1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 struct hugepage_subpool *spool;
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 spin_lock_init(&spool->lock);
139 spool->max_hpages = max_hpages;
141 spool->min_hpages = min_hpages;
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 spool->rsv_hpages = min_hpages;
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
159 unlock_or_release_subpool(spool, flags);
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
178 spin_lock_irq(&spool->lock);
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
205 spin_unlock_irq(&spool->lock);
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
224 spin_lock_irqsave(&spool->lock, flags);
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
245 unlock_or_release_subpool(spool, flags);
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 return HUGETLBFS_SB(inode->i_sb)->spool;
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 return subpool_inode(file_inode(vma->vm_file));
261 * hugetlb vma_lock helper routines
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 down_read(&vma_lock->rw_sema);
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 up_read(&vma_lock->rw_sema);
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 down_write(&vma_lock->rw_sema);
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 up_write(&vma_lock->rw_sema);
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 if (!__vma_shareable_lock(vma))
306 return down_write_trylock(&vma_lock->rw_sema);
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 lockdep_assert_held(&vma_lock->rw_sema);
318 void hugetlb_vma_lock_release(struct kref *kref)
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 struct vm_area_struct *vma = vma_lock->vma;
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 __hugetlb_vma_unlock_write_put(vma_lock);
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
353 * Only present in sharable vmas.
355 if (!vma || !__vma_shareable_lock(vma))
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 struct hugetlb_vma_lock *vma_lock;
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
397 vma->vm_private_data = vma_lock;
400 /* Helper that removes a struct file_region from the resv_map cache and returns
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 struct file_region *nrg;
408 VM_BUG_ON(resv->region_cache_count <= 0);
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
423 #ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 struct resv_map *resv,
435 struct file_region *nrg)
437 #ifdef CONFIG_CGROUP_HUGETLB
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 nrg->reservation_counter = NULL;
466 static void put_uncharge_info(struct file_region *rg)
468 #ifdef CONFIG_CGROUP_HUGETLB
474 static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
477 #ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 struct file_region *nrg, *prg;
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
496 put_uncharge_info(rg);
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
508 put_uncharge_info(rg);
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
518 struct file_region *nrg;
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
526 *regions_needed += 1;
532 * Must be called with resv->lock held.
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
567 /* When we find a region that starts beyond our range, we've
570 if (iter->from >= t) {
571 rg = iter->link.prev;
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
584 last_accounted_offset = iter->to;
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601 static int allocate_file_region_entries(struct resv_map *resv,
603 __must_hold(&resv->lock)
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
609 VM_BUG_ON(regions_needed < 0);
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
636 list_add(&trg->link, &allocated_regions);
639 spin_lock(&resv->lock);
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
663 * regions_needed is the out value provided by a previous call to region_chg.
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
672 static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
676 long add = 0, actual_regions_needed = 0;
678 spin_lock(&resv->lock);
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
701 VM_BUG_ON(t - f <= 1);
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 resv->adds_in_progress -= in_regions_needed;
715 spin_unlock(&resv->lock);
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
739 static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
744 spin_lock(&resv->lock);
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
753 if (allocate_file_region_entries(resv, *out_regions_needed))
756 resv->adds_in_progress += *out_regions_needed;
758 spin_unlock(&resv->lock);
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
775 static void region_abort(struct resv_map *resv, long f, long t,
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
798 static long region_del(struct resv_map *resv, long f, long t)
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
821 if (f > rg->from && t < rg->to) { /* Must split region */
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
831 list_del(&nrg->link);
832 resv->region_cache_count--;
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
847 /* New entry for end of split region */
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 INIT_LIST_HEAD(&nrg->link);
855 /* Original entry is trimmed */
858 list_add(&nrg->link, &rg->link);
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
887 spin_unlock(&resv->lock);
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
901 void hugetlb_fix_reserve_counts(struct inode *inode)
903 struct hugepage_subpool *spool = subpool_inode(inode);
905 bool reserved = false;
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
911 if (!hugetlb_acct_memory(h, 1))
913 } else if (!rsv_adjust) {
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
925 static long region_count(struct resv_map *resv, long f, long t)
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
945 chg += seg_to - seg_from;
947 spin_unlock(&resv->lock);
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 return vma_kernel_pagesize(vma);
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
998 #define HPAGE_RESV_OWNER (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 return (unsigned long)vma->vm_private_data;
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1029 vma->vm_private_data = (void *)value;
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1037 #ifdef CONFIG_CGROUP_HUGETLB
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1051 struct resv_map *resv_map_alloc(void)
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 if (!resv_map || !rg) {
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1066 resv_map->adds_in_progress = 0;
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1082 void resv_map_release(struct kref *ref)
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1097 VM_BUG_ON(resv_map->adds_in_progress);
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1122 return inode_resv_map(inode);
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 return (get_vma_private_data(vma) & flag) != 0;
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1175 vma->vm_private_data = NULL;
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1199 struct resv_map *reservations = vma_resv_map(vma);
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1206 hugetlb_dup_vma_private(vma);
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 if (vma->vm_flags & VM_NORESERVE) {
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1244 * Only the process that called mmap() has reserves for
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 int nid = folio_nid(folio);
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1288 struct folio *folio;
1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 lockdep_assert_held(&hugetlb_lock);
1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 if (pin && !folio_is_longterm_pinnable(folio))
1296 if (folio_test_hwpoison(folio))
1299 list_move(&folio->lru, &h->hugepage_activelist);
1300 folio_ref_unfreeze(folio, 1);
1301 folio_clear_hugetlb_freed(folio);
1302 h->free_huge_pages--;
1303 h->free_huge_pages_node[nid]--;
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 int nid, nodemask_t *nmask)
1313 unsigned int cpuset_mems_cookie;
1314 struct zonelist *zonelist;
1317 int node = NUMA_NO_NODE;
1319 zonelist = node_zonelist(nid, gfp_mask);
1322 cpuset_mems_cookie = read_mems_allowed_begin();
1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 struct folio *folio;
1326 if (!cpuset_zone_allowed(zone, gfp_mask))
1329 * no need to ask again on the same node. Pool is node rather than
1332 if (zone_to_nid(zone) == node)
1334 node = zone_to_nid(zone);
1336 folio = dequeue_hugetlb_folio_node_exact(h, node);
1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 static unsigned long available_huge_pages(struct hstate *h)
1348 return h->free_huge_pages - h->resv_huge_pages;
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 struct vm_area_struct *vma,
1353 unsigned long address, int avoid_reserve,
1356 struct folio *folio = NULL;
1357 struct mempolicy *mpol;
1359 nodemask_t *nodemask;
1363 * A child process with MAP_PRIVATE mappings created by their parent
1364 * have no page reserves. This check ensures that reservations are
1365 * not "stolen". The child may still get SIGKILLed
1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1370 /* If reserves cannot be used, ensure enough pages are in the pool */
1371 if (avoid_reserve && !available_huge_pages(h))
1374 gfp_mask = htlb_alloc_mask(h);
1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 if (mpol_is_preferred_many(mpol)) {
1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1381 /* Fallback to all nodes if page==NULL */
1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 folio_set_hugetlb_restore_reserve(folio);
1391 h->resv_huge_pages--;
1394 mpol_cond_put(mpol);
1402 * common helper functions for hstate_next_node_to_{alloc|free}.
1403 * We may have allocated or freed a huge page based on a different
1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405 * be outside of *nodes_allowed. Ensure that we use an allowed
1406 * node for alloc or free.
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 nid = next_node_in(nid, *nodes_allowed);
1411 VM_BUG_ON(nid >= MAX_NUMNODES);
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 if (!node_isset(nid, *nodes_allowed))
1419 nid = next_node_allowed(nid, nodes_allowed);
1424 * returns the previously saved node ["this node"] from which to
1425 * allocate a persistent huge page for the pool and advance the
1426 * next node from which to allocate, handling wrap at end of node
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 nodemask_t *nodes_allowed)
1434 VM_BUG_ON(!nodes_allowed);
1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1443 * helper for remove_pool_huge_page() - return the previously saved
1444 * node ["this node"] from which to free a huge page. Advance the
1445 * next node id whether or not we find a free huge page to free so
1446 * that the next attempt to free addresses the next node.
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 VM_BUG_ON(!nodes_allowed);
1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1461 for (nr_nodes = nodes_weight(*mask); \
1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 unsigned int order, bool demote)
1477 int nr_pages = 1 << order;
1480 atomic_set(&folio->_entire_mapcount, 0);
1481 atomic_set(&folio->_nr_pages_mapped, 0);
1482 atomic_set(&folio->_pincount, 0);
1484 for (i = 1; i < nr_pages; i++) {
1485 p = folio_page(folio, i);
1487 clear_compound_head(p);
1489 set_page_refcounted(p);
1492 folio_set_order(folio, 0);
1493 __folio_clear_head(folio);
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1499 __destroy_compound_gigantic_folio(folio, order, true);
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1506 __destroy_compound_gigantic_folio(folio, order, false);
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1512 * If the page isn't allocated using the cma allocator,
1513 * cma_release() returns false.
1516 int nid = folio_nid(folio);
1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 free_contig_range(folio_pfn(folio), 1 << order);
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 int nid, nodemask_t *nodemask)
1530 unsigned long nr_pages = pages_per_huge_page(h);
1531 if (nid == NUMA_NO_NODE)
1532 nid = numa_mem_id();
1538 if (hugetlb_cma[nid]) {
1539 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 huge_page_order(h), true);
1542 return page_folio(page);
1545 if (!(gfp_mask & __GFP_THISNODE)) {
1546 for_each_node_mask(node, *nodemask) {
1547 if (node == nid || !hugetlb_cma[node])
1550 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 huge_page_order(h), true);
1553 return page_folio(page);
1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 return page ? page_folio(page) : NULL;
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1569 #endif /* CONFIG_CONTIG_ALLOC */
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 int nid, nodemask_t *nodemask)
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 unsigned int order) { }
1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585 * as just a compound page.
1587 * A reference is held on the folio, except in the case of demote.
1589 * Must be called with hugetlb lock held.
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 bool adjust_surplus,
1595 int nid = folio_nid(folio);
1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1600 lockdep_assert_held(&hugetlb_lock);
1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1604 list_del(&folio->lru);
1606 if (folio_test_hugetlb_freed(folio)) {
1607 h->free_huge_pages--;
1608 h->free_huge_pages_node[nid]--;
1610 if (adjust_surplus) {
1611 h->surplus_huge_pages--;
1612 h->surplus_huge_pages_node[nid]--;
1618 * For non-gigantic pages set the destructor to the normal compound
1619 * page dtor. This is needed in case someone takes an additional
1620 * temporary ref to the page, and freeing is delayed until they drop
1623 * For gigantic pages set the destructor to the null dtor. This
1624 * destructor will never be called. Before freeing the gigantic
1625 * page destroy_compound_gigantic_folio will turn the folio into a
1626 * simple group of pages. After this the destructor does not
1629 * This handles the case where more than one ref is held when and
1630 * after update_and_free_hugetlb_folio is called.
1632 * In the case of demote we do not ref count the page as it will soon
1633 * be turned into a page of smaller size.
1636 folio_ref_unfreeze(folio, 1);
1637 if (hstate_is_gigantic(h))
1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1643 h->nr_huge_pages_node[nid]--;
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus)
1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 bool adjust_surplus)
1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 bool adjust_surplus)
1662 int nid = folio_nid(folio);
1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1666 lockdep_assert_held(&hugetlb_lock);
1668 INIT_LIST_HEAD(&folio->lru);
1670 h->nr_huge_pages_node[nid]++;
1672 if (adjust_surplus) {
1673 h->surplus_huge_pages++;
1674 h->surplus_huge_pages_node[nid]++;
1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 folio_change_private(folio, NULL);
1680 * We have to set hugetlb_vmemmap_optimized again as above
1681 * folio_change_private(folio, NULL) cleared it.
1683 folio_set_hugetlb_vmemmap_optimized(folio);
1686 * This folio is about to be managed by the hugetlb allocator and
1687 * should have no users. Drop our reference, and check for others
1690 zeroed = folio_put_testzero(folio);
1691 if (unlikely(!zeroed))
1693 * It is VERY unlikely soneone else has taken a ref on
1694 * the page. In this case, we simply return as the
1695 * hugetlb destructor (free_huge_page) will be called
1696 * when this other ref is dropped.
1700 arch_clear_hugepage_flags(&folio->page);
1701 enqueue_hugetlb_folio(h, folio);
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 struct folio *folio)
1708 struct page *subpage;
1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 * If we don't know which subpages are hwpoisoned, we can't free
1715 * the hugepage, so it's leaked intentionally.
1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1720 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 spin_lock_irq(&hugetlb_lock);
1723 * If we cannot allocate vmemmap pages, just refuse to free the
1724 * page and put the page back on the hugetlb free list and treat
1725 * as a surplus page.
1727 add_hugetlb_folio(h, folio, true);
1728 spin_unlock_irq(&hugetlb_lock);
1733 * Move PageHWPoison flag from head page to the raw error pages,
1734 * which makes any healthy subpages reusable.
1736 if (unlikely(folio_test_hwpoison(folio)))
1737 folio_clear_hugetlb_hwpoison(folio);
1739 for (i = 0; i < pages_per_huge_page(h); i++) {
1740 subpage = folio_page(folio, i);
1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 1 << PG_referenced | 1 << PG_dirty |
1743 1 << PG_active | 1 << PG_private |
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 * need to be given back to CMA in free_gigantic_folio.
1751 if (hstate_is_gigantic(h) ||
1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 free_gigantic_folio(folio, huge_page_order(h));
1756 __free_pages(&folio->page, huge_page_order(h));
1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764 * the vmemmap pages.
1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767 * freed and frees them one-by-one. As the page->mapping pointer is going
1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769 * structure of a lockless linked list of huge pages to be freed.
1771 static LLIST_HEAD(hpage_freelist);
1773 static void free_hpage_workfn(struct work_struct *work)
1775 struct llist_node *node;
1777 node = llist_del_all(&hpage_freelist);
1783 page = container_of((struct address_space **)node,
1784 struct page, mapping);
1786 page->mapping = NULL;
1788 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 * is going to trigger because a previous call to
1790 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1794 h = size_to_hstate(page_size(page));
1796 __update_and_free_hugetlb_folio(h, page_folio(page));
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803 static inline void flush_free_hpage_work(struct hstate *h)
1805 if (hugetlb_vmemmap_optimizable(h))
1806 flush_work(&free_hpage_work);
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 __update_and_free_hugetlb_folio(h, folio);
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 schedule_work(&free_hpage_work);
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1830 struct page *page, *t_page;
1831 struct folio *folio;
1833 list_for_each_entry_safe(page, t_page, list, lru) {
1834 folio = page_folio(page);
1835 update_and_free_hugetlb_folio(h, folio, false);
1840 struct hstate *size_to_hstate(unsigned long size)
1844 for_each_hstate(h) {
1845 if (huge_page_size(h) == size)
1851 void free_huge_page(struct page *page)
1854 * Can't pass hstate in here because it is called from the
1855 * compound page destructor.
1857 struct folio *folio = page_folio(page);
1858 struct hstate *h = folio_hstate(folio);
1859 int nid = folio_nid(folio);
1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 bool restore_reserve;
1862 unsigned long flags;
1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1867 hugetlb_set_folio_subpool(folio, NULL);
1868 if (folio_test_anon(folio))
1869 __ClearPageAnonExclusive(&folio->page);
1870 folio->mapping = NULL;
1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 folio_clear_hugetlb_restore_reserve(folio);
1875 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 * reservation. If the page was associated with a subpool, there
1877 * would have been a page reserved in the subpool before allocation
1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1879 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 * remove the reserved page from the subpool.
1882 if (!restore_reserve) {
1884 * A return code of zero implies that the subpool will be
1885 * under its minimum size if the reservation is not restored
1886 * after page is free. Therefore, force restore_reserve
1889 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 restore_reserve = true;
1893 spin_lock_irqsave(&hugetlb_lock, flags);
1894 folio_clear_hugetlb_migratable(folio);
1895 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 pages_per_huge_page(h), folio);
1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 pages_per_huge_page(h), folio);
1899 if (restore_reserve)
1900 h->resv_huge_pages++;
1902 if (folio_test_hugetlb_temporary(folio)) {
1903 remove_hugetlb_folio(h, folio, false);
1904 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 update_and_free_hugetlb_folio(h, folio, true);
1906 } else if (h->surplus_huge_pages_node[nid]) {
1907 /* remove the page from active list */
1908 remove_hugetlb_folio(h, folio, true);
1909 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 update_and_free_hugetlb_folio(h, folio, true);
1912 arch_clear_hugepage_flags(page);
1913 enqueue_hugetlb_folio(h, folio);
1914 spin_unlock_irqrestore(&hugetlb_lock, flags);
1919 * Must be called with the hugetlb lock held
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1923 lockdep_assert_held(&hugetlb_lock);
1925 h->nr_huge_pages_node[nid]++;
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1930 hugetlb_vmemmap_optimize(h, &folio->page);
1931 INIT_LIST_HEAD(&folio->lru);
1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 hugetlb_set_folio_subpool(folio, NULL);
1934 set_hugetlb_cgroup(folio, NULL);
1935 set_hugetlb_cgroup_rsvd(folio, NULL);
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1940 __prep_new_hugetlb_folio(h, folio);
1941 spin_lock_irq(&hugetlb_lock);
1942 __prep_account_new_huge_page(h, nid);
1943 spin_unlock_irq(&hugetlb_lock);
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 unsigned int order, bool demote)
1950 int nr_pages = 1 << order;
1953 __folio_clear_reserved(folio);
1954 __folio_set_head(folio);
1955 /* we rely on prep_new_hugetlb_folio to set the destructor */
1956 folio_set_order(folio, order);
1957 for (i = 0; i < nr_pages; i++) {
1958 p = folio_page(folio, i);
1961 * For gigantic hugepages allocated through bootmem at
1962 * boot, it's safer to be consistent with the not-gigantic
1963 * hugepages and clear the PG_reserved bit from all tail pages
1964 * too. Otherwise drivers using get_user_pages() to access tail
1965 * pages may get the reference counting wrong if they see
1966 * PG_reserved set on a tail page (despite the head page not
1967 * having PG_reserved set). Enforcing this consistency between
1968 * head and tail pages allows drivers to optimize away a check
1969 * on the head page when they need know if put_page() is needed
1970 * after get_user_pages().
1972 if (i != 0) /* head page cleared above */
1973 __ClearPageReserved(p);
1975 * Subtle and very unlikely
1977 * Gigantic 'page allocators' such as memblock or cma will
1978 * return a set of pages with each page ref counted. We need
1979 * to turn this set of pages into a compound page with tail
1980 * page ref counts set to zero. Code such as speculative page
1981 * cache adding could take a ref on a 'to be' tail page.
1982 * We need to respect any increased ref count, and only set
1983 * the ref count to zero if count is currently 1. If count
1984 * is not 1, we return an error. An error return indicates
1985 * the set of pages can not be converted to a gigantic page.
1986 * The caller who allocated the pages should then discard the
1987 * pages using the appropriate free interface.
1989 * In the case of demote, the ref count will be zero.
1992 if (!page_ref_freeze(p, 1)) {
1993 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 VM_BUG_ON_PAGE(page_count(p), p);
2000 set_compound_head(p, &folio->page);
2002 atomic_set(&folio->_entire_mapcount, -1);
2003 atomic_set(&folio->_nr_pages_mapped, 0);
2004 atomic_set(&folio->_pincount, 0);
2008 /* undo page modifications made above */
2009 for (j = 0; j < i; j++) {
2010 p = folio_page(folio, j);
2012 clear_compound_head(p);
2013 set_page_refcounted(p);
2015 /* need to clear PG_reserved on remaining tail pages */
2016 for (; j < nr_pages; j++) {
2017 p = folio_page(folio, j);
2018 __ClearPageReserved(p);
2020 folio_set_order(folio, 0);
2021 __folio_clear_head(folio);
2025 static bool prep_compound_gigantic_folio(struct folio *folio,
2028 return __prep_compound_gigantic_folio(folio, order, false);
2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2034 return __prep_compound_gigantic_folio(folio, order, true);
2038 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039 * transparent huge pages. See the PageTransHuge() documentation for more
2042 int PageHuge(struct page *page)
2044 struct folio *folio;
2046 if (!PageCompound(page))
2048 folio = page_folio(page);
2049 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2051 EXPORT_SYMBOL_GPL(PageHuge);
2054 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2055 * @folio: The folio to test.
2057 * Context: Any context. Caller should have a reference on the folio to
2058 * prevent it from being turned into a tail page.
2059 * Return: True for hugetlbfs folios, false for anon folios or folios
2060 * belonging to other filesystems.
2062 bool folio_test_hugetlb(struct folio *folio)
2064 if (!folio_test_large(folio))
2067 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2069 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2072 * Find and lock address space (mapping) in write mode.
2074 * Upon entry, the page is locked which means that page_mapping() is
2075 * stable. Due to locking order, we can only trylock_write. If we can
2076 * not get the lock, simply return NULL to caller.
2078 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2080 struct address_space *mapping = page_mapping(hpage);
2085 if (i_mmap_trylock_write(mapping))
2091 pgoff_t hugetlb_basepage_index(struct page *page)
2093 struct page *page_head = compound_head(page);
2094 pgoff_t index = page_index(page_head);
2095 unsigned long compound_idx;
2097 if (compound_order(page_head) > MAX_ORDER)
2098 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2100 compound_idx = page - page_head;
2102 return (index << compound_order(page_head)) + compound_idx;
2105 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2106 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2107 nodemask_t *node_alloc_noretry)
2109 int order = huge_page_order(h);
2111 bool alloc_try_hard = true;
2115 * By default we always try hard to allocate the page with
2116 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2117 * a loop (to adjust global huge page counts) and previous allocation
2118 * failed, do not continue to try hard on the same node. Use the
2119 * node_alloc_noretry bitmap to manage this state information.
2121 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2122 alloc_try_hard = false;
2123 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2125 gfp_mask |= __GFP_RETRY_MAYFAIL;
2126 if (nid == NUMA_NO_NODE)
2127 nid = numa_mem_id();
2129 page = __alloc_pages(gfp_mask, order, nid, nmask);
2131 /* Freeze head page */
2132 if (page && !page_ref_freeze(page, 1)) {
2133 __free_pages(page, order);
2134 if (retry) { /* retry once */
2138 /* WOW! twice in a row. */
2139 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2144 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2145 * indicates an overall state change. Clear bit so that we resume
2146 * normal 'try hard' allocations.
2148 if (node_alloc_noretry && page && !alloc_try_hard)
2149 node_clear(nid, *node_alloc_noretry);
2152 * If we tried hard to get a page but failed, set bit so that
2153 * subsequent attempts will not try as hard until there is an
2154 * overall state change.
2156 if (node_alloc_noretry && !page && alloc_try_hard)
2157 node_set(nid, *node_alloc_noretry);
2160 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2164 __count_vm_event(HTLB_BUDDY_PGALLOC);
2165 return page_folio(page);
2169 * Common helper to allocate a fresh hugetlb page. All specific allocators
2170 * should use this function to get new hugetlb pages
2172 * Note that returned page is 'frozen': ref count of head page and all tail
2175 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2176 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177 nodemask_t *node_alloc_noretry)
2179 struct folio *folio;
2183 if (hstate_is_gigantic(h))
2184 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2186 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2187 nid, nmask, node_alloc_noretry);
2190 if (hstate_is_gigantic(h)) {
2191 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2193 * Rare failure to convert pages to compound page.
2194 * Free pages and try again - ONCE!
2196 free_gigantic_folio(folio, huge_page_order(h));
2204 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2210 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2213 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2214 nodemask_t *node_alloc_noretry)
2216 struct folio *folio;
2218 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2220 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2221 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2222 nodes_allowed, node_alloc_noretry);
2224 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2233 * Remove huge page from pool from next node to free. Attempt to keep
2234 * persistent huge pages more or less balanced over allowed nodes.
2235 * This routine only 'removes' the hugetlb page. The caller must make
2236 * an additional call to free the page to low level allocators.
2237 * Called with hugetlb_lock locked.
2239 static struct page *remove_pool_huge_page(struct hstate *h,
2240 nodemask_t *nodes_allowed,
2244 struct page *page = NULL;
2245 struct folio *folio;
2247 lockdep_assert_held(&hugetlb_lock);
2248 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2250 * If we're returning unused surplus pages, only examine
2251 * nodes with surplus pages.
2253 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2254 !list_empty(&h->hugepage_freelists[node])) {
2255 page = list_entry(h->hugepage_freelists[node].next,
2257 folio = page_folio(page);
2258 remove_hugetlb_folio(h, folio, acct_surplus);
2267 * Dissolve a given free hugepage into free buddy pages. This function does
2268 * nothing for in-use hugepages and non-hugepages.
2269 * This function returns values like below:
2271 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2272 * when the system is under memory pressure and the feature of
2273 * freeing unused vmemmap pages associated with each hugetlb page
2275 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2276 * (allocated or reserved.)
2277 * 0: successfully dissolved free hugepages or the page is not a
2278 * hugepage (considered as already dissolved)
2280 int dissolve_free_huge_page(struct page *page)
2283 struct folio *folio = page_folio(page);
2286 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2287 if (!folio_test_hugetlb(folio))
2290 spin_lock_irq(&hugetlb_lock);
2291 if (!folio_test_hugetlb(folio)) {
2296 if (!folio_ref_count(folio)) {
2297 struct hstate *h = folio_hstate(folio);
2298 if (!available_huge_pages(h))
2302 * We should make sure that the page is already on the free list
2303 * when it is dissolved.
2305 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2306 spin_unlock_irq(&hugetlb_lock);
2310 * Theoretically, we should return -EBUSY when we
2311 * encounter this race. In fact, we have a chance
2312 * to successfully dissolve the page if we do a
2313 * retry. Because the race window is quite small.
2314 * If we seize this opportunity, it is an optimization
2315 * for increasing the success rate of dissolving page.
2320 remove_hugetlb_folio(h, folio, false);
2321 h->max_huge_pages--;
2322 spin_unlock_irq(&hugetlb_lock);
2325 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2326 * before freeing the page. update_and_free_hugtlb_folio will fail to
2327 * free the page if it can not allocate required vmemmap. We
2328 * need to adjust max_huge_pages if the page is not freed.
2329 * Attempt to allocate vmemmmap here so that we can take
2330 * appropriate action on failure.
2332 rc = hugetlb_vmemmap_restore(h, &folio->page);
2334 update_and_free_hugetlb_folio(h, folio, false);
2336 spin_lock_irq(&hugetlb_lock);
2337 add_hugetlb_folio(h, folio, false);
2338 h->max_huge_pages++;
2339 spin_unlock_irq(&hugetlb_lock);
2345 spin_unlock_irq(&hugetlb_lock);
2350 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2351 * make specified memory blocks removable from the system.
2352 * Note that this will dissolve a free gigantic hugepage completely, if any
2353 * part of it lies within the given range.
2354 * Also note that if dissolve_free_huge_page() returns with an error, all
2355 * free hugepages that were dissolved before that error are lost.
2357 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2365 if (!hugepages_supported())
2368 order = huge_page_order(&default_hstate);
2370 order = min(order, huge_page_order(h));
2372 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2373 page = pfn_to_page(pfn);
2374 rc = dissolve_free_huge_page(page);
2383 * Allocates a fresh surplus page from the page allocator.
2385 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2386 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2388 struct folio *folio = NULL;
2390 if (hstate_is_gigantic(h))
2393 spin_lock_irq(&hugetlb_lock);
2394 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2396 spin_unlock_irq(&hugetlb_lock);
2398 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2402 spin_lock_irq(&hugetlb_lock);
2404 * We could have raced with the pool size change.
2405 * Double check that and simply deallocate the new page
2406 * if we would end up overcommiting the surpluses. Abuse
2407 * temporary page to workaround the nasty free_huge_page
2410 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2411 folio_set_hugetlb_temporary(folio);
2412 spin_unlock_irq(&hugetlb_lock);
2413 free_huge_page(&folio->page);
2417 h->surplus_huge_pages++;
2418 h->surplus_huge_pages_node[folio_nid(folio)]++;
2421 spin_unlock_irq(&hugetlb_lock);
2426 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2427 int nid, nodemask_t *nmask)
2429 struct folio *folio;
2431 if (hstate_is_gigantic(h))
2434 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2438 /* fresh huge pages are frozen */
2439 folio_ref_unfreeze(folio, 1);
2441 * We do not account these pages as surplus because they are only
2442 * temporary and will be released properly on the last reference
2444 folio_set_hugetlb_temporary(folio);
2450 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2453 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2454 struct vm_area_struct *vma, unsigned long addr)
2456 struct folio *folio = NULL;
2457 struct mempolicy *mpol;
2458 gfp_t gfp_mask = htlb_alloc_mask(h);
2460 nodemask_t *nodemask;
2462 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2463 if (mpol_is_preferred_many(mpol)) {
2464 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2466 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2467 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2469 /* Fallback to all nodes if page==NULL */
2474 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2475 mpol_cond_put(mpol);
2479 /* folio migration callback function */
2480 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2481 nodemask_t *nmask, gfp_t gfp_mask)
2483 spin_lock_irq(&hugetlb_lock);
2484 if (available_huge_pages(h)) {
2485 struct folio *folio;
2487 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2488 preferred_nid, nmask);
2490 spin_unlock_irq(&hugetlb_lock);
2494 spin_unlock_irq(&hugetlb_lock);
2496 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2499 /* mempolicy aware migration callback */
2500 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2501 unsigned long address)
2503 struct mempolicy *mpol;
2504 nodemask_t *nodemask;
2505 struct folio *folio;
2509 gfp_mask = htlb_alloc_mask(h);
2510 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2511 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2512 mpol_cond_put(mpol);
2518 * Increase the hugetlb pool such that it can accommodate a reservation
2521 static int gather_surplus_pages(struct hstate *h, long delta)
2522 __must_hold(&hugetlb_lock)
2524 LIST_HEAD(surplus_list);
2525 struct folio *folio;
2526 struct page *page, *tmp;
2529 long needed, allocated;
2530 bool alloc_ok = true;
2532 lockdep_assert_held(&hugetlb_lock);
2533 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2535 h->resv_huge_pages += delta;
2543 spin_unlock_irq(&hugetlb_lock);
2544 for (i = 0; i < needed; i++) {
2545 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2546 NUMA_NO_NODE, NULL);
2551 list_add(&folio->lru, &surplus_list);
2557 * After retaking hugetlb_lock, we need to recalculate 'needed'
2558 * because either resv_huge_pages or free_huge_pages may have changed.
2560 spin_lock_irq(&hugetlb_lock);
2561 needed = (h->resv_huge_pages + delta) -
2562 (h->free_huge_pages + allocated);
2567 * We were not able to allocate enough pages to
2568 * satisfy the entire reservation so we free what
2569 * we've allocated so far.
2574 * The surplus_list now contains _at_least_ the number of extra pages
2575 * needed to accommodate the reservation. Add the appropriate number
2576 * of pages to the hugetlb pool and free the extras back to the buddy
2577 * allocator. Commit the entire reservation here to prevent another
2578 * process from stealing the pages as they are added to the pool but
2579 * before they are reserved.
2581 needed += allocated;
2582 h->resv_huge_pages += delta;
2585 /* Free the needed pages to the hugetlb pool */
2586 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2589 /* Add the page to the hugetlb allocator */
2590 enqueue_hugetlb_folio(h, page_folio(page));
2593 spin_unlock_irq(&hugetlb_lock);
2596 * Free unnecessary surplus pages to the buddy allocator.
2597 * Pages have no ref count, call free_huge_page directly.
2599 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2600 free_huge_page(page);
2601 spin_lock_irq(&hugetlb_lock);
2607 * This routine has two main purposes:
2608 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2609 * in unused_resv_pages. This corresponds to the prior adjustments made
2610 * to the associated reservation map.
2611 * 2) Free any unused surplus pages that may have been allocated to satisfy
2612 * the reservation. As many as unused_resv_pages may be freed.
2614 static void return_unused_surplus_pages(struct hstate *h,
2615 unsigned long unused_resv_pages)
2617 unsigned long nr_pages;
2619 LIST_HEAD(page_list);
2621 lockdep_assert_held(&hugetlb_lock);
2622 /* Uncommit the reservation */
2623 h->resv_huge_pages -= unused_resv_pages;
2625 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2629 * Part (or even all) of the reservation could have been backed
2630 * by pre-allocated pages. Only free surplus pages.
2632 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2635 * We want to release as many surplus pages as possible, spread
2636 * evenly across all nodes with memory. Iterate across these nodes
2637 * until we can no longer free unreserved surplus pages. This occurs
2638 * when the nodes with surplus pages have no free pages.
2639 * remove_pool_huge_page() will balance the freed pages across the
2640 * on-line nodes with memory and will handle the hstate accounting.
2642 while (nr_pages--) {
2643 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2647 list_add(&page->lru, &page_list);
2651 spin_unlock_irq(&hugetlb_lock);
2652 update_and_free_pages_bulk(h, &page_list);
2653 spin_lock_irq(&hugetlb_lock);
2658 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2659 * are used by the huge page allocation routines to manage reservations.
2661 * vma_needs_reservation is called to determine if the huge page at addr
2662 * within the vma has an associated reservation. If a reservation is
2663 * needed, the value 1 is returned. The caller is then responsible for
2664 * managing the global reservation and subpool usage counts. After
2665 * the huge page has been allocated, vma_commit_reservation is called
2666 * to add the page to the reservation map. If the page allocation fails,
2667 * the reservation must be ended instead of committed. vma_end_reservation
2668 * is called in such cases.
2670 * In the normal case, vma_commit_reservation returns the same value
2671 * as the preceding vma_needs_reservation call. The only time this
2672 * is not the case is if a reserve map was changed between calls. It
2673 * is the responsibility of the caller to notice the difference and
2674 * take appropriate action.
2676 * vma_add_reservation is used in error paths where a reservation must
2677 * be restored when a newly allocated huge page must be freed. It is
2678 * to be called after calling vma_needs_reservation to determine if a
2679 * reservation exists.
2681 * vma_del_reservation is used in error paths where an entry in the reserve
2682 * map was created during huge page allocation and must be removed. It is to
2683 * be called after calling vma_needs_reservation to determine if a reservation
2686 enum vma_resv_mode {
2693 static long __vma_reservation_common(struct hstate *h,
2694 struct vm_area_struct *vma, unsigned long addr,
2695 enum vma_resv_mode mode)
2697 struct resv_map *resv;
2700 long dummy_out_regions_needed;
2702 resv = vma_resv_map(vma);
2706 idx = vma_hugecache_offset(h, vma, addr);
2708 case VMA_NEEDS_RESV:
2709 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2710 /* We assume that vma_reservation_* routines always operate on
2711 * 1 page, and that adding to resv map a 1 page entry can only
2712 * ever require 1 region.
2714 VM_BUG_ON(dummy_out_regions_needed != 1);
2716 case VMA_COMMIT_RESV:
2717 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2718 /* region_add calls of range 1 should never fail. */
2722 region_abort(resv, idx, idx + 1, 1);
2726 if (vma->vm_flags & VM_MAYSHARE) {
2727 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2728 /* region_add calls of range 1 should never fail. */
2731 region_abort(resv, idx, idx + 1, 1);
2732 ret = region_del(resv, idx, idx + 1);
2736 if (vma->vm_flags & VM_MAYSHARE) {
2737 region_abort(resv, idx, idx + 1, 1);
2738 ret = region_del(resv, idx, idx + 1);
2740 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2741 /* region_add calls of range 1 should never fail. */
2749 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2752 * We know private mapping must have HPAGE_RESV_OWNER set.
2754 * In most cases, reserves always exist for private mappings.
2755 * However, a file associated with mapping could have been
2756 * hole punched or truncated after reserves were consumed.
2757 * As subsequent fault on such a range will not use reserves.
2758 * Subtle - The reserve map for private mappings has the
2759 * opposite meaning than that of shared mappings. If NO
2760 * entry is in the reserve map, it means a reservation exists.
2761 * If an entry exists in the reserve map, it means the
2762 * reservation has already been consumed. As a result, the
2763 * return value of this routine is the opposite of the
2764 * value returned from reserve map manipulation routines above.
2773 static long vma_needs_reservation(struct hstate *h,
2774 struct vm_area_struct *vma, unsigned long addr)
2776 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2779 static long vma_commit_reservation(struct hstate *h,
2780 struct vm_area_struct *vma, unsigned long addr)
2782 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2785 static void vma_end_reservation(struct hstate *h,
2786 struct vm_area_struct *vma, unsigned long addr)
2788 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2791 static long vma_add_reservation(struct hstate *h,
2792 struct vm_area_struct *vma, unsigned long addr)
2794 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2797 static long vma_del_reservation(struct hstate *h,
2798 struct vm_area_struct *vma, unsigned long addr)
2800 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2804 * This routine is called to restore reservation information on error paths.
2805 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2806 * and the hugetlb mutex should remain held when calling this routine.
2808 * It handles two specific cases:
2809 * 1) A reservation was in place and the folio consumed the reservation.
2810 * hugetlb_restore_reserve is set in the folio.
2811 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2812 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2814 * In case 1, free_huge_page later in the error path will increment the
2815 * global reserve count. But, free_huge_page does not have enough context
2816 * to adjust the reservation map. This case deals primarily with private
2817 * mappings. Adjust the reserve map here to be consistent with global
2818 * reserve count adjustments to be made by free_huge_page. Make sure the
2819 * reserve map indicates there is a reservation present.
2821 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2823 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2824 unsigned long address, struct folio *folio)
2826 long rc = vma_needs_reservation(h, vma, address);
2828 if (folio_test_hugetlb_restore_reserve(folio)) {
2829 if (unlikely(rc < 0))
2831 * Rare out of memory condition in reserve map
2832 * manipulation. Clear hugetlb_restore_reserve so
2833 * that global reserve count will not be incremented
2834 * by free_huge_page. This will make it appear
2835 * as though the reservation for this folio was
2836 * consumed. This may prevent the task from
2837 * faulting in the folio at a later time. This
2838 * is better than inconsistent global huge page
2839 * accounting of reserve counts.
2841 folio_clear_hugetlb_restore_reserve(folio);
2843 (void)vma_add_reservation(h, vma, address);
2845 vma_end_reservation(h, vma, address);
2849 * This indicates there is an entry in the reserve map
2850 * not added by alloc_hugetlb_folio. We know it was added
2851 * before the alloc_hugetlb_folio call, otherwise
2852 * hugetlb_restore_reserve would be set on the folio.
2853 * Remove the entry so that a subsequent allocation
2854 * does not consume a reservation.
2856 rc = vma_del_reservation(h, vma, address);
2859 * VERY rare out of memory condition. Since
2860 * we can not delete the entry, set
2861 * hugetlb_restore_reserve so that the reserve
2862 * count will be incremented when the folio
2863 * is freed. This reserve will be consumed
2864 * on a subsequent allocation.
2866 folio_set_hugetlb_restore_reserve(folio);
2867 } else if (rc < 0) {
2869 * Rare out of memory condition from
2870 * vma_needs_reservation call. Memory allocation is
2871 * only attempted if a new entry is needed. Therefore,
2872 * this implies there is not an entry in the
2875 * For shared mappings, no entry in the map indicates
2876 * no reservation. We are done.
2878 if (!(vma->vm_flags & VM_MAYSHARE))
2880 * For private mappings, no entry indicates
2881 * a reservation is present. Since we can
2882 * not add an entry, set hugetlb_restore_reserve
2883 * on the folio so reserve count will be
2884 * incremented when freed. This reserve will
2885 * be consumed on a subsequent allocation.
2887 folio_set_hugetlb_restore_reserve(folio);
2890 * No reservation present, do nothing
2892 vma_end_reservation(h, vma, address);
2897 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2899 * @h: struct hstate old page belongs to
2900 * @old_folio: Old folio to dissolve
2901 * @list: List to isolate the page in case we need to
2902 * Returns 0 on success, otherwise negated error.
2904 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2905 struct folio *old_folio, struct list_head *list)
2907 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2908 int nid = folio_nid(old_folio);
2909 struct folio *new_folio;
2913 * Before dissolving the folio, we need to allocate a new one for the
2914 * pool to remain stable. Here, we allocate the folio and 'prep' it
2915 * by doing everything but actually updating counters and adding to
2916 * the pool. This simplifies and let us do most of the processing
2919 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2922 __prep_new_hugetlb_folio(h, new_folio);
2925 spin_lock_irq(&hugetlb_lock);
2926 if (!folio_test_hugetlb(old_folio)) {
2928 * Freed from under us. Drop new_folio too.
2931 } else if (folio_ref_count(old_folio)) {
2935 * Someone has grabbed the folio, try to isolate it here.
2936 * Fail with -EBUSY if not possible.
2938 spin_unlock_irq(&hugetlb_lock);
2939 isolated = isolate_hugetlb(old_folio, list);
2940 ret = isolated ? 0 : -EBUSY;
2941 spin_lock_irq(&hugetlb_lock);
2943 } else if (!folio_test_hugetlb_freed(old_folio)) {
2945 * Folio's refcount is 0 but it has not been enqueued in the
2946 * freelist yet. Race window is small, so we can succeed here if
2949 spin_unlock_irq(&hugetlb_lock);
2954 * Ok, old_folio is still a genuine free hugepage. Remove it from
2955 * the freelist and decrease the counters. These will be
2956 * incremented again when calling __prep_account_new_huge_page()
2957 * and enqueue_hugetlb_folio() for new_folio. The counters will
2958 * remain stable since this happens under the lock.
2960 remove_hugetlb_folio(h, old_folio, false);
2963 * Ref count on new_folio is already zero as it was dropped
2964 * earlier. It can be directly added to the pool free list.
2966 __prep_account_new_huge_page(h, nid);
2967 enqueue_hugetlb_folio(h, new_folio);
2970 * Folio has been replaced, we can safely free the old one.
2972 spin_unlock_irq(&hugetlb_lock);
2973 update_and_free_hugetlb_folio(h, old_folio, false);
2979 spin_unlock_irq(&hugetlb_lock);
2980 /* Folio has a zero ref count, but needs a ref to be freed */
2981 folio_ref_unfreeze(new_folio, 1);
2982 update_and_free_hugetlb_folio(h, new_folio, false);
2987 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2990 struct folio *folio = page_folio(page);
2994 * The page might have been dissolved from under our feet, so make sure
2995 * to carefully check the state under the lock.
2996 * Return success when racing as if we dissolved the page ourselves.
2998 spin_lock_irq(&hugetlb_lock);
2999 if (folio_test_hugetlb(folio)) {
3000 h = folio_hstate(folio);
3002 spin_unlock_irq(&hugetlb_lock);
3005 spin_unlock_irq(&hugetlb_lock);
3008 * Fence off gigantic pages as there is a cyclic dependency between
3009 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3010 * of bailing out right away without further retrying.
3012 if (hstate_is_gigantic(h))
3015 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3017 else if (!folio_ref_count(folio))
3018 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3023 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3024 unsigned long addr, int avoid_reserve)
3026 struct hugepage_subpool *spool = subpool_vma(vma);
3027 struct hstate *h = hstate_vma(vma);
3028 struct folio *folio;
3029 long map_chg, map_commit;
3032 struct hugetlb_cgroup *h_cg = NULL;
3033 bool deferred_reserve;
3035 idx = hstate_index(h);
3037 * Examine the region/reserve map to determine if the process
3038 * has a reservation for the page to be allocated. A return
3039 * code of zero indicates a reservation exists (no change).
3041 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3043 return ERR_PTR(-ENOMEM);
3046 * Processes that did not create the mapping will have no
3047 * reserves as indicated by the region/reserve map. Check
3048 * that the allocation will not exceed the subpool limit.
3049 * Allocations for MAP_NORESERVE mappings also need to be
3050 * checked against any subpool limit.
3052 if (map_chg || avoid_reserve) {
3053 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3055 vma_end_reservation(h, vma, addr);
3056 return ERR_PTR(-ENOSPC);
3060 * Even though there was no reservation in the region/reserve
3061 * map, there could be reservations associated with the
3062 * subpool that can be used. This would be indicated if the
3063 * return value of hugepage_subpool_get_pages() is zero.
3064 * However, if avoid_reserve is specified we still avoid even
3065 * the subpool reservations.
3071 /* If this allocation is not consuming a reservation, charge it now.
3073 deferred_reserve = map_chg || avoid_reserve;
3074 if (deferred_reserve) {
3075 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3076 idx, pages_per_huge_page(h), &h_cg);
3078 goto out_subpool_put;
3081 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3083 goto out_uncharge_cgroup_reservation;
3085 spin_lock_irq(&hugetlb_lock);
3087 * glb_chg is passed to indicate whether or not a page must be taken
3088 * from the global free pool (global change). gbl_chg == 0 indicates
3089 * a reservation exists for the allocation.
3091 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3093 spin_unlock_irq(&hugetlb_lock);
3094 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3096 goto out_uncharge_cgroup;
3097 spin_lock_irq(&hugetlb_lock);
3098 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3099 folio_set_hugetlb_restore_reserve(folio);
3100 h->resv_huge_pages--;
3102 list_add(&folio->lru, &h->hugepage_activelist);
3103 folio_ref_unfreeze(folio, 1);
3107 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3108 /* If allocation is not consuming a reservation, also store the
3109 * hugetlb_cgroup pointer on the page.
3111 if (deferred_reserve) {
3112 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3116 spin_unlock_irq(&hugetlb_lock);
3118 hugetlb_set_folio_subpool(folio, spool);
3120 map_commit = vma_commit_reservation(h, vma, addr);
3121 if (unlikely(map_chg > map_commit)) {
3123 * The page was added to the reservation map between
3124 * vma_needs_reservation and vma_commit_reservation.
3125 * This indicates a race with hugetlb_reserve_pages.
3126 * Adjust for the subpool count incremented above AND
3127 * in hugetlb_reserve_pages for the same page. Also,
3128 * the reservation count added in hugetlb_reserve_pages
3129 * no longer applies.
3133 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3134 hugetlb_acct_memory(h, -rsv_adjust);
3135 if (deferred_reserve)
3136 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3137 pages_per_huge_page(h), folio);
3141 out_uncharge_cgroup:
3142 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3143 out_uncharge_cgroup_reservation:
3144 if (deferred_reserve)
3145 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3148 if (map_chg || avoid_reserve)
3149 hugepage_subpool_put_pages(spool, 1);
3150 vma_end_reservation(h, vma, addr);
3151 return ERR_PTR(-ENOSPC);
3154 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3155 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3156 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3158 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3161 /* do node specific alloc */
3162 if (nid != NUMA_NO_NODE) {
3163 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3164 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3169 /* allocate from next node when distributing huge pages */
3170 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3171 m = memblock_alloc_try_nid_raw(
3172 huge_page_size(h), huge_page_size(h),
3173 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3175 * Use the beginning of the huge page to store the
3176 * huge_bootmem_page struct (until gather_bootmem
3177 * puts them into the mem_map).
3185 /* Put them into a private list first because mem_map is not up yet */
3186 INIT_LIST_HEAD(&m->list);
3187 list_add(&m->list, &huge_boot_pages);
3193 * Put bootmem huge pages into the standard lists after mem_map is up.
3194 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3196 static void __init gather_bootmem_prealloc(void)
3198 struct huge_bootmem_page *m;
3200 list_for_each_entry(m, &huge_boot_pages, list) {
3201 struct page *page = virt_to_page(m);
3202 struct folio *folio = page_folio(page);
3203 struct hstate *h = m->hstate;
3205 VM_BUG_ON(!hstate_is_gigantic(h));
3206 WARN_ON(folio_ref_count(folio) != 1);
3207 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3208 WARN_ON(folio_test_reserved(folio));
3209 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3210 free_huge_page(page); /* add to the hugepage allocator */
3212 /* VERY unlikely inflated ref count on a tail page */
3213 free_gigantic_folio(folio, huge_page_order(h));
3217 * We need to restore the 'stolen' pages to totalram_pages
3218 * in order to fix confusing memory reports from free(1) and
3219 * other side-effects, like CommitLimit going negative.
3221 adjust_managed_page_count(page, pages_per_huge_page(h));
3225 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3230 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3231 if (hstate_is_gigantic(h)) {
3232 if (!alloc_bootmem_huge_page(h, nid))
3235 struct folio *folio;
3236 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3238 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3239 &node_states[N_MEMORY], NULL);
3242 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3246 if (i == h->max_huge_pages_node[nid])
3249 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3250 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3251 h->max_huge_pages_node[nid], buf, nid, i);
3252 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3253 h->max_huge_pages_node[nid] = i;
3256 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3259 nodemask_t *node_alloc_noretry;
3260 bool node_specific_alloc = false;
3262 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3263 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3264 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3268 /* do node specific alloc */
3269 for_each_online_node(i) {
3270 if (h->max_huge_pages_node[i] > 0) {
3271 hugetlb_hstate_alloc_pages_onenode(h, i);
3272 node_specific_alloc = true;
3276 if (node_specific_alloc)
3279 /* below will do all node balanced alloc */
3280 if (!hstate_is_gigantic(h)) {
3282 * Bit mask controlling how hard we retry per-node allocations.
3283 * Ignore errors as lower level routines can deal with
3284 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3285 * time, we are likely in bigger trouble.
3287 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3290 /* allocations done at boot time */
3291 node_alloc_noretry = NULL;
3294 /* bit mask controlling how hard we retry per-node allocations */
3295 if (node_alloc_noretry)
3296 nodes_clear(*node_alloc_noretry);
3298 for (i = 0; i < h->max_huge_pages; ++i) {
3299 if (hstate_is_gigantic(h)) {
3300 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3302 } else if (!alloc_pool_huge_page(h,
3303 &node_states[N_MEMORY],
3304 node_alloc_noretry))
3308 if (i < h->max_huge_pages) {
3311 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3312 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3313 h->max_huge_pages, buf, i);
3314 h->max_huge_pages = i;
3316 kfree(node_alloc_noretry);
3319 static void __init hugetlb_init_hstates(void)
3321 struct hstate *h, *h2;
3323 for_each_hstate(h) {
3324 /* oversize hugepages were init'ed in early boot */
3325 if (!hstate_is_gigantic(h))
3326 hugetlb_hstate_alloc_pages(h);
3329 * Set demote order for each hstate. Note that
3330 * h->demote_order is initially 0.
3331 * - We can not demote gigantic pages if runtime freeing
3332 * is not supported, so skip this.
3333 * - If CMA allocation is possible, we can not demote
3334 * HUGETLB_PAGE_ORDER or smaller size pages.
3336 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3338 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3340 for_each_hstate(h2) {
3343 if (h2->order < h->order &&
3344 h2->order > h->demote_order)
3345 h->demote_order = h2->order;
3350 static void __init report_hugepages(void)
3354 for_each_hstate(h) {
3357 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3358 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3359 buf, h->free_huge_pages);
3360 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3361 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3365 #ifdef CONFIG_HIGHMEM
3366 static void try_to_free_low(struct hstate *h, unsigned long count,
3367 nodemask_t *nodes_allowed)
3370 LIST_HEAD(page_list);
3372 lockdep_assert_held(&hugetlb_lock);
3373 if (hstate_is_gigantic(h))
3377 * Collect pages to be freed on a list, and free after dropping lock
3379 for_each_node_mask(i, *nodes_allowed) {
3380 struct page *page, *next;
3381 struct list_head *freel = &h->hugepage_freelists[i];
3382 list_for_each_entry_safe(page, next, freel, lru) {
3383 if (count >= h->nr_huge_pages)
3385 if (PageHighMem(page))
3387 remove_hugetlb_folio(h, page_folio(page), false);
3388 list_add(&page->lru, &page_list);
3393 spin_unlock_irq(&hugetlb_lock);
3394 update_and_free_pages_bulk(h, &page_list);
3395 spin_lock_irq(&hugetlb_lock);
3398 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3399 nodemask_t *nodes_allowed)
3405 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3406 * balanced by operating on them in a round-robin fashion.
3407 * Returns 1 if an adjustment was made.
3409 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3414 lockdep_assert_held(&hugetlb_lock);
3415 VM_BUG_ON(delta != -1 && delta != 1);
3418 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3419 if (h->surplus_huge_pages_node[node])
3423 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3424 if (h->surplus_huge_pages_node[node] <
3425 h->nr_huge_pages_node[node])
3432 h->surplus_huge_pages += delta;
3433 h->surplus_huge_pages_node[node] += delta;
3437 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3438 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3439 nodemask_t *nodes_allowed)
3441 unsigned long min_count, ret;
3443 LIST_HEAD(page_list);
3444 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3447 * Bit mask controlling how hard we retry per-node allocations.
3448 * If we can not allocate the bit mask, do not attempt to allocate
3449 * the requested huge pages.
3451 if (node_alloc_noretry)
3452 nodes_clear(*node_alloc_noretry);
3457 * resize_lock mutex prevents concurrent adjustments to number of
3458 * pages in hstate via the proc/sysfs interfaces.
3460 mutex_lock(&h->resize_lock);
3461 flush_free_hpage_work(h);
3462 spin_lock_irq(&hugetlb_lock);
3465 * Check for a node specific request.
3466 * Changing node specific huge page count may require a corresponding
3467 * change to the global count. In any case, the passed node mask
3468 * (nodes_allowed) will restrict alloc/free to the specified node.
3470 if (nid != NUMA_NO_NODE) {
3471 unsigned long old_count = count;
3473 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3475 * User may have specified a large count value which caused the
3476 * above calculation to overflow. In this case, they wanted
3477 * to allocate as many huge pages as possible. Set count to
3478 * largest possible value to align with their intention.
3480 if (count < old_count)
3485 * Gigantic pages runtime allocation depend on the capability for large
3486 * page range allocation.
3487 * If the system does not provide this feature, return an error when
3488 * the user tries to allocate gigantic pages but let the user free the
3489 * boottime allocated gigantic pages.
3491 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3492 if (count > persistent_huge_pages(h)) {
3493 spin_unlock_irq(&hugetlb_lock);
3494 mutex_unlock(&h->resize_lock);
3495 NODEMASK_FREE(node_alloc_noretry);
3498 /* Fall through to decrease pool */
3502 * Increase the pool size
3503 * First take pages out of surplus state. Then make up the
3504 * remaining difference by allocating fresh huge pages.
3506 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3507 * to convert a surplus huge page to a normal huge page. That is
3508 * not critical, though, it just means the overall size of the
3509 * pool might be one hugepage larger than it needs to be, but
3510 * within all the constraints specified by the sysctls.
3512 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3513 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3517 while (count > persistent_huge_pages(h)) {
3519 * If this allocation races such that we no longer need the
3520 * page, free_huge_page will handle it by freeing the page
3521 * and reducing the surplus.
3523 spin_unlock_irq(&hugetlb_lock);
3525 /* yield cpu to avoid soft lockup */
3528 ret = alloc_pool_huge_page(h, nodes_allowed,
3529 node_alloc_noretry);
3530 spin_lock_irq(&hugetlb_lock);
3534 /* Bail for signals. Probably ctrl-c from user */
3535 if (signal_pending(current))
3540 * Decrease the pool size
3541 * First return free pages to the buddy allocator (being careful
3542 * to keep enough around to satisfy reservations). Then place
3543 * pages into surplus state as needed so the pool will shrink
3544 * to the desired size as pages become free.
3546 * By placing pages into the surplus state independent of the
3547 * overcommit value, we are allowing the surplus pool size to
3548 * exceed overcommit. There are few sane options here. Since
3549 * alloc_surplus_hugetlb_folio() is checking the global counter,
3550 * though, we'll note that we're not allowed to exceed surplus
3551 * and won't grow the pool anywhere else. Not until one of the
3552 * sysctls are changed, or the surplus pages go out of use.
3554 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3555 min_count = max(count, min_count);
3556 try_to_free_low(h, min_count, nodes_allowed);
3559 * Collect pages to be removed on list without dropping lock
3561 while (min_count < persistent_huge_pages(h)) {
3562 page = remove_pool_huge_page(h, nodes_allowed, 0);
3566 list_add(&page->lru, &page_list);
3568 /* free the pages after dropping lock */
3569 spin_unlock_irq(&hugetlb_lock);
3570 update_and_free_pages_bulk(h, &page_list);
3571 flush_free_hpage_work(h);
3572 spin_lock_irq(&hugetlb_lock);
3574 while (count < persistent_huge_pages(h)) {
3575 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3579 h->max_huge_pages = persistent_huge_pages(h);
3580 spin_unlock_irq(&hugetlb_lock);
3581 mutex_unlock(&h->resize_lock);
3583 NODEMASK_FREE(node_alloc_noretry);
3588 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3590 int i, nid = folio_nid(folio);
3591 struct hstate *target_hstate;
3592 struct page *subpage;
3593 struct folio *inner_folio;
3596 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3598 remove_hugetlb_folio_for_demote(h, folio, false);
3599 spin_unlock_irq(&hugetlb_lock);
3601 rc = hugetlb_vmemmap_restore(h, &folio->page);
3603 /* Allocation of vmemmmap failed, we can not demote folio */
3604 spin_lock_irq(&hugetlb_lock);
3605 folio_ref_unfreeze(folio, 1);
3606 add_hugetlb_folio(h, folio, false);
3611 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3612 * sizes as it will not ref count folios.
3614 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3617 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3618 * Without the mutex, pages added to target hstate could be marked
3621 * Note that we already hold h->resize_lock. To prevent deadlock,
3622 * use the convention of always taking larger size hstate mutex first.
3624 mutex_lock(&target_hstate->resize_lock);
3625 for (i = 0; i < pages_per_huge_page(h);
3626 i += pages_per_huge_page(target_hstate)) {
3627 subpage = folio_page(folio, i);
3628 inner_folio = page_folio(subpage);
3629 if (hstate_is_gigantic(target_hstate))
3630 prep_compound_gigantic_folio_for_demote(inner_folio,
3631 target_hstate->order);
3633 prep_compound_page(subpage, target_hstate->order);
3634 folio_change_private(inner_folio, NULL);
3635 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3636 free_huge_page(subpage);
3638 mutex_unlock(&target_hstate->resize_lock);
3640 spin_lock_irq(&hugetlb_lock);
3643 * Not absolutely necessary, but for consistency update max_huge_pages
3644 * based on pool changes for the demoted page.
3646 h->max_huge_pages--;
3647 target_hstate->max_huge_pages +=
3648 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3653 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3654 __must_hold(&hugetlb_lock)
3657 struct folio *folio;
3659 lockdep_assert_held(&hugetlb_lock);
3661 /* We should never get here if no demote order */
3662 if (!h->demote_order) {
3663 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3664 return -EINVAL; /* internal error */
3667 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3668 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3669 if (folio_test_hwpoison(folio))
3671 return demote_free_hugetlb_folio(h, folio);
3676 * Only way to get here is if all pages on free lists are poisoned.
3677 * Return -EBUSY so that caller will not retry.
3682 #define HSTATE_ATTR_RO(_name) \
3683 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3685 #define HSTATE_ATTR_WO(_name) \
3686 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3688 #define HSTATE_ATTR(_name) \
3689 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3691 static struct kobject *hugepages_kobj;
3692 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3694 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3696 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3700 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3701 if (hstate_kobjs[i] == kobj) {
3703 *nidp = NUMA_NO_NODE;
3707 return kobj_to_node_hstate(kobj, nidp);
3710 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3711 struct kobj_attribute *attr, char *buf)
3714 unsigned long nr_huge_pages;
3717 h = kobj_to_hstate(kobj, &nid);
3718 if (nid == NUMA_NO_NODE)
3719 nr_huge_pages = h->nr_huge_pages;
3721 nr_huge_pages = h->nr_huge_pages_node[nid];
3723 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3726 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3727 struct hstate *h, int nid,
3728 unsigned long count, size_t len)
3731 nodemask_t nodes_allowed, *n_mask;
3733 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3736 if (nid == NUMA_NO_NODE) {
3738 * global hstate attribute
3740 if (!(obey_mempolicy &&
3741 init_nodemask_of_mempolicy(&nodes_allowed)))
3742 n_mask = &node_states[N_MEMORY];
3744 n_mask = &nodes_allowed;
3747 * Node specific request. count adjustment happens in
3748 * set_max_huge_pages() after acquiring hugetlb_lock.
3750 init_nodemask_of_node(&nodes_allowed, nid);
3751 n_mask = &nodes_allowed;
3754 err = set_max_huge_pages(h, count, nid, n_mask);
3756 return err ? err : len;
3759 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3760 struct kobject *kobj, const char *buf,
3764 unsigned long count;
3768 err = kstrtoul(buf, 10, &count);
3772 h = kobj_to_hstate(kobj, &nid);
3773 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3776 static ssize_t nr_hugepages_show(struct kobject *kobj,
3777 struct kobj_attribute *attr, char *buf)
3779 return nr_hugepages_show_common(kobj, attr, buf);
3782 static ssize_t nr_hugepages_store(struct kobject *kobj,
3783 struct kobj_attribute *attr, const char *buf, size_t len)
3785 return nr_hugepages_store_common(false, kobj, buf, len);
3787 HSTATE_ATTR(nr_hugepages);
3792 * hstate attribute for optionally mempolicy-based constraint on persistent
3793 * huge page alloc/free.
3795 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3796 struct kobj_attribute *attr,
3799 return nr_hugepages_show_common(kobj, attr, buf);
3802 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3803 struct kobj_attribute *attr, const char *buf, size_t len)
3805 return nr_hugepages_store_common(true, kobj, buf, len);
3807 HSTATE_ATTR(nr_hugepages_mempolicy);
3811 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3812 struct kobj_attribute *attr, char *buf)
3814 struct hstate *h = kobj_to_hstate(kobj, NULL);
3815 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3818 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3819 struct kobj_attribute *attr, const char *buf, size_t count)
3822 unsigned long input;
3823 struct hstate *h = kobj_to_hstate(kobj, NULL);
3825 if (hstate_is_gigantic(h))
3828 err = kstrtoul(buf, 10, &input);
3832 spin_lock_irq(&hugetlb_lock);
3833 h->nr_overcommit_huge_pages = input;
3834 spin_unlock_irq(&hugetlb_lock);
3838 HSTATE_ATTR(nr_overcommit_hugepages);
3840 static ssize_t free_hugepages_show(struct kobject *kobj,
3841 struct kobj_attribute *attr, char *buf)
3844 unsigned long free_huge_pages;
3847 h = kobj_to_hstate(kobj, &nid);
3848 if (nid == NUMA_NO_NODE)
3849 free_huge_pages = h->free_huge_pages;
3851 free_huge_pages = h->free_huge_pages_node[nid];
3853 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3855 HSTATE_ATTR_RO(free_hugepages);
3857 static ssize_t resv_hugepages_show(struct kobject *kobj,
3858 struct kobj_attribute *attr, char *buf)
3860 struct hstate *h = kobj_to_hstate(kobj, NULL);
3861 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3863 HSTATE_ATTR_RO(resv_hugepages);
3865 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3866 struct kobj_attribute *attr, char *buf)
3869 unsigned long surplus_huge_pages;
3872 h = kobj_to_hstate(kobj, &nid);
3873 if (nid == NUMA_NO_NODE)
3874 surplus_huge_pages = h->surplus_huge_pages;
3876 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3878 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3880 HSTATE_ATTR_RO(surplus_hugepages);
3882 static ssize_t demote_store(struct kobject *kobj,
3883 struct kobj_attribute *attr, const char *buf, size_t len)
3885 unsigned long nr_demote;
3886 unsigned long nr_available;
3887 nodemask_t nodes_allowed, *n_mask;
3892 err = kstrtoul(buf, 10, &nr_demote);
3895 h = kobj_to_hstate(kobj, &nid);
3897 if (nid != NUMA_NO_NODE) {
3898 init_nodemask_of_node(&nodes_allowed, nid);
3899 n_mask = &nodes_allowed;
3901 n_mask = &node_states[N_MEMORY];
3904 /* Synchronize with other sysfs operations modifying huge pages */
3905 mutex_lock(&h->resize_lock);
3906 spin_lock_irq(&hugetlb_lock);
3910 * Check for available pages to demote each time thorough the
3911 * loop as demote_pool_huge_page will drop hugetlb_lock.
3913 if (nid != NUMA_NO_NODE)
3914 nr_available = h->free_huge_pages_node[nid];
3916 nr_available = h->free_huge_pages;
3917 nr_available -= h->resv_huge_pages;
3921 err = demote_pool_huge_page(h, n_mask);
3928 spin_unlock_irq(&hugetlb_lock);
3929 mutex_unlock(&h->resize_lock);
3935 HSTATE_ATTR_WO(demote);
3937 static ssize_t demote_size_show(struct kobject *kobj,
3938 struct kobj_attribute *attr, char *buf)
3940 struct hstate *h = kobj_to_hstate(kobj, NULL);
3941 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3943 return sysfs_emit(buf, "%lukB\n", demote_size);
3946 static ssize_t demote_size_store(struct kobject *kobj,
3947 struct kobj_attribute *attr,
3948 const char *buf, size_t count)
3950 struct hstate *h, *demote_hstate;
3951 unsigned long demote_size;
3952 unsigned int demote_order;
3954 demote_size = (unsigned long)memparse(buf, NULL);
3956 demote_hstate = size_to_hstate(demote_size);
3959 demote_order = demote_hstate->order;
3960 if (demote_order < HUGETLB_PAGE_ORDER)
3963 /* demote order must be smaller than hstate order */
3964 h = kobj_to_hstate(kobj, NULL);
3965 if (demote_order >= h->order)
3968 /* resize_lock synchronizes access to demote size and writes */
3969 mutex_lock(&h->resize_lock);
3970 h->demote_order = demote_order;
3971 mutex_unlock(&h->resize_lock);
3975 HSTATE_ATTR(demote_size);
3977 static struct attribute *hstate_attrs[] = {
3978 &nr_hugepages_attr.attr,
3979 &nr_overcommit_hugepages_attr.attr,
3980 &free_hugepages_attr.attr,
3981 &resv_hugepages_attr.attr,
3982 &surplus_hugepages_attr.attr,
3984 &nr_hugepages_mempolicy_attr.attr,
3989 static const struct attribute_group hstate_attr_group = {
3990 .attrs = hstate_attrs,
3993 static struct attribute *hstate_demote_attrs[] = {
3994 &demote_size_attr.attr,
3999 static const struct attribute_group hstate_demote_attr_group = {
4000 .attrs = hstate_demote_attrs,
4003 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4004 struct kobject **hstate_kobjs,
4005 const struct attribute_group *hstate_attr_group)
4008 int hi = hstate_index(h);
4010 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4011 if (!hstate_kobjs[hi])
4014 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4016 kobject_put(hstate_kobjs[hi]);
4017 hstate_kobjs[hi] = NULL;
4021 if (h->demote_order) {
4022 retval = sysfs_create_group(hstate_kobjs[hi],
4023 &hstate_demote_attr_group);
4025 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4026 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4027 kobject_put(hstate_kobjs[hi]);
4028 hstate_kobjs[hi] = NULL;
4037 static bool hugetlb_sysfs_initialized __ro_after_init;
4040 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4041 * with node devices in node_devices[] using a parallel array. The array
4042 * index of a node device or _hstate == node id.
4043 * This is here to avoid any static dependency of the node device driver, in
4044 * the base kernel, on the hugetlb module.
4046 struct node_hstate {
4047 struct kobject *hugepages_kobj;
4048 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4050 static struct node_hstate node_hstates[MAX_NUMNODES];
4053 * A subset of global hstate attributes for node devices
4055 static struct attribute *per_node_hstate_attrs[] = {
4056 &nr_hugepages_attr.attr,
4057 &free_hugepages_attr.attr,
4058 &surplus_hugepages_attr.attr,
4062 static const struct attribute_group per_node_hstate_attr_group = {
4063 .attrs = per_node_hstate_attrs,
4067 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4068 * Returns node id via non-NULL nidp.
4070 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4074 for (nid = 0; nid < nr_node_ids; nid++) {
4075 struct node_hstate *nhs = &node_hstates[nid];
4077 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4078 if (nhs->hstate_kobjs[i] == kobj) {
4090 * Unregister hstate attributes from a single node device.
4091 * No-op if no hstate attributes attached.
4093 void hugetlb_unregister_node(struct node *node)
4096 struct node_hstate *nhs = &node_hstates[node->dev.id];
4098 if (!nhs->hugepages_kobj)
4099 return; /* no hstate attributes */
4101 for_each_hstate(h) {
4102 int idx = hstate_index(h);
4103 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4107 if (h->demote_order)
4108 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4109 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4110 kobject_put(hstate_kobj);
4111 nhs->hstate_kobjs[idx] = NULL;
4114 kobject_put(nhs->hugepages_kobj);
4115 nhs->hugepages_kobj = NULL;
4120 * Register hstate attributes for a single node device.
4121 * No-op if attributes already registered.
4123 void hugetlb_register_node(struct node *node)
4126 struct node_hstate *nhs = &node_hstates[node->dev.id];
4129 if (!hugetlb_sysfs_initialized)
4132 if (nhs->hugepages_kobj)
4133 return; /* already allocated */
4135 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4137 if (!nhs->hugepages_kobj)
4140 for_each_hstate(h) {
4141 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4143 &per_node_hstate_attr_group);
4145 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4146 h->name, node->dev.id);
4147 hugetlb_unregister_node(node);
4154 * hugetlb init time: register hstate attributes for all registered node
4155 * devices of nodes that have memory. All on-line nodes should have
4156 * registered their associated device by this time.
4158 static void __init hugetlb_register_all_nodes(void)
4162 for_each_online_node(nid)
4163 hugetlb_register_node(node_devices[nid]);
4165 #else /* !CONFIG_NUMA */
4167 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4175 static void hugetlb_register_all_nodes(void) { }
4180 static void __init hugetlb_cma_check(void);
4182 static inline __init void hugetlb_cma_check(void)
4187 static void __init hugetlb_sysfs_init(void)
4192 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4193 if (!hugepages_kobj)
4196 for_each_hstate(h) {
4197 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4198 hstate_kobjs, &hstate_attr_group);
4200 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4204 hugetlb_sysfs_initialized = true;
4206 hugetlb_register_all_nodes();
4209 #ifdef CONFIG_SYSCTL
4210 static void hugetlb_sysctl_init(void);
4212 static inline void hugetlb_sysctl_init(void) { }
4215 static int __init hugetlb_init(void)
4219 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4222 if (!hugepages_supported()) {
4223 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4224 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4229 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4230 * architectures depend on setup being done here.
4232 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4233 if (!parsed_default_hugepagesz) {
4235 * If we did not parse a default huge page size, set
4236 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4237 * number of huge pages for this default size was implicitly
4238 * specified, set that here as well.
4239 * Note that the implicit setting will overwrite an explicit
4240 * setting. A warning will be printed in this case.
4242 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4243 if (default_hstate_max_huge_pages) {
4244 if (default_hstate.max_huge_pages) {
4247 string_get_size(huge_page_size(&default_hstate),
4248 1, STRING_UNITS_2, buf, 32);
4249 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4250 default_hstate.max_huge_pages, buf);
4251 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4252 default_hstate_max_huge_pages);
4254 default_hstate.max_huge_pages =
4255 default_hstate_max_huge_pages;
4257 for_each_online_node(i)
4258 default_hstate.max_huge_pages_node[i] =
4259 default_hugepages_in_node[i];
4263 hugetlb_cma_check();
4264 hugetlb_init_hstates();
4265 gather_bootmem_prealloc();
4268 hugetlb_sysfs_init();
4269 hugetlb_cgroup_file_init();
4270 hugetlb_sysctl_init();
4273 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4275 num_fault_mutexes = 1;
4277 hugetlb_fault_mutex_table =
4278 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4280 BUG_ON(!hugetlb_fault_mutex_table);
4282 for (i = 0; i < num_fault_mutexes; i++)
4283 mutex_init(&hugetlb_fault_mutex_table[i]);
4286 subsys_initcall(hugetlb_init);
4288 /* Overwritten by architectures with more huge page sizes */
4289 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4291 return size == HPAGE_SIZE;
4294 void __init hugetlb_add_hstate(unsigned int order)
4299 if (size_to_hstate(PAGE_SIZE << order)) {
4302 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4304 h = &hstates[hugetlb_max_hstate++];
4305 mutex_init(&h->resize_lock);
4307 h->mask = ~(huge_page_size(h) - 1);
4308 for (i = 0; i < MAX_NUMNODES; ++i)
4309 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4310 INIT_LIST_HEAD(&h->hugepage_activelist);
4311 h->next_nid_to_alloc = first_memory_node;
4312 h->next_nid_to_free = first_memory_node;
4313 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4314 huge_page_size(h)/SZ_1K);
4319 bool __init __weak hugetlb_node_alloc_supported(void)
4324 static void __init hugepages_clear_pages_in_node(void)
4326 if (!hugetlb_max_hstate) {
4327 default_hstate_max_huge_pages = 0;
4328 memset(default_hugepages_in_node, 0,
4329 sizeof(default_hugepages_in_node));
4331 parsed_hstate->max_huge_pages = 0;
4332 memset(parsed_hstate->max_huge_pages_node, 0,
4333 sizeof(parsed_hstate->max_huge_pages_node));
4338 * hugepages command line processing
4339 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4340 * specification. If not, ignore the hugepages value. hugepages can also
4341 * be the first huge page command line option in which case it implicitly
4342 * specifies the number of huge pages for the default size.
4344 static int __init hugepages_setup(char *s)
4347 static unsigned long *last_mhp;
4348 int node = NUMA_NO_NODE;
4353 if (!parsed_valid_hugepagesz) {
4354 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4355 parsed_valid_hugepagesz = true;
4360 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4361 * yet, so this hugepages= parameter goes to the "default hstate".
4362 * Otherwise, it goes with the previously parsed hugepagesz or
4363 * default_hugepagesz.
4365 else if (!hugetlb_max_hstate)
4366 mhp = &default_hstate_max_huge_pages;
4368 mhp = &parsed_hstate->max_huge_pages;
4370 if (mhp == last_mhp) {
4371 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4377 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4379 /* Parameter is node format */
4380 if (p[count] == ':') {
4381 if (!hugetlb_node_alloc_supported()) {
4382 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4385 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4387 node = array_index_nospec(tmp, MAX_NUMNODES);
4389 /* Parse hugepages */
4390 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4392 if (!hugetlb_max_hstate)
4393 default_hugepages_in_node[node] = tmp;
4395 parsed_hstate->max_huge_pages_node[node] = tmp;
4397 /* Go to parse next node*/
4398 if (p[count] == ',')
4411 * Global state is always initialized later in hugetlb_init.
4412 * But we need to allocate gigantic hstates here early to still
4413 * use the bootmem allocator.
4415 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4416 hugetlb_hstate_alloc_pages(parsed_hstate);
4423 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4424 hugepages_clear_pages_in_node();
4427 __setup("hugepages=", hugepages_setup);
4430 * hugepagesz command line processing
4431 * A specific huge page size can only be specified once with hugepagesz.
4432 * hugepagesz is followed by hugepages on the command line. The global
4433 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4434 * hugepagesz argument was valid.
4436 static int __init hugepagesz_setup(char *s)
4441 parsed_valid_hugepagesz = false;
4442 size = (unsigned long)memparse(s, NULL);
4444 if (!arch_hugetlb_valid_size(size)) {
4445 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4449 h = size_to_hstate(size);
4452 * hstate for this size already exists. This is normally
4453 * an error, but is allowed if the existing hstate is the
4454 * default hstate. More specifically, it is only allowed if
4455 * the number of huge pages for the default hstate was not
4456 * previously specified.
4458 if (!parsed_default_hugepagesz || h != &default_hstate ||
4459 default_hstate.max_huge_pages) {
4460 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4465 * No need to call hugetlb_add_hstate() as hstate already
4466 * exists. But, do set parsed_hstate so that a following
4467 * hugepages= parameter will be applied to this hstate.
4470 parsed_valid_hugepagesz = true;
4474 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4475 parsed_valid_hugepagesz = true;
4478 __setup("hugepagesz=", hugepagesz_setup);
4481 * default_hugepagesz command line input
4482 * Only one instance of default_hugepagesz allowed on command line.
4484 static int __init default_hugepagesz_setup(char *s)
4489 parsed_valid_hugepagesz = false;
4490 if (parsed_default_hugepagesz) {
4491 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4495 size = (unsigned long)memparse(s, NULL);
4497 if (!arch_hugetlb_valid_size(size)) {
4498 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4502 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4503 parsed_valid_hugepagesz = true;
4504 parsed_default_hugepagesz = true;
4505 default_hstate_idx = hstate_index(size_to_hstate(size));
4508 * The number of default huge pages (for this size) could have been
4509 * specified as the first hugetlb parameter: hugepages=X. If so,
4510 * then default_hstate_max_huge_pages is set. If the default huge
4511 * page size is gigantic (> MAX_ORDER), then the pages must be
4512 * allocated here from bootmem allocator.
4514 if (default_hstate_max_huge_pages) {
4515 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4516 for_each_online_node(i)
4517 default_hstate.max_huge_pages_node[i] =
4518 default_hugepages_in_node[i];
4519 if (hstate_is_gigantic(&default_hstate))
4520 hugetlb_hstate_alloc_pages(&default_hstate);
4521 default_hstate_max_huge_pages = 0;
4526 __setup("default_hugepagesz=", default_hugepagesz_setup);
4528 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4531 struct mempolicy *mpol = get_task_policy(current);
4534 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4535 * (from policy_nodemask) specifically for hugetlb case
4537 if (mpol->mode == MPOL_BIND &&
4538 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4539 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4540 return &mpol->nodes;
4545 static unsigned int allowed_mems_nr(struct hstate *h)
4548 unsigned int nr = 0;
4549 nodemask_t *mbind_nodemask;
4550 unsigned int *array = h->free_huge_pages_node;
4551 gfp_t gfp_mask = htlb_alloc_mask(h);
4553 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4554 for_each_node_mask(node, cpuset_current_mems_allowed) {
4555 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4562 #ifdef CONFIG_SYSCTL
4563 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4564 void *buffer, size_t *length,
4565 loff_t *ppos, unsigned long *out)
4567 struct ctl_table dup_table;
4570 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4571 * can duplicate the @table and alter the duplicate of it.
4574 dup_table.data = out;
4576 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4579 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4580 struct ctl_table *table, int write,
4581 void *buffer, size_t *length, loff_t *ppos)
4583 struct hstate *h = &default_hstate;
4584 unsigned long tmp = h->max_huge_pages;
4587 if (!hugepages_supported())
4590 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4596 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4597 NUMA_NO_NODE, tmp, *length);
4602 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4603 void *buffer, size_t *length, loff_t *ppos)
4606 return hugetlb_sysctl_handler_common(false, table, write,
4607 buffer, length, ppos);
4611 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4612 void *buffer, size_t *length, loff_t *ppos)
4614 return hugetlb_sysctl_handler_common(true, table, write,
4615 buffer, length, ppos);
4617 #endif /* CONFIG_NUMA */
4619 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4620 void *buffer, size_t *length, loff_t *ppos)
4622 struct hstate *h = &default_hstate;
4626 if (!hugepages_supported())
4629 tmp = h->nr_overcommit_huge_pages;
4631 if (write && hstate_is_gigantic(h))
4634 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4640 spin_lock_irq(&hugetlb_lock);
4641 h->nr_overcommit_huge_pages = tmp;
4642 spin_unlock_irq(&hugetlb_lock);
4648 static struct ctl_table hugetlb_table[] = {
4650 .procname = "nr_hugepages",
4652 .maxlen = sizeof(unsigned long),
4654 .proc_handler = hugetlb_sysctl_handler,
4658 .procname = "nr_hugepages_mempolicy",
4660 .maxlen = sizeof(unsigned long),
4662 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4666 .procname = "hugetlb_shm_group",
4667 .data = &sysctl_hugetlb_shm_group,
4668 .maxlen = sizeof(gid_t),
4670 .proc_handler = proc_dointvec,
4673 .procname = "nr_overcommit_hugepages",
4675 .maxlen = sizeof(unsigned long),
4677 .proc_handler = hugetlb_overcommit_handler,
4682 static void hugetlb_sysctl_init(void)
4684 register_sysctl_init("vm", hugetlb_table);
4686 #endif /* CONFIG_SYSCTL */
4688 void hugetlb_report_meminfo(struct seq_file *m)
4691 unsigned long total = 0;
4693 if (!hugepages_supported())
4696 for_each_hstate(h) {
4697 unsigned long count = h->nr_huge_pages;
4699 total += huge_page_size(h) * count;
4701 if (h == &default_hstate)
4703 "HugePages_Total: %5lu\n"
4704 "HugePages_Free: %5lu\n"
4705 "HugePages_Rsvd: %5lu\n"
4706 "HugePages_Surp: %5lu\n"
4707 "Hugepagesize: %8lu kB\n",
4711 h->surplus_huge_pages,
4712 huge_page_size(h) / SZ_1K);
4715 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4718 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4720 struct hstate *h = &default_hstate;
4722 if (!hugepages_supported())
4725 return sysfs_emit_at(buf, len,
4726 "Node %d HugePages_Total: %5u\n"
4727 "Node %d HugePages_Free: %5u\n"
4728 "Node %d HugePages_Surp: %5u\n",
4729 nid, h->nr_huge_pages_node[nid],
4730 nid, h->free_huge_pages_node[nid],
4731 nid, h->surplus_huge_pages_node[nid]);
4734 void hugetlb_show_meminfo_node(int nid)
4738 if (!hugepages_supported())
4742 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4744 h->nr_huge_pages_node[nid],
4745 h->free_huge_pages_node[nid],
4746 h->surplus_huge_pages_node[nid],
4747 huge_page_size(h) / SZ_1K);
4750 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4752 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4753 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4756 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4757 unsigned long hugetlb_total_pages(void)
4760 unsigned long nr_total_pages = 0;
4763 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4764 return nr_total_pages;
4767 static int hugetlb_acct_memory(struct hstate *h, long delta)
4774 spin_lock_irq(&hugetlb_lock);
4776 * When cpuset is configured, it breaks the strict hugetlb page
4777 * reservation as the accounting is done on a global variable. Such
4778 * reservation is completely rubbish in the presence of cpuset because
4779 * the reservation is not checked against page availability for the
4780 * current cpuset. Application can still potentially OOM'ed by kernel
4781 * with lack of free htlb page in cpuset that the task is in.
4782 * Attempt to enforce strict accounting with cpuset is almost
4783 * impossible (or too ugly) because cpuset is too fluid that
4784 * task or memory node can be dynamically moved between cpusets.
4786 * The change of semantics for shared hugetlb mapping with cpuset is
4787 * undesirable. However, in order to preserve some of the semantics,
4788 * we fall back to check against current free page availability as
4789 * a best attempt and hopefully to minimize the impact of changing
4790 * semantics that cpuset has.
4792 * Apart from cpuset, we also have memory policy mechanism that
4793 * also determines from which node the kernel will allocate memory
4794 * in a NUMA system. So similar to cpuset, we also should consider
4795 * the memory policy of the current task. Similar to the description
4799 if (gather_surplus_pages(h, delta) < 0)
4802 if (delta > allowed_mems_nr(h)) {
4803 return_unused_surplus_pages(h, delta);
4810 return_unused_surplus_pages(h, (unsigned long) -delta);
4813 spin_unlock_irq(&hugetlb_lock);
4817 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4819 struct resv_map *resv = vma_resv_map(vma);
4822 * HPAGE_RESV_OWNER indicates a private mapping.
4823 * This new VMA should share its siblings reservation map if present.
4824 * The VMA will only ever have a valid reservation map pointer where
4825 * it is being copied for another still existing VMA. As that VMA
4826 * has a reference to the reservation map it cannot disappear until
4827 * after this open call completes. It is therefore safe to take a
4828 * new reference here without additional locking.
4830 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4831 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4832 kref_get(&resv->refs);
4836 * vma_lock structure for sharable mappings is vma specific.
4837 * Clear old pointer (if copied via vm_area_dup) and allocate
4838 * new structure. Before clearing, make sure vma_lock is not
4841 if (vma->vm_flags & VM_MAYSHARE) {
4842 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4845 if (vma_lock->vma != vma) {
4846 vma->vm_private_data = NULL;
4847 hugetlb_vma_lock_alloc(vma);
4849 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4851 hugetlb_vma_lock_alloc(vma);
4855 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4857 struct hstate *h = hstate_vma(vma);
4858 struct resv_map *resv;
4859 struct hugepage_subpool *spool = subpool_vma(vma);
4860 unsigned long reserve, start, end;
4863 hugetlb_vma_lock_free(vma);
4865 resv = vma_resv_map(vma);
4866 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4869 start = vma_hugecache_offset(h, vma, vma->vm_start);
4870 end = vma_hugecache_offset(h, vma, vma->vm_end);
4872 reserve = (end - start) - region_count(resv, start, end);
4873 hugetlb_cgroup_uncharge_counter(resv, start, end);
4876 * Decrement reserve counts. The global reserve count may be
4877 * adjusted if the subpool has a minimum size.
4879 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4880 hugetlb_acct_memory(h, -gbl_reserve);
4883 kref_put(&resv->refs, resv_map_release);
4886 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4888 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4892 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4893 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4894 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4896 if (addr & ~PUD_MASK) {
4898 * hugetlb_vm_op_split is called right before we attempt to
4899 * split the VMA. We will need to unshare PMDs in the old and
4900 * new VMAs, so let's unshare before we split.
4902 unsigned long floor = addr & PUD_MASK;
4903 unsigned long ceil = floor + PUD_SIZE;
4905 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4906 hugetlb_unshare_pmds(vma, floor, ceil);
4912 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4914 return huge_page_size(hstate_vma(vma));
4918 * We cannot handle pagefaults against hugetlb pages at all. They cause
4919 * handle_mm_fault() to try to instantiate regular-sized pages in the
4920 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4923 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4930 * When a new function is introduced to vm_operations_struct and added
4931 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4932 * This is because under System V memory model, mappings created via
4933 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4934 * their original vm_ops are overwritten with shm_vm_ops.
4936 const struct vm_operations_struct hugetlb_vm_ops = {
4937 .fault = hugetlb_vm_op_fault,
4938 .open = hugetlb_vm_op_open,
4939 .close = hugetlb_vm_op_close,
4940 .may_split = hugetlb_vm_op_split,
4941 .pagesize = hugetlb_vm_op_pagesize,
4944 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4948 unsigned int shift = huge_page_shift(hstate_vma(vma));
4951 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4952 vma->vm_page_prot)));
4954 entry = huge_pte_wrprotect(mk_huge_pte(page,
4955 vma->vm_page_prot));
4957 entry = pte_mkyoung(entry);
4958 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4963 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4964 unsigned long address, pte_t *ptep)
4968 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4969 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4970 update_mmu_cache(vma, address, ptep);
4973 bool is_hugetlb_entry_migration(pte_t pte)
4977 if (huge_pte_none(pte) || pte_present(pte))
4979 swp = pte_to_swp_entry(pte);
4980 if (is_migration_entry(swp))
4986 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4990 if (huge_pte_none(pte) || pte_present(pte))
4992 swp = pte_to_swp_entry(pte);
4993 if (is_hwpoison_entry(swp))
5000 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5001 struct folio *new_folio, pte_t old)
5003 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5005 __folio_mark_uptodate(new_folio);
5006 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5007 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5008 newpte = huge_pte_mkuffd_wp(newpte);
5009 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5010 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5011 folio_set_hugetlb_migratable(new_folio);
5014 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5015 struct vm_area_struct *dst_vma,
5016 struct vm_area_struct *src_vma)
5018 pte_t *src_pte, *dst_pte, entry;
5019 struct page *ptepage;
5021 bool cow = is_cow_mapping(src_vma->vm_flags);
5022 struct hstate *h = hstate_vma(src_vma);
5023 unsigned long sz = huge_page_size(h);
5024 unsigned long npages = pages_per_huge_page(h);
5025 struct mmu_notifier_range range;
5026 unsigned long last_addr_mask;
5030 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5033 mmu_notifier_invalidate_range_start(&range);
5034 mmap_assert_write_locked(src);
5035 raw_write_seqcount_begin(&src->write_protect_seq);
5038 * For shared mappings the vma lock must be held before
5039 * calling hugetlb_walk() in the src vma. Otherwise, the
5040 * returned ptep could go away if part of a shared pmd and
5041 * another thread calls huge_pmd_unshare.
5043 hugetlb_vma_lock_read(src_vma);
5046 last_addr_mask = hugetlb_mask_last_page(h);
5047 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5048 spinlock_t *src_ptl, *dst_ptl;
5049 src_pte = hugetlb_walk(src_vma, addr, sz);
5051 addr |= last_addr_mask;
5054 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5061 * If the pagetables are shared don't copy or take references.
5063 * dst_pte == src_pte is the common case of src/dest sharing.
5064 * However, src could have 'unshared' and dst shares with
5065 * another vma. So page_count of ptep page is checked instead
5066 * to reliably determine whether pte is shared.
5068 if (page_count(virt_to_page(dst_pte)) > 1) {
5069 addr |= last_addr_mask;
5073 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5074 src_ptl = huge_pte_lockptr(h, src, src_pte);
5075 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5076 entry = huge_ptep_get(src_pte);
5078 if (huge_pte_none(entry)) {
5080 * Skip if src entry none.
5083 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5084 if (!userfaultfd_wp(dst_vma))
5085 entry = huge_pte_clear_uffd_wp(entry);
5086 set_huge_pte_at(dst, addr, dst_pte, entry);
5087 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5088 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5089 bool uffd_wp = pte_swp_uffd_wp(entry);
5091 if (!is_readable_migration_entry(swp_entry) && cow) {
5093 * COW mappings require pages in both
5094 * parent and child to be set to read.
5096 swp_entry = make_readable_migration_entry(
5097 swp_offset(swp_entry));
5098 entry = swp_entry_to_pte(swp_entry);
5099 if (userfaultfd_wp(src_vma) && uffd_wp)
5100 entry = pte_swp_mkuffd_wp(entry);
5101 set_huge_pte_at(src, addr, src_pte, entry);
5103 if (!userfaultfd_wp(dst_vma))
5104 entry = huge_pte_clear_uffd_wp(entry);
5105 set_huge_pte_at(dst, addr, dst_pte, entry);
5106 } else if (unlikely(is_pte_marker(entry))) {
5107 /* No swap on hugetlb */
5109 is_swapin_error_entry(pte_to_swp_entry(entry)));
5111 * We copy the pte marker only if the dst vma has
5114 if (userfaultfd_wp(dst_vma))
5115 set_huge_pte_at(dst, addr, dst_pte, entry);
5117 entry = huge_ptep_get(src_pte);
5118 ptepage = pte_page(entry);
5122 * Failing to duplicate the anon rmap is a rare case
5123 * where we see pinned hugetlb pages while they're
5124 * prone to COW. We need to do the COW earlier during
5127 * When pre-allocating the page or copying data, we
5128 * need to be without the pgtable locks since we could
5129 * sleep during the process.
5131 if (!PageAnon(ptepage)) {
5132 page_dup_file_rmap(ptepage, true);
5133 } else if (page_try_dup_anon_rmap(ptepage, true,
5135 pte_t src_pte_old = entry;
5136 struct folio *new_folio;
5138 spin_unlock(src_ptl);
5139 spin_unlock(dst_ptl);
5140 /* Do not use reserve as it's private owned */
5141 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5142 if (IS_ERR(new_folio)) {
5144 ret = PTR_ERR(new_folio);
5147 ret = copy_user_large_folio(new_folio,
5148 page_folio(ptepage),
5152 folio_put(new_folio);
5156 /* Install the new hugetlb folio if src pte stable */
5157 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5158 src_ptl = huge_pte_lockptr(h, src, src_pte);
5159 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5160 entry = huge_ptep_get(src_pte);
5161 if (!pte_same(src_pte_old, entry)) {
5162 restore_reserve_on_error(h, dst_vma, addr,
5164 folio_put(new_folio);
5165 /* huge_ptep of dst_pte won't change as in child */
5168 hugetlb_install_folio(dst_vma, dst_pte, addr,
5169 new_folio, src_pte_old);
5170 spin_unlock(src_ptl);
5171 spin_unlock(dst_ptl);
5177 * No need to notify as we are downgrading page
5178 * table protection not changing it to point
5181 * See Documentation/mm/mmu_notifier.rst
5183 huge_ptep_set_wrprotect(src, addr, src_pte);
5184 entry = huge_pte_wrprotect(entry);
5187 if (!userfaultfd_wp(dst_vma))
5188 entry = huge_pte_clear_uffd_wp(entry);
5190 set_huge_pte_at(dst, addr, dst_pte, entry);
5191 hugetlb_count_add(npages, dst);
5193 spin_unlock(src_ptl);
5194 spin_unlock(dst_ptl);
5198 raw_write_seqcount_end(&src->write_protect_seq);
5199 mmu_notifier_invalidate_range_end(&range);
5201 hugetlb_vma_unlock_read(src_vma);
5207 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5208 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5210 struct hstate *h = hstate_vma(vma);
5211 struct mm_struct *mm = vma->vm_mm;
5212 spinlock_t *src_ptl, *dst_ptl;
5215 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5216 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5219 * We don't have to worry about the ordering of src and dst ptlocks
5220 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5222 if (src_ptl != dst_ptl)
5223 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5225 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5226 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5228 if (src_ptl != dst_ptl)
5229 spin_unlock(src_ptl);
5230 spin_unlock(dst_ptl);
5233 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5234 struct vm_area_struct *new_vma,
5235 unsigned long old_addr, unsigned long new_addr,
5238 struct hstate *h = hstate_vma(vma);
5239 struct address_space *mapping = vma->vm_file->f_mapping;
5240 unsigned long sz = huge_page_size(h);
5241 struct mm_struct *mm = vma->vm_mm;
5242 unsigned long old_end = old_addr + len;
5243 unsigned long last_addr_mask;
5244 pte_t *src_pte, *dst_pte;
5245 struct mmu_notifier_range range;
5246 bool shared_pmd = false;
5248 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5250 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5252 * In case of shared PMDs, we should cover the maximum possible
5255 flush_cache_range(vma, range.start, range.end);
5257 mmu_notifier_invalidate_range_start(&range);
5258 last_addr_mask = hugetlb_mask_last_page(h);
5259 /* Prevent race with file truncation */
5260 hugetlb_vma_lock_write(vma);
5261 i_mmap_lock_write(mapping);
5262 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5263 src_pte = hugetlb_walk(vma, old_addr, sz);
5265 old_addr |= last_addr_mask;
5266 new_addr |= last_addr_mask;
5269 if (huge_pte_none(huge_ptep_get(src_pte)))
5272 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5274 old_addr |= last_addr_mask;
5275 new_addr |= last_addr_mask;
5279 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5283 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5287 flush_tlb_range(vma, range.start, range.end);
5289 flush_tlb_range(vma, old_end - len, old_end);
5290 mmu_notifier_invalidate_range_end(&range);
5291 i_mmap_unlock_write(mapping);
5292 hugetlb_vma_unlock_write(vma);
5294 return len + old_addr - old_end;
5297 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5298 unsigned long start, unsigned long end,
5299 struct page *ref_page, zap_flags_t zap_flags)
5301 struct mm_struct *mm = vma->vm_mm;
5302 unsigned long address;
5307 struct hstate *h = hstate_vma(vma);
5308 unsigned long sz = huge_page_size(h);
5309 unsigned long last_addr_mask;
5310 bool force_flush = false;
5312 WARN_ON(!is_vm_hugetlb_page(vma));
5313 BUG_ON(start & ~huge_page_mask(h));
5314 BUG_ON(end & ~huge_page_mask(h));
5317 * This is a hugetlb vma, all the pte entries should point
5320 tlb_change_page_size(tlb, sz);
5321 tlb_start_vma(tlb, vma);
5323 last_addr_mask = hugetlb_mask_last_page(h);
5325 for (; address < end; address += sz) {
5326 ptep = hugetlb_walk(vma, address, sz);
5328 address |= last_addr_mask;
5332 ptl = huge_pte_lock(h, mm, ptep);
5333 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5335 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5337 address |= last_addr_mask;
5341 pte = huge_ptep_get(ptep);
5342 if (huge_pte_none(pte)) {
5348 * Migrating hugepage or HWPoisoned hugepage is already
5349 * unmapped and its refcount is dropped, so just clear pte here.
5351 if (unlikely(!pte_present(pte))) {
5353 * If the pte was wr-protected by uffd-wp in any of the
5354 * swap forms, meanwhile the caller does not want to
5355 * drop the uffd-wp bit in this zap, then replace the
5356 * pte with a marker.
5358 if (pte_swp_uffd_wp_any(pte) &&
5359 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5360 set_huge_pte_at(mm, address, ptep,
5361 make_pte_marker(PTE_MARKER_UFFD_WP));
5363 huge_pte_clear(mm, address, ptep, sz);
5368 page = pte_page(pte);
5370 * If a reference page is supplied, it is because a specific
5371 * page is being unmapped, not a range. Ensure the page we
5372 * are about to unmap is the actual page of interest.
5375 if (page != ref_page) {
5380 * Mark the VMA as having unmapped its page so that
5381 * future faults in this VMA will fail rather than
5382 * looking like data was lost
5384 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5387 pte = huge_ptep_get_and_clear(mm, address, ptep);
5388 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5389 if (huge_pte_dirty(pte))
5390 set_page_dirty(page);
5391 /* Leave a uffd-wp pte marker if needed */
5392 if (huge_pte_uffd_wp(pte) &&
5393 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5394 set_huge_pte_at(mm, address, ptep,
5395 make_pte_marker(PTE_MARKER_UFFD_WP));
5396 hugetlb_count_sub(pages_per_huge_page(h), mm);
5397 page_remove_rmap(page, vma, true);
5400 tlb_remove_page_size(tlb, page, huge_page_size(h));
5402 * Bail out after unmapping reference page if supplied
5407 tlb_end_vma(tlb, vma);
5410 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5411 * could defer the flush until now, since by holding i_mmap_rwsem we
5412 * guaranteed that the last refernece would not be dropped. But we must
5413 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5414 * dropped and the last reference to the shared PMDs page might be
5417 * In theory we could defer the freeing of the PMD pages as well, but
5418 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5419 * detect sharing, so we cannot defer the release of the page either.
5420 * Instead, do flush now.
5423 tlb_flush_mmu_tlbonly(tlb);
5426 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5427 struct vm_area_struct *vma, unsigned long start,
5428 unsigned long end, struct page *ref_page,
5429 zap_flags_t zap_flags)
5431 hugetlb_vma_lock_write(vma);
5432 i_mmap_lock_write(vma->vm_file->f_mapping);
5434 /* mmu notification performed in caller */
5435 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5437 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5439 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5440 * When the vma_lock is freed, this makes the vma ineligible
5441 * for pmd sharing. And, i_mmap_rwsem is required to set up
5442 * pmd sharing. This is important as page tables for this
5443 * unmapped range will be asynchrously deleted. If the page
5444 * tables are shared, there will be issues when accessed by
5447 __hugetlb_vma_unlock_write_free(vma);
5448 i_mmap_unlock_write(vma->vm_file->f_mapping);
5450 i_mmap_unlock_write(vma->vm_file->f_mapping);
5451 hugetlb_vma_unlock_write(vma);
5455 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5456 unsigned long end, struct page *ref_page,
5457 zap_flags_t zap_flags)
5459 struct mmu_notifier_range range;
5460 struct mmu_gather tlb;
5462 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5464 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5465 mmu_notifier_invalidate_range_start(&range);
5466 tlb_gather_mmu(&tlb, vma->vm_mm);
5468 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5470 mmu_notifier_invalidate_range_end(&range);
5471 tlb_finish_mmu(&tlb);
5475 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5476 * mapping it owns the reserve page for. The intention is to unmap the page
5477 * from other VMAs and let the children be SIGKILLed if they are faulting the
5480 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5481 struct page *page, unsigned long address)
5483 struct hstate *h = hstate_vma(vma);
5484 struct vm_area_struct *iter_vma;
5485 struct address_space *mapping;
5489 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5490 * from page cache lookup which is in HPAGE_SIZE units.
5492 address = address & huge_page_mask(h);
5493 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5495 mapping = vma->vm_file->f_mapping;
5498 * Take the mapping lock for the duration of the table walk. As
5499 * this mapping should be shared between all the VMAs,
5500 * __unmap_hugepage_range() is called as the lock is already held
5502 i_mmap_lock_write(mapping);
5503 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5504 /* Do not unmap the current VMA */
5505 if (iter_vma == vma)
5509 * Shared VMAs have their own reserves and do not affect
5510 * MAP_PRIVATE accounting but it is possible that a shared
5511 * VMA is using the same page so check and skip such VMAs.
5513 if (iter_vma->vm_flags & VM_MAYSHARE)
5517 * Unmap the page from other VMAs without their own reserves.
5518 * They get marked to be SIGKILLed if they fault in these
5519 * areas. This is because a future no-page fault on this VMA
5520 * could insert a zeroed page instead of the data existing
5521 * from the time of fork. This would look like data corruption
5523 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5524 unmap_hugepage_range(iter_vma, address,
5525 address + huge_page_size(h), page, 0);
5527 i_mmap_unlock_write(mapping);
5531 * hugetlb_wp() should be called with page lock of the original hugepage held.
5532 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5533 * cannot race with other handlers or page migration.
5534 * Keep the pte_same checks anyway to make transition from the mutex easier.
5536 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5537 unsigned long address, pte_t *ptep, unsigned int flags,
5538 struct folio *pagecache_folio, spinlock_t *ptl)
5540 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5541 pte_t pte = huge_ptep_get(ptep);
5542 struct hstate *h = hstate_vma(vma);
5543 struct page *old_page;
5544 struct folio *new_folio;
5545 int outside_reserve = 0;
5547 unsigned long haddr = address & huge_page_mask(h);
5548 struct mmu_notifier_range range;
5551 * Never handle CoW for uffd-wp protected pages. It should be only
5552 * handled when the uffd-wp protection is removed.
5554 * Note that only the CoW optimization path (in hugetlb_no_page())
5555 * can trigger this, because hugetlb_fault() will always resolve
5556 * uffd-wp bit first.
5558 if (!unshare && huge_pte_uffd_wp(pte))
5562 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5563 * PTE mapped R/O such as maybe_mkwrite() would do.
5565 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5566 return VM_FAULT_SIGSEGV;
5568 /* Let's take out MAP_SHARED mappings first. */
5569 if (vma->vm_flags & VM_MAYSHARE) {
5570 set_huge_ptep_writable(vma, haddr, ptep);
5574 old_page = pte_page(pte);
5576 delayacct_wpcopy_start();
5580 * If no-one else is actually using this page, we're the exclusive
5581 * owner and can reuse this page.
5583 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5584 if (!PageAnonExclusive(old_page))
5585 page_move_anon_rmap(old_page, vma);
5586 if (likely(!unshare))
5587 set_huge_ptep_writable(vma, haddr, ptep);
5589 delayacct_wpcopy_end();
5592 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5596 * If the process that created a MAP_PRIVATE mapping is about to
5597 * perform a COW due to a shared page count, attempt to satisfy
5598 * the allocation without using the existing reserves. The pagecache
5599 * page is used to determine if the reserve at this address was
5600 * consumed or not. If reserves were used, a partial faulted mapping
5601 * at the time of fork() could consume its reserves on COW instead
5602 * of the full address range.
5604 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5605 page_folio(old_page) != pagecache_folio)
5606 outside_reserve = 1;
5611 * Drop page table lock as buddy allocator may be called. It will
5612 * be acquired again before returning to the caller, as expected.
5615 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5617 if (IS_ERR(new_folio)) {
5619 * If a process owning a MAP_PRIVATE mapping fails to COW,
5620 * it is due to references held by a child and an insufficient
5621 * huge page pool. To guarantee the original mappers
5622 * reliability, unmap the page from child processes. The child
5623 * may get SIGKILLed if it later faults.
5625 if (outside_reserve) {
5626 struct address_space *mapping = vma->vm_file->f_mapping;
5632 * Drop hugetlb_fault_mutex and vma_lock before
5633 * unmapping. unmapping needs to hold vma_lock
5634 * in write mode. Dropping vma_lock in read mode
5635 * here is OK as COW mappings do not interact with
5638 * Reacquire both after unmap operation.
5640 idx = vma_hugecache_offset(h, vma, haddr);
5641 hash = hugetlb_fault_mutex_hash(mapping, idx);
5642 hugetlb_vma_unlock_read(vma);
5643 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5645 unmap_ref_private(mm, vma, old_page, haddr);
5647 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5648 hugetlb_vma_lock_read(vma);
5650 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5652 pte_same(huge_ptep_get(ptep), pte)))
5653 goto retry_avoidcopy;
5655 * race occurs while re-acquiring page table
5656 * lock, and our job is done.
5658 delayacct_wpcopy_end();
5662 ret = vmf_error(PTR_ERR(new_folio));
5663 goto out_release_old;
5667 * When the original hugepage is shared one, it does not have
5668 * anon_vma prepared.
5670 if (unlikely(anon_vma_prepare(vma))) {
5672 goto out_release_all;
5675 if (copy_user_large_folio(new_folio, page_folio(old_page), address, vma)) {
5676 ret = VM_FAULT_HWPOISON_LARGE;
5677 goto out_release_all;
5679 __folio_mark_uptodate(new_folio);
5681 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5682 haddr + huge_page_size(h));
5683 mmu_notifier_invalidate_range_start(&range);
5686 * Retake the page table lock to check for racing updates
5687 * before the page tables are altered
5690 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5691 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5692 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5694 /* Break COW or unshare */
5695 huge_ptep_clear_flush(vma, haddr, ptep);
5696 mmu_notifier_invalidate_range(mm, range.start, range.end);
5697 page_remove_rmap(old_page, vma, true);
5698 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5699 if (huge_pte_uffd_wp(pte))
5700 newpte = huge_pte_mkuffd_wp(newpte);
5701 set_huge_pte_at(mm, haddr, ptep, newpte);
5702 folio_set_hugetlb_migratable(new_folio);
5703 /* Make the old page be freed below */
5704 new_folio = page_folio(old_page);
5707 mmu_notifier_invalidate_range_end(&range);
5710 * No restore in case of successful pagetable update (Break COW or
5713 if (new_folio != page_folio(old_page))
5714 restore_reserve_on_error(h, vma, haddr, new_folio);
5715 folio_put(new_folio);
5719 spin_lock(ptl); /* Caller expects lock to be held */
5721 delayacct_wpcopy_end();
5726 * Return whether there is a pagecache page to back given address within VMA.
5727 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5729 static bool hugetlbfs_pagecache_present(struct hstate *h,
5730 struct vm_area_struct *vma, unsigned long address)
5732 struct address_space *mapping = vma->vm_file->f_mapping;
5733 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5737 present = page_cache_next_miss(mapping, idx, 1) != idx;
5743 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5746 struct inode *inode = mapping->host;
5747 struct hstate *h = hstate_inode(inode);
5750 __folio_set_locked(folio);
5751 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5753 if (unlikely(err)) {
5754 __folio_clear_locked(folio);
5757 folio_clear_hugetlb_restore_reserve(folio);
5760 * mark folio dirty so that it will not be removed from cache/file
5761 * by non-hugetlbfs specific code paths.
5763 folio_mark_dirty(folio);
5765 spin_lock(&inode->i_lock);
5766 inode->i_blocks += blocks_per_huge_page(h);
5767 spin_unlock(&inode->i_lock);
5771 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5772 struct address_space *mapping,
5775 unsigned long haddr,
5777 unsigned long reason)
5780 struct vm_fault vmf = {
5783 .real_address = addr,
5787 * Hard to debug if it ends up being
5788 * used by a callee that assumes
5789 * something about the other
5790 * uninitialized fields... same as in
5796 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5797 * userfault. Also mmap_lock could be dropped due to handling
5798 * userfault, any vma operation should be careful from here.
5800 hugetlb_vma_unlock_read(vma);
5801 hash = hugetlb_fault_mutex_hash(mapping, idx);
5802 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5803 return handle_userfault(&vmf, reason);
5807 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5808 * false if pte changed or is changing.
5810 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5811 pte_t *ptep, pte_t old_pte)
5816 ptl = huge_pte_lock(h, mm, ptep);
5817 same = pte_same(huge_ptep_get(ptep), old_pte);
5823 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5824 struct vm_area_struct *vma,
5825 struct address_space *mapping, pgoff_t idx,
5826 unsigned long address, pte_t *ptep,
5827 pte_t old_pte, unsigned int flags)
5829 struct hstate *h = hstate_vma(vma);
5830 vm_fault_t ret = VM_FAULT_SIGBUS;
5833 struct folio *folio;
5836 unsigned long haddr = address & huge_page_mask(h);
5837 bool new_folio, new_pagecache_folio = false;
5838 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5841 * Currently, we are forced to kill the process in the event the
5842 * original mapper has unmapped pages from the child due to a failed
5843 * COW/unsharing. Warn that such a situation has occurred as it may not
5846 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5847 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5853 * Use page lock to guard against racing truncation
5854 * before we get page_table_lock.
5857 folio = filemap_lock_folio(mapping, idx);
5858 if (IS_ERR(folio)) {
5859 size = i_size_read(mapping->host) >> huge_page_shift(h);
5862 /* Check for page in userfault range */
5863 if (userfaultfd_missing(vma)) {
5865 * Since hugetlb_no_page() was examining pte
5866 * without pgtable lock, we need to re-test under
5867 * lock because the pte may not be stable and could
5868 * have changed from under us. Try to detect
5869 * either changed or during-changing ptes and retry
5870 * properly when needed.
5872 * Note that userfaultfd is actually fine with
5873 * false positives (e.g. caused by pte changed),
5874 * but not wrong logical events (e.g. caused by
5875 * reading a pte during changing). The latter can
5876 * confuse the userspace, so the strictness is very
5877 * much preferred. E.g., MISSING event should
5878 * never happen on the page after UFFDIO_COPY has
5879 * correctly installed the page and returned.
5881 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5886 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5891 folio = alloc_hugetlb_folio(vma, haddr, 0);
5892 if (IS_ERR(folio)) {
5894 * Returning error will result in faulting task being
5895 * sent SIGBUS. The hugetlb fault mutex prevents two
5896 * tasks from racing to fault in the same page which
5897 * could result in false unable to allocate errors.
5898 * Page migration does not take the fault mutex, but
5899 * does a clear then write of pte's under page table
5900 * lock. Page fault code could race with migration,
5901 * notice the clear pte and try to allocate a page
5902 * here. Before returning error, get ptl and make
5903 * sure there really is no pte entry.
5905 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5906 ret = vmf_error(PTR_ERR(folio));
5911 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5912 __folio_mark_uptodate(folio);
5915 if (vma->vm_flags & VM_MAYSHARE) {
5916 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5919 * err can't be -EEXIST which implies someone
5920 * else consumed the reservation since hugetlb
5921 * fault mutex is held when add a hugetlb page
5922 * to the page cache. So it's safe to call
5923 * restore_reserve_on_error() here.
5925 restore_reserve_on_error(h, vma, haddr, folio);
5929 new_pagecache_folio = true;
5932 if (unlikely(anon_vma_prepare(vma))) {
5934 goto backout_unlocked;
5940 * If memory error occurs between mmap() and fault, some process
5941 * don't have hwpoisoned swap entry for errored virtual address.
5942 * So we need to block hugepage fault by PG_hwpoison bit check.
5944 if (unlikely(folio_test_hwpoison(folio))) {
5945 ret = VM_FAULT_HWPOISON_LARGE |
5946 VM_FAULT_SET_HINDEX(hstate_index(h));
5947 goto backout_unlocked;
5950 /* Check for page in userfault range. */
5951 if (userfaultfd_minor(vma)) {
5952 folio_unlock(folio);
5954 /* See comment in userfaultfd_missing() block above */
5955 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5959 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5966 * If we are going to COW a private mapping later, we examine the
5967 * pending reservations for this page now. This will ensure that
5968 * any allocations necessary to record that reservation occur outside
5971 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5972 if (vma_needs_reservation(h, vma, haddr) < 0) {
5974 goto backout_unlocked;
5976 /* Just decrements count, does not deallocate */
5977 vma_end_reservation(h, vma, haddr);
5980 ptl = huge_pte_lock(h, mm, ptep);
5982 /* If pte changed from under us, retry */
5983 if (!pte_same(huge_ptep_get(ptep), old_pte))
5987 hugepage_add_new_anon_rmap(folio, vma, haddr);
5989 page_dup_file_rmap(&folio->page, true);
5990 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5991 && (vma->vm_flags & VM_SHARED)));
5993 * If this pte was previously wr-protected, keep it wr-protected even
5996 if (unlikely(pte_marker_uffd_wp(old_pte)))
5997 new_pte = huge_pte_mkuffd_wp(new_pte);
5998 set_huge_pte_at(mm, haddr, ptep, new_pte);
6000 hugetlb_count_add(pages_per_huge_page(h), mm);
6001 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6002 /* Optimization, do the COW without a second fault */
6003 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6009 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6010 * found in the pagecache may not have hugetlb_migratable if they have
6011 * been isolated for migration.
6014 folio_set_hugetlb_migratable(folio);
6016 folio_unlock(folio);
6018 hugetlb_vma_unlock_read(vma);
6019 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6025 if (new_folio && !new_pagecache_folio)
6026 restore_reserve_on_error(h, vma, haddr, folio);
6028 folio_unlock(folio);
6034 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6036 unsigned long key[2];
6039 key[0] = (unsigned long) mapping;
6042 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6044 return hash & (num_fault_mutexes - 1);
6048 * For uniprocessor systems we always use a single mutex, so just
6049 * return 0 and avoid the hashing overhead.
6051 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6057 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6058 unsigned long address, unsigned int flags)
6065 struct page *page = NULL;
6066 struct folio *pagecache_folio = NULL;
6067 struct hstate *h = hstate_vma(vma);
6068 struct address_space *mapping;
6069 int need_wait_lock = 0;
6070 unsigned long haddr = address & huge_page_mask(h);
6073 * Serialize hugepage allocation and instantiation, so that we don't
6074 * get spurious allocation failures if two CPUs race to instantiate
6075 * the same page in the page cache.
6077 mapping = vma->vm_file->f_mapping;
6078 idx = vma_hugecache_offset(h, vma, haddr);
6079 hash = hugetlb_fault_mutex_hash(mapping, idx);
6080 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6083 * Acquire vma lock before calling huge_pte_alloc and hold
6084 * until finished with ptep. This prevents huge_pmd_unshare from
6085 * being called elsewhere and making the ptep no longer valid.
6087 hugetlb_vma_lock_read(vma);
6088 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6090 hugetlb_vma_unlock_read(vma);
6091 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6092 return VM_FAULT_OOM;
6095 entry = huge_ptep_get(ptep);
6096 /* PTE markers should be handled the same way as none pte */
6097 if (huge_pte_none_mostly(entry))
6099 * hugetlb_no_page will drop vma lock and hugetlb fault
6100 * mutex internally, which make us return immediately.
6102 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6108 * entry could be a migration/hwpoison entry at this point, so this
6109 * check prevents the kernel from going below assuming that we have
6110 * an active hugepage in pagecache. This goto expects the 2nd page
6111 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6112 * properly handle it.
6114 if (!pte_present(entry)) {
6115 if (unlikely(is_hugetlb_entry_migration(entry))) {
6117 * Release the hugetlb fault lock now, but retain
6118 * the vma lock, because it is needed to guard the
6119 * huge_pte_lockptr() later in
6120 * migration_entry_wait_huge(). The vma lock will
6121 * be released there.
6123 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6124 migration_entry_wait_huge(vma, ptep);
6126 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6127 ret = VM_FAULT_HWPOISON_LARGE |
6128 VM_FAULT_SET_HINDEX(hstate_index(h));
6133 * If we are going to COW/unshare the mapping later, we examine the
6134 * pending reservations for this page now. This will ensure that any
6135 * allocations necessary to record that reservation occur outside the
6136 * spinlock. Also lookup the pagecache page now as it is used to
6137 * determine if a reservation has been consumed.
6139 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6140 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6141 if (vma_needs_reservation(h, vma, haddr) < 0) {
6145 /* Just decrements count, does not deallocate */
6146 vma_end_reservation(h, vma, haddr);
6148 pagecache_folio = filemap_lock_folio(mapping, idx);
6149 if (IS_ERR(pagecache_folio))
6150 pagecache_folio = NULL;
6153 ptl = huge_pte_lock(h, mm, ptep);
6155 /* Check for a racing update before calling hugetlb_wp() */
6156 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6159 /* Handle userfault-wp first, before trying to lock more pages */
6160 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6161 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6162 struct vm_fault vmf = {
6165 .real_address = address,
6170 if (pagecache_folio) {
6171 folio_unlock(pagecache_folio);
6172 folio_put(pagecache_folio);
6174 hugetlb_vma_unlock_read(vma);
6175 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176 return handle_userfault(&vmf, VM_UFFD_WP);
6180 * hugetlb_wp() requires page locks of pte_page(entry) and
6181 * pagecache_folio, so here we need take the former one
6182 * when page != pagecache_folio or !pagecache_folio.
6184 page = pte_page(entry);
6185 if (page_folio(page) != pagecache_folio)
6186 if (!trylock_page(page)) {
6193 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6194 if (!huge_pte_write(entry)) {
6195 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6196 pagecache_folio, ptl);
6198 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6199 entry = huge_pte_mkdirty(entry);
6202 entry = pte_mkyoung(entry);
6203 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6204 flags & FAULT_FLAG_WRITE))
6205 update_mmu_cache(vma, haddr, ptep);
6207 if (page_folio(page) != pagecache_folio)
6213 if (pagecache_folio) {
6214 folio_unlock(pagecache_folio);
6215 folio_put(pagecache_folio);
6218 hugetlb_vma_unlock_read(vma);
6219 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6221 * Generally it's safe to hold refcount during waiting page lock. But
6222 * here we just wait to defer the next page fault to avoid busy loop and
6223 * the page is not used after unlocked before returning from the current
6224 * page fault. So we are safe from accessing freed page, even if we wait
6225 * here without taking refcount.
6228 wait_on_page_locked(page);
6232 #ifdef CONFIG_USERFAULTFD
6234 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6235 * with modifications for hugetlb pages.
6237 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6238 struct vm_area_struct *dst_vma,
6239 unsigned long dst_addr,
6240 unsigned long src_addr,
6242 struct folio **foliop)
6244 struct mm_struct *dst_mm = dst_vma->vm_mm;
6245 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6246 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6247 struct hstate *h = hstate_vma(dst_vma);
6248 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6249 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6251 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6255 struct folio *folio;
6257 bool folio_in_pagecache = false;
6261 folio = filemap_lock_folio(mapping, idx);
6264 folio_in_pagecache = true;
6265 } else if (!*foliop) {
6266 /* If a folio already exists, then it's UFFDIO_COPY for
6267 * a non-missing case. Return -EEXIST.
6270 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6275 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6276 if (IS_ERR(folio)) {
6281 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6284 /* fallback to copy_from_user outside mmap_lock */
6285 if (unlikely(ret)) {
6287 /* Free the allocated folio which may have
6288 * consumed a reservation.
6290 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6293 /* Allocate a temporary folio to hold the copied
6296 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6302 /* Set the outparam foliop and return to the caller to
6303 * copy the contents outside the lock. Don't free the
6310 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6317 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6318 if (IS_ERR(folio)) {
6324 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6334 * The memory barrier inside __folio_mark_uptodate makes sure that
6335 * preceding stores to the page contents become visible before
6336 * the set_pte_at() write.
6338 __folio_mark_uptodate(folio);
6340 /* Add shared, newly allocated pages to the page cache. */
6341 if (vm_shared && !is_continue) {
6342 size = i_size_read(mapping->host) >> huge_page_shift(h);
6345 goto out_release_nounlock;
6348 * Serialization between remove_inode_hugepages() and
6349 * hugetlb_add_to_page_cache() below happens through the
6350 * hugetlb_fault_mutex_table that here must be hold by
6353 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6355 goto out_release_nounlock;
6356 folio_in_pagecache = true;
6359 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6362 if (folio_test_hwpoison(folio))
6363 goto out_release_unlock;
6366 * We allow to overwrite a pte marker: consider when both MISSING|WP
6367 * registered, we firstly wr-protect a none pte which has no page cache
6368 * page backing it, then access the page.
6371 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6372 goto out_release_unlock;
6374 if (folio_in_pagecache)
6375 page_dup_file_rmap(&folio->page, true);
6377 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6380 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6381 * with wp flag set, don't set pte write bit.
6383 if (wp_enabled || (is_continue && !vm_shared))
6386 writable = dst_vma->vm_flags & VM_WRITE;
6388 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6390 * Always mark UFFDIO_COPY page dirty; note that this may not be
6391 * extremely important for hugetlbfs for now since swapping is not
6392 * supported, but we should still be clear in that this page cannot be
6393 * thrown away at will, even if write bit not set.
6395 _dst_pte = huge_pte_mkdirty(_dst_pte);
6396 _dst_pte = pte_mkyoung(_dst_pte);
6399 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6401 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6403 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6405 /* No need to invalidate - it was non-present before */
6406 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6410 folio_set_hugetlb_migratable(folio);
6411 if (vm_shared || is_continue)
6412 folio_unlock(folio);
6418 if (vm_shared || is_continue)
6419 folio_unlock(folio);
6420 out_release_nounlock:
6421 if (!folio_in_pagecache)
6422 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6426 #endif /* CONFIG_USERFAULTFD */
6428 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6429 int refs, struct page **pages,
6430 struct vm_area_struct **vmas)
6434 for (nr = 0; nr < refs; nr++) {
6436 pages[nr] = nth_page(page, nr);
6442 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6443 unsigned int flags, pte_t *pte,
6446 pte_t pteval = huge_ptep_get(pte);
6449 if (is_swap_pte(pteval))
6451 if (huge_pte_write(pteval))
6453 if (flags & FOLL_WRITE)
6455 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6462 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6463 unsigned long address, unsigned int flags)
6465 struct hstate *h = hstate_vma(vma);
6466 struct mm_struct *mm = vma->vm_mm;
6467 unsigned long haddr = address & huge_page_mask(h);
6468 struct page *page = NULL;
6473 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6474 * follow_hugetlb_page().
6476 if (WARN_ON_ONCE(flags & FOLL_PIN))
6479 hugetlb_vma_lock_read(vma);
6480 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6484 ptl = huge_pte_lock(h, mm, pte);
6485 entry = huge_ptep_get(pte);
6486 if (pte_present(entry)) {
6487 page = pte_page(entry) +
6488 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6490 * Note that page may be a sub-page, and with vmemmap
6491 * optimizations the page struct may be read only.
6492 * try_grab_page() will increase the ref count on the
6493 * head page, so this will be OK.
6495 * try_grab_page() should always be able to get the page here,
6496 * because we hold the ptl lock and have verified pte_present().
6498 if (try_grab_page(page, flags)) {
6506 hugetlb_vma_unlock_read(vma);
6510 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6511 struct page **pages, struct vm_area_struct **vmas,
6512 unsigned long *position, unsigned long *nr_pages,
6513 long i, unsigned int flags, int *locked)
6515 unsigned long pfn_offset;
6516 unsigned long vaddr = *position;
6517 unsigned long remainder = *nr_pages;
6518 struct hstate *h = hstate_vma(vma);
6519 int err = -EFAULT, refs;
6521 while (vaddr < vma->vm_end && remainder) {
6523 spinlock_t *ptl = NULL;
6524 bool unshare = false;
6529 * If we have a pending SIGKILL, don't keep faulting pages and
6530 * potentially allocating memory.
6532 if (fatal_signal_pending(current)) {
6537 hugetlb_vma_lock_read(vma);
6539 * Some archs (sparc64, sh*) have multiple pte_ts to
6540 * each hugepage. We have to make sure we get the
6541 * first, for the page indexing below to work.
6543 * Note that page table lock is not held when pte is null.
6545 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6548 ptl = huge_pte_lock(h, mm, pte);
6549 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6552 * When coredumping, it suits get_dump_page if we just return
6553 * an error where there's an empty slot with no huge pagecache
6554 * to back it. This way, we avoid allocating a hugepage, and
6555 * the sparse dumpfile avoids allocating disk blocks, but its
6556 * huge holes still show up with zeroes where they need to be.
6558 if (absent && (flags & FOLL_DUMP) &&
6559 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6562 hugetlb_vma_unlock_read(vma);
6568 * We need call hugetlb_fault for both hugepages under migration
6569 * (in which case hugetlb_fault waits for the migration,) and
6570 * hwpoisoned hugepages (in which case we need to prevent the
6571 * caller from accessing to them.) In order to do this, we use
6572 * here is_swap_pte instead of is_hugetlb_entry_migration and
6573 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6574 * both cases, and because we can't follow correct pages
6575 * directly from any kind of swap entries.
6578 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6580 unsigned int fault_flags = 0;
6584 hugetlb_vma_unlock_read(vma);
6586 if (flags & FOLL_WRITE)
6587 fault_flags |= FAULT_FLAG_WRITE;
6589 fault_flags |= FAULT_FLAG_UNSHARE;
6591 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6592 FAULT_FLAG_KILLABLE;
6593 if (flags & FOLL_INTERRUPTIBLE)
6594 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6596 if (flags & FOLL_NOWAIT)
6597 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6598 FAULT_FLAG_RETRY_NOWAIT;
6599 if (flags & FOLL_TRIED) {
6601 * Note: FAULT_FLAG_ALLOW_RETRY and
6602 * FAULT_FLAG_TRIED can co-exist
6604 fault_flags |= FAULT_FLAG_TRIED;
6606 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6607 if (ret & VM_FAULT_ERROR) {
6608 err = vm_fault_to_errno(ret, flags);
6612 if (ret & VM_FAULT_RETRY) {
6614 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6618 * VM_FAULT_RETRY must not return an
6619 * error, it will return zero
6622 * No need to update "position" as the
6623 * caller will not check it after
6624 * *nr_pages is set to 0.
6631 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6632 page = pte_page(huge_ptep_get(pte));
6634 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6635 !PageAnonExclusive(page), page);
6638 * If subpage information not requested, update counters
6639 * and skip the same_page loop below.
6641 if (!pages && !vmas && !pfn_offset &&
6642 (vaddr + huge_page_size(h) < vma->vm_end) &&
6643 (remainder >= pages_per_huge_page(h))) {
6644 vaddr += huge_page_size(h);
6645 remainder -= pages_per_huge_page(h);
6646 i += pages_per_huge_page(h);
6648 hugetlb_vma_unlock_read(vma);
6652 /* vaddr may not be aligned to PAGE_SIZE */
6653 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6654 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6657 record_subpages_vmas(nth_page(page, pfn_offset),
6659 likely(pages) ? pages + i : NULL,
6660 vmas ? vmas + i : NULL);
6664 * try_grab_folio() should always succeed here,
6665 * because: a) we hold the ptl lock, and b) we've just
6666 * checked that the huge page is present in the page
6667 * tables. If the huge page is present, then the tail
6668 * pages must also be present. The ptl prevents the
6669 * head page and tail pages from being rearranged in
6670 * any way. As this is hugetlb, the pages will never
6671 * be p2pdma or not longterm pinable. So this page
6672 * must be available at this point, unless the page
6673 * refcount overflowed:
6675 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6678 hugetlb_vma_unlock_read(vma);
6685 vaddr += (refs << PAGE_SHIFT);
6690 hugetlb_vma_unlock_read(vma);
6692 *nr_pages = remainder;
6694 * setting position is actually required only if remainder is
6695 * not zero but it's faster not to add a "if (remainder)"
6703 long hugetlb_change_protection(struct vm_area_struct *vma,
6704 unsigned long address, unsigned long end,
6705 pgprot_t newprot, unsigned long cp_flags)
6707 struct mm_struct *mm = vma->vm_mm;
6708 unsigned long start = address;
6711 struct hstate *h = hstate_vma(vma);
6712 long pages = 0, psize = huge_page_size(h);
6713 bool shared_pmd = false;
6714 struct mmu_notifier_range range;
6715 unsigned long last_addr_mask;
6716 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6717 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6720 * In the case of shared PMDs, the area to flush could be beyond
6721 * start/end. Set range.start/range.end to cover the maximum possible
6722 * range if PMD sharing is possible.
6724 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6726 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6728 BUG_ON(address >= end);
6729 flush_cache_range(vma, range.start, range.end);
6731 mmu_notifier_invalidate_range_start(&range);
6732 hugetlb_vma_lock_write(vma);
6733 i_mmap_lock_write(vma->vm_file->f_mapping);
6734 last_addr_mask = hugetlb_mask_last_page(h);
6735 for (; address < end; address += psize) {
6737 ptep = hugetlb_walk(vma, address, psize);
6740 address |= last_addr_mask;
6744 * Userfaultfd wr-protect requires pgtable
6745 * pre-allocations to install pte markers.
6747 ptep = huge_pte_alloc(mm, vma, address, psize);
6753 ptl = huge_pte_lock(h, mm, ptep);
6754 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6756 * When uffd-wp is enabled on the vma, unshare
6757 * shouldn't happen at all. Warn about it if it
6758 * happened due to some reason.
6760 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6764 address |= last_addr_mask;
6767 pte = huge_ptep_get(ptep);
6768 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6769 /* Nothing to do. */
6770 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6771 swp_entry_t entry = pte_to_swp_entry(pte);
6772 struct page *page = pfn_swap_entry_to_page(entry);
6775 if (is_writable_migration_entry(entry)) {
6777 entry = make_readable_exclusive_migration_entry(
6780 entry = make_readable_migration_entry(
6782 newpte = swp_entry_to_pte(entry);
6787 newpte = pte_swp_mkuffd_wp(newpte);
6788 else if (uffd_wp_resolve)
6789 newpte = pte_swp_clear_uffd_wp(newpte);
6790 if (!pte_same(pte, newpte))
6791 set_huge_pte_at(mm, address, ptep, newpte);
6792 } else if (unlikely(is_pte_marker(pte))) {
6793 /* No other markers apply for now. */
6794 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6795 if (uffd_wp_resolve)
6796 /* Safe to modify directly (non-present->none). */
6797 huge_pte_clear(mm, address, ptep, psize);
6798 } else if (!huge_pte_none(pte)) {
6800 unsigned int shift = huge_page_shift(hstate_vma(vma));
6802 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6803 pte = huge_pte_modify(old_pte, newprot);
6804 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6806 pte = huge_pte_mkuffd_wp(pte);
6807 else if (uffd_wp_resolve)
6808 pte = huge_pte_clear_uffd_wp(pte);
6809 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6813 if (unlikely(uffd_wp))
6814 /* Safe to modify directly (none->non-present). */
6815 set_huge_pte_at(mm, address, ptep,
6816 make_pte_marker(PTE_MARKER_UFFD_WP));
6821 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6822 * may have cleared our pud entry and done put_page on the page table:
6823 * once we release i_mmap_rwsem, another task can do the final put_page
6824 * and that page table be reused and filled with junk. If we actually
6825 * did unshare a page of pmds, flush the range corresponding to the pud.
6828 flush_hugetlb_tlb_range(vma, range.start, range.end);
6830 flush_hugetlb_tlb_range(vma, start, end);
6832 * No need to call mmu_notifier_invalidate_range() we are downgrading
6833 * page table protection not changing it to point to a new page.
6835 * See Documentation/mm/mmu_notifier.rst
6837 i_mmap_unlock_write(vma->vm_file->f_mapping);
6838 hugetlb_vma_unlock_write(vma);
6839 mmu_notifier_invalidate_range_end(&range);
6841 return pages > 0 ? (pages << h->order) : pages;
6844 /* Return true if reservation was successful, false otherwise. */
6845 bool hugetlb_reserve_pages(struct inode *inode,
6847 struct vm_area_struct *vma,
6848 vm_flags_t vm_flags)
6850 long chg = -1, add = -1;
6851 struct hstate *h = hstate_inode(inode);
6852 struct hugepage_subpool *spool = subpool_inode(inode);
6853 struct resv_map *resv_map;
6854 struct hugetlb_cgroup *h_cg = NULL;
6855 long gbl_reserve, regions_needed = 0;
6857 /* This should never happen */
6859 VM_WARN(1, "%s called with a negative range\n", __func__);
6864 * vma specific semaphore used for pmd sharing and fault/truncation
6867 hugetlb_vma_lock_alloc(vma);
6870 * Only apply hugepage reservation if asked. At fault time, an
6871 * attempt will be made for VM_NORESERVE to allocate a page
6872 * without using reserves
6874 if (vm_flags & VM_NORESERVE)
6878 * Shared mappings base their reservation on the number of pages that
6879 * are already allocated on behalf of the file. Private mappings need
6880 * to reserve the full area even if read-only as mprotect() may be
6881 * called to make the mapping read-write. Assume !vma is a shm mapping
6883 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6885 * resv_map can not be NULL as hugetlb_reserve_pages is only
6886 * called for inodes for which resv_maps were created (see
6887 * hugetlbfs_get_inode).
6889 resv_map = inode_resv_map(inode);
6891 chg = region_chg(resv_map, from, to, ®ions_needed);
6893 /* Private mapping. */
6894 resv_map = resv_map_alloc();
6900 set_vma_resv_map(vma, resv_map);
6901 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6907 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6908 chg * pages_per_huge_page(h), &h_cg) < 0)
6911 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6912 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6915 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6919 * There must be enough pages in the subpool for the mapping. If
6920 * the subpool has a minimum size, there may be some global
6921 * reservations already in place (gbl_reserve).
6923 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6924 if (gbl_reserve < 0)
6925 goto out_uncharge_cgroup;
6928 * Check enough hugepages are available for the reservation.
6929 * Hand the pages back to the subpool if there are not
6931 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6935 * Account for the reservations made. Shared mappings record regions
6936 * that have reservations as they are shared by multiple VMAs.
6937 * When the last VMA disappears, the region map says how much
6938 * the reservation was and the page cache tells how much of
6939 * the reservation was consumed. Private mappings are per-VMA and
6940 * only the consumed reservations are tracked. When the VMA
6941 * disappears, the original reservation is the VMA size and the
6942 * consumed reservations are stored in the map. Hence, nothing
6943 * else has to be done for private mappings here
6945 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6946 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6948 if (unlikely(add < 0)) {
6949 hugetlb_acct_memory(h, -gbl_reserve);
6951 } else if (unlikely(chg > add)) {
6953 * pages in this range were added to the reserve
6954 * map between region_chg and region_add. This
6955 * indicates a race with alloc_hugetlb_folio. Adjust
6956 * the subpool and reserve counts modified above
6957 * based on the difference.
6962 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6963 * reference to h_cg->css. See comment below for detail.
6965 hugetlb_cgroup_uncharge_cgroup_rsvd(
6967 (chg - add) * pages_per_huge_page(h), h_cg);
6969 rsv_adjust = hugepage_subpool_put_pages(spool,
6971 hugetlb_acct_memory(h, -rsv_adjust);
6974 * The file_regions will hold their own reference to
6975 * h_cg->css. So we should release the reference held
6976 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6979 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6985 /* put back original number of pages, chg */
6986 (void)hugepage_subpool_put_pages(spool, chg);
6987 out_uncharge_cgroup:
6988 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6989 chg * pages_per_huge_page(h), h_cg);
6991 hugetlb_vma_lock_free(vma);
6992 if (!vma || vma->vm_flags & VM_MAYSHARE)
6993 /* Only call region_abort if the region_chg succeeded but the
6994 * region_add failed or didn't run.
6996 if (chg >= 0 && add < 0)
6997 region_abort(resv_map, from, to, regions_needed);
6998 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6999 kref_put(&resv_map->refs, resv_map_release);
7003 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7006 struct hstate *h = hstate_inode(inode);
7007 struct resv_map *resv_map = inode_resv_map(inode);
7009 struct hugepage_subpool *spool = subpool_inode(inode);
7013 * Since this routine can be called in the evict inode path for all
7014 * hugetlbfs inodes, resv_map could be NULL.
7017 chg = region_del(resv_map, start, end);
7019 * region_del() can fail in the rare case where a region
7020 * must be split and another region descriptor can not be
7021 * allocated. If end == LONG_MAX, it will not fail.
7027 spin_lock(&inode->i_lock);
7028 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7029 spin_unlock(&inode->i_lock);
7032 * If the subpool has a minimum size, the number of global
7033 * reservations to be released may be adjusted.
7035 * Note that !resv_map implies freed == 0. So (chg - freed)
7036 * won't go negative.
7038 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7039 hugetlb_acct_memory(h, -gbl_reserve);
7044 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7045 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7046 struct vm_area_struct *vma,
7047 unsigned long addr, pgoff_t idx)
7049 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7051 unsigned long sbase = saddr & PUD_MASK;
7052 unsigned long s_end = sbase + PUD_SIZE;
7054 /* Allow segments to share if only one is marked locked */
7055 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7056 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7059 * match the virtual addresses, permission and the alignment of the
7062 * Also, vma_lock (vm_private_data) is required for sharing.
7064 if (pmd_index(addr) != pmd_index(saddr) ||
7065 vm_flags != svm_flags ||
7066 !range_in_vma(svma, sbase, s_end) ||
7067 !svma->vm_private_data)
7073 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7075 unsigned long start = addr & PUD_MASK;
7076 unsigned long end = start + PUD_SIZE;
7078 #ifdef CONFIG_USERFAULTFD
7079 if (uffd_disable_huge_pmd_share(vma))
7083 * check on proper vm_flags and page table alignment
7085 if (!(vma->vm_flags & VM_MAYSHARE))
7087 if (!vma->vm_private_data) /* vma lock required for sharing */
7089 if (!range_in_vma(vma, start, end))
7095 * Determine if start,end range within vma could be mapped by shared pmd.
7096 * If yes, adjust start and end to cover range associated with possible
7097 * shared pmd mappings.
7099 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7100 unsigned long *start, unsigned long *end)
7102 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7103 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7106 * vma needs to span at least one aligned PUD size, and the range
7107 * must be at least partially within in.
7109 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7110 (*end <= v_start) || (*start >= v_end))
7113 /* Extend the range to be PUD aligned for a worst case scenario */
7114 if (*start > v_start)
7115 *start = ALIGN_DOWN(*start, PUD_SIZE);
7118 *end = ALIGN(*end, PUD_SIZE);
7122 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7123 * and returns the corresponding pte. While this is not necessary for the
7124 * !shared pmd case because we can allocate the pmd later as well, it makes the
7125 * code much cleaner. pmd allocation is essential for the shared case because
7126 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7127 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7128 * bad pmd for sharing.
7130 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7131 unsigned long addr, pud_t *pud)
7133 struct address_space *mapping = vma->vm_file->f_mapping;
7134 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7136 struct vm_area_struct *svma;
7137 unsigned long saddr;
7142 i_mmap_lock_read(mapping);
7143 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7147 saddr = page_table_shareable(svma, vma, addr, idx);
7149 spte = hugetlb_walk(svma, saddr,
7150 vma_mmu_pagesize(svma));
7152 get_page(virt_to_page(spte));
7161 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7162 if (pud_none(*pud)) {
7163 pud_populate(mm, pud,
7164 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7167 put_page(virt_to_page(spte));
7171 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7172 i_mmap_unlock_read(mapping);
7177 * unmap huge page backed by shared pte.
7179 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7180 * indicated by page_count > 1, unmap is achieved by clearing pud and
7181 * decrementing the ref count. If count == 1, the pte page is not shared.
7183 * Called with page table lock held.
7185 * returns: 1 successfully unmapped a shared pte page
7186 * 0 the underlying pte page is not shared, or it is the last user
7188 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7189 unsigned long addr, pte_t *ptep)
7191 pgd_t *pgd = pgd_offset(mm, addr);
7192 p4d_t *p4d = p4d_offset(pgd, addr);
7193 pud_t *pud = pud_offset(p4d, addr);
7195 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7196 hugetlb_vma_assert_locked(vma);
7197 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7198 if (page_count(virt_to_page(ptep)) == 1)
7202 put_page(virt_to_page(ptep));
7207 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7209 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7210 unsigned long addr, pud_t *pud)
7215 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7216 unsigned long addr, pte_t *ptep)
7221 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7222 unsigned long *start, unsigned long *end)
7226 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7230 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7232 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7233 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7234 unsigned long addr, unsigned long sz)
7241 pgd = pgd_offset(mm, addr);
7242 p4d = p4d_alloc(mm, pgd, addr);
7245 pud = pud_alloc(mm, p4d, addr);
7247 if (sz == PUD_SIZE) {
7250 BUG_ON(sz != PMD_SIZE);
7251 if (want_pmd_share(vma, addr) && pud_none(*pud))
7252 pte = huge_pmd_share(mm, vma, addr, pud);
7254 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7257 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7263 * huge_pte_offset() - Walk the page table to resolve the hugepage
7264 * entry at address @addr
7266 * Return: Pointer to page table entry (PUD or PMD) for
7267 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7268 * size @sz doesn't match the hugepage size at this level of the page
7271 pte_t *huge_pte_offset(struct mm_struct *mm,
7272 unsigned long addr, unsigned long sz)
7279 pgd = pgd_offset(mm, addr);
7280 if (!pgd_present(*pgd))
7282 p4d = p4d_offset(pgd, addr);
7283 if (!p4d_present(*p4d))
7286 pud = pud_offset(p4d, addr);
7288 /* must be pud huge, non-present or none */
7289 return (pte_t *)pud;
7290 if (!pud_present(*pud))
7292 /* must have a valid entry and size to go further */
7294 pmd = pmd_offset(pud, addr);
7295 /* must be pmd huge, non-present or none */
7296 return (pte_t *)pmd;
7300 * Return a mask that can be used to update an address to the last huge
7301 * page in a page table page mapping size. Used to skip non-present
7302 * page table entries when linearly scanning address ranges. Architectures
7303 * with unique huge page to page table relationships can define their own
7304 * version of this routine.
7306 unsigned long hugetlb_mask_last_page(struct hstate *h)
7308 unsigned long hp_size = huge_page_size(h);
7310 if (hp_size == PUD_SIZE)
7311 return P4D_SIZE - PUD_SIZE;
7312 else if (hp_size == PMD_SIZE)
7313 return PUD_SIZE - PMD_SIZE;
7320 /* See description above. Architectures can provide their own version. */
7321 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7324 if (huge_page_size(h) == PMD_SIZE)
7325 return PUD_SIZE - PMD_SIZE;
7330 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7333 * These functions are overwritable if your architecture needs its own
7336 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7340 spin_lock_irq(&hugetlb_lock);
7341 if (!folio_test_hugetlb(folio) ||
7342 !folio_test_hugetlb_migratable(folio) ||
7343 !folio_try_get(folio)) {
7347 folio_clear_hugetlb_migratable(folio);
7348 list_move_tail(&folio->lru, list);
7350 spin_unlock_irq(&hugetlb_lock);
7354 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7359 spin_lock_irq(&hugetlb_lock);
7360 if (folio_test_hugetlb(folio)) {
7362 if (folio_test_hugetlb_freed(folio))
7364 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7365 ret = folio_try_get(folio);
7369 spin_unlock_irq(&hugetlb_lock);
7373 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7374 bool *migratable_cleared)
7378 spin_lock_irq(&hugetlb_lock);
7379 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7380 spin_unlock_irq(&hugetlb_lock);
7384 void folio_putback_active_hugetlb(struct folio *folio)
7386 spin_lock_irq(&hugetlb_lock);
7387 folio_set_hugetlb_migratable(folio);
7388 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7389 spin_unlock_irq(&hugetlb_lock);
7393 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7395 struct hstate *h = folio_hstate(old_folio);
7397 hugetlb_cgroup_migrate(old_folio, new_folio);
7398 set_page_owner_migrate_reason(&new_folio->page, reason);
7401 * transfer temporary state of the new hugetlb folio. This is
7402 * reverse to other transitions because the newpage is going to
7403 * be final while the old one will be freed so it takes over
7404 * the temporary status.
7406 * Also note that we have to transfer the per-node surplus state
7407 * here as well otherwise the global surplus count will not match
7410 if (folio_test_hugetlb_temporary(new_folio)) {
7411 int old_nid = folio_nid(old_folio);
7412 int new_nid = folio_nid(new_folio);
7414 folio_set_hugetlb_temporary(old_folio);
7415 folio_clear_hugetlb_temporary(new_folio);
7419 * There is no need to transfer the per-node surplus state
7420 * when we do not cross the node.
7422 if (new_nid == old_nid)
7424 spin_lock_irq(&hugetlb_lock);
7425 if (h->surplus_huge_pages_node[old_nid]) {
7426 h->surplus_huge_pages_node[old_nid]--;
7427 h->surplus_huge_pages_node[new_nid]++;
7429 spin_unlock_irq(&hugetlb_lock);
7433 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7434 unsigned long start,
7437 struct hstate *h = hstate_vma(vma);
7438 unsigned long sz = huge_page_size(h);
7439 struct mm_struct *mm = vma->vm_mm;
7440 struct mmu_notifier_range range;
7441 unsigned long address;
7445 if (!(vma->vm_flags & VM_MAYSHARE))
7451 flush_cache_range(vma, start, end);
7453 * No need to call adjust_range_if_pmd_sharing_possible(), because
7454 * we have already done the PUD_SIZE alignment.
7456 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7458 mmu_notifier_invalidate_range_start(&range);
7459 hugetlb_vma_lock_write(vma);
7460 i_mmap_lock_write(vma->vm_file->f_mapping);
7461 for (address = start; address < end; address += PUD_SIZE) {
7462 ptep = hugetlb_walk(vma, address, sz);
7465 ptl = huge_pte_lock(h, mm, ptep);
7466 huge_pmd_unshare(mm, vma, address, ptep);
7469 flush_hugetlb_tlb_range(vma, start, end);
7470 i_mmap_unlock_write(vma->vm_file->f_mapping);
7471 hugetlb_vma_unlock_write(vma);
7473 * No need to call mmu_notifier_invalidate_range(), see
7474 * Documentation/mm/mmu_notifier.rst.
7476 mmu_notifier_invalidate_range_end(&range);
7480 * This function will unconditionally remove all the shared pmd pgtable entries
7481 * within the specific vma for a hugetlbfs memory range.
7483 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7485 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7486 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7490 static bool cma_reserve_called __initdata;
7492 static int __init cmdline_parse_hugetlb_cma(char *p)
7499 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7502 if (s[count] == ':') {
7503 if (tmp >= MAX_NUMNODES)
7505 nid = array_index_nospec(tmp, MAX_NUMNODES);
7508 tmp = memparse(s, &s);
7509 hugetlb_cma_size_in_node[nid] = tmp;
7510 hugetlb_cma_size += tmp;
7513 * Skip the separator if have one, otherwise
7514 * break the parsing.
7521 hugetlb_cma_size = memparse(p, &p);
7529 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7531 void __init hugetlb_cma_reserve(int order)
7533 unsigned long size, reserved, per_node;
7534 bool node_specific_cma_alloc = false;
7537 cma_reserve_called = true;
7539 if (!hugetlb_cma_size)
7542 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7543 if (hugetlb_cma_size_in_node[nid] == 0)
7546 if (!node_online(nid)) {
7547 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7548 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7549 hugetlb_cma_size_in_node[nid] = 0;
7553 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7554 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7555 nid, (PAGE_SIZE << order) / SZ_1M);
7556 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7557 hugetlb_cma_size_in_node[nid] = 0;
7559 node_specific_cma_alloc = true;
7563 /* Validate the CMA size again in case some invalid nodes specified. */
7564 if (!hugetlb_cma_size)
7567 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7568 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7569 (PAGE_SIZE << order) / SZ_1M);
7570 hugetlb_cma_size = 0;
7574 if (!node_specific_cma_alloc) {
7576 * If 3 GB area is requested on a machine with 4 numa nodes,
7577 * let's allocate 1 GB on first three nodes and ignore the last one.
7579 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7580 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7581 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7585 for_each_online_node(nid) {
7587 char name[CMA_MAX_NAME];
7589 if (node_specific_cma_alloc) {
7590 if (hugetlb_cma_size_in_node[nid] == 0)
7593 size = hugetlb_cma_size_in_node[nid];
7595 size = min(per_node, hugetlb_cma_size - reserved);
7598 size = round_up(size, PAGE_SIZE << order);
7600 snprintf(name, sizeof(name), "hugetlb%d", nid);
7602 * Note that 'order per bit' is based on smallest size that
7603 * may be returned to CMA allocator in the case of
7604 * huge page demotion.
7606 res = cma_declare_contiguous_nid(0, size, 0,
7607 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7609 &hugetlb_cma[nid], nid);
7611 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7617 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7620 if (reserved >= hugetlb_cma_size)
7626 * hugetlb_cma_size is used to determine if allocations from
7627 * cma are possible. Set to zero if no cma regions are set up.
7629 hugetlb_cma_size = 0;
7632 static void __init hugetlb_cma_check(void)
7634 if (!hugetlb_cma_size || cma_reserve_called)
7637 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7640 #endif /* CONFIG_CMA */