x86-64: make access_ok() independent of LAM
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286                                                                 int nid)
1287 {
1288         struct folio *folio;
1289         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291         lockdep_assert_held(&hugetlb_lock);
1292         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293                 if (pin && !folio_is_longterm_pinnable(folio))
1294                         continue;
1295
1296                 if (folio_test_hwpoison(folio))
1297                         continue;
1298
1299                 list_move(&folio->lru, &h->hugepage_activelist);
1300                 folio_ref_unfreeze(folio, 1);
1301                 folio_clear_hugetlb_freed(folio);
1302                 h->free_huge_pages--;
1303                 h->free_huge_pages_node[nid]--;
1304                 return folio;
1305         }
1306
1307         return NULL;
1308 }
1309
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311                                                         int nid, nodemask_t *nmask)
1312 {
1313         unsigned int cpuset_mems_cookie;
1314         struct zonelist *zonelist;
1315         struct zone *zone;
1316         struct zoneref *z;
1317         int node = NUMA_NO_NODE;
1318
1319         zonelist = node_zonelist(nid, gfp_mask);
1320
1321 retry_cpuset:
1322         cpuset_mems_cookie = read_mems_allowed_begin();
1323         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324                 struct folio *folio;
1325
1326                 if (!cpuset_zone_allowed(zone, gfp_mask))
1327                         continue;
1328                 /*
1329                  * no need to ask again on the same node. Pool is node rather than
1330                  * zone aware
1331                  */
1332                 if (zone_to_nid(zone) == node)
1333                         continue;
1334                 node = zone_to_nid(zone);
1335
1336                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337                 if (folio)
1338                         return folio;
1339         }
1340         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341                 goto retry_cpuset;
1342
1343         return NULL;
1344 }
1345
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348         return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352                                 struct vm_area_struct *vma,
1353                                 unsigned long address, int avoid_reserve,
1354                                 long chg)
1355 {
1356         struct folio *folio = NULL;
1357         struct mempolicy *mpol;
1358         gfp_t gfp_mask;
1359         nodemask_t *nodemask;
1360         int nid;
1361
1362         /*
1363          * A child process with MAP_PRIVATE mappings created by their parent
1364          * have no page reserves. This check ensures that reservations are
1365          * not "stolen". The child may still get SIGKILLed
1366          */
1367         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368                 goto err;
1369
1370         /* If reserves cannot be used, ensure enough pages are in the pool */
1371         if (avoid_reserve && !available_huge_pages(h))
1372                 goto err;
1373
1374         gfp_mask = htlb_alloc_mask(h);
1375         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377         if (mpol_is_preferred_many(mpol)) {
1378                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379                                                         nid, nodemask);
1380
1381                 /* Fallback to all nodes if page==NULL */
1382                 nodemask = NULL;
1383         }
1384
1385         if (!folio)
1386                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387                                                         nid, nodemask);
1388
1389         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390                 folio_set_hugetlb_restore_reserve(folio);
1391                 h->resv_huge_pages--;
1392         }
1393
1394         mpol_cond_put(mpol);
1395         return folio;
1396
1397 err:
1398         return NULL;
1399 }
1400
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410         nid = next_node_in(nid, *nodes_allowed);
1411         VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413         return nid;
1414 }
1415
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418         if (!node_isset(nid, *nodes_allowed))
1419                 nid = next_node_allowed(nid, nodes_allowed);
1420         return nid;
1421 }
1422
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430                                         nodemask_t *nodes_allowed)
1431 {
1432         int nid;
1433
1434         VM_BUG_ON(!nodes_allowed);
1435
1436         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439         return nid;
1440 }
1441
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450         int nid;
1451
1452         VM_BUG_ON(!nodes_allowed);
1453
1454         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457         return nid;
1458 }
1459
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1461         for (nr_nodes = nodes_weight(*mask);                            \
1462                 nr_nodes > 0 &&                                         \
1463                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1464                 nr_nodes--)
1465
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1467         for (nr_nodes = nodes_weight(*mask);                            \
1468                 nr_nodes > 0 &&                                         \
1469                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1470                 nr_nodes--)
1471
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474                                         unsigned int order, bool demote)
1475 {
1476         int i;
1477         int nr_pages = 1 << order;
1478         struct page *p;
1479
1480         atomic_set(&folio->_entire_mapcount, 0);
1481         atomic_set(&folio->_nr_pages_mapped, 0);
1482         atomic_set(&folio->_pincount, 0);
1483
1484         for (i = 1; i < nr_pages; i++) {
1485                 p = folio_page(folio, i);
1486                 p->mapping = NULL;
1487                 clear_compound_head(p);
1488                 if (!demote)
1489                         set_page_refcounted(p);
1490         }
1491
1492         folio_set_order(folio, 0);
1493         __folio_clear_head(folio);
1494 }
1495
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497                                         unsigned int order)
1498 {
1499         __destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504                                         unsigned int order)
1505 {
1506         __destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511         /*
1512          * If the page isn't allocated using the cma allocator,
1513          * cma_release() returns false.
1514          */
1515 #ifdef CONFIG_CMA
1516         int nid = folio_nid(folio);
1517
1518         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519                 return;
1520 #endif
1521
1522         free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527                 int nid, nodemask_t *nodemask)
1528 {
1529         struct page *page;
1530         unsigned long nr_pages = pages_per_huge_page(h);
1531         if (nid == NUMA_NO_NODE)
1532                 nid = numa_mem_id();
1533
1534 #ifdef CONFIG_CMA
1535         {
1536                 int node;
1537
1538                 if (hugetlb_cma[nid]) {
1539                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540                                         huge_page_order(h), true);
1541                         if (page)
1542                                 return page_folio(page);
1543                 }
1544
1545                 if (!(gfp_mask & __GFP_THISNODE)) {
1546                         for_each_node_mask(node, *nodemask) {
1547                                 if (node == nid || !hugetlb_cma[node])
1548                                         continue;
1549
1550                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551                                                 huge_page_order(h), true);
1552                                 if (page)
1553                                         return page_folio(page);
1554                         }
1555                 }
1556         }
1557 #endif
1558
1559         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560         return page ? page_folio(page) : NULL;
1561 }
1562
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565                                         int nid, nodemask_t *nodemask)
1566 {
1567         return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573                                         int nid, nodemask_t *nodemask)
1574 {
1575         return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578                                                 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580                                                 unsigned int order) { }
1581 #endif
1582
1583 /*
1584  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585  * as just a compound page.
1586  *
1587  * A reference is held on the folio, except in the case of demote.
1588  *
1589  * Must be called with hugetlb lock held.
1590  */
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592                                                         bool adjust_surplus,
1593                                                         bool demote)
1594 {
1595         int nid = folio_nid(folio);
1596
1597         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599
1600         lockdep_assert_held(&hugetlb_lock);
1601         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602                 return;
1603
1604         list_del(&folio->lru);
1605
1606         if (folio_test_hugetlb_freed(folio)) {
1607                 h->free_huge_pages--;
1608                 h->free_huge_pages_node[nid]--;
1609         }
1610         if (adjust_surplus) {
1611                 h->surplus_huge_pages--;
1612                 h->surplus_huge_pages_node[nid]--;
1613         }
1614
1615         /*
1616          * Very subtle
1617          *
1618          * For non-gigantic pages set the destructor to the normal compound
1619          * page dtor.  This is needed in case someone takes an additional
1620          * temporary ref to the page, and freeing is delayed until they drop
1621          * their reference.
1622          *
1623          * For gigantic pages set the destructor to the null dtor.  This
1624          * destructor will never be called.  Before freeing the gigantic
1625          * page destroy_compound_gigantic_folio will turn the folio into a
1626          * simple group of pages.  After this the destructor does not
1627          * apply.
1628          *
1629          * This handles the case where more than one ref is held when and
1630          * after update_and_free_hugetlb_folio is called.
1631          *
1632          * In the case of demote we do not ref count the page as it will soon
1633          * be turned into a page of smaller size.
1634          */
1635         if (!demote)
1636                 folio_ref_unfreeze(folio, 1);
1637         if (hstate_is_gigantic(h))
1638                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639         else
1640                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641
1642         h->nr_huge_pages--;
1643         h->nr_huge_pages_node[nid]--;
1644 }
1645
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647                                                         bool adjust_surplus)
1648 {
1649         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650 }
1651
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653                                                         bool adjust_surplus)
1654 {
1655         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656 }
1657
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659                              bool adjust_surplus)
1660 {
1661         int zeroed;
1662         int nid = folio_nid(folio);
1663
1664         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665
1666         lockdep_assert_held(&hugetlb_lock);
1667
1668         INIT_LIST_HEAD(&folio->lru);
1669         h->nr_huge_pages++;
1670         h->nr_huge_pages_node[nid]++;
1671
1672         if (adjust_surplus) {
1673                 h->surplus_huge_pages++;
1674                 h->surplus_huge_pages_node[nid]++;
1675         }
1676
1677         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678         folio_change_private(folio, NULL);
1679         /*
1680          * We have to set hugetlb_vmemmap_optimized again as above
1681          * folio_change_private(folio, NULL) cleared it.
1682          */
1683         folio_set_hugetlb_vmemmap_optimized(folio);
1684
1685         /*
1686          * This folio is about to be managed by the hugetlb allocator and
1687          * should have no users.  Drop our reference, and check for others
1688          * just in case.
1689          */
1690         zeroed = folio_put_testzero(folio);
1691         if (unlikely(!zeroed))
1692                 /*
1693                  * It is VERY unlikely soneone else has taken a ref on
1694                  * the page.  In this case, we simply return as the
1695                  * hugetlb destructor (free_huge_page) will be called
1696                  * when this other ref is dropped.
1697                  */
1698                 return;
1699
1700         arch_clear_hugepage_flags(&folio->page);
1701         enqueue_hugetlb_folio(h, folio);
1702 }
1703
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705                                                 struct folio *folio)
1706 {
1707         int i;
1708         struct page *subpage;
1709
1710         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711                 return;
1712
1713         /*
1714          * If we don't know which subpages are hwpoisoned, we can't free
1715          * the hugepage, so it's leaked intentionally.
1716          */
1717         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718                 return;
1719
1720         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721                 spin_lock_irq(&hugetlb_lock);
1722                 /*
1723                  * If we cannot allocate vmemmap pages, just refuse to free the
1724                  * page and put the page back on the hugetlb free list and treat
1725                  * as a surplus page.
1726                  */
1727                 add_hugetlb_folio(h, folio, true);
1728                 spin_unlock_irq(&hugetlb_lock);
1729                 return;
1730         }
1731
1732         /*
1733          * Move PageHWPoison flag from head page to the raw error pages,
1734          * which makes any healthy subpages reusable.
1735          */
1736         if (unlikely(folio_test_hwpoison(folio)))
1737                 folio_clear_hugetlb_hwpoison(folio);
1738
1739         for (i = 0; i < pages_per_huge_page(h); i++) {
1740                 subpage = folio_page(folio, i);
1741                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742                                 1 << PG_referenced | 1 << PG_dirty |
1743                                 1 << PG_active | 1 << PG_private |
1744                                 1 << PG_writeback);
1745         }
1746
1747         /*
1748          * Non-gigantic pages demoted from CMA allocated gigantic pages
1749          * need to be given back to CMA in free_gigantic_folio.
1750          */
1751         if (hstate_is_gigantic(h) ||
1752             hugetlb_cma_folio(folio, huge_page_order(h))) {
1753                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754                 free_gigantic_folio(folio, huge_page_order(h));
1755         } else {
1756                 __free_pages(&folio->page, huge_page_order(h));
1757         }
1758 }
1759
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775         struct llist_node *node;
1776
1777         node = llist_del_all(&hpage_freelist);
1778
1779         while (node) {
1780                 struct page *page;
1781                 struct hstate *h;
1782
1783                 page = container_of((struct address_space **)node,
1784                                      struct page, mapping);
1785                 node = node->next;
1786                 page->mapping = NULL;
1787                 /*
1788                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789                  * is going to trigger because a previous call to
1790                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1791                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792                  * directly.
1793                  */
1794                 h = size_to_hstate(page_size(page));
1795
1796                 __update_and_free_hugetlb_folio(h, page_folio(page));
1797
1798                 cond_resched();
1799         }
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805         if (hugetlb_vmemmap_optimizable(h))
1806                 flush_work(&free_hpage_work);
1807 }
1808
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810                                  bool atomic)
1811 {
1812         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813                 __update_and_free_hugetlb_folio(h, folio);
1814                 return;
1815         }
1816
1817         /*
1818          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819          *
1820          * Only call schedule_work() if hpage_freelist is previously
1821          * empty. Otherwise, schedule_work() had been called but the workfn
1822          * hasn't retrieved the list yet.
1823          */
1824         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825                 schedule_work(&free_hpage_work);
1826 }
1827
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 {
1830         struct page *page, *t_page;
1831         struct folio *folio;
1832
1833         list_for_each_entry_safe(page, t_page, list, lru) {
1834                 folio = page_folio(page);
1835                 update_and_free_hugetlb_folio(h, folio, false);
1836                 cond_resched();
1837         }
1838 }
1839
1840 struct hstate *size_to_hstate(unsigned long size)
1841 {
1842         struct hstate *h;
1843
1844         for_each_hstate(h) {
1845                 if (huge_page_size(h) == size)
1846                         return h;
1847         }
1848         return NULL;
1849 }
1850
1851 void free_huge_page(struct page *page)
1852 {
1853         /*
1854          * Can't pass hstate in here because it is called from the
1855          * compound page destructor.
1856          */
1857         struct folio *folio = page_folio(page);
1858         struct hstate *h = folio_hstate(folio);
1859         int nid = folio_nid(folio);
1860         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861         bool restore_reserve;
1862         unsigned long flags;
1863
1864         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866
1867         hugetlb_set_folio_subpool(folio, NULL);
1868         if (folio_test_anon(folio))
1869                 __ClearPageAnonExclusive(&folio->page);
1870         folio->mapping = NULL;
1871         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872         folio_clear_hugetlb_restore_reserve(folio);
1873
1874         /*
1875          * If HPageRestoreReserve was set on page, page allocation consumed a
1876          * reservation.  If the page was associated with a subpool, there
1877          * would have been a page reserved in the subpool before allocation
1878          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1879          * reservation, do not call hugepage_subpool_put_pages() as this will
1880          * remove the reserved page from the subpool.
1881          */
1882         if (!restore_reserve) {
1883                 /*
1884                  * A return code of zero implies that the subpool will be
1885                  * under its minimum size if the reservation is not restored
1886                  * after page is free.  Therefore, force restore_reserve
1887                  * operation.
1888                  */
1889                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890                         restore_reserve = true;
1891         }
1892
1893         spin_lock_irqsave(&hugetlb_lock, flags);
1894         folio_clear_hugetlb_migratable(folio);
1895         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896                                      pages_per_huge_page(h), folio);
1897         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898                                           pages_per_huge_page(h), folio);
1899         if (restore_reserve)
1900                 h->resv_huge_pages++;
1901
1902         if (folio_test_hugetlb_temporary(folio)) {
1903                 remove_hugetlb_folio(h, folio, false);
1904                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905                 update_and_free_hugetlb_folio(h, folio, true);
1906         } else if (h->surplus_huge_pages_node[nid]) {
1907                 /* remove the page from active list */
1908                 remove_hugetlb_folio(h, folio, true);
1909                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910                 update_and_free_hugetlb_folio(h, folio, true);
1911         } else {
1912                 arch_clear_hugepage_flags(page);
1913                 enqueue_hugetlb_folio(h, folio);
1914                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1915         }
1916 }
1917
1918 /*
1919  * Must be called with the hugetlb lock held
1920  */
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 {
1923         lockdep_assert_held(&hugetlb_lock);
1924         h->nr_huge_pages++;
1925         h->nr_huge_pages_node[nid]++;
1926 }
1927
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 {
1930         hugetlb_vmemmap_optimize(h, &folio->page);
1931         INIT_LIST_HEAD(&folio->lru);
1932         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933         hugetlb_set_folio_subpool(folio, NULL);
1934         set_hugetlb_cgroup(folio, NULL);
1935         set_hugetlb_cgroup_rsvd(folio, NULL);
1936 }
1937
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 {
1940         __prep_new_hugetlb_folio(h, folio);
1941         spin_lock_irq(&hugetlb_lock);
1942         __prep_account_new_huge_page(h, nid);
1943         spin_unlock_irq(&hugetlb_lock);
1944 }
1945
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947                                         unsigned int order, bool demote)
1948 {
1949         int i, j;
1950         int nr_pages = 1 << order;
1951         struct page *p;
1952
1953         __folio_clear_reserved(folio);
1954         __folio_set_head(folio);
1955         /* we rely on prep_new_hugetlb_folio to set the destructor */
1956         folio_set_order(folio, order);
1957         for (i = 0; i < nr_pages; i++) {
1958                 p = folio_page(folio, i);
1959
1960                 /*
1961                  * For gigantic hugepages allocated through bootmem at
1962                  * boot, it's safer to be consistent with the not-gigantic
1963                  * hugepages and clear the PG_reserved bit from all tail pages
1964                  * too.  Otherwise drivers using get_user_pages() to access tail
1965                  * pages may get the reference counting wrong if they see
1966                  * PG_reserved set on a tail page (despite the head page not
1967                  * having PG_reserved set).  Enforcing this consistency between
1968                  * head and tail pages allows drivers to optimize away a check
1969                  * on the head page when they need know if put_page() is needed
1970                  * after get_user_pages().
1971                  */
1972                 if (i != 0)     /* head page cleared above */
1973                         __ClearPageReserved(p);
1974                 /*
1975                  * Subtle and very unlikely
1976                  *
1977                  * Gigantic 'page allocators' such as memblock or cma will
1978                  * return a set of pages with each page ref counted.  We need
1979                  * to turn this set of pages into a compound page with tail
1980                  * page ref counts set to zero.  Code such as speculative page
1981                  * cache adding could take a ref on a 'to be' tail page.
1982                  * We need to respect any increased ref count, and only set
1983                  * the ref count to zero if count is currently 1.  If count
1984                  * is not 1, we return an error.  An error return indicates
1985                  * the set of pages can not be converted to a gigantic page.
1986                  * The caller who allocated the pages should then discard the
1987                  * pages using the appropriate free interface.
1988                  *
1989                  * In the case of demote, the ref count will be zero.
1990                  */
1991                 if (!demote) {
1992                         if (!page_ref_freeze(p, 1)) {
1993                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994                                 goto out_error;
1995                         }
1996                 } else {
1997                         VM_BUG_ON_PAGE(page_count(p), p);
1998                 }
1999                 if (i != 0)
2000                         set_compound_head(p, &folio->page);
2001         }
2002         atomic_set(&folio->_entire_mapcount, -1);
2003         atomic_set(&folio->_nr_pages_mapped, 0);
2004         atomic_set(&folio->_pincount, 0);
2005         return true;
2006
2007 out_error:
2008         /* undo page modifications made above */
2009         for (j = 0; j < i; j++) {
2010                 p = folio_page(folio, j);
2011                 if (j != 0)
2012                         clear_compound_head(p);
2013                 set_page_refcounted(p);
2014         }
2015         /* need to clear PG_reserved on remaining tail pages  */
2016         for (; j < nr_pages; j++) {
2017                 p = folio_page(folio, j);
2018                 __ClearPageReserved(p);
2019         }
2020         folio_set_order(folio, 0);
2021         __folio_clear_head(folio);
2022         return false;
2023 }
2024
2025 static bool prep_compound_gigantic_folio(struct folio *folio,
2026                                                         unsigned int order)
2027 {
2028         return __prep_compound_gigantic_folio(folio, order, false);
2029 }
2030
2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032                                                         unsigned int order)
2033 {
2034         return __prep_compound_gigantic_folio(folio, order, true);
2035 }
2036
2037 /*
2038  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039  * transparent huge pages.  See the PageTransHuge() documentation for more
2040  * details.
2041  */
2042 int PageHuge(struct page *page)
2043 {
2044         struct folio *folio;
2045
2046         if (!PageCompound(page))
2047                 return 0;
2048         folio = page_folio(page);
2049         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2050 }
2051 EXPORT_SYMBOL_GPL(PageHuge);
2052
2053 /**
2054  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2055  * @folio: The folio to test.
2056  *
2057  * Context: Any context.  Caller should have a reference on the folio to
2058  * prevent it from being turned into a tail page.
2059  * Return: True for hugetlbfs folios, false for anon folios or folios
2060  * belonging to other filesystems.
2061  */
2062 bool folio_test_hugetlb(struct folio *folio)
2063 {
2064         if (!folio_test_large(folio))
2065                 return false;
2066
2067         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2068 }
2069 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2070
2071 /*
2072  * Find and lock address space (mapping) in write mode.
2073  *
2074  * Upon entry, the page is locked which means that page_mapping() is
2075  * stable.  Due to locking order, we can only trylock_write.  If we can
2076  * not get the lock, simply return NULL to caller.
2077  */
2078 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2079 {
2080         struct address_space *mapping = page_mapping(hpage);
2081
2082         if (!mapping)
2083                 return mapping;
2084
2085         if (i_mmap_trylock_write(mapping))
2086                 return mapping;
2087
2088         return NULL;
2089 }
2090
2091 pgoff_t hugetlb_basepage_index(struct page *page)
2092 {
2093         struct page *page_head = compound_head(page);
2094         pgoff_t index = page_index(page_head);
2095         unsigned long compound_idx;
2096
2097         if (compound_order(page_head) > MAX_ORDER)
2098                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2099         else
2100                 compound_idx = page - page_head;
2101
2102         return (index << compound_order(page_head)) + compound_idx;
2103 }
2104
2105 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2106                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2107                 nodemask_t *node_alloc_noretry)
2108 {
2109         int order = huge_page_order(h);
2110         struct page *page;
2111         bool alloc_try_hard = true;
2112         bool retry = true;
2113
2114         /*
2115          * By default we always try hard to allocate the page with
2116          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2117          * a loop (to adjust global huge page counts) and previous allocation
2118          * failed, do not continue to try hard on the same node.  Use the
2119          * node_alloc_noretry bitmap to manage this state information.
2120          */
2121         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2122                 alloc_try_hard = false;
2123         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2124         if (alloc_try_hard)
2125                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2126         if (nid == NUMA_NO_NODE)
2127                 nid = numa_mem_id();
2128 retry:
2129         page = __alloc_pages(gfp_mask, order, nid, nmask);
2130
2131         /* Freeze head page */
2132         if (page && !page_ref_freeze(page, 1)) {
2133                 __free_pages(page, order);
2134                 if (retry) {    /* retry once */
2135                         retry = false;
2136                         goto retry;
2137                 }
2138                 /* WOW!  twice in a row. */
2139                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2140                 page = NULL;
2141         }
2142
2143         /*
2144          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2145          * indicates an overall state change.  Clear bit so that we resume
2146          * normal 'try hard' allocations.
2147          */
2148         if (node_alloc_noretry && page && !alloc_try_hard)
2149                 node_clear(nid, *node_alloc_noretry);
2150
2151         /*
2152          * If we tried hard to get a page but failed, set bit so that
2153          * subsequent attempts will not try as hard until there is an
2154          * overall state change.
2155          */
2156         if (node_alloc_noretry && !page && alloc_try_hard)
2157                 node_set(nid, *node_alloc_noretry);
2158
2159         if (!page) {
2160                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2161                 return NULL;
2162         }
2163
2164         __count_vm_event(HTLB_BUDDY_PGALLOC);
2165         return page_folio(page);
2166 }
2167
2168 /*
2169  * Common helper to allocate a fresh hugetlb page. All specific allocators
2170  * should use this function to get new hugetlb pages
2171  *
2172  * Note that returned page is 'frozen':  ref count of head page and all tail
2173  * pages is zero.
2174  */
2175 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2176                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177                 nodemask_t *node_alloc_noretry)
2178 {
2179         struct folio *folio;
2180         bool retry = false;
2181
2182 retry:
2183         if (hstate_is_gigantic(h))
2184                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2185         else
2186                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2187                                 nid, nmask, node_alloc_noretry);
2188         if (!folio)
2189                 return NULL;
2190         if (hstate_is_gigantic(h)) {
2191                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2192                         /*
2193                          * Rare failure to convert pages to compound page.
2194                          * Free pages and try again - ONCE!
2195                          */
2196                         free_gigantic_folio(folio, huge_page_order(h));
2197                         if (!retry) {
2198                                 retry = true;
2199                                 goto retry;
2200                         }
2201                         return NULL;
2202                 }
2203         }
2204         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2205
2206         return folio;
2207 }
2208
2209 /*
2210  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2211  * manner.
2212  */
2213 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2214                                 nodemask_t *node_alloc_noretry)
2215 {
2216         struct folio *folio;
2217         int nr_nodes, node;
2218         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2219
2220         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2221                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2222                                         nodes_allowed, node_alloc_noretry);
2223                 if (folio) {
2224                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2225                         return 1;
2226                 }
2227         }
2228
2229         return 0;
2230 }
2231
2232 /*
2233  * Remove huge page from pool from next node to free.  Attempt to keep
2234  * persistent huge pages more or less balanced over allowed nodes.
2235  * This routine only 'removes' the hugetlb page.  The caller must make
2236  * an additional call to free the page to low level allocators.
2237  * Called with hugetlb_lock locked.
2238  */
2239 static struct page *remove_pool_huge_page(struct hstate *h,
2240                                                 nodemask_t *nodes_allowed,
2241                                                  bool acct_surplus)
2242 {
2243         int nr_nodes, node;
2244         struct page *page = NULL;
2245         struct folio *folio;
2246
2247         lockdep_assert_held(&hugetlb_lock);
2248         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2249                 /*
2250                  * If we're returning unused surplus pages, only examine
2251                  * nodes with surplus pages.
2252                  */
2253                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2254                     !list_empty(&h->hugepage_freelists[node])) {
2255                         page = list_entry(h->hugepage_freelists[node].next,
2256                                           struct page, lru);
2257                         folio = page_folio(page);
2258                         remove_hugetlb_folio(h, folio, acct_surplus);
2259                         break;
2260                 }
2261         }
2262
2263         return page;
2264 }
2265
2266 /*
2267  * Dissolve a given free hugepage into free buddy pages. This function does
2268  * nothing for in-use hugepages and non-hugepages.
2269  * This function returns values like below:
2270  *
2271  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2272  *           when the system is under memory pressure and the feature of
2273  *           freeing unused vmemmap pages associated with each hugetlb page
2274  *           is enabled.
2275  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2276  *           (allocated or reserved.)
2277  *       0:  successfully dissolved free hugepages or the page is not a
2278  *           hugepage (considered as already dissolved)
2279  */
2280 int dissolve_free_huge_page(struct page *page)
2281 {
2282         int rc = -EBUSY;
2283         struct folio *folio = page_folio(page);
2284
2285 retry:
2286         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2287         if (!folio_test_hugetlb(folio))
2288                 return 0;
2289
2290         spin_lock_irq(&hugetlb_lock);
2291         if (!folio_test_hugetlb(folio)) {
2292                 rc = 0;
2293                 goto out;
2294         }
2295
2296         if (!folio_ref_count(folio)) {
2297                 struct hstate *h = folio_hstate(folio);
2298                 if (!available_huge_pages(h))
2299                         goto out;
2300
2301                 /*
2302                  * We should make sure that the page is already on the free list
2303                  * when it is dissolved.
2304                  */
2305                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2306                         spin_unlock_irq(&hugetlb_lock);
2307                         cond_resched();
2308
2309                         /*
2310                          * Theoretically, we should return -EBUSY when we
2311                          * encounter this race. In fact, we have a chance
2312                          * to successfully dissolve the page if we do a
2313                          * retry. Because the race window is quite small.
2314                          * If we seize this opportunity, it is an optimization
2315                          * for increasing the success rate of dissolving page.
2316                          */
2317                         goto retry;
2318                 }
2319
2320                 remove_hugetlb_folio(h, folio, false);
2321                 h->max_huge_pages--;
2322                 spin_unlock_irq(&hugetlb_lock);
2323
2324                 /*
2325                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2326                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2327                  * free the page if it can not allocate required vmemmap.  We
2328                  * need to adjust max_huge_pages if the page is not freed.
2329                  * Attempt to allocate vmemmmap here so that we can take
2330                  * appropriate action on failure.
2331                  */
2332                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2333                 if (!rc) {
2334                         update_and_free_hugetlb_folio(h, folio, false);
2335                 } else {
2336                         spin_lock_irq(&hugetlb_lock);
2337                         add_hugetlb_folio(h, folio, false);
2338                         h->max_huge_pages++;
2339                         spin_unlock_irq(&hugetlb_lock);
2340                 }
2341
2342                 return rc;
2343         }
2344 out:
2345         spin_unlock_irq(&hugetlb_lock);
2346         return rc;
2347 }
2348
2349 /*
2350  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2351  * make specified memory blocks removable from the system.
2352  * Note that this will dissolve a free gigantic hugepage completely, if any
2353  * part of it lies within the given range.
2354  * Also note that if dissolve_free_huge_page() returns with an error, all
2355  * free hugepages that were dissolved before that error are lost.
2356  */
2357 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2358 {
2359         unsigned long pfn;
2360         struct page *page;
2361         int rc = 0;
2362         unsigned int order;
2363         struct hstate *h;
2364
2365         if (!hugepages_supported())
2366                 return rc;
2367
2368         order = huge_page_order(&default_hstate);
2369         for_each_hstate(h)
2370                 order = min(order, huge_page_order(h));
2371
2372         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2373                 page = pfn_to_page(pfn);
2374                 rc = dissolve_free_huge_page(page);
2375                 if (rc)
2376                         break;
2377         }
2378
2379         return rc;
2380 }
2381
2382 /*
2383  * Allocates a fresh surplus page from the page allocator.
2384  */
2385 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2386                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2387 {
2388         struct folio *folio = NULL;
2389
2390         if (hstate_is_gigantic(h))
2391                 return NULL;
2392
2393         spin_lock_irq(&hugetlb_lock);
2394         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2395                 goto out_unlock;
2396         spin_unlock_irq(&hugetlb_lock);
2397
2398         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2399         if (!folio)
2400                 return NULL;
2401
2402         spin_lock_irq(&hugetlb_lock);
2403         /*
2404          * We could have raced with the pool size change.
2405          * Double check that and simply deallocate the new page
2406          * if we would end up overcommiting the surpluses. Abuse
2407          * temporary page to workaround the nasty free_huge_page
2408          * codeflow
2409          */
2410         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2411                 folio_set_hugetlb_temporary(folio);
2412                 spin_unlock_irq(&hugetlb_lock);
2413                 free_huge_page(&folio->page);
2414                 return NULL;
2415         }
2416
2417         h->surplus_huge_pages++;
2418         h->surplus_huge_pages_node[folio_nid(folio)]++;
2419
2420 out_unlock:
2421         spin_unlock_irq(&hugetlb_lock);
2422
2423         return folio;
2424 }
2425
2426 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2427                                      int nid, nodemask_t *nmask)
2428 {
2429         struct folio *folio;
2430
2431         if (hstate_is_gigantic(h))
2432                 return NULL;
2433
2434         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2435         if (!folio)
2436                 return NULL;
2437
2438         /* fresh huge pages are frozen */
2439         folio_ref_unfreeze(folio, 1);
2440         /*
2441          * We do not account these pages as surplus because they are only
2442          * temporary and will be released properly on the last reference
2443          */
2444         folio_set_hugetlb_temporary(folio);
2445
2446         return folio;
2447 }
2448
2449 /*
2450  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2451  */
2452 static
2453 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2454                 struct vm_area_struct *vma, unsigned long addr)
2455 {
2456         struct folio *folio = NULL;
2457         struct mempolicy *mpol;
2458         gfp_t gfp_mask = htlb_alloc_mask(h);
2459         int nid;
2460         nodemask_t *nodemask;
2461
2462         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2463         if (mpol_is_preferred_many(mpol)) {
2464                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2465
2466                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2467                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2468
2469                 /* Fallback to all nodes if page==NULL */
2470                 nodemask = NULL;
2471         }
2472
2473         if (!folio)
2474                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2475         mpol_cond_put(mpol);
2476         return folio;
2477 }
2478
2479 /* folio migration callback function */
2480 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2481                 nodemask_t *nmask, gfp_t gfp_mask)
2482 {
2483         spin_lock_irq(&hugetlb_lock);
2484         if (available_huge_pages(h)) {
2485                 struct folio *folio;
2486
2487                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2488                                                 preferred_nid, nmask);
2489                 if (folio) {
2490                         spin_unlock_irq(&hugetlb_lock);
2491                         return folio;
2492                 }
2493         }
2494         spin_unlock_irq(&hugetlb_lock);
2495
2496         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2497 }
2498
2499 /* mempolicy aware migration callback */
2500 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2501                 unsigned long address)
2502 {
2503         struct mempolicy *mpol;
2504         nodemask_t *nodemask;
2505         struct folio *folio;
2506         gfp_t gfp_mask;
2507         int node;
2508
2509         gfp_mask = htlb_alloc_mask(h);
2510         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2511         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2512         mpol_cond_put(mpol);
2513
2514         return folio;
2515 }
2516
2517 /*
2518  * Increase the hugetlb pool such that it can accommodate a reservation
2519  * of size 'delta'.
2520  */
2521 static int gather_surplus_pages(struct hstate *h, long delta)
2522         __must_hold(&hugetlb_lock)
2523 {
2524         LIST_HEAD(surplus_list);
2525         struct folio *folio;
2526         struct page *page, *tmp;
2527         int ret;
2528         long i;
2529         long needed, allocated;
2530         bool alloc_ok = true;
2531
2532         lockdep_assert_held(&hugetlb_lock);
2533         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2534         if (needed <= 0) {
2535                 h->resv_huge_pages += delta;
2536                 return 0;
2537         }
2538
2539         allocated = 0;
2540
2541         ret = -ENOMEM;
2542 retry:
2543         spin_unlock_irq(&hugetlb_lock);
2544         for (i = 0; i < needed; i++) {
2545                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2546                                 NUMA_NO_NODE, NULL);
2547                 if (!folio) {
2548                         alloc_ok = false;
2549                         break;
2550                 }
2551                 list_add(&folio->lru, &surplus_list);
2552                 cond_resched();
2553         }
2554         allocated += i;
2555
2556         /*
2557          * After retaking hugetlb_lock, we need to recalculate 'needed'
2558          * because either resv_huge_pages or free_huge_pages may have changed.
2559          */
2560         spin_lock_irq(&hugetlb_lock);
2561         needed = (h->resv_huge_pages + delta) -
2562                         (h->free_huge_pages + allocated);
2563         if (needed > 0) {
2564                 if (alloc_ok)
2565                         goto retry;
2566                 /*
2567                  * We were not able to allocate enough pages to
2568                  * satisfy the entire reservation so we free what
2569                  * we've allocated so far.
2570                  */
2571                 goto free;
2572         }
2573         /*
2574          * The surplus_list now contains _at_least_ the number of extra pages
2575          * needed to accommodate the reservation.  Add the appropriate number
2576          * of pages to the hugetlb pool and free the extras back to the buddy
2577          * allocator.  Commit the entire reservation here to prevent another
2578          * process from stealing the pages as they are added to the pool but
2579          * before they are reserved.
2580          */
2581         needed += allocated;
2582         h->resv_huge_pages += delta;
2583         ret = 0;
2584
2585         /* Free the needed pages to the hugetlb pool */
2586         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2587                 if ((--needed) < 0)
2588                         break;
2589                 /* Add the page to the hugetlb allocator */
2590                 enqueue_hugetlb_folio(h, page_folio(page));
2591         }
2592 free:
2593         spin_unlock_irq(&hugetlb_lock);
2594
2595         /*
2596          * Free unnecessary surplus pages to the buddy allocator.
2597          * Pages have no ref count, call free_huge_page directly.
2598          */
2599         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2600                 free_huge_page(page);
2601         spin_lock_irq(&hugetlb_lock);
2602
2603         return ret;
2604 }
2605
2606 /*
2607  * This routine has two main purposes:
2608  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2609  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2610  *    to the associated reservation map.
2611  * 2) Free any unused surplus pages that may have been allocated to satisfy
2612  *    the reservation.  As many as unused_resv_pages may be freed.
2613  */
2614 static void return_unused_surplus_pages(struct hstate *h,
2615                                         unsigned long unused_resv_pages)
2616 {
2617         unsigned long nr_pages;
2618         struct page *page;
2619         LIST_HEAD(page_list);
2620
2621         lockdep_assert_held(&hugetlb_lock);
2622         /* Uncommit the reservation */
2623         h->resv_huge_pages -= unused_resv_pages;
2624
2625         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2626                 goto out;
2627
2628         /*
2629          * Part (or even all) of the reservation could have been backed
2630          * by pre-allocated pages. Only free surplus pages.
2631          */
2632         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2633
2634         /*
2635          * We want to release as many surplus pages as possible, spread
2636          * evenly across all nodes with memory. Iterate across these nodes
2637          * until we can no longer free unreserved surplus pages. This occurs
2638          * when the nodes with surplus pages have no free pages.
2639          * remove_pool_huge_page() will balance the freed pages across the
2640          * on-line nodes with memory and will handle the hstate accounting.
2641          */
2642         while (nr_pages--) {
2643                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2644                 if (!page)
2645                         goto out;
2646
2647                 list_add(&page->lru, &page_list);
2648         }
2649
2650 out:
2651         spin_unlock_irq(&hugetlb_lock);
2652         update_and_free_pages_bulk(h, &page_list);
2653         spin_lock_irq(&hugetlb_lock);
2654 }
2655
2656
2657 /*
2658  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2659  * are used by the huge page allocation routines to manage reservations.
2660  *
2661  * vma_needs_reservation is called to determine if the huge page at addr
2662  * within the vma has an associated reservation.  If a reservation is
2663  * needed, the value 1 is returned.  The caller is then responsible for
2664  * managing the global reservation and subpool usage counts.  After
2665  * the huge page has been allocated, vma_commit_reservation is called
2666  * to add the page to the reservation map.  If the page allocation fails,
2667  * the reservation must be ended instead of committed.  vma_end_reservation
2668  * is called in such cases.
2669  *
2670  * In the normal case, vma_commit_reservation returns the same value
2671  * as the preceding vma_needs_reservation call.  The only time this
2672  * is not the case is if a reserve map was changed between calls.  It
2673  * is the responsibility of the caller to notice the difference and
2674  * take appropriate action.
2675  *
2676  * vma_add_reservation is used in error paths where a reservation must
2677  * be restored when a newly allocated huge page must be freed.  It is
2678  * to be called after calling vma_needs_reservation to determine if a
2679  * reservation exists.
2680  *
2681  * vma_del_reservation is used in error paths where an entry in the reserve
2682  * map was created during huge page allocation and must be removed.  It is to
2683  * be called after calling vma_needs_reservation to determine if a reservation
2684  * exists.
2685  */
2686 enum vma_resv_mode {
2687         VMA_NEEDS_RESV,
2688         VMA_COMMIT_RESV,
2689         VMA_END_RESV,
2690         VMA_ADD_RESV,
2691         VMA_DEL_RESV,
2692 };
2693 static long __vma_reservation_common(struct hstate *h,
2694                                 struct vm_area_struct *vma, unsigned long addr,
2695                                 enum vma_resv_mode mode)
2696 {
2697         struct resv_map *resv;
2698         pgoff_t idx;
2699         long ret;
2700         long dummy_out_regions_needed;
2701
2702         resv = vma_resv_map(vma);
2703         if (!resv)
2704                 return 1;
2705
2706         idx = vma_hugecache_offset(h, vma, addr);
2707         switch (mode) {
2708         case VMA_NEEDS_RESV:
2709                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2710                 /* We assume that vma_reservation_* routines always operate on
2711                  * 1 page, and that adding to resv map a 1 page entry can only
2712                  * ever require 1 region.
2713                  */
2714                 VM_BUG_ON(dummy_out_regions_needed != 1);
2715                 break;
2716         case VMA_COMMIT_RESV:
2717                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2718                 /* region_add calls of range 1 should never fail. */
2719                 VM_BUG_ON(ret < 0);
2720                 break;
2721         case VMA_END_RESV:
2722                 region_abort(resv, idx, idx + 1, 1);
2723                 ret = 0;
2724                 break;
2725         case VMA_ADD_RESV:
2726                 if (vma->vm_flags & VM_MAYSHARE) {
2727                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2728                         /* region_add calls of range 1 should never fail. */
2729                         VM_BUG_ON(ret < 0);
2730                 } else {
2731                         region_abort(resv, idx, idx + 1, 1);
2732                         ret = region_del(resv, idx, idx + 1);
2733                 }
2734                 break;
2735         case VMA_DEL_RESV:
2736                 if (vma->vm_flags & VM_MAYSHARE) {
2737                         region_abort(resv, idx, idx + 1, 1);
2738                         ret = region_del(resv, idx, idx + 1);
2739                 } else {
2740                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2741                         /* region_add calls of range 1 should never fail. */
2742                         VM_BUG_ON(ret < 0);
2743                 }
2744                 break;
2745         default:
2746                 BUG();
2747         }
2748
2749         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2750                 return ret;
2751         /*
2752          * We know private mapping must have HPAGE_RESV_OWNER set.
2753          *
2754          * In most cases, reserves always exist for private mappings.
2755          * However, a file associated with mapping could have been
2756          * hole punched or truncated after reserves were consumed.
2757          * As subsequent fault on such a range will not use reserves.
2758          * Subtle - The reserve map for private mappings has the
2759          * opposite meaning than that of shared mappings.  If NO
2760          * entry is in the reserve map, it means a reservation exists.
2761          * If an entry exists in the reserve map, it means the
2762          * reservation has already been consumed.  As a result, the
2763          * return value of this routine is the opposite of the
2764          * value returned from reserve map manipulation routines above.
2765          */
2766         if (ret > 0)
2767                 return 0;
2768         if (ret == 0)
2769                 return 1;
2770         return ret;
2771 }
2772
2773 static long vma_needs_reservation(struct hstate *h,
2774                         struct vm_area_struct *vma, unsigned long addr)
2775 {
2776         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2777 }
2778
2779 static long vma_commit_reservation(struct hstate *h,
2780                         struct vm_area_struct *vma, unsigned long addr)
2781 {
2782         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2783 }
2784
2785 static void vma_end_reservation(struct hstate *h,
2786                         struct vm_area_struct *vma, unsigned long addr)
2787 {
2788         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2789 }
2790
2791 static long vma_add_reservation(struct hstate *h,
2792                         struct vm_area_struct *vma, unsigned long addr)
2793 {
2794         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2795 }
2796
2797 static long vma_del_reservation(struct hstate *h,
2798                         struct vm_area_struct *vma, unsigned long addr)
2799 {
2800         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2801 }
2802
2803 /*
2804  * This routine is called to restore reservation information on error paths.
2805  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2806  * and the hugetlb mutex should remain held when calling this routine.
2807  *
2808  * It handles two specific cases:
2809  * 1) A reservation was in place and the folio consumed the reservation.
2810  *    hugetlb_restore_reserve is set in the folio.
2811  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2812  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2813  *
2814  * In case 1, free_huge_page later in the error path will increment the
2815  * global reserve count.  But, free_huge_page does not have enough context
2816  * to adjust the reservation map.  This case deals primarily with private
2817  * mappings.  Adjust the reserve map here to be consistent with global
2818  * reserve count adjustments to be made by free_huge_page.  Make sure the
2819  * reserve map indicates there is a reservation present.
2820  *
2821  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2822  */
2823 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2824                         unsigned long address, struct folio *folio)
2825 {
2826         long rc = vma_needs_reservation(h, vma, address);
2827
2828         if (folio_test_hugetlb_restore_reserve(folio)) {
2829                 if (unlikely(rc < 0))
2830                         /*
2831                          * Rare out of memory condition in reserve map
2832                          * manipulation.  Clear hugetlb_restore_reserve so
2833                          * that global reserve count will not be incremented
2834                          * by free_huge_page.  This will make it appear
2835                          * as though the reservation for this folio was
2836                          * consumed.  This may prevent the task from
2837                          * faulting in the folio at a later time.  This
2838                          * is better than inconsistent global huge page
2839                          * accounting of reserve counts.
2840                          */
2841                         folio_clear_hugetlb_restore_reserve(folio);
2842                 else if (rc)
2843                         (void)vma_add_reservation(h, vma, address);
2844                 else
2845                         vma_end_reservation(h, vma, address);
2846         } else {
2847                 if (!rc) {
2848                         /*
2849                          * This indicates there is an entry in the reserve map
2850                          * not added by alloc_hugetlb_folio.  We know it was added
2851                          * before the alloc_hugetlb_folio call, otherwise
2852                          * hugetlb_restore_reserve would be set on the folio.
2853                          * Remove the entry so that a subsequent allocation
2854                          * does not consume a reservation.
2855                          */
2856                         rc = vma_del_reservation(h, vma, address);
2857                         if (rc < 0)
2858                                 /*
2859                                  * VERY rare out of memory condition.  Since
2860                                  * we can not delete the entry, set
2861                                  * hugetlb_restore_reserve so that the reserve
2862                                  * count will be incremented when the folio
2863                                  * is freed.  This reserve will be consumed
2864                                  * on a subsequent allocation.
2865                                  */
2866                                 folio_set_hugetlb_restore_reserve(folio);
2867                 } else if (rc < 0) {
2868                         /*
2869                          * Rare out of memory condition from
2870                          * vma_needs_reservation call.  Memory allocation is
2871                          * only attempted if a new entry is needed.  Therefore,
2872                          * this implies there is not an entry in the
2873                          * reserve map.
2874                          *
2875                          * For shared mappings, no entry in the map indicates
2876                          * no reservation.  We are done.
2877                          */
2878                         if (!(vma->vm_flags & VM_MAYSHARE))
2879                                 /*
2880                                  * For private mappings, no entry indicates
2881                                  * a reservation is present.  Since we can
2882                                  * not add an entry, set hugetlb_restore_reserve
2883                                  * on the folio so reserve count will be
2884                                  * incremented when freed.  This reserve will
2885                                  * be consumed on a subsequent allocation.
2886                                  */
2887                                 folio_set_hugetlb_restore_reserve(folio);
2888                 } else
2889                         /*
2890                          * No reservation present, do nothing
2891                          */
2892                          vma_end_reservation(h, vma, address);
2893         }
2894 }
2895
2896 /*
2897  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2898  * the old one
2899  * @h: struct hstate old page belongs to
2900  * @old_folio: Old folio to dissolve
2901  * @list: List to isolate the page in case we need to
2902  * Returns 0 on success, otherwise negated error.
2903  */
2904 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2905                         struct folio *old_folio, struct list_head *list)
2906 {
2907         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2908         int nid = folio_nid(old_folio);
2909         struct folio *new_folio;
2910         int ret = 0;
2911
2912         /*
2913          * Before dissolving the folio, we need to allocate a new one for the
2914          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2915          * by doing everything but actually updating counters and adding to
2916          * the pool.  This simplifies and let us do most of the processing
2917          * under the lock.
2918          */
2919         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2920         if (!new_folio)
2921                 return -ENOMEM;
2922         __prep_new_hugetlb_folio(h, new_folio);
2923
2924 retry:
2925         spin_lock_irq(&hugetlb_lock);
2926         if (!folio_test_hugetlb(old_folio)) {
2927                 /*
2928                  * Freed from under us. Drop new_folio too.
2929                  */
2930                 goto free_new;
2931         } else if (folio_ref_count(old_folio)) {
2932                 bool isolated;
2933
2934                 /*
2935                  * Someone has grabbed the folio, try to isolate it here.
2936                  * Fail with -EBUSY if not possible.
2937                  */
2938                 spin_unlock_irq(&hugetlb_lock);
2939                 isolated = isolate_hugetlb(old_folio, list);
2940                 ret = isolated ? 0 : -EBUSY;
2941                 spin_lock_irq(&hugetlb_lock);
2942                 goto free_new;
2943         } else if (!folio_test_hugetlb_freed(old_folio)) {
2944                 /*
2945                  * Folio's refcount is 0 but it has not been enqueued in the
2946                  * freelist yet. Race window is small, so we can succeed here if
2947                  * we retry.
2948                  */
2949                 spin_unlock_irq(&hugetlb_lock);
2950                 cond_resched();
2951                 goto retry;
2952         } else {
2953                 /*
2954                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2955                  * the freelist and decrease the counters. These will be
2956                  * incremented again when calling __prep_account_new_huge_page()
2957                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2958                  * remain stable since this happens under the lock.
2959                  */
2960                 remove_hugetlb_folio(h, old_folio, false);
2961
2962                 /*
2963                  * Ref count on new_folio is already zero as it was dropped
2964                  * earlier.  It can be directly added to the pool free list.
2965                  */
2966                 __prep_account_new_huge_page(h, nid);
2967                 enqueue_hugetlb_folio(h, new_folio);
2968
2969                 /*
2970                  * Folio has been replaced, we can safely free the old one.
2971                  */
2972                 spin_unlock_irq(&hugetlb_lock);
2973                 update_and_free_hugetlb_folio(h, old_folio, false);
2974         }
2975
2976         return ret;
2977
2978 free_new:
2979         spin_unlock_irq(&hugetlb_lock);
2980         /* Folio has a zero ref count, but needs a ref to be freed */
2981         folio_ref_unfreeze(new_folio, 1);
2982         update_and_free_hugetlb_folio(h, new_folio, false);
2983
2984         return ret;
2985 }
2986
2987 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2988 {
2989         struct hstate *h;
2990         struct folio *folio = page_folio(page);
2991         int ret = -EBUSY;
2992
2993         /*
2994          * The page might have been dissolved from under our feet, so make sure
2995          * to carefully check the state under the lock.
2996          * Return success when racing as if we dissolved the page ourselves.
2997          */
2998         spin_lock_irq(&hugetlb_lock);
2999         if (folio_test_hugetlb(folio)) {
3000                 h = folio_hstate(folio);
3001         } else {
3002                 spin_unlock_irq(&hugetlb_lock);
3003                 return 0;
3004         }
3005         spin_unlock_irq(&hugetlb_lock);
3006
3007         /*
3008          * Fence off gigantic pages as there is a cyclic dependency between
3009          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3010          * of bailing out right away without further retrying.
3011          */
3012         if (hstate_is_gigantic(h))
3013                 return -ENOMEM;
3014
3015         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3016                 ret = 0;
3017         else if (!folio_ref_count(folio))
3018                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3019
3020         return ret;
3021 }
3022
3023 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3024                                     unsigned long addr, int avoid_reserve)
3025 {
3026         struct hugepage_subpool *spool = subpool_vma(vma);
3027         struct hstate *h = hstate_vma(vma);
3028         struct folio *folio;
3029         long map_chg, map_commit;
3030         long gbl_chg;
3031         int ret, idx;
3032         struct hugetlb_cgroup *h_cg = NULL;
3033         bool deferred_reserve;
3034
3035         idx = hstate_index(h);
3036         /*
3037          * Examine the region/reserve map to determine if the process
3038          * has a reservation for the page to be allocated.  A return
3039          * code of zero indicates a reservation exists (no change).
3040          */
3041         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3042         if (map_chg < 0)
3043                 return ERR_PTR(-ENOMEM);
3044
3045         /*
3046          * Processes that did not create the mapping will have no
3047          * reserves as indicated by the region/reserve map. Check
3048          * that the allocation will not exceed the subpool limit.
3049          * Allocations for MAP_NORESERVE mappings also need to be
3050          * checked against any subpool limit.
3051          */
3052         if (map_chg || avoid_reserve) {
3053                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3054                 if (gbl_chg < 0) {
3055                         vma_end_reservation(h, vma, addr);
3056                         return ERR_PTR(-ENOSPC);
3057                 }
3058
3059                 /*
3060                  * Even though there was no reservation in the region/reserve
3061                  * map, there could be reservations associated with the
3062                  * subpool that can be used.  This would be indicated if the
3063                  * return value of hugepage_subpool_get_pages() is zero.
3064                  * However, if avoid_reserve is specified we still avoid even
3065                  * the subpool reservations.
3066                  */
3067                 if (avoid_reserve)
3068                         gbl_chg = 1;
3069         }
3070
3071         /* If this allocation is not consuming a reservation, charge it now.
3072          */
3073         deferred_reserve = map_chg || avoid_reserve;
3074         if (deferred_reserve) {
3075                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3076                         idx, pages_per_huge_page(h), &h_cg);
3077                 if (ret)
3078                         goto out_subpool_put;
3079         }
3080
3081         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3082         if (ret)
3083                 goto out_uncharge_cgroup_reservation;
3084
3085         spin_lock_irq(&hugetlb_lock);
3086         /*
3087          * glb_chg is passed to indicate whether or not a page must be taken
3088          * from the global free pool (global change).  gbl_chg == 0 indicates
3089          * a reservation exists for the allocation.
3090          */
3091         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3092         if (!folio) {
3093                 spin_unlock_irq(&hugetlb_lock);
3094                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3095                 if (!folio)
3096                         goto out_uncharge_cgroup;
3097                 spin_lock_irq(&hugetlb_lock);
3098                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3099                         folio_set_hugetlb_restore_reserve(folio);
3100                         h->resv_huge_pages--;
3101                 }
3102                 list_add(&folio->lru, &h->hugepage_activelist);
3103                 folio_ref_unfreeze(folio, 1);
3104                 /* Fall through */
3105         }
3106
3107         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3108         /* If allocation is not consuming a reservation, also store the
3109          * hugetlb_cgroup pointer on the page.
3110          */
3111         if (deferred_reserve) {
3112                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3113                                                   h_cg, folio);
3114         }
3115
3116         spin_unlock_irq(&hugetlb_lock);
3117
3118         hugetlb_set_folio_subpool(folio, spool);
3119
3120         map_commit = vma_commit_reservation(h, vma, addr);
3121         if (unlikely(map_chg > map_commit)) {
3122                 /*
3123                  * The page was added to the reservation map between
3124                  * vma_needs_reservation and vma_commit_reservation.
3125                  * This indicates a race with hugetlb_reserve_pages.
3126                  * Adjust for the subpool count incremented above AND
3127                  * in hugetlb_reserve_pages for the same page.  Also,
3128                  * the reservation count added in hugetlb_reserve_pages
3129                  * no longer applies.
3130                  */
3131                 long rsv_adjust;
3132
3133                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3134                 hugetlb_acct_memory(h, -rsv_adjust);
3135                 if (deferred_reserve)
3136                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3137                                         pages_per_huge_page(h), folio);
3138         }
3139         return folio;
3140
3141 out_uncharge_cgroup:
3142         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3143 out_uncharge_cgroup_reservation:
3144         if (deferred_reserve)
3145                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3146                                                     h_cg);
3147 out_subpool_put:
3148         if (map_chg || avoid_reserve)
3149                 hugepage_subpool_put_pages(spool, 1);
3150         vma_end_reservation(h, vma, addr);
3151         return ERR_PTR(-ENOSPC);
3152 }
3153
3154 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3155         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3156 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3157 {
3158         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3159         int nr_nodes, node;
3160
3161         /* do node specific alloc */
3162         if (nid != NUMA_NO_NODE) {
3163                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3164                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3165                 if (!m)
3166                         return 0;
3167                 goto found;
3168         }
3169         /* allocate from next node when distributing huge pages */
3170         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3171                 m = memblock_alloc_try_nid_raw(
3172                                 huge_page_size(h), huge_page_size(h),
3173                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3174                 /*
3175                  * Use the beginning of the huge page to store the
3176                  * huge_bootmem_page struct (until gather_bootmem
3177                  * puts them into the mem_map).
3178                  */
3179                 if (!m)
3180                         return 0;
3181                 goto found;
3182         }
3183
3184 found:
3185         /* Put them into a private list first because mem_map is not up yet */
3186         INIT_LIST_HEAD(&m->list);
3187         list_add(&m->list, &huge_boot_pages);
3188         m->hstate = h;
3189         return 1;
3190 }
3191
3192 /*
3193  * Put bootmem huge pages into the standard lists after mem_map is up.
3194  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3195  */
3196 static void __init gather_bootmem_prealloc(void)
3197 {
3198         struct huge_bootmem_page *m;
3199
3200         list_for_each_entry(m, &huge_boot_pages, list) {
3201                 struct page *page = virt_to_page(m);
3202                 struct folio *folio = page_folio(page);
3203                 struct hstate *h = m->hstate;
3204
3205                 VM_BUG_ON(!hstate_is_gigantic(h));
3206                 WARN_ON(folio_ref_count(folio) != 1);
3207                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3208                         WARN_ON(folio_test_reserved(folio));
3209                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3210                         free_huge_page(page); /* add to the hugepage allocator */
3211                 } else {
3212                         /* VERY unlikely inflated ref count on a tail page */
3213                         free_gigantic_folio(folio, huge_page_order(h));
3214                 }
3215
3216                 /*
3217                  * We need to restore the 'stolen' pages to totalram_pages
3218                  * in order to fix confusing memory reports from free(1) and
3219                  * other side-effects, like CommitLimit going negative.
3220                  */
3221                 adjust_managed_page_count(page, pages_per_huge_page(h));
3222                 cond_resched();
3223         }
3224 }
3225 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3226 {
3227         unsigned long i;
3228         char buf[32];
3229
3230         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3231                 if (hstate_is_gigantic(h)) {
3232                         if (!alloc_bootmem_huge_page(h, nid))
3233                                 break;
3234                 } else {
3235                         struct folio *folio;
3236                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3237
3238                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3239                                         &node_states[N_MEMORY], NULL);
3240                         if (!folio)
3241                                 break;
3242                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3243                 }
3244                 cond_resched();
3245         }
3246         if (i == h->max_huge_pages_node[nid])
3247                 return;
3248
3249         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3250         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3251                 h->max_huge_pages_node[nid], buf, nid, i);
3252         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3253         h->max_huge_pages_node[nid] = i;
3254 }
3255
3256 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3257 {
3258         unsigned long i;
3259         nodemask_t *node_alloc_noretry;
3260         bool node_specific_alloc = false;
3261
3262         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3263         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3264                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3265                 return;
3266         }
3267
3268         /* do node specific alloc */
3269         for_each_online_node(i) {
3270                 if (h->max_huge_pages_node[i] > 0) {
3271                         hugetlb_hstate_alloc_pages_onenode(h, i);
3272                         node_specific_alloc = true;
3273                 }
3274         }
3275
3276         if (node_specific_alloc)
3277                 return;
3278
3279         /* below will do all node balanced alloc */
3280         if (!hstate_is_gigantic(h)) {
3281                 /*
3282                  * Bit mask controlling how hard we retry per-node allocations.
3283                  * Ignore errors as lower level routines can deal with
3284                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3285                  * time, we are likely in bigger trouble.
3286                  */
3287                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3288                                                 GFP_KERNEL);
3289         } else {
3290                 /* allocations done at boot time */
3291                 node_alloc_noretry = NULL;
3292         }
3293
3294         /* bit mask controlling how hard we retry per-node allocations */
3295         if (node_alloc_noretry)
3296                 nodes_clear(*node_alloc_noretry);
3297
3298         for (i = 0; i < h->max_huge_pages; ++i) {
3299                 if (hstate_is_gigantic(h)) {
3300                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3301                                 break;
3302                 } else if (!alloc_pool_huge_page(h,
3303                                          &node_states[N_MEMORY],
3304                                          node_alloc_noretry))
3305                         break;
3306                 cond_resched();
3307         }
3308         if (i < h->max_huge_pages) {
3309                 char buf[32];
3310
3311                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3312                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3313                         h->max_huge_pages, buf, i);
3314                 h->max_huge_pages = i;
3315         }
3316         kfree(node_alloc_noretry);
3317 }
3318
3319 static void __init hugetlb_init_hstates(void)
3320 {
3321         struct hstate *h, *h2;
3322
3323         for_each_hstate(h) {
3324                 /* oversize hugepages were init'ed in early boot */
3325                 if (!hstate_is_gigantic(h))
3326                         hugetlb_hstate_alloc_pages(h);
3327
3328                 /*
3329                  * Set demote order for each hstate.  Note that
3330                  * h->demote_order is initially 0.
3331                  * - We can not demote gigantic pages if runtime freeing
3332                  *   is not supported, so skip this.
3333                  * - If CMA allocation is possible, we can not demote
3334                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3335                  */
3336                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3337                         continue;
3338                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3339                         continue;
3340                 for_each_hstate(h2) {
3341                         if (h2 == h)
3342                                 continue;
3343                         if (h2->order < h->order &&
3344                             h2->order > h->demote_order)
3345                                 h->demote_order = h2->order;
3346                 }
3347         }
3348 }
3349
3350 static void __init report_hugepages(void)
3351 {
3352         struct hstate *h;
3353
3354         for_each_hstate(h) {
3355                 char buf[32];
3356
3357                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3358                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3359                         buf, h->free_huge_pages);
3360                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3361                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3362         }
3363 }
3364
3365 #ifdef CONFIG_HIGHMEM
3366 static void try_to_free_low(struct hstate *h, unsigned long count,
3367                                                 nodemask_t *nodes_allowed)
3368 {
3369         int i;
3370         LIST_HEAD(page_list);
3371
3372         lockdep_assert_held(&hugetlb_lock);
3373         if (hstate_is_gigantic(h))
3374                 return;
3375
3376         /*
3377          * Collect pages to be freed on a list, and free after dropping lock
3378          */
3379         for_each_node_mask(i, *nodes_allowed) {
3380                 struct page *page, *next;
3381                 struct list_head *freel = &h->hugepage_freelists[i];
3382                 list_for_each_entry_safe(page, next, freel, lru) {
3383                         if (count >= h->nr_huge_pages)
3384                                 goto out;
3385                         if (PageHighMem(page))
3386                                 continue;
3387                         remove_hugetlb_folio(h, page_folio(page), false);
3388                         list_add(&page->lru, &page_list);
3389                 }
3390         }
3391
3392 out:
3393         spin_unlock_irq(&hugetlb_lock);
3394         update_and_free_pages_bulk(h, &page_list);
3395         spin_lock_irq(&hugetlb_lock);
3396 }
3397 #else
3398 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3399                                                 nodemask_t *nodes_allowed)
3400 {
3401 }
3402 #endif
3403
3404 /*
3405  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3406  * balanced by operating on them in a round-robin fashion.
3407  * Returns 1 if an adjustment was made.
3408  */
3409 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3410                                 int delta)
3411 {
3412         int nr_nodes, node;
3413
3414         lockdep_assert_held(&hugetlb_lock);
3415         VM_BUG_ON(delta != -1 && delta != 1);
3416
3417         if (delta < 0) {
3418                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3419                         if (h->surplus_huge_pages_node[node])
3420                                 goto found;
3421                 }
3422         } else {
3423                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3424                         if (h->surplus_huge_pages_node[node] <
3425                                         h->nr_huge_pages_node[node])
3426                                 goto found;
3427                 }
3428         }
3429         return 0;
3430
3431 found:
3432         h->surplus_huge_pages += delta;
3433         h->surplus_huge_pages_node[node] += delta;
3434         return 1;
3435 }
3436
3437 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3438 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3439                               nodemask_t *nodes_allowed)
3440 {
3441         unsigned long min_count, ret;
3442         struct page *page;
3443         LIST_HEAD(page_list);
3444         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3445
3446         /*
3447          * Bit mask controlling how hard we retry per-node allocations.
3448          * If we can not allocate the bit mask, do not attempt to allocate
3449          * the requested huge pages.
3450          */
3451         if (node_alloc_noretry)
3452                 nodes_clear(*node_alloc_noretry);
3453         else
3454                 return -ENOMEM;
3455
3456         /*
3457          * resize_lock mutex prevents concurrent adjustments to number of
3458          * pages in hstate via the proc/sysfs interfaces.
3459          */
3460         mutex_lock(&h->resize_lock);
3461         flush_free_hpage_work(h);
3462         spin_lock_irq(&hugetlb_lock);
3463
3464         /*
3465          * Check for a node specific request.
3466          * Changing node specific huge page count may require a corresponding
3467          * change to the global count.  In any case, the passed node mask
3468          * (nodes_allowed) will restrict alloc/free to the specified node.
3469          */
3470         if (nid != NUMA_NO_NODE) {
3471                 unsigned long old_count = count;
3472
3473                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3474                 /*
3475                  * User may have specified a large count value which caused the
3476                  * above calculation to overflow.  In this case, they wanted
3477                  * to allocate as many huge pages as possible.  Set count to
3478                  * largest possible value to align with their intention.
3479                  */
3480                 if (count < old_count)
3481                         count = ULONG_MAX;
3482         }
3483
3484         /*
3485          * Gigantic pages runtime allocation depend on the capability for large
3486          * page range allocation.
3487          * If the system does not provide this feature, return an error when
3488          * the user tries to allocate gigantic pages but let the user free the
3489          * boottime allocated gigantic pages.
3490          */
3491         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3492                 if (count > persistent_huge_pages(h)) {
3493                         spin_unlock_irq(&hugetlb_lock);
3494                         mutex_unlock(&h->resize_lock);
3495                         NODEMASK_FREE(node_alloc_noretry);
3496                         return -EINVAL;
3497                 }
3498                 /* Fall through to decrease pool */
3499         }
3500
3501         /*
3502          * Increase the pool size
3503          * First take pages out of surplus state.  Then make up the
3504          * remaining difference by allocating fresh huge pages.
3505          *
3506          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3507          * to convert a surplus huge page to a normal huge page. That is
3508          * not critical, though, it just means the overall size of the
3509          * pool might be one hugepage larger than it needs to be, but
3510          * within all the constraints specified by the sysctls.
3511          */
3512         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3513                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3514                         break;
3515         }
3516
3517         while (count > persistent_huge_pages(h)) {
3518                 /*
3519                  * If this allocation races such that we no longer need the
3520                  * page, free_huge_page will handle it by freeing the page
3521                  * and reducing the surplus.
3522                  */
3523                 spin_unlock_irq(&hugetlb_lock);
3524
3525                 /* yield cpu to avoid soft lockup */
3526                 cond_resched();
3527
3528                 ret = alloc_pool_huge_page(h, nodes_allowed,
3529                                                 node_alloc_noretry);
3530                 spin_lock_irq(&hugetlb_lock);
3531                 if (!ret)
3532                         goto out;
3533
3534                 /* Bail for signals. Probably ctrl-c from user */
3535                 if (signal_pending(current))
3536                         goto out;
3537         }
3538
3539         /*
3540          * Decrease the pool size
3541          * First return free pages to the buddy allocator (being careful
3542          * to keep enough around to satisfy reservations).  Then place
3543          * pages into surplus state as needed so the pool will shrink
3544          * to the desired size as pages become free.
3545          *
3546          * By placing pages into the surplus state independent of the
3547          * overcommit value, we are allowing the surplus pool size to
3548          * exceed overcommit. There are few sane options here. Since
3549          * alloc_surplus_hugetlb_folio() is checking the global counter,
3550          * though, we'll note that we're not allowed to exceed surplus
3551          * and won't grow the pool anywhere else. Not until one of the
3552          * sysctls are changed, or the surplus pages go out of use.
3553          */
3554         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3555         min_count = max(count, min_count);
3556         try_to_free_low(h, min_count, nodes_allowed);
3557
3558         /*
3559          * Collect pages to be removed on list without dropping lock
3560          */
3561         while (min_count < persistent_huge_pages(h)) {
3562                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3563                 if (!page)
3564                         break;
3565
3566                 list_add(&page->lru, &page_list);
3567         }
3568         /* free the pages after dropping lock */
3569         spin_unlock_irq(&hugetlb_lock);
3570         update_and_free_pages_bulk(h, &page_list);
3571         flush_free_hpage_work(h);
3572         spin_lock_irq(&hugetlb_lock);
3573
3574         while (count < persistent_huge_pages(h)) {
3575                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3576                         break;
3577         }
3578 out:
3579         h->max_huge_pages = persistent_huge_pages(h);
3580         spin_unlock_irq(&hugetlb_lock);
3581         mutex_unlock(&h->resize_lock);
3582
3583         NODEMASK_FREE(node_alloc_noretry);
3584
3585         return 0;
3586 }
3587
3588 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3589 {
3590         int i, nid = folio_nid(folio);
3591         struct hstate *target_hstate;
3592         struct page *subpage;
3593         struct folio *inner_folio;
3594         int rc = 0;
3595
3596         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3597
3598         remove_hugetlb_folio_for_demote(h, folio, false);
3599         spin_unlock_irq(&hugetlb_lock);
3600
3601         rc = hugetlb_vmemmap_restore(h, &folio->page);
3602         if (rc) {
3603                 /* Allocation of vmemmmap failed, we can not demote folio */
3604                 spin_lock_irq(&hugetlb_lock);
3605                 folio_ref_unfreeze(folio, 1);
3606                 add_hugetlb_folio(h, folio, false);
3607                 return rc;
3608         }
3609
3610         /*
3611          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3612          * sizes as it will not ref count folios.
3613          */
3614         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3615
3616         /*
3617          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3618          * Without the mutex, pages added to target hstate could be marked
3619          * as surplus.
3620          *
3621          * Note that we already hold h->resize_lock.  To prevent deadlock,
3622          * use the convention of always taking larger size hstate mutex first.
3623          */
3624         mutex_lock(&target_hstate->resize_lock);
3625         for (i = 0; i < pages_per_huge_page(h);
3626                                 i += pages_per_huge_page(target_hstate)) {
3627                 subpage = folio_page(folio, i);
3628                 inner_folio = page_folio(subpage);
3629                 if (hstate_is_gigantic(target_hstate))
3630                         prep_compound_gigantic_folio_for_demote(inner_folio,
3631                                                         target_hstate->order);
3632                 else
3633                         prep_compound_page(subpage, target_hstate->order);
3634                 folio_change_private(inner_folio, NULL);
3635                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3636                 free_huge_page(subpage);
3637         }
3638         mutex_unlock(&target_hstate->resize_lock);
3639
3640         spin_lock_irq(&hugetlb_lock);
3641
3642         /*
3643          * Not absolutely necessary, but for consistency update max_huge_pages
3644          * based on pool changes for the demoted page.
3645          */
3646         h->max_huge_pages--;
3647         target_hstate->max_huge_pages +=
3648                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3649
3650         return rc;
3651 }
3652
3653 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3654         __must_hold(&hugetlb_lock)
3655 {
3656         int nr_nodes, node;
3657         struct folio *folio;
3658
3659         lockdep_assert_held(&hugetlb_lock);
3660
3661         /* We should never get here if no demote order */
3662         if (!h->demote_order) {
3663                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3664                 return -EINVAL;         /* internal error */
3665         }
3666
3667         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3668                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3669                         if (folio_test_hwpoison(folio))
3670                                 continue;
3671                         return demote_free_hugetlb_folio(h, folio);
3672                 }
3673         }
3674
3675         /*
3676          * Only way to get here is if all pages on free lists are poisoned.
3677          * Return -EBUSY so that caller will not retry.
3678          */
3679         return -EBUSY;
3680 }
3681
3682 #define HSTATE_ATTR_RO(_name) \
3683         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3684
3685 #define HSTATE_ATTR_WO(_name) \
3686         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3687
3688 #define HSTATE_ATTR(_name) \
3689         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3690
3691 static struct kobject *hugepages_kobj;
3692 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3693
3694 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3695
3696 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3697 {
3698         int i;
3699
3700         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3701                 if (hstate_kobjs[i] == kobj) {
3702                         if (nidp)
3703                                 *nidp = NUMA_NO_NODE;
3704                         return &hstates[i];
3705                 }
3706
3707         return kobj_to_node_hstate(kobj, nidp);
3708 }
3709
3710 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3711                                         struct kobj_attribute *attr, char *buf)
3712 {
3713         struct hstate *h;
3714         unsigned long nr_huge_pages;
3715         int nid;
3716
3717         h = kobj_to_hstate(kobj, &nid);
3718         if (nid == NUMA_NO_NODE)
3719                 nr_huge_pages = h->nr_huge_pages;
3720         else
3721                 nr_huge_pages = h->nr_huge_pages_node[nid];
3722
3723         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3724 }
3725
3726 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3727                                            struct hstate *h, int nid,
3728                                            unsigned long count, size_t len)
3729 {
3730         int err;
3731         nodemask_t nodes_allowed, *n_mask;
3732
3733         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3734                 return -EINVAL;
3735
3736         if (nid == NUMA_NO_NODE) {
3737                 /*
3738                  * global hstate attribute
3739                  */
3740                 if (!(obey_mempolicy &&
3741                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3742                         n_mask = &node_states[N_MEMORY];
3743                 else
3744                         n_mask = &nodes_allowed;
3745         } else {
3746                 /*
3747                  * Node specific request.  count adjustment happens in
3748                  * set_max_huge_pages() after acquiring hugetlb_lock.
3749                  */
3750                 init_nodemask_of_node(&nodes_allowed, nid);
3751                 n_mask = &nodes_allowed;
3752         }
3753
3754         err = set_max_huge_pages(h, count, nid, n_mask);
3755
3756         return err ? err : len;
3757 }
3758
3759 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3760                                          struct kobject *kobj, const char *buf,
3761                                          size_t len)
3762 {
3763         struct hstate *h;
3764         unsigned long count;
3765         int nid;
3766         int err;
3767
3768         err = kstrtoul(buf, 10, &count);
3769         if (err)
3770                 return err;
3771
3772         h = kobj_to_hstate(kobj, &nid);
3773         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3774 }
3775
3776 static ssize_t nr_hugepages_show(struct kobject *kobj,
3777                                        struct kobj_attribute *attr, char *buf)
3778 {
3779         return nr_hugepages_show_common(kobj, attr, buf);
3780 }
3781
3782 static ssize_t nr_hugepages_store(struct kobject *kobj,
3783                struct kobj_attribute *attr, const char *buf, size_t len)
3784 {
3785         return nr_hugepages_store_common(false, kobj, buf, len);
3786 }
3787 HSTATE_ATTR(nr_hugepages);
3788
3789 #ifdef CONFIG_NUMA
3790
3791 /*
3792  * hstate attribute for optionally mempolicy-based constraint on persistent
3793  * huge page alloc/free.
3794  */
3795 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3796                                            struct kobj_attribute *attr,
3797                                            char *buf)
3798 {
3799         return nr_hugepages_show_common(kobj, attr, buf);
3800 }
3801
3802 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3803                struct kobj_attribute *attr, const char *buf, size_t len)
3804 {
3805         return nr_hugepages_store_common(true, kobj, buf, len);
3806 }
3807 HSTATE_ATTR(nr_hugepages_mempolicy);
3808 #endif
3809
3810
3811 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3812                                         struct kobj_attribute *attr, char *buf)
3813 {
3814         struct hstate *h = kobj_to_hstate(kobj, NULL);
3815         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3816 }
3817
3818 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3819                 struct kobj_attribute *attr, const char *buf, size_t count)
3820 {
3821         int err;
3822         unsigned long input;
3823         struct hstate *h = kobj_to_hstate(kobj, NULL);
3824
3825         if (hstate_is_gigantic(h))
3826                 return -EINVAL;
3827
3828         err = kstrtoul(buf, 10, &input);
3829         if (err)
3830                 return err;
3831
3832         spin_lock_irq(&hugetlb_lock);
3833         h->nr_overcommit_huge_pages = input;
3834         spin_unlock_irq(&hugetlb_lock);
3835
3836         return count;
3837 }
3838 HSTATE_ATTR(nr_overcommit_hugepages);
3839
3840 static ssize_t free_hugepages_show(struct kobject *kobj,
3841                                         struct kobj_attribute *attr, char *buf)
3842 {
3843         struct hstate *h;
3844         unsigned long free_huge_pages;
3845         int nid;
3846
3847         h = kobj_to_hstate(kobj, &nid);
3848         if (nid == NUMA_NO_NODE)
3849                 free_huge_pages = h->free_huge_pages;
3850         else
3851                 free_huge_pages = h->free_huge_pages_node[nid];
3852
3853         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3854 }
3855 HSTATE_ATTR_RO(free_hugepages);
3856
3857 static ssize_t resv_hugepages_show(struct kobject *kobj,
3858                                         struct kobj_attribute *attr, char *buf)
3859 {
3860         struct hstate *h = kobj_to_hstate(kobj, NULL);
3861         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3862 }
3863 HSTATE_ATTR_RO(resv_hugepages);
3864
3865 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3866                                         struct kobj_attribute *attr, char *buf)
3867 {
3868         struct hstate *h;
3869         unsigned long surplus_huge_pages;
3870         int nid;
3871
3872         h = kobj_to_hstate(kobj, &nid);
3873         if (nid == NUMA_NO_NODE)
3874                 surplus_huge_pages = h->surplus_huge_pages;
3875         else
3876                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3877
3878         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3879 }
3880 HSTATE_ATTR_RO(surplus_hugepages);
3881
3882 static ssize_t demote_store(struct kobject *kobj,
3883                struct kobj_attribute *attr, const char *buf, size_t len)
3884 {
3885         unsigned long nr_demote;
3886         unsigned long nr_available;
3887         nodemask_t nodes_allowed, *n_mask;
3888         struct hstate *h;
3889         int err;
3890         int nid;
3891
3892         err = kstrtoul(buf, 10, &nr_demote);
3893         if (err)
3894                 return err;
3895         h = kobj_to_hstate(kobj, &nid);
3896
3897         if (nid != NUMA_NO_NODE) {
3898                 init_nodemask_of_node(&nodes_allowed, nid);
3899                 n_mask = &nodes_allowed;
3900         } else {
3901                 n_mask = &node_states[N_MEMORY];
3902         }
3903
3904         /* Synchronize with other sysfs operations modifying huge pages */
3905         mutex_lock(&h->resize_lock);
3906         spin_lock_irq(&hugetlb_lock);
3907
3908         while (nr_demote) {
3909                 /*
3910                  * Check for available pages to demote each time thorough the
3911                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3912                  */
3913                 if (nid != NUMA_NO_NODE)
3914                         nr_available = h->free_huge_pages_node[nid];
3915                 else
3916                         nr_available = h->free_huge_pages;
3917                 nr_available -= h->resv_huge_pages;
3918                 if (!nr_available)
3919                         break;
3920
3921                 err = demote_pool_huge_page(h, n_mask);
3922                 if (err)
3923                         break;
3924
3925                 nr_demote--;
3926         }
3927
3928         spin_unlock_irq(&hugetlb_lock);
3929         mutex_unlock(&h->resize_lock);
3930
3931         if (err)
3932                 return err;
3933         return len;
3934 }
3935 HSTATE_ATTR_WO(demote);
3936
3937 static ssize_t demote_size_show(struct kobject *kobj,
3938                                         struct kobj_attribute *attr, char *buf)
3939 {
3940         struct hstate *h = kobj_to_hstate(kobj, NULL);
3941         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3942
3943         return sysfs_emit(buf, "%lukB\n", demote_size);
3944 }
3945
3946 static ssize_t demote_size_store(struct kobject *kobj,
3947                                         struct kobj_attribute *attr,
3948                                         const char *buf, size_t count)
3949 {
3950         struct hstate *h, *demote_hstate;
3951         unsigned long demote_size;
3952         unsigned int demote_order;
3953
3954         demote_size = (unsigned long)memparse(buf, NULL);
3955
3956         demote_hstate = size_to_hstate(demote_size);
3957         if (!demote_hstate)
3958                 return -EINVAL;
3959         demote_order = demote_hstate->order;
3960         if (demote_order < HUGETLB_PAGE_ORDER)
3961                 return -EINVAL;
3962
3963         /* demote order must be smaller than hstate order */
3964         h = kobj_to_hstate(kobj, NULL);
3965         if (demote_order >= h->order)
3966                 return -EINVAL;
3967
3968         /* resize_lock synchronizes access to demote size and writes */
3969         mutex_lock(&h->resize_lock);
3970         h->demote_order = demote_order;
3971         mutex_unlock(&h->resize_lock);
3972
3973         return count;
3974 }
3975 HSTATE_ATTR(demote_size);
3976
3977 static struct attribute *hstate_attrs[] = {
3978         &nr_hugepages_attr.attr,
3979         &nr_overcommit_hugepages_attr.attr,
3980         &free_hugepages_attr.attr,
3981         &resv_hugepages_attr.attr,
3982         &surplus_hugepages_attr.attr,
3983 #ifdef CONFIG_NUMA
3984         &nr_hugepages_mempolicy_attr.attr,
3985 #endif
3986         NULL,
3987 };
3988
3989 static const struct attribute_group hstate_attr_group = {
3990         .attrs = hstate_attrs,
3991 };
3992
3993 static struct attribute *hstate_demote_attrs[] = {
3994         &demote_size_attr.attr,
3995         &demote_attr.attr,
3996         NULL,
3997 };
3998
3999 static const struct attribute_group hstate_demote_attr_group = {
4000         .attrs = hstate_demote_attrs,
4001 };
4002
4003 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4004                                     struct kobject **hstate_kobjs,
4005                                     const struct attribute_group *hstate_attr_group)
4006 {
4007         int retval;
4008         int hi = hstate_index(h);
4009
4010         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4011         if (!hstate_kobjs[hi])
4012                 return -ENOMEM;
4013
4014         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4015         if (retval) {
4016                 kobject_put(hstate_kobjs[hi]);
4017                 hstate_kobjs[hi] = NULL;
4018                 return retval;
4019         }
4020
4021         if (h->demote_order) {
4022                 retval = sysfs_create_group(hstate_kobjs[hi],
4023                                             &hstate_demote_attr_group);
4024                 if (retval) {
4025                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4026                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4027                         kobject_put(hstate_kobjs[hi]);
4028                         hstate_kobjs[hi] = NULL;
4029                         return retval;
4030                 }
4031         }
4032
4033         return 0;
4034 }
4035
4036 #ifdef CONFIG_NUMA
4037 static bool hugetlb_sysfs_initialized __ro_after_init;
4038
4039 /*
4040  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4041  * with node devices in node_devices[] using a parallel array.  The array
4042  * index of a node device or _hstate == node id.
4043  * This is here to avoid any static dependency of the node device driver, in
4044  * the base kernel, on the hugetlb module.
4045  */
4046 struct node_hstate {
4047         struct kobject          *hugepages_kobj;
4048         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4049 };
4050 static struct node_hstate node_hstates[MAX_NUMNODES];
4051
4052 /*
4053  * A subset of global hstate attributes for node devices
4054  */
4055 static struct attribute *per_node_hstate_attrs[] = {
4056         &nr_hugepages_attr.attr,
4057         &free_hugepages_attr.attr,
4058         &surplus_hugepages_attr.attr,
4059         NULL,
4060 };
4061
4062 static const struct attribute_group per_node_hstate_attr_group = {
4063         .attrs = per_node_hstate_attrs,
4064 };
4065
4066 /*
4067  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4068  * Returns node id via non-NULL nidp.
4069  */
4070 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4071 {
4072         int nid;
4073
4074         for (nid = 0; nid < nr_node_ids; nid++) {
4075                 struct node_hstate *nhs = &node_hstates[nid];
4076                 int i;
4077                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4078                         if (nhs->hstate_kobjs[i] == kobj) {
4079                                 if (nidp)
4080                                         *nidp = nid;
4081                                 return &hstates[i];
4082                         }
4083         }
4084
4085         BUG();
4086         return NULL;
4087 }
4088
4089 /*
4090  * Unregister hstate attributes from a single node device.
4091  * No-op if no hstate attributes attached.
4092  */
4093 void hugetlb_unregister_node(struct node *node)
4094 {
4095         struct hstate *h;
4096         struct node_hstate *nhs = &node_hstates[node->dev.id];
4097
4098         if (!nhs->hugepages_kobj)
4099                 return;         /* no hstate attributes */
4100
4101         for_each_hstate(h) {
4102                 int idx = hstate_index(h);
4103                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4104
4105                 if (!hstate_kobj)
4106                         continue;
4107                 if (h->demote_order)
4108                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4109                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4110                 kobject_put(hstate_kobj);
4111                 nhs->hstate_kobjs[idx] = NULL;
4112         }
4113
4114         kobject_put(nhs->hugepages_kobj);
4115         nhs->hugepages_kobj = NULL;
4116 }
4117
4118
4119 /*
4120  * Register hstate attributes for a single node device.
4121  * No-op if attributes already registered.
4122  */
4123 void hugetlb_register_node(struct node *node)
4124 {
4125         struct hstate *h;
4126         struct node_hstate *nhs = &node_hstates[node->dev.id];
4127         int err;
4128
4129         if (!hugetlb_sysfs_initialized)
4130                 return;
4131
4132         if (nhs->hugepages_kobj)
4133                 return;         /* already allocated */
4134
4135         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4136                                                         &node->dev.kobj);
4137         if (!nhs->hugepages_kobj)
4138                 return;
4139
4140         for_each_hstate(h) {
4141                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4142                                                 nhs->hstate_kobjs,
4143                                                 &per_node_hstate_attr_group);
4144                 if (err) {
4145                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4146                                 h->name, node->dev.id);
4147                         hugetlb_unregister_node(node);
4148                         break;
4149                 }
4150         }
4151 }
4152
4153 /*
4154  * hugetlb init time:  register hstate attributes for all registered node
4155  * devices of nodes that have memory.  All on-line nodes should have
4156  * registered their associated device by this time.
4157  */
4158 static void __init hugetlb_register_all_nodes(void)
4159 {
4160         int nid;
4161
4162         for_each_online_node(nid)
4163                 hugetlb_register_node(node_devices[nid]);
4164 }
4165 #else   /* !CONFIG_NUMA */
4166
4167 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4168 {
4169         BUG();
4170         if (nidp)
4171                 *nidp = -1;
4172         return NULL;
4173 }
4174
4175 static void hugetlb_register_all_nodes(void) { }
4176
4177 #endif
4178
4179 #ifdef CONFIG_CMA
4180 static void __init hugetlb_cma_check(void);
4181 #else
4182 static inline __init void hugetlb_cma_check(void)
4183 {
4184 }
4185 #endif
4186
4187 static void __init hugetlb_sysfs_init(void)
4188 {
4189         struct hstate *h;
4190         int err;
4191
4192         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4193         if (!hugepages_kobj)
4194                 return;
4195
4196         for_each_hstate(h) {
4197                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4198                                          hstate_kobjs, &hstate_attr_group);
4199                 if (err)
4200                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4201         }
4202
4203 #ifdef CONFIG_NUMA
4204         hugetlb_sysfs_initialized = true;
4205 #endif
4206         hugetlb_register_all_nodes();
4207 }
4208
4209 #ifdef CONFIG_SYSCTL
4210 static void hugetlb_sysctl_init(void);
4211 #else
4212 static inline void hugetlb_sysctl_init(void) { }
4213 #endif
4214
4215 static int __init hugetlb_init(void)
4216 {
4217         int i;
4218
4219         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4220                         __NR_HPAGEFLAGS);
4221
4222         if (!hugepages_supported()) {
4223                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4224                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4225                 return 0;
4226         }
4227
4228         /*
4229          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4230          * architectures depend on setup being done here.
4231          */
4232         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4233         if (!parsed_default_hugepagesz) {
4234                 /*
4235                  * If we did not parse a default huge page size, set
4236                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4237                  * number of huge pages for this default size was implicitly
4238                  * specified, set that here as well.
4239                  * Note that the implicit setting will overwrite an explicit
4240                  * setting.  A warning will be printed in this case.
4241                  */
4242                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4243                 if (default_hstate_max_huge_pages) {
4244                         if (default_hstate.max_huge_pages) {
4245                                 char buf[32];
4246
4247                                 string_get_size(huge_page_size(&default_hstate),
4248                                         1, STRING_UNITS_2, buf, 32);
4249                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4250                                         default_hstate.max_huge_pages, buf);
4251                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4252                                         default_hstate_max_huge_pages);
4253                         }
4254                         default_hstate.max_huge_pages =
4255                                 default_hstate_max_huge_pages;
4256
4257                         for_each_online_node(i)
4258                                 default_hstate.max_huge_pages_node[i] =
4259                                         default_hugepages_in_node[i];
4260                 }
4261         }
4262
4263         hugetlb_cma_check();
4264         hugetlb_init_hstates();
4265         gather_bootmem_prealloc();
4266         report_hugepages();
4267
4268         hugetlb_sysfs_init();
4269         hugetlb_cgroup_file_init();
4270         hugetlb_sysctl_init();
4271
4272 #ifdef CONFIG_SMP
4273         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4274 #else
4275         num_fault_mutexes = 1;
4276 #endif
4277         hugetlb_fault_mutex_table =
4278                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4279                               GFP_KERNEL);
4280         BUG_ON(!hugetlb_fault_mutex_table);
4281
4282         for (i = 0; i < num_fault_mutexes; i++)
4283                 mutex_init(&hugetlb_fault_mutex_table[i]);
4284         return 0;
4285 }
4286 subsys_initcall(hugetlb_init);
4287
4288 /* Overwritten by architectures with more huge page sizes */
4289 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4290 {
4291         return size == HPAGE_SIZE;
4292 }
4293
4294 void __init hugetlb_add_hstate(unsigned int order)
4295 {
4296         struct hstate *h;
4297         unsigned long i;
4298
4299         if (size_to_hstate(PAGE_SIZE << order)) {
4300                 return;
4301         }
4302         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4303         BUG_ON(order == 0);
4304         h = &hstates[hugetlb_max_hstate++];
4305         mutex_init(&h->resize_lock);
4306         h->order = order;
4307         h->mask = ~(huge_page_size(h) - 1);
4308         for (i = 0; i < MAX_NUMNODES; ++i)
4309                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4310         INIT_LIST_HEAD(&h->hugepage_activelist);
4311         h->next_nid_to_alloc = first_memory_node;
4312         h->next_nid_to_free = first_memory_node;
4313         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4314                                         huge_page_size(h)/SZ_1K);
4315
4316         parsed_hstate = h;
4317 }
4318
4319 bool __init __weak hugetlb_node_alloc_supported(void)
4320 {
4321         return true;
4322 }
4323
4324 static void __init hugepages_clear_pages_in_node(void)
4325 {
4326         if (!hugetlb_max_hstate) {
4327                 default_hstate_max_huge_pages = 0;
4328                 memset(default_hugepages_in_node, 0,
4329                         sizeof(default_hugepages_in_node));
4330         } else {
4331                 parsed_hstate->max_huge_pages = 0;
4332                 memset(parsed_hstate->max_huge_pages_node, 0,
4333                         sizeof(parsed_hstate->max_huge_pages_node));
4334         }
4335 }
4336
4337 /*
4338  * hugepages command line processing
4339  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4340  * specification.  If not, ignore the hugepages value.  hugepages can also
4341  * be the first huge page command line  option in which case it implicitly
4342  * specifies the number of huge pages for the default size.
4343  */
4344 static int __init hugepages_setup(char *s)
4345 {
4346         unsigned long *mhp;
4347         static unsigned long *last_mhp;
4348         int node = NUMA_NO_NODE;
4349         int count;
4350         unsigned long tmp;
4351         char *p = s;
4352
4353         if (!parsed_valid_hugepagesz) {
4354                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4355                 parsed_valid_hugepagesz = true;
4356                 return 1;
4357         }
4358
4359         /*
4360          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4361          * yet, so this hugepages= parameter goes to the "default hstate".
4362          * Otherwise, it goes with the previously parsed hugepagesz or
4363          * default_hugepagesz.
4364          */
4365         else if (!hugetlb_max_hstate)
4366                 mhp = &default_hstate_max_huge_pages;
4367         else
4368                 mhp = &parsed_hstate->max_huge_pages;
4369
4370         if (mhp == last_mhp) {
4371                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4372                 return 1;
4373         }
4374
4375         while (*p) {
4376                 count = 0;
4377                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378                         goto invalid;
4379                 /* Parameter is node format */
4380                 if (p[count] == ':') {
4381                         if (!hugetlb_node_alloc_supported()) {
4382                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4383                                 return 1;
4384                         }
4385                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4386                                 goto invalid;
4387                         node = array_index_nospec(tmp, MAX_NUMNODES);
4388                         p += count + 1;
4389                         /* Parse hugepages */
4390                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4391                                 goto invalid;
4392                         if (!hugetlb_max_hstate)
4393                                 default_hugepages_in_node[node] = tmp;
4394                         else
4395                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4396                         *mhp += tmp;
4397                         /* Go to parse next node*/
4398                         if (p[count] == ',')
4399                                 p += count + 1;
4400                         else
4401                                 break;
4402                 } else {
4403                         if (p != s)
4404                                 goto invalid;
4405                         *mhp = tmp;
4406                         break;
4407                 }
4408         }
4409
4410         /*
4411          * Global state is always initialized later in hugetlb_init.
4412          * But we need to allocate gigantic hstates here early to still
4413          * use the bootmem allocator.
4414          */
4415         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4416                 hugetlb_hstate_alloc_pages(parsed_hstate);
4417
4418         last_mhp = mhp;
4419
4420         return 1;
4421
4422 invalid:
4423         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4424         hugepages_clear_pages_in_node();
4425         return 1;
4426 }
4427 __setup("hugepages=", hugepages_setup);
4428
4429 /*
4430  * hugepagesz command line processing
4431  * A specific huge page size can only be specified once with hugepagesz.
4432  * hugepagesz is followed by hugepages on the command line.  The global
4433  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4434  * hugepagesz argument was valid.
4435  */
4436 static int __init hugepagesz_setup(char *s)
4437 {
4438         unsigned long size;
4439         struct hstate *h;
4440
4441         parsed_valid_hugepagesz = false;
4442         size = (unsigned long)memparse(s, NULL);
4443
4444         if (!arch_hugetlb_valid_size(size)) {
4445                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4446                 return 1;
4447         }
4448
4449         h = size_to_hstate(size);
4450         if (h) {
4451                 /*
4452                  * hstate for this size already exists.  This is normally
4453                  * an error, but is allowed if the existing hstate is the
4454                  * default hstate.  More specifically, it is only allowed if
4455                  * the number of huge pages for the default hstate was not
4456                  * previously specified.
4457                  */
4458                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4459                     default_hstate.max_huge_pages) {
4460                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4461                         return 1;
4462                 }
4463
4464                 /*
4465                  * No need to call hugetlb_add_hstate() as hstate already
4466                  * exists.  But, do set parsed_hstate so that a following
4467                  * hugepages= parameter will be applied to this hstate.
4468                  */
4469                 parsed_hstate = h;
4470                 parsed_valid_hugepagesz = true;
4471                 return 1;
4472         }
4473
4474         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4475         parsed_valid_hugepagesz = true;
4476         return 1;
4477 }
4478 __setup("hugepagesz=", hugepagesz_setup);
4479
4480 /*
4481  * default_hugepagesz command line input
4482  * Only one instance of default_hugepagesz allowed on command line.
4483  */
4484 static int __init default_hugepagesz_setup(char *s)
4485 {
4486         unsigned long size;
4487         int i;
4488
4489         parsed_valid_hugepagesz = false;
4490         if (parsed_default_hugepagesz) {
4491                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4492                 return 1;
4493         }
4494
4495         size = (unsigned long)memparse(s, NULL);
4496
4497         if (!arch_hugetlb_valid_size(size)) {
4498                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4499                 return 1;
4500         }
4501
4502         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4503         parsed_valid_hugepagesz = true;
4504         parsed_default_hugepagesz = true;
4505         default_hstate_idx = hstate_index(size_to_hstate(size));
4506
4507         /*
4508          * The number of default huge pages (for this size) could have been
4509          * specified as the first hugetlb parameter: hugepages=X.  If so,
4510          * then default_hstate_max_huge_pages is set.  If the default huge
4511          * page size is gigantic (> MAX_ORDER), then the pages must be
4512          * allocated here from bootmem allocator.
4513          */
4514         if (default_hstate_max_huge_pages) {
4515                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4516                 for_each_online_node(i)
4517                         default_hstate.max_huge_pages_node[i] =
4518                                 default_hugepages_in_node[i];
4519                 if (hstate_is_gigantic(&default_hstate))
4520                         hugetlb_hstate_alloc_pages(&default_hstate);
4521                 default_hstate_max_huge_pages = 0;
4522         }
4523
4524         return 1;
4525 }
4526 __setup("default_hugepagesz=", default_hugepagesz_setup);
4527
4528 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4529 {
4530 #ifdef CONFIG_NUMA
4531         struct mempolicy *mpol = get_task_policy(current);
4532
4533         /*
4534          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4535          * (from policy_nodemask) specifically for hugetlb case
4536          */
4537         if (mpol->mode == MPOL_BIND &&
4538                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4539                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4540                 return &mpol->nodes;
4541 #endif
4542         return NULL;
4543 }
4544
4545 static unsigned int allowed_mems_nr(struct hstate *h)
4546 {
4547         int node;
4548         unsigned int nr = 0;
4549         nodemask_t *mbind_nodemask;
4550         unsigned int *array = h->free_huge_pages_node;
4551         gfp_t gfp_mask = htlb_alloc_mask(h);
4552
4553         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4554         for_each_node_mask(node, cpuset_current_mems_allowed) {
4555                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4556                         nr += array[node];
4557         }
4558
4559         return nr;
4560 }
4561
4562 #ifdef CONFIG_SYSCTL
4563 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4564                                           void *buffer, size_t *length,
4565                                           loff_t *ppos, unsigned long *out)
4566 {
4567         struct ctl_table dup_table;
4568
4569         /*
4570          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4571          * can duplicate the @table and alter the duplicate of it.
4572          */
4573         dup_table = *table;
4574         dup_table.data = out;
4575
4576         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4577 }
4578
4579 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4580                          struct ctl_table *table, int write,
4581                          void *buffer, size_t *length, loff_t *ppos)
4582 {
4583         struct hstate *h = &default_hstate;
4584         unsigned long tmp = h->max_huge_pages;
4585         int ret;
4586
4587         if (!hugepages_supported())
4588                 return -EOPNOTSUPP;
4589
4590         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4591                                              &tmp);
4592         if (ret)
4593                 goto out;
4594
4595         if (write)
4596                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4597                                                   NUMA_NO_NODE, tmp, *length);
4598 out:
4599         return ret;
4600 }
4601
4602 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4603                           void *buffer, size_t *length, loff_t *ppos)
4604 {
4605
4606         return hugetlb_sysctl_handler_common(false, table, write,
4607                                                         buffer, length, ppos);
4608 }
4609
4610 #ifdef CONFIG_NUMA
4611 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4612                           void *buffer, size_t *length, loff_t *ppos)
4613 {
4614         return hugetlb_sysctl_handler_common(true, table, write,
4615                                                         buffer, length, ppos);
4616 }
4617 #endif /* CONFIG_NUMA */
4618
4619 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4620                 void *buffer, size_t *length, loff_t *ppos)
4621 {
4622         struct hstate *h = &default_hstate;
4623         unsigned long tmp;
4624         int ret;
4625
4626         if (!hugepages_supported())
4627                 return -EOPNOTSUPP;
4628
4629         tmp = h->nr_overcommit_huge_pages;
4630
4631         if (write && hstate_is_gigantic(h))
4632                 return -EINVAL;
4633
4634         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4635                                              &tmp);
4636         if (ret)
4637                 goto out;
4638
4639         if (write) {
4640                 spin_lock_irq(&hugetlb_lock);
4641                 h->nr_overcommit_huge_pages = tmp;
4642                 spin_unlock_irq(&hugetlb_lock);
4643         }
4644 out:
4645         return ret;
4646 }
4647
4648 static struct ctl_table hugetlb_table[] = {
4649         {
4650                 .procname       = "nr_hugepages",
4651                 .data           = NULL,
4652                 .maxlen         = sizeof(unsigned long),
4653                 .mode           = 0644,
4654                 .proc_handler   = hugetlb_sysctl_handler,
4655         },
4656 #ifdef CONFIG_NUMA
4657         {
4658                 .procname       = "nr_hugepages_mempolicy",
4659                 .data           = NULL,
4660                 .maxlen         = sizeof(unsigned long),
4661                 .mode           = 0644,
4662                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4663         },
4664 #endif
4665         {
4666                 .procname       = "hugetlb_shm_group",
4667                 .data           = &sysctl_hugetlb_shm_group,
4668                 .maxlen         = sizeof(gid_t),
4669                 .mode           = 0644,
4670                 .proc_handler   = proc_dointvec,
4671         },
4672         {
4673                 .procname       = "nr_overcommit_hugepages",
4674                 .data           = NULL,
4675                 .maxlen         = sizeof(unsigned long),
4676                 .mode           = 0644,
4677                 .proc_handler   = hugetlb_overcommit_handler,
4678         },
4679         { }
4680 };
4681
4682 static void hugetlb_sysctl_init(void)
4683 {
4684         register_sysctl_init("vm", hugetlb_table);
4685 }
4686 #endif /* CONFIG_SYSCTL */
4687
4688 void hugetlb_report_meminfo(struct seq_file *m)
4689 {
4690         struct hstate *h;
4691         unsigned long total = 0;
4692
4693         if (!hugepages_supported())
4694                 return;
4695
4696         for_each_hstate(h) {
4697                 unsigned long count = h->nr_huge_pages;
4698
4699                 total += huge_page_size(h) * count;
4700
4701                 if (h == &default_hstate)
4702                         seq_printf(m,
4703                                    "HugePages_Total:   %5lu\n"
4704                                    "HugePages_Free:    %5lu\n"
4705                                    "HugePages_Rsvd:    %5lu\n"
4706                                    "HugePages_Surp:    %5lu\n"
4707                                    "Hugepagesize:   %8lu kB\n",
4708                                    count,
4709                                    h->free_huge_pages,
4710                                    h->resv_huge_pages,
4711                                    h->surplus_huge_pages,
4712                                    huge_page_size(h) / SZ_1K);
4713         }
4714
4715         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4716 }
4717
4718 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4719 {
4720         struct hstate *h = &default_hstate;
4721
4722         if (!hugepages_supported())
4723                 return 0;
4724
4725         return sysfs_emit_at(buf, len,
4726                              "Node %d HugePages_Total: %5u\n"
4727                              "Node %d HugePages_Free:  %5u\n"
4728                              "Node %d HugePages_Surp:  %5u\n",
4729                              nid, h->nr_huge_pages_node[nid],
4730                              nid, h->free_huge_pages_node[nid],
4731                              nid, h->surplus_huge_pages_node[nid]);
4732 }
4733
4734 void hugetlb_show_meminfo_node(int nid)
4735 {
4736         struct hstate *h;
4737
4738         if (!hugepages_supported())
4739                 return;
4740
4741         for_each_hstate(h)
4742                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4743                         nid,
4744                         h->nr_huge_pages_node[nid],
4745                         h->free_huge_pages_node[nid],
4746                         h->surplus_huge_pages_node[nid],
4747                         huge_page_size(h) / SZ_1K);
4748 }
4749
4750 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4751 {
4752         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4753                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4754 }
4755
4756 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4757 unsigned long hugetlb_total_pages(void)
4758 {
4759         struct hstate *h;
4760         unsigned long nr_total_pages = 0;
4761
4762         for_each_hstate(h)
4763                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4764         return nr_total_pages;
4765 }
4766
4767 static int hugetlb_acct_memory(struct hstate *h, long delta)
4768 {
4769         int ret = -ENOMEM;
4770
4771         if (!delta)
4772                 return 0;
4773
4774         spin_lock_irq(&hugetlb_lock);
4775         /*
4776          * When cpuset is configured, it breaks the strict hugetlb page
4777          * reservation as the accounting is done on a global variable. Such
4778          * reservation is completely rubbish in the presence of cpuset because
4779          * the reservation is not checked against page availability for the
4780          * current cpuset. Application can still potentially OOM'ed by kernel
4781          * with lack of free htlb page in cpuset that the task is in.
4782          * Attempt to enforce strict accounting with cpuset is almost
4783          * impossible (or too ugly) because cpuset is too fluid that
4784          * task or memory node can be dynamically moved between cpusets.
4785          *
4786          * The change of semantics for shared hugetlb mapping with cpuset is
4787          * undesirable. However, in order to preserve some of the semantics,
4788          * we fall back to check against current free page availability as
4789          * a best attempt and hopefully to minimize the impact of changing
4790          * semantics that cpuset has.
4791          *
4792          * Apart from cpuset, we also have memory policy mechanism that
4793          * also determines from which node the kernel will allocate memory
4794          * in a NUMA system. So similar to cpuset, we also should consider
4795          * the memory policy of the current task. Similar to the description
4796          * above.
4797          */
4798         if (delta > 0) {
4799                 if (gather_surplus_pages(h, delta) < 0)
4800                         goto out;
4801
4802                 if (delta > allowed_mems_nr(h)) {
4803                         return_unused_surplus_pages(h, delta);
4804                         goto out;
4805                 }
4806         }
4807
4808         ret = 0;
4809         if (delta < 0)
4810                 return_unused_surplus_pages(h, (unsigned long) -delta);
4811
4812 out:
4813         spin_unlock_irq(&hugetlb_lock);
4814         return ret;
4815 }
4816
4817 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4818 {
4819         struct resv_map *resv = vma_resv_map(vma);
4820
4821         /*
4822          * HPAGE_RESV_OWNER indicates a private mapping.
4823          * This new VMA should share its siblings reservation map if present.
4824          * The VMA will only ever have a valid reservation map pointer where
4825          * it is being copied for another still existing VMA.  As that VMA
4826          * has a reference to the reservation map it cannot disappear until
4827          * after this open call completes.  It is therefore safe to take a
4828          * new reference here without additional locking.
4829          */
4830         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4831                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4832                 kref_get(&resv->refs);
4833         }
4834
4835         /*
4836          * vma_lock structure for sharable mappings is vma specific.
4837          * Clear old pointer (if copied via vm_area_dup) and allocate
4838          * new structure.  Before clearing, make sure vma_lock is not
4839          * for this vma.
4840          */
4841         if (vma->vm_flags & VM_MAYSHARE) {
4842                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4843
4844                 if (vma_lock) {
4845                         if (vma_lock->vma != vma) {
4846                                 vma->vm_private_data = NULL;
4847                                 hugetlb_vma_lock_alloc(vma);
4848                         } else
4849                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4850                 } else
4851                         hugetlb_vma_lock_alloc(vma);
4852         }
4853 }
4854
4855 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4856 {
4857         struct hstate *h = hstate_vma(vma);
4858         struct resv_map *resv;
4859         struct hugepage_subpool *spool = subpool_vma(vma);
4860         unsigned long reserve, start, end;
4861         long gbl_reserve;
4862
4863         hugetlb_vma_lock_free(vma);
4864
4865         resv = vma_resv_map(vma);
4866         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4867                 return;
4868
4869         start = vma_hugecache_offset(h, vma, vma->vm_start);
4870         end = vma_hugecache_offset(h, vma, vma->vm_end);
4871
4872         reserve = (end - start) - region_count(resv, start, end);
4873         hugetlb_cgroup_uncharge_counter(resv, start, end);
4874         if (reserve) {
4875                 /*
4876                  * Decrement reserve counts.  The global reserve count may be
4877                  * adjusted if the subpool has a minimum size.
4878                  */
4879                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4880                 hugetlb_acct_memory(h, -gbl_reserve);
4881         }
4882
4883         kref_put(&resv->refs, resv_map_release);
4884 }
4885
4886 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4887 {
4888         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4889                 return -EINVAL;
4890
4891         /*
4892          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4893          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4894          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4895          */
4896         if (addr & ~PUD_MASK) {
4897                 /*
4898                  * hugetlb_vm_op_split is called right before we attempt to
4899                  * split the VMA. We will need to unshare PMDs in the old and
4900                  * new VMAs, so let's unshare before we split.
4901                  */
4902                 unsigned long floor = addr & PUD_MASK;
4903                 unsigned long ceil = floor + PUD_SIZE;
4904
4905                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4906                         hugetlb_unshare_pmds(vma, floor, ceil);
4907         }
4908
4909         return 0;
4910 }
4911
4912 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4913 {
4914         return huge_page_size(hstate_vma(vma));
4915 }
4916
4917 /*
4918  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4919  * handle_mm_fault() to try to instantiate regular-sized pages in the
4920  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4921  * this far.
4922  */
4923 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4924 {
4925         BUG();
4926         return 0;
4927 }
4928
4929 /*
4930  * When a new function is introduced to vm_operations_struct and added
4931  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4932  * This is because under System V memory model, mappings created via
4933  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4934  * their original vm_ops are overwritten with shm_vm_ops.
4935  */
4936 const struct vm_operations_struct hugetlb_vm_ops = {
4937         .fault = hugetlb_vm_op_fault,
4938         .open = hugetlb_vm_op_open,
4939         .close = hugetlb_vm_op_close,
4940         .may_split = hugetlb_vm_op_split,
4941         .pagesize = hugetlb_vm_op_pagesize,
4942 };
4943
4944 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4945                                 int writable)
4946 {
4947         pte_t entry;
4948         unsigned int shift = huge_page_shift(hstate_vma(vma));
4949
4950         if (writable) {
4951                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4952                                          vma->vm_page_prot)));
4953         } else {
4954                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4955                                            vma->vm_page_prot));
4956         }
4957         entry = pte_mkyoung(entry);
4958         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4959
4960         return entry;
4961 }
4962
4963 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4964                                    unsigned long address, pte_t *ptep)
4965 {
4966         pte_t entry;
4967
4968         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4969         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4970                 update_mmu_cache(vma, address, ptep);
4971 }
4972
4973 bool is_hugetlb_entry_migration(pte_t pte)
4974 {
4975         swp_entry_t swp;
4976
4977         if (huge_pte_none(pte) || pte_present(pte))
4978                 return false;
4979         swp = pte_to_swp_entry(pte);
4980         if (is_migration_entry(swp))
4981                 return true;
4982         else
4983                 return false;
4984 }
4985
4986 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4987 {
4988         swp_entry_t swp;
4989
4990         if (huge_pte_none(pte) || pte_present(pte))
4991                 return false;
4992         swp = pte_to_swp_entry(pte);
4993         if (is_hwpoison_entry(swp))
4994                 return true;
4995         else
4996                 return false;
4997 }
4998
4999 static void
5000 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5001                       struct folio *new_folio, pte_t old)
5002 {
5003         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5004
5005         __folio_mark_uptodate(new_folio);
5006         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5007         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5008                 newpte = huge_pte_mkuffd_wp(newpte);
5009         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5010         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5011         folio_set_hugetlb_migratable(new_folio);
5012 }
5013
5014 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5015                             struct vm_area_struct *dst_vma,
5016                             struct vm_area_struct *src_vma)
5017 {
5018         pte_t *src_pte, *dst_pte, entry;
5019         struct page *ptepage;
5020         unsigned long addr;
5021         bool cow = is_cow_mapping(src_vma->vm_flags);
5022         struct hstate *h = hstate_vma(src_vma);
5023         unsigned long sz = huge_page_size(h);
5024         unsigned long npages = pages_per_huge_page(h);
5025         struct mmu_notifier_range range;
5026         unsigned long last_addr_mask;
5027         int ret = 0;
5028
5029         if (cow) {
5030                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5031                                         src_vma->vm_start,
5032                                         src_vma->vm_end);
5033                 mmu_notifier_invalidate_range_start(&range);
5034                 mmap_assert_write_locked(src);
5035                 raw_write_seqcount_begin(&src->write_protect_seq);
5036         } else {
5037                 /*
5038                  * For shared mappings the vma lock must be held before
5039                  * calling hugetlb_walk() in the src vma. Otherwise, the
5040                  * returned ptep could go away if part of a shared pmd and
5041                  * another thread calls huge_pmd_unshare.
5042                  */
5043                 hugetlb_vma_lock_read(src_vma);
5044         }
5045
5046         last_addr_mask = hugetlb_mask_last_page(h);
5047         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5048                 spinlock_t *src_ptl, *dst_ptl;
5049                 src_pte = hugetlb_walk(src_vma, addr, sz);
5050                 if (!src_pte) {
5051                         addr |= last_addr_mask;
5052                         continue;
5053                 }
5054                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5055                 if (!dst_pte) {
5056                         ret = -ENOMEM;
5057                         break;
5058                 }
5059
5060                 /*
5061                  * If the pagetables are shared don't copy or take references.
5062                  *
5063                  * dst_pte == src_pte is the common case of src/dest sharing.
5064                  * However, src could have 'unshared' and dst shares with
5065                  * another vma. So page_count of ptep page is checked instead
5066                  * to reliably determine whether pte is shared.
5067                  */
5068                 if (page_count(virt_to_page(dst_pte)) > 1) {
5069                         addr |= last_addr_mask;
5070                         continue;
5071                 }
5072
5073                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5074                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5075                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5076                 entry = huge_ptep_get(src_pte);
5077 again:
5078                 if (huge_pte_none(entry)) {
5079                         /*
5080                          * Skip if src entry none.
5081                          */
5082                         ;
5083                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5084                         if (!userfaultfd_wp(dst_vma))
5085                                 entry = huge_pte_clear_uffd_wp(entry);
5086                         set_huge_pte_at(dst, addr, dst_pte, entry);
5087                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5088                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5089                         bool uffd_wp = pte_swp_uffd_wp(entry);
5090
5091                         if (!is_readable_migration_entry(swp_entry) && cow) {
5092                                 /*
5093                                  * COW mappings require pages in both
5094                                  * parent and child to be set to read.
5095                                  */
5096                                 swp_entry = make_readable_migration_entry(
5097                                                         swp_offset(swp_entry));
5098                                 entry = swp_entry_to_pte(swp_entry);
5099                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5100                                         entry = pte_swp_mkuffd_wp(entry);
5101                                 set_huge_pte_at(src, addr, src_pte, entry);
5102                         }
5103                         if (!userfaultfd_wp(dst_vma))
5104                                 entry = huge_pte_clear_uffd_wp(entry);
5105                         set_huge_pte_at(dst, addr, dst_pte, entry);
5106                 } else if (unlikely(is_pte_marker(entry))) {
5107                         /* No swap on hugetlb */
5108                         WARN_ON_ONCE(
5109                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5110                         /*
5111                          * We copy the pte marker only if the dst vma has
5112                          * uffd-wp enabled.
5113                          */
5114                         if (userfaultfd_wp(dst_vma))
5115                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5116                 } else {
5117                         entry = huge_ptep_get(src_pte);
5118                         ptepage = pte_page(entry);
5119                         get_page(ptepage);
5120
5121                         /*
5122                          * Failing to duplicate the anon rmap is a rare case
5123                          * where we see pinned hugetlb pages while they're
5124                          * prone to COW. We need to do the COW earlier during
5125                          * fork.
5126                          *
5127                          * When pre-allocating the page or copying data, we
5128                          * need to be without the pgtable locks since we could
5129                          * sleep during the process.
5130                          */
5131                         if (!PageAnon(ptepage)) {
5132                                 page_dup_file_rmap(ptepage, true);
5133                         } else if (page_try_dup_anon_rmap(ptepage, true,
5134                                                           src_vma)) {
5135                                 pte_t src_pte_old = entry;
5136                                 struct folio *new_folio;
5137
5138                                 spin_unlock(src_ptl);
5139                                 spin_unlock(dst_ptl);
5140                                 /* Do not use reserve as it's private owned */
5141                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5142                                 if (IS_ERR(new_folio)) {
5143                                         put_page(ptepage);
5144                                         ret = PTR_ERR(new_folio);
5145                                         break;
5146                                 }
5147                                 ret = copy_user_large_folio(new_folio,
5148                                                       page_folio(ptepage),
5149                                                       addr, dst_vma);
5150                                 put_page(ptepage);
5151                                 if (ret) {
5152                                         folio_put(new_folio);
5153                                         break;
5154                                 }
5155
5156                                 /* Install the new hugetlb folio if src pte stable */
5157                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5158                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5159                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5160                                 entry = huge_ptep_get(src_pte);
5161                                 if (!pte_same(src_pte_old, entry)) {
5162                                         restore_reserve_on_error(h, dst_vma, addr,
5163                                                                 new_folio);
5164                                         folio_put(new_folio);
5165                                         /* huge_ptep of dst_pte won't change as in child */
5166                                         goto again;
5167                                 }
5168                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5169                                                       new_folio, src_pte_old);
5170                                 spin_unlock(src_ptl);
5171                                 spin_unlock(dst_ptl);
5172                                 continue;
5173                         }
5174
5175                         if (cow) {
5176                                 /*
5177                                  * No need to notify as we are downgrading page
5178                                  * table protection not changing it to point
5179                                  * to a new page.
5180                                  *
5181                                  * See Documentation/mm/mmu_notifier.rst
5182                                  */
5183                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5184                                 entry = huge_pte_wrprotect(entry);
5185                         }
5186
5187                         if (!userfaultfd_wp(dst_vma))
5188                                 entry = huge_pte_clear_uffd_wp(entry);
5189
5190                         set_huge_pte_at(dst, addr, dst_pte, entry);
5191                         hugetlb_count_add(npages, dst);
5192                 }
5193                 spin_unlock(src_ptl);
5194                 spin_unlock(dst_ptl);
5195         }
5196
5197         if (cow) {
5198                 raw_write_seqcount_end(&src->write_protect_seq);
5199                 mmu_notifier_invalidate_range_end(&range);
5200         } else {
5201                 hugetlb_vma_unlock_read(src_vma);
5202         }
5203
5204         return ret;
5205 }
5206
5207 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5208                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5209 {
5210         struct hstate *h = hstate_vma(vma);
5211         struct mm_struct *mm = vma->vm_mm;
5212         spinlock_t *src_ptl, *dst_ptl;
5213         pte_t pte;
5214
5215         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5216         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5217
5218         /*
5219          * We don't have to worry about the ordering of src and dst ptlocks
5220          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5221          */
5222         if (src_ptl != dst_ptl)
5223                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5224
5225         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5226         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5227
5228         if (src_ptl != dst_ptl)
5229                 spin_unlock(src_ptl);
5230         spin_unlock(dst_ptl);
5231 }
5232
5233 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5234                              struct vm_area_struct *new_vma,
5235                              unsigned long old_addr, unsigned long new_addr,
5236                              unsigned long len)
5237 {
5238         struct hstate *h = hstate_vma(vma);
5239         struct address_space *mapping = vma->vm_file->f_mapping;
5240         unsigned long sz = huge_page_size(h);
5241         struct mm_struct *mm = vma->vm_mm;
5242         unsigned long old_end = old_addr + len;
5243         unsigned long last_addr_mask;
5244         pte_t *src_pte, *dst_pte;
5245         struct mmu_notifier_range range;
5246         bool shared_pmd = false;
5247
5248         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5249                                 old_end);
5250         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5251         /*
5252          * In case of shared PMDs, we should cover the maximum possible
5253          * range.
5254          */
5255         flush_cache_range(vma, range.start, range.end);
5256
5257         mmu_notifier_invalidate_range_start(&range);
5258         last_addr_mask = hugetlb_mask_last_page(h);
5259         /* Prevent race with file truncation */
5260         hugetlb_vma_lock_write(vma);
5261         i_mmap_lock_write(mapping);
5262         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5263                 src_pte = hugetlb_walk(vma, old_addr, sz);
5264                 if (!src_pte) {
5265                         old_addr |= last_addr_mask;
5266                         new_addr |= last_addr_mask;
5267                         continue;
5268                 }
5269                 if (huge_pte_none(huge_ptep_get(src_pte)))
5270                         continue;
5271
5272                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5273                         shared_pmd = true;
5274                         old_addr |= last_addr_mask;
5275                         new_addr |= last_addr_mask;
5276                         continue;
5277                 }
5278
5279                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5280                 if (!dst_pte)
5281                         break;
5282
5283                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5284         }
5285
5286         if (shared_pmd)
5287                 flush_tlb_range(vma, range.start, range.end);
5288         else
5289                 flush_tlb_range(vma, old_end - len, old_end);
5290         mmu_notifier_invalidate_range_end(&range);
5291         i_mmap_unlock_write(mapping);
5292         hugetlb_vma_unlock_write(vma);
5293
5294         return len + old_addr - old_end;
5295 }
5296
5297 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5298                                    unsigned long start, unsigned long end,
5299                                    struct page *ref_page, zap_flags_t zap_flags)
5300 {
5301         struct mm_struct *mm = vma->vm_mm;
5302         unsigned long address;
5303         pte_t *ptep;
5304         pte_t pte;
5305         spinlock_t *ptl;
5306         struct page *page;
5307         struct hstate *h = hstate_vma(vma);
5308         unsigned long sz = huge_page_size(h);
5309         unsigned long last_addr_mask;
5310         bool force_flush = false;
5311
5312         WARN_ON(!is_vm_hugetlb_page(vma));
5313         BUG_ON(start & ~huge_page_mask(h));
5314         BUG_ON(end & ~huge_page_mask(h));
5315
5316         /*
5317          * This is a hugetlb vma, all the pte entries should point
5318          * to huge page.
5319          */
5320         tlb_change_page_size(tlb, sz);
5321         tlb_start_vma(tlb, vma);
5322
5323         last_addr_mask = hugetlb_mask_last_page(h);
5324         address = start;
5325         for (; address < end; address += sz) {
5326                 ptep = hugetlb_walk(vma, address, sz);
5327                 if (!ptep) {
5328                         address |= last_addr_mask;
5329                         continue;
5330                 }
5331
5332                 ptl = huge_pte_lock(h, mm, ptep);
5333                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5334                         spin_unlock(ptl);
5335                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5336                         force_flush = true;
5337                         address |= last_addr_mask;
5338                         continue;
5339                 }
5340
5341                 pte = huge_ptep_get(ptep);
5342                 if (huge_pte_none(pte)) {
5343                         spin_unlock(ptl);
5344                         continue;
5345                 }
5346
5347                 /*
5348                  * Migrating hugepage or HWPoisoned hugepage is already
5349                  * unmapped and its refcount is dropped, so just clear pte here.
5350                  */
5351                 if (unlikely(!pte_present(pte))) {
5352                         /*
5353                          * If the pte was wr-protected by uffd-wp in any of the
5354                          * swap forms, meanwhile the caller does not want to
5355                          * drop the uffd-wp bit in this zap, then replace the
5356                          * pte with a marker.
5357                          */
5358                         if (pte_swp_uffd_wp_any(pte) &&
5359                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5360                                 set_huge_pte_at(mm, address, ptep,
5361                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5362                         else
5363                                 huge_pte_clear(mm, address, ptep, sz);
5364                         spin_unlock(ptl);
5365                         continue;
5366                 }
5367
5368                 page = pte_page(pte);
5369                 /*
5370                  * If a reference page is supplied, it is because a specific
5371                  * page is being unmapped, not a range. Ensure the page we
5372                  * are about to unmap is the actual page of interest.
5373                  */
5374                 if (ref_page) {
5375                         if (page != ref_page) {
5376                                 spin_unlock(ptl);
5377                                 continue;
5378                         }
5379                         /*
5380                          * Mark the VMA as having unmapped its page so that
5381                          * future faults in this VMA will fail rather than
5382                          * looking like data was lost
5383                          */
5384                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5385                 }
5386
5387                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5388                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5389                 if (huge_pte_dirty(pte))
5390                         set_page_dirty(page);
5391                 /* Leave a uffd-wp pte marker if needed */
5392                 if (huge_pte_uffd_wp(pte) &&
5393                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5394                         set_huge_pte_at(mm, address, ptep,
5395                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5396                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5397                 page_remove_rmap(page, vma, true);
5398
5399                 spin_unlock(ptl);
5400                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5401                 /*
5402                  * Bail out after unmapping reference page if supplied
5403                  */
5404                 if (ref_page)
5405                         break;
5406         }
5407         tlb_end_vma(tlb, vma);
5408
5409         /*
5410          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5411          * could defer the flush until now, since by holding i_mmap_rwsem we
5412          * guaranteed that the last refernece would not be dropped. But we must
5413          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5414          * dropped and the last reference to the shared PMDs page might be
5415          * dropped as well.
5416          *
5417          * In theory we could defer the freeing of the PMD pages as well, but
5418          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5419          * detect sharing, so we cannot defer the release of the page either.
5420          * Instead, do flush now.
5421          */
5422         if (force_flush)
5423                 tlb_flush_mmu_tlbonly(tlb);
5424 }
5425
5426 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5427                           struct vm_area_struct *vma, unsigned long start,
5428                           unsigned long end, struct page *ref_page,
5429                           zap_flags_t zap_flags)
5430 {
5431         hugetlb_vma_lock_write(vma);
5432         i_mmap_lock_write(vma->vm_file->f_mapping);
5433
5434         /* mmu notification performed in caller */
5435         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5436
5437         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5438                 /*
5439                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5440                  * When the vma_lock is freed, this makes the vma ineligible
5441                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5442                  * pmd sharing.  This is important as page tables for this
5443                  * unmapped range will be asynchrously deleted.  If the page
5444                  * tables are shared, there will be issues when accessed by
5445                  * someone else.
5446                  */
5447                 __hugetlb_vma_unlock_write_free(vma);
5448                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5449         } else {
5450                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5451                 hugetlb_vma_unlock_write(vma);
5452         }
5453 }
5454
5455 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5456                           unsigned long end, struct page *ref_page,
5457                           zap_flags_t zap_flags)
5458 {
5459         struct mmu_notifier_range range;
5460         struct mmu_gather tlb;
5461
5462         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5463                                 start, end);
5464         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5465         mmu_notifier_invalidate_range_start(&range);
5466         tlb_gather_mmu(&tlb, vma->vm_mm);
5467
5468         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5469
5470         mmu_notifier_invalidate_range_end(&range);
5471         tlb_finish_mmu(&tlb);
5472 }
5473
5474 /*
5475  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5476  * mapping it owns the reserve page for. The intention is to unmap the page
5477  * from other VMAs and let the children be SIGKILLed if they are faulting the
5478  * same region.
5479  */
5480 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5481                               struct page *page, unsigned long address)
5482 {
5483         struct hstate *h = hstate_vma(vma);
5484         struct vm_area_struct *iter_vma;
5485         struct address_space *mapping;
5486         pgoff_t pgoff;
5487
5488         /*
5489          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5490          * from page cache lookup which is in HPAGE_SIZE units.
5491          */
5492         address = address & huge_page_mask(h);
5493         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5494                         vma->vm_pgoff;
5495         mapping = vma->vm_file->f_mapping;
5496
5497         /*
5498          * Take the mapping lock for the duration of the table walk. As
5499          * this mapping should be shared between all the VMAs,
5500          * __unmap_hugepage_range() is called as the lock is already held
5501          */
5502         i_mmap_lock_write(mapping);
5503         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5504                 /* Do not unmap the current VMA */
5505                 if (iter_vma == vma)
5506                         continue;
5507
5508                 /*
5509                  * Shared VMAs have their own reserves and do not affect
5510                  * MAP_PRIVATE accounting but it is possible that a shared
5511                  * VMA is using the same page so check and skip such VMAs.
5512                  */
5513                 if (iter_vma->vm_flags & VM_MAYSHARE)
5514                         continue;
5515
5516                 /*
5517                  * Unmap the page from other VMAs without their own reserves.
5518                  * They get marked to be SIGKILLed if they fault in these
5519                  * areas. This is because a future no-page fault on this VMA
5520                  * could insert a zeroed page instead of the data existing
5521                  * from the time of fork. This would look like data corruption
5522                  */
5523                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5524                         unmap_hugepage_range(iter_vma, address,
5525                                              address + huge_page_size(h), page, 0);
5526         }
5527         i_mmap_unlock_write(mapping);
5528 }
5529
5530 /*
5531  * hugetlb_wp() should be called with page lock of the original hugepage held.
5532  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5533  * cannot race with other handlers or page migration.
5534  * Keep the pte_same checks anyway to make transition from the mutex easier.
5535  */
5536 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5537                        unsigned long address, pte_t *ptep, unsigned int flags,
5538                        struct folio *pagecache_folio, spinlock_t *ptl)
5539 {
5540         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5541         pte_t pte = huge_ptep_get(ptep);
5542         struct hstate *h = hstate_vma(vma);
5543         struct page *old_page;
5544         struct folio *new_folio;
5545         int outside_reserve = 0;
5546         vm_fault_t ret = 0;
5547         unsigned long haddr = address & huge_page_mask(h);
5548         struct mmu_notifier_range range;
5549
5550         /*
5551          * Never handle CoW for uffd-wp protected pages.  It should be only
5552          * handled when the uffd-wp protection is removed.
5553          *
5554          * Note that only the CoW optimization path (in hugetlb_no_page())
5555          * can trigger this, because hugetlb_fault() will always resolve
5556          * uffd-wp bit first.
5557          */
5558         if (!unshare && huge_pte_uffd_wp(pte))
5559                 return 0;
5560
5561         /*
5562          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5563          * PTE mapped R/O such as maybe_mkwrite() would do.
5564          */
5565         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5566                 return VM_FAULT_SIGSEGV;
5567
5568         /* Let's take out MAP_SHARED mappings first. */
5569         if (vma->vm_flags & VM_MAYSHARE) {
5570                 set_huge_ptep_writable(vma, haddr, ptep);
5571                 return 0;
5572         }
5573
5574         old_page = pte_page(pte);
5575
5576         delayacct_wpcopy_start();
5577
5578 retry_avoidcopy:
5579         /*
5580          * If no-one else is actually using this page, we're the exclusive
5581          * owner and can reuse this page.
5582          */
5583         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5584                 if (!PageAnonExclusive(old_page))
5585                         page_move_anon_rmap(old_page, vma);
5586                 if (likely(!unshare))
5587                         set_huge_ptep_writable(vma, haddr, ptep);
5588
5589                 delayacct_wpcopy_end();
5590                 return 0;
5591         }
5592         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5593                        old_page);
5594
5595         /*
5596          * If the process that created a MAP_PRIVATE mapping is about to
5597          * perform a COW due to a shared page count, attempt to satisfy
5598          * the allocation without using the existing reserves. The pagecache
5599          * page is used to determine if the reserve at this address was
5600          * consumed or not. If reserves were used, a partial faulted mapping
5601          * at the time of fork() could consume its reserves on COW instead
5602          * of the full address range.
5603          */
5604         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5605                         page_folio(old_page) != pagecache_folio)
5606                 outside_reserve = 1;
5607
5608         get_page(old_page);
5609
5610         /*
5611          * Drop page table lock as buddy allocator may be called. It will
5612          * be acquired again before returning to the caller, as expected.
5613          */
5614         spin_unlock(ptl);
5615         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5616
5617         if (IS_ERR(new_folio)) {
5618                 /*
5619                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5620                  * it is due to references held by a child and an insufficient
5621                  * huge page pool. To guarantee the original mappers
5622                  * reliability, unmap the page from child processes. The child
5623                  * may get SIGKILLed if it later faults.
5624                  */
5625                 if (outside_reserve) {
5626                         struct address_space *mapping = vma->vm_file->f_mapping;
5627                         pgoff_t idx;
5628                         u32 hash;
5629
5630                         put_page(old_page);
5631                         /*
5632                          * Drop hugetlb_fault_mutex and vma_lock before
5633                          * unmapping.  unmapping needs to hold vma_lock
5634                          * in write mode.  Dropping vma_lock in read mode
5635                          * here is OK as COW mappings do not interact with
5636                          * PMD sharing.
5637                          *
5638                          * Reacquire both after unmap operation.
5639                          */
5640                         idx = vma_hugecache_offset(h, vma, haddr);
5641                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5642                         hugetlb_vma_unlock_read(vma);
5643                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5644
5645                         unmap_ref_private(mm, vma, old_page, haddr);
5646
5647                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5648                         hugetlb_vma_lock_read(vma);
5649                         spin_lock(ptl);
5650                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5651                         if (likely(ptep &&
5652                                    pte_same(huge_ptep_get(ptep), pte)))
5653                                 goto retry_avoidcopy;
5654                         /*
5655                          * race occurs while re-acquiring page table
5656                          * lock, and our job is done.
5657                          */
5658                         delayacct_wpcopy_end();
5659                         return 0;
5660                 }
5661
5662                 ret = vmf_error(PTR_ERR(new_folio));
5663                 goto out_release_old;
5664         }
5665
5666         /*
5667          * When the original hugepage is shared one, it does not have
5668          * anon_vma prepared.
5669          */
5670         if (unlikely(anon_vma_prepare(vma))) {
5671                 ret = VM_FAULT_OOM;
5672                 goto out_release_all;
5673         }
5674
5675         if (copy_user_large_folio(new_folio, page_folio(old_page), address, vma)) {
5676                 ret = VM_FAULT_HWPOISON_LARGE;
5677                 goto out_release_all;
5678         }
5679         __folio_mark_uptodate(new_folio);
5680
5681         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5682                                 haddr + huge_page_size(h));
5683         mmu_notifier_invalidate_range_start(&range);
5684
5685         /*
5686          * Retake the page table lock to check for racing updates
5687          * before the page tables are altered
5688          */
5689         spin_lock(ptl);
5690         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5691         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5692                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5693
5694                 /* Break COW or unshare */
5695                 huge_ptep_clear_flush(vma, haddr, ptep);
5696                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5697                 page_remove_rmap(old_page, vma, true);
5698                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5699                 if (huge_pte_uffd_wp(pte))
5700                         newpte = huge_pte_mkuffd_wp(newpte);
5701                 set_huge_pte_at(mm, haddr, ptep, newpte);
5702                 folio_set_hugetlb_migratable(new_folio);
5703                 /* Make the old page be freed below */
5704                 new_folio = page_folio(old_page);
5705         }
5706         spin_unlock(ptl);
5707         mmu_notifier_invalidate_range_end(&range);
5708 out_release_all:
5709         /*
5710          * No restore in case of successful pagetable update (Break COW or
5711          * unshare)
5712          */
5713         if (new_folio != page_folio(old_page))
5714                 restore_reserve_on_error(h, vma, haddr, new_folio);
5715         folio_put(new_folio);
5716 out_release_old:
5717         put_page(old_page);
5718
5719         spin_lock(ptl); /* Caller expects lock to be held */
5720
5721         delayacct_wpcopy_end();
5722         return ret;
5723 }
5724
5725 /*
5726  * Return whether there is a pagecache page to back given address within VMA.
5727  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5728  */
5729 static bool hugetlbfs_pagecache_present(struct hstate *h,
5730                         struct vm_area_struct *vma, unsigned long address)
5731 {
5732         struct address_space *mapping = vma->vm_file->f_mapping;
5733         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5734         bool present;
5735
5736         rcu_read_lock();
5737         present = page_cache_next_miss(mapping, idx, 1) != idx;
5738         rcu_read_unlock();
5739
5740         return present;
5741 }
5742
5743 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5744                            pgoff_t idx)
5745 {
5746         struct inode *inode = mapping->host;
5747         struct hstate *h = hstate_inode(inode);
5748         int err;
5749
5750         __folio_set_locked(folio);
5751         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5752
5753         if (unlikely(err)) {
5754                 __folio_clear_locked(folio);
5755                 return err;
5756         }
5757         folio_clear_hugetlb_restore_reserve(folio);
5758
5759         /*
5760          * mark folio dirty so that it will not be removed from cache/file
5761          * by non-hugetlbfs specific code paths.
5762          */
5763         folio_mark_dirty(folio);
5764
5765         spin_lock(&inode->i_lock);
5766         inode->i_blocks += blocks_per_huge_page(h);
5767         spin_unlock(&inode->i_lock);
5768         return 0;
5769 }
5770
5771 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5772                                                   struct address_space *mapping,
5773                                                   pgoff_t idx,
5774                                                   unsigned int flags,
5775                                                   unsigned long haddr,
5776                                                   unsigned long addr,
5777                                                   unsigned long reason)
5778 {
5779         u32 hash;
5780         struct vm_fault vmf = {
5781                 .vma = vma,
5782                 .address = haddr,
5783                 .real_address = addr,
5784                 .flags = flags,
5785
5786                 /*
5787                  * Hard to debug if it ends up being
5788                  * used by a callee that assumes
5789                  * something about the other
5790                  * uninitialized fields... same as in
5791                  * memory.c
5792                  */
5793         };
5794
5795         /*
5796          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5797          * userfault. Also mmap_lock could be dropped due to handling
5798          * userfault, any vma operation should be careful from here.
5799          */
5800         hugetlb_vma_unlock_read(vma);
5801         hash = hugetlb_fault_mutex_hash(mapping, idx);
5802         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5803         return handle_userfault(&vmf, reason);
5804 }
5805
5806 /*
5807  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5808  * false if pte changed or is changing.
5809  */
5810 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5811                                pte_t *ptep, pte_t old_pte)
5812 {
5813         spinlock_t *ptl;
5814         bool same;
5815
5816         ptl = huge_pte_lock(h, mm, ptep);
5817         same = pte_same(huge_ptep_get(ptep), old_pte);
5818         spin_unlock(ptl);
5819
5820         return same;
5821 }
5822
5823 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5824                         struct vm_area_struct *vma,
5825                         struct address_space *mapping, pgoff_t idx,
5826                         unsigned long address, pte_t *ptep,
5827                         pte_t old_pte, unsigned int flags)
5828 {
5829         struct hstate *h = hstate_vma(vma);
5830         vm_fault_t ret = VM_FAULT_SIGBUS;
5831         int anon_rmap = 0;
5832         unsigned long size;
5833         struct folio *folio;
5834         pte_t new_pte;
5835         spinlock_t *ptl;
5836         unsigned long haddr = address & huge_page_mask(h);
5837         bool new_folio, new_pagecache_folio = false;
5838         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5839
5840         /*
5841          * Currently, we are forced to kill the process in the event the
5842          * original mapper has unmapped pages from the child due to a failed
5843          * COW/unsharing. Warn that such a situation has occurred as it may not
5844          * be obvious.
5845          */
5846         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5847                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5848                            current->pid);
5849                 goto out;
5850         }
5851
5852         /*
5853          * Use page lock to guard against racing truncation
5854          * before we get page_table_lock.
5855          */
5856         new_folio = false;
5857         folio = filemap_lock_folio(mapping, idx);
5858         if (IS_ERR(folio)) {
5859                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5860                 if (idx >= size)
5861                         goto out;
5862                 /* Check for page in userfault range */
5863                 if (userfaultfd_missing(vma)) {
5864                         /*
5865                          * Since hugetlb_no_page() was examining pte
5866                          * without pgtable lock, we need to re-test under
5867                          * lock because the pte may not be stable and could
5868                          * have changed from under us.  Try to detect
5869                          * either changed or during-changing ptes and retry
5870                          * properly when needed.
5871                          *
5872                          * Note that userfaultfd is actually fine with
5873                          * false positives (e.g. caused by pte changed),
5874                          * but not wrong logical events (e.g. caused by
5875                          * reading a pte during changing).  The latter can
5876                          * confuse the userspace, so the strictness is very
5877                          * much preferred.  E.g., MISSING event should
5878                          * never happen on the page after UFFDIO_COPY has
5879                          * correctly installed the page and returned.
5880                          */
5881                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5882                                 ret = 0;
5883                                 goto out;
5884                         }
5885
5886                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5887                                                         haddr, address,
5888                                                         VM_UFFD_MISSING);
5889                 }
5890
5891                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5892                 if (IS_ERR(folio)) {
5893                         /*
5894                          * Returning error will result in faulting task being
5895                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5896                          * tasks from racing to fault in the same page which
5897                          * could result in false unable to allocate errors.
5898                          * Page migration does not take the fault mutex, but
5899                          * does a clear then write of pte's under page table
5900                          * lock.  Page fault code could race with migration,
5901                          * notice the clear pte and try to allocate a page
5902                          * here.  Before returning error, get ptl and make
5903                          * sure there really is no pte entry.
5904                          */
5905                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5906                                 ret = vmf_error(PTR_ERR(folio));
5907                         else
5908                                 ret = 0;
5909                         goto out;
5910                 }
5911                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5912                 __folio_mark_uptodate(folio);
5913                 new_folio = true;
5914
5915                 if (vma->vm_flags & VM_MAYSHARE) {
5916                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5917                         if (err) {
5918                                 /*
5919                                  * err can't be -EEXIST which implies someone
5920                                  * else consumed the reservation since hugetlb
5921                                  * fault mutex is held when add a hugetlb page
5922                                  * to the page cache. So it's safe to call
5923                                  * restore_reserve_on_error() here.
5924                                  */
5925                                 restore_reserve_on_error(h, vma, haddr, folio);
5926                                 folio_put(folio);
5927                                 goto out;
5928                         }
5929                         new_pagecache_folio = true;
5930                 } else {
5931                         folio_lock(folio);
5932                         if (unlikely(anon_vma_prepare(vma))) {
5933                                 ret = VM_FAULT_OOM;
5934                                 goto backout_unlocked;
5935                         }
5936                         anon_rmap = 1;
5937                 }
5938         } else {
5939                 /*
5940                  * If memory error occurs between mmap() and fault, some process
5941                  * don't have hwpoisoned swap entry for errored virtual address.
5942                  * So we need to block hugepage fault by PG_hwpoison bit check.
5943                  */
5944                 if (unlikely(folio_test_hwpoison(folio))) {
5945                         ret = VM_FAULT_HWPOISON_LARGE |
5946                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5947                         goto backout_unlocked;
5948                 }
5949
5950                 /* Check for page in userfault range. */
5951                 if (userfaultfd_minor(vma)) {
5952                         folio_unlock(folio);
5953                         folio_put(folio);
5954                         /* See comment in userfaultfd_missing() block above */
5955                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5956                                 ret = 0;
5957                                 goto out;
5958                         }
5959                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5960                                                         haddr, address,
5961                                                         VM_UFFD_MINOR);
5962                 }
5963         }
5964
5965         /*
5966          * If we are going to COW a private mapping later, we examine the
5967          * pending reservations for this page now. This will ensure that
5968          * any allocations necessary to record that reservation occur outside
5969          * the spinlock.
5970          */
5971         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5972                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5973                         ret = VM_FAULT_OOM;
5974                         goto backout_unlocked;
5975                 }
5976                 /* Just decrements count, does not deallocate */
5977                 vma_end_reservation(h, vma, haddr);
5978         }
5979
5980         ptl = huge_pte_lock(h, mm, ptep);
5981         ret = 0;
5982         /* If pte changed from under us, retry */
5983         if (!pte_same(huge_ptep_get(ptep), old_pte))
5984                 goto backout;
5985
5986         if (anon_rmap)
5987                 hugepage_add_new_anon_rmap(folio, vma, haddr);
5988         else
5989                 page_dup_file_rmap(&folio->page, true);
5990         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5991                                 && (vma->vm_flags & VM_SHARED)));
5992         /*
5993          * If this pte was previously wr-protected, keep it wr-protected even
5994          * if populated.
5995          */
5996         if (unlikely(pte_marker_uffd_wp(old_pte)))
5997                 new_pte = huge_pte_mkuffd_wp(new_pte);
5998         set_huge_pte_at(mm, haddr, ptep, new_pte);
5999
6000         hugetlb_count_add(pages_per_huge_page(h), mm);
6001         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6002                 /* Optimization, do the COW without a second fault */
6003                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6004         }
6005
6006         spin_unlock(ptl);
6007
6008         /*
6009          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6010          * found in the pagecache may not have hugetlb_migratable if they have
6011          * been isolated for migration.
6012          */
6013         if (new_folio)
6014                 folio_set_hugetlb_migratable(folio);
6015
6016         folio_unlock(folio);
6017 out:
6018         hugetlb_vma_unlock_read(vma);
6019         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6020         return ret;
6021
6022 backout:
6023         spin_unlock(ptl);
6024 backout_unlocked:
6025         if (new_folio && !new_pagecache_folio)
6026                 restore_reserve_on_error(h, vma, haddr, folio);
6027
6028         folio_unlock(folio);
6029         folio_put(folio);
6030         goto out;
6031 }
6032
6033 #ifdef CONFIG_SMP
6034 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6035 {
6036         unsigned long key[2];
6037         u32 hash;
6038
6039         key[0] = (unsigned long) mapping;
6040         key[1] = idx;
6041
6042         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6043
6044         return hash & (num_fault_mutexes - 1);
6045 }
6046 #else
6047 /*
6048  * For uniprocessor systems we always use a single mutex, so just
6049  * return 0 and avoid the hashing overhead.
6050  */
6051 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6052 {
6053         return 0;
6054 }
6055 #endif
6056
6057 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6058                         unsigned long address, unsigned int flags)
6059 {
6060         pte_t *ptep, entry;
6061         spinlock_t *ptl;
6062         vm_fault_t ret;
6063         u32 hash;
6064         pgoff_t idx;
6065         struct page *page = NULL;
6066         struct folio *pagecache_folio = NULL;
6067         struct hstate *h = hstate_vma(vma);
6068         struct address_space *mapping;
6069         int need_wait_lock = 0;
6070         unsigned long haddr = address & huge_page_mask(h);
6071
6072         /*
6073          * Serialize hugepage allocation and instantiation, so that we don't
6074          * get spurious allocation failures if two CPUs race to instantiate
6075          * the same page in the page cache.
6076          */
6077         mapping = vma->vm_file->f_mapping;
6078         idx = vma_hugecache_offset(h, vma, haddr);
6079         hash = hugetlb_fault_mutex_hash(mapping, idx);
6080         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6081
6082         /*
6083          * Acquire vma lock before calling huge_pte_alloc and hold
6084          * until finished with ptep.  This prevents huge_pmd_unshare from
6085          * being called elsewhere and making the ptep no longer valid.
6086          */
6087         hugetlb_vma_lock_read(vma);
6088         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6089         if (!ptep) {
6090                 hugetlb_vma_unlock_read(vma);
6091                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6092                 return VM_FAULT_OOM;
6093         }
6094
6095         entry = huge_ptep_get(ptep);
6096         /* PTE markers should be handled the same way as none pte */
6097         if (huge_pte_none_mostly(entry))
6098                 /*
6099                  * hugetlb_no_page will drop vma lock and hugetlb fault
6100                  * mutex internally, which make us return immediately.
6101                  */
6102                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6103                                       entry, flags);
6104
6105         ret = 0;
6106
6107         /*
6108          * entry could be a migration/hwpoison entry at this point, so this
6109          * check prevents the kernel from going below assuming that we have
6110          * an active hugepage in pagecache. This goto expects the 2nd page
6111          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6112          * properly handle it.
6113          */
6114         if (!pte_present(entry)) {
6115                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6116                         /*
6117                          * Release the hugetlb fault lock now, but retain
6118                          * the vma lock, because it is needed to guard the
6119                          * huge_pte_lockptr() later in
6120                          * migration_entry_wait_huge(). The vma lock will
6121                          * be released there.
6122                          */
6123                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6124                         migration_entry_wait_huge(vma, ptep);
6125                         return 0;
6126                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6127                         ret = VM_FAULT_HWPOISON_LARGE |
6128                             VM_FAULT_SET_HINDEX(hstate_index(h));
6129                 goto out_mutex;
6130         }
6131
6132         /*
6133          * If we are going to COW/unshare the mapping later, we examine the
6134          * pending reservations for this page now. This will ensure that any
6135          * allocations necessary to record that reservation occur outside the
6136          * spinlock. Also lookup the pagecache page now as it is used to
6137          * determine if a reservation has been consumed.
6138          */
6139         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6140             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6141                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6142                         ret = VM_FAULT_OOM;
6143                         goto out_mutex;
6144                 }
6145                 /* Just decrements count, does not deallocate */
6146                 vma_end_reservation(h, vma, haddr);
6147
6148                 pagecache_folio = filemap_lock_folio(mapping, idx);
6149                 if (IS_ERR(pagecache_folio))
6150                         pagecache_folio = NULL;
6151         }
6152
6153         ptl = huge_pte_lock(h, mm, ptep);
6154
6155         /* Check for a racing update before calling hugetlb_wp() */
6156         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6157                 goto out_ptl;
6158
6159         /* Handle userfault-wp first, before trying to lock more pages */
6160         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6161             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6162                 struct vm_fault vmf = {
6163                         .vma = vma,
6164                         .address = haddr,
6165                         .real_address = address,
6166                         .flags = flags,
6167                 };
6168
6169                 spin_unlock(ptl);
6170                 if (pagecache_folio) {
6171                         folio_unlock(pagecache_folio);
6172                         folio_put(pagecache_folio);
6173                 }
6174                 hugetlb_vma_unlock_read(vma);
6175                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176                 return handle_userfault(&vmf, VM_UFFD_WP);
6177         }
6178
6179         /*
6180          * hugetlb_wp() requires page locks of pte_page(entry) and
6181          * pagecache_folio, so here we need take the former one
6182          * when page != pagecache_folio or !pagecache_folio.
6183          */
6184         page = pte_page(entry);
6185         if (page_folio(page) != pagecache_folio)
6186                 if (!trylock_page(page)) {
6187                         need_wait_lock = 1;
6188                         goto out_ptl;
6189                 }
6190
6191         get_page(page);
6192
6193         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6194                 if (!huge_pte_write(entry)) {
6195                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6196                                          pagecache_folio, ptl);
6197                         goto out_put_page;
6198                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6199                         entry = huge_pte_mkdirty(entry);
6200                 }
6201         }
6202         entry = pte_mkyoung(entry);
6203         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6204                                                 flags & FAULT_FLAG_WRITE))
6205                 update_mmu_cache(vma, haddr, ptep);
6206 out_put_page:
6207         if (page_folio(page) != pagecache_folio)
6208                 unlock_page(page);
6209         put_page(page);
6210 out_ptl:
6211         spin_unlock(ptl);
6212
6213         if (pagecache_folio) {
6214                 folio_unlock(pagecache_folio);
6215                 folio_put(pagecache_folio);
6216         }
6217 out_mutex:
6218         hugetlb_vma_unlock_read(vma);
6219         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6220         /*
6221          * Generally it's safe to hold refcount during waiting page lock. But
6222          * here we just wait to defer the next page fault to avoid busy loop and
6223          * the page is not used after unlocked before returning from the current
6224          * page fault. So we are safe from accessing freed page, even if we wait
6225          * here without taking refcount.
6226          */
6227         if (need_wait_lock)
6228                 wait_on_page_locked(page);
6229         return ret;
6230 }
6231
6232 #ifdef CONFIG_USERFAULTFD
6233 /*
6234  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6235  * with modifications for hugetlb pages.
6236  */
6237 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6238                              struct vm_area_struct *dst_vma,
6239                              unsigned long dst_addr,
6240                              unsigned long src_addr,
6241                              uffd_flags_t flags,
6242                              struct folio **foliop)
6243 {
6244         struct mm_struct *dst_mm = dst_vma->vm_mm;
6245         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6246         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6247         struct hstate *h = hstate_vma(dst_vma);
6248         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6249         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6250         unsigned long size;
6251         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6252         pte_t _dst_pte;
6253         spinlock_t *ptl;
6254         int ret = -ENOMEM;
6255         struct folio *folio;
6256         int writable;
6257         bool folio_in_pagecache = false;
6258
6259         if (is_continue) {
6260                 ret = -EFAULT;
6261                 folio = filemap_lock_folio(mapping, idx);
6262                 if (IS_ERR(folio))
6263                         goto out;
6264                 folio_in_pagecache = true;
6265         } else if (!*foliop) {
6266                 /* If a folio already exists, then it's UFFDIO_COPY for
6267                  * a non-missing case. Return -EEXIST.
6268                  */
6269                 if (vm_shared &&
6270                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6271                         ret = -EEXIST;
6272                         goto out;
6273                 }
6274
6275                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6276                 if (IS_ERR(folio)) {
6277                         ret = -ENOMEM;
6278                         goto out;
6279                 }
6280
6281                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6282                                            false);
6283
6284                 /* fallback to copy_from_user outside mmap_lock */
6285                 if (unlikely(ret)) {
6286                         ret = -ENOENT;
6287                         /* Free the allocated folio which may have
6288                          * consumed a reservation.
6289                          */
6290                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6291                         folio_put(folio);
6292
6293                         /* Allocate a temporary folio to hold the copied
6294                          * contents.
6295                          */
6296                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6297                         if (!folio) {
6298                                 ret = -ENOMEM;
6299                                 goto out;
6300                         }
6301                         *foliop = folio;
6302                         /* Set the outparam foliop and return to the caller to
6303                          * copy the contents outside the lock. Don't free the
6304                          * folio.
6305                          */
6306                         goto out;
6307                 }
6308         } else {
6309                 if (vm_shared &&
6310                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6311                         folio_put(*foliop);
6312                         ret = -EEXIST;
6313                         *foliop = NULL;
6314                         goto out;
6315                 }
6316
6317                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6318                 if (IS_ERR(folio)) {
6319                         folio_put(*foliop);
6320                         ret = -ENOMEM;
6321                         *foliop = NULL;
6322                         goto out;
6323                 }
6324                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6325                 folio_put(*foliop);
6326                 *foliop = NULL;
6327                 if (ret) {
6328                         folio_put(folio);
6329                         goto out;
6330                 }
6331         }
6332
6333         /*
6334          * The memory barrier inside __folio_mark_uptodate makes sure that
6335          * preceding stores to the page contents become visible before
6336          * the set_pte_at() write.
6337          */
6338         __folio_mark_uptodate(folio);
6339
6340         /* Add shared, newly allocated pages to the page cache. */
6341         if (vm_shared && !is_continue) {
6342                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6343                 ret = -EFAULT;
6344                 if (idx >= size)
6345                         goto out_release_nounlock;
6346
6347                 /*
6348                  * Serialization between remove_inode_hugepages() and
6349                  * hugetlb_add_to_page_cache() below happens through the
6350                  * hugetlb_fault_mutex_table that here must be hold by
6351                  * the caller.
6352                  */
6353                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6354                 if (ret)
6355                         goto out_release_nounlock;
6356                 folio_in_pagecache = true;
6357         }
6358
6359         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6360
6361         ret = -EIO;
6362         if (folio_test_hwpoison(folio))
6363                 goto out_release_unlock;
6364
6365         /*
6366          * We allow to overwrite a pte marker: consider when both MISSING|WP
6367          * registered, we firstly wr-protect a none pte which has no page cache
6368          * page backing it, then access the page.
6369          */
6370         ret = -EEXIST;
6371         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6372                 goto out_release_unlock;
6373
6374         if (folio_in_pagecache)
6375                 page_dup_file_rmap(&folio->page, true);
6376         else
6377                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6378
6379         /*
6380          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6381          * with wp flag set, don't set pte write bit.
6382          */
6383         if (wp_enabled || (is_continue && !vm_shared))
6384                 writable = 0;
6385         else
6386                 writable = dst_vma->vm_flags & VM_WRITE;
6387
6388         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6389         /*
6390          * Always mark UFFDIO_COPY page dirty; note that this may not be
6391          * extremely important for hugetlbfs for now since swapping is not
6392          * supported, but we should still be clear in that this page cannot be
6393          * thrown away at will, even if write bit not set.
6394          */
6395         _dst_pte = huge_pte_mkdirty(_dst_pte);
6396         _dst_pte = pte_mkyoung(_dst_pte);
6397
6398         if (wp_enabled)
6399                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6400
6401         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6402
6403         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6404
6405         /* No need to invalidate - it was non-present before */
6406         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6407
6408         spin_unlock(ptl);
6409         if (!is_continue)
6410                 folio_set_hugetlb_migratable(folio);
6411         if (vm_shared || is_continue)
6412                 folio_unlock(folio);
6413         ret = 0;
6414 out:
6415         return ret;
6416 out_release_unlock:
6417         spin_unlock(ptl);
6418         if (vm_shared || is_continue)
6419                 folio_unlock(folio);
6420 out_release_nounlock:
6421         if (!folio_in_pagecache)
6422                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6423         folio_put(folio);
6424         goto out;
6425 }
6426 #endif /* CONFIG_USERFAULTFD */
6427
6428 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6429                                  int refs, struct page **pages,
6430                                  struct vm_area_struct **vmas)
6431 {
6432         int nr;
6433
6434         for (nr = 0; nr < refs; nr++) {
6435                 if (likely(pages))
6436                         pages[nr] = nth_page(page, nr);
6437                 if (vmas)
6438                         vmas[nr] = vma;
6439         }
6440 }
6441
6442 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6443                                                unsigned int flags, pte_t *pte,
6444                                                bool *unshare)
6445 {
6446         pte_t pteval = huge_ptep_get(pte);
6447
6448         *unshare = false;
6449         if (is_swap_pte(pteval))
6450                 return true;
6451         if (huge_pte_write(pteval))
6452                 return false;
6453         if (flags & FOLL_WRITE)
6454                 return true;
6455         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6456                 *unshare = true;
6457                 return true;
6458         }
6459         return false;
6460 }
6461
6462 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6463                                 unsigned long address, unsigned int flags)
6464 {
6465         struct hstate *h = hstate_vma(vma);
6466         struct mm_struct *mm = vma->vm_mm;
6467         unsigned long haddr = address & huge_page_mask(h);
6468         struct page *page = NULL;
6469         spinlock_t *ptl;
6470         pte_t *pte, entry;
6471
6472         /*
6473          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6474          * follow_hugetlb_page().
6475          */
6476         if (WARN_ON_ONCE(flags & FOLL_PIN))
6477                 return NULL;
6478
6479         hugetlb_vma_lock_read(vma);
6480         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6481         if (!pte)
6482                 goto out_unlock;
6483
6484         ptl = huge_pte_lock(h, mm, pte);
6485         entry = huge_ptep_get(pte);
6486         if (pte_present(entry)) {
6487                 page = pte_page(entry) +
6488                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6489                 /*
6490                  * Note that page may be a sub-page, and with vmemmap
6491                  * optimizations the page struct may be read only.
6492                  * try_grab_page() will increase the ref count on the
6493                  * head page, so this will be OK.
6494                  *
6495                  * try_grab_page() should always be able to get the page here,
6496                  * because we hold the ptl lock and have verified pte_present().
6497                  */
6498                 if (try_grab_page(page, flags)) {
6499                         page = NULL;
6500                         goto out;
6501                 }
6502         }
6503 out:
6504         spin_unlock(ptl);
6505 out_unlock:
6506         hugetlb_vma_unlock_read(vma);
6507         return page;
6508 }
6509
6510 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6511                          struct page **pages, struct vm_area_struct **vmas,
6512                          unsigned long *position, unsigned long *nr_pages,
6513                          long i, unsigned int flags, int *locked)
6514 {
6515         unsigned long pfn_offset;
6516         unsigned long vaddr = *position;
6517         unsigned long remainder = *nr_pages;
6518         struct hstate *h = hstate_vma(vma);
6519         int err = -EFAULT, refs;
6520
6521         while (vaddr < vma->vm_end && remainder) {
6522                 pte_t *pte;
6523                 spinlock_t *ptl = NULL;
6524                 bool unshare = false;
6525                 int absent;
6526                 struct page *page;
6527
6528                 /*
6529                  * If we have a pending SIGKILL, don't keep faulting pages and
6530                  * potentially allocating memory.
6531                  */
6532                 if (fatal_signal_pending(current)) {
6533                         remainder = 0;
6534                         break;
6535                 }
6536
6537                 hugetlb_vma_lock_read(vma);
6538                 /*
6539                  * Some archs (sparc64, sh*) have multiple pte_ts to
6540                  * each hugepage.  We have to make sure we get the
6541                  * first, for the page indexing below to work.
6542                  *
6543                  * Note that page table lock is not held when pte is null.
6544                  */
6545                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6546                                    huge_page_size(h));
6547                 if (pte)
6548                         ptl = huge_pte_lock(h, mm, pte);
6549                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6550
6551                 /*
6552                  * When coredumping, it suits get_dump_page if we just return
6553                  * an error where there's an empty slot with no huge pagecache
6554                  * to back it.  This way, we avoid allocating a hugepage, and
6555                  * the sparse dumpfile avoids allocating disk blocks, but its
6556                  * huge holes still show up with zeroes where they need to be.
6557                  */
6558                 if (absent && (flags & FOLL_DUMP) &&
6559                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6560                         if (pte)
6561                                 spin_unlock(ptl);
6562                         hugetlb_vma_unlock_read(vma);
6563                         remainder = 0;
6564                         break;
6565                 }
6566
6567                 /*
6568                  * We need call hugetlb_fault for both hugepages under migration
6569                  * (in which case hugetlb_fault waits for the migration,) and
6570                  * hwpoisoned hugepages (in which case we need to prevent the
6571                  * caller from accessing to them.) In order to do this, we use
6572                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6573                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6574                  * both cases, and because we can't follow correct pages
6575                  * directly from any kind of swap entries.
6576                  */
6577                 if (absent ||
6578                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6579                         vm_fault_t ret;
6580                         unsigned int fault_flags = 0;
6581
6582                         if (pte)
6583                                 spin_unlock(ptl);
6584                         hugetlb_vma_unlock_read(vma);
6585
6586                         if (flags & FOLL_WRITE)
6587                                 fault_flags |= FAULT_FLAG_WRITE;
6588                         else if (unshare)
6589                                 fault_flags |= FAULT_FLAG_UNSHARE;
6590                         if (locked) {
6591                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6592                                         FAULT_FLAG_KILLABLE;
6593                                 if (flags & FOLL_INTERRUPTIBLE)
6594                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6595                         }
6596                         if (flags & FOLL_NOWAIT)
6597                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6598                                         FAULT_FLAG_RETRY_NOWAIT;
6599                         if (flags & FOLL_TRIED) {
6600                                 /*
6601                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6602                                  * FAULT_FLAG_TRIED can co-exist
6603                                  */
6604                                 fault_flags |= FAULT_FLAG_TRIED;
6605                         }
6606                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6607                         if (ret & VM_FAULT_ERROR) {
6608                                 err = vm_fault_to_errno(ret, flags);
6609                                 remainder = 0;
6610                                 break;
6611                         }
6612                         if (ret & VM_FAULT_RETRY) {
6613                                 if (locked &&
6614                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6615                                         *locked = 0;
6616                                 *nr_pages = 0;
6617                                 /*
6618                                  * VM_FAULT_RETRY must not return an
6619                                  * error, it will return zero
6620                                  * instead.
6621                                  *
6622                                  * No need to update "position" as the
6623                                  * caller will not check it after
6624                                  * *nr_pages is set to 0.
6625                                  */
6626                                 return i;
6627                         }
6628                         continue;
6629                 }
6630
6631                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6632                 page = pte_page(huge_ptep_get(pte));
6633
6634                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6635                                !PageAnonExclusive(page), page);
6636
6637                 /*
6638                  * If subpage information not requested, update counters
6639                  * and skip the same_page loop below.
6640                  */
6641                 if (!pages && !vmas && !pfn_offset &&
6642                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6643                     (remainder >= pages_per_huge_page(h))) {
6644                         vaddr += huge_page_size(h);
6645                         remainder -= pages_per_huge_page(h);
6646                         i += pages_per_huge_page(h);
6647                         spin_unlock(ptl);
6648                         hugetlb_vma_unlock_read(vma);
6649                         continue;
6650                 }
6651
6652                 /* vaddr may not be aligned to PAGE_SIZE */
6653                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6654                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6655
6656                 if (pages || vmas)
6657                         record_subpages_vmas(nth_page(page, pfn_offset),
6658                                              vma, refs,
6659                                              likely(pages) ? pages + i : NULL,
6660                                              vmas ? vmas + i : NULL);
6661
6662                 if (pages) {
6663                         /*
6664                          * try_grab_folio() should always succeed here,
6665                          * because: a) we hold the ptl lock, and b) we've just
6666                          * checked that the huge page is present in the page
6667                          * tables. If the huge page is present, then the tail
6668                          * pages must also be present. The ptl prevents the
6669                          * head page and tail pages from being rearranged in
6670                          * any way. As this is hugetlb, the pages will never
6671                          * be p2pdma or not longterm pinable. So this page
6672                          * must be available at this point, unless the page
6673                          * refcount overflowed:
6674                          */
6675                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6676                                                          flags))) {
6677                                 spin_unlock(ptl);
6678                                 hugetlb_vma_unlock_read(vma);
6679                                 remainder = 0;
6680                                 err = -ENOMEM;
6681                                 break;
6682                         }
6683                 }
6684
6685                 vaddr += (refs << PAGE_SHIFT);
6686                 remainder -= refs;
6687                 i += refs;
6688
6689                 spin_unlock(ptl);
6690                 hugetlb_vma_unlock_read(vma);
6691         }
6692         *nr_pages = remainder;
6693         /*
6694          * setting position is actually required only if remainder is
6695          * not zero but it's faster not to add a "if (remainder)"
6696          * branch.
6697          */
6698         *position = vaddr;
6699
6700         return i ? i : err;
6701 }
6702
6703 long hugetlb_change_protection(struct vm_area_struct *vma,
6704                 unsigned long address, unsigned long end,
6705                 pgprot_t newprot, unsigned long cp_flags)
6706 {
6707         struct mm_struct *mm = vma->vm_mm;
6708         unsigned long start = address;
6709         pte_t *ptep;
6710         pte_t pte;
6711         struct hstate *h = hstate_vma(vma);
6712         long pages = 0, psize = huge_page_size(h);
6713         bool shared_pmd = false;
6714         struct mmu_notifier_range range;
6715         unsigned long last_addr_mask;
6716         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6717         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6718
6719         /*
6720          * In the case of shared PMDs, the area to flush could be beyond
6721          * start/end.  Set range.start/range.end to cover the maximum possible
6722          * range if PMD sharing is possible.
6723          */
6724         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6725                                 0, mm, start, end);
6726         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6727
6728         BUG_ON(address >= end);
6729         flush_cache_range(vma, range.start, range.end);
6730
6731         mmu_notifier_invalidate_range_start(&range);
6732         hugetlb_vma_lock_write(vma);
6733         i_mmap_lock_write(vma->vm_file->f_mapping);
6734         last_addr_mask = hugetlb_mask_last_page(h);
6735         for (; address < end; address += psize) {
6736                 spinlock_t *ptl;
6737                 ptep = hugetlb_walk(vma, address, psize);
6738                 if (!ptep) {
6739                         if (!uffd_wp) {
6740                                 address |= last_addr_mask;
6741                                 continue;
6742                         }
6743                         /*
6744                          * Userfaultfd wr-protect requires pgtable
6745                          * pre-allocations to install pte markers.
6746                          */
6747                         ptep = huge_pte_alloc(mm, vma, address, psize);
6748                         if (!ptep) {
6749                                 pages = -ENOMEM;
6750                                 break;
6751                         }
6752                 }
6753                 ptl = huge_pte_lock(h, mm, ptep);
6754                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6755                         /*
6756                          * When uffd-wp is enabled on the vma, unshare
6757                          * shouldn't happen at all.  Warn about it if it
6758                          * happened due to some reason.
6759                          */
6760                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6761                         pages++;
6762                         spin_unlock(ptl);
6763                         shared_pmd = true;
6764                         address |= last_addr_mask;
6765                         continue;
6766                 }
6767                 pte = huge_ptep_get(ptep);
6768                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6769                         /* Nothing to do. */
6770                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6771                         swp_entry_t entry = pte_to_swp_entry(pte);
6772                         struct page *page = pfn_swap_entry_to_page(entry);
6773                         pte_t newpte = pte;
6774
6775                         if (is_writable_migration_entry(entry)) {
6776                                 if (PageAnon(page))
6777                                         entry = make_readable_exclusive_migration_entry(
6778                                                                 swp_offset(entry));
6779                                 else
6780                                         entry = make_readable_migration_entry(
6781                                                                 swp_offset(entry));
6782                                 newpte = swp_entry_to_pte(entry);
6783                                 pages++;
6784                         }
6785
6786                         if (uffd_wp)
6787                                 newpte = pte_swp_mkuffd_wp(newpte);
6788                         else if (uffd_wp_resolve)
6789                                 newpte = pte_swp_clear_uffd_wp(newpte);
6790                         if (!pte_same(pte, newpte))
6791                                 set_huge_pte_at(mm, address, ptep, newpte);
6792                 } else if (unlikely(is_pte_marker(pte))) {
6793                         /* No other markers apply for now. */
6794                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6795                         if (uffd_wp_resolve)
6796                                 /* Safe to modify directly (non-present->none). */
6797                                 huge_pte_clear(mm, address, ptep, psize);
6798                 } else if (!huge_pte_none(pte)) {
6799                         pte_t old_pte;
6800                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6801
6802                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6803                         pte = huge_pte_modify(old_pte, newprot);
6804                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6805                         if (uffd_wp)
6806                                 pte = huge_pte_mkuffd_wp(pte);
6807                         else if (uffd_wp_resolve)
6808                                 pte = huge_pte_clear_uffd_wp(pte);
6809                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6810                         pages++;
6811                 } else {
6812                         /* None pte */
6813                         if (unlikely(uffd_wp))
6814                                 /* Safe to modify directly (none->non-present). */
6815                                 set_huge_pte_at(mm, address, ptep,
6816                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6817                 }
6818                 spin_unlock(ptl);
6819         }
6820         /*
6821          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6822          * may have cleared our pud entry and done put_page on the page table:
6823          * once we release i_mmap_rwsem, another task can do the final put_page
6824          * and that page table be reused and filled with junk.  If we actually
6825          * did unshare a page of pmds, flush the range corresponding to the pud.
6826          */
6827         if (shared_pmd)
6828                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6829         else
6830                 flush_hugetlb_tlb_range(vma, start, end);
6831         /*
6832          * No need to call mmu_notifier_invalidate_range() we are downgrading
6833          * page table protection not changing it to point to a new page.
6834          *
6835          * See Documentation/mm/mmu_notifier.rst
6836          */
6837         i_mmap_unlock_write(vma->vm_file->f_mapping);
6838         hugetlb_vma_unlock_write(vma);
6839         mmu_notifier_invalidate_range_end(&range);
6840
6841         return pages > 0 ? (pages << h->order) : pages;
6842 }
6843
6844 /* Return true if reservation was successful, false otherwise.  */
6845 bool hugetlb_reserve_pages(struct inode *inode,
6846                                         long from, long to,
6847                                         struct vm_area_struct *vma,
6848                                         vm_flags_t vm_flags)
6849 {
6850         long chg = -1, add = -1;
6851         struct hstate *h = hstate_inode(inode);
6852         struct hugepage_subpool *spool = subpool_inode(inode);
6853         struct resv_map *resv_map;
6854         struct hugetlb_cgroup *h_cg = NULL;
6855         long gbl_reserve, regions_needed = 0;
6856
6857         /* This should never happen */
6858         if (from > to) {
6859                 VM_WARN(1, "%s called with a negative range\n", __func__);
6860                 return false;
6861         }
6862
6863         /*
6864          * vma specific semaphore used for pmd sharing and fault/truncation
6865          * synchronization
6866          */
6867         hugetlb_vma_lock_alloc(vma);
6868
6869         /*
6870          * Only apply hugepage reservation if asked. At fault time, an
6871          * attempt will be made for VM_NORESERVE to allocate a page
6872          * without using reserves
6873          */
6874         if (vm_flags & VM_NORESERVE)
6875                 return true;
6876
6877         /*
6878          * Shared mappings base their reservation on the number of pages that
6879          * are already allocated on behalf of the file. Private mappings need
6880          * to reserve the full area even if read-only as mprotect() may be
6881          * called to make the mapping read-write. Assume !vma is a shm mapping
6882          */
6883         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6884                 /*
6885                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6886                  * called for inodes for which resv_maps were created (see
6887                  * hugetlbfs_get_inode).
6888                  */
6889                 resv_map = inode_resv_map(inode);
6890
6891                 chg = region_chg(resv_map, from, to, &regions_needed);
6892         } else {
6893                 /* Private mapping. */
6894                 resv_map = resv_map_alloc();
6895                 if (!resv_map)
6896                         goto out_err;
6897
6898                 chg = to - from;
6899
6900                 set_vma_resv_map(vma, resv_map);
6901                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6902         }
6903
6904         if (chg < 0)
6905                 goto out_err;
6906
6907         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6908                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6909                 goto out_err;
6910
6911         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6912                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6913                  * of the resv_map.
6914                  */
6915                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6916         }
6917
6918         /*
6919          * There must be enough pages in the subpool for the mapping. If
6920          * the subpool has a minimum size, there may be some global
6921          * reservations already in place (gbl_reserve).
6922          */
6923         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6924         if (gbl_reserve < 0)
6925                 goto out_uncharge_cgroup;
6926
6927         /*
6928          * Check enough hugepages are available for the reservation.
6929          * Hand the pages back to the subpool if there are not
6930          */
6931         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6932                 goto out_put_pages;
6933
6934         /*
6935          * Account for the reservations made. Shared mappings record regions
6936          * that have reservations as they are shared by multiple VMAs.
6937          * When the last VMA disappears, the region map says how much
6938          * the reservation was and the page cache tells how much of
6939          * the reservation was consumed. Private mappings are per-VMA and
6940          * only the consumed reservations are tracked. When the VMA
6941          * disappears, the original reservation is the VMA size and the
6942          * consumed reservations are stored in the map. Hence, nothing
6943          * else has to be done for private mappings here
6944          */
6945         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6946                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6947
6948                 if (unlikely(add < 0)) {
6949                         hugetlb_acct_memory(h, -gbl_reserve);
6950                         goto out_put_pages;
6951                 } else if (unlikely(chg > add)) {
6952                         /*
6953                          * pages in this range were added to the reserve
6954                          * map between region_chg and region_add.  This
6955                          * indicates a race with alloc_hugetlb_folio.  Adjust
6956                          * the subpool and reserve counts modified above
6957                          * based on the difference.
6958                          */
6959                         long rsv_adjust;
6960
6961                         /*
6962                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6963                          * reference to h_cg->css. See comment below for detail.
6964                          */
6965                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6966                                 hstate_index(h),
6967                                 (chg - add) * pages_per_huge_page(h), h_cg);
6968
6969                         rsv_adjust = hugepage_subpool_put_pages(spool,
6970                                                                 chg - add);
6971                         hugetlb_acct_memory(h, -rsv_adjust);
6972                 } else if (h_cg) {
6973                         /*
6974                          * The file_regions will hold their own reference to
6975                          * h_cg->css. So we should release the reference held
6976                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6977                          * done.
6978                          */
6979                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6980                 }
6981         }
6982         return true;
6983
6984 out_put_pages:
6985         /* put back original number of pages, chg */
6986         (void)hugepage_subpool_put_pages(spool, chg);
6987 out_uncharge_cgroup:
6988         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6989                                             chg * pages_per_huge_page(h), h_cg);
6990 out_err:
6991         hugetlb_vma_lock_free(vma);
6992         if (!vma || vma->vm_flags & VM_MAYSHARE)
6993                 /* Only call region_abort if the region_chg succeeded but the
6994                  * region_add failed or didn't run.
6995                  */
6996                 if (chg >= 0 && add < 0)
6997                         region_abort(resv_map, from, to, regions_needed);
6998         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6999                 kref_put(&resv_map->refs, resv_map_release);
7000         return false;
7001 }
7002
7003 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7004                                                                 long freed)
7005 {
7006         struct hstate *h = hstate_inode(inode);
7007         struct resv_map *resv_map = inode_resv_map(inode);
7008         long chg = 0;
7009         struct hugepage_subpool *spool = subpool_inode(inode);
7010         long gbl_reserve;
7011
7012         /*
7013          * Since this routine can be called in the evict inode path for all
7014          * hugetlbfs inodes, resv_map could be NULL.
7015          */
7016         if (resv_map) {
7017                 chg = region_del(resv_map, start, end);
7018                 /*
7019                  * region_del() can fail in the rare case where a region
7020                  * must be split and another region descriptor can not be
7021                  * allocated.  If end == LONG_MAX, it will not fail.
7022                  */
7023                 if (chg < 0)
7024                         return chg;
7025         }
7026
7027         spin_lock(&inode->i_lock);
7028         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7029         spin_unlock(&inode->i_lock);
7030
7031         /*
7032          * If the subpool has a minimum size, the number of global
7033          * reservations to be released may be adjusted.
7034          *
7035          * Note that !resv_map implies freed == 0. So (chg - freed)
7036          * won't go negative.
7037          */
7038         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7039         hugetlb_acct_memory(h, -gbl_reserve);
7040
7041         return 0;
7042 }
7043
7044 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7045 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7046                                 struct vm_area_struct *vma,
7047                                 unsigned long addr, pgoff_t idx)
7048 {
7049         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7050                                 svma->vm_start;
7051         unsigned long sbase = saddr & PUD_MASK;
7052         unsigned long s_end = sbase + PUD_SIZE;
7053
7054         /* Allow segments to share if only one is marked locked */
7055         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7056         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7057
7058         /*
7059          * match the virtual addresses, permission and the alignment of the
7060          * page table page.
7061          *
7062          * Also, vma_lock (vm_private_data) is required for sharing.
7063          */
7064         if (pmd_index(addr) != pmd_index(saddr) ||
7065             vm_flags != svm_flags ||
7066             !range_in_vma(svma, sbase, s_end) ||
7067             !svma->vm_private_data)
7068                 return 0;
7069
7070         return saddr;
7071 }
7072
7073 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7074 {
7075         unsigned long start = addr & PUD_MASK;
7076         unsigned long end = start + PUD_SIZE;
7077
7078 #ifdef CONFIG_USERFAULTFD
7079         if (uffd_disable_huge_pmd_share(vma))
7080                 return false;
7081 #endif
7082         /*
7083          * check on proper vm_flags and page table alignment
7084          */
7085         if (!(vma->vm_flags & VM_MAYSHARE))
7086                 return false;
7087         if (!vma->vm_private_data)      /* vma lock required for sharing */
7088                 return false;
7089         if (!range_in_vma(vma, start, end))
7090                 return false;
7091         return true;
7092 }
7093
7094 /*
7095  * Determine if start,end range within vma could be mapped by shared pmd.
7096  * If yes, adjust start and end to cover range associated with possible
7097  * shared pmd mappings.
7098  */
7099 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7100                                 unsigned long *start, unsigned long *end)
7101 {
7102         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7103                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7104
7105         /*
7106          * vma needs to span at least one aligned PUD size, and the range
7107          * must be at least partially within in.
7108          */
7109         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7110                 (*end <= v_start) || (*start >= v_end))
7111                 return;
7112
7113         /* Extend the range to be PUD aligned for a worst case scenario */
7114         if (*start > v_start)
7115                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7116
7117         if (*end < v_end)
7118                 *end = ALIGN(*end, PUD_SIZE);
7119 }
7120
7121 /*
7122  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7123  * and returns the corresponding pte. While this is not necessary for the
7124  * !shared pmd case because we can allocate the pmd later as well, it makes the
7125  * code much cleaner. pmd allocation is essential for the shared case because
7126  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7127  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7128  * bad pmd for sharing.
7129  */
7130 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7131                       unsigned long addr, pud_t *pud)
7132 {
7133         struct address_space *mapping = vma->vm_file->f_mapping;
7134         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7135                         vma->vm_pgoff;
7136         struct vm_area_struct *svma;
7137         unsigned long saddr;
7138         pte_t *spte = NULL;
7139         pte_t *pte;
7140         spinlock_t *ptl;
7141
7142         i_mmap_lock_read(mapping);
7143         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7144                 if (svma == vma)
7145                         continue;
7146
7147                 saddr = page_table_shareable(svma, vma, addr, idx);
7148                 if (saddr) {
7149                         spte = hugetlb_walk(svma, saddr,
7150                                             vma_mmu_pagesize(svma));
7151                         if (spte) {
7152                                 get_page(virt_to_page(spte));
7153                                 break;
7154                         }
7155                 }
7156         }
7157
7158         if (!spte)
7159                 goto out;
7160
7161         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7162         if (pud_none(*pud)) {
7163                 pud_populate(mm, pud,
7164                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7165                 mm_inc_nr_pmds(mm);
7166         } else {
7167                 put_page(virt_to_page(spte));
7168         }
7169         spin_unlock(ptl);
7170 out:
7171         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7172         i_mmap_unlock_read(mapping);
7173         return pte;
7174 }
7175
7176 /*
7177  * unmap huge page backed by shared pte.
7178  *
7179  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7180  * indicated by page_count > 1, unmap is achieved by clearing pud and
7181  * decrementing the ref count. If count == 1, the pte page is not shared.
7182  *
7183  * Called with page table lock held.
7184  *
7185  * returns: 1 successfully unmapped a shared pte page
7186  *          0 the underlying pte page is not shared, or it is the last user
7187  */
7188 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7189                                         unsigned long addr, pte_t *ptep)
7190 {
7191         pgd_t *pgd = pgd_offset(mm, addr);
7192         p4d_t *p4d = p4d_offset(pgd, addr);
7193         pud_t *pud = pud_offset(p4d, addr);
7194
7195         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7196         hugetlb_vma_assert_locked(vma);
7197         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7198         if (page_count(virt_to_page(ptep)) == 1)
7199                 return 0;
7200
7201         pud_clear(pud);
7202         put_page(virt_to_page(ptep));
7203         mm_dec_nr_pmds(mm);
7204         return 1;
7205 }
7206
7207 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7208
7209 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7210                       unsigned long addr, pud_t *pud)
7211 {
7212         return NULL;
7213 }
7214
7215 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7216                                 unsigned long addr, pte_t *ptep)
7217 {
7218         return 0;
7219 }
7220
7221 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7222                                 unsigned long *start, unsigned long *end)
7223 {
7224 }
7225
7226 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7227 {
7228         return false;
7229 }
7230 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7231
7232 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7233 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7234                         unsigned long addr, unsigned long sz)
7235 {
7236         pgd_t *pgd;
7237         p4d_t *p4d;
7238         pud_t *pud;
7239         pte_t *pte = NULL;
7240
7241         pgd = pgd_offset(mm, addr);
7242         p4d = p4d_alloc(mm, pgd, addr);
7243         if (!p4d)
7244                 return NULL;
7245         pud = pud_alloc(mm, p4d, addr);
7246         if (pud) {
7247                 if (sz == PUD_SIZE) {
7248                         pte = (pte_t *)pud;
7249                 } else {
7250                         BUG_ON(sz != PMD_SIZE);
7251                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7252                                 pte = huge_pmd_share(mm, vma, addr, pud);
7253                         else
7254                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7255                 }
7256         }
7257         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7258
7259         return pte;
7260 }
7261
7262 /*
7263  * huge_pte_offset() - Walk the page table to resolve the hugepage
7264  * entry at address @addr
7265  *
7266  * Return: Pointer to page table entry (PUD or PMD) for
7267  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7268  * size @sz doesn't match the hugepage size at this level of the page
7269  * table.
7270  */
7271 pte_t *huge_pte_offset(struct mm_struct *mm,
7272                        unsigned long addr, unsigned long sz)
7273 {
7274         pgd_t *pgd;
7275         p4d_t *p4d;
7276         pud_t *pud;
7277         pmd_t *pmd;
7278
7279         pgd = pgd_offset(mm, addr);
7280         if (!pgd_present(*pgd))
7281                 return NULL;
7282         p4d = p4d_offset(pgd, addr);
7283         if (!p4d_present(*p4d))
7284                 return NULL;
7285
7286         pud = pud_offset(p4d, addr);
7287         if (sz == PUD_SIZE)
7288                 /* must be pud huge, non-present or none */
7289                 return (pte_t *)pud;
7290         if (!pud_present(*pud))
7291                 return NULL;
7292         /* must have a valid entry and size to go further */
7293
7294         pmd = pmd_offset(pud, addr);
7295         /* must be pmd huge, non-present or none */
7296         return (pte_t *)pmd;
7297 }
7298
7299 /*
7300  * Return a mask that can be used to update an address to the last huge
7301  * page in a page table page mapping size.  Used to skip non-present
7302  * page table entries when linearly scanning address ranges.  Architectures
7303  * with unique huge page to page table relationships can define their own
7304  * version of this routine.
7305  */
7306 unsigned long hugetlb_mask_last_page(struct hstate *h)
7307 {
7308         unsigned long hp_size = huge_page_size(h);
7309
7310         if (hp_size == PUD_SIZE)
7311                 return P4D_SIZE - PUD_SIZE;
7312         else if (hp_size == PMD_SIZE)
7313                 return PUD_SIZE - PMD_SIZE;
7314         else
7315                 return 0UL;
7316 }
7317
7318 #else
7319
7320 /* See description above.  Architectures can provide their own version. */
7321 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7322 {
7323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7324         if (huge_page_size(h) == PMD_SIZE)
7325                 return PUD_SIZE - PMD_SIZE;
7326 #endif
7327         return 0UL;
7328 }
7329
7330 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7331
7332 /*
7333  * These functions are overwritable if your architecture needs its own
7334  * behavior.
7335  */
7336 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7337 {
7338         bool ret = true;
7339
7340         spin_lock_irq(&hugetlb_lock);
7341         if (!folio_test_hugetlb(folio) ||
7342             !folio_test_hugetlb_migratable(folio) ||
7343             !folio_try_get(folio)) {
7344                 ret = false;
7345                 goto unlock;
7346         }
7347         folio_clear_hugetlb_migratable(folio);
7348         list_move_tail(&folio->lru, list);
7349 unlock:
7350         spin_unlock_irq(&hugetlb_lock);
7351         return ret;
7352 }
7353
7354 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7355 {
7356         int ret = 0;
7357
7358         *hugetlb = false;
7359         spin_lock_irq(&hugetlb_lock);
7360         if (folio_test_hugetlb(folio)) {
7361                 *hugetlb = true;
7362                 if (folio_test_hugetlb_freed(folio))
7363                         ret = 0;
7364                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7365                         ret = folio_try_get(folio);
7366                 else
7367                         ret = -EBUSY;
7368         }
7369         spin_unlock_irq(&hugetlb_lock);
7370         return ret;
7371 }
7372
7373 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7374                                 bool *migratable_cleared)
7375 {
7376         int ret;
7377
7378         spin_lock_irq(&hugetlb_lock);
7379         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7380         spin_unlock_irq(&hugetlb_lock);
7381         return ret;
7382 }
7383
7384 void folio_putback_active_hugetlb(struct folio *folio)
7385 {
7386         spin_lock_irq(&hugetlb_lock);
7387         folio_set_hugetlb_migratable(folio);
7388         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7389         spin_unlock_irq(&hugetlb_lock);
7390         folio_put(folio);
7391 }
7392
7393 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7394 {
7395         struct hstate *h = folio_hstate(old_folio);
7396
7397         hugetlb_cgroup_migrate(old_folio, new_folio);
7398         set_page_owner_migrate_reason(&new_folio->page, reason);
7399
7400         /*
7401          * transfer temporary state of the new hugetlb folio. This is
7402          * reverse to other transitions because the newpage is going to
7403          * be final while the old one will be freed so it takes over
7404          * the temporary status.
7405          *
7406          * Also note that we have to transfer the per-node surplus state
7407          * here as well otherwise the global surplus count will not match
7408          * the per-node's.
7409          */
7410         if (folio_test_hugetlb_temporary(new_folio)) {
7411                 int old_nid = folio_nid(old_folio);
7412                 int new_nid = folio_nid(new_folio);
7413
7414                 folio_set_hugetlb_temporary(old_folio);
7415                 folio_clear_hugetlb_temporary(new_folio);
7416
7417
7418                 /*
7419                  * There is no need to transfer the per-node surplus state
7420                  * when we do not cross the node.
7421                  */
7422                 if (new_nid == old_nid)
7423                         return;
7424                 spin_lock_irq(&hugetlb_lock);
7425                 if (h->surplus_huge_pages_node[old_nid]) {
7426                         h->surplus_huge_pages_node[old_nid]--;
7427                         h->surplus_huge_pages_node[new_nid]++;
7428                 }
7429                 spin_unlock_irq(&hugetlb_lock);
7430         }
7431 }
7432
7433 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7434                                    unsigned long start,
7435                                    unsigned long end)
7436 {
7437         struct hstate *h = hstate_vma(vma);
7438         unsigned long sz = huge_page_size(h);
7439         struct mm_struct *mm = vma->vm_mm;
7440         struct mmu_notifier_range range;
7441         unsigned long address;
7442         spinlock_t *ptl;
7443         pte_t *ptep;
7444
7445         if (!(vma->vm_flags & VM_MAYSHARE))
7446                 return;
7447
7448         if (start >= end)
7449                 return;
7450
7451         flush_cache_range(vma, start, end);
7452         /*
7453          * No need to call adjust_range_if_pmd_sharing_possible(), because
7454          * we have already done the PUD_SIZE alignment.
7455          */
7456         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7457                                 start, end);
7458         mmu_notifier_invalidate_range_start(&range);
7459         hugetlb_vma_lock_write(vma);
7460         i_mmap_lock_write(vma->vm_file->f_mapping);
7461         for (address = start; address < end; address += PUD_SIZE) {
7462                 ptep = hugetlb_walk(vma, address, sz);
7463                 if (!ptep)
7464                         continue;
7465                 ptl = huge_pte_lock(h, mm, ptep);
7466                 huge_pmd_unshare(mm, vma, address, ptep);
7467                 spin_unlock(ptl);
7468         }
7469         flush_hugetlb_tlb_range(vma, start, end);
7470         i_mmap_unlock_write(vma->vm_file->f_mapping);
7471         hugetlb_vma_unlock_write(vma);
7472         /*
7473          * No need to call mmu_notifier_invalidate_range(), see
7474          * Documentation/mm/mmu_notifier.rst.
7475          */
7476         mmu_notifier_invalidate_range_end(&range);
7477 }
7478
7479 /*
7480  * This function will unconditionally remove all the shared pmd pgtable entries
7481  * within the specific vma for a hugetlbfs memory range.
7482  */
7483 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7484 {
7485         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7486                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7487 }
7488
7489 #ifdef CONFIG_CMA
7490 static bool cma_reserve_called __initdata;
7491
7492 static int __init cmdline_parse_hugetlb_cma(char *p)
7493 {
7494         int nid, count = 0;
7495         unsigned long tmp;
7496         char *s = p;
7497
7498         while (*s) {
7499                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7500                         break;
7501
7502                 if (s[count] == ':') {
7503                         if (tmp >= MAX_NUMNODES)
7504                                 break;
7505                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7506
7507                         s += count + 1;
7508                         tmp = memparse(s, &s);
7509                         hugetlb_cma_size_in_node[nid] = tmp;
7510                         hugetlb_cma_size += tmp;
7511
7512                         /*
7513                          * Skip the separator if have one, otherwise
7514                          * break the parsing.
7515                          */
7516                         if (*s == ',')
7517                                 s++;
7518                         else
7519                                 break;
7520                 } else {
7521                         hugetlb_cma_size = memparse(p, &p);
7522                         break;
7523                 }
7524         }
7525
7526         return 0;
7527 }
7528
7529 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7530
7531 void __init hugetlb_cma_reserve(int order)
7532 {
7533         unsigned long size, reserved, per_node;
7534         bool node_specific_cma_alloc = false;
7535         int nid;
7536
7537         cma_reserve_called = true;
7538
7539         if (!hugetlb_cma_size)
7540                 return;
7541
7542         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7543                 if (hugetlb_cma_size_in_node[nid] == 0)
7544                         continue;
7545
7546                 if (!node_online(nid)) {
7547                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7548                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7549                         hugetlb_cma_size_in_node[nid] = 0;
7550                         continue;
7551                 }
7552
7553                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7554                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7555                                 nid, (PAGE_SIZE << order) / SZ_1M);
7556                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7557                         hugetlb_cma_size_in_node[nid] = 0;
7558                 } else {
7559                         node_specific_cma_alloc = true;
7560                 }
7561         }
7562
7563         /* Validate the CMA size again in case some invalid nodes specified. */
7564         if (!hugetlb_cma_size)
7565                 return;
7566
7567         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7568                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7569                         (PAGE_SIZE << order) / SZ_1M);
7570                 hugetlb_cma_size = 0;
7571                 return;
7572         }
7573
7574         if (!node_specific_cma_alloc) {
7575                 /*
7576                  * If 3 GB area is requested on a machine with 4 numa nodes,
7577                  * let's allocate 1 GB on first three nodes and ignore the last one.
7578                  */
7579                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7580                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7581                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7582         }
7583
7584         reserved = 0;
7585         for_each_online_node(nid) {
7586                 int res;
7587                 char name[CMA_MAX_NAME];
7588
7589                 if (node_specific_cma_alloc) {
7590                         if (hugetlb_cma_size_in_node[nid] == 0)
7591                                 continue;
7592
7593                         size = hugetlb_cma_size_in_node[nid];
7594                 } else {
7595                         size = min(per_node, hugetlb_cma_size - reserved);
7596                 }
7597
7598                 size = round_up(size, PAGE_SIZE << order);
7599
7600                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7601                 /*
7602                  * Note that 'order per bit' is based on smallest size that
7603                  * may be returned to CMA allocator in the case of
7604                  * huge page demotion.
7605                  */
7606                 res = cma_declare_contiguous_nid(0, size, 0,
7607                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7608                                                  0, false, name,
7609                                                  &hugetlb_cma[nid], nid);
7610                 if (res) {
7611                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7612                                 res, nid);
7613                         continue;
7614                 }
7615
7616                 reserved += size;
7617                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7618                         size / SZ_1M, nid);
7619
7620                 if (reserved >= hugetlb_cma_size)
7621                         break;
7622         }
7623
7624         if (!reserved)
7625                 /*
7626                  * hugetlb_cma_size is used to determine if allocations from
7627                  * cma are possible.  Set to zero if no cma regions are set up.
7628                  */
7629                 hugetlb_cma_size = 0;
7630 }
7631
7632 static void __init hugetlb_cma_check(void)
7633 {
7634         if (!hugetlb_cma_size || cma_reserve_called)
7635                 return;
7636
7637         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7638 }
7639
7640 #endif /* CONFIG_CMA */