can be called from a non-task context, we have
1498  * to defer the actual freeing in a workqueue to prevent potential
1499  * hugetlb_lock deadlock.
1500  *
1501  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1502  * be freed and frees them one-by-one. As the page->mapping pointer is
1503  * going to be cleared in __free_huge_page() anyway, it is reused as the
1504  * llist_node structure of a lockless linked list of huge pages to be freed.
1505  */
1506 static LLIST_HEAD(hpage_freelist);
1507
1508 static void free_hpage_workfn(struct work_struct *work)
1509 {
1510         struct llist_node *node;
1511         struct page *page;
1512
1513         node = llist_del_all(&hpage_freelist);
1514
1515         while (node) {
1516                 page = container_of((struct address_space **)node,
1517                                      struct page, mapping);
1518                 node = node->next;
1519                 __free_huge_page(page);
1520         }
1521 }
1522 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1523
1524 void free_huge_page(struct page *page)
1525 {
1526         /*
1527          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1528          */
1529         if (!in_task()) {
1530                 /*
1531                  * Only call schedule_work() if hpage_freelist is previously
1532                  * empty. Otherwise, schedule_work() had been called but the
1533                  * workfn hasn't retrieved the list yet.
1534                  */
1535                 if (llist_add((struct llist_node *)&page->mapping,
1536                               &hpage_freelist))
1537                         schedule_work(&free_hpage_work);
1538                 return;
1539         }
1540
1541         __free_huge_page(page);
1542 }
1543
1544 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1545 {
1546         INIT_LIST_HEAD(&page->lru);
1547         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1548         set_hugetlb_cgroup(page, NULL);
1549         set_hugetlb_cgroup_rsvd(page, NULL);
1550         spin_lock(&hugetlb_lock);
1551         h->nr_huge_pages++;
1552         h->nr_huge_pages_node[nid]++;
1553         ClearPageHugeFreed(page);
1554         spin_unlock(&hugetlb_lock);
1555 }
1556
1557 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1558 {
1559         int i;
1560         int nr_pages = 1 << order;
1561         struct page *p = page + 1;
1562
1563         /* we rely on prep_new_huge_page to set the destructor */
1564         set_compound_order(page, order);
1565         __ClearPageReserved(page);
1566         __SetPageHead(page);
1567         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1568                 /*
1569                  * For gigantic hugepages allocated through bootmem at
1570                  * boot, it's safer to be consistent with the not-gigantic
1571                  * hugepages and clear the PG_reserved bit from all tail pages
1572                  * too.  Otherwise drivers using get_user_pages() to access tail
1573                  * pages may get the reference counting wrong if they see
1574                  * PG_reserved set on a tail page (despite the head page not
1575                  * having PG_reserved set).  Enforcing this consistency between
1576                  * head and tail pages allows drivers to optimize away a check
1577                  * on the head page when they need know if put_page() is needed
1578                  * after get_user_pages().
1579                  */
1580                 __ClearPageReserved(p);
1581                 set_page_count(p, 0);
1582                 set_compound_head(p, page);
1583         }
1584         atomic_set(compound_mapcount_ptr(page), -1);
1585         atomic_set(compound_pincount_ptr(page), 0);
1586 }
1587
1588 /*
1589  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1590  * transparent huge pages.  See the PageTransHuge() documentation for more
1591  * details.
1592  */
1593 int PageHuge(struct page *page)
1594 {
1595         if (!PageCompound(page))
1596                 return 0;
1597
1598         page = compound_head(page);
1599         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1600 }
1601 EXPORT_SYMBOL_GPL(PageHuge);
1602
1603 /*
1604  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1605  * normal or transparent huge pages.
1606  */
1607 int PageHeadHuge(struct page *page_head)
1608 {
1609         if (!PageHead(page_head))
1610                 return 0;
1611
1612         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1613 }
1614
1615 /*
1616  * Find and lock address space (mapping) in write mode.
1617  *
1618  * Upon entry, the page is locked which means that page_mapping() is
1619  * stable.  Due to locking order, we can only trylock_write.  If we can
1620  * not get the lock, simply return NULL to caller.
1621  */
1622 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1623 {
1624         struct address_space *mapping = page_mapping(hpage);
1625
1626         if (!mapping)
1627                 return mapping;
1628
1629         if (i_mmap_trylock_write(mapping))
1630                 return mapping;
1631
1632         return NULL;
1633 }
1634
1635 pgoff_t hugetlb_basepage_index(struct page *page)
1636 {
1637         struct page *page_head = compound_head(page);
1638         pgoff_t index = page_index(page_head);
1639         unsigned long compound_idx;
1640
1641         if (compound_order(page_head) >= MAX_ORDER)
1642                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1643         else
1644                 compound_idx = page - page_head;
1645
1646         return (index << compound_order(page_head)) + compound_idx;
1647 }
1648
1649 static struct page *alloc_buddy_huge_page(struct hstate *h,
1650                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1651                 nodemask_t *node_alloc_noretry)
1652 {
1653         int order = huge_page_order(h);
1654         struct page *page;
1655         bool alloc_try_hard = true;
1656
1657         /*
1658          * By default we always try hard to allocate the page with
1659          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1660          * a loop (to adjust global huge page counts) and previous allocation
1661          * failed, do not continue to try hard on the same node.  Use the
1662          * node_alloc_noretry bitmap to manage this state information.
1663          */
1664         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1665                 alloc_try_hard = false;
1666         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1667         if (alloc_try_hard)
1668                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1669         if (nid == NUMA_NO_NODE)
1670                 nid = numa_mem_id();
1671         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1672         if (page)
1673                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1674         else
1675                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1676
1677         /*
1678          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1679          * indicates an overall state change.  Clear bit so that we resume
1680          * normal 'try hard' allocations.
1681          */
1682         if (node_alloc_noretry && page && !alloc_try_hard)
1683                 node_clear(nid, *node_alloc_noretry);
1684
1685         /*
1686          * If we tried hard to get a page but failed, set bit so that
1687          * subsequent attempts will not try as hard until there is an
1688          * overall state change.
1689          */
1690         if (node_alloc_noretry && !page && alloc_try_hard)
1691                 node_set(nid, *node_alloc_noretry);
1692
1693         return page;
1694 }
1695
1696 /*
1697  * Common helper to allocate a fresh hugetlb page. All specific allocators
1698  * should use this function to get new hugetlb pages
1699  */
1700 static struct page *alloc_fresh_huge_page(struct hstate *h,
1701                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1702                 nodemask_t *node_alloc_noretry)
1703 {
1704         struct page *page;
1705
1706         if (hstate_is_gigantic(h))
1707                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1708         else
1709                 page = alloc_buddy_huge_page(h, gfp_mask,
1710                                 nid, nmask, node_alloc_noretry);
1711         if (!page)
1712                 return NULL;
1713
1714         if (hstate_is_gigantic(h))
1715                 prep_compound_gigantic_page(page, huge_page_order(h));
1716         prep_new_huge_page(h, page, page_to_nid(page));
1717
1718         return page;
1719 }
1720
1721 /*
1722  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1723  * manner.
1724  */
1725 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1726                                 nodemask_t *node_alloc_noretry)
1727 {
1728         struct page *page;
1729         int nr_nodes, node;
1730         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1731
1732         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1733                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1734                                                 node_alloc_noretry);
1735                 if (page)
1736                         break;
1737         }
1738
1739         if (!page)
1740                 return 0;
1741
1742         put_page(page); /* free it into the hugepage allocator */
1743
1744         return 1;
1745 }
1746
1747 /*
1748  * Free huge page from pool from next node to free.
1749  * Attempt to keep persistent huge pages more or less
1750  * balanced over allowed nodes.
1751  * Called with hugetlb_lock locked.
1752  */
1753 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1754                                                          bool acct_surplus)
1755 {
1756         int nr_nodes, node;
1757         int ret = 0;
1758
1759         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1760                 /*
1761                  * If we're returning unused surplus pages, only examine
1762                  * nodes with surplus pages.
1763                  */
1764                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1765                     !list_empty(&h->hugepage_freelists[node])) {
1766                         struct page *page =
1767                                 list_entry(h->hugepage_freelists[node].next,
1768                                           struct page, lru);
1769                         list_del(&page->lru);
1770                         h->free_huge_pages--;
1771                         h->free_huge_pages_node[node]--;
1772                         if (acct_surplus) {
1773                                 h->surplus_huge_pages--;
1774                                 h->surplus_huge_pages_node[node]--;
1775                         }
1776                         update_and_free_page(h, page);
1777                         ret = 1;
1778                         break;
1779                 }
1780         }
1781
1782         return ret;
1783 }
1784
1785 /*
1786  * Dissolve a given free hugepage into free buddy pages. This function does
1787  * nothing for in-use hugepages and non-hugepages.
1788  * This function returns values like below:
1789  *
1790  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1791  *          (allocated or reserved.)
1792  *       0: successfully dissolved free hugepages or the page is not a
1793  *          hugepage (considered as already dissolved)
1794  */
1795 int dissolve_free_huge_page(struct page *page)
1796 {
1797         int rc = -EBUSY;
1798
1799 retry:
1800         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1801         if (!PageHuge(page))
1802                 return 0;
1803
1804         spin_lock(&hugetlb_lock);
1805         if (!PageHuge(page)) {
1806                 rc = 0;
1807                 goto out;
1808         }
1809
1810         if (!page_count(page)) {
1811                 struct page *head = compound_head(page);
1812                 struct hstate *h = page_hstate(head);
1813                 int nid = page_to_nid(head);
1814                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1815                         goto out;
1816
1817                 /*
1818                  * We should make sure that the page is already on the free list
1819                  * when it is dissolved.
1820                  */
1821                 if (unlikely(!PageHugeFreed(head))) {
1822                         spin_unlock(&hugetlb_lock);
1823                         cond_resched();
1824
1825                         /*
1826                          * Theoretically, we should return -EBUSY when we
1827                          * encounter this race. In fact, we have a chance
1828                          * to successfully dissolve the page if we do a
1829                          * retry. Because the race window is quite small.
1830                          * If we seize this opportunity, it is an optimization
1831                          * for increasing the success rate of dissolving page.
1832                          */
1833                         goto retry;
1834                 }
1835
1836                 /*
1837                  * Move PageHWPoison flag from head page to the raw error page,
1838                  * which makes any subpages rather than the error page reusable.
1839                  */
1840                 if (PageHWPoison(head) && page != head) {
1841                         SetPageHWPoison(page);
1842                         ClearPageHWPoison(head);
1843                 }
1844                 list_del(&head->lru);
1845                 h->free_huge_pages--;
1846                 h->free_huge_pages_node[nid]--;
1847                 h->max_huge_pages--;
1848                 update_and_free_page(h, head);
1849                 rc = 0;
1850         }
1851 out:
1852         spin_unlock(&hugetlb_lock);
1853         return rc;
1854 }
1855
1856 /*
1857  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1858  * make specified memory blocks removable from the system.
1859  * Note that this will dissolve a free gigantic hugepage completely, if any
1860  * part of it lies within the given range.
1861  * Also note that if dissolve_free_huge_page() returns with an error, all
1862  * free hugepages that were dissolved before that error are lost.
1863  */
1864 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1865 {
1866         unsigned long pfn;
1867         struct page *page;
1868         int rc = 0;
1869
1870         if (!hugepages_supported())
1871                 return rc;
1872
1873         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1874                 page = pfn_to_page(pfn);
1875                 rc = dissolve_free_huge_page(page);
1876                 if (rc)
1877                         break;
1878         }
1879
1880         return rc;
1881 }
1882
1883 /*
1884  * Allocates a fresh surplus page from the page allocator.
1885  */
1886 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1887                 int nid, nodemask_t *nmask)
1888 {
1889         struct page *page = NULL;
1890
1891         if (hstate_is_gigantic(h))
1892                 return NULL;
1893
1894         spin_lock(&hugetlb_lock);
1895         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1896                 goto out_unlock;
1897         spin_unlock(&hugetlb_lock);
1898
1899         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1900         if (!page)
1901                 return NULL;
1902
1903         spin_lock(&hugetlb_lock);
1904         /*
1905          * We could have raced with the pool size change.
1906          * Double check that and simply deallocate the new page
1907          * if we would end up overcommiting the surpluses. Abuse
1908          * temporary page to workaround the nasty free_huge_page
1909          * codeflow
1910          */
1911         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1912                 SetPageHugeTemporary(page);
1913                 spin_unlock(&hugetlb_lock);
1914                 put_page(page);
1915                 return NULL;
1916         } else {
1917                 h->surplus_huge_pages++;
1918                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1919         }
1920
1921 out_unlock:
1922         spin_unlock(&hugetlb_lock);
1923
1924         return page;
1925 }
1926
1927 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1928                                      int nid, nodemask_t *nmask)
1929 {
1930         struct page *page;
1931
1932         if (hstate_is_gigantic(h))
1933                 return NULL;
1934
1935         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1936         if (!page)
1937                 return NULL;
1938
1939         /*
1940          * We do not account these pages as surplus because they are only
1941          * temporary and will be released properly on the last reference
1942          */
1943         SetPageHugeTemporary(page);
1944
1945         return page;
1946 }
1947
1948 /*
1949  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1950  */
1951 static
1952 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1953                 struct vm_area_struct *vma, unsigned long addr)
1954 {
1955         struct page *page;
1956         struct mempolicy *mpol;
1957         gfp_t gfp_mask = htlb_alloc_mask(h);
1958         int nid;
1959         nodemask_t *nodemask;
1960
1961         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1962         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1963         mpol_cond_put(mpol);
1964
1965         return page;
1966 }
1967
1968 /* page migration callback function */
1969 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1970                 nodemask_t *nmask, gfp_t gfp_mask)
1971 {
1972         spin_lock(&hugetlb_lock);
1973         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1974                 struct page *page;
1975
1976                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1977                 if (page) {
1978                         spin_unlock(&hugetlb_lock);
1979                         return page;
1980                 }
1981         }
1982         spin_unlock(&hugetlb_lock);
1983
1984         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1985 }
1986
1987 /* mempolicy aware migration callback */
1988 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1989                 unsigned long address)
1990 {
1991         struct mempolicy *mpol;
1992         nodemask_t *nodemask;
1993         struct page *page;
1994         gfp_t gfp_mask;
1995         int node;
1996
1997         gfp_mask = htlb_alloc_mask(h);
1998         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1999         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2000         mpol_cond_put(mpol);
2001
2002         return page;
2003 }
2004
2005 /*
2006  * Increase the hugetlb pool such that it can accommodate a reservation
2007  * of size 'delta'.
2008  */
2009 static int gather_surplus_pages(struct hstate *h, int delta)
2010         __must_hold(&hugetlb_lock)
2011 {
2012         struct list_head surplus_list;
2013         struct page *page, *tmp;
2014         int ret, i;
2015         int needed, allocated;
2016         bool alloc_ok = true;
2017
2018         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2019         if (needed <= 0) {
2020                 h->resv_huge_pages += delta;
2021                 return 0;
2022         }
2023
2024         allocated = 0;
2025         INIT_LIST_HEAD(&surplus_list);
2026
2027         ret = -ENOMEM;
2028 retry:
2029         spin_unlock(&hugetlb_lock);
2030         for (i = 0; i < needed; i++) {
2031                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2032                                 NUMA_NO_NODE, NULL);
2033                 if (!page) {
2034                         alloc_ok = false;
2035                         break;
2036                 }
2037                 list_add(&page->lru, &surplus_list);
2038                 cond_resched();
2039         }
2040         allocated += i;
2041
2042         /*
2043          * After retaking hugetlb_lock, we need to recalculate 'needed'
2044          * because either resv_huge_pages or free_huge_pages may have changed.
2045          */
2046         spin_lock(&hugetlb_lock);
2047         needed = (h->resv_huge_pages + delta) -
2048                         (h->free_huge_pages + allocated);
2049         if (needed > 0) {
2050                 if (alloc_ok)
2051                         goto retry;
2052                 /*
2053                  * We were not able to allocate enough pages to
2054                  * satisfy the entire reservation so we free what
2055                  * we've allocated so far.
2056                  */
2057                 goto free;
2058         }
2059         /*
2060          * The surplus_list now contains _at_least_ the number of extra pages
2061          * needed to accommodate the reservation.  Add the appropriate number
2062          * of pages to the hugetlb pool and free the extras back to the buddy
2063          * allocator.  Commit the entire reservation here to prevent another
2064          * process from stealing the pages as they are added to the pool but
2065          * before they are reserved.
2066          */
2067         needed += allocated;
2068         h->resv_huge_pages += delta;
2069         ret = 0;
2070
2071         /* Free the needed pages to the hugetlb pool */
2072         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2073                 if ((--needed) < 0)
2074                         break;
2075                 /*
2076                  * This page is now managed by the hugetlb allocator and has
2077                  * no users -- drop the buddy allocator's reference.
2078                  */
2079                 put_page_testzero(page);
2080                 VM_BUG_ON_PAGE(page_count(page), page);
2081                 enqueue_huge_page(h, page);
2082         }
2083 free:
2084         spin_unlock(&hugetlb_lock);
2085
2086         /* Free unnecessary surplus pages to the buddy allocator */
2087         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2088                 put_page(page);
2089         spin_lock(&hugetlb_lock);
2090
2091         return ret;
2092 }
2093
2094 /*
2095  * This routine has two main purposes:
2096  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2097  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2098  *    to the associated reservation map.
2099  * 2) Free any unused surplus pages that may have been allocated to satisfy
2100  *    the reservation.  As many as unused_resv_pages may be freed.
2101  *
2102  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2103  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2104  * we must make sure nobody else can claim pages we are in the process of
2105  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2106  * number of huge pages we plan to free when dropping the lock.
2107  */
2108 static void return_unused_surplus_pages(struct hstate *h,
2109                                         unsigned long unused_resv_pages)
2110 {
2111         unsigned long nr_pages;
2112
2113         /* Cannot return gigantic pages currently */
2114         if (hstate_is_gigantic(h))
2115                 goto out;
2116
2117         /*
2118          * Part (or even all) of the reservation could have been backed
2119          * by pre-allocated pages. Only free surplus pages.
2120          */
2121         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2122
2123         /*
2124          * We want to release as many surplus pages as possible, spread
2125          * evenly across all nodes with memory. Iterate across these nodes
2126          * until we can no longer free unreserved surplus pages. This occurs
2127          * when the nodes with surplus pages have no free pages.
2128          * free_pool_huge_page() will balance the freed pages across the
2129          * on-line nodes with memory and will handle the hstate accounting.
2130          *
2131          * Note that we decrement resv_huge_pages as we free the pages.  If
2132          * we drop the lock, resv_huge_pages will still be sufficiently large
2133          * to cover subsequent pages we may free.
2134          */
2135         while (nr_pages--) {
2136                 h->resv_huge_pages--;
2137                 unused_resv_pages--;
2138                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2139                         goto out;
2140                 cond_resched_lock(&hugetlb_lock);
2141         }
2142
2143 out:
2144         /* Fully uncommit the reservation */
2145         h->resv_huge_pages -= unused_resv_pages;
2146 }
2147
2148
2149 /*
2150  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2151  * are used by the huge page allocation routines to manage reservations.
2152  *
2153  * vma_needs_reservation is called to determine if the huge page at addr
2154  * within the vma has an associated reservation.  If a reservation is
2155  * needed, the value 1 is returned.  The caller is then responsible for
2156  * managing the global reservation and subpool usage counts.  After
2157  * the huge page has been allocated, vma_commit_reservation is called
2158  * to add the page to the reservation map.  If the page allocation fails,
2159  * the reservation must be ended instead of committed.  vma_end_reservation
2160  * is called in such cases.
2161  *
2162  * In the normal case, vma_commit_reservation returns the same value
2163  * as the preceding vma_needs_reservation call.  The only time this
2164  * is not the case is if a reserve map was changed between calls.  It
2165  * is the responsibility of the caller to notice the difference and
2166  * take appropriate action.
2167  *
2168  * vma_add_reservation is used in error paths where a reservation must
2169  * be restored when a newly allocated huge page must be freed.  It is
2170  * to be called after calling vma_needs_reservation to determine if a
2171  * reservation exists.
2172  */
2173 enum vma_resv_mode {
2174         VMA_NEEDS_RESV,
2175         VMA_COMMIT_RESV,
2176         VMA_END_RESV,
2177         VMA_ADD_RESV,
2178 };
2179 static long __vma_reservation_common(struct hstate *h,
2180                                 struct vm_area_struct *vma, unsigned long addr,
2181                                 enum vma_resv_mode mode)
2182 {
2183         struct resv_map *resv;
2184         pgoff_t idx;
2185         long ret;
2186         long dummy_out_regions_needed;
2187
2188         resv = vma_resv_map(vma);
2189         if (!resv)
2190                 return 1;
2191
2192         idx = vma_hugecache_offset(h, vma, addr);
2193         switch (mode) {
2194         case VMA_NEEDS_RESV:
2195                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2196                 /* We assume that vma_reservation_* routines always operate on
2197                  * 1 page, and that adding to resv map a 1 page entry can only
2198                  * ever require 1 region.
2199                  */
2200                 VM_BUG_ON(dummy_out_regions_needed != 1);
2201                 break;
2202         case VMA_COMMIT_RESV:
2203                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2204                 /* region_add calls of range 1 should never fail. */
2205                 VM_BUG_ON(ret < 0);
2206                 break;
2207         case VMA_END_RESV:
2208                 region_abort(resv, idx, idx + 1, 1);
2209                 ret = 0;
2210                 break;
2211         case VMA_ADD_RESV:
2212                 if (vma->vm_flags & VM_MAYSHARE) {
2213                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2214                         /* region_add calls of range 1 should never fail. */
2215                         VM_BUG_ON(ret < 0);
2216                 } else {
2217                         region_abort(resv, idx, idx + 1, 1);
2218                         ret = region_del(resv, idx, idx + 1);
2219                 }
2220                 break;
2221         default:
2222                 BUG();
2223         }
2224
2225         if (vma->vm_flags & VM_MAYSHARE)
2226                 return ret;
2227         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2228                 /*
2229                  * In most cases, reserves always exist for private mappings.
2230                  * However, a file associated with mapping could have been
2231                  * hole punched or truncated after reserves were consumed.
2232                  * As subsequent fault on such a range will not use reserves.
2233                  * Subtle - The reserve map for private mappings has the
2234                  * opposite meaning than that of shared mappings.  If NO
2235                  * entry is in the reserve map, it means a reservation exists.
2236                  * If an entry exists in the reserve map, it means the
2237                  * reservation has already been consumed.  As a result, the
2238                  * return value of this routine is the opposite of the
2239                  * value returned from reserve map manipulation routines above.
2240                  */
2241                 if (ret)
2242                         return 0;
2243                 else
2244                         return 1;
2245         }
2246         else
2247                 return ret < 0 ? ret : 0;
2248 }
2249
2250 static long vma_needs_reservation(struct hstate *h,
2251                         struct vm_area_struct *vma, unsigned long addr)
2252 {
2253         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2254 }
2255
2256 static long vma_commit_reservation(struct hstate *h,
2257                         struct vm_area_struct *vma, unsigned long addr)
2258 {
2259         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2260 }
2261
2262 static void vma_end_reservation(struct hstate *h,
2263                         struct vm_area_struct *vma, unsigned long addr)
2264 {
2265         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2266 }
2267
2268 static long vma_add_reservation(struct hstate *h,
2269                         struct vm_area_struct *vma, unsigned long addr)
2270 {
2271         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2272 }
2273
2274 /*
2275  * This routine is called to restore a reservation on error paths.  In the
2276  * specific error paths, a huge page was allocated (via alloc_huge_page)
2277  * and is about to be freed.  If a reservation for the page existed,
2278  * alloc_huge_page would have consumed the reservation and set PagePrivate
2279  * in the newly allocated page.  When the page is freed via free_huge_page,
2280  * the global reservation count will be incremented if PagePrivate is set.
2281  * However, free_huge_page can not adjust the reserve map.  Adjust the
2282  * reserve map here to be consistent with global reserve count adjustments
2283  * to be made by free_huge_page.
2284  */
2285 static void restore_reserve_on_error(struct hstate *h,
2286                         struct vm_area_struct *vma, unsigned long address,
2287                         struct page *page)
2288 {
2289         if (unlikely(PagePrivate(page))) {
2290                 long rc = vma_needs_reservation(h, vma, address);
2291
2292                 if (unlikely(rc < 0)) {
2293                         /*
2294                          * Rare out of memory condition in reserve map
2295                          * manipulation.  Clear PagePrivate so that
2296                          * global reserve count will not be incremented
2297                          * by free_huge_page.  This will make it appear
2298                          * as though the reservation for this page was
2299                          * consumed.  This may prevent the task from
2300                          * faulting in the page at a later time.  This
2301                          * is better than inconsistent global huge page
2302                          * accounting of reserve counts.
2303                          */
2304                         ClearPagePrivate(page);
2305                 } else if (rc) {
2306                         rc = vma_add_reservation(h, vma, address);
2307                         if (unlikely(rc < 0))
2308                                 /*
2309                                  * See above comment about rare out of
2310                                  * memory condition.
2311                                  */
2312                                 ClearPagePrivate(page);
2313                 } else
2314                         vma_end_reservation(h, vma, address);
2315         }
2316 }
2317
2318 struct page *alloc_huge_page(struct vm_area_struct *vma,
2319                                     unsigned long addr, int avoid_reserve)
2320 {
2321         struct hugepage_subpool *spool = subpool_vma(vma);
2322         struct hstate *h = hstate_vma(vma);
2323         struct page *page;
2324         long map_chg, map_commit;
2325         long gbl_chg;
2326         int ret, idx;
2327         struct hugetlb_cgroup *h_cg;
2328         bool deferred_reserve;
2329
2330         idx = hstate_index(h);
2331         /*
2332          * Examine the region/reserve map to determine if the process
2333          * has a reservation for the page to be allocated.  A return
2334          * code of zero indicates a reservation exists (no change).
2335          */
2336         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2337         if (map_chg < 0)
2338                 return ERR_PTR(-ENOMEM);
2339
2340         /*
2341          * Processes that did not create the mapping will have no
2342          * reserves as indicated by the region/reserve map. Check
2343          * that the allocation will not exceed the subpool limit.
2344          * Allocations for MAP_NORESERVE mappings also need to be
2345          * checked against any subpool limit.
2346          */
2347         if (map_chg || avoid_reserve) {
2348                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2349                 if (gbl_chg < 0) {
2350                         vma_end_reservation(h, vma, addr);
2351                         return ERR_PTR(-ENOSPC);
2352                 }
2353
2354                 /*
2355                  * Even though there was no reservation in the region/reserve
2356                  * map, there could be reservations associated with the
2357                  * subpool that can be used.  This would be indicated if the
2358                  * return value of hugepage_subpool_get_pages() is zero.
2359                  * However, if avoid_reserve is specified we still avoid even
2360                  * the subpool reservations.
2361                  */
2362                 if (avoid_reserve)
2363                         gbl_chg = 1;
2364         }
2365
2366         /* If this allocation is not consuming a reservation, charge it now.
2367          */
2368         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2369         if (deferred_reserve) {
2370                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2371                         idx, pages_per_huge_page(h), &h_cg);
2372                 if (ret)
2373                         goto out_subpool_put;
2374         }
2375
2376         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2377         if (ret)
2378                 goto out_uncharge_cgroup_reservation;
2379
2380         spin_lock(&hugetlb_lock);
2381         /*
2382          * glb_chg is passed to indicate whether or not a page must be taken
2383          * from the global free pool (global change).  gbl_chg == 0 indicates
2384          * a reservation exists for the allocation.
2385          */
2386         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2387         if (!page) {
2388                 spin_unlock(&hugetlb_lock);
2389                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2390                 if (!page)
2391                         goto out_uncharge_cgroup;
2392                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2393                         SetPagePrivate(page);
2394                         h->resv_huge_pages--;
2395                 }
2396                 spin_lock(&hugetlb_lock);
2397                 list_add(&page->lru, &h->hugepage_activelist);
2398                 /* Fall through */
2399         }
2400         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2401         /* If allocation is not consuming a reservation, also store the
2402          * hugetlb_cgroup pointer on the page.
2403          */
2404         if (deferred_reserve) {
2405                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2406                                                   h_cg, page);
2407         }
2408
2409         spin_unlock(&hugetlb_lock);
2410
2411         set_page_private(page, (unsigned long)spool);
2412
2413         map_commit = vma_commit_reservation(h, vma, addr);
2414         if (unlikely(map_chg > map_commit)) {
2415                 /*
2416                  * The page was added to the reservation map between
2417                  * vma_needs_reservation and vma_commit_reservation.
2418                  * This indicates a race with hugetlb_reserve_pages.
2419                  * Adjust for the subpool count incremented above AND
2420                  * in hugetlb_reserve_pages for the same page.  Also,
2421                  * the reservation count added in hugetlb_reserve_pages
2422                  * no longer applies.
2423                  */
2424                 long rsv_adjust;
2425
2426                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2427                 hugetlb_acct_memory(h, -rsv_adjust);
2428                 if (deferred_reserve)
2429                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2430                                         pages_per_huge_page(h), page);
2431         }
2432         return page;
2433
2434 out_uncharge_cgroup:
2435         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2436 out_uncharge_cgroup_reservation:
2437         if (deferred_reserve)
2438                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2439                                                     h_cg);
2440 out_subpool_put:
2441         if (map_chg || avoid_reserve)
2442                 hugepage_subpool_put_pages(spool, 1);
2443         vma_end_reservation(h, vma, addr);
2444         return ERR_PTR(-ENOSPC);
2445 }
2446
2447 int alloc_bootmem_huge_page(struct hstate *h)
2448         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2449 int __alloc_bootmem_huge_page(struct hstate *h)
2450 {
2451         struct huge_bootmem_page *m;
2452         int nr_nodes, node;
2453
2454         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2455                 void *addr;
2456
2457                 addr = memblock_alloc_try_nid_raw(
2458                                 huge_page_size(h), huge_page_size(h),
2459                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2460                 if (addr) {
2461                         /*
2462                          * Use the beginning of the huge page to store the
2463                          * huge_bootmem_page struct (until gather_bootmem
2464                          * puts them into the mem_map).
2465                          */
2466                         m = addr;
2467                         goto found;
2468                 }
2469         }
2470         return 0;
2471
2472 found:
2473         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2474         /* Put them into a private list first because mem_map is not up yet */
2475         INIT_LIST_HEAD(&m->list);
2476         list_add(&m->list, &huge_boot_pages);
2477         m->hstate = h;
2478         return 1;
2479 }
2480
2481 static void __init prep_compound_huge_page(struct page *page,
2482                 unsigned int order)
2483 {
2484         if (unlikely(order > (MAX_ORDER - 1)))
2485                 prep_compound_gigantic_page(page, order);
2486         else
2487                 prep_compound_page(page, order);
2488 }
2489
2490 /* Put bootmem huge pages into the standard lists after mem_map is up */
2491 static void __init gather_bootmem_prealloc(void)
2492 {
2493         struct huge_bootmem_page *m;
2494
2495         list_for_each_entry(m, &huge_boot_pages, list) {
2496                 struct page *page = virt_to_page(m);
2497                 struct hstate *h = m->hstate;
2498
2499                 WARN_ON(page_count(page) != 1);
2500                 prep_compound_huge_page(page, huge_page_order(h));
2501                 WARN_ON(PageReserved(page));
2502                 prep_new_huge_page(h, page, page_to_nid(page));
2503                 put_page(page); /* free it into the hugepage allocator */
2504
2505                 /*
2506                  * If we had gigantic hugepages allocated at boot time, we need
2507                  * to restore the 'stolen' pages to totalram_pages in order to
2508                  * fix confusing memory reports from free(1) and another
2509                  * side-effects, like CommitLimit going negative.
2510                  */
2511                 if (hstate_is_gigantic(h))
2512                         adjust_managed_page_count(page, pages_per_huge_page(h));
2513                 cond_resched();
2514         }
2515 }
2516
2517 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2518 {
2519         unsigned long i;
2520         nodemask_t *node_alloc_noretry;
2521
2522         if (!hstate_is_gigantic(h)) {
2523                 /*
2524                  * Bit mask controlling how hard we retry per-node allocations.
2525                  * Ignore errors as lower level routines can deal with
2526                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2527                  * time, we are likely in bigger trouble.
2528                  */
2529                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2530                                                 GFP_KERNEL);
2531         } else {
2532                 /* allocations done at boot time */
2533                 node_alloc_noretry = NULL;
2534         }
2535
2536         /* bit mask controlling how hard we retry per-node allocations */
2537         if (node_alloc_noretry)
2538                 nodes_clear(*node_alloc_noretry);
2539
2540         for (i = 0; i < h->max_huge_pages; ++i) {
2541                 if (hstate_is_gigantic(h)) {
2542                         if (hugetlb_cma_size) {
2543                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2544                                 goto free;
2545                         }
2546                         if (!alloc_bootmem_huge_page(h))
2547                                 break;
2548                 } else if (!alloc_pool_huge_page(h,
2549                                          &node_states[N_MEMORY],
2550                                          node_alloc_noretry))
2551                         break;
2552                 cond_resched();
2553         }
2554         if (i < h->max_huge_pages) {
2555                 char buf[32];
2556
2557                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2558                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2559                         h->max_huge_pages, buf, i);
2560                 h->max_huge_pages = i;
2561         }
2562 free:
2563         kfree(node_alloc_noretry);
2564 }
2565
2566 static void __init hugetlb_init_hstates(void)
2567 {
2568         struct hstate *h;
2569
2570         for_each_hstate(h) {
2571                 if (minimum_order > huge_page_order(h))
2572                         minimum_order = huge_page_order(h);
2573
2574                 /* oversize hugepages were init'ed in early boot */
2575                 if (!hstate_is_gigantic(h))
2576                         hugetlb_hstate_alloc_pages(h);
2577         }
2578         VM_BUG_ON(minimum_order == UINT_MAX);
2579 }
2580
2581 static void __init report_hugepages(void)
2582 {
2583         struct hstate *h;
2584
2585         for_each_hstate(h) {
2586                 char buf[32];
2587
2588                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2589                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2590                         buf, h->free_huge_pages);
2591         }
2592 }
2593
2594 #ifdef CONFIG_HIGHMEM
2595 static void try_to_free_low(struct hstate *h, unsigned long count,
2596                                                 nodemask_t *nodes_allowed)
2597 {
2598         int i;
2599
2600         if (hstate_is_gigantic(h))
2601                 return;
2602
2603         for_each_node_mask(i, *nodes_allowed) {
2604                 struct page *page, *next;
2605                 struct list_head *freel = &h->hugepage_freelists[i];
2606                 list_for_each_entry_safe(page, next, freel, lru) {
2607                         if (count >= h->nr_huge_pages)
2608                                 return;
2609                         if (PageHighMem(page))
2610                                 continue;
2611                         list_del(&page->lru);
2612                         update_and_free_page(h, page);
2613                         h->free_huge_pages--;
2614                         h->free_huge_pages_node[page_to_nid(page)]--;
2615                 }
2616         }
2617 }
2618 #else
2619 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2620                                                 nodemask_t *nodes_allowed)
2621 {
2622 }
2623 #endif
2624
2625 /*
2626  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2627  * balanced by operating on them in a round-robin fashion.
2628  * Returns 1 if an adjustment was made.
2629  */
2630 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2631                                 int delta)
2632 {
2633         int nr_nodes, node;
2634
2635         VM_BUG_ON(delta != -1 && delta != 1);
2636
2637         if (delta < 0) {
2638                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2639                         if (h->surplus_huge_pages_node[node])
2640                                 goto found;
2641                 }
2642         } else {
2643                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2644                         if (h->surplus_huge_pages_node[node] <
2645                                         h->nr_huge_pages_node[node])
2646                                 goto found;
2647                 }
2648         }
2649         return 0;
2650
2651 found:
2652         h->surplus_huge_pages += delta;
2653         h->surplus_huge_pages_node[node] += delta;
2654         return 1;
2655 }
2656
2657 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2658 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2659                               nodemask_t *nodes_allowed)
2660 {
2661         unsigned long min_count, ret;
2662         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2663
2664         /*
2665          * Bit mask controlling how hard we retry per-node allocations.
2666          * If we can not allocate the bit mask, do not attempt to allocate
2667          * the requested huge pages.
2668          */
2669         if (node_alloc_noretry)
2670                 nodes_clear(*node_alloc_noretry);
2671         else
2672                 return -ENOMEM;
2673
2674         spin_lock(&hugetlb_lock);
2675
2676         /*
2677          * Check for a node specific request.
2678          * Changing node specific huge page count may require a corresponding
2679          * change to the global count.  In any case, the passed node mask
2680          * (nodes_allowed) will restrict alloc/free to the specified node.
2681          */
2682         if (nid != NUMA_NO_NODE) {
2683                 unsigned long old_count = count;
2684
2685                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2686                 /*
2687                  * User may have specified a large count value which caused the
2688                  * above calculation to overflow.  In this case, they wanted
2689                  * to allocate as many huge pages as possible.  Set count to
2690                  * largest possible value to align with their intention.
2691                  */
2692                 if (count < old_count)
2693                         count = ULONG_MAX;
2694         }
2695
2696         /*
2697          * Gigantic pages runtime allocation depend on the capability for large
2698          * page range allocation.
2699          * If the system does not provide this feature, return an error when
2700          * the user tries to allocate gigantic pages but let the user free the
2701          * boottime allocated gigantic pages.
2702          */
2703         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2704                 if (count > persistent_huge_pages(h)) {
2705                         spin_unlock(&hugetlb_lock);
2706                         NODEMASK_FREE(node_alloc_noretry);
2707                         return -EINVAL;
2708                 }
2709                 /* Fall through to decrease pool */
2710         }
2711
2712         /*
2713          * Increase the pool size
2714          * First take pages out of surplus state.  Then make up the
2715          * remaining difference by allocating fresh huge pages.
2716          *
2717          * We might race with alloc_surplus_huge_page() here and be unable
2718          * to convert a surplus huge page to a normal huge page. That is
2719          * not critical, though, it just means the overall size of the
2720          * pool might be one hugepage larger than it needs to be, but
2721          * within all the constraints specified by the sysctls.
2722          */
2723         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2724                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2725                         break;
2726         }
2727
2728         while (count > persistent_huge_pages(h)) {
2729                 /*
2730                  * If this allocation races such that we no longer need the
2731                  * page, free_huge_page will handle it by freeing the page
2732                  * and reducing the surplus.
2733                  */
2734                 spin_unlock(&hugetlb_lock);
2735
2736                 /* yield cpu to avoid soft lockup */
2737                 cond_resched();
2738
2739                 ret = alloc_pool_huge_page(h, nodes_allowed,
2740                                                 node_alloc_noretry);
2741                 spin_lock(&hugetlb_lock);
2742                 if (!ret)
2743                         goto out;
2744
2745                 /* Bail for signals. Probably ctrl-c from user */
2746                 if (signal_pending(current))
2747                         goto out;
2748         }
2749
2750         /*
2751          * Decrease the pool size
2752          * First return free pages to the buddy allocator (being careful
2753          * to keep enough around to satisfy reservations).  Then place
2754          * pages into surplus state as needed so the pool will shrink
2755          * to the desired size as pages become free.
2756          *
2757          * By placing pages into the surplus state independent of the
2758          * overcommit value, we are allowing the surplus pool size to
2759          * exceed overcommit. There are few sane options here. Since
2760          * alloc_surplus_huge_page() is checking the global counter,
2761          * though, we'll note that we're not allowed to exceed surplus
2762          * and won't grow the pool anywhere else. Not until one of the
2763          * sysctls are changed, or the surplus pages go out of use.
2764          */
2765         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2766         min_count = max(count, min_count);
2767         try_to_free_low(h, min_count, nodes_allowed);
2768         while (min_count < persistent_huge_pages(h)) {
2769                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2770                         break;
2771                 cond_resched_lock(&hugetlb_lock);
2772         }
2773         while (count < persistent_huge_pages(h)) {
2774                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2775                         break;
2776         }
2777 out:
2778         h->max_huge_pages = persistent_huge_pages(h);
2779         spin_unlock(&hugetlb_lock);
2780
2781         NODEMASK_FREE(node_alloc_noretry);
2782
2783         return 0;
2784 }
2785
2786 #define HSTATE_ATTR_RO(_name) \
2787         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2788
2789 #define HSTATE_ATTR(_name) \
2790         static struct kobj_attribute _name##_attr = \
2791                 __ATTR(_name, 0644, _name##_show, _name##_store)
2792
2793 static struct kobject *hugepages_kobj;
2794 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2795
2796 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2797
2798 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2799 {
2800         int i;
2801
2802         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2803                 if (hstate_kobjs[i] == kobj) {
2804                         if (nidp)
2805                                 *nidp = NUMA_NO_NODE;
2806                         return &hstates[i];
2807                 }
2808
2809         return kobj_to_node_hstate(kobj, nidp);
2810 }
2811
2812 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2813                                         struct kobj_attribute *attr, char *buf)
2814 {
2815         struct hstate *h;
2816         unsigned long nr_huge_pages;
2817         int nid;
2818
2819         h = kobj_to_hstate(kobj, &nid);
2820         if (nid == NUMA_NO_NODE)
2821                 nr_huge_pages = h->nr_huge_pages;
2822         else
2823                 nr_huge_pages = h->nr_huge_pages_node[nid];
2824
2825         return sprintf(buf, "%lu\n", nr_huge_pages);
2826 }
2827
2828 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2829                                            struct hstate *h, int nid,
2830                                            unsigned long count, size_t len)
2831 {
2832         int err;
2833         nodemask_t nodes_allowed, *n_mask;
2834
2835         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2836                 return -EINVAL;
2837
2838         if (nid == NUMA_NO_NODE) {
2839                 /*
2840                  * global hstate attribute
2841                  */
2842                 if (!(obey_mempolicy &&
2843                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2844                         n_mask = &node_states[N_MEMORY];
2845                 else
2846                         n_mask = &nodes_allowed;
2847         } else {
2848                 /*
2849                  * Node specific request.  count adjustment happens in
2850                  * set_max_huge_pages() after acquiring hugetlb_lock.
2851                  */
2852                 init_nodemask_of_node(&nodes_allowed, nid);
2853                 n_mask = &nodes_allowed;
2854         }
2855
2856         err = set_max_huge_pages(h, count, nid, n_mask);
2857
2858         return err ? err : len;
2859 }
2860
2861 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2862                                          struct kobject *kobj, const char *buf,
2863                                          size_t len)
2864 {
2865         struct hstate *h;
2866         unsigned long count;
2867         int nid;
2868         int err;
2869
2870         err = kstrtoul(buf, 10, &count);
2871         if (err)
2872                 return err;
2873
2874         h = kobj_to_hstate(kobj, &nid);
2875         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2876 }
2877
2878 static ssize_t nr_hugepages_show(struct kobject *kobj,
2879                                        struct kobj_attribute *attr, char *buf)
2880 {
2881         return nr_hugepages_show_common(kobj, attr, buf);
2882 }
2883
2884 static ssize_t nr_hugepages_store(struct kobject *kobj,
2885                struct kobj_attribute *attr, const char *buf, size_t len)
2886 {
2887         return nr_hugepages_store_common(false, kobj, buf, len);
2888 }
2889 HSTATE_ATTR(nr_hugepages);
2890
2891 #ifdef CONFIG_NUMA
2892
2893 /*
2894  * hstate attribute for optionally mempolicy-based constraint on persistent
2895  * huge page alloc/free.
2896  */
2897 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2898                                        struct kobj_attribute *attr, char *buf)
2899 {
2900         return nr_hugepages_show_common(kobj, attr, buf);
2901 }
2902
2903 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2904                struct kobj_attribute *attr, const char *buf, size_t len)
2905 {
2906         return nr_hugepages_store_common(true, kobj, buf, len);
2907 }
2908 HSTATE_ATTR(nr_hugepages_mempolicy);
2909 #endif
2910
2911
2912 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2913                                         struct kobj_attribute *attr, char *buf)
2914 {
2915         struct hstate *h = kobj_to_hstate(kobj, NULL);
2916         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2917 }
2918
2919 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2920                 struct kobj_attribute *attr, const char *buf, size_t count)
2921 {
2922         int err;
2923         unsigned long input;
2924         struct hstate *h = kobj_to_hstate(kobj, NULL);
2925
2926         if (hstate_is_gigantic(h))
2927                 return -EINVAL;
2928
2929         err = kstrtoul(buf, 10, &input);
2930         if (err)
2931                 return err;
2932
2933         spin_lock(&hugetlb_lock);
2934         h->nr_overcommit_huge_pages = input;
2935         spin_unlock(&hugetlb_lock);
2936
2937         return count;
2938 }
2939 HSTATE_ATTR(nr_overcommit_hugepages);
2940
2941 static ssize_t free_hugepages_show(struct kobject *kobj,
2942                                         struct kobj_attribute *attr, char *buf)
2943 {
2944         struct hstate *h;
2945         unsigned long free_huge_pages;
2946         int nid;
2947
2948         h = kobj_to_hstate(kobj, &nid);
2949         if (nid == NUMA_NO_NODE)
2950                 free_huge_pages = h->free_huge_pages;
2951         else
2952                 free_huge_pages = h->free_huge_pages_node[nid];
2953
2954         return sprintf(buf, "%lu\n", free_huge_pages);
2955 }
2956 HSTATE_ATTR_RO(free_hugepages);
2957
2958 static ssize_t resv_hugepages_show(struct kobject *kobj,
2959                                         struct kobj_attribute *attr, char *buf)
2960 {
2961         struct hstate *h = kobj_to_hstate(kobj, NULL);
2962         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2963 }
2964 HSTATE_ATTR_RO(resv_hugepages);
2965
2966 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2967                                         struct kobj_attribute *attr, char *buf)
2968 {
2969         struct hstate *h;
2970         unsigned long surplus_huge_pages;
2971         int nid;
2972
2973         h = kobj_to_hstate(kobj, &nid);
2974         if (nid == NUMA_NO_NODE)
2975                 surplus_huge_pages = h->surplus_huge_pages;
2976         else
2977                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2978
2979         return sprintf(buf, "%lu\n", surplus_huge_pages);
2980 }
2981 HSTATE_ATTR_RO(surplus_hugepages);
2982
2983 static struct attribute *hstate_attrs[] = {
2984         &nr_hugepages_attr.attr,
2985         &nr_overcommit_hugepages_attr.attr,
2986         &free_hugepages_attr.attr,
2987         &resv_hugepages_attr.attr,
2988         &surplus_hugepages_attr.attr,
2989 #ifdef CONFIG_NUMA
2990         &nr_hugepages_mempolicy_attr.attr,
2991 #endif
2992         NULL,
2993 };
2994
2995 static const struct attribute_group hstate_attr_group = {
2996         .attrs = hstate_attrs,
2997 };
2998
2999 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3000                                     struct kobject **hstate_kobjs,
3001                                     const struct attribute_group *hstate_attr_group)
3002 {
3003         int retval;
3004         int hi = hstate_index(h);
3005
3006         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3007         if (!hstate_kobjs[hi])
3008                 return -ENOMEM;
3009
3010         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3011         if (retval) {
3012                 kobject_put(hstate_kobjs[hi]);
3013                 hstate_kobjs[hi] = NULL;
3014         }
3015
3016         return retval;
3017 }
3018
3019 static void __init hugetlb_sysfs_init(void)
3020 {
3021         struct hstate *h;
3022         int err;
3023
3024         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3025         if (!hugepages_kobj)
3026                 return;
3027
3028         for_each_hstate(h) {
3029                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3030                                          hstate_kobjs, &hstate_attr_group);
3031                 if (err)
3032                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3033         }
3034 }
3035
3036 #ifdef CONFIG_NUMA
3037
3038 /*
3039  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3040  * with node devices in node_devices[] using a parallel array.  The array
3041  * index of a node device or _hstate == node id.
3042  * This is here to avoid any static dependency of the node device driver, in
3043  * the base kernel, on the hugetlb module.
3044  */
3045 struct node_hstate {
3046         struct kobject          *hugepages_kobj;
3047         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3048 };
3049 static struct node_hstate node_hstates[MAX_NUMNODES];
3050
3051 /*
3052  * A subset of global hstate attributes for node devices
3053  */
3054 static struct attribute *per_node_hstate_attrs[] = {
3055         &nr_hugepages_attr.attr,
3056         &free_hugepages_attr.attr,
3057         &surplus_hugepages_attr.attr,
3058         NULL,
3059 };
3060
3061 static const struct attribute_group per_node_hstate_attr_group = {
3062         .attrs = per_node_hstate_attrs,
3063 };
3064
3065 /*
3066  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3067  * Returns node id via non-NULL nidp.
3068  */
3069 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3070 {
3071         int nid;
3072
3073         for (nid = 0; nid < nr_node_ids; nid++) {
3074                 struct node_hstate *nhs = &node_hstates[nid];
3075                 int i;
3076                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3077                         if (nhs->hstate_kobjs[i] == kobj) {
3078                                 if (nidp)
3079                                         *nidp = nid;
3080                                 return &hstates[i];
3081                         }
3082         }
3083
3084         BUG();
3085         return NULL;
3086 }
3087
3088 /*
3089  * Unregister hstate attributes from a single node device.
3090  * No-op if no hstate attributes attached.
3091  */
3092 static void hugetlb_unregister_node(struct node *node)
3093 {
3094         struct hstate *h;
3095         struct node_hstate *nhs = &node_hstates[node->dev.id];
3096
3097         if (!nhs->hugepages_kobj)
3098                 return;         /* no hstate attributes */
3099
3100         for_each_hstate(h) {
3101                 int idx = hstate_index(h);
3102                 if (nhs->hstate_kobjs[idx]) {
3103                         kobject_put(nhs->hstate_kobjs[idx]);
3104                         nhs->hstate_kobjs[idx] = NULL;
3105                 }
3106         }
3107
3108         kobject_put(nhs->hugepages_kobj);
3109         nhs->hugepages_kobj = NULL;
3110 }
3111
3112
3113 /*
3114  * Register hstate attributes for a single node device.
3115  * No-op if attributes already registered.
3116  */
3117 static void hugetlb_register_node(struct node *node)
3118 {
3119         struct hstate *h;
3120         struct node_hstate *nhs = &node_hstates[node->dev.id];
3121         int err;
3122
3123         if (nhs->hugepages_kobj)
3124                 return;         /* already allocated */
3125
3126         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3127                                                         &node->dev.kobj);
3128         if (!nhs->hugepages_kobj)
3129                 return;
3130
3131         for_each_hstate(h) {
3132                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3133                                                 nhs->hstate_kobjs,
3134                                                 &per_node_hstate_attr_group);
3135                 if (err) {
3136                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3137                                 h->name, node->dev.id);
3138                         hugetlb_unregister_node(node);
3139                         break;
3140                 }
3141         }
3142 }
3143
3144 /*
3145  * hugetlb init time:  register hstate attributes for all registered node
3146  * devices of nodes that have memory.  All on-line nodes should have
3147  * registered their associated device by this time.
3148  */
3149 static void __init hugetlb_register_all_nodes(void)
3150 {
3151         int nid;
3152
3153         for_each_node_state(nid, N_MEMORY) {
3154                 struct node *node = node_devices[nid];
3155                 if (node->dev.id == nid)
3156                         hugetlb_register_node(node);
3157         }
3158
3159         /*
3160          * Let the node device driver know we're here so it can
3161          * [un]register hstate attributes on node hotplug.
3162          */
3163         register_hugetlbfs_with_node(hugetlb_register_node,
3164                                      hugetlb_unregister_node);
3165 }
3166 #else   /* !CONFIG_NUMA */
3167
3168 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3169 {
3170         BUG();
3171         if (nidp)
3172                 *nidp = -1;
3173         return NULL;
3174 }
3175
3176 static void hugetlb_register_all_nodes(void) { }
3177
3178 #endif
3179
3180 static int __init hugetlb_init(void)
3181 {
3182         int i;
3183
3184         if (!hugepages_supported()) {
3185                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3186                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3187                 return 0;
3188         }
3189
3190         /*
3191          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3192          * architectures depend on setup being done here.
3193          */
3194         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3195         if (!parsed_default_hugepagesz) {
3196                 /*
3197                  * If we did not parse a default huge page size, set
3198                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3199                  * number of huge pages for this default size was implicitly
3200                  * specified, set that here as well.
3201                  * Note that the implicit setting will overwrite an explicit
3202                  * setting.  A warning will be printed in this case.
3203                  */
3204                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3205                 if (default_hstate_max_huge_pages) {
3206                         if (default_hstate.max_huge_pages) {
3207                                 char buf[32];
3208
3209                                 string_get_size(huge_page_size(&default_hstate),
3210                                         1, STRING_UNITS_2, buf, 32);
3211                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3212                                         default_hstate.max_huge_pages, buf);
3213                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3214                                         default_hstate_max_huge_pages);
3215                         }
3216                         default_hstate.max_huge_pages =
3217                                 default_hstate_max_huge_pages;
3218                 }
3219         }
3220
3221         hugetlb_cma_check();
3222         hugetlb_init_hstates();
3223         gather_bootmem_prealloc();
3224         report_hugepages();
3225
3226         hugetlb_sysfs_init();
3227         hugetlb_register_all_nodes();
3228         hugetlb_cgroup_file_init();
3229
3230 #ifdef CONFIG_SMP
3231         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3232 #else
3233         num_fault_mutexes = 1;
3234 #endif
3235         hugetlb_fault_mutex_table =
3236                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3237                               GFP_KERNEL);
3238         BUG_ON(!hugetlb_fault_mutex_table);
3239
3240         for (i = 0; i < num_fault_mutexes; i++)
3241                 mutex_init(&hugetlb_fault_mutex_table[i]);
3242         return 0;
3243 }
3244 subsys_initcall(hugetlb_init);
3245
3246 /* Overwritten by architectures with more huge page sizes */
3247 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3248 {
3249         return size == HPAGE_SIZE;
3250 }
3251
3252 void __init hugetlb_add_hstate(unsigned int order)
3253 {
3254         struct hstate *h;
3255         unsigned long i;
3256
3257         if (size_to_hstate(PAGE_SIZE << order)) {
3258                 return;
3259         }
3260         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3261         BUG_ON(order == 0);
3262         h = &hstates[hugetlb_max_hstate++];
3263         h->order = order;
3264         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3265         h->nr_huge_pages = 0;
3266         h->free_huge_pages = 0;
3267         for (i = 0; i < MAX_NUMNODES; ++i)
3268                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3269         INIT_LIST_HEAD(&h->hugepage_activelist);
3270         h->next_nid_to_alloc = first_memory_node;
3271         h->next_nid_to_free = first_memory_node;
3272         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3273                                         huge_page_size(h)/1024);
3274
3275         parsed_hstate = h;
3276 }
3277
3278 /*
3279  * hugepages command line processing
3280  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3281  * specification.  If not, ignore the hugepages value.  hugepages can also
3282  * be the first huge page command line  option in which case it implicitly
3283  * specifies the number of huge pages for the default size.
3284  */
3285 static int __init hugepages_setup(char *s)
3286 {
3287         unsigned long *mhp;
3288         static unsigned long *last_mhp;
3289
3290         if (!parsed_valid_hugepagesz) {
3291                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3292                 parsed_valid_hugepagesz = true;
3293                 return 0;
3294         }
3295
3296         /*
3297          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3298          * yet, so this hugepages= parameter goes to the "default hstate".
3299          * Otherwise, it goes with the previously parsed hugepagesz or
3300          * default_hugepagesz.
3301          */
3302         else if (!hugetlb_max_hstate)
3303                 mhp = &default_hstate_max_huge_pages;
3304         else
3305                 mhp = &parsed_hstate->max_huge_pages;
3306
3307         if (mhp == last_mhp) {
3308                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3309                 return 0;
3310         }
3311
3312         if (sscanf(s, "%lu", mhp) <= 0)
3313                 *mhp = 0;
3314
3315         /*
3316          * Global state is always initialized later in hugetlb_init.
3317          * But we need to allocate >= MAX_ORDER hstates here early to still
3318          * use the bootmem allocator.
3319          */
3320         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3321                 hugetlb_hstate_alloc_pages(parsed_hstate);
3322
3323         last_mhp = mhp;
3324
3325         return 1;
3326 }
3327 __setup("hugepages=", hugepages_setup);
3328
3329 /*
3330  * hugepagesz command line processing
3331  * A specific huge page size can only be specified once with hugepagesz.
3332  * hugepagesz is followed by hugepages on the command line.  The global
3333  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3334  * hugepagesz argument was valid.
3335  */
3336 static int __init hugepagesz_setup(char *s)
3337 {
3338         unsigned long size;
3339         struct hstate *h;
3340
3341         parsed_valid_hugepagesz = false;
3342         size = (unsigned long)memparse(s, NULL);
3343
3344         if (!arch_hugetlb_valid_size(size)) {
3345                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3346                 return 0;
3347         }
3348
3349         h = size_to_hstate(size);
3350         if (h) {
3351                 /*
3352                  * hstate for this size already exists.  This is normally
3353                  * an error, but is allowed if the existing hstate is the
3354                  * default hstate.  More specifically, it is only allowed if
3355                  * the number of huge pages for the default hstate was not
3356                  * previously specified.
3357                  */
3358                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3359                     default_hstate.max_huge_pages) {
3360                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3361                         return 0;
3362                 }
3363
3364                 /*
3365                  * No need to call hugetlb_add_hstate() as hstate already
3366                  * exists.  But, do set parsed_hstate so that a following
3367                  * hugepages= parameter will be applied to this hstate.
3368                  */
3369                 parsed_hstate = h;
3370                 parsed_valid_hugepagesz = true;
3371                 return 1;
3372         }
3373
3374         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3375         parsed_valid_hugepagesz = true;
3376         return 1;
3377 }
3378 __setup("hugepagesz=", hugepagesz_setup);
3379
3380 /*
3381  * default_hugepagesz command line input
3382  * Only one instance of default_hugepagesz allowed on command line.
3383  */
3384 static int __init default_hugepagesz_setup(char *s)
3385 {
3386         unsigned long size;
3387
3388         parsed_valid_hugepagesz = false;
3389         if (parsed_default_hugepagesz) {
3390                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3391                 return 0;
3392         }
3393
3394         size = (unsigned long)memparse(s, NULL);
3395
3396         if (!arch_hugetlb_valid_size(size)) {
3397                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3398                 return 0;
3399         }
3400
3401         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3402         parsed_valid_hugepagesz = true;
3403         parsed_default_hugepagesz = true;
3404         default_hstate_idx = hstate_index(size_to_hstate(size));
3405
3406         /*
3407          * The number of default huge pages (for this size) could have been
3408          * specified as the first hugetlb parameter: hugepages=X.  If so,
3409          * then default_hstate_max_huge_pages is set.  If the default huge
3410          * page size is gigantic (>= MAX_ORDER), then the pages must be
3411          * allocated here from bootmem allocator.
3412          */
3413         if (default_hstate_max_huge_pages) {
3414                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3415                 if (hstate_is_gigantic(&default_hstate))
3416                         hugetlb_hstate_alloc_pages(&default_hstate);
3417                 default_hstate_max_huge_pages = 0;
3418         }
3419
3420         return 1;
3421 }
3422 __setup("default_hugepagesz=", default_hugepagesz_setup);
3423
3424 static unsigned int allowed_mems_nr(struct hstate *h)
3425 {
3426         int node;
3427         unsigned int nr = 0;
3428         nodemask_t *mpol_allowed;
3429         unsigned int *array = h->free_huge_pages_node;
3430         gfp_t gfp_mask = htlb_alloc_mask(h);
3431
3432         mpol_allowed = policy_nodemask_current(gfp_mask);
3433
3434         for_each_node_mask(node, cpuset_current_mems_allowed) {
3435                 if (!mpol_allowed ||
3436                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3437                         nr += array[node];
3438         }
3439
3440         return nr;
3441 }
3442
3443 #ifdef CONFIG_SYSCTL
3444 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3445                                           void *buffer, size_t *length,
3446                                           loff_t *ppos, unsigned long *out)
3447 {
3448         struct ctl_table dup_table;
3449
3450         /*
3451          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3452          * can duplicate the @table and alter the duplicate of it.
3453          */
3454         dup_table = *table;
3455         dup_table.data = out;
3456
3457         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3458 }
3459
3460 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3461                          struct ctl_table *table, int write,
3462                          void *buffer, size_t *length, loff_t *ppos)
3463 {
3464         struct hstate *h = &default_hstate;
3465         unsigned long tmp = h->max_huge_pages;
3466         int ret;
3467
3468         if (!hugepages_supported())
3469                 return -EOPNOTSUPP;
3470
3471         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3472                                              &tmp);
3473         if (ret)
3474                 goto out;
3475
3476         if (write)
3477                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3478                                                   NUMA_NO_NODE, tmp, *length);
3479 out:
3480         return ret;
3481 }
3482
3483 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3484                           void *buffer, size_t *length, loff_t *ppos)
3485 {
3486
3487         return hugetlb_sysctl_handler_common(false, table, write,
3488                                                         buffer, length, ppos);
3489 }
3490
3491 #ifdef CONFIG_NUMA
3492 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3493                           void *buffer, size_t *length, loff_t *ppos)
3494 {
3495         return hugetlb_sysctl_handler_common(true, table, write,
3496                                                         buffer, length, ppos);
3497 }
3498 #endif /* CONFIG_NUMA */
3499
3500 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3501                 void *buffer, size_t *length, loff_t *ppos)
3502 {
3503         struct hstate *h = &default_hstate;
3504         unsigned long tmp;
3505         int ret;
3506
3507         if (!hugepages_supported())
3508                 return -EOPNOTSUPP;
3509
3510         tmp = h->nr_overcommit_huge_pages;
3511
3512         if (write && hstate_is_gigantic(h))
3513                 return -EINVAL;
3514
3515         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3516                                              &tmp);
3517         if (ret)
3518                 goto out;
3519
3520         if (write) {
3521                 spin_lock(&hugetlb_lock);
3522                 h->nr_overcommit_huge_pages = tmp;
3523                 spin_unlock(&hugetlb_lock);
3524         }
3525 out:
3526         return ret;
3527 }
3528
3529 #endif /* CONFIG_SYSCTL */
3530
3531 void hugetlb_report_meminfo(struct seq_file *m)
3532 {
3533         struct hstate *h;
3534         unsigned long total = 0;
3535
3536         if (!hugepages_supported())
3537                 return;
3538
3539         for_each_hstate(h) {
3540                 unsigned long count = h->nr_huge_pages;
3541
3542                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3543
3544                 if (h == &default_hstate)
3545                         seq_printf(m,
3546                                    "HugePages_Total:   %5lu\n"
3547                                    "HugePages_Free:    %5lu\n"
3548                                    "HugePages_Rsvd:    %5lu\n"
3549                                    "HugePages_Surp:    %5lu\n"
3550                                    "Hugepagesize:   %8lu kB\n",
3551                                    count,
3552                                    h->free_huge_pages,
3553                                    h->resv_huge_pages,
3554                                    h->surplus_huge_pages,
3555                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3556         }
3557
3558         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3559 }
3560
3561 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3562 {
3563         struct hstate *h = &default_hstate;
3564
3565         if (!hugepages_supported())
3566                 return 0;
3567
3568         return sysfs_emit_at(buf, len,
3569                              "Node %d HugePages_Total: %5u\n"
3570                              "Node %d HugePages_Free:  %5u\n"
3571                              "Node %d HugePages_Surp:  %5u\n",
3572                              nid, h->nr_huge_pages_node[nid],
3573                              nid, h->free_huge_pages_node[nid],
3574                              nid, h->surplus_huge_pages_node[nid]);
3575 }
3576
3577 void hugetlb_show_meminfo(void)
3578 {
3579         struct hstate *h;
3580         int nid;
3581
3582         if (!hugepages_supported())
3583                 return;
3584
3585         for_each_node_state(nid, N_MEMORY)
3586                 for_each_hstate(h)
3587                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3588                                 nid,
3589                                 h->nr_huge_pages_node[nid],
3590                                 h->free_huge_pages_node[nid],
3591                                 h->surplus_huge_pages_node[nid],
3592                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3593 }
3594
3595 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3596 {
3597         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3598                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3599 }
3600
3601 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3602 unsigned long hugetlb_total_pages(void)
3603 {
3604         struct hstate *h;
3605         unsigned long nr_total_pages = 0;
3606
3607         for_each_hstate(h)
3608                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3609         return nr_total_pages;
3610 }
3611
3612 static int hugetlb_acct_memory(struct hstate *h, long delta)
3613 {
3614         int ret = -ENOMEM;
3615
3616         spin_lock(&hugetlb_lock);
3617         /*
3618          * When cpuset is configured, it breaks the strict hugetlb page
3619          * reservation as the accounting is done on a global variable. Such
3620          * reservation is completely rubbish in the presence of cpuset because
3621          * the reservation is not checked against page availability for the
3622          * current cpuset. Application can still potentially OOM'ed by kernel
3623          * with lack of free htlb page in cpuset that the task is in.
3624          * Attempt to enforce strict accounting with cpuset is almost
3625          * impossible (or too ugly) because cpuset is too fluid that
3626          * task or memory node can be dynamically moved between cpusets.
3627          *
3628          * The change of semantics for shared hugetlb mapping with cpuset is
3629          * undesirable. However, in order to preserve some of the semantics,
3630          * we fall back to check against current free page availability as
3631          * a best attempt and hopefully to minimize the impact of changing
3632          * semantics that cpuset has.
3633          *
3634          * Apart from cpuset, we also have memory policy mechanism that
3635          * also determines from which node the kernel will allocate memory
3636          * in a NUMA system. So similar to cpuset, we also should consider
3637          * the memory policy of the current task. Similar to the description
3638          * above.
3639          */
3640         if (delta > 0) {
3641                 if (gather_surplus_pages(h, delta) < 0)
3642                         goto out;
3643
3644                 if (delta > allowed_mems_nr(h)) {
3645                         return_unused_surplus_pages(h, delta);
3646                         goto out;
3647                 }
3648         }
3649
3650         ret = 0;
3651         if (delta < 0)
3652                 return_unused_surplus_pages(h, (unsigned long) -delta);
3653
3654 out:
3655         spin_unlock(&hugetlb_lock);
3656         return ret;
3657 }
3658
3659 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3660 {
3661         struct resv_map *resv = vma_resv_map(vma);
3662
3663         /*
3664          * This new VMA should share its siblings reservation map if present.
3665          * The VMA will only ever have a valid reservation map pointer where
3666          * it is being copied for another still existing VMA.  As that VMA
3667          * has a reference to the reservation map it cannot disappear until
3668          * after this open call completes.  It is therefore safe to take a
3669          * new reference here without additional locking.
3670          */
3671         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3672                 kref_get(&resv->refs);
3673 }
3674
3675 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3676 {
3677         struct hstate *h = hstate_vma(vma);
3678         struct resv_map *resv = vma_resv_map(vma);
3679         struct hugepage_subpool *spool = subpool_vma(vma);
3680         unsigned long reserve, start, end;
3681         long gbl_reserve;
3682
3683         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3684                 return;
3685
3686         start = vma_hugecache_offset(h, vma, vma->vm_start);
3687         end = vma_hugecache_offset(h, vma, vma->vm_end);
3688
3689         reserve = (end - start) - region_count(resv, start, end);
3690         hugetlb_cgroup_uncharge_counter(resv, start, end);
3691         if (reserve) {
3692                 /*
3693                  * Decrement reserve counts.  The global reserve count may be
3694                  * adjusted if the subpool has a minimum size.
3695                  */
3696                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3697                 hugetlb_acct_memory(h, -gbl_reserve);
3698         }
3699
3700         kref_put(&resv->refs, resv_map_release);
3701 }
3702
3703 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3704 {
3705         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3706                 return -EINVAL;
3707         return 0;
3708 }
3709
3710 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3711 {
3712         struct hstate *hstate = hstate_vma(vma);
3713
3714         return 1UL << huge_page_shift(hstate);
3715 }
3716
3717 /*
3718  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3719  * handle_mm_fault() to try to instantiate regular-sized pages in the
3720  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3721  * this far.
3722  */
3723 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3724 {
3725         BUG();
3726         return 0;
3727 }
3728
3729 /*
3730  * When a new function is introduced to vm_operations_struct and added
3731  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3732  * This is because under System V memory model, mappings created via
3733  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3734  * their original vm_ops are overwritten with shm_vm_ops.
3735  */
3736 const struct vm_operations_struct hugetlb_vm_ops = {
3737         .fault = hugetlb_vm_op_fault,
3738         .open = hugetlb_vm_op_open,
3739         .close = hugetlb_vm_op_close,
3740         .split = hugetlb_vm_op_split,
3741         .pagesize = hugetlb_vm_op_pagesize,
3742 };
3743
3744 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3745                                 int writable)
3746 {
3747         pte_t entry;
3748
3749         if (writable) {
3750                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3751                                          vma->vm_page_prot)));
3752         } else {
3753                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3754                                            vma->vm_page_prot));
3755         }
3756         entry = pte_mkyoung(entry);
3757         entry = pte_mkhuge(entry);
3758         entry = arch_make_huge_pte(entry, vma, page, writable);
3759
3760         return entry;
3761 }
3762
3763 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3764                                    unsigned long address, pte_t *ptep)
3765 {
3766         pte_t entry;
3767
3768         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3769         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3770                 update_mmu_cache(vma, address, ptep);
3771 }
3772
3773 bool is_hugetlb_entry_migration(pte_t pte)
3774 {
3775         swp_entry_t swp;
3776
3777         if (huge_pte_none(pte) || pte_present(pte))
3778                 return false;
3779         swp = pte_to_swp_entry(pte);
3780         if (is_migration_entry(swp))
3781                 return true;
3782         else
3783                 return false;
3784 }
3785
3786 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3787 {
3788         swp_entry_t swp;
3789
3790         if (huge_pte_none(pte) || pte_present(pte))
3791                 return false;
3792         swp = pte_to_swp_entry(pte);
3793         if (is_hwpoison_entry(swp))
3794                 return true;
3795         else
3796                 return false;
3797 }
3798
3799 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3800                             struct vm_area_struct *vma)
3801 {
3802         pte_t *src_pte, *dst_pte, entry, dst_entry;
3803         struct page *ptepage;
3804         unsigned long addr;
3805         int cow;
3806         struct hstate *h = hstate_vma(vma);
3807         unsigned long sz = huge_page_size(h);
3808         struct address_space *mapping = vma->vm_file->f_mapping;
3809         struct mmu_notifier_range range;
3810         int ret = 0;
3811
3812         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3813
3814         if (cow) {
3815                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3816                                         vma->vm_start,
3817                                         vma->vm_end);
3818                 mmu_notifier_invalidate_range_start(&range);
3819         } else {
3820                 /*
3821                  * For shared mappings i_mmap_rwsem must be held to call
3822                  * huge_pte_alloc, otherwise the returned ptep could go
3823                  * away if part of a shared pmd and another thread calls
3824                  * huge_pmd_unshare.
3825                  */
3826                 i_mmap_lock_read(mapping);
3827         }
3828
3829         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3830                 spinlock_t *src_ptl, *dst_ptl;
3831                 src_pte = huge_pte_offset(src, addr, sz);
3832                 if (!src_pte)
3833                         continue;
3834                 dst_pte = huge_pte_alloc(dst, addr, sz);
3835                 if (!dst_pte) {
3836                         ret = -ENOMEM;
3837                         break;
3838                 }
3839
3840                 /*
3841                  * If the pagetables are shared don't copy or take references.
3842                  * dst_pte == src_pte is the common case of src/dest sharing.
3843                  *
3844                  * However, src could have 'unshared' and dst shares with
3845                  * another vma.  If dst_pte !none, this implies sharing.
3846                  * Check here before taking page table lock, and once again
3847                  * after taking the lock below.
3848                  */
3849                 dst_entry = huge_ptep_get(dst_pte);
3850                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3851                         continue;
3852
3853                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3854                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3855                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3856                 entry = huge_ptep_get(src_pte);
3857                 dst_entry = huge_ptep_get(dst_pte);
3858                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3859                         /*
3860                          * Skip if src entry none.  Also, skip in the
3861                          * unlikely case dst entry !none as this implies
3862                          * sharing with another vma.
3863                          */
3864                         ;
3865                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3866                                     is_hugetlb_entry_hwpoisoned(entry))) {
3867                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3868
3869                         if (is_write_migration_entry(swp_entry) && cow) {
3870                                 /*
3871                                  * COW mappings require pages in both
3872                                  * parent and child to be set to read.
3873                                  */
3874                                 make_migration_entry_read(&swp_entry);
3875                                 entry = swp_entry_to_pte(swp_entry);
3876                                 set_huge_swap_pte_at(src, addr, src_pte,
3877                                                      entry, sz);
3878                         }
3879                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3880                 } else {
3881                         if (cow) {
3882                                 /*
3883                                  * No need to notify as we are downgrading page
3884                                  * table protection not changing it to point
3885                                  * to a new page.
3886                                  *
3887                                  * See Documentation/vm/mmu_notifier.rst
3888                                  */
3889                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3890                         }
3891                         entry = huge_ptep_get(src_pte);
3892                         ptepage = pte_page(entry);
3893                         get_page(ptepage);
3894                         page_dup_rmap(ptepage, true);
3895                         set_huge_pte_at(dst, addr, dst_pte, entry);
3896                         hugetlb_count_add(pages_per_huge_page(h), dst);
3897                 }
3898                 spin_unlock(src_ptl);
3899                 spin_unlock(dst_ptl);
3900         }
3901
3902         if (cow)
3903                 mmu_notifier_invalidate_range_end(&range);
3904         else
3905                 i_mmap_unlock_read(mapping);
3906
3907         return ret;
3908 }
3909
3910 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3911                             unsigned long start, unsigned long end,
3912                             struct page *ref_page)
3913 {
3914         struct mm_struct *mm = vma->vm_mm;
3915         unsigned long address;
3916         pte_t *ptep;
3917         pte_t pte;
3918         spinlock_t *ptl;
3919         struct page *page;
3920         struct hstate *h = hstate_vma(vma);
3921         unsigned long sz = huge_page_size(h);
3922         struct mmu_notifier_range range;
3923
3924         WARN_ON(!is_vm_hugetlb_page(vma));
3925         BUG_ON(start & ~huge_page_mask(h));
3926         BUG_ON(end & ~huge_page_mask(h));
3927
3928         /*
3929          * This is a hugetlb vma, all the pte entries should point
3930          * to huge page.
3931          */
3932         tlb_change_page_size(tlb, sz);
3933         tlb_start_vma(tlb, vma);
3934
3935         /*
3936          * If sharing possible, alert mmu notifiers of worst case.
3937          */
3938         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3939                                 end);
3940         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3941         mmu_notifier_invalidate_range_start(&range);
3942         address = start;
3943         for (; address < end; address += sz) {
3944                 ptep = huge_pte_offset(mm, address, sz);
3945                 if (!ptep)
3946                         continue;
3947
3948                 ptl = huge_pte_lock(h, mm, ptep);
3949                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3950                         spin_unlock(ptl);
3951                         /*
3952                          * We just unmapped a page of PMDs by clearing a PUD.
3953                          * The caller's TLB flush range should cover this area.
3954                          */
3955                         continue;
3956                 }
3957
3958                 pte = huge_ptep_get(ptep);
3959                 if (huge_pte_none(pte)) {
3960                         spin_unlock(ptl);
3961                         continue;
3962                 }
3963
3964                 /*
3965                  * Migrating hugepage or HWPoisoned hugepage is already
3966                  * unmapped and its refcount is dropped, so just clear pte here.
3967                  */
3968                 if (unlikely(!pte_present(pte))) {
3969                         huge_pte_clear(mm, address, ptep, sz);
3970                         spin_unlock(ptl);
3971                         continue;
3972                 }
3973
3974                 page = pte_page(pte);
3975                 /*
3976                  * If a reference page is supplied, it is because a specific
3977                  * page is being unmapped, not a range. Ensure the page we
3978                  * are about to unmap is the actual page of interest.
3979                  */
3980                 if (ref_page) {
3981                         if (page != ref_page) {
3982                                 spin_unlock(ptl);
3983                                 continue;
3984                         }
3985                         /*
3986                          * Mark the VMA as having unmapped its page so that
3987                          * future faults in this VMA will fail rather than
3988                          * looking like data was lost
3989                          */
3990                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3991                 }
3992
3993                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3994                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3995                 if (huge_pte_dirty(pte))
3996                         set_page_dirty(page);
3997
3998                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3999                 page_remove_rmap(page, true);
4000
4001                 spin_unlock(ptl);
4002                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4003                 /*
4004                  * Bail out after unmapping reference page if supplied
4005                  */
4006                 if (ref_page)
4007                         break;
4008         }
4009         mmu_notifier_invalidate_range_end(&range);
4010         tlb_end_vma(tlb, vma);
4011 }
4012
4013 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4014                           struct vm_area_struct *vma, unsigned long start,
4015                           unsigned long end, struct page *ref_page)
4016 {
4017         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4018
4019         /*
4020          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4021          * test will fail on a vma being torn down, and not grab a page table
4022          * on its way out.  We're lucky that the flag has such an appropriate
4023          * name, and can in fact be safely cleared here. We could clear it
4024          * before the __unmap_hugepage_range above, but all that's necessary
4025          * is to clear it before releasing the i_mmap_rwsem. This works
4026          * because in the context this is called, the VMA is about to be
4027          * destroyed and the i_mmap_rwsem is held.
4028          */
4029         vma->vm_flags &= ~VM_MAYSHARE;
4030 }
4031
4032 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4033                           unsigned long end, struct page *ref_page)
4034 {
4035         struct mm_struct *mm;
4036         struct mmu_gather tlb;
4037         unsigned long tlb_start = start;
4038         unsigned long tlb_end = end;
4039
4040         /*
4041          * If shared PMDs were possibly used within this vma range, adjust
4042          * start/end for worst case tlb flushing.
4043          * Note that we can not be sure if PMDs are shared until we try to
4044          * unmap pages.  However, we want to make sure TLB flushing covers
4045          * the largest possible range.
4046          */
4047         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4048
4049         mm = vma->vm_mm;
4050
4051         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4052         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4053         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4054 }
4055
4056 /*
4057  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4058  * mappping it owns the reserve page for. The intention is to unmap the page
4059  * from other VMAs and let the children be SIGKILLed if they are faulting the
4060  * same region.
4061  */
4062 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4063                               struct page *page, unsigned long address)
4064 {
4065         struct hstate *h = hstate_vma(vma);
4066         struct vm_area_struct *iter_vma;
4067         struct address_space *mapping;
4068         pgoff_t pgoff;
4069
4070         /*
4071          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4072          * from page cache lookup which is in HPAGE_SIZE units.
4073          */
4074         address = address & huge_page_mask(h);
4075         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4076                         vma->vm_pgoff;
4077         mapping = vma->vm_file->f_mapping;
4078
4079         /*
4080          * Take the mapping lock for the duration of the table walk. As
4081          * this mapping should be shared between all the VMAs,
4082          * __unmap_hugepage_range() is called as the lock is already held
4083          */
4084         i_mmap_lock_write(mapping);
4085         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4086                 /* Do not unmap the current VMA */
4087                 if (iter_vma == vma)
4088                         continue;
4089
4090                 /*
4091                  * Shared VMAs have their own reserves and do not affect
4092                  * MAP_PRIVATE accounting but it is possible that a shared
4093                  * VMA is using the same page so check and skip such VMAs.
4094                  */
4095                 if (iter_vma->vm_flags & VM_MAYSHARE)
4096                         continue;
4097
4098                 /*
4099                  * Unmap the page from other VMAs without their own reserves.
4100                  * They get marked to be SIGKILLed if they fault in these
4101                  * areas. This is because a future no-page fault on this VMA
4102                  * could insert a zeroed page instead of the data existing
4103                  * from the time of fork. This would look like data corruption
4104                  */
4105                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4106                         unmap_hugepage_range(iter_vma, address,
4107                                              address + huge_page_size(h), page);
4108         }
4109         i_mmap_unlock_write(mapping);
4110 }
4111
4112 /*
4113  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4114  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4115  * cannot race with other handlers or page migration.
4116  * Keep the pte_same checks anyway to make transition from the mutex easier.
4117  */
4118 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4119                        unsigned long address, pte_t *ptep,
4120                        struct page *pagecache_page, spinlock_t *ptl)
4121 {
4122         pte_t pte;
4123         struct hstate *h = hstate_vma(vma);
4124         struct page *old_page, *new_page;
4125         int outside_reserve = 0;
4126         vm_fault_t ret = 0;
4127         unsigned long haddr = address & huge_page_mask(h);
4128         struct mmu_notifier_range range;
4129
4130         pte = huge_ptep_get(ptep);
4131         old_page = pte_page(pte);
4132
4133 retry_avoidcopy:
4134         /* If no-one else is actually using this page, avoid the copy
4135          * and just make the page writable */
4136         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4137                 page_move_anon_rmap(old_page, vma);
4138                 set_huge_ptep_writable(vma, haddr, ptep);
4139                 return 0;
4140         }
4141
4142         /*
4143          * If the process that created a MAP_PRIVATE mapping is about to
4144          * perform a COW due to a shared page count, attempt to satisfy
4145          * the allocation without using the existing reserves. The pagecache
4146          * page is used to determine if the reserve at this address was
4147          * consumed or not. If reserves were used, a partial faulted mapping
4148          * at the time of fork() could consume its reserves on COW instead
4149          * of the full address range.
4150          */
4151         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4152                         old_page != pagecache_page)
4153                 outside_reserve = 1;
4154
4155         get_page(old_page);
4156
4157         /*
4158          * Drop page table lock as buddy allocator may be called. It will
4159          * be acquired again before returning to the caller, as expected.
4160          */
4161         spin_unlock(ptl);
4162         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4163
4164         if (IS_ERR(new_page)) {
4165                 /*
4166                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4167                  * it is due to references held by a child and an insufficient
4168                  * huge page pool. To guarantee the original mappers
4169                  * reliability, unmap the page from child processes. The child
4170                  * may get SIGKILLed if it later faults.
4171                  */
4172                 if (outside_reserve) {
4173                         struct address_space *mapping = vma->vm_file->f_mapping;
4174                         pgoff_t idx;
4175                         u32 hash;
4176
4177                         put_page(old_page);
4178                         BUG_ON(huge_pte_none(pte));
4179                         /*
4180                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4181                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4182                          * in write mode.  Dropping i_mmap_rwsem in read mode
4183                          * here is OK as COW mappings do not interact with
4184                          * PMD sharing.
4185                          *
4186                          * Reacquire both after unmap operation.
4187                          */
4188                         idx = vma_hugecache_offset(h, vma, haddr);
4189                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4190                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4191                         i_mmap_unlock_read(mapping);
4192
4193                         unmap_ref_private(mm, vma, old_page, haddr);
4194
4195                         i_mmap_lock_read(mapping);
4196                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4197                         spin_lock(ptl);
4198                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4199                         if (likely(ptep &&
4200                                    pte_same(huge_ptep_get(ptep), pte)))
4201                                 goto retry_avoidcopy;
4202                         /*
4203                          * race occurs while re-acquiring page table
4204                          * lock, and our job is done.
4205                          */
4206                         return 0;
4207                 }
4208
4209                 ret = vmf_error(PTR_ERR(new_page));
4210                 goto out_release_old;
4211         }
4212
4213         /*
4214          * When the original hugepage is shared one, it does not have
4215          * anon_vma prepared.
4216          */
4217         if (unlikely(anon_vma_prepare(vma))) {
4218                 ret = VM_FAULT_OOM;
4219                 goto out_release_all;
4220         }
4221
4222         copy_user_huge_page(new_page, old_page, address, vma,
4223                             pages_per_huge_page(h));
4224         __SetPageUptodate(new_page);
4225
4226         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4227                                 haddr + huge_page_size(h));
4228         mmu_notifier_invalidate_range_start(&range);
4229
4230         /*
4231          * Retake the page table lock to check for racing updates
4232          * before the page tables are altered
4233          */
4234         spin_lock(ptl);
4235         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4236         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4237                 ClearPagePrivate(new_page);
4238
4239                 /* Break COW */
4240                 huge_ptep_clear_flush(vma, haddr, ptep);
4241                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4242                 set_huge_pte_at(mm, haddr, ptep,
4243                                 make_huge_pte(vma, new_page, 1));
4244                 page_remove_rmap(old_page, true);
4245                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4246                 set_page_huge_active(new_page);
4247                 /* Make the old page be freed below */
4248                 new_page = old_page;
4249         }
4250         spin_unlock(ptl);
4251         mmu_notifier_invalidate_range_end(&range);
4252 out_release_all:
4253         restore_reserve_on_error(h, vma, haddr, new_page);
4254         put_page(new_page);
4255 out_release_old:
4256         put_page(old_page);
4257
4258         spin_lock(ptl); /* Caller expects lock to be held */
4259         return ret;
4260 }
4261
4262 /* Return the pagecache page at a given address within a VMA */
4263 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4264                         struct vm_area_struct *vma, unsigned long address)
4265 {
4266         struct address_space *mapping;
4267         pgoff_t idx;
4268
4269         mapping = vma->vm_file->f_mapping;
4270         idx = vma_hugecache_offset(h, vma, address);
4271
4272         return find_lock_page(mapping, idx);
4273 }
4274
4275 /*
4276  * Return whether there is a pagecache page to back given address within VMA.
4277  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4278  */
4279 static bool hugetlbfs_pagecache_present(struct hstate *h,
4280                         struct vm_area_struct *vma, unsigned long address)
4281 {
4282         struct address_space *mapping;
4283         pgoff_t idx;
4284         struct page *page;
4285
4286         mapping = vma->vm_file->f_mapping;
4287         idx = vma_hugecache_offset(h, vma, address);
4288
4289         page = find_get_page(mapping, idx);
4290         if (page)
4291                 put_page(page);
4292         return page != NULL;
4293 }
4294
4295 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4296                            pgoff_t idx)
4297 {
4298         struct inode *inode = mapping->host;
4299         struct hstate *h = hstate_inode(inode);
4300         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4301
4302         if (err)
4303                 return err;
4304         ClearPagePrivate(page);
4305
4306         /*
4307          * set page dirty so that it will not be removed from cache/file
4308          * by non-hugetlbfs specific code paths.
4309          */
4310         set_page_dirty(page);
4311
4312         spin_lock(&inode->i_lock);
4313         inode->i_blocks += blocks_per_huge_page(h);
4314         spin_unlock(&inode->i_lock);
4315         return 0;
4316 }
4317
4318 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4319                         struct vm_area_struct *vma,
4320                         struct address_space *mapping, pgoff_t idx,
4321                         unsigned long address, pte_t *ptep, unsigned int flags)
4322 {
4323         struct hstate *h = hstate_vma(vma);
4324         vm_fault_t ret = VM_FAULT_SIGBUS;
4325         int anon_rmap = 0;
4326         unsigned long size;
4327         struct page *page;
4328         pte_t new_pte;
4329         spinlock_t *ptl;
4330         unsigned long haddr = address & huge_page_mask(h);
4331         bool new_page = false;
4332
4333         /*
4334          * Currently, we are forced to kill the process in the event the
4335          * original mapper has unmapped pages from the child due to a failed
4336          * COW. Warn that such a situation has occurred as it may not be obvious
4337          */
4338         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4339                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4340                            current->pid);
4341                 return ret;
4342         }
4343
4344         /*
4345          * We can not race with truncation due to holding i_mmap_rwsem.
4346          * i_size is modified when holding i_mmap_rwsem, so check here
4347          * once for faults beyond end of file.
4348          */
4349         size = i_size_read(mapping->host) >> huge_page_shift(h);
4350         if (idx >= size)
4351                 goto out;
4352
4353 retry:
4354         page = find_lock_page(mapping, idx);
4355         if (!page) {
4356                 /*
4357                  * Check for page in userfault range
4358                  */
4359                 if (userfaultfd_missing(vma)) {
4360                         u32 hash;
4361                         struct vm_fault vmf = {
4362                                 .vma = vma,
4363                                 .address = haddr,
4364                                 .flags = flags,
4365                                 /*
4366                                  * Hard to debug if it ends up being
4367                                  * used by a callee that assumes
4368                                  * something about the other
4369                                  * uninitialized fields... same as in
4370                                  * memory.c
4371                                  */
4372                         };
4373
4374                         /*
4375                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4376                          * dropped before handling userfault.  Reacquire
4377                          * after handling fault to make calling code simpler.
4378                          */
4379                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4380                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4381                         i_mmap_unlock_read(mapping);
4382                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4383                         i_mmap_lock_read(mapping);
4384                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4385                         goto out;
4386                 }
4387
4388                 page = alloc_huge_page(vma, haddr, 0);
4389                 if (IS_ERR(page)) {
4390                         /*
4391                          * Returning error will result in faulting task being
4392                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4393                          * tasks from racing to fault in the same page which
4394                          * could result in false unable to allocate errors.
4395                          * Page migration does not take the fault mutex, but
4396                          * does a clear then write of pte's under page table
4397                          * lock.  Page fault code could race with migration,
4398                          * notice the clear pte and try to allocate a page
4399                          * here.  Before returning error, get ptl and make
4400                          * sure there really is no pte entry.
4401                          */
4402                         ptl = huge_pte_lock(h, mm, ptep);
4403                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4404                                 ret = 0;
4405                                 spin_unlock(ptl);
4406                                 goto out;
4407                         }
4408                         spin_unlock(ptl);
4409                         ret = vmf_error(PTR_ERR(page));
4410                         goto out;
4411                 }
4412                 clear_huge_page(page, address, pages_per_huge_page(h));
4413                 __SetPageUptodate(page);
4414                 new_page = true;
4415
4416                 if (vma->vm_flags & VM_MAYSHARE) {
4417                         int err = huge_add_to_page_cache(page, mapping, idx);
4418                         if (err) {
4419                                 put_page(page);
4420                                 if (err == -EEXIST)
4421                                         goto retry;
4422                                 goto out;
4423                         }
4424                 } else {
4425                         lock_page(page);
4426                         if (unlikely(anon_vma_prepare(vma))) {
4427                                 ret = VM_FAULT_OOM;
4428                                 goto backout_unlocked;
4429                         }
4430                         anon_rmap = 1;
4431                 }
4432         } else {
4433                 /*
4434                  * If memory error occurs between mmap() and fault, some process
4435                  * don't have hwpoisoned swap entry for errored virtual address.
4436                  * So we need to block hugepage fault by PG_hwpoison bit check.
4437                  */
4438                 if (unlikely(PageHWPoison(page))) {
4439                         ret = VM_FAULT_HWPOISON_LARGE |
4440                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4441                         goto backout_unlocked;
4442                 }
4443         }
4444
4445         /*
4446          * If we are going to COW a private mapping later, we examine the
4447          * pending reservations for this page now. This will ensure that
4448          * any allocations necessary to record that reservation occur outside
4449          * the spinlock.
4450          */
4451         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4452                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4453                         ret = VM_FAULT_OOM;
4454                         goto backout_unlocked;
4455                 }
4456                 /* Just decrements count, does not deallocate */
4457                 vma_end_reservation(h, vma, haddr);
4458         }
4459
4460         ptl = huge_pte_lock(h, mm, ptep);
4461         ret = 0;
4462         if (!huge_pte_none(huge_ptep_get(ptep)))
4463                 goto backout;
4464
4465         if (anon_rmap) {
4466                 ClearPagePrivate(page);
4467                 hugepage_add_new_anon_rmap(page, vma, haddr);
4468         } else
4469                 page_dup_rmap(page, true);
4470         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4471                                 && (vma->vm_flags & VM_SHARED)));
4472         set_huge_pte_at(mm, haddr, ptep, new_pte);
4473
4474         hugetlb_count_add(pages_per_huge_page(h), mm);
4475         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4476                 /* Optimization, do the COW without a second fault */
4477                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4478         }
4479
4480         spin_unlock(ptl);
4481
4482         /*
4483          * Only make newly allocated pages active.  Existing pages found
4484          * in the pagecache could be !page_huge_active() if they have been
4485          * isolated for migration.
4486          */
4487         if (new_page)
4488                 set_page_huge_active(page);
4489
4490         unlock_page(page);
4491 out:
4492         return ret;
4493
4494 backout:
4495         spin_unlock(ptl);
4496 backout_unlocked:
4497         unlock_page(page);
4498         restore_reserve_on_error(h, vma, haddr, page);
4499         put_page(page);
4500         goto out;
4501 }
4502
4503 #ifdef CONFIG_SMP
4504 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4505 {
4506         unsigned long key[2];
4507         u32 hash;
4508
4509         key[0] = (unsigned long) mapping;
4510         key[1] = idx;
4511
4512         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4513
4514         return hash & (num_fault_mutexes - 1);
4515 }
4516 #else
4517 /*
4518  * For uniprocesor systems we always use a single mutex, so just
4519  * return 0 and avoid the hashing overhead.
4520  */
4521 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4522 {
4523         return 0;
4524 }
4525 #endif
4526
4527 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4528                         unsigned long address, unsigned int flags)
4529 {
4530         pte_t *ptep, entry;
4531         spinlock_t *ptl;
4532         vm_fault_t ret;
4533         u32 hash;
4534         pgoff_t idx;
4535         struct page *page = NULL;
4536         struct page *pagecache_page = NULL;
4537         struct hstate *h = hstate_vma(vma);
4538         struct address_space *mapping;
4539         int need_wait_lock = 0;
4540         unsigned long haddr = address & huge_page_mask(h);
4541
4542         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4543         if (ptep) {
4544                 /*
4545                  * Since we hold no locks, ptep could be stale.  That is
4546                  * OK as we are only making decisions based on content and
4547                  * not actually modifying content here.
4548                  */
4549                 entry = huge_ptep_get(ptep);
4550                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4551                         migration_entry_wait_huge(vma, mm, ptep);
4552                         return 0;
4553                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4554                         return VM_FAULT_HWPOISON_LARGE |
4555                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4556         }
4557
4558         /*
4559          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4560          * until finished with ptep.  This serves two purposes:
4561          * 1) It prevents huge_pmd_unshare from being called elsewhere
4562          *    and making the ptep no longer valid.
4563          * 2) It synchronizes us with i_size modifications during truncation.
4564          *
4565          * ptep could have already be assigned via huge_pte_offset.  That
4566          * is OK, as huge_pte_alloc will return the same value unless
4567          * something has changed.
4568          */
4569         mapping = vma->vm_file->f_mapping;
4570         i_mmap_lock_read(mapping);
4571         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4572         if (!ptep) {
4573                 i_mmap_unlock_read(mapping);
4574                 return VM_FAULT_OOM;
4575         }
4576
4577         /*
4578          * Serialize hugepage allocation and instantiation, so that we don't
4579          * get spurious allocation failures if two CPUs race to instantiate
4580          * the same page in the page cache.
4581          */
4582         idx = vma_hugecache_offset(h, vma, haddr);
4583         hash = hugetlb_fault_mutex_hash(mapping, idx);
4584         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4585
4586         entry = huge_ptep_get(ptep);
4587         if (huge_pte_none(entry)) {
4588                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4589                 goto out_mutex;
4590         }
4591
4592         ret = 0;
4593
4594         /*
4595          * entry could be a migration/hwpoison entry at this point, so this
4596          * check prevents the kernel from going below assuming that we have
4597          * an active hugepage in pagecache. This goto expects the 2nd page
4598          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4599          * properly handle it.
4600          */
4601         if (!pte_present(entry))
4602                 goto out_mutex;
4603
4604         /*
4605          * If we are going to COW the mapping later, we examine the pending
4606          * reservations for this page now. This will ensure that any
4607          * allocations necessary to record that reservation occur outside the
4608          * spinlock. For private mappings, we also lookup the pagecache
4609          * page now as it is used to determine if a reservation has been
4610          * consumed.
4611          */
4612         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4613                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4614                         ret = VM_FAULT_OOM;
4615                         goto out_mutex;
4616                 }
4617                 /* Just decrements count, does not deallocate */
4618                 vma_end_reservation(h, vma, haddr);
4619
4620                 if (!(vma->vm_flags & VM_MAYSHARE))
4621                         pagecache_page = hugetlbfs_pagecache_page(h,
4622                                                                 vma, haddr);
4623         }
4624
4625         ptl = huge_pte_lock(h, mm, ptep);
4626
4627         /* Check for a racing update before calling hugetlb_cow */
4628         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4629                 goto out_ptl;
4630
4631         /*
4632          * hugetlb_cow() requires page locks of pte_page(entry) and
4633          * pagecache_page, so here we need take the former one
4634          * when page != pagecache_page or !pagecache_page.
4635          */
4636         page = pte_page(entry);
4637         if (page != pagecache_page)
4638                 if (!trylock_page(page)) {
4639                         need_wait_lock = 1;
4640                         goto out_ptl;
4641                 }
4642
4643         get_page(page);
4644
4645         if (flags & FAULT_FLAG_WRITE) {
4646                 if (!huge_pte_write(entry)) {
4647                         ret = hugetlb_cow(mm, vma, address, ptep,
4648                                           pagecache_page, ptl);
4649                         goto out_put_page;
4650                 }
4651                 entry = huge_pte_mkdirty(entry);
4652         }
4653         entry = pte_mkyoung(entry);
4654         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4655                                                 flags & FAULT_FLAG_WRITE))
4656                 update_mmu_cache(vma, haddr, ptep);
4657 out_put_page:
4658         if (page != pagecache_page)
4659                 unlock_page(page);
4660         put_page(page);
4661 out_ptl:
4662         spin_unlock(ptl);
4663
4664         if (pagecache_page) {
4665                 unlock_page(pagecache_page);
4666                 put_page(pagecache_page);
4667         }
4668 out_mutex:
4669         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4670         i_mmap_unlock_read(mapping);
4671         /*
4672          * Generally it's safe to hold refcount during waiting page lock. But
4673          * here we just wait to defer the next page fault to avoid busy loop and
4674          * the page is not used after unlocked before returning from the current
4675          * page fault. So we are safe from accessing freed page, even if we wait
4676          * here without taking refcount.
4677          */
4678         if (need_wait_lock)
4679                 wait_on_page_locked(page);
4680         return ret;
4681 }
4682
4683 /*
4684  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4685  * modifications for huge pages.
4686  */
4687 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4688                             pte_t *dst_pte,
4689                             struct vm_area_struct *dst_vma,
4690                             unsigned long dst_addr,
4691                             unsigned long src_addr,
4692                             struct page **pagep)
4693 {
4694         struct address_space *mapping;
4695         pgoff_t idx;
4696         unsigned long size;
4697         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4698         struct hstate *h = hstate_vma(dst_vma);
4699         pte_t _dst_pte;
4700         spinlock_t *ptl;
4701         int ret;
4702         struct page *page;
4703
4704         if (!*pagep) {
4705                 /* If a page already exists, then it's UFFDIO_COPY for
4706                  * a non-missing case. Return -EEXIST.
4707                  */
4708                 if (vm_shared &&
4709                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4710                         ret = -EEXIST;
4711                         goto out;
4712                 }
4713
4714                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4715                 if (IS_ERR(page)) {
4716                         ret = -ENOMEM;
4717                         goto out;
4718                 }
4719
4720                 ret = copy_huge_page_from_user(page,
4721                                                 (const void __user *) src_addr,
4722                                                 pages_per_huge_page(h), false);
4723
4724                 /* fallback to copy_from_user outside mmap_lock */
4725                 if (unlikely(ret)) {
4726                         ret = -ENOENT;
4727                         *pagep = page;
4728                         /* don't free the page */
4729                         goto out;
4730                 }
4731         } else {
4732                 page = *pagep;
4733                 *pagep = NULL;
4734         }
4735
4736         /*
4737          * The memory barrier inside __SetPageUptodate makes sure that
4738          * preceding stores to the page contents become visible before
4739          * the set_pte_at() write.
4740          */
4741         __SetPageUptodate(page);
4742
4743         mapping = dst_vma->vm_file->f_mapping;
4744         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4745
4746         /*
4747          * If shared, add to page cache
4748          */
4749         if (vm_shared) {
4750                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4751                 ret = -EFAULT;
4752                 if (idx >= size)
4753                         goto out_release_nounlock;
4754
4755                 /*
4756                  * Serialization between remove_inode_hugepages() and
4757                  * huge_add_to_page_cache() below happens through the
4758                  * hugetlb_fault_mutex_table that here must be hold by
4759                  * the caller.
4760                  */
4761                 ret = huge_add_to_page_cache(page, mapping, idx);
4762                 if (ret)
4763                         goto out_release_nounlock;
4764         }
4765
4766         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4767         spin_lock(ptl);
4768
4769         /*
4770          * Recheck the i_size after holding PT lock to make sure not
4771          * to leave any page mapped (as page_mapped()) beyond the end
4772          * of the i_size (remove_inode_hugepages() is strict about
4773          * enforcing that). If we bail out here, we'll also leave a
4774          * page in the radix tree in the vm_shared case beyond the end
4775          * of the i_size, but remove_inode_hugepages() will take care
4776          * of it as soon as we drop the hugetlb_fault_mutex_table.
4777          */
4778         size = i_size_read(mapping->host) >> huge_page_shift(h);
4779         ret = -EFAULT;
4780         if (idx >= size)
4781                 goto out_release_unlock;
4782
4783         ret = -EEXIST;
4784         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4785                 goto out_release_unlock;
4786
4787         if (vm_shared) {
4788                 page_dup_rmap(page, true);
4789         } else {
4790                 ClearPagePrivate(page);
4791                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4792         }
4793
4794         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4795         if (dst_vma->vm_flags & VM_WRITE)
4796                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4797         _dst_pte = pte_mkyoung(_dst_pte);
4798
4799         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4800
4801         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4802                                         dst_vma->vm_flags & VM_WRITE);
4803         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4804
4805         /* No need to invalidate - it was non-present before */
4806         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4807
4808         spin_unlock(ptl);
4809         set_page_huge_active(page);
4810         if (vm_shared)
4811                 unlock_page(page);
4812         ret = 0;
4813 out:
4814         return ret;
4815 out_release_unlock:
4816         spin_unlock(ptl);
4817         if (vm_shared)
4818                 unlock_page(page);
4819 out_release_nounlock:
4820         put_page(page);
4821         goto out;
4822 }
4823
4824 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4825                          struct page **pages, struct vm_area_struct **vmas,
4826                          unsigned long *position, unsigned long *nr_pages,
4827                          long i, unsigned int flags, int *locked)
4828 {
4829         unsigned long pfn_offset;
4830         unsigned long vaddr = *position;
4831         unsigned long remainder = *nr_pages;
4832         struct hstate *h = hstate_vma(vma);
4833         int err = -EFAULT;
4834
4835         while (vaddr < vma->vm_end && remainder) {
4836                 pte_t *pte;
4837                 spinlock_t *ptl = NULL;
4838                 int absent;
4839                 struct page *page;
4840
4841                 /*
4842                  * If we have a pending SIGKILL, don't keep faulting pages and
4843                  * potentially allocating memory.
4844                  */
4845                 if (fatal_signal_pending(current)) {
4846                         remainder = 0;
4847                         break;
4848                 }
4849
4850                 /*
4851                  * Some archs (sparc64, sh*) have multiple pte_ts to
4852                  * each hugepage.  We have to make sure we get the
4853                  * first, for the page indexing below to work.
4854                  *
4855                  * Note that page table lock is not held when pte is null.
4856                  */
4857                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4858                                       huge_page_size(h));
4859                 if (pte)
4860                         ptl = huge_pte_lock(h, mm, pte);
4861                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4862
4863                 /*
4864                  * When coredumping, it suits get_dump_page if we just return
4865                  * an error where there's an empty slot with no huge pagecache
4866                  * to back it.  This way, we avoid allocating a hugepage, and
4867                  * the sparse dumpfile avoids allocating disk blocks, but its
4868                  * huge holes still show up with zeroes where they need to be.
4869                  */
4870                 if (absent && (flags & FOLL_DUMP) &&
4871                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4872                         if (pte)
4873                                 spin_unlock(ptl);
4874                         remainder = 0;
4875                         break;
4876                 }
4877
4878                 /*
4879                  * We need call hugetlb_fault for both hugepages under migration
4880                  * (in which case hugetlb_fault waits for the migration,) and
4881                  * hwpoisoned hugepages (in which case we need to prevent the
4882                  * caller from accessing to them.) In order to do this, we use
4883                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4884                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4885                  * both cases, and because we can't follow correct pages
4886                  * directly from any kind of swap entries.
4887                  */
4888                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4889                     ((flags & FOLL_WRITE) &&
4890                       !huge_pte_write(huge_ptep_get(pte)))) {
4891                         vm_fault_t ret;
4892                         unsigned int fault_flags = 0;
4893
4894                         if (pte)
4895                                 spin_unlock(ptl);
4896                         if (flags & FOLL_WRITE)
4897                                 fault_flags |= FAULT_FLAG_WRITE;
4898                         if (locked)
4899                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4900                                         FAULT_FLAG_KILLABLE;
4901                         if (flags & FOLL_NOWAIT)
4902                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4903                                         FAULT_FLAG_RETRY_NOWAIT;
4904                         if (flags & FOLL_TRIED) {
4905                                 /*
4906                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4907                                  * FAULT_FLAG_TRIED can co-exist
4908                                  */
4909                                 fault_flags |= FAULT_FLAG_TRIED;
4910                         }
4911                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4912                         if (ret & VM_FAULT_ERROR) {
4913                                 err = vm_fault_to_errno(ret, flags);
4914                                 remainder = 0;
4915                                 break;
4916                         }
4917                         if (ret & VM_FAULT_RETRY) {
4918                                 if (locked &&
4919                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4920                                         *locked = 0;
4921                                 *nr_pages = 0;
4922                                 /*
4923                                  * VM_FAULT_RETRY must not return an
4924                                  * error, it will return zero
4925                                  * instead.
4926                                  *
4927                                  * No need to update "position" as the
4928                                  * caller will not check it after
4929                                  * *nr_pages is set to 0.
4930                                  */
4931                                 return i;
4932                         }
4933                         continue;
4934                 }
4935
4936                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4937                 page = pte_page(huge_ptep_get(pte));
4938
4939                 /*
4940                  * If subpage information not requested, update counters
4941                  * and skip the same_page loop below.
4942                  */
4943                 if (!pages && !vmas && !pfn_offset &&
4944                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4945                     (remainder >= pages_per_huge_page(h))) {
4946                         vaddr += huge_page_size(h);
4947                         remainder -= pages_per_huge_page(h);
4948                         i += pages_per_huge_page(h);
4949                         spin_unlock(ptl);
4950                         continue;
4951                 }
4952
4953 same_page:
4954                 if (pages) {
4955                         pages[i] = mem_map_offset(page, pfn_offset);
4956                         /*
4957                          * try_grab_page() should always succeed here, because:
4958                          * a) we hold the ptl lock, and b) we've just checked
4959                          * that the huge page is present in the page tables. If
4960                          * the huge page is present, then the tail pages must
4961                          * also be present. The ptl prevents the head page and
4962                          * tail pages from being rearranged in any way. So this
4963                          * page must be available at this point, unless the page
4964                          * refcount overflowed:
4965                          */
4966                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4967                                 spin_unlock(ptl);
4968                                 remainder = 0;
4969                                 err = -ENOMEM;
4970                                 break;
4971                         }
4972                 }
4973
4974                 if (vmas)
4975                         vmas[i] = vma;
4976
4977                 vaddr += PAGE_SIZE;
4978                 ++pfn_offset;
4979                 --remainder;
4980                 ++i;
4981                 if (vaddr < vma->vm_end && remainder &&
4982                                 pfn_offset < pages_per_huge_page(h)) {
4983                         /*
4984                          * We use pfn_offset to avoid touching the pageframes
4985                          * of this compound page.
4986                          */
4987                         goto same_page;
4988                 }
4989                 spin_unlock(ptl);
4990         }
4991         *nr_pages = remainder;
4992         /*
4993          * setting position is actually required only if remainder is
4994          * not zero but it's faster not to add a "if (remainder)"
4995          * branch.
4996          */
4997         *position = vaddr;
4998
4999         return i ? i : err;
5000 }
5001
5002 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5003 /*
5004  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5005  * implement this.
5006  */
5007 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5008 #endif
5009
5010 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5011                 unsigned long address, unsigned long end, pgprot_t newprot)
5012 {
5013         struct mm_struct *mm = vma->vm_mm;
5014         unsigned long start = address;
5015         pte_t *ptep;
5016         pte_t pte;
5017         struct hstate *h = hstate_vma(vma);
5018         unsigned long pages = 0;
5019         bool shared_pmd = false;
5020         struct mmu_notifier_range range;
5021
5022         /*
5023          * In the case of shared PMDs, the area to flush could be beyond
5024          * start/end.  Set range.start/range.end to cover the maximum possible
5025          * range if PMD sharing is possible.
5026          */
5027         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5028                                 0, vma, mm, start, end);
5029         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5030
5031         BUG_ON(address >= end);
5032         flush_cache_range(vma, range.start, range.end);
5033
5034         mmu_notifier_invalidate_range_start(&range);
5035         i_mmap_lock_write(vma->vm_file->f_mapping);
5036         for (; address < end; address += huge_page_size(h)) {
5037                 spinlock_t *ptl;
5038                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5039                 if (!ptep)
5040                         continue;
5041                 ptl = huge_pte_lock(h, mm, ptep);
5042                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5043                         pages++;
5044                         spin_unlock(ptl);
5045                         shared_pmd = true;
5046                         continue;
5047                 }
5048                 pte = huge_ptep_get(ptep);
5049                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5050                         spin_unlock(ptl);
5051                         continue;
5052                 }
5053                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5054                         swp_entry_t entry = pte_to_swp_entry(pte);
5055
5056                         if (is_write_migration_entry(entry)) {
5057                                 pte_t newpte;
5058
5059                                 make_migration_entry_read(&entry);
5060                                 newpte = swp_entry_to_pte(entry);
5061                                 set_huge_swap_pte_at(mm, address, ptep,
5062                                                      newpte, huge_page_size(h));
5063                                 pages++;
5064                         }
5065                         spin_unlock(ptl);
5066                         continue;
5067                 }
5068                 if (!huge_pte_none(pte)) {
5069                         pte_t old_pte;
5070
5071                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5072                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5073                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5074                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5075                         pages++;
5076                 }
5077                 spin_unlock(ptl);
5078         }
5079         /*
5080          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5081          * may have cleared our pud entry and done put_page on the page table:
5082          * once we release i_mmap_rwsem, another task can do the final put_page
5083          * and that page table be reused and filled with junk.  If we actually
5084          * did unshare a page of pmds, flush the range corresponding to the pud.
5085          */
5086         if (shared_pmd)
5087                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5088         else
5089                 flush_hugetlb_tlb_range(vma, start, end);
5090         /*
5091          * No need to call mmu_notifier_invalidate_range() we are downgrading
5092          * page table protection not changing it to point to a new page.
5093          *
5094          * See Documentation/vm/mmu_notifier.rst
5095          */
5096         i_mmap_unlock_write(vma->vm_file->f_mapping);
5097         mmu_notifier_invalidate_range_end(&range);
5098
5099         return pages << h->order;
5100 }
5101
5102 int hugetlb_reserve_pages(struct inode *inode,
5103                                         long from, long to,
5104                                         struct vm_area_struct *vma,
5105                                         vm_flags_t vm_flags)
5106 {
5107         long ret, chg, add = -1;
5108         struct hstate *h = hstate_inode(inode);
5109         struct hugepage_subpool *spool = subpool_inode(inode);
5110         struct resv_map *resv_map;
5111         struct hugetlb_cgroup *h_cg = NULL;
5112         long gbl_reserve, regions_needed = 0;
5113
5114         /* This should never happen */
5115         if (from > to) {
5116                 VM_WARN(1, "%s called with a negative range\n", __func__);
5117                 return -EINVAL;
5118         }
5119
5120         /*
5121          * Only apply hugepage reservation if asked. At fault time, an
5122          * attempt will be made for VM_NORESERVE to allocate a page
5123          * without using reserves
5124          */
5125         if (vm_flags & VM_NORESERVE)
5126                 return 0;
5127
5128         /*
5129          * Shared mappings base their reservation on the number of pages that
5130          * are already allocated on behalf of the file. Private mappings need
5131          * to reserve the full area even if read-only as mprotect() may be
5132          * called to make the mapping read-write. Assume !vma is a shm mapping
5133          */
5134         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5135                 /*
5136                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5137                  * called for inodes for which resv_maps were created (see
5138                  * hugetlbfs_get_inode).
5139                  */
5140                 resv_map = inode_resv_map(inode);
5141
5142                 chg = region_chg(resv_map, from, to, &regions_needed);
5143
5144         } else {
5145                 /* Private mapping. */
5146                 resv_map = resv_map_alloc();
5147                 if (!resv_map)
5148                         return -ENOMEM;
5149
5150                 chg = to - from;
5151
5152                 set_vma_resv_map(vma, resv_map);
5153                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5154         }
5155
5156         if (chg < 0) {
5157                 ret = chg;
5158                 goto out_err;
5159         }
5160
5161         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5162                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5163
5164         if (ret < 0) {
5165                 ret = -ENOMEM;
5166                 goto out_err;
5167         }
5168
5169         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5170                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5171                  * of the resv_map.
5172                  */
5173                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5174         }
5175
5176         /*
5177          * There must be enough pages in the subpool for the mapping. If
5178          * the subpool has a minimum size, there may be some global
5179          * reservations already in place (gbl_reserve).
5180          */
5181         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5182         if (gbl_reserve < 0) {
5183                 ret = -ENOSPC;
5184                 goto out_uncharge_cgroup;
5185         }
5186
5187         /*
5188          * Check enough hugepages are available for the reservation.
5189          * Hand the pages back to the subpool if there are not
5190          */
5191         ret = hugetlb_acct_memory(h, gbl_reserve);
5192         if (ret < 0) {
5193                 goto out_put_pages;
5194         }
5195
5196         /*
5197          * Account for the reservations made. Shared mappings record regions
5198          * that have reservations as they are shared by multiple VMAs.
5199          * When the last VMA disappears, the region map says how much
5200          * the reservation was and the page cache tells how much of
5201          * the reservation was consumed. Private mappings are per-VMA and
5202          * only the consumed reservations are tracked. When the VMA
5203          * disappears, the original reservation is the VMA size and the
5204          * consumed reservations are stored in the map. Hence, nothing
5205          * else has to be done for private mappings here
5206          */
5207         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5208                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5209
5210                 if (unlikely(add < 0)) {
5211                         hugetlb_acct_memory(h, -gbl_reserve);
5212                         ret = add;
5213                         goto out_put_pages;
5214                 } else if (unlikely(chg > add)) {
5215                         /*
5216                          * pages in this range were added to the reserve
5217                          * map between region_chg and region_add.  This
5218                          * indicates a race with alloc_huge_page.  Adjust
5219                          * the subpool and reserve counts modified above
5220                          * based on the difference.
5221                          */
5222                         long rsv_adjust;
5223
5224                         /*
5225                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5226                          * reference to h_cg->css. See comment below for detail.
5227                          */
5228                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5229                                 hstate_index(h),
5230                                 (chg - add) * pages_per_huge_page(h), h_cg);
5231
5232                         rsv_adjust = hugepage_subpool_put_pages(spool,
5233                                                                 chg - add);
5234                         hugetlb_acct_memory(h, -rsv_adjust);
5235                 } else if (h_cg) {
5236                         /*
5237                          * The file_regions will hold their own reference to
5238                          * h_cg->css. So we should release the reference held
5239                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5240                          * done.
5241                          */
5242                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5243                 }
5244         }
5245         return 0;
5246 out_put_pages:
5247         /* put back original number of pages, chg */
5248         (void)hugepage_subpool_put_pages(spool, chg);
5249 out_uncharge_cgroup:
5250         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5251                                             chg * pages_per_huge_page(h), h_cg);
5252 out_err:
5253         if (!vma || vma->vm_flags & VM_MAYSHARE)
5254                 /* Only call region_abort if the region_chg succeeded but the
5255                  * region_add failed or didn't run.
5256                  */
5257                 if (chg >= 0 && add < 0)
5258                         region_abort(resv_map, from, to, regions_needed);
5259         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5260                 kref_put(&resv_map->refs, resv_map_release);
5261         return ret;
5262 }
5263
5264 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5265                                                                 long freed)
5266 {
5267         struct hstate *h = hstate_inode(inode);
5268         struct resv_map *resv_map = inode_resv_map(inode);
5269         long chg = 0;
5270         struct hugepage_subpool *spool = subpool_inode(inode);
5271         long gbl_reserve;
5272
5273         /*
5274          * Since this routine can be called in the evict inode path for all
5275          * hugetlbfs inodes, resv_map could be NULL.
5276          */
5277         if (resv_map) {
5278                 chg = region_del(resv_map, start, end);
5279                 /*
5280                  * region_del() can fail in the rare case where a region
5281                  * must be split and another region descriptor can not be
5282                  * allocated.  If end == LONG_MAX, it will not fail.
5283                  */
5284                 if (chg < 0)
5285                         return chg;
5286         }
5287
5288         spin_lock(&inode->i_lock);
5289         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5290         spin_unlock(&inode->i_lock);
5291
5292         /*
5293          * If the subpool has a minimum size, the number of global
5294          * reservations to be released may be adjusted.
5295          */
5296         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5297         hugetlb_acct_memory(h, -gbl_reserve);
5298
5299         return 0;
5300 }
5301
5302 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5303 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5304                                 struct vm_area_struct *vma,
5305                                 unsigned long addr, pgoff_t idx)
5306 {
5307         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5308                                 svma->vm_start;
5309         unsigned long sbase = saddr & PUD_MASK;
5310         unsigned long s_end = sbase + PUD_SIZE;
5311
5312         /* Allow segments to share if only one is marked locked */
5313         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5314         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5315
5316         /*
5317          * match the virtual addresses, permission and the alignment of the
5318          * page table page.
5319          */
5320         if (pmd_index(addr) != pmd_index(saddr) ||
5321             vm_flags != svm_flags ||
5322             sbase < svma->vm_start || svma->vm_end < s_end)
5323                 return 0;
5324
5325         return saddr;
5326 }
5327
5328 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5329 {
5330         unsigned long base = addr & PUD_MASK;
5331         unsigned long end = base + PUD_SIZE;
5332
5333         /*
5334          * check on proper vm_flags and page table alignment
5335          */
5336         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5337                 return true;
5338         return false;
5339 }
5340
5341 /*
5342  * Determine if start,end range within vma could be mapped by shared pmd.
5343  * If yes, adjust start and end to cover range associated with possible
5344  * shared pmd mappings.
5345  */
5346 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5347                                 unsigned long *start, unsigned long *end)
5348 {
5349         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5350                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5351
5352         /*
5353          * vma need span at least one aligned PUD size and the start,end range
5354          * must at least partialy within it.
5355          */
5356         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5357                 (*end <= v_start) || (*start >= v_end))
5358                 return;
5359
5360         /* Extend the range to be PUD aligned for a worst case scenario */
5361         if (*start > v_start)
5362                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5363
5364         if (*end < v_end)
5365                 *end = ALIGN(*end, PUD_SIZE);
5366 }
5367
5368 /*
5369  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5370  * and returns the corresponding pte. While this is not necessary for the
5371  * !shared pmd case because we can allocate the pmd later as well, it makes the
5372  * code much cleaner.
5373  *
5374  * This routine must be called with i_mmap_rwsem held in at least read mode if
5375  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5376  * table entries associated with the address space.  This is important as we
5377  * are setting up sharing based on existing page table entries (mappings).
5378  *
5379  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5380  * huge_pte_alloc know that sharing is not possible and do not take
5381  * i_mmap_rwsem as a performance optimization.  This is handled by the
5382  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5383  * only required for subsequent processing.
5384  */
5385 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5386 {
5387         struct vm_area_struct *vma = find_vma(mm, addr);
5388         struct address_space *mapping = vma->vm_file->f_mapping;
5389         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5390                         vma->vm_pgoff;
5391         struct vm_area_struct *svma;
5392         unsigned long saddr;
5393         pte_t *spte = NULL;
5394         pte_t *pte;
5395         spinlock_t *ptl;
5396
5397         if (!vma_shareable(vma, addr))
5398                 return (pte_t *)pmd_alloc(mm, pud, addr);
5399
5400         i_mmap_assert_locked(mapping);
5401         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5402                 if (svma == vma)
5403                         continue;
5404
5405                 saddr = page_table_shareable(svma, vma, addr, idx);
5406                 if (saddr) {
5407                         spte = huge_pte_offset(svma->vm_mm, saddr,
5408                                                vma_mmu_pagesize(svma));
5409                         if (spte) {
5410                                 get_page(virt_to_page(spte));
5411                                 break;
5412                         }
5413                 }
5414         }
5415
5416         if (!spte)
5417                 goto out;
5418
5419         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5420         if (pud_none(*pud)) {
5421                 pud_populate(mm, pud,
5422                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5423                 mm_inc_nr_pmds(mm);
5424         } else {
5425                 put_page(virt_to_page(spte));
5426         }
5427         spin_unlock(ptl);
5428 out:
5429         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5430         return pte;
5431 }
5432
5433 /*
5434  * unmap huge page backed by shared pte.
5435  *
5436  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5437  * indicated by page_count > 1, unmap is achieved by clearing pud and
5438  * decrementing the ref count. If count == 1, the pte page is not shared.
5439  *
5440  * Called with page table lock held and i_mmap_rwsem held in write mode.
5441  *
5442  * returns: 1 successfully unmapped a shared pte page
5443  *          0 the underlying pte page is not shared, or it is the last user
5444  */
5445 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5446                                         unsigned long *addr, pte_t *ptep)
5447 {
5448         pgd_t *pgd = pgd_offset(mm, *addr);
5449         p4d_t *p4d = p4d_offset(pgd, *addr);
5450         pud_t *pud = pud_offset(p4d, *addr);
5451
5452         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5453         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5454         if (page_count(virt_to_page(ptep)) == 1)
5455                 return 0;
5456
5457         pud_clear(pud);
5458         put_page(virt_to_page(ptep));
5459         mm_dec_nr_pmds(mm);
5460         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5461         return 1;
5462 }
5463 #define want_pmd_share()        (1)
5464 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5465 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5466 {
5467         return NULL;
5468 }
5469
5470 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5471                                 unsigned long *addr, pte_t *ptep)
5472 {
5473         return 0;
5474 }
5475
5476 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5477                                 unsigned long *start, unsigned long *end)
5478 {
5479 }
5480 #define want_pmd_share()        (0)
5481 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5482
5483 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5484 pte_t *huge_pte_alloc(struct mm_struct *mm,
5485                         unsigned long addr, unsigned long sz)
5486 {
5487         pgd_t *pgd;
5488         p4d_t *p4d;
5489         pud_t *pud;
5490         pte_t *pte = NULL;
5491
5492         pgd = pgd_offset(mm, addr);
5493         p4d = p4d_alloc(mm, pgd, addr);
5494         if (!p4d)
5495                 return NULL;
5496         pud = pud_alloc(mm, p4d, addr);
5497         if (pud) {
5498                 if (sz == PUD_SIZE) {
5499                         pte = (pte_t *)pud;
5500                 } else {
5501                         BUG_ON(sz != PMD_SIZE);
5502                         if (want_pmd_share() && pud_none(*pud))
5503                                 pte = huge_pmd_share(mm, addr, pud);
5504                         else
5505                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5506                 }
5507         }
5508         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5509
5510         return pte;
5511 }
5512
5513 /*
5514  * huge_pte_offset() - Walk the page table to resolve the hugepage
5515  * entry at address @addr
5516  *
5517  * Return: Pointer to page table entry (PUD or PMD) for
5518  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5519  * size @sz doesn't match the hugepage size at this level of the page
5520  * table.
5521  */
5522 pte_t *huge_pte_offset(struct mm_struct *mm,
5523                        unsigned long addr, unsigned long sz)
5524 {
5525         pgd_t *pgd;
5526         p4d_t *p4d;
5527         pud_t *pud;
5528         pmd_t *pmd;
5529
5530         pgd = pgd_offset(mm, addr);
5531         if (!pgd_present(*pgd))
5532                 return NULL;
5533         p4d = p4d_offset(pgd, addr);
5534         if (!p4d_present(*p4d))
5535                 return NULL;
5536
5537         pud = pud_offset(p4d, addr);
5538         if (sz == PUD_SIZE)
5539                 /* must be pud huge, non-present or none */
5540                 return (pte_t *)pud;
5541         if (!pud_present(*pud))
5542                 return NULL;
5543         /* must have a valid entry and size to go further */
5544
5545         pmd = pmd_offset(pud, addr);
5546         /* must be pmd huge, non-present or none */
5547         return (pte_t *)pmd;
5548 }
5549
5550 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5551
5552 /*
5553  * These functions are overwritable if your architecture needs its own
5554  * behavior.
5555  */
5556 struct page * __weak
5557 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5558                               int write)
5559 {
5560         return ERR_PTR(-EINVAL);
5561 }
5562
5563 struct page * __weak
5564 follow_huge_pd(struct vm_area_struct *vma,
5565                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5566 {
5567         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5568         return NULL;
5569 }
5570
5571 struct page * __weak
5572 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5573                 pmd_t *pmd, int flags)
5574 {
5575         struct page *page = NULL;
5576         spinlock_t *ptl;
5577         pte_t pte;
5578
5579         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5580         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5581                          (FOLL_PIN | FOLL_GET)))
5582                 return NULL;
5583
5584 retry:
5585         ptl = pmd_lockptr(mm, pmd);
5586         spin_lock(ptl);
5587         /*
5588          * make sure that the address range covered by this pmd is not
5589          * unmapped from other threads.
5590          */
5591         if (!pmd_huge(*pmd))
5592                 goto out;
5593         pte = huge_ptep_get((pte_t *)pmd);
5594         if (pte_present(pte)) {
5595                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5596                 /*
5597                  * try_grab_page() should always succeed here, because: a) we
5598                  * hold the pmd (ptl) lock, and b) we've just checked that the
5599                  * huge pmd (head) page is present in the page tables. The ptl
5600                  * prevents the head page and tail pages from being rearranged
5601                  * in any way. So this page must be available at this point,
5602                  * unless the page refcount overflowed:
5603                  */
5604                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5605                         page = NULL;
5606                         goto out;
5607                 }
5608         } else {
5609                 if (is_hugetlb_entry_migration(pte)) {
5610                         spin_unlock(ptl);
5611                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5612                         goto retry;
5613                 }
5614                 /*
5615                  * hwpoisoned entry is treated as no_page_table in
5616                  * follow_page_mask().
5617                  */
5618         }
5619 out:
5620         spin_unlock(ptl);
5621         return page;
5622 }
5623
5624 struct page * __weak
5625 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5626                 pud_t *pud, int flags)
5627 {
5628         if (flags & (FOLL_GET | FOLL_PIN))
5629                 return NULL;
5630
5631         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5632 }
5633
5634 struct page * __weak
5635 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5636 {
5637         if (flags & (FOLL_GET | FOLL_PIN))
5638                 return NULL;
5639
5640         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5641 }
5642
5643 bool isolate_huge_page(struct page *page, struct list_head *list)
5644 {
5645         bool ret = true;
5646
5647         spin_lock(&hugetlb_lock);
5648         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5649             !get_page_unless_zero(page)) {
5650                 ret = false;
5651                 goto unlock;
5652         }
5653         clear_page_huge_active(page);
5654         list_move_tail(&page->lru, list);
5655 unlock:
5656         spin_unlock(&hugetlb_lock);
5657         return ret;
5658 }
5659
5660 void putback_active_hugepage(struct page *page)
5661 {
5662         VM_BUG_ON_PAGE(!PageHead(page), page);
5663         spin_lock(&hugetlb_lock);
5664         set_page_huge_active(page);
5665         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5666         spin_unlock(&hugetlb_lock);
5667         put_page(page);
5668 }
5669
5670 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5671 {
5672         struct hstate *h = page_hstate(oldpage);
5673
5674         hugetlb_cgroup_migrate(oldpage, newpage);
5675         set_page_owner_migrate_reason(newpage, reason);
5676
5677         /*
5678          * transfer temporary state of the new huge page. This is
5679          * reverse to other transitions because the newpage is going to
5680          * be final while the old one will be freed so it takes over
5681          * the temporary status.
5682          *
5683          * Also note that we have to transfer the per-node surplus state
5684          * here as well otherwise the global surplus count will not match
5685          * the per-node's.
5686          */
5687         if (PageHugeTemporary(newpage)) {
5688                 int old_nid = page_to_nid(oldpage);
5689                 int new_nid = page_to_nid(newpage);
5690
5691                 SetPageHugeTemporary(oldpage);
5692                 ClearPageHugeTemporary(newpage);
5693
5694                 spin_lock(&hugetlb_lock);
5695                 if (h->surplus_huge_pages_node[old_nid]) {
5696                         h->surplus_huge_pages_node[old_nid]--;
5697                         h->surplus_huge_pages_node[new_nid]++;
5698                 }
5699                 spin_unlock(&hugetlb_lock);
5700         }
5701 }
5702
5703 #ifdef CONFIG_CMA
5704 static bool cma_reserve_called __initdata;
5705
5706 static int __init cmdline_parse_hugetlb_cma(char *p)
5707 {
5708         hugetlb_cma_size = memparse(p, &p);
5709         return 0;
5710 }
5711
5712 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5713
5714 void __init hugetlb_cma_reserve(int order)
5715 {
5716         unsigned long size, reserved, per_node;
5717         int nid;
5718
5719         cma_reserve_called = true;
5720
5721         if (!hugetlb_cma_size)
5722                 return;
5723
5724         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5725                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5726                         (PAGE_SIZE << order) / SZ_1M);
5727                 return;
5728         }
5729
5730         /*
5731          * If 3 GB area is requested on a machine with 4 numa nodes,
5732          * let's allocate 1 GB on first three nodes and ignore the last one.
5733          */
5734         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5735         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5736                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5737
5738         reserved = 0;
5739         for_each_node_state(nid, N_ONLINE) {
5740                 int res;
5741                 char name[CMA_MAX_NAME];
5742
5743                 size = min(per_node, hugetlb_cma_size - reserved);
5744                 size = round_up(size, PAGE_SIZE << order);
5745
5746                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5747                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5748                                                  0, false, name,
5749                                                  &hugetlb_cma[nid], nid);
5750                 if (res) {
5751                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5752                                 res, nid);
5753                         continue;
5754                 }
5755
5756                 reserved += size;
5757                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5758                         size / SZ_1M, nid);
5759
5760                 if (reserved >= hugetlb_cma_size)
5761                         break;
5762         }
5763 }
5764
5765 void __init hugetlb_cma_check(void)
5766 {
5767         if (!hugetlb_cma_size || cma_reserve_called)
5768                 return;
5769
5770         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5771 }
5772
5773 #endif /* CONFIG_CMA */