hugetlb: update vma flag check for hugetlb vma lock
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 static bool __vma_shareable_lock(struct vm_area_struct *vma)
264 {
265         return vma->vm_flags & VM_MAYSHARE && vma->vm_private_data;
266 }
267
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
269 {
270         if (__vma_shareable_lock(vma)) {
271                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
272
273                 down_read(&vma_lock->rw_sema);
274         }
275 }
276
277 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
278 {
279         if (__vma_shareable_lock(vma)) {
280                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
281
282                 up_read(&vma_lock->rw_sema);
283         }
284 }
285
286 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
287 {
288         if (__vma_shareable_lock(vma)) {
289                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
290
291                 down_write(&vma_lock->rw_sema);
292         }
293 }
294
295 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
296 {
297         if (__vma_shareable_lock(vma)) {
298                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
299
300                 up_write(&vma_lock->rw_sema);
301         }
302 }
303
304 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
305 {
306         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
307
308         if (!__vma_shareable_lock(vma))
309                 return 1;
310
311         return down_write_trylock(&vma_lock->rw_sema);
312 }
313
314 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
315 {
316         if (__vma_shareable_lock(vma)) {
317                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
318
319                 lockdep_assert_held(&vma_lock->rw_sema);
320         }
321 }
322
323 void hugetlb_vma_lock_release(struct kref *kref)
324 {
325         struct hugetlb_vma_lock *vma_lock = container_of(kref,
326                         struct hugetlb_vma_lock, refs);
327
328         kfree(vma_lock);
329 }
330
331 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
332 {
333         struct vm_area_struct *vma = vma_lock->vma;
334
335         /*
336          * vma_lock structure may or not be released as a result of put,
337          * it certainly will no longer be attached to vma so clear pointer.
338          * Semaphore synchronizes access to vma_lock->vma field.
339          */
340         vma_lock->vma = NULL;
341         vma->vm_private_data = NULL;
342         up_write(&vma_lock->rw_sema);
343         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
344 }
345
346 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
347 {
348         if (__vma_shareable_lock(vma)) {
349                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
350
351                 __hugetlb_vma_unlock_write_put(vma_lock);
352         }
353 }
354
355 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
356 {
357         /*
358          * Only present in sharable vmas.
359          */
360         if (!vma || !__vma_shareable_lock(vma))
361                 return;
362
363         if (vma->vm_private_data) {
364                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
365
366                 down_write(&vma_lock->rw_sema);
367                 __hugetlb_vma_unlock_write_put(vma_lock);
368         }
369 }
370
371 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
372 {
373         struct hugetlb_vma_lock *vma_lock;
374
375         /* Only establish in (flags) sharable vmas */
376         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
377                 return;
378
379         /* Should never get here with non-NULL vm_private_data */
380         if (vma->vm_private_data)
381                 return;
382
383         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
384         if (!vma_lock) {
385                 /*
386                  * If we can not allocate structure, then vma can not
387                  * participate in pmd sharing.  This is only a possible
388                  * performance enhancement and memory saving issue.
389                  * However, the lock is also used to synchronize page
390                  * faults with truncation.  If the lock is not present,
391                  * unlikely races could leave pages in a file past i_size
392                  * until the file is removed.  Warn in the unlikely case of
393                  * allocation failure.
394                  */
395                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
396                 return;
397         }
398
399         kref_init(&vma_lock->refs);
400         init_rwsem(&vma_lock->rw_sema);
401         vma_lock->vma = vma;
402         vma->vm_private_data = vma_lock;
403 }
404
405 /* Helper that removes a struct file_region from the resv_map cache and returns
406  * it for use.
407  */
408 static struct file_region *
409 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
410 {
411         struct file_region *nrg;
412
413         VM_BUG_ON(resv->region_cache_count <= 0);
414
415         resv->region_cache_count--;
416         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
417         list_del(&nrg->link);
418
419         nrg->from = from;
420         nrg->to = to;
421
422         return nrg;
423 }
424
425 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
426                                               struct file_region *rg)
427 {
428 #ifdef CONFIG_CGROUP_HUGETLB
429         nrg->reservation_counter = rg->reservation_counter;
430         nrg->css = rg->css;
431         if (rg->css)
432                 css_get(rg->css);
433 #endif
434 }
435
436 /* Helper that records hugetlb_cgroup uncharge info. */
437 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
438                                                 struct hstate *h,
439                                                 struct resv_map *resv,
440                                                 struct file_region *nrg)
441 {
442 #ifdef CONFIG_CGROUP_HUGETLB
443         if (h_cg) {
444                 nrg->reservation_counter =
445                         &h_cg->rsvd_hugepage[hstate_index(h)];
446                 nrg->css = &h_cg->css;
447                 /*
448                  * The caller will hold exactly one h_cg->css reference for the
449                  * whole contiguous reservation region. But this area might be
450                  * scattered when there are already some file_regions reside in
451                  * it. As a result, many file_regions may share only one css
452                  * reference. In order to ensure that one file_region must hold
453                  * exactly one h_cg->css reference, we should do css_get for
454                  * each file_region and leave the reference held by caller
455                  * untouched.
456                  */
457                 css_get(&h_cg->css);
458                 if (!resv->pages_per_hpage)
459                         resv->pages_per_hpage = pages_per_huge_page(h);
460                 /* pages_per_hpage should be the same for all entries in
461                  * a resv_map.
462                  */
463                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
464         } else {
465                 nrg->reservation_counter = NULL;
466                 nrg->css = NULL;
467         }
468 #endif
469 }
470
471 static void put_uncharge_info(struct file_region *rg)
472 {
473 #ifdef CONFIG_CGROUP_HUGETLB
474         if (rg->css)
475                 css_put(rg->css);
476 #endif
477 }
478
479 static bool has_same_uncharge_info(struct file_region *rg,
480                                    struct file_region *org)
481 {
482 #ifdef CONFIG_CGROUP_HUGETLB
483         return rg->reservation_counter == org->reservation_counter &&
484                rg->css == org->css;
485
486 #else
487         return true;
488 #endif
489 }
490
491 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
492 {
493         struct file_region *nrg, *prg;
494
495         prg = list_prev_entry(rg, link);
496         if (&prg->link != &resv->regions && prg->to == rg->from &&
497             has_same_uncharge_info(prg, rg)) {
498                 prg->to = rg->to;
499
500                 list_del(&rg->link);
501                 put_uncharge_info(rg);
502                 kfree(rg);
503
504                 rg = prg;
505         }
506
507         nrg = list_next_entry(rg, link);
508         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
509             has_same_uncharge_info(nrg, rg)) {
510                 nrg->from = rg->from;
511
512                 list_del(&rg->link);
513                 put_uncharge_info(rg);
514                 kfree(rg);
515         }
516 }
517
518 static inline long
519 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
520                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
521                      long *regions_needed)
522 {
523         struct file_region *nrg;
524
525         if (!regions_needed) {
526                 nrg = get_file_region_entry_from_cache(map, from, to);
527                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
528                 list_add(&nrg->link, rg);
529                 coalesce_file_region(map, nrg);
530         } else
531                 *regions_needed += 1;
532
533         return to - from;
534 }
535
536 /*
537  * Must be called with resv->lock held.
538  *
539  * Calling this with regions_needed != NULL will count the number of pages
540  * to be added but will not modify the linked list. And regions_needed will
541  * indicate the number of file_regions needed in the cache to carry out to add
542  * the regions for this range.
543  */
544 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
545                                      struct hugetlb_cgroup *h_cg,
546                                      struct hstate *h, long *regions_needed)
547 {
548         long add = 0;
549         struct list_head *head = &resv->regions;
550         long last_accounted_offset = f;
551         struct file_region *iter, *trg = NULL;
552         struct list_head *rg = NULL;
553
554         if (regions_needed)
555                 *regions_needed = 0;
556
557         /* In this loop, we essentially handle an entry for the range
558          * [last_accounted_offset, iter->from), at every iteration, with some
559          * bounds checking.
560          */
561         list_for_each_entry_safe(iter, trg, head, link) {
562                 /* Skip irrelevant regions that start before our range. */
563                 if (iter->from < f) {
564                         /* If this region ends after the last accounted offset,
565                          * then we need to update last_accounted_offset.
566                          */
567                         if (iter->to > last_accounted_offset)
568                                 last_accounted_offset = iter->to;
569                         continue;
570                 }
571
572                 /* When we find a region that starts beyond our range, we've
573                  * finished.
574                  */
575                 if (iter->from >= t) {
576                         rg = iter->link.prev;
577                         break;
578                 }
579
580                 /* Add an entry for last_accounted_offset -> iter->from, and
581                  * update last_accounted_offset.
582                  */
583                 if (iter->from > last_accounted_offset)
584                         add += hugetlb_resv_map_add(resv, iter->link.prev,
585                                                     last_accounted_offset,
586                                                     iter->from, h, h_cg,
587                                                     regions_needed);
588
589                 last_accounted_offset = iter->to;
590         }
591
592         /* Handle the case where our range extends beyond
593          * last_accounted_offset.
594          */
595         if (!rg)
596                 rg = head->prev;
597         if (last_accounted_offset < t)
598                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
599                                             t, h, h_cg, regions_needed);
600
601         return add;
602 }
603
604 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
605  */
606 static int allocate_file_region_entries(struct resv_map *resv,
607                                         int regions_needed)
608         __must_hold(&resv->lock)
609 {
610         LIST_HEAD(allocated_regions);
611         int to_allocate = 0, i = 0;
612         struct file_region *trg = NULL, *rg = NULL;
613
614         VM_BUG_ON(regions_needed < 0);
615
616         /*
617          * Check for sufficient descriptors in the cache to accommodate
618          * the number of in progress add operations plus regions_needed.
619          *
620          * This is a while loop because when we drop the lock, some other call
621          * to region_add or region_del may have consumed some region_entries,
622          * so we keep looping here until we finally have enough entries for
623          * (adds_in_progress + regions_needed).
624          */
625         while (resv->region_cache_count <
626                (resv->adds_in_progress + regions_needed)) {
627                 to_allocate = resv->adds_in_progress + regions_needed -
628                               resv->region_cache_count;
629
630                 /* At this point, we should have enough entries in the cache
631                  * for all the existing adds_in_progress. We should only be
632                  * needing to allocate for regions_needed.
633                  */
634                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
635
636                 spin_unlock(&resv->lock);
637                 for (i = 0; i < to_allocate; i++) {
638                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
639                         if (!trg)
640                                 goto out_of_memory;
641                         list_add(&trg->link, &allocated_regions);
642                 }
643
644                 spin_lock(&resv->lock);
645
646                 list_splice(&allocated_regions, &resv->region_cache);
647                 resv->region_cache_count += to_allocate;
648         }
649
650         return 0;
651
652 out_of_memory:
653         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
654                 list_del(&rg->link);
655                 kfree(rg);
656         }
657         return -ENOMEM;
658 }
659
660 /*
661  * Add the huge page range represented by [f, t) to the reserve
662  * map.  Regions will be taken from the cache to fill in this range.
663  * Sufficient regions should exist in the cache due to the previous
664  * call to region_chg with the same range, but in some cases the cache will not
665  * have sufficient entries due to races with other code doing region_add or
666  * region_del.  The extra needed entries will be allocated.
667  *
668  * regions_needed is the out value provided by a previous call to region_chg.
669  *
670  * Return the number of new huge pages added to the map.  This number is greater
671  * than or equal to zero.  If file_region entries needed to be allocated for
672  * this operation and we were not able to allocate, it returns -ENOMEM.
673  * region_add of regions of length 1 never allocate file_regions and cannot
674  * fail; region_chg will always allocate at least 1 entry and a region_add for
675  * 1 page will only require at most 1 entry.
676  */
677 static long region_add(struct resv_map *resv, long f, long t,
678                        long in_regions_needed, struct hstate *h,
679                        struct hugetlb_cgroup *h_cg)
680 {
681         long add = 0, actual_regions_needed = 0;
682
683         spin_lock(&resv->lock);
684 retry:
685
686         /* Count how many regions are actually needed to execute this add. */
687         add_reservation_in_range(resv, f, t, NULL, NULL,
688                                  &actual_regions_needed);
689
690         /*
691          * Check for sufficient descriptors in the cache to accommodate
692          * this add operation. Note that actual_regions_needed may be greater
693          * than in_regions_needed, as the resv_map may have been modified since
694          * the region_chg call. In this case, we need to make sure that we
695          * allocate extra entries, such that we have enough for all the
696          * existing adds_in_progress, plus the excess needed for this
697          * operation.
698          */
699         if (actual_regions_needed > in_regions_needed &&
700             resv->region_cache_count <
701                     resv->adds_in_progress +
702                             (actual_regions_needed - in_regions_needed)) {
703                 /* region_add operation of range 1 should never need to
704                  * allocate file_region entries.
705                  */
706                 VM_BUG_ON(t - f <= 1);
707
708                 if (allocate_file_region_entries(
709                             resv, actual_regions_needed - in_regions_needed)) {
710                         return -ENOMEM;
711                 }
712
713                 goto retry;
714         }
715
716         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
717
718         resv->adds_in_progress -= in_regions_needed;
719
720         spin_unlock(&resv->lock);
721         return add;
722 }
723
724 /*
725  * Examine the existing reserve map and determine how many
726  * huge pages in the specified range [f, t) are NOT currently
727  * represented.  This routine is called before a subsequent
728  * call to region_add that will actually modify the reserve
729  * map to add the specified range [f, t).  region_chg does
730  * not change the number of huge pages represented by the
731  * map.  A number of new file_region structures is added to the cache as a
732  * placeholder, for the subsequent region_add call to use. At least 1
733  * file_region structure is added.
734  *
735  * out_regions_needed is the number of regions added to the
736  * resv->adds_in_progress.  This value needs to be provided to a follow up call
737  * to region_add or region_abort for proper accounting.
738  *
739  * Returns the number of huge pages that need to be added to the existing
740  * reservation map for the range [f, t).  This number is greater or equal to
741  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
742  * is needed and can not be allocated.
743  */
744 static long region_chg(struct resv_map *resv, long f, long t,
745                        long *out_regions_needed)
746 {
747         long chg = 0;
748
749         spin_lock(&resv->lock);
750
751         /* Count how many hugepages in this range are NOT represented. */
752         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
753                                        out_regions_needed);
754
755         if (*out_regions_needed == 0)
756                 *out_regions_needed = 1;
757
758         if (allocate_file_region_entries(resv, *out_regions_needed))
759                 return -ENOMEM;
760
761         resv->adds_in_progress += *out_regions_needed;
762
763         spin_unlock(&resv->lock);
764         return chg;
765 }
766
767 /*
768  * Abort the in progress add operation.  The adds_in_progress field
769  * of the resv_map keeps track of the operations in progress between
770  * calls to region_chg and region_add.  Operations are sometimes
771  * aborted after the call to region_chg.  In such cases, region_abort
772  * is called to decrement the adds_in_progress counter. regions_needed
773  * is the value returned by the region_chg call, it is used to decrement
774  * the adds_in_progress counter.
775  *
776  * NOTE: The range arguments [f, t) are not needed or used in this
777  * routine.  They are kept to make reading the calling code easier as
778  * arguments will match the associated region_chg call.
779  */
780 static void region_abort(struct resv_map *resv, long f, long t,
781                          long regions_needed)
782 {
783         spin_lock(&resv->lock);
784         VM_BUG_ON(!resv->region_cache_count);
785         resv->adds_in_progress -= regions_needed;
786         spin_unlock(&resv->lock);
787 }
788
789 /*
790  * Delete the specified range [f, t) from the reserve map.  If the
791  * t parameter is LONG_MAX, this indicates that ALL regions after f
792  * should be deleted.  Locate the regions which intersect [f, t)
793  * and either trim, delete or split the existing regions.
794  *
795  * Returns the number of huge pages deleted from the reserve map.
796  * In the normal case, the return value is zero or more.  In the
797  * case where a region must be split, a new region descriptor must
798  * be allocated.  If the allocation fails, -ENOMEM will be returned.
799  * NOTE: If the parameter t == LONG_MAX, then we will never split
800  * a region and possibly return -ENOMEM.  Callers specifying
801  * t == LONG_MAX do not need to check for -ENOMEM error.
802  */
803 static long region_del(struct resv_map *resv, long f, long t)
804 {
805         struct list_head *head = &resv->regions;
806         struct file_region *rg, *trg;
807         struct file_region *nrg = NULL;
808         long del = 0;
809
810 retry:
811         spin_lock(&resv->lock);
812         list_for_each_entry_safe(rg, trg, head, link) {
813                 /*
814                  * Skip regions before the range to be deleted.  file_region
815                  * ranges are normally of the form [from, to).  However, there
816                  * may be a "placeholder" entry in the map which is of the form
817                  * (from, to) with from == to.  Check for placeholder entries
818                  * at the beginning of the range to be deleted.
819                  */
820                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
821                         continue;
822
823                 if (rg->from >= t)
824                         break;
825
826                 if (f > rg->from && t < rg->to) { /* Must split region */
827                         /*
828                          * Check for an entry in the cache before dropping
829                          * lock and attempting allocation.
830                          */
831                         if (!nrg &&
832                             resv->region_cache_count > resv->adds_in_progress) {
833                                 nrg = list_first_entry(&resv->region_cache,
834                                                         struct file_region,
835                                                         link);
836                                 list_del(&nrg->link);
837                                 resv->region_cache_count--;
838                         }
839
840                         if (!nrg) {
841                                 spin_unlock(&resv->lock);
842                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
843                                 if (!nrg)
844                                         return -ENOMEM;
845                                 goto retry;
846                         }
847
848                         del += t - f;
849                         hugetlb_cgroup_uncharge_file_region(
850                                 resv, rg, t - f, false);
851
852                         /* New entry for end of split region */
853                         nrg->from = t;
854                         nrg->to = rg->to;
855
856                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
857
858                         INIT_LIST_HEAD(&nrg->link);
859
860                         /* Original entry is trimmed */
861                         rg->to = f;
862
863                         list_add(&nrg->link, &rg->link);
864                         nrg = NULL;
865                         break;
866                 }
867
868                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
869                         del += rg->to - rg->from;
870                         hugetlb_cgroup_uncharge_file_region(resv, rg,
871                                                             rg->to - rg->from, true);
872                         list_del(&rg->link);
873                         kfree(rg);
874                         continue;
875                 }
876
877                 if (f <= rg->from) {    /* Trim beginning of region */
878                         hugetlb_cgroup_uncharge_file_region(resv, rg,
879                                                             t - rg->from, false);
880
881                         del += t - rg->from;
882                         rg->from = t;
883                 } else {                /* Trim end of region */
884                         hugetlb_cgroup_uncharge_file_region(resv, rg,
885                                                             rg->to - f, false);
886
887                         del += rg->to - f;
888                         rg->to = f;
889                 }
890         }
891
892         spin_unlock(&resv->lock);
893         kfree(nrg);
894         return del;
895 }
896
897 /*
898  * A rare out of memory error was encountered which prevented removal of
899  * the reserve map region for a page.  The huge page itself was free'ed
900  * and removed from the page cache.  This routine will adjust the subpool
901  * usage count, and the global reserve count if needed.  By incrementing
902  * these counts, the reserve map entry which could not be deleted will
903  * appear as a "reserved" entry instead of simply dangling with incorrect
904  * counts.
905  */
906 void hugetlb_fix_reserve_counts(struct inode *inode)
907 {
908         struct hugepage_subpool *spool = subpool_inode(inode);
909         long rsv_adjust;
910         bool reserved = false;
911
912         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
913         if (rsv_adjust > 0) {
914                 struct hstate *h = hstate_inode(inode);
915
916                 if (!hugetlb_acct_memory(h, 1))
917                         reserved = true;
918         } else if (!rsv_adjust) {
919                 reserved = true;
920         }
921
922         if (!reserved)
923                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
924 }
925
926 /*
927  * Count and return the number of huge pages in the reserve map
928  * that intersect with the range [f, t).
929  */
930 static long region_count(struct resv_map *resv, long f, long t)
931 {
932         struct list_head *head = &resv->regions;
933         struct file_region *rg;
934         long chg = 0;
935
936         spin_lock(&resv->lock);
937         /* Locate each segment we overlap with, and count that overlap. */
938         list_for_each_entry(rg, head, link) {
939                 long seg_from;
940                 long seg_to;
941
942                 if (rg->to <= f)
943                         continue;
944                 if (rg->from >= t)
945                         break;
946
947                 seg_from = max(rg->from, f);
948                 seg_to = min(rg->to, t);
949
950                 chg += seg_to - seg_from;
951         }
952         spin_unlock(&resv->lock);
953
954         return chg;
955 }
956
957 /*
958  * Convert the address within this vma to the page offset within
959  * the mapping, in pagecache page units; huge pages here.
960  */
961 static pgoff_t vma_hugecache_offset(struct hstate *h,
962                         struct vm_area_struct *vma, unsigned long address)
963 {
964         return ((address - vma->vm_start) >> huge_page_shift(h)) +
965                         (vma->vm_pgoff >> huge_page_order(h));
966 }
967
968 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
969                                      unsigned long address)
970 {
971         return vma_hugecache_offset(hstate_vma(vma), vma, address);
972 }
973 EXPORT_SYMBOL_GPL(linear_hugepage_index);
974
975 /*
976  * Return the size of the pages allocated when backing a VMA. In the majority
977  * cases this will be same size as used by the page table entries.
978  */
979 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
980 {
981         if (vma->vm_ops && vma->vm_ops->pagesize)
982                 return vma->vm_ops->pagesize(vma);
983         return PAGE_SIZE;
984 }
985 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
986
987 /*
988  * Return the page size being used by the MMU to back a VMA. In the majority
989  * of cases, the page size used by the kernel matches the MMU size. On
990  * architectures where it differs, an architecture-specific 'strong'
991  * version of this symbol is required.
992  */
993 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
994 {
995         return vma_kernel_pagesize(vma);
996 }
997
998 /*
999  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1000  * bits of the reservation map pointer, which are always clear due to
1001  * alignment.
1002  */
1003 #define HPAGE_RESV_OWNER    (1UL << 0)
1004 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1005 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1006
1007 /*
1008  * These helpers are used to track how many pages are reserved for
1009  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1010  * is guaranteed to have their future faults succeed.
1011  *
1012  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1013  * the reserve counters are updated with the hugetlb_lock held. It is safe
1014  * to reset the VMA at fork() time as it is not in use yet and there is no
1015  * chance of the global counters getting corrupted as a result of the values.
1016  *
1017  * The private mapping reservation is represented in a subtly different
1018  * manner to a shared mapping.  A shared mapping has a region map associated
1019  * with the underlying file, this region map represents the backing file
1020  * pages which have ever had a reservation assigned which this persists even
1021  * after the page is instantiated.  A private mapping has a region map
1022  * associated with the original mmap which is attached to all VMAs which
1023  * reference it, this region map represents those offsets which have consumed
1024  * reservation ie. where pages have been instantiated.
1025  */
1026 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1027 {
1028         return (unsigned long)vma->vm_private_data;
1029 }
1030
1031 static void set_vma_private_data(struct vm_area_struct *vma,
1032                                                         unsigned long value)
1033 {
1034         vma->vm_private_data = (void *)value;
1035 }
1036
1037 static void
1038 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1039                                           struct hugetlb_cgroup *h_cg,
1040                                           struct hstate *h)
1041 {
1042 #ifdef CONFIG_CGROUP_HUGETLB
1043         if (!h_cg || !h) {
1044                 resv_map->reservation_counter = NULL;
1045                 resv_map->pages_per_hpage = 0;
1046                 resv_map->css = NULL;
1047         } else {
1048                 resv_map->reservation_counter =
1049                         &h_cg->rsvd_hugepage[hstate_index(h)];
1050                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1051                 resv_map->css = &h_cg->css;
1052         }
1053 #endif
1054 }
1055
1056 struct resv_map *resv_map_alloc(void)
1057 {
1058         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1059         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1060
1061         if (!resv_map || !rg) {
1062                 kfree(resv_map);
1063                 kfree(rg);
1064                 return NULL;
1065         }
1066
1067         kref_init(&resv_map->refs);
1068         spin_lock_init(&resv_map->lock);
1069         INIT_LIST_HEAD(&resv_map->regions);
1070
1071         resv_map->adds_in_progress = 0;
1072         /*
1073          * Initialize these to 0. On shared mappings, 0's here indicate these
1074          * fields don't do cgroup accounting. On private mappings, these will be
1075          * re-initialized to the proper values, to indicate that hugetlb cgroup
1076          * reservations are to be un-charged from here.
1077          */
1078         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1079
1080         INIT_LIST_HEAD(&resv_map->region_cache);
1081         list_add(&rg->link, &resv_map->region_cache);
1082         resv_map->region_cache_count = 1;
1083
1084         return resv_map;
1085 }
1086
1087 void resv_map_release(struct kref *ref)
1088 {
1089         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1090         struct list_head *head = &resv_map->region_cache;
1091         struct file_region *rg, *trg;
1092
1093         /* Clear out any active regions before we release the map. */
1094         region_del(resv_map, 0, LONG_MAX);
1095
1096         /* ... and any entries left in the cache */
1097         list_for_each_entry_safe(rg, trg, head, link) {
1098                 list_del(&rg->link);
1099                 kfree(rg);
1100         }
1101
1102         VM_BUG_ON(resv_map->adds_in_progress);
1103
1104         kfree(resv_map);
1105 }
1106
1107 static inline struct resv_map *inode_resv_map(struct inode *inode)
1108 {
1109         /*
1110          * At inode evict time, i_mapping may not point to the original
1111          * address space within the inode.  This original address space
1112          * contains the pointer to the resv_map.  So, always use the
1113          * address space embedded within the inode.
1114          * The VERY common case is inode->mapping == &inode->i_data but,
1115          * this may not be true for device special inodes.
1116          */
1117         return (struct resv_map *)(&inode->i_data)->private_data;
1118 }
1119
1120 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1121 {
1122         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1123         if (vma->vm_flags & VM_MAYSHARE) {
1124                 struct address_space *mapping = vma->vm_file->f_mapping;
1125                 struct inode *inode = mapping->host;
1126
1127                 return inode_resv_map(inode);
1128
1129         } else {
1130                 return (struct resv_map *)(get_vma_private_data(vma) &
1131                                                         ~HPAGE_RESV_MASK);
1132         }
1133 }
1134
1135 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1136 {
1137         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1138         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1139
1140         set_vma_private_data(vma, (get_vma_private_data(vma) &
1141                                 HPAGE_RESV_MASK) | (unsigned long)map);
1142 }
1143
1144 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1145 {
1146         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1147         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1148
1149         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1150 }
1151
1152 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1153 {
1154         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1155
1156         return (get_vma_private_data(vma) & flag) != 0;
1157 }
1158
1159 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1160 {
1161         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1162         /*
1163          * Clear vm_private_data
1164          * - For shared mappings this is a per-vma semaphore that may be
1165          *   allocated in a subsequent call to hugetlb_vm_op_open.
1166          *   Before clearing, make sure pointer is not associated with vma
1167          *   as this will leak the structure.  This is the case when called
1168          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1169          *   been called to allocate a new structure.
1170          * - For MAP_PRIVATE mappings, this is the reserve map which does
1171          *   not apply to children.  Faults generated by the children are
1172          *   not guaranteed to succeed, even if read-only.
1173          */
1174         if (vma->vm_flags & VM_MAYSHARE) {
1175                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1176
1177                 if (vma_lock && vma_lock->vma != vma)
1178                         vma->vm_private_data = NULL;
1179         } else
1180                 vma->vm_private_data = NULL;
1181 }
1182
1183 /*
1184  * Reset and decrement one ref on hugepage private reservation.
1185  * Called with mm->mmap_lock writer semaphore held.
1186  * This function should be only used by move_vma() and operate on
1187  * same sized vma. It should never come here with last ref on the
1188  * reservation.
1189  */
1190 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1191 {
1192         /*
1193          * Clear the old hugetlb private page reservation.
1194          * It has already been transferred to new_vma.
1195          *
1196          * During a mremap() operation of a hugetlb vma we call move_vma()
1197          * which copies vma into new_vma and unmaps vma. After the copy
1198          * operation both new_vma and vma share a reference to the resv_map
1199          * struct, and at that point vma is about to be unmapped. We don't
1200          * want to return the reservation to the pool at unmap of vma because
1201          * the reservation still lives on in new_vma, so simply decrement the
1202          * ref here and remove the resv_map reference from this vma.
1203          */
1204         struct resv_map *reservations = vma_resv_map(vma);
1205
1206         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1207                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1208                 kref_put(&reservations->refs, resv_map_release);
1209         }
1210
1211         hugetlb_dup_vma_private(vma);
1212 }
1213
1214 /* Returns true if the VMA has associated reserve pages */
1215 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1216 {
1217         if (vma->vm_flags & VM_NORESERVE) {
1218                 /*
1219                  * This address is already reserved by other process(chg == 0),
1220                  * so, we should decrement reserved count. Without decrementing,
1221                  * reserve count remains after releasing inode, because this
1222                  * allocated page will go into page cache and is regarded as
1223                  * coming from reserved pool in releasing step.  Currently, we
1224                  * don't have any other solution to deal with this situation
1225                  * properly, so add work-around here.
1226                  */
1227                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1228                         return true;
1229                 else
1230                         return false;
1231         }
1232
1233         /* Shared mappings always use reserves */
1234         if (vma->vm_flags & VM_MAYSHARE) {
1235                 /*
1236                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1237                  * be a region map for all pages.  The only situation where
1238                  * there is no region map is if a hole was punched via
1239                  * fallocate.  In this case, there really are no reserves to
1240                  * use.  This situation is indicated if chg != 0.
1241                  */
1242                 if (chg)
1243                         return false;
1244                 else
1245                         return true;
1246         }
1247
1248         /*
1249          * Only the process that called mmap() has reserves for
1250          * private mappings.
1251          */
1252         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1253                 /*
1254                  * Like the shared case above, a hole punch or truncate
1255                  * could have been performed on the private mapping.
1256                  * Examine the value of chg to determine if reserves
1257                  * actually exist or were previously consumed.
1258                  * Very Subtle - The value of chg comes from a previous
1259                  * call to vma_needs_reserves().  The reserve map for
1260                  * private mappings has different (opposite) semantics
1261                  * than that of shared mappings.  vma_needs_reserves()
1262                  * has already taken this difference in semantics into
1263                  * account.  Therefore, the meaning of chg is the same
1264                  * as in the shared case above.  Code could easily be
1265                  * combined, but keeping it separate draws attention to
1266                  * subtle differences.
1267                  */
1268                 if (chg)
1269                         return false;
1270                 else
1271                         return true;
1272         }
1273
1274         return false;
1275 }
1276
1277 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1278 {
1279         int nid = folio_nid(folio);
1280
1281         lockdep_assert_held(&hugetlb_lock);
1282         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1283
1284         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1285         h->free_huge_pages++;
1286         h->free_huge_pages_node[nid]++;
1287         folio_set_hugetlb_freed(folio);
1288 }
1289
1290 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1291 {
1292         struct page *page;
1293         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1294
1295         lockdep_assert_held(&hugetlb_lock);
1296         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1297                 if (pin && !is_longterm_pinnable_page(page))
1298                         continue;
1299
1300                 if (PageHWPoison(page))
1301                         continue;
1302
1303                 list_move(&page->lru, &h->hugepage_activelist);
1304                 set_page_refcounted(page);
1305                 ClearHPageFreed(page);
1306                 h->free_huge_pages--;
1307                 h->free_huge_pages_node[nid]--;
1308                 return page;
1309         }
1310
1311         return NULL;
1312 }
1313
1314 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1315                 nodemask_t *nmask)
1316 {
1317         unsigned int cpuset_mems_cookie;
1318         struct zonelist *zonelist;
1319         struct zone *zone;
1320         struct zoneref *z;
1321         int node = NUMA_NO_NODE;
1322
1323         zonelist = node_zonelist(nid, gfp_mask);
1324
1325 retry_cpuset:
1326         cpuset_mems_cookie = read_mems_allowed_begin();
1327         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1328                 struct page *page;
1329
1330                 if (!cpuset_zone_allowed(zone, gfp_mask))
1331                         continue;
1332                 /*
1333                  * no need to ask again on the same node. Pool is node rather than
1334                  * zone aware
1335                  */
1336                 if (zone_to_nid(zone) == node)
1337                         continue;
1338                 node = zone_to_nid(zone);
1339
1340                 page = dequeue_huge_page_node_exact(h, node);
1341                 if (page)
1342                         return page;
1343         }
1344         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1345                 goto retry_cpuset;
1346
1347         return NULL;
1348 }
1349
1350 static unsigned long available_huge_pages(struct hstate *h)
1351 {
1352         return h->free_huge_pages - h->resv_huge_pages;
1353 }
1354
1355 static struct page *dequeue_huge_page_vma(struct hstate *h,
1356                                 struct vm_area_struct *vma,
1357                                 unsigned long address, int avoid_reserve,
1358                                 long chg)
1359 {
1360         struct page *page = NULL;
1361         struct mempolicy *mpol;
1362         gfp_t gfp_mask;
1363         nodemask_t *nodemask;
1364         int nid;
1365
1366         /*
1367          * A child process with MAP_PRIVATE mappings created by their parent
1368          * have no page reserves. This check ensures that reservations are
1369          * not "stolen". The child may still get SIGKILLed
1370          */
1371         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1372                 goto err;
1373
1374         /* If reserves cannot be used, ensure enough pages are in the pool */
1375         if (avoid_reserve && !available_huge_pages(h))
1376                 goto err;
1377
1378         gfp_mask = htlb_alloc_mask(h);
1379         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1380
1381         if (mpol_is_preferred_many(mpol)) {
1382                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1383
1384                 /* Fallback to all nodes if page==NULL */
1385                 nodemask = NULL;
1386         }
1387
1388         if (!page)
1389                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1390
1391         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1392                 SetHPageRestoreReserve(page);
1393                 h->resv_huge_pages--;
1394         }
1395
1396         mpol_cond_put(mpol);
1397         return page;
1398
1399 err:
1400         return NULL;
1401 }
1402
1403 /*
1404  * common helper functions for hstate_next_node_to_{alloc|free}.
1405  * We may have allocated or freed a huge page based on a different
1406  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1407  * be outside of *nodes_allowed.  Ensure that we use an allowed
1408  * node for alloc or free.
1409  */
1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1411 {
1412         nid = next_node_in(nid, *nodes_allowed);
1413         VM_BUG_ON(nid >= MAX_NUMNODES);
1414
1415         return nid;
1416 }
1417
1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1419 {
1420         if (!node_isset(nid, *nodes_allowed))
1421                 nid = next_node_allowed(nid, nodes_allowed);
1422         return nid;
1423 }
1424
1425 /*
1426  * returns the previously saved node ["this node"] from which to
1427  * allocate a persistent huge page for the pool and advance the
1428  * next node from which to allocate, handling wrap at end of node
1429  * mask.
1430  */
1431 static int hstate_next_node_to_alloc(struct hstate *h,
1432                                         nodemask_t *nodes_allowed)
1433 {
1434         int nid;
1435
1436         VM_BUG_ON(!nodes_allowed);
1437
1438         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1439         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1440
1441         return nid;
1442 }
1443
1444 /*
1445  * helper for remove_pool_huge_page() - return the previously saved
1446  * node ["this node"] from which to free a huge page.  Advance the
1447  * next node id whether or not we find a free huge page to free so
1448  * that the next attempt to free addresses the next node.
1449  */
1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1451 {
1452         int nid;
1453
1454         VM_BUG_ON(!nodes_allowed);
1455
1456         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1457         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1458
1459         return nid;
1460 }
1461
1462 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1463         for (nr_nodes = nodes_weight(*mask);                            \
1464                 nr_nodes > 0 &&                                         \
1465                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1466                 nr_nodes--)
1467
1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1469         for (nr_nodes = nodes_weight(*mask);                            \
1470                 nr_nodes > 0 &&                                         \
1471                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1472                 nr_nodes--)
1473
1474 /* used to demote non-gigantic_huge pages as well */
1475 static void __destroy_compound_gigantic_folio(struct folio *folio,
1476                                         unsigned int order, bool demote)
1477 {
1478         int i;
1479         int nr_pages = 1 << order;
1480         struct page *p;
1481
1482         atomic_set(folio_mapcount_ptr(folio), 0);
1483         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1484         atomic_set(folio_pincount_ptr(folio), 0);
1485
1486         for (i = 1; i < nr_pages; i++) {
1487                 p = folio_page(folio, i);
1488                 p->mapping = NULL;
1489                 clear_compound_head(p);
1490                 if (!demote)
1491                         set_page_refcounted(p);
1492         }
1493
1494         folio_set_order(folio, 0);
1495         __folio_clear_head(folio);
1496 }
1497
1498 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1499                                         unsigned int order)
1500 {
1501         __destroy_compound_gigantic_folio(folio, order, true);
1502 }
1503
1504 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1505 static void destroy_compound_gigantic_folio(struct folio *folio,
1506                                         unsigned int order)
1507 {
1508         __destroy_compound_gigantic_folio(folio, order, false);
1509 }
1510
1511 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1512 {
1513         /*
1514          * If the page isn't allocated using the cma allocator,
1515          * cma_release() returns false.
1516          */
1517 #ifdef CONFIG_CMA
1518         int nid = folio_nid(folio);
1519
1520         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1521                 return;
1522 #endif
1523
1524         free_contig_range(folio_pfn(folio), 1 << order);
1525 }
1526
1527 #ifdef CONFIG_CONTIG_ALLOC
1528 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1529                 int nid, nodemask_t *nodemask)
1530 {
1531         struct page *page;
1532         unsigned long nr_pages = pages_per_huge_page(h);
1533         if (nid == NUMA_NO_NODE)
1534                 nid = numa_mem_id();
1535
1536 #ifdef CONFIG_CMA
1537         {
1538                 int node;
1539
1540                 if (hugetlb_cma[nid]) {
1541                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1542                                         huge_page_order(h), true);
1543                         if (page)
1544                                 return page_folio(page);
1545                 }
1546
1547                 if (!(gfp_mask & __GFP_THISNODE)) {
1548                         for_each_node_mask(node, *nodemask) {
1549                                 if (node == nid || !hugetlb_cma[node])
1550                                         continue;
1551
1552                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1553                                                 huge_page_order(h), true);
1554                                 if (page)
1555                                         return page_folio(page);
1556                         }
1557                 }
1558         }
1559 #endif
1560
1561         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1562         return page ? page_folio(page) : NULL;
1563 }
1564
1565 #else /* !CONFIG_CONTIG_ALLOC */
1566 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1567                                         int nid, nodemask_t *nodemask)
1568 {
1569         return NULL;
1570 }
1571 #endif /* CONFIG_CONTIG_ALLOC */
1572
1573 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1574 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1575                                         int nid, nodemask_t *nodemask)
1576 {
1577         return NULL;
1578 }
1579 static inline void free_gigantic_folio(struct folio *folio,
1580                                                 unsigned int order) { }
1581 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1582                                                 unsigned int order) { }
1583 #endif
1584
1585 /*
1586  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1587  * as just a compound page.
1588  *
1589  * A reference is held on the folio, except in the case of demote.
1590  *
1591  * Must be called with hugetlb lock held.
1592  */
1593 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1594                                                         bool adjust_surplus,
1595                                                         bool demote)
1596 {
1597         int nid = folio_nid(folio);
1598
1599         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1600         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1601
1602         lockdep_assert_held(&hugetlb_lock);
1603         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1604                 return;
1605
1606         list_del(&folio->lru);
1607
1608         if (folio_test_hugetlb_freed(folio)) {
1609                 h->free_huge_pages--;
1610                 h->free_huge_pages_node[nid]--;
1611         }
1612         if (adjust_surplus) {
1613                 h->surplus_huge_pages--;
1614                 h->surplus_huge_pages_node[nid]--;
1615         }
1616
1617         /*
1618          * Very subtle
1619          *
1620          * For non-gigantic pages set the destructor to the normal compound
1621          * page dtor.  This is needed in case someone takes an additional
1622          * temporary ref to the page, and freeing is delayed until they drop
1623          * their reference.
1624          *
1625          * For gigantic pages set the destructor to the null dtor.  This
1626          * destructor will never be called.  Before freeing the gigantic
1627          * page destroy_compound_gigantic_folio will turn the folio into a
1628          * simple group of pages.  After this the destructor does not
1629          * apply.
1630          *
1631          * This handles the case where more than one ref is held when and
1632          * after update_and_free_hugetlb_folio is called.
1633          *
1634          * In the case of demote we do not ref count the page as it will soon
1635          * be turned into a page of smaller size.
1636          */
1637         if (!demote)
1638                 folio_ref_unfreeze(folio, 1);
1639         if (hstate_is_gigantic(h))
1640                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1641         else
1642                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1643
1644         h->nr_huge_pages--;
1645         h->nr_huge_pages_node[nid]--;
1646 }
1647
1648 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1649                                                         bool adjust_surplus)
1650 {
1651         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1652 }
1653
1654 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1655                                                         bool adjust_surplus)
1656 {
1657         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1658 }
1659
1660 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1661                              bool adjust_surplus)
1662 {
1663         int zeroed;
1664         int nid = folio_nid(folio);
1665
1666         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1667
1668         lockdep_assert_held(&hugetlb_lock);
1669
1670         INIT_LIST_HEAD(&folio->lru);
1671         h->nr_huge_pages++;
1672         h->nr_huge_pages_node[nid]++;
1673
1674         if (adjust_surplus) {
1675                 h->surplus_huge_pages++;
1676                 h->surplus_huge_pages_node[nid]++;
1677         }
1678
1679         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1680         folio_change_private(folio, NULL);
1681         /*
1682          * We have to set hugetlb_vmemmap_optimized again as above
1683          * folio_change_private(folio, NULL) cleared it.
1684          */
1685         folio_set_hugetlb_vmemmap_optimized(folio);
1686
1687         /*
1688          * This folio is about to be managed by the hugetlb allocator and
1689          * should have no users.  Drop our reference, and check for others
1690          * just in case.
1691          */
1692         zeroed = folio_put_testzero(folio);
1693         if (unlikely(!zeroed))
1694                 /*
1695                  * It is VERY unlikely soneone else has taken a ref on
1696                  * the page.  In this case, we simply return as the
1697                  * hugetlb destructor (free_huge_page) will be called
1698                  * when this other ref is dropped.
1699                  */
1700                 return;
1701
1702         arch_clear_hugepage_flags(&folio->page);
1703         enqueue_hugetlb_folio(h, folio);
1704 }
1705
1706 static void __update_and_free_page(struct hstate *h, struct page *page)
1707 {
1708         int i;
1709         struct folio *folio = page_folio(page);
1710         struct page *subpage;
1711
1712         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1713                 return;
1714
1715         /*
1716          * If we don't know which subpages are hwpoisoned, we can't free
1717          * the hugepage, so it's leaked intentionally.
1718          */
1719         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1720                 return;
1721
1722         if (hugetlb_vmemmap_restore(h, page)) {
1723                 spin_lock_irq(&hugetlb_lock);
1724                 /*
1725                  * If we cannot allocate vmemmap pages, just refuse to free the
1726                  * page and put the page back on the hugetlb free list and treat
1727                  * as a surplus page.
1728                  */
1729                 add_hugetlb_folio(h, folio, true);
1730                 spin_unlock_irq(&hugetlb_lock);
1731                 return;
1732         }
1733
1734         /*
1735          * Move PageHWPoison flag from head page to the raw error pages,
1736          * which makes any healthy subpages reusable.
1737          */
1738         if (unlikely(folio_test_hwpoison(folio)))
1739                 hugetlb_clear_page_hwpoison(&folio->page);
1740
1741         for (i = 0; i < pages_per_huge_page(h); i++) {
1742                 subpage = folio_page(folio, i);
1743                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1744                                 1 << PG_referenced | 1 << PG_dirty |
1745                                 1 << PG_active | 1 << PG_private |
1746                                 1 << PG_writeback);
1747         }
1748
1749         /*
1750          * Non-gigantic pages demoted from CMA allocated gigantic pages
1751          * need to be given back to CMA in free_gigantic_folio.
1752          */
1753         if (hstate_is_gigantic(h) ||
1754             hugetlb_cma_folio(folio, huge_page_order(h))) {
1755                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1756                 free_gigantic_folio(folio, huge_page_order(h));
1757         } else {
1758                 __free_pages(page, huge_page_order(h));
1759         }
1760 }
1761
1762 /*
1763  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1764  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1765  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1766  * the vmemmap pages.
1767  *
1768  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1769  * freed and frees them one-by-one. As the page->mapping pointer is going
1770  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1771  * structure of a lockless linked list of huge pages to be freed.
1772  */
1773 static LLIST_HEAD(hpage_freelist);
1774
1775 static void free_hpage_workfn(struct work_struct *work)
1776 {
1777         struct llist_node *node;
1778
1779         node = llist_del_all(&hpage_freelist);
1780
1781         while (node) {
1782                 struct page *page;
1783                 struct hstate *h;
1784
1785                 page = container_of((struct address_space **)node,
1786                                      struct page, mapping);
1787                 node = node->next;
1788                 page->mapping = NULL;
1789                 /*
1790                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1791                  * is going to trigger because a previous call to
1792                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1793                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1794                  * directly.
1795                  */
1796                 h = size_to_hstate(page_size(page));
1797
1798                 __update_and_free_page(h, page);
1799
1800                 cond_resched();
1801         }
1802 }
1803 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1804
1805 static inline void flush_free_hpage_work(struct hstate *h)
1806 {
1807         if (hugetlb_vmemmap_optimizable(h))
1808                 flush_work(&free_hpage_work);
1809 }
1810
1811 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1812                                  bool atomic)
1813 {
1814         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1815                 __update_and_free_page(h, &folio->page);
1816                 return;
1817         }
1818
1819         /*
1820          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1821          *
1822          * Only call schedule_work() if hpage_freelist is previously
1823          * empty. Otherwise, schedule_work() had been called but the workfn
1824          * hasn't retrieved the list yet.
1825          */
1826         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1827                 schedule_work(&free_hpage_work);
1828 }
1829
1830 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1831 {
1832         struct page *page, *t_page;
1833         struct folio *folio;
1834
1835         list_for_each_entry_safe(page, t_page, list, lru) {
1836                 folio = page_folio(page);
1837                 update_and_free_hugetlb_folio(h, folio, false);
1838                 cond_resched();
1839         }
1840 }
1841
1842 struct hstate *size_to_hstate(unsigned long size)
1843 {
1844         struct hstate *h;
1845
1846         for_each_hstate(h) {
1847                 if (huge_page_size(h) == size)
1848                         return h;
1849         }
1850         return NULL;
1851 }
1852
1853 void free_huge_page(struct page *page)
1854 {
1855         /*
1856          * Can't pass hstate in here because it is called from the
1857          * compound page destructor.
1858          */
1859         struct folio *folio = page_folio(page);
1860         struct hstate *h = folio_hstate(folio);
1861         int nid = folio_nid(folio);
1862         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1863         bool restore_reserve;
1864         unsigned long flags;
1865
1866         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1867         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1868
1869         hugetlb_set_folio_subpool(folio, NULL);
1870         if (folio_test_anon(folio))
1871                 __ClearPageAnonExclusive(&folio->page);
1872         folio->mapping = NULL;
1873         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1874         folio_clear_hugetlb_restore_reserve(folio);
1875
1876         /*
1877          * If HPageRestoreReserve was set on page, page allocation consumed a
1878          * reservation.  If the page was associated with a subpool, there
1879          * would have been a page reserved in the subpool before allocation
1880          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1881          * reservation, do not call hugepage_subpool_put_pages() as this will
1882          * remove the reserved page from the subpool.
1883          */
1884         if (!restore_reserve) {
1885                 /*
1886                  * A return code of zero implies that the subpool will be
1887                  * under its minimum size if the reservation is not restored
1888                  * after page is free.  Therefore, force restore_reserve
1889                  * operation.
1890                  */
1891                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1892                         restore_reserve = true;
1893         }
1894
1895         spin_lock_irqsave(&hugetlb_lock, flags);
1896         folio_clear_hugetlb_migratable(folio);
1897         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1898                                      pages_per_huge_page(h), folio);
1899         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1900                                           pages_per_huge_page(h), folio);
1901         if (restore_reserve)
1902                 h->resv_huge_pages++;
1903
1904         if (folio_test_hugetlb_temporary(folio)) {
1905                 remove_hugetlb_folio(h, folio, false);
1906                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1907                 update_and_free_hugetlb_folio(h, folio, true);
1908         } else if (h->surplus_huge_pages_node[nid]) {
1909                 /* remove the page from active list */
1910                 remove_hugetlb_folio(h, folio, true);
1911                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1912                 update_and_free_hugetlb_folio(h, folio, true);
1913         } else {
1914                 arch_clear_hugepage_flags(page);
1915                 enqueue_hugetlb_folio(h, folio);
1916                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1917         }
1918 }
1919
1920 /*
1921  * Must be called with the hugetlb lock held
1922  */
1923 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1924 {
1925         lockdep_assert_held(&hugetlb_lock);
1926         h->nr_huge_pages++;
1927         h->nr_huge_pages_node[nid]++;
1928 }
1929
1930 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1931 {
1932         hugetlb_vmemmap_optimize(h, &folio->page);
1933         INIT_LIST_HEAD(&folio->lru);
1934         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1935         hugetlb_set_folio_subpool(folio, NULL);
1936         set_hugetlb_cgroup(folio, NULL);
1937         set_hugetlb_cgroup_rsvd(folio, NULL);
1938 }
1939
1940 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1941 {
1942         __prep_new_hugetlb_folio(h, folio);
1943         spin_lock_irq(&hugetlb_lock);
1944         __prep_account_new_huge_page(h, nid);
1945         spin_unlock_irq(&hugetlb_lock);
1946 }
1947
1948 static bool __prep_compound_gigantic_folio(struct folio *folio,
1949                                         unsigned int order, bool demote)
1950 {
1951         int i, j;
1952         int nr_pages = 1 << order;
1953         struct page *p;
1954
1955         __folio_clear_reserved(folio);
1956         __folio_set_head(folio);
1957         /* we rely on prep_new_hugetlb_folio to set the destructor */
1958         folio_set_order(folio, order);
1959         for (i = 0; i < nr_pages; i++) {
1960                 p = folio_page(folio, i);
1961
1962                 /*
1963                  * For gigantic hugepages allocated through bootmem at
1964                  * boot, it's safer to be consistent with the not-gigantic
1965                  * hugepages and clear the PG_reserved bit from all tail pages
1966                  * too.  Otherwise drivers using get_user_pages() to access tail
1967                  * pages may get the reference counting wrong if they see
1968                  * PG_reserved set on a tail page (despite the head page not
1969                  * having PG_reserved set).  Enforcing this consistency between
1970                  * head and tail pages allows drivers to optimize away a check
1971                  * on the head page when they need know if put_page() is needed
1972                  * after get_user_pages().
1973                  */
1974                 if (i != 0)     /* head page cleared above */
1975                         __ClearPageReserved(p);
1976                 /*
1977                  * Subtle and very unlikely
1978                  *
1979                  * Gigantic 'page allocators' such as memblock or cma will
1980                  * return a set of pages with each page ref counted.  We need
1981                  * to turn this set of pages into a compound page with tail
1982                  * page ref counts set to zero.  Code such as speculative page
1983                  * cache adding could take a ref on a 'to be' tail page.
1984                  * We need to respect any increased ref count, and only set
1985                  * the ref count to zero if count is currently 1.  If count
1986                  * is not 1, we return an error.  An error return indicates
1987                  * the set of pages can not be converted to a gigantic page.
1988                  * The caller who allocated the pages should then discard the
1989                  * pages using the appropriate free interface.
1990                  *
1991                  * In the case of demote, the ref count will be zero.
1992                  */
1993                 if (!demote) {
1994                         if (!page_ref_freeze(p, 1)) {
1995                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1996                                 goto out_error;
1997                         }
1998                 } else {
1999                         VM_BUG_ON_PAGE(page_count(p), p);
2000                 }
2001                 if (i != 0)
2002                         set_compound_head(p, &folio->page);
2003         }
2004         atomic_set(folio_mapcount_ptr(folio), -1);
2005         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2006         atomic_set(folio_pincount_ptr(folio), 0);
2007         return true;
2008
2009 out_error:
2010         /* undo page modifications made above */
2011         for (j = 0; j < i; j++) {
2012                 p = folio_page(folio, j);
2013                 if (j != 0)
2014                         clear_compound_head(p);
2015                 set_page_refcounted(p);
2016         }
2017         /* need to clear PG_reserved on remaining tail pages  */
2018         for (; j < nr_pages; j++) {
2019                 p = folio_page(folio, j);
2020                 __ClearPageReserved(p);
2021         }
2022         folio_set_order(folio, 0);
2023         __folio_clear_head(folio);
2024         return false;
2025 }
2026
2027 static bool prep_compound_gigantic_folio(struct folio *folio,
2028                                                         unsigned int order)
2029 {
2030         return __prep_compound_gigantic_folio(folio, order, false);
2031 }
2032
2033 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2034                                                         unsigned int order)
2035 {
2036         return __prep_compound_gigantic_folio(folio, order, true);
2037 }
2038
2039 /*
2040  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2041  * transparent huge pages.  See the PageTransHuge() documentation for more
2042  * details.
2043  */
2044 int PageHuge(struct page *page)
2045 {
2046         if (!PageCompound(page))
2047                 return 0;
2048
2049         page = compound_head(page);
2050         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2051 }
2052 EXPORT_SYMBOL_GPL(PageHuge);
2053
2054 /*
2055  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2056  * normal or transparent huge pages.
2057  */
2058 int PageHeadHuge(struct page *page_head)
2059 {
2060         if (!PageHead(page_head))
2061                 return 0;
2062
2063         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2064 }
2065 EXPORT_SYMBOL_GPL(PageHeadHuge);
2066
2067 /*
2068  * Find and lock address space (mapping) in write mode.
2069  *
2070  * Upon entry, the page is locked which means that page_mapping() is
2071  * stable.  Due to locking order, we can only trylock_write.  If we can
2072  * not get the lock, simply return NULL to caller.
2073  */
2074 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2075 {
2076         struct address_space *mapping = page_mapping(hpage);
2077
2078         if (!mapping)
2079                 return mapping;
2080
2081         if (i_mmap_trylock_write(mapping))
2082                 return mapping;
2083
2084         return NULL;
2085 }
2086
2087 pgoff_t hugetlb_basepage_index(struct page *page)
2088 {
2089         struct page *page_head = compound_head(page);
2090         pgoff_t index = page_index(page_head);
2091         unsigned long compound_idx;
2092
2093         if (compound_order(page_head) >= MAX_ORDER)
2094                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2095         else
2096                 compound_idx = page - page_head;
2097
2098         return (index << compound_order(page_head)) + compound_idx;
2099 }
2100
2101 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2102                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2103                 nodemask_t *node_alloc_noretry)
2104 {
2105         int order = huge_page_order(h);
2106         struct page *page;
2107         bool alloc_try_hard = true;
2108         bool retry = true;
2109
2110         /*
2111          * By default we always try hard to allocate the page with
2112          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2113          * a loop (to adjust global huge page counts) and previous allocation
2114          * failed, do not continue to try hard on the same node.  Use the
2115          * node_alloc_noretry bitmap to manage this state information.
2116          */
2117         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2118                 alloc_try_hard = false;
2119         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2120         if (alloc_try_hard)
2121                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2122         if (nid == NUMA_NO_NODE)
2123                 nid = numa_mem_id();
2124 retry:
2125         page = __alloc_pages(gfp_mask, order, nid, nmask);
2126
2127         /* Freeze head page */
2128         if (page && !page_ref_freeze(page, 1)) {
2129                 __free_pages(page, order);
2130                 if (retry) {    /* retry once */
2131                         retry = false;
2132                         goto retry;
2133                 }
2134                 /* WOW!  twice in a row. */
2135                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2136                 page = NULL;
2137         }
2138
2139         /*
2140          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141          * indicates an overall state change.  Clear bit so that we resume
2142          * normal 'try hard' allocations.
2143          */
2144         if (node_alloc_noretry && page && !alloc_try_hard)
2145                 node_clear(nid, *node_alloc_noretry);
2146
2147         /*
2148          * If we tried hard to get a page but failed, set bit so that
2149          * subsequent attempts will not try as hard until there is an
2150          * overall state change.
2151          */
2152         if (node_alloc_noretry && !page && alloc_try_hard)
2153                 node_set(nid, *node_alloc_noretry);
2154
2155         if (!page) {
2156                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2157                 return NULL;
2158         }
2159
2160         __count_vm_event(HTLB_BUDDY_PGALLOC);
2161         return page_folio(page);
2162 }
2163
2164 /*
2165  * Common helper to allocate a fresh hugetlb page. All specific allocators
2166  * should use this function to get new hugetlb pages
2167  *
2168  * Note that returned page is 'frozen':  ref count of head page and all tail
2169  * pages is zero.
2170  */
2171 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2172                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2173                 nodemask_t *node_alloc_noretry)
2174 {
2175         struct folio *folio;
2176         bool retry = false;
2177
2178 retry:
2179         if (hstate_is_gigantic(h))
2180                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2181         else
2182                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2183                                 nid, nmask, node_alloc_noretry);
2184         if (!folio)
2185                 return NULL;
2186         if (hstate_is_gigantic(h)) {
2187                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2188                         /*
2189                          * Rare failure to convert pages to compound page.
2190                          * Free pages and try again - ONCE!
2191                          */
2192                         free_gigantic_folio(folio, huge_page_order(h));
2193                         if (!retry) {
2194                                 retry = true;
2195                                 goto retry;
2196                         }
2197                         return NULL;
2198                 }
2199         }
2200         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2201
2202         return folio;
2203 }
2204
2205 /*
2206  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2207  * manner.
2208  */
2209 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2210                                 nodemask_t *node_alloc_noretry)
2211 {
2212         struct folio *folio;
2213         int nr_nodes, node;
2214         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2215
2216         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2217                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2218                                         nodes_allowed, node_alloc_noretry);
2219                 if (folio) {
2220                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2221                         return 1;
2222                 }
2223         }
2224
2225         return 0;
2226 }
2227
2228 /*
2229  * Remove huge page from pool from next node to free.  Attempt to keep
2230  * persistent huge pages more or less balanced over allowed nodes.
2231  * This routine only 'removes' the hugetlb page.  The caller must make
2232  * an additional call to free the page to low level allocators.
2233  * Called with hugetlb_lock locked.
2234  */
2235 static struct page *remove_pool_huge_page(struct hstate *h,
2236                                                 nodemask_t *nodes_allowed,
2237                                                  bool acct_surplus)
2238 {
2239         int nr_nodes, node;
2240         struct page *page = NULL;
2241         struct folio *folio;
2242
2243         lockdep_assert_held(&hugetlb_lock);
2244         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2245                 /*
2246                  * If we're returning unused surplus pages, only examine
2247                  * nodes with surplus pages.
2248                  */
2249                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2250                     !list_empty(&h->hugepage_freelists[node])) {
2251                         page = list_entry(h->hugepage_freelists[node].next,
2252                                           struct page, lru);
2253                         folio = page_folio(page);
2254                         remove_hugetlb_folio(h, folio, acct_surplus);
2255                         break;
2256                 }
2257         }
2258
2259         return page;
2260 }
2261
2262 /*
2263  * Dissolve a given free hugepage into free buddy pages. This function does
2264  * nothing for in-use hugepages and non-hugepages.
2265  * This function returns values like below:
2266  *
2267  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2268  *           when the system is under memory pressure and the feature of
2269  *           freeing unused vmemmap pages associated with each hugetlb page
2270  *           is enabled.
2271  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2272  *           (allocated or reserved.)
2273  *       0:  successfully dissolved free hugepages or the page is not a
2274  *           hugepage (considered as already dissolved)
2275  */
2276 int dissolve_free_huge_page(struct page *page)
2277 {
2278         int rc = -EBUSY;
2279         struct folio *folio = page_folio(page);
2280
2281 retry:
2282         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2283         if (!folio_test_hugetlb(folio))
2284                 return 0;
2285
2286         spin_lock_irq(&hugetlb_lock);
2287         if (!folio_test_hugetlb(folio)) {
2288                 rc = 0;
2289                 goto out;
2290         }
2291
2292         if (!folio_ref_count(folio)) {
2293                 struct hstate *h = folio_hstate(folio);
2294                 if (!available_huge_pages(h))
2295                         goto out;
2296
2297                 /*
2298                  * We should make sure that the page is already on the free list
2299                  * when it is dissolved.
2300                  */
2301                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2302                         spin_unlock_irq(&hugetlb_lock);
2303                         cond_resched();
2304
2305                         /*
2306                          * Theoretically, we should return -EBUSY when we
2307                          * encounter this race. In fact, we have a chance
2308                          * to successfully dissolve the page if we do a
2309                          * retry. Because the race window is quite small.
2310                          * If we seize this opportunity, it is an optimization
2311                          * for increasing the success rate of dissolving page.
2312                          */
2313                         goto retry;
2314                 }
2315
2316                 remove_hugetlb_folio(h, folio, false);
2317                 h->max_huge_pages--;
2318                 spin_unlock_irq(&hugetlb_lock);
2319
2320                 /*
2321                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2322                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2323                  * free the page if it can not allocate required vmemmap.  We
2324                  * need to adjust max_huge_pages if the page is not freed.
2325                  * Attempt to allocate vmemmmap here so that we can take
2326                  * appropriate action on failure.
2327                  */
2328                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2329                 if (!rc) {
2330                         update_and_free_hugetlb_folio(h, folio, false);
2331                 } else {
2332                         spin_lock_irq(&hugetlb_lock);
2333                         add_hugetlb_folio(h, folio, false);
2334                         h->max_huge_pages++;
2335                         spin_unlock_irq(&hugetlb_lock);
2336                 }
2337
2338                 return rc;
2339         }
2340 out:
2341         spin_unlock_irq(&hugetlb_lock);
2342         return rc;
2343 }
2344
2345 /*
2346  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2347  * make specified memory blocks removable from the system.
2348  * Note that this will dissolve a free gigantic hugepage completely, if any
2349  * part of it lies within the given range.
2350  * Also note that if dissolve_free_huge_page() returns with an error, all
2351  * free hugepages that were dissolved before that error are lost.
2352  */
2353 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2354 {
2355         unsigned long pfn;
2356         struct page *page;
2357         int rc = 0;
2358         unsigned int order;
2359         struct hstate *h;
2360
2361         if (!hugepages_supported())
2362                 return rc;
2363
2364         order = huge_page_order(&default_hstate);
2365         for_each_hstate(h)
2366                 order = min(order, huge_page_order(h));
2367
2368         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2369                 page = pfn_to_page(pfn);
2370                 rc = dissolve_free_huge_page(page);
2371                 if (rc)
2372                         break;
2373         }
2374
2375         return rc;
2376 }
2377
2378 /*
2379  * Allocates a fresh surplus page from the page allocator.
2380  */
2381 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2382                                                 int nid, nodemask_t *nmask)
2383 {
2384         struct folio *folio = NULL;
2385
2386         if (hstate_is_gigantic(h))
2387                 return NULL;
2388
2389         spin_lock_irq(&hugetlb_lock);
2390         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2391                 goto out_unlock;
2392         spin_unlock_irq(&hugetlb_lock);
2393
2394         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2395         if (!folio)
2396                 return NULL;
2397
2398         spin_lock_irq(&hugetlb_lock);
2399         /*
2400          * We could have raced with the pool size change.
2401          * Double check that and simply deallocate the new page
2402          * if we would end up overcommiting the surpluses. Abuse
2403          * temporary page to workaround the nasty free_huge_page
2404          * codeflow
2405          */
2406         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2407                 folio_set_hugetlb_temporary(folio);
2408                 spin_unlock_irq(&hugetlb_lock);
2409                 free_huge_page(&folio->page);
2410                 return NULL;
2411         }
2412
2413         h->surplus_huge_pages++;
2414         h->surplus_huge_pages_node[folio_nid(folio)]++;
2415
2416 out_unlock:
2417         spin_unlock_irq(&hugetlb_lock);
2418
2419         return &folio->page;
2420 }
2421
2422 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2423                                      int nid, nodemask_t *nmask)
2424 {
2425         struct folio *folio;
2426
2427         if (hstate_is_gigantic(h))
2428                 return NULL;
2429
2430         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2431         if (!folio)
2432                 return NULL;
2433
2434         /* fresh huge pages are frozen */
2435         folio_ref_unfreeze(folio, 1);
2436         /*
2437          * We do not account these pages as surplus because they are only
2438          * temporary and will be released properly on the last reference
2439          */
2440         folio_set_hugetlb_temporary(folio);
2441
2442         return &folio->page;
2443 }
2444
2445 /*
2446  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2447  */
2448 static
2449 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2450                 struct vm_area_struct *vma, unsigned long addr)
2451 {
2452         struct page *page = NULL;
2453         struct mempolicy *mpol;
2454         gfp_t gfp_mask = htlb_alloc_mask(h);
2455         int nid;
2456         nodemask_t *nodemask;
2457
2458         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2459         if (mpol_is_preferred_many(mpol)) {
2460                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2461
2462                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2463                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2464
2465                 /* Fallback to all nodes if page==NULL */
2466                 nodemask = NULL;
2467         }
2468
2469         if (!page)
2470                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2471         mpol_cond_put(mpol);
2472         return page;
2473 }
2474
2475 /* page migration callback function */
2476 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2477                 nodemask_t *nmask, gfp_t gfp_mask)
2478 {
2479         spin_lock_irq(&hugetlb_lock);
2480         if (available_huge_pages(h)) {
2481                 struct page *page;
2482
2483                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2484                 if (page) {
2485                         spin_unlock_irq(&hugetlb_lock);
2486                         return page;
2487                 }
2488         }
2489         spin_unlock_irq(&hugetlb_lock);
2490
2491         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2492 }
2493
2494 /* mempolicy aware migration callback */
2495 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2496                 unsigned long address)
2497 {
2498         struct mempolicy *mpol;
2499         nodemask_t *nodemask;
2500         struct page *page;
2501         gfp_t gfp_mask;
2502         int node;
2503
2504         gfp_mask = htlb_alloc_mask(h);
2505         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2506         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2507         mpol_cond_put(mpol);
2508
2509         return page;
2510 }
2511
2512 /*
2513  * Increase the hugetlb pool such that it can accommodate a reservation
2514  * of size 'delta'.
2515  */
2516 static int gather_surplus_pages(struct hstate *h, long delta)
2517         __must_hold(&hugetlb_lock)
2518 {
2519         LIST_HEAD(surplus_list);
2520         struct page *page, *tmp;
2521         int ret;
2522         long i;
2523         long needed, allocated;
2524         bool alloc_ok = true;
2525
2526         lockdep_assert_held(&hugetlb_lock);
2527         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2528         if (needed <= 0) {
2529                 h->resv_huge_pages += delta;
2530                 return 0;
2531         }
2532
2533         allocated = 0;
2534
2535         ret = -ENOMEM;
2536 retry:
2537         spin_unlock_irq(&hugetlb_lock);
2538         for (i = 0; i < needed; i++) {
2539                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2540                                 NUMA_NO_NODE, NULL);
2541                 if (!page) {
2542                         alloc_ok = false;
2543                         break;
2544                 }
2545                 list_add(&page->lru, &surplus_list);
2546                 cond_resched();
2547         }
2548         allocated += i;
2549
2550         /*
2551          * After retaking hugetlb_lock, we need to recalculate 'needed'
2552          * because either resv_huge_pages or free_huge_pages may have changed.
2553          */
2554         spin_lock_irq(&hugetlb_lock);
2555         needed = (h->resv_huge_pages + delta) -
2556                         (h->free_huge_pages + allocated);
2557         if (needed > 0) {
2558                 if (alloc_ok)
2559                         goto retry;
2560                 /*
2561                  * We were not able to allocate enough pages to
2562                  * satisfy the entire reservation so we free what
2563                  * we've allocated so far.
2564                  */
2565                 goto free;
2566         }
2567         /*
2568          * The surplus_list now contains _at_least_ the number of extra pages
2569          * needed to accommodate the reservation.  Add the appropriate number
2570          * of pages to the hugetlb pool and free the extras back to the buddy
2571          * allocator.  Commit the entire reservation here to prevent another
2572          * process from stealing the pages as they are added to the pool but
2573          * before they are reserved.
2574          */
2575         needed += allocated;
2576         h->resv_huge_pages += delta;
2577         ret = 0;
2578
2579         /* Free the needed pages to the hugetlb pool */
2580         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2581                 if ((--needed) < 0)
2582                         break;
2583                 /* Add the page to the hugetlb allocator */
2584                 enqueue_hugetlb_folio(h, page_folio(page));
2585         }
2586 free:
2587         spin_unlock_irq(&hugetlb_lock);
2588
2589         /*
2590          * Free unnecessary surplus pages to the buddy allocator.
2591          * Pages have no ref count, call free_huge_page directly.
2592          */
2593         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2594                 free_huge_page(page);
2595         spin_lock_irq(&hugetlb_lock);
2596
2597         return ret;
2598 }
2599
2600 /*
2601  * This routine has two main purposes:
2602  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2603  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2604  *    to the associated reservation map.
2605  * 2) Free any unused surplus pages that may have been allocated to satisfy
2606  *    the reservation.  As many as unused_resv_pages may be freed.
2607  */
2608 static void return_unused_surplus_pages(struct hstate *h,
2609                                         unsigned long unused_resv_pages)
2610 {
2611         unsigned long nr_pages;
2612         struct page *page;
2613         LIST_HEAD(page_list);
2614
2615         lockdep_assert_held(&hugetlb_lock);
2616         /* Uncommit the reservation */
2617         h->resv_huge_pages -= unused_resv_pages;
2618
2619         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2620                 goto out;
2621
2622         /*
2623          * Part (or even all) of the reservation could have been backed
2624          * by pre-allocated pages. Only free surplus pages.
2625          */
2626         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2627
2628         /*
2629          * We want to release as many surplus pages as possible, spread
2630          * evenly across all nodes with memory. Iterate across these nodes
2631          * until we can no longer free unreserved surplus pages. This occurs
2632          * when the nodes with surplus pages have no free pages.
2633          * remove_pool_huge_page() will balance the freed pages across the
2634          * on-line nodes with memory and will handle the hstate accounting.
2635          */
2636         while (nr_pages--) {
2637                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2638                 if (!page)
2639                         goto out;
2640
2641                 list_add(&page->lru, &page_list);
2642         }
2643
2644 out:
2645         spin_unlock_irq(&hugetlb_lock);
2646         update_and_free_pages_bulk(h, &page_list);
2647         spin_lock_irq(&hugetlb_lock);
2648 }
2649
2650
2651 /*
2652  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2653  * are used by the huge page allocation routines to manage reservations.
2654  *
2655  * vma_needs_reservation is called to determine if the huge page at addr
2656  * within the vma has an associated reservation.  If a reservation is
2657  * needed, the value 1 is returned.  The caller is then responsible for
2658  * managing the global reservation and subpool usage counts.  After
2659  * the huge page has been allocated, vma_commit_reservation is called
2660  * to add the page to the reservation map.  If the page allocation fails,
2661  * the reservation must be ended instead of committed.  vma_end_reservation
2662  * is called in such cases.
2663  *
2664  * In the normal case, vma_commit_reservation returns the same value
2665  * as the preceding vma_needs_reservation call.  The only time this
2666  * is not the case is if a reserve map was changed between calls.  It
2667  * is the responsibility of the caller to notice the difference and
2668  * take appropriate action.
2669  *
2670  * vma_add_reservation is used in error paths where a reservation must
2671  * be restored when a newly allocated huge page must be freed.  It is
2672  * to be called after calling vma_needs_reservation to determine if a
2673  * reservation exists.
2674  *
2675  * vma_del_reservation is used in error paths where an entry in the reserve
2676  * map was created during huge page allocation and must be removed.  It is to
2677  * be called after calling vma_needs_reservation to determine if a reservation
2678  * exists.
2679  */
2680 enum vma_resv_mode {
2681         VMA_NEEDS_RESV,
2682         VMA_COMMIT_RESV,
2683         VMA_END_RESV,
2684         VMA_ADD_RESV,
2685         VMA_DEL_RESV,
2686 };
2687 static long __vma_reservation_common(struct hstate *h,
2688                                 struct vm_area_struct *vma, unsigned long addr,
2689                                 enum vma_resv_mode mode)
2690 {
2691         struct resv_map *resv;
2692         pgoff_t idx;
2693         long ret;
2694         long dummy_out_regions_needed;
2695
2696         resv = vma_resv_map(vma);
2697         if (!resv)
2698                 return 1;
2699
2700         idx = vma_hugecache_offset(h, vma, addr);
2701         switch (mode) {
2702         case VMA_NEEDS_RESV:
2703                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2704                 /* We assume that vma_reservation_* routines always operate on
2705                  * 1 page, and that adding to resv map a 1 page entry can only
2706                  * ever require 1 region.
2707                  */
2708                 VM_BUG_ON(dummy_out_regions_needed != 1);
2709                 break;
2710         case VMA_COMMIT_RESV:
2711                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2712                 /* region_add calls of range 1 should never fail. */
2713                 VM_BUG_ON(ret < 0);
2714                 break;
2715         case VMA_END_RESV:
2716                 region_abort(resv, idx, idx + 1, 1);
2717                 ret = 0;
2718                 break;
2719         case VMA_ADD_RESV:
2720                 if (vma->vm_flags & VM_MAYSHARE) {
2721                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2722                         /* region_add calls of range 1 should never fail. */
2723                         VM_BUG_ON(ret < 0);
2724                 } else {
2725                         region_abort(resv, idx, idx + 1, 1);
2726                         ret = region_del(resv, idx, idx + 1);
2727                 }
2728                 break;
2729         case VMA_DEL_RESV:
2730                 if (vma->vm_flags & VM_MAYSHARE) {
2731                         region_abort(resv, idx, idx + 1, 1);
2732                         ret = region_del(resv, idx, idx + 1);
2733                 } else {
2734                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2735                         /* region_add calls of range 1 should never fail. */
2736                         VM_BUG_ON(ret < 0);
2737                 }
2738                 break;
2739         default:
2740                 BUG();
2741         }
2742
2743         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2744                 return ret;
2745         /*
2746          * We know private mapping must have HPAGE_RESV_OWNER set.
2747          *
2748          * In most cases, reserves always exist for private mappings.
2749          * However, a file associated with mapping could have been
2750          * hole punched or truncated after reserves were consumed.
2751          * As subsequent fault on such a range will not use reserves.
2752          * Subtle - The reserve map for private mappings has the
2753          * opposite meaning than that of shared mappings.  If NO
2754          * entry is in the reserve map, it means a reservation exists.
2755          * If an entry exists in the reserve map, it means the
2756          * reservation has already been consumed.  As a result, the
2757          * return value of this routine is the opposite of the
2758          * value returned from reserve map manipulation routines above.
2759          */
2760         if (ret > 0)
2761                 return 0;
2762         if (ret == 0)
2763                 return 1;
2764         return ret;
2765 }
2766
2767 static long vma_needs_reservation(struct hstate *h,
2768                         struct vm_area_struct *vma, unsigned long addr)
2769 {
2770         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2771 }
2772
2773 static long vma_commit_reservation(struct hstate *h,
2774                         struct vm_area_struct *vma, unsigned long addr)
2775 {
2776         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2777 }
2778
2779 static void vma_end_reservation(struct hstate *h,
2780                         struct vm_area_struct *vma, unsigned long addr)
2781 {
2782         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2783 }
2784
2785 static long vma_add_reservation(struct hstate *h,
2786                         struct vm_area_struct *vma, unsigned long addr)
2787 {
2788         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2789 }
2790
2791 static long vma_del_reservation(struct hstate *h,
2792                         struct vm_area_struct *vma, unsigned long addr)
2793 {
2794         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2795 }
2796
2797 /*
2798  * This routine is called to restore reservation information on error paths.
2799  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2800  * the hugetlb mutex should remain held when calling this routine.
2801  *
2802  * It handles two specific cases:
2803  * 1) A reservation was in place and the page consumed the reservation.
2804  *    HPageRestoreReserve is set in the page.
2805  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2806  *    not set.  However, alloc_huge_page always updates the reserve map.
2807  *
2808  * In case 1, free_huge_page later in the error path will increment the
2809  * global reserve count.  But, free_huge_page does not have enough context
2810  * to adjust the reservation map.  This case deals primarily with private
2811  * mappings.  Adjust the reserve map here to be consistent with global
2812  * reserve count adjustments to be made by free_huge_page.  Make sure the
2813  * reserve map indicates there is a reservation present.
2814  *
2815  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2816  */
2817 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2818                         unsigned long address, struct page *page)
2819 {
2820         long rc = vma_needs_reservation(h, vma, address);
2821
2822         if (HPageRestoreReserve(page)) {
2823                 if (unlikely(rc < 0))
2824                         /*
2825                          * Rare out of memory condition in reserve map
2826                          * manipulation.  Clear HPageRestoreReserve so that
2827                          * global reserve count will not be incremented
2828                          * by free_huge_page.  This will make it appear
2829                          * as though the reservation for this page was
2830                          * consumed.  This may prevent the task from
2831                          * faulting in the page at a later time.  This
2832                          * is better than inconsistent global huge page
2833                          * accounting of reserve counts.
2834                          */
2835                         ClearHPageRestoreReserve(page);
2836                 else if (rc)
2837                         (void)vma_add_reservation(h, vma, address);
2838                 else
2839                         vma_end_reservation(h, vma, address);
2840         } else {
2841                 if (!rc) {
2842                         /*
2843                          * This indicates there is an entry in the reserve map
2844                          * not added by alloc_huge_page.  We know it was added
2845                          * before the alloc_huge_page call, otherwise
2846                          * HPageRestoreReserve would be set on the page.
2847                          * Remove the entry so that a subsequent allocation
2848                          * does not consume a reservation.
2849                          */
2850                         rc = vma_del_reservation(h, vma, address);
2851                         if (rc < 0)
2852                                 /*
2853                                  * VERY rare out of memory condition.  Since
2854                                  * we can not delete the entry, set
2855                                  * HPageRestoreReserve so that the reserve
2856                                  * count will be incremented when the page
2857                                  * is freed.  This reserve will be consumed
2858                                  * on a subsequent allocation.
2859                                  */
2860                                 SetHPageRestoreReserve(page);
2861                 } else if (rc < 0) {
2862                         /*
2863                          * Rare out of memory condition from
2864                          * vma_needs_reservation call.  Memory allocation is
2865                          * only attempted if a new entry is needed.  Therefore,
2866                          * this implies there is not an entry in the
2867                          * reserve map.
2868                          *
2869                          * For shared mappings, no entry in the map indicates
2870                          * no reservation.  We are done.
2871                          */
2872                         if (!(vma->vm_flags & VM_MAYSHARE))
2873                                 /*
2874                                  * For private mappings, no entry indicates
2875                                  * a reservation is present.  Since we can
2876                                  * not add an entry, set SetHPageRestoreReserve
2877                                  * on the page so reserve count will be
2878                                  * incremented when freed.  This reserve will
2879                                  * be consumed on a subsequent allocation.
2880                                  */
2881                                 SetHPageRestoreReserve(page);
2882                 } else
2883                         /*
2884                          * No reservation present, do nothing
2885                          */
2886                          vma_end_reservation(h, vma, address);
2887         }
2888 }
2889
2890 /*
2891  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2892  * the old one
2893  * @h: struct hstate old page belongs to
2894  * @old_folio: Old folio to dissolve
2895  * @list: List to isolate the page in case we need to
2896  * Returns 0 on success, otherwise negated error.
2897  */
2898 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2899                         struct folio *old_folio, struct list_head *list)
2900 {
2901         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2902         int nid = folio_nid(old_folio);
2903         struct folio *new_folio;
2904         int ret = 0;
2905
2906         /*
2907          * Before dissolving the folio, we need to allocate a new one for the
2908          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2909          * by doing everything but actually updating counters and adding to
2910          * the pool.  This simplifies and let us do most of the processing
2911          * under the lock.
2912          */
2913         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2914         if (!new_folio)
2915                 return -ENOMEM;
2916         __prep_new_hugetlb_folio(h, new_folio);
2917
2918 retry:
2919         spin_lock_irq(&hugetlb_lock);
2920         if (!folio_test_hugetlb(old_folio)) {
2921                 /*
2922                  * Freed from under us. Drop new_folio too.
2923                  */
2924                 goto free_new;
2925         } else if (folio_ref_count(old_folio)) {
2926                 /*
2927                  * Someone has grabbed the folio, try to isolate it here.
2928                  * Fail with -EBUSY if not possible.
2929                  */
2930                 spin_unlock_irq(&hugetlb_lock);
2931                 ret = isolate_hugetlb(&old_folio->page, list);
2932                 spin_lock_irq(&hugetlb_lock);
2933                 goto free_new;
2934         } else if (!folio_test_hugetlb_freed(old_folio)) {
2935                 /*
2936                  * Folio's refcount is 0 but it has not been enqueued in the
2937                  * freelist yet. Race window is small, so we can succeed here if
2938                  * we retry.
2939                  */
2940                 spin_unlock_irq(&hugetlb_lock);
2941                 cond_resched();
2942                 goto retry;
2943         } else {
2944                 /*
2945                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2946                  * the freelist and decrease the counters. These will be
2947                  * incremented again when calling __prep_account_new_huge_page()
2948                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2949                  * remain stable since this happens under the lock.
2950                  */
2951                 remove_hugetlb_folio(h, old_folio, false);
2952
2953                 /*
2954                  * Ref count on new_folio is already zero as it was dropped
2955                  * earlier.  It can be directly added to the pool free list.
2956                  */
2957                 __prep_account_new_huge_page(h, nid);
2958                 enqueue_hugetlb_folio(h, new_folio);
2959
2960                 /*
2961                  * Folio has been replaced, we can safely free the old one.
2962                  */
2963                 spin_unlock_irq(&hugetlb_lock);
2964                 update_and_free_hugetlb_folio(h, old_folio, false);
2965         }
2966
2967         return ret;
2968
2969 free_new:
2970         spin_unlock_irq(&hugetlb_lock);
2971         /* Folio has a zero ref count, but needs a ref to be freed */
2972         folio_ref_unfreeze(new_folio, 1);
2973         update_and_free_hugetlb_folio(h, new_folio, false);
2974
2975         return ret;
2976 }
2977
2978 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2979 {
2980         struct hstate *h;
2981         struct folio *folio = page_folio(page);
2982         int ret = -EBUSY;
2983
2984         /*
2985          * The page might have been dissolved from under our feet, so make sure
2986          * to carefully check the state under the lock.
2987          * Return success when racing as if we dissolved the page ourselves.
2988          */
2989         spin_lock_irq(&hugetlb_lock);
2990         if (folio_test_hugetlb(folio)) {
2991                 h = folio_hstate(folio);
2992         } else {
2993                 spin_unlock_irq(&hugetlb_lock);
2994                 return 0;
2995         }
2996         spin_unlock_irq(&hugetlb_lock);
2997
2998         /*
2999          * Fence off gigantic pages as there is a cyclic dependency between
3000          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3001          * of bailing out right away without further retrying.
3002          */
3003         if (hstate_is_gigantic(h))
3004                 return -ENOMEM;
3005
3006         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3007                 ret = 0;
3008         else if (!folio_ref_count(folio))
3009                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3010
3011         return ret;
3012 }
3013
3014 struct page *alloc_huge_page(struct vm_area_struct *vma,
3015                                     unsigned long addr, int avoid_reserve)
3016 {
3017         struct hugepage_subpool *spool = subpool_vma(vma);
3018         struct hstate *h = hstate_vma(vma);
3019         struct page *page;
3020         struct folio *folio;
3021         long map_chg, map_commit;
3022         long gbl_chg;
3023         int ret, idx;
3024         struct hugetlb_cgroup *h_cg;
3025         bool deferred_reserve;
3026
3027         idx = hstate_index(h);
3028         /*
3029          * Examine the region/reserve map to determine if the process
3030          * has a reservation for the page to be allocated.  A return
3031          * code of zero indicates a reservation exists (no change).
3032          */
3033         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3034         if (map_chg < 0)
3035                 return ERR_PTR(-ENOMEM);
3036
3037         /*
3038          * Processes that did not create the mapping will have no
3039          * reserves as indicated by the region/reserve map. Check
3040          * that the allocation will not exceed the subpool limit.
3041          * Allocations for MAP_NORESERVE mappings also need to be
3042          * checked against any subpool limit.
3043          */
3044         if (map_chg || avoid_reserve) {
3045                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3046                 if (gbl_chg < 0) {
3047                         vma_end_reservation(h, vma, addr);
3048                         return ERR_PTR(-ENOSPC);
3049                 }
3050
3051                 /*
3052                  * Even though there was no reservation in the region/reserve
3053                  * map, there could be reservations associated with the
3054                  * subpool that can be used.  This would be indicated if the
3055                  * return value of hugepage_subpool_get_pages() is zero.
3056                  * However, if avoid_reserve is specified we still avoid even
3057                  * the subpool reservations.
3058                  */
3059                 if (avoid_reserve)
3060                         gbl_chg = 1;
3061         }
3062
3063         /* If this allocation is not consuming a reservation, charge it now.
3064          */
3065         deferred_reserve = map_chg || avoid_reserve;
3066         if (deferred_reserve) {
3067                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3068                         idx, pages_per_huge_page(h), &h_cg);
3069                 if (ret)
3070                         goto out_subpool_put;
3071         }
3072
3073         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3074         if (ret)
3075                 goto out_uncharge_cgroup_reservation;
3076
3077         spin_lock_irq(&hugetlb_lock);
3078         /*
3079          * glb_chg is passed to indicate whether or not a page must be taken
3080          * from the global free pool (global change).  gbl_chg == 0 indicates
3081          * a reservation exists for the allocation.
3082          */
3083         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3084         if (!page) {
3085                 spin_unlock_irq(&hugetlb_lock);
3086                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3087                 if (!page)
3088                         goto out_uncharge_cgroup;
3089                 spin_lock_irq(&hugetlb_lock);
3090                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3091                         SetHPageRestoreReserve(page);
3092                         h->resv_huge_pages--;
3093                 }
3094                 list_add(&page->lru, &h->hugepage_activelist);
3095                 set_page_refcounted(page);
3096                 /* Fall through */
3097         }
3098         folio = page_folio(page);
3099         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3100         /* If allocation is not consuming a reservation, also store the
3101          * hugetlb_cgroup pointer on the page.
3102          */
3103         if (deferred_reserve) {
3104                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3105                                                   h_cg, page);
3106         }
3107
3108         spin_unlock_irq(&hugetlb_lock);
3109
3110         hugetlb_set_page_subpool(page, spool);
3111
3112         map_commit = vma_commit_reservation(h, vma, addr);
3113         if (unlikely(map_chg > map_commit)) {
3114                 /*
3115                  * The page was added to the reservation map between
3116                  * vma_needs_reservation and vma_commit_reservation.
3117                  * This indicates a race with hugetlb_reserve_pages.
3118                  * Adjust for the subpool count incremented above AND
3119                  * in hugetlb_reserve_pages for the same page.  Also,
3120                  * the reservation count added in hugetlb_reserve_pages
3121                  * no longer applies.
3122                  */
3123                 long rsv_adjust;
3124
3125                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3126                 hugetlb_acct_memory(h, -rsv_adjust);
3127                 if (deferred_reserve)
3128                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3129                                         pages_per_huge_page(h), folio);
3130         }
3131         return page;
3132
3133 out_uncharge_cgroup:
3134         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3135 out_uncharge_cgroup_reservation:
3136         if (deferred_reserve)
3137                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3138                                                     h_cg);
3139 out_subpool_put:
3140         if (map_chg || avoid_reserve)
3141                 hugepage_subpool_put_pages(spool, 1);
3142         vma_end_reservation(h, vma, addr);
3143         return ERR_PTR(-ENOSPC);
3144 }
3145
3146 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3147         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3148 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3149 {
3150         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3151         int nr_nodes, node;
3152
3153         /* do node specific alloc */
3154         if (nid != NUMA_NO_NODE) {
3155                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3156                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3157                 if (!m)
3158                         return 0;
3159                 goto found;
3160         }
3161         /* allocate from next node when distributing huge pages */
3162         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3163                 m = memblock_alloc_try_nid_raw(
3164                                 huge_page_size(h), huge_page_size(h),
3165                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3166                 /*
3167                  * Use the beginning of the huge page to store the
3168                  * huge_bootmem_page struct (until gather_bootmem
3169                  * puts them into the mem_map).
3170                  */
3171                 if (!m)
3172                         return 0;
3173                 goto found;
3174         }
3175
3176 found:
3177         /* Put them into a private list first because mem_map is not up yet */
3178         INIT_LIST_HEAD(&m->list);
3179         list_add(&m->list, &huge_boot_pages);
3180         m->hstate = h;
3181         return 1;
3182 }
3183
3184 /*
3185  * Put bootmem huge pages into the standard lists after mem_map is up.
3186  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3187  */
3188 static void __init gather_bootmem_prealloc(void)
3189 {
3190         struct huge_bootmem_page *m;
3191
3192         list_for_each_entry(m, &huge_boot_pages, list) {
3193                 struct page *page = virt_to_page(m);
3194                 struct folio *folio = page_folio(page);
3195                 struct hstate *h = m->hstate;
3196
3197                 VM_BUG_ON(!hstate_is_gigantic(h));
3198                 WARN_ON(folio_ref_count(folio) != 1);
3199                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3200                         WARN_ON(folio_test_reserved(folio));
3201                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3202                         free_huge_page(page); /* add to the hugepage allocator */
3203                 } else {
3204                         /* VERY unlikely inflated ref count on a tail page */
3205                         free_gigantic_folio(folio, huge_page_order(h));
3206                 }
3207
3208                 /*
3209                  * We need to restore the 'stolen' pages to totalram_pages
3210                  * in order to fix confusing memory reports from free(1) and
3211                  * other side-effects, like CommitLimit going negative.
3212                  */
3213                 adjust_managed_page_count(page, pages_per_huge_page(h));
3214                 cond_resched();
3215         }
3216 }
3217 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3218 {
3219         unsigned long i;
3220         char buf[32];
3221
3222         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3223                 if (hstate_is_gigantic(h)) {
3224                         if (!alloc_bootmem_huge_page(h, nid))
3225                                 break;
3226                 } else {
3227                         struct folio *folio;
3228                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3229
3230                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3231                                         &node_states[N_MEMORY], NULL);
3232                         if (!folio)
3233                                 break;
3234                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3235                 }
3236                 cond_resched();
3237         }
3238         if (i == h->max_huge_pages_node[nid])
3239                 return;
3240
3241         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3242         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3243                 h->max_huge_pages_node[nid], buf, nid, i);
3244         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3245         h->max_huge_pages_node[nid] = i;
3246 }
3247
3248 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3249 {
3250         unsigned long i;
3251         nodemask_t *node_alloc_noretry;
3252         bool node_specific_alloc = false;
3253
3254         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3255         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3256                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3257                 return;
3258         }
3259
3260         /* do node specific alloc */
3261         for_each_online_node(i) {
3262                 if (h->max_huge_pages_node[i] > 0) {
3263                         hugetlb_hstate_alloc_pages_onenode(h, i);
3264                         node_specific_alloc = true;
3265                 }
3266         }
3267
3268         if (node_specific_alloc)
3269                 return;
3270
3271         /* below will do all node balanced alloc */
3272         if (!hstate_is_gigantic(h)) {
3273                 /*
3274                  * Bit mask controlling how hard we retry per-node allocations.
3275                  * Ignore errors as lower level routines can deal with
3276                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3277                  * time, we are likely in bigger trouble.
3278                  */
3279                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3280                                                 GFP_KERNEL);
3281         } else {
3282                 /* allocations done at boot time */
3283                 node_alloc_noretry = NULL;
3284         }
3285
3286         /* bit mask controlling how hard we retry per-node allocations */
3287         if (node_alloc_noretry)
3288                 nodes_clear(*node_alloc_noretry);
3289
3290         for (i = 0; i < h->max_huge_pages; ++i) {
3291                 if (hstate_is_gigantic(h)) {
3292                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3293                                 break;
3294                 } else if (!alloc_pool_huge_page(h,
3295                                          &node_states[N_MEMORY],
3296                                          node_alloc_noretry))
3297                         break;
3298                 cond_resched();
3299         }
3300         if (i < h->max_huge_pages) {
3301                 char buf[32];
3302
3303                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3304                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3305                         h->max_huge_pages, buf, i);
3306                 h->max_huge_pages = i;
3307         }
3308         kfree(node_alloc_noretry);
3309 }
3310
3311 static void __init hugetlb_init_hstates(void)
3312 {
3313         struct hstate *h, *h2;
3314
3315         for_each_hstate(h) {
3316                 /* oversize hugepages were init'ed in early boot */
3317                 if (!hstate_is_gigantic(h))
3318                         hugetlb_hstate_alloc_pages(h);
3319
3320                 /*
3321                  * Set demote order for each hstate.  Note that
3322                  * h->demote_order is initially 0.
3323                  * - We can not demote gigantic pages if runtime freeing
3324                  *   is not supported, so skip this.
3325                  * - If CMA allocation is possible, we can not demote
3326                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3327                  */
3328                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3329                         continue;
3330                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3331                         continue;
3332                 for_each_hstate(h2) {
3333                         if (h2 == h)
3334                                 continue;
3335                         if (h2->order < h->order &&
3336                             h2->order > h->demote_order)
3337                                 h->demote_order = h2->order;
3338                 }
3339         }
3340 }
3341
3342 static void __init report_hugepages(void)
3343 {
3344         struct hstate *h;
3345
3346         for_each_hstate(h) {
3347                 char buf[32];
3348
3349                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3350                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3351                         buf, h->free_huge_pages);
3352                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3353                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3354         }
3355 }
3356
3357 #ifdef CONFIG_HIGHMEM
3358 static void try_to_free_low(struct hstate *h, unsigned long count,
3359                                                 nodemask_t *nodes_allowed)
3360 {
3361         int i;
3362         LIST_HEAD(page_list);
3363
3364         lockdep_assert_held(&hugetlb_lock);
3365         if (hstate_is_gigantic(h))
3366                 return;
3367
3368         /*
3369          * Collect pages to be freed on a list, and free after dropping lock
3370          */
3371         for_each_node_mask(i, *nodes_allowed) {
3372                 struct page *page, *next;
3373                 struct list_head *freel = &h->hugepage_freelists[i];
3374                 list_for_each_entry_safe(page, next, freel, lru) {
3375                         if (count >= h->nr_huge_pages)
3376                                 goto out;
3377                         if (PageHighMem(page))
3378                                 continue;
3379                         remove_hugetlb_folio(h, page_folio(page), false);
3380                         list_add(&page->lru, &page_list);
3381                 }
3382         }
3383
3384 out:
3385         spin_unlock_irq(&hugetlb_lock);
3386         update_and_free_pages_bulk(h, &page_list);
3387         spin_lock_irq(&hugetlb_lock);
3388 }
3389 #else
3390 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3391                                                 nodemask_t *nodes_allowed)
3392 {
3393 }
3394 #endif
3395
3396 /*
3397  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3398  * balanced by operating on them in a round-robin fashion.
3399  * Returns 1 if an adjustment was made.
3400  */
3401 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3402                                 int delta)
3403 {
3404         int nr_nodes, node;
3405
3406         lockdep_assert_held(&hugetlb_lock);
3407         VM_BUG_ON(delta != -1 && delta != 1);
3408
3409         if (delta < 0) {
3410                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3411                         if (h->surplus_huge_pages_node[node])
3412                                 goto found;
3413                 }
3414         } else {
3415                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3416                         if (h->surplus_huge_pages_node[node] <
3417                                         h->nr_huge_pages_node[node])
3418                                 goto found;
3419                 }
3420         }
3421         return 0;
3422
3423 found:
3424         h->surplus_huge_pages += delta;
3425         h->surplus_huge_pages_node[node] += delta;
3426         return 1;
3427 }
3428
3429 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3430 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3431                               nodemask_t *nodes_allowed)
3432 {
3433         unsigned long min_count, ret;
3434         struct page *page;
3435         LIST_HEAD(page_list);
3436         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3437
3438         /*
3439          * Bit mask controlling how hard we retry per-node allocations.
3440          * If we can not allocate the bit mask, do not attempt to allocate
3441          * the requested huge pages.
3442          */
3443         if (node_alloc_noretry)
3444                 nodes_clear(*node_alloc_noretry);
3445         else
3446                 return -ENOMEM;
3447
3448         /*
3449          * resize_lock mutex prevents concurrent adjustments to number of
3450          * pages in hstate via the proc/sysfs interfaces.
3451          */
3452         mutex_lock(&h->resize_lock);
3453         flush_free_hpage_work(h);
3454         spin_lock_irq(&hugetlb_lock);
3455
3456         /*
3457          * Check for a node specific request.
3458          * Changing node specific huge page count may require a corresponding
3459          * change to the global count.  In any case, the passed node mask
3460          * (nodes_allowed) will restrict alloc/free to the specified node.
3461          */
3462         if (nid != NUMA_NO_NODE) {
3463                 unsigned long old_count = count;
3464
3465                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3466                 /*
3467                  * User may have specified a large count value which caused the
3468                  * above calculation to overflow.  In this case, they wanted
3469                  * to allocate as many huge pages as possible.  Set count to
3470                  * largest possible value to align with their intention.
3471                  */
3472                 if (count < old_count)
3473                         count = ULONG_MAX;
3474         }
3475
3476         /*
3477          * Gigantic pages runtime allocation depend on the capability for large
3478          * page range allocation.
3479          * If the system does not provide this feature, return an error when
3480          * the user tries to allocate gigantic pages but let the user free the
3481          * boottime allocated gigantic pages.
3482          */
3483         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3484                 if (count > persistent_huge_pages(h)) {
3485                         spin_unlock_irq(&hugetlb_lock);
3486                         mutex_unlock(&h->resize_lock);
3487                         NODEMASK_FREE(node_alloc_noretry);
3488                         return -EINVAL;
3489                 }
3490                 /* Fall through to decrease pool */
3491         }
3492
3493         /*
3494          * Increase the pool size
3495          * First take pages out of surplus state.  Then make up the
3496          * remaining difference by allocating fresh huge pages.
3497          *
3498          * We might race with alloc_surplus_huge_page() here and be unable
3499          * to convert a surplus huge page to a normal huge page. That is
3500          * not critical, though, it just means the overall size of the
3501          * pool might be one hugepage larger than it needs to be, but
3502          * within all the constraints specified by the sysctls.
3503          */
3504         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3505                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3506                         break;
3507         }
3508
3509         while (count > persistent_huge_pages(h)) {
3510                 /*
3511                  * If this allocation races such that we no longer need the
3512                  * page, free_huge_page will handle it by freeing the page
3513                  * and reducing the surplus.
3514                  */
3515                 spin_unlock_irq(&hugetlb_lock);
3516
3517                 /* yield cpu to avoid soft lockup */
3518                 cond_resched();
3519
3520                 ret = alloc_pool_huge_page(h, nodes_allowed,
3521                                                 node_alloc_noretry);
3522                 spin_lock_irq(&hugetlb_lock);
3523                 if (!ret)
3524                         goto out;
3525
3526                 /* Bail for signals. Probably ctrl-c from user */
3527                 if (signal_pending(current))
3528                         goto out;
3529         }
3530
3531         /*
3532          * Decrease the pool size
3533          * First return free pages to the buddy allocator (being careful
3534          * to keep enough around to satisfy reservations).  Then place
3535          * pages into surplus state as needed so the pool will shrink
3536          * to the desired size as pages become free.
3537          *
3538          * By placing pages into the surplus state independent of the
3539          * overcommit value, we are allowing the surplus pool size to
3540          * exceed overcommit. There are few sane options here. Since
3541          * alloc_surplus_huge_page() is checking the global counter,
3542          * though, we'll note that we're not allowed to exceed surplus
3543          * and won't grow the pool anywhere else. Not until one of the
3544          * sysctls are changed, or the surplus pages go out of use.
3545          */
3546         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3547         min_count = max(count, min_count);
3548         try_to_free_low(h, min_count, nodes_allowed);
3549
3550         /*
3551          * Collect pages to be removed on list without dropping lock
3552          */
3553         while (min_count < persistent_huge_pages(h)) {
3554                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3555                 if (!page)
3556                         break;
3557
3558                 list_add(&page->lru, &page_list);
3559         }
3560         /* free the pages after dropping lock */
3561         spin_unlock_irq(&hugetlb_lock);
3562         update_and_free_pages_bulk(h, &page_list);
3563         flush_free_hpage_work(h);
3564         spin_lock_irq(&hugetlb_lock);
3565
3566         while (count < persistent_huge_pages(h)) {
3567                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3568                         break;
3569         }
3570 out:
3571         h->max_huge_pages = persistent_huge_pages(h);
3572         spin_unlock_irq(&hugetlb_lock);
3573         mutex_unlock(&h->resize_lock);
3574
3575         NODEMASK_FREE(node_alloc_noretry);
3576
3577         return 0;
3578 }
3579
3580 static int demote_free_huge_page(struct hstate *h, struct page *page)
3581 {
3582         int i, nid = page_to_nid(page);
3583         struct hstate *target_hstate;
3584         struct folio *folio = page_folio(page);
3585         struct page *subpage;
3586         int rc = 0;
3587
3588         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3589
3590         remove_hugetlb_folio_for_demote(h, folio, false);
3591         spin_unlock_irq(&hugetlb_lock);
3592
3593         rc = hugetlb_vmemmap_restore(h, page);
3594         if (rc) {
3595                 /* Allocation of vmemmmap failed, we can not demote page */
3596                 spin_lock_irq(&hugetlb_lock);
3597                 set_page_refcounted(page);
3598                 add_hugetlb_folio(h, page_folio(page), false);
3599                 return rc;
3600         }
3601
3602         /*
3603          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3604          * sizes as it will not ref count pages.
3605          */
3606         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3607
3608         /*
3609          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3610          * Without the mutex, pages added to target hstate could be marked
3611          * as surplus.
3612          *
3613          * Note that we already hold h->resize_lock.  To prevent deadlock,
3614          * use the convention of always taking larger size hstate mutex first.
3615          */
3616         mutex_lock(&target_hstate->resize_lock);
3617         for (i = 0; i < pages_per_huge_page(h);
3618                                 i += pages_per_huge_page(target_hstate)) {
3619                 subpage = nth_page(page, i);
3620                 folio = page_folio(subpage);
3621                 if (hstate_is_gigantic(target_hstate))
3622                         prep_compound_gigantic_folio_for_demote(folio,
3623                                                         target_hstate->order);
3624                 else
3625                         prep_compound_page(subpage, target_hstate->order);
3626                 set_page_private(subpage, 0);
3627                 prep_new_hugetlb_folio(target_hstate, folio, nid);
3628                 free_huge_page(subpage);
3629         }
3630         mutex_unlock(&target_hstate->resize_lock);
3631
3632         spin_lock_irq(&hugetlb_lock);
3633
3634         /*
3635          * Not absolutely necessary, but for consistency update max_huge_pages
3636          * based on pool changes for the demoted page.
3637          */
3638         h->max_huge_pages--;
3639         target_hstate->max_huge_pages +=
3640                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3641
3642         return rc;
3643 }
3644
3645 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3646         __must_hold(&hugetlb_lock)
3647 {
3648         int nr_nodes, node;
3649         struct page *page;
3650
3651         lockdep_assert_held(&hugetlb_lock);
3652
3653         /* We should never get here if no demote order */
3654         if (!h->demote_order) {
3655                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3656                 return -EINVAL;         /* internal error */
3657         }
3658
3659         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3660                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3661                         if (PageHWPoison(page))
3662                                 continue;
3663
3664                         return demote_free_huge_page(h, page);
3665                 }
3666         }
3667
3668         /*
3669          * Only way to get here is if all pages on free lists are poisoned.
3670          * Return -EBUSY so that caller will not retry.
3671          */
3672         return -EBUSY;
3673 }
3674
3675 #define HSTATE_ATTR_RO(_name) \
3676         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3677
3678 #define HSTATE_ATTR_WO(_name) \
3679         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3680
3681 #define HSTATE_ATTR(_name) \
3682         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3683
3684 static struct kobject *hugepages_kobj;
3685 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3686
3687 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3688
3689 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3690 {
3691         int i;
3692
3693         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3694                 if (hstate_kobjs[i] == kobj) {
3695                         if (nidp)
3696                                 *nidp = NUMA_NO_NODE;
3697                         return &hstates[i];
3698                 }
3699
3700         return kobj_to_node_hstate(kobj, nidp);
3701 }
3702
3703 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3704                                         struct kobj_attribute *attr, char *buf)
3705 {
3706         struct hstate *h;
3707         unsigned long nr_huge_pages;
3708         int nid;
3709
3710         h = kobj_to_hstate(kobj, &nid);
3711         if (nid == NUMA_NO_NODE)
3712                 nr_huge_pages = h->nr_huge_pages;
3713         else
3714                 nr_huge_pages = h->nr_huge_pages_node[nid];
3715
3716         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3717 }
3718
3719 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3720                                            struct hstate *h, int nid,
3721                                            unsigned long count, size_t len)
3722 {
3723         int err;
3724         nodemask_t nodes_allowed, *n_mask;
3725
3726         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3727                 return -EINVAL;
3728
3729         if (nid == NUMA_NO_NODE) {
3730                 /*
3731                  * global hstate attribute
3732                  */
3733                 if (!(obey_mempolicy &&
3734                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3735                         n_mask = &node_states[N_MEMORY];
3736                 else
3737                         n_mask = &nodes_allowed;
3738         } else {
3739                 /*
3740                  * Node specific request.  count adjustment happens in
3741                  * set_max_huge_pages() after acquiring hugetlb_lock.
3742                  */
3743                 init_nodemask_of_node(&nodes_allowed, nid);
3744                 n_mask = &nodes_allowed;
3745         }
3746
3747         err = set_max_huge_pages(h, count, nid, n_mask);
3748
3749         return err ? err : len;
3750 }
3751
3752 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3753                                          struct kobject *kobj, const char *buf,
3754                                          size_t len)
3755 {
3756         struct hstate *h;
3757         unsigned long count;
3758         int nid;
3759         int err;
3760
3761         err = kstrtoul(buf, 10, &count);
3762         if (err)
3763                 return err;
3764
3765         h = kobj_to_hstate(kobj, &nid);
3766         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3767 }
3768
3769 static ssize_t nr_hugepages_show(struct kobject *kobj,
3770                                        struct kobj_attribute *attr, char *buf)
3771 {
3772         return nr_hugepages_show_common(kobj, attr, buf);
3773 }
3774
3775 static ssize_t nr_hugepages_store(struct kobject *kobj,
3776                struct kobj_attribute *attr, const char *buf, size_t len)
3777 {
3778         return nr_hugepages_store_common(false, kobj, buf, len);
3779 }
3780 HSTATE_ATTR(nr_hugepages);
3781
3782 #ifdef CONFIG_NUMA
3783
3784 /*
3785  * hstate attribute for optionally mempolicy-based constraint on persistent
3786  * huge page alloc/free.
3787  */
3788 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3789                                            struct kobj_attribute *attr,
3790                                            char *buf)
3791 {
3792         return nr_hugepages_show_common(kobj, attr, buf);
3793 }
3794
3795 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3796                struct kobj_attribute *attr, const char *buf, size_t len)
3797 {
3798         return nr_hugepages_store_common(true, kobj, buf, len);
3799 }
3800 HSTATE_ATTR(nr_hugepages_mempolicy);
3801 #endif
3802
3803
3804 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3805                                         struct kobj_attribute *attr, char *buf)
3806 {
3807         struct hstate *h = kobj_to_hstate(kobj, NULL);
3808         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3809 }
3810
3811 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3812                 struct kobj_attribute *attr, const char *buf, size_t count)
3813 {
3814         int err;
3815         unsigned long input;
3816         struct hstate *h = kobj_to_hstate(kobj, NULL);
3817
3818         if (hstate_is_gigantic(h))
3819                 return -EINVAL;
3820
3821         err = kstrtoul(buf, 10, &input);
3822         if (err)
3823                 return err;
3824
3825         spin_lock_irq(&hugetlb_lock);
3826         h->nr_overcommit_huge_pages = input;
3827         spin_unlock_irq(&hugetlb_lock);
3828
3829         return count;
3830 }
3831 HSTATE_ATTR(nr_overcommit_hugepages);
3832
3833 static ssize_t free_hugepages_show(struct kobject *kobj,
3834                                         struct kobj_attribute *attr, char *buf)
3835 {
3836         struct hstate *h;
3837         unsigned long free_huge_pages;
3838         int nid;
3839
3840         h = kobj_to_hstate(kobj, &nid);
3841         if (nid == NUMA_NO_NODE)
3842                 free_huge_pages = h->free_huge_pages;
3843         else
3844                 free_huge_pages = h->free_huge_pages_node[nid];
3845
3846         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3847 }
3848 HSTATE_ATTR_RO(free_hugepages);
3849
3850 static ssize_t resv_hugepages_show(struct kobject *kobj,
3851                                         struct kobj_attribute *attr, char *buf)
3852 {
3853         struct hstate *h = kobj_to_hstate(kobj, NULL);
3854         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3855 }
3856 HSTATE_ATTR_RO(resv_hugepages);
3857
3858 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3859                                         struct kobj_attribute *attr, char *buf)
3860 {
3861         struct hstate *h;
3862         unsigned long surplus_huge_pages;
3863         int nid;
3864
3865         h = kobj_to_hstate(kobj, &nid);
3866         if (nid == NUMA_NO_NODE)
3867                 surplus_huge_pages = h->surplus_huge_pages;
3868         else
3869                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3870
3871         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3872 }
3873 HSTATE_ATTR_RO(surplus_hugepages);
3874
3875 static ssize_t demote_store(struct kobject *kobj,
3876                struct kobj_attribute *attr, const char *buf, size_t len)
3877 {
3878         unsigned long nr_demote;
3879         unsigned long nr_available;
3880         nodemask_t nodes_allowed, *n_mask;
3881         struct hstate *h;
3882         int err;
3883         int nid;
3884
3885         err = kstrtoul(buf, 10, &nr_demote);
3886         if (err)
3887                 return err;
3888         h = kobj_to_hstate(kobj, &nid);
3889
3890         if (nid != NUMA_NO_NODE) {
3891                 init_nodemask_of_node(&nodes_allowed, nid);
3892                 n_mask = &nodes_allowed;
3893         } else {
3894                 n_mask = &node_states[N_MEMORY];
3895         }
3896
3897         /* Synchronize with other sysfs operations modifying huge pages */
3898         mutex_lock(&h->resize_lock);
3899         spin_lock_irq(&hugetlb_lock);
3900
3901         while (nr_demote) {
3902                 /*
3903                  * Check for available pages to demote each time thorough the
3904                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3905                  */
3906                 if (nid != NUMA_NO_NODE)
3907                         nr_available = h->free_huge_pages_node[nid];
3908                 else
3909                         nr_available = h->free_huge_pages;
3910                 nr_available -= h->resv_huge_pages;
3911                 if (!nr_available)
3912                         break;
3913
3914                 err = demote_pool_huge_page(h, n_mask);
3915                 if (err)
3916                         break;
3917
3918                 nr_demote--;
3919         }
3920
3921         spin_unlock_irq(&hugetlb_lock);
3922         mutex_unlock(&h->resize_lock);
3923
3924         if (err)
3925                 return err;
3926         return len;
3927 }
3928 HSTATE_ATTR_WO(demote);
3929
3930 static ssize_t demote_size_show(struct kobject *kobj,
3931                                         struct kobj_attribute *attr, char *buf)
3932 {
3933         struct hstate *h = kobj_to_hstate(kobj, NULL);
3934         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3935
3936         return sysfs_emit(buf, "%lukB\n", demote_size);
3937 }
3938
3939 static ssize_t demote_size_store(struct kobject *kobj,
3940                                         struct kobj_attribute *attr,
3941                                         const char *buf, size_t count)
3942 {
3943         struct hstate *h, *demote_hstate;
3944         unsigned long demote_size;
3945         unsigned int demote_order;
3946
3947         demote_size = (unsigned long)memparse(buf, NULL);
3948
3949         demote_hstate = size_to_hstate(demote_size);
3950         if (!demote_hstate)
3951                 return -EINVAL;
3952         demote_order = demote_hstate->order;
3953         if (demote_order < HUGETLB_PAGE_ORDER)
3954                 return -EINVAL;
3955
3956         /* demote order must be smaller than hstate order */
3957         h = kobj_to_hstate(kobj, NULL);
3958         if (demote_order >= h->order)
3959                 return -EINVAL;
3960
3961         /* resize_lock synchronizes access to demote size and writes */
3962         mutex_lock(&h->resize_lock);
3963         h->demote_order = demote_order;
3964         mutex_unlock(&h->resize_lock);
3965
3966         return count;
3967 }
3968 HSTATE_ATTR(demote_size);
3969
3970 static struct attribute *hstate_attrs[] = {
3971         &nr_hugepages_attr.attr,
3972         &nr_overcommit_hugepages_attr.attr,
3973         &free_hugepages_attr.attr,
3974         &resv_hugepages_attr.attr,
3975         &surplus_hugepages_attr.attr,
3976 #ifdef CONFIG_NUMA
3977         &nr_hugepages_mempolicy_attr.attr,
3978 #endif
3979         NULL,
3980 };
3981
3982 static const struct attribute_group hstate_attr_group = {
3983         .attrs = hstate_attrs,
3984 };
3985
3986 static struct attribute *hstate_demote_attrs[] = {
3987         &demote_size_attr.attr,
3988         &demote_attr.attr,
3989         NULL,
3990 };
3991
3992 static const struct attribute_group hstate_demote_attr_group = {
3993         .attrs = hstate_demote_attrs,
3994 };
3995
3996 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3997                                     struct kobject **hstate_kobjs,
3998                                     const struct attribute_group *hstate_attr_group)
3999 {
4000         int retval;
4001         int hi = hstate_index(h);
4002
4003         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4004         if (!hstate_kobjs[hi])
4005                 return -ENOMEM;
4006
4007         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4008         if (retval) {
4009                 kobject_put(hstate_kobjs[hi]);
4010                 hstate_kobjs[hi] = NULL;
4011                 return retval;
4012         }
4013
4014         if (h->demote_order) {
4015                 retval = sysfs_create_group(hstate_kobjs[hi],
4016                                             &hstate_demote_attr_group);
4017                 if (retval) {
4018                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4019                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4020                         kobject_put(hstate_kobjs[hi]);
4021                         hstate_kobjs[hi] = NULL;
4022                         return retval;
4023                 }
4024         }
4025
4026         return 0;
4027 }
4028
4029 #ifdef CONFIG_NUMA
4030 static bool hugetlb_sysfs_initialized __ro_after_init;
4031
4032 /*
4033  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4034  * with node devices in node_devices[] using a parallel array.  The array
4035  * index of a node device or _hstate == node id.
4036  * This is here to avoid any static dependency of the node device driver, in
4037  * the base kernel, on the hugetlb module.
4038  */
4039 struct node_hstate {
4040         struct kobject          *hugepages_kobj;
4041         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4042 };
4043 static struct node_hstate node_hstates[MAX_NUMNODES];
4044
4045 /*
4046  * A subset of global hstate attributes for node devices
4047  */
4048 static struct attribute *per_node_hstate_attrs[] = {
4049         &nr_hugepages_attr.attr,
4050         &free_hugepages_attr.attr,
4051         &surplus_hugepages_attr.attr,
4052         NULL,
4053 };
4054
4055 static const struct attribute_group per_node_hstate_attr_group = {
4056         .attrs = per_node_hstate_attrs,
4057 };
4058
4059 /*
4060  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4061  * Returns node id via non-NULL nidp.
4062  */
4063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4064 {
4065         int nid;
4066
4067         for (nid = 0; nid < nr_node_ids; nid++) {
4068                 struct node_hstate *nhs = &node_hstates[nid];
4069                 int i;
4070                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4071                         if (nhs->hstate_kobjs[i] == kobj) {
4072                                 if (nidp)
4073                                         *nidp = nid;
4074                                 return &hstates[i];
4075                         }
4076         }
4077
4078         BUG();
4079         return NULL;
4080 }
4081
4082 /*
4083  * Unregister hstate attributes from a single node device.
4084  * No-op if no hstate attributes attached.
4085  */
4086 void hugetlb_unregister_node(struct node *node)
4087 {
4088         struct hstate *h;
4089         struct node_hstate *nhs = &node_hstates[node->dev.id];
4090
4091         if (!nhs->hugepages_kobj)
4092                 return;         /* no hstate attributes */
4093
4094         for_each_hstate(h) {
4095                 int idx = hstate_index(h);
4096                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4097
4098                 if (!hstate_kobj)
4099                         continue;
4100                 if (h->demote_order)
4101                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4102                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4103                 kobject_put(hstate_kobj);
4104                 nhs->hstate_kobjs[idx] = NULL;
4105         }
4106
4107         kobject_put(nhs->hugepages_kobj);
4108         nhs->hugepages_kobj = NULL;
4109 }
4110
4111
4112 /*
4113  * Register hstate attributes for a single node device.
4114  * No-op if attributes already registered.
4115  */
4116 void hugetlb_register_node(struct node *node)
4117 {
4118         struct hstate *h;
4119         struct node_hstate *nhs = &node_hstates[node->dev.id];
4120         int err;
4121
4122         if (!hugetlb_sysfs_initialized)
4123                 return;
4124
4125         if (nhs->hugepages_kobj)
4126                 return;         /* already allocated */
4127
4128         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4129                                                         &node->dev.kobj);
4130         if (!nhs->hugepages_kobj)
4131                 return;
4132
4133         for_each_hstate(h) {
4134                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4135                                                 nhs->hstate_kobjs,
4136                                                 &per_node_hstate_attr_group);
4137                 if (err) {
4138                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4139                                 h->name, node->dev.id);
4140                         hugetlb_unregister_node(node);
4141                         break;
4142                 }
4143         }
4144 }
4145
4146 /*
4147  * hugetlb init time:  register hstate attributes for all registered node
4148  * devices of nodes that have memory.  All on-line nodes should have
4149  * registered their associated device by this time.
4150  */
4151 static void __init hugetlb_register_all_nodes(void)
4152 {
4153         int nid;
4154
4155         for_each_online_node(nid)
4156                 hugetlb_register_node(node_devices[nid]);
4157 }
4158 #else   /* !CONFIG_NUMA */
4159
4160 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4161 {
4162         BUG();
4163         if (nidp)
4164                 *nidp = -1;
4165         return NULL;
4166 }
4167
4168 static void hugetlb_register_all_nodes(void) { }
4169
4170 #endif
4171
4172 #ifdef CONFIG_CMA
4173 static void __init hugetlb_cma_check(void);
4174 #else
4175 static inline __init void hugetlb_cma_check(void)
4176 {
4177 }
4178 #endif
4179
4180 static void __init hugetlb_sysfs_init(void)
4181 {
4182         struct hstate *h;
4183         int err;
4184
4185         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4186         if (!hugepages_kobj)
4187                 return;
4188
4189         for_each_hstate(h) {
4190                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4191                                          hstate_kobjs, &hstate_attr_group);
4192                 if (err)
4193                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4194         }
4195
4196 #ifdef CONFIG_NUMA
4197         hugetlb_sysfs_initialized = true;
4198 #endif
4199         hugetlb_register_all_nodes();
4200 }
4201
4202 static int __init hugetlb_init(void)
4203 {
4204         int i;
4205
4206         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4207                         __NR_HPAGEFLAGS);
4208
4209         if (!hugepages_supported()) {
4210                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4211                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4212                 return 0;
4213         }
4214
4215         /*
4216          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4217          * architectures depend on setup being done here.
4218          */
4219         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4220         if (!parsed_default_hugepagesz) {
4221                 /*
4222                  * If we did not parse a default huge page size, set
4223                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4224                  * number of huge pages for this default size was implicitly
4225                  * specified, set that here as well.
4226                  * Note that the implicit setting will overwrite an explicit
4227                  * setting.  A warning will be printed in this case.
4228                  */
4229                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4230                 if (default_hstate_max_huge_pages) {
4231                         if (default_hstate.max_huge_pages) {
4232                                 char buf[32];
4233
4234                                 string_get_size(huge_page_size(&default_hstate),
4235                                         1, STRING_UNITS_2, buf, 32);
4236                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4237                                         default_hstate.max_huge_pages, buf);
4238                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4239                                         default_hstate_max_huge_pages);
4240                         }
4241                         default_hstate.max_huge_pages =
4242                                 default_hstate_max_huge_pages;
4243
4244                         for_each_online_node(i)
4245                                 default_hstate.max_huge_pages_node[i] =
4246                                         default_hugepages_in_node[i];
4247                 }
4248         }
4249
4250         hugetlb_cma_check();
4251         hugetlb_init_hstates();
4252         gather_bootmem_prealloc();
4253         report_hugepages();
4254
4255         hugetlb_sysfs_init();
4256         hugetlb_cgroup_file_init();
4257
4258 #ifdef CONFIG_SMP
4259         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4260 #else
4261         num_fault_mutexes = 1;
4262 #endif
4263         hugetlb_fault_mutex_table =
4264                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4265                               GFP_KERNEL);
4266         BUG_ON(!hugetlb_fault_mutex_table);
4267
4268         for (i = 0; i < num_fault_mutexes; i++)
4269                 mutex_init(&hugetlb_fault_mutex_table[i]);
4270         return 0;
4271 }
4272 subsys_initcall(hugetlb_init);
4273
4274 /* Overwritten by architectures with more huge page sizes */
4275 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4276 {
4277         return size == HPAGE_SIZE;
4278 }
4279
4280 void __init hugetlb_add_hstate(unsigned int order)
4281 {
4282         struct hstate *h;
4283         unsigned long i;
4284
4285         if (size_to_hstate(PAGE_SIZE << order)) {
4286                 return;
4287         }
4288         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4289         BUG_ON(order == 0);
4290         h = &hstates[hugetlb_max_hstate++];
4291         mutex_init(&h->resize_lock);
4292         h->order = order;
4293         h->mask = ~(huge_page_size(h) - 1);
4294         for (i = 0; i < MAX_NUMNODES; ++i)
4295                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4296         INIT_LIST_HEAD(&h->hugepage_activelist);
4297         h->next_nid_to_alloc = first_memory_node;
4298         h->next_nid_to_free = first_memory_node;
4299         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4300                                         huge_page_size(h)/SZ_1K);
4301
4302         parsed_hstate = h;
4303 }
4304
4305 bool __init __weak hugetlb_node_alloc_supported(void)
4306 {
4307         return true;
4308 }
4309
4310 static void __init hugepages_clear_pages_in_node(void)
4311 {
4312         if (!hugetlb_max_hstate) {
4313                 default_hstate_max_huge_pages = 0;
4314                 memset(default_hugepages_in_node, 0,
4315                         sizeof(default_hugepages_in_node));
4316         } else {
4317                 parsed_hstate->max_huge_pages = 0;
4318                 memset(parsed_hstate->max_huge_pages_node, 0,
4319                         sizeof(parsed_hstate->max_huge_pages_node));
4320         }
4321 }
4322
4323 /*
4324  * hugepages command line processing
4325  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4326  * specification.  If not, ignore the hugepages value.  hugepages can also
4327  * be the first huge page command line  option in which case it implicitly
4328  * specifies the number of huge pages for the default size.
4329  */
4330 static int __init hugepages_setup(char *s)
4331 {
4332         unsigned long *mhp;
4333         static unsigned long *last_mhp;
4334         int node = NUMA_NO_NODE;
4335         int count;
4336         unsigned long tmp;
4337         char *p = s;
4338
4339         if (!parsed_valid_hugepagesz) {
4340                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4341                 parsed_valid_hugepagesz = true;
4342                 return 1;
4343         }
4344
4345         /*
4346          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4347          * yet, so this hugepages= parameter goes to the "default hstate".
4348          * Otherwise, it goes with the previously parsed hugepagesz or
4349          * default_hugepagesz.
4350          */
4351         else if (!hugetlb_max_hstate)
4352                 mhp = &default_hstate_max_huge_pages;
4353         else
4354                 mhp = &parsed_hstate->max_huge_pages;
4355
4356         if (mhp == last_mhp) {
4357                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4358                 return 1;
4359         }
4360
4361         while (*p) {
4362                 count = 0;
4363                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4364                         goto invalid;
4365                 /* Parameter is node format */
4366                 if (p[count] == ':') {
4367                         if (!hugetlb_node_alloc_supported()) {
4368                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4369                                 return 1;
4370                         }
4371                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4372                                 goto invalid;
4373                         node = array_index_nospec(tmp, MAX_NUMNODES);
4374                         p += count + 1;
4375                         /* Parse hugepages */
4376                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4377                                 goto invalid;
4378                         if (!hugetlb_max_hstate)
4379                                 default_hugepages_in_node[node] = tmp;
4380                         else
4381                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4382                         *mhp += tmp;
4383                         /* Go to parse next node*/
4384                         if (p[count] == ',')
4385                                 p += count + 1;
4386                         else
4387                                 break;
4388                 } else {
4389                         if (p != s)
4390                                 goto invalid;
4391                         *mhp = tmp;
4392                         break;
4393                 }
4394         }
4395
4396         /*
4397          * Global state is always initialized later in hugetlb_init.
4398          * But we need to allocate gigantic hstates here early to still
4399          * use the bootmem allocator.
4400          */
4401         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4402                 hugetlb_hstate_alloc_pages(parsed_hstate);
4403
4404         last_mhp = mhp;
4405
4406         return 1;
4407
4408 invalid:
4409         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4410         hugepages_clear_pages_in_node();
4411         return 1;
4412 }
4413 __setup("hugepages=", hugepages_setup);
4414
4415 /*
4416  * hugepagesz command line processing
4417  * A specific huge page size can only be specified once with hugepagesz.
4418  * hugepagesz is followed by hugepages on the command line.  The global
4419  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4420  * hugepagesz argument was valid.
4421  */
4422 static int __init hugepagesz_setup(char *s)
4423 {
4424         unsigned long size;
4425         struct hstate *h;
4426
4427         parsed_valid_hugepagesz = false;
4428         size = (unsigned long)memparse(s, NULL);
4429
4430         if (!arch_hugetlb_valid_size(size)) {
4431                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4432                 return 1;
4433         }
4434
4435         h = size_to_hstate(size);
4436         if (h) {
4437                 /*
4438                  * hstate for this size already exists.  This is normally
4439                  * an error, but is allowed if the existing hstate is the
4440                  * default hstate.  More specifically, it is only allowed if
4441                  * the number of huge pages for the default hstate was not
4442                  * previously specified.
4443                  */
4444                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4445                     default_hstate.max_huge_pages) {
4446                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4447                         return 1;
4448                 }
4449
4450                 /*
4451                  * No need to call hugetlb_add_hstate() as hstate already
4452                  * exists.  But, do set parsed_hstate so that a following
4453                  * hugepages= parameter will be applied to this hstate.
4454                  */
4455                 parsed_hstate = h;
4456                 parsed_valid_hugepagesz = true;
4457                 return 1;
4458         }
4459
4460         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4461         parsed_valid_hugepagesz = true;
4462         return 1;
4463 }
4464 __setup("hugepagesz=", hugepagesz_setup);
4465
4466 /*
4467  * default_hugepagesz command line input
4468  * Only one instance of default_hugepagesz allowed on command line.
4469  */
4470 static int __init default_hugepagesz_setup(char *s)
4471 {
4472         unsigned long size;
4473         int i;
4474
4475         parsed_valid_hugepagesz = false;
4476         if (parsed_default_hugepagesz) {
4477                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4478                 return 1;
4479         }
4480
4481         size = (unsigned long)memparse(s, NULL);
4482
4483         if (!arch_hugetlb_valid_size(size)) {
4484                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4485                 return 1;
4486         }
4487
4488         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4489         parsed_valid_hugepagesz = true;
4490         parsed_default_hugepagesz = true;
4491         default_hstate_idx = hstate_index(size_to_hstate(size));
4492
4493         /*
4494          * The number of default huge pages (for this size) could have been
4495          * specified as the first hugetlb parameter: hugepages=X.  If so,
4496          * then default_hstate_max_huge_pages is set.  If the default huge
4497          * page size is gigantic (>= MAX_ORDER), then the pages must be
4498          * allocated here from bootmem allocator.
4499          */
4500         if (default_hstate_max_huge_pages) {
4501                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4502                 for_each_online_node(i)
4503                         default_hstate.max_huge_pages_node[i] =
4504                                 default_hugepages_in_node[i];
4505                 if (hstate_is_gigantic(&default_hstate))
4506                         hugetlb_hstate_alloc_pages(&default_hstate);
4507                 default_hstate_max_huge_pages = 0;
4508         }
4509
4510         return 1;
4511 }
4512 __setup("default_hugepagesz=", default_hugepagesz_setup);
4513
4514 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4515 {
4516 #ifdef CONFIG_NUMA
4517         struct mempolicy *mpol = get_task_policy(current);
4518
4519         /*
4520          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4521          * (from policy_nodemask) specifically for hugetlb case
4522          */
4523         if (mpol->mode == MPOL_BIND &&
4524                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4525                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4526                 return &mpol->nodes;
4527 #endif
4528         return NULL;
4529 }
4530
4531 static unsigned int allowed_mems_nr(struct hstate *h)
4532 {
4533         int node;
4534         unsigned int nr = 0;
4535         nodemask_t *mbind_nodemask;
4536         unsigned int *array = h->free_huge_pages_node;
4537         gfp_t gfp_mask = htlb_alloc_mask(h);
4538
4539         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4540         for_each_node_mask(node, cpuset_current_mems_allowed) {
4541                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4542                         nr += array[node];
4543         }
4544
4545         return nr;
4546 }
4547
4548 #ifdef CONFIG_SYSCTL
4549 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4550                                           void *buffer, size_t *length,
4551                                           loff_t *ppos, unsigned long *out)
4552 {
4553         struct ctl_table dup_table;
4554
4555         /*
4556          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4557          * can duplicate the @table and alter the duplicate of it.
4558          */
4559         dup_table = *table;
4560         dup_table.data = out;
4561
4562         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4563 }
4564
4565 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4566                          struct ctl_table *table, int write,
4567                          void *buffer, size_t *length, loff_t *ppos)
4568 {
4569         struct hstate *h = &default_hstate;
4570         unsigned long tmp = h->max_huge_pages;
4571         int ret;
4572
4573         if (!hugepages_supported())
4574                 return -EOPNOTSUPP;
4575
4576         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4577                                              &tmp);
4578         if (ret)
4579                 goto out;
4580
4581         if (write)
4582                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4583                                                   NUMA_NO_NODE, tmp, *length);
4584 out:
4585         return ret;
4586 }
4587
4588 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4589                           void *buffer, size_t *length, loff_t *ppos)
4590 {
4591
4592         return hugetlb_sysctl_handler_common(false, table, write,
4593                                                         buffer, length, ppos);
4594 }
4595
4596 #ifdef CONFIG_NUMA
4597 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4598                           void *buffer, size_t *length, loff_t *ppos)
4599 {
4600         return hugetlb_sysctl_handler_common(true, table, write,
4601                                                         buffer, length, ppos);
4602 }
4603 #endif /* CONFIG_NUMA */
4604
4605 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4606                 void *buffer, size_t *length, loff_t *ppos)
4607 {
4608         struct hstate *h = &default_hstate;
4609         unsigned long tmp;
4610         int ret;
4611
4612         if (!hugepages_supported())
4613                 return -EOPNOTSUPP;
4614
4615         tmp = h->nr_overcommit_huge_pages;
4616
4617         if (write && hstate_is_gigantic(h))
4618                 return -EINVAL;
4619
4620         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4621                                              &tmp);
4622         if (ret)
4623                 goto out;
4624
4625         if (write) {
4626                 spin_lock_irq(&hugetlb_lock);
4627                 h->nr_overcommit_huge_pages = tmp;
4628                 spin_unlock_irq(&hugetlb_lock);
4629         }
4630 out:
4631         return ret;
4632 }
4633
4634 #endif /* CONFIG_SYSCTL */
4635
4636 void hugetlb_report_meminfo(struct seq_file *m)
4637 {
4638         struct hstate *h;
4639         unsigned long total = 0;
4640
4641         if (!hugepages_supported())
4642                 return;
4643
4644         for_each_hstate(h) {
4645                 unsigned long count = h->nr_huge_pages;
4646
4647                 total += huge_page_size(h) * count;
4648
4649                 if (h == &default_hstate)
4650                         seq_printf(m,
4651                                    "HugePages_Total:   %5lu\n"
4652                                    "HugePages_Free:    %5lu\n"
4653                                    "HugePages_Rsvd:    %5lu\n"
4654                                    "HugePages_Surp:    %5lu\n"
4655                                    "Hugepagesize:   %8lu kB\n",
4656                                    count,
4657                                    h->free_huge_pages,
4658                                    h->resv_huge_pages,
4659                                    h->surplus_huge_pages,
4660                                    huge_page_size(h) / SZ_1K);
4661         }
4662
4663         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4664 }
4665
4666 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4667 {
4668         struct hstate *h = &default_hstate;
4669
4670         if (!hugepages_supported())
4671                 return 0;
4672
4673         return sysfs_emit_at(buf, len,
4674                              "Node %d HugePages_Total: %5u\n"
4675                              "Node %d HugePages_Free:  %5u\n"
4676                              "Node %d HugePages_Surp:  %5u\n",
4677                              nid, h->nr_huge_pages_node[nid],
4678                              nid, h->free_huge_pages_node[nid],
4679                              nid, h->surplus_huge_pages_node[nid]);
4680 }
4681
4682 void hugetlb_show_meminfo_node(int nid)
4683 {
4684         struct hstate *h;
4685
4686         if (!hugepages_supported())
4687                 return;
4688
4689         for_each_hstate(h)
4690                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4691                         nid,
4692                         h->nr_huge_pages_node[nid],
4693                         h->free_huge_pages_node[nid],
4694                         h->surplus_huge_pages_node[nid],
4695                         huge_page_size(h) / SZ_1K);
4696 }
4697
4698 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4699 {
4700         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4701                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4702 }
4703
4704 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4705 unsigned long hugetlb_total_pages(void)
4706 {
4707         struct hstate *h;
4708         unsigned long nr_total_pages = 0;
4709
4710         for_each_hstate(h)
4711                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4712         return nr_total_pages;
4713 }
4714
4715 static int hugetlb_acct_memory(struct hstate *h, long delta)
4716 {
4717         int ret = -ENOMEM;
4718
4719         if (!delta)
4720                 return 0;
4721
4722         spin_lock_irq(&hugetlb_lock);
4723         /*
4724          * When cpuset is configured, it breaks the strict hugetlb page
4725          * reservation as the accounting is done on a global variable. Such
4726          * reservation is completely rubbish in the presence of cpuset because
4727          * the reservation is not checked against page availability for the
4728          * current cpuset. Application can still potentially OOM'ed by kernel
4729          * with lack of free htlb page in cpuset that the task is in.
4730          * Attempt to enforce strict accounting with cpuset is almost
4731          * impossible (or too ugly) because cpuset is too fluid that
4732          * task or memory node can be dynamically moved between cpusets.
4733          *
4734          * The change of semantics for shared hugetlb mapping with cpuset is
4735          * undesirable. However, in order to preserve some of the semantics,
4736          * we fall back to check against current free page availability as
4737          * a best attempt and hopefully to minimize the impact of changing
4738          * semantics that cpuset has.
4739          *
4740          * Apart from cpuset, we also have memory policy mechanism that
4741          * also determines from which node the kernel will allocate memory
4742          * in a NUMA system. So similar to cpuset, we also should consider
4743          * the memory policy of the current task. Similar to the description
4744          * above.
4745          */
4746         if (delta > 0) {
4747                 if (gather_surplus_pages(h, delta) < 0)
4748                         goto out;
4749
4750                 if (delta > allowed_mems_nr(h)) {
4751                         return_unused_surplus_pages(h, delta);
4752                         goto out;
4753                 }
4754         }
4755
4756         ret = 0;
4757         if (delta < 0)
4758                 return_unused_surplus_pages(h, (unsigned long) -delta);
4759
4760 out:
4761         spin_unlock_irq(&hugetlb_lock);
4762         return ret;
4763 }
4764
4765 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4766 {
4767         struct resv_map *resv = vma_resv_map(vma);
4768
4769         /*
4770          * HPAGE_RESV_OWNER indicates a private mapping.
4771          * This new VMA should share its siblings reservation map if present.
4772          * The VMA will only ever have a valid reservation map pointer where
4773          * it is being copied for another still existing VMA.  As that VMA
4774          * has a reference to the reservation map it cannot disappear until
4775          * after this open call completes.  It is therefore safe to take a
4776          * new reference here without additional locking.
4777          */
4778         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4779                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4780                 kref_get(&resv->refs);
4781         }
4782
4783         /*
4784          * vma_lock structure for sharable mappings is vma specific.
4785          * Clear old pointer (if copied via vm_area_dup) and allocate
4786          * new structure.  Before clearing, make sure vma_lock is not
4787          * for this vma.
4788          */
4789         if (vma->vm_flags & VM_MAYSHARE) {
4790                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4791
4792                 if (vma_lock) {
4793                         if (vma_lock->vma != vma) {
4794                                 vma->vm_private_data = NULL;
4795                                 hugetlb_vma_lock_alloc(vma);
4796                         } else
4797                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4798                 } else
4799                         hugetlb_vma_lock_alloc(vma);
4800         }
4801 }
4802
4803 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4804 {
4805         struct hstate *h = hstate_vma(vma);
4806         struct resv_map *resv;
4807         struct hugepage_subpool *spool = subpool_vma(vma);
4808         unsigned long reserve, start, end;
4809         long gbl_reserve;
4810
4811         hugetlb_vma_lock_free(vma);
4812
4813         resv = vma_resv_map(vma);
4814         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4815                 return;
4816
4817         start = vma_hugecache_offset(h, vma, vma->vm_start);
4818         end = vma_hugecache_offset(h, vma, vma->vm_end);
4819
4820         reserve = (end - start) - region_count(resv, start, end);
4821         hugetlb_cgroup_uncharge_counter(resv, start, end);
4822         if (reserve) {
4823                 /*
4824                  * Decrement reserve counts.  The global reserve count may be
4825                  * adjusted if the subpool has a minimum size.
4826                  */
4827                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4828                 hugetlb_acct_memory(h, -gbl_reserve);
4829         }
4830
4831         kref_put(&resv->refs, resv_map_release);
4832 }
4833
4834 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4835 {
4836         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4837                 return -EINVAL;
4838
4839         /*
4840          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4841          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4842          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4843          */
4844         if (addr & ~PUD_MASK) {
4845                 /*
4846                  * hugetlb_vm_op_split is called right before we attempt to
4847                  * split the VMA. We will need to unshare PMDs in the old and
4848                  * new VMAs, so let's unshare before we split.
4849                  */
4850                 unsigned long floor = addr & PUD_MASK;
4851                 unsigned long ceil = floor + PUD_SIZE;
4852
4853                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4854                         hugetlb_unshare_pmds(vma, floor, ceil);
4855         }
4856
4857         return 0;
4858 }
4859
4860 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4861 {
4862         return huge_page_size(hstate_vma(vma));
4863 }
4864
4865 /*
4866  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4867  * handle_mm_fault() to try to instantiate regular-sized pages in the
4868  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4869  * this far.
4870  */
4871 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4872 {
4873         BUG();
4874         return 0;
4875 }
4876
4877 /*
4878  * When a new function is introduced to vm_operations_struct and added
4879  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4880  * This is because under System V memory model, mappings created via
4881  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4882  * their original vm_ops are overwritten with shm_vm_ops.
4883  */
4884 const struct vm_operations_struct hugetlb_vm_ops = {
4885         .fault = hugetlb_vm_op_fault,
4886         .open = hugetlb_vm_op_open,
4887         .close = hugetlb_vm_op_close,
4888         .may_split = hugetlb_vm_op_split,
4889         .pagesize = hugetlb_vm_op_pagesize,
4890 };
4891
4892 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4893                                 int writable)
4894 {
4895         pte_t entry;
4896         unsigned int shift = huge_page_shift(hstate_vma(vma));
4897
4898         if (writable) {
4899                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4900                                          vma->vm_page_prot)));
4901         } else {
4902                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4903                                            vma->vm_page_prot));
4904         }
4905         entry = pte_mkyoung(entry);
4906         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4907
4908         return entry;
4909 }
4910
4911 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4912                                    unsigned long address, pte_t *ptep)
4913 {
4914         pte_t entry;
4915
4916         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4917         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4918                 update_mmu_cache(vma, address, ptep);
4919 }
4920
4921 bool is_hugetlb_entry_migration(pte_t pte)
4922 {
4923         swp_entry_t swp;
4924
4925         if (huge_pte_none(pte) || pte_present(pte))
4926                 return false;
4927         swp = pte_to_swp_entry(pte);
4928         if (is_migration_entry(swp))
4929                 return true;
4930         else
4931                 return false;
4932 }
4933
4934 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4935 {
4936         swp_entry_t swp;
4937
4938         if (huge_pte_none(pte) || pte_present(pte))
4939                 return false;
4940         swp = pte_to_swp_entry(pte);
4941         if (is_hwpoison_entry(swp))
4942                 return true;
4943         else
4944                 return false;
4945 }
4946
4947 static void
4948 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4949                      struct page *new_page)
4950 {
4951         __SetPageUptodate(new_page);
4952         hugepage_add_new_anon_rmap(new_page, vma, addr);
4953         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4954         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4955         SetHPageMigratable(new_page);
4956 }
4957
4958 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4959                             struct vm_area_struct *dst_vma,
4960                             struct vm_area_struct *src_vma)
4961 {
4962         pte_t *src_pte, *dst_pte, entry;
4963         struct page *ptepage;
4964         unsigned long addr;
4965         bool cow = is_cow_mapping(src_vma->vm_flags);
4966         struct hstate *h = hstate_vma(src_vma);
4967         unsigned long sz = huge_page_size(h);
4968         unsigned long npages = pages_per_huge_page(h);
4969         struct mmu_notifier_range range;
4970         unsigned long last_addr_mask;
4971         int ret = 0;
4972
4973         if (cow) {
4974                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4975                                         src_vma->vm_start,
4976                                         src_vma->vm_end);
4977                 mmu_notifier_invalidate_range_start(&range);
4978                 mmap_assert_write_locked(src);
4979                 raw_write_seqcount_begin(&src->write_protect_seq);
4980         } else {
4981                 /*
4982                  * For shared mappings the vma lock must be held before
4983                  * calling huge_pte_offset in the src vma. Otherwise, the
4984                  * returned ptep could go away if part of a shared pmd and
4985                  * another thread calls huge_pmd_unshare.
4986                  */
4987                 hugetlb_vma_lock_read(src_vma);
4988         }
4989
4990         last_addr_mask = hugetlb_mask_last_page(h);
4991         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4992                 spinlock_t *src_ptl, *dst_ptl;
4993                 src_pte = huge_pte_offset(src, addr, sz);
4994                 if (!src_pte) {
4995                         addr |= last_addr_mask;
4996                         continue;
4997                 }
4998                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4999                 if (!dst_pte) {
5000                         ret = -ENOMEM;
5001                         break;
5002                 }
5003
5004                 /*
5005                  * If the pagetables are shared don't copy or take references.
5006                  *
5007                  * dst_pte == src_pte is the common case of src/dest sharing.
5008                  * However, src could have 'unshared' and dst shares with
5009                  * another vma. So page_count of ptep page is checked instead
5010                  * to reliably determine whether pte is shared.
5011                  */
5012                 if (page_count(virt_to_page(dst_pte)) > 1) {
5013                         addr |= last_addr_mask;
5014                         continue;
5015                 }
5016
5017                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5018                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5019                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5020                 entry = huge_ptep_get(src_pte);
5021 again:
5022                 if (huge_pte_none(entry)) {
5023                         /*
5024                          * Skip if src entry none.
5025                          */
5026                         ;
5027                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5028                         bool uffd_wp = huge_pte_uffd_wp(entry);
5029
5030                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5031                                 entry = huge_pte_clear_uffd_wp(entry);
5032                         set_huge_pte_at(dst, addr, dst_pte, entry);
5033                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5034                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5035                         bool uffd_wp = huge_pte_uffd_wp(entry);
5036
5037                         if (!is_readable_migration_entry(swp_entry) && cow) {
5038                                 /*
5039                                  * COW mappings require pages in both
5040                                  * parent and child to be set to read.
5041                                  */
5042                                 swp_entry = make_readable_migration_entry(
5043                                                         swp_offset(swp_entry));
5044                                 entry = swp_entry_to_pte(swp_entry);
5045                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5046                                         entry = huge_pte_mkuffd_wp(entry);
5047                                 set_huge_pte_at(src, addr, src_pte, entry);
5048                         }
5049                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5050                                 entry = huge_pte_clear_uffd_wp(entry);
5051                         set_huge_pte_at(dst, addr, dst_pte, entry);
5052                 } else if (unlikely(is_pte_marker(entry))) {
5053                         /* No swap on hugetlb */
5054                         WARN_ON_ONCE(
5055                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5056                         /*
5057                          * We copy the pte marker only if the dst vma has
5058                          * uffd-wp enabled.
5059                          */
5060                         if (userfaultfd_wp(dst_vma))
5061                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5062                 } else {
5063                         entry = huge_ptep_get(src_pte);
5064                         ptepage = pte_page(entry);
5065                         get_page(ptepage);
5066
5067                         /*
5068                          * Failing to duplicate the anon rmap is a rare case
5069                          * where we see pinned hugetlb pages while they're
5070                          * prone to COW. We need to do the COW earlier during
5071                          * fork.
5072                          *
5073                          * When pre-allocating the page or copying data, we
5074                          * need to be without the pgtable locks since we could
5075                          * sleep during the process.
5076                          */
5077                         if (!PageAnon(ptepage)) {
5078                                 page_dup_file_rmap(ptepage, true);
5079                         } else if (page_try_dup_anon_rmap(ptepage, true,
5080                                                           src_vma)) {
5081                                 pte_t src_pte_old = entry;
5082                                 struct page *new;
5083
5084                                 spin_unlock(src_ptl);
5085                                 spin_unlock(dst_ptl);
5086                                 /* Do not use reserve as it's private owned */
5087                                 new = alloc_huge_page(dst_vma, addr, 1);
5088                                 if (IS_ERR(new)) {
5089                                         put_page(ptepage);
5090                                         ret = PTR_ERR(new);
5091                                         break;
5092                                 }
5093                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5094                                                     npages);
5095                                 put_page(ptepage);
5096
5097                                 /* Install the new huge page if src pte stable */
5098                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5099                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5100                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5101                                 entry = huge_ptep_get(src_pte);
5102                                 if (!pte_same(src_pte_old, entry)) {
5103                                         restore_reserve_on_error(h, dst_vma, addr,
5104                                                                 new);
5105                                         put_page(new);
5106                                         /* huge_ptep of dst_pte won't change as in child */
5107                                         goto again;
5108                                 }
5109                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5110                                 spin_unlock(src_ptl);
5111                                 spin_unlock(dst_ptl);
5112                                 continue;
5113                         }
5114
5115                         if (cow) {
5116                                 /*
5117                                  * No need to notify as we are downgrading page
5118                                  * table protection not changing it to point
5119                                  * to a new page.
5120                                  *
5121                                  * See Documentation/mm/mmu_notifier.rst
5122                                  */
5123                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5124                                 entry = huge_pte_wrprotect(entry);
5125                         }
5126
5127                         set_huge_pte_at(dst, addr, dst_pte, entry);
5128                         hugetlb_count_add(npages, dst);
5129                 }
5130                 spin_unlock(src_ptl);
5131                 spin_unlock(dst_ptl);
5132         }
5133
5134         if (cow) {
5135                 raw_write_seqcount_end(&src->write_protect_seq);
5136                 mmu_notifier_invalidate_range_end(&range);
5137         } else {
5138                 hugetlb_vma_unlock_read(src_vma);
5139         }
5140
5141         return ret;
5142 }
5143
5144 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5145                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5146 {
5147         struct hstate *h = hstate_vma(vma);
5148         struct mm_struct *mm = vma->vm_mm;
5149         spinlock_t *src_ptl, *dst_ptl;
5150         pte_t pte;
5151
5152         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5153         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5154
5155         /*
5156          * We don't have to worry about the ordering of src and dst ptlocks
5157          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5158          */
5159         if (src_ptl != dst_ptl)
5160                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5161
5162         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5163         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5164
5165         if (src_ptl != dst_ptl)
5166                 spin_unlock(src_ptl);
5167         spin_unlock(dst_ptl);
5168 }
5169
5170 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5171                              struct vm_area_struct *new_vma,
5172                              unsigned long old_addr, unsigned long new_addr,
5173                              unsigned long len)
5174 {
5175         struct hstate *h = hstate_vma(vma);
5176         struct address_space *mapping = vma->vm_file->f_mapping;
5177         unsigned long sz = huge_page_size(h);
5178         struct mm_struct *mm = vma->vm_mm;
5179         unsigned long old_end = old_addr + len;
5180         unsigned long last_addr_mask;
5181         pte_t *src_pte, *dst_pte;
5182         struct mmu_notifier_range range;
5183         bool shared_pmd = false;
5184
5185         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5186                                 old_end);
5187         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5188         /*
5189          * In case of shared PMDs, we should cover the maximum possible
5190          * range.
5191          */
5192         flush_cache_range(vma, range.start, range.end);
5193
5194         mmu_notifier_invalidate_range_start(&range);
5195         last_addr_mask = hugetlb_mask_last_page(h);
5196         /* Prevent race with file truncation */
5197         hugetlb_vma_lock_write(vma);
5198         i_mmap_lock_write(mapping);
5199         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5200                 src_pte = huge_pte_offset(mm, old_addr, sz);
5201                 if (!src_pte) {
5202                         old_addr |= last_addr_mask;
5203                         new_addr |= last_addr_mask;
5204                         continue;
5205                 }
5206                 if (huge_pte_none(huge_ptep_get(src_pte)))
5207                         continue;
5208
5209                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5210                         shared_pmd = true;
5211                         old_addr |= last_addr_mask;
5212                         new_addr |= last_addr_mask;
5213                         continue;
5214                 }
5215
5216                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5217                 if (!dst_pte)
5218                         break;
5219
5220                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5221         }
5222
5223         if (shared_pmd)
5224                 flush_tlb_range(vma, range.start, range.end);
5225         else
5226                 flush_tlb_range(vma, old_end - len, old_end);
5227         mmu_notifier_invalidate_range_end(&range);
5228         i_mmap_unlock_write(mapping);
5229         hugetlb_vma_unlock_write(vma);
5230
5231         return len + old_addr - old_end;
5232 }
5233
5234 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5235                                    unsigned long start, unsigned long end,
5236                                    struct page *ref_page, zap_flags_t zap_flags)
5237 {
5238         struct mm_struct *mm = vma->vm_mm;
5239         unsigned long address;
5240         pte_t *ptep;
5241         pte_t pte;
5242         spinlock_t *ptl;
5243         struct page *page;
5244         struct hstate *h = hstate_vma(vma);
5245         unsigned long sz = huge_page_size(h);
5246         unsigned long last_addr_mask;
5247         bool force_flush = false;
5248
5249         WARN_ON(!is_vm_hugetlb_page(vma));
5250         BUG_ON(start & ~huge_page_mask(h));
5251         BUG_ON(end & ~huge_page_mask(h));
5252
5253         /*
5254          * This is a hugetlb vma, all the pte entries should point
5255          * to huge page.
5256          */
5257         tlb_change_page_size(tlb, sz);
5258         tlb_start_vma(tlb, vma);
5259
5260         last_addr_mask = hugetlb_mask_last_page(h);
5261         address = start;
5262         for (; address < end; address += sz) {
5263                 ptep = huge_pte_offset(mm, address, sz);
5264                 if (!ptep) {
5265                         address |= last_addr_mask;
5266                         continue;
5267                 }
5268
5269                 ptl = huge_pte_lock(h, mm, ptep);
5270                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5271                         spin_unlock(ptl);
5272                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5273                         force_flush = true;
5274                         address |= last_addr_mask;
5275                         continue;
5276                 }
5277
5278                 pte = huge_ptep_get(ptep);
5279                 if (huge_pte_none(pte)) {
5280                         spin_unlock(ptl);
5281                         continue;
5282                 }
5283
5284                 /*
5285                  * Migrating hugepage or HWPoisoned hugepage is already
5286                  * unmapped and its refcount is dropped, so just clear pte here.
5287                  */
5288                 if (unlikely(!pte_present(pte))) {
5289                         /*
5290                          * If the pte was wr-protected by uffd-wp in any of the
5291                          * swap forms, meanwhile the caller does not want to
5292                          * drop the uffd-wp bit in this zap, then replace the
5293                          * pte with a marker.
5294                          */
5295                         if (pte_swp_uffd_wp_any(pte) &&
5296                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5297                                 set_huge_pte_at(mm, address, ptep,
5298                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5299                         else
5300                                 huge_pte_clear(mm, address, ptep, sz);
5301                         spin_unlock(ptl);
5302                         continue;
5303                 }
5304
5305                 page = pte_page(pte);
5306                 /*
5307                  * If a reference page is supplied, it is because a specific
5308                  * page is being unmapped, not a range. Ensure the page we
5309                  * are about to unmap is the actual page of interest.
5310                  */
5311                 if (ref_page) {
5312                         if (page != ref_page) {
5313                                 spin_unlock(ptl);
5314                                 continue;
5315                         }
5316                         /*
5317                          * Mark the VMA as having unmapped its page so that
5318                          * future faults in this VMA will fail rather than
5319                          * looking like data was lost
5320                          */
5321                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5322                 }
5323
5324                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5325                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5326                 if (huge_pte_dirty(pte))
5327                         set_page_dirty(page);
5328                 /* Leave a uffd-wp pte marker if needed */
5329                 if (huge_pte_uffd_wp(pte) &&
5330                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5331                         set_huge_pte_at(mm, address, ptep,
5332                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5333                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5334                 page_remove_rmap(page, vma, true);
5335
5336                 spin_unlock(ptl);
5337                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5338                 /*
5339                  * Bail out after unmapping reference page if supplied
5340                  */
5341                 if (ref_page)
5342                         break;
5343         }
5344         tlb_end_vma(tlb, vma);
5345
5346         /*
5347          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5348          * could defer the flush until now, since by holding i_mmap_rwsem we
5349          * guaranteed that the last refernece would not be dropped. But we must
5350          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5351          * dropped and the last reference to the shared PMDs page might be
5352          * dropped as well.
5353          *
5354          * In theory we could defer the freeing of the PMD pages as well, but
5355          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5356          * detect sharing, so we cannot defer the release of the page either.
5357          * Instead, do flush now.
5358          */
5359         if (force_flush)
5360                 tlb_flush_mmu_tlbonly(tlb);
5361 }
5362
5363 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5364                           struct vm_area_struct *vma, unsigned long start,
5365                           unsigned long end, struct page *ref_page,
5366                           zap_flags_t zap_flags)
5367 {
5368         hugetlb_vma_lock_write(vma);
5369         i_mmap_lock_write(vma->vm_file->f_mapping);
5370
5371         /* mmu notification performed in caller */
5372         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5373
5374         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5375                 /*
5376                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5377                  * When the vma_lock is freed, this makes the vma ineligible
5378                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5379                  * pmd sharing.  This is important as page tables for this
5380                  * unmapped range will be asynchrously deleted.  If the page
5381                  * tables are shared, there will be issues when accessed by
5382                  * someone else.
5383                  */
5384                 __hugetlb_vma_unlock_write_free(vma);
5385                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5386         } else {
5387                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5388                 hugetlb_vma_unlock_write(vma);
5389         }
5390 }
5391
5392 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5393                           unsigned long end, struct page *ref_page,
5394                           zap_flags_t zap_flags)
5395 {
5396         struct mmu_notifier_range range;
5397         struct mmu_gather tlb;
5398
5399         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5400                                 start, end);
5401         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5402         mmu_notifier_invalidate_range_start(&range);
5403         tlb_gather_mmu(&tlb, vma->vm_mm);
5404
5405         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5406
5407         mmu_notifier_invalidate_range_end(&range);
5408         tlb_finish_mmu(&tlb);
5409 }
5410
5411 /*
5412  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5413  * mapping it owns the reserve page for. The intention is to unmap the page
5414  * from other VMAs and let the children be SIGKILLed if they are faulting the
5415  * same region.
5416  */
5417 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5418                               struct page *page, unsigned long address)
5419 {
5420         struct hstate *h = hstate_vma(vma);
5421         struct vm_area_struct *iter_vma;
5422         struct address_space *mapping;
5423         pgoff_t pgoff;
5424
5425         /*
5426          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5427          * from page cache lookup which is in HPAGE_SIZE units.
5428          */
5429         address = address & huge_page_mask(h);
5430         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5431                         vma->vm_pgoff;
5432         mapping = vma->vm_file->f_mapping;
5433
5434         /*
5435          * Take the mapping lock for the duration of the table walk. As
5436          * this mapping should be shared between all the VMAs,
5437          * __unmap_hugepage_range() is called as the lock is already held
5438          */
5439         i_mmap_lock_write(mapping);
5440         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5441                 /* Do not unmap the current VMA */
5442                 if (iter_vma == vma)
5443                         continue;
5444
5445                 /*
5446                  * Shared VMAs have their own reserves and do not affect
5447                  * MAP_PRIVATE accounting but it is possible that a shared
5448                  * VMA is using the same page so check and skip such VMAs.
5449                  */
5450                 if (iter_vma->vm_flags & VM_MAYSHARE)
5451                         continue;
5452
5453                 /*
5454                  * Unmap the page from other VMAs without their own reserves.
5455                  * They get marked to be SIGKILLed if they fault in these
5456                  * areas. This is because a future no-page fault on this VMA
5457                  * could insert a zeroed page instead of the data existing
5458                  * from the time of fork. This would look like data corruption
5459                  */
5460                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5461                         unmap_hugepage_range(iter_vma, address,
5462                                              address + huge_page_size(h), page, 0);
5463         }
5464         i_mmap_unlock_write(mapping);
5465 }
5466
5467 /*
5468  * hugetlb_wp() should be called with page lock of the original hugepage held.
5469  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5470  * cannot race with other handlers or page migration.
5471  * Keep the pte_same checks anyway to make transition from the mutex easier.
5472  */
5473 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5474                        unsigned long address, pte_t *ptep, unsigned int flags,
5475                        struct page *pagecache_page, spinlock_t *ptl)
5476 {
5477         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5478         pte_t pte;
5479         struct hstate *h = hstate_vma(vma);
5480         struct page *old_page, *new_page;
5481         int outside_reserve = 0;
5482         vm_fault_t ret = 0;
5483         unsigned long haddr = address & huge_page_mask(h);
5484         struct mmu_notifier_range range;
5485
5486         /*
5487          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5488          * PTE mapped R/O such as maybe_mkwrite() would do.
5489          */
5490         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5491                 return VM_FAULT_SIGSEGV;
5492
5493         /* Let's take out MAP_SHARED mappings first. */
5494         if (vma->vm_flags & VM_MAYSHARE) {
5495                 set_huge_ptep_writable(vma, haddr, ptep);
5496                 return 0;
5497         }
5498
5499         pte = huge_ptep_get(ptep);
5500         old_page = pte_page(pte);
5501
5502         delayacct_wpcopy_start();
5503
5504 retry_avoidcopy:
5505         /*
5506          * If no-one else is actually using this page, we're the exclusive
5507          * owner and can reuse this page.
5508          */
5509         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5510                 if (!PageAnonExclusive(old_page))
5511                         page_move_anon_rmap(old_page, vma);
5512                 if (likely(!unshare))
5513                         set_huge_ptep_writable(vma, haddr, ptep);
5514
5515                 delayacct_wpcopy_end();
5516                 return 0;
5517         }
5518         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5519                        old_page);
5520
5521         /*
5522          * If the process that created a MAP_PRIVATE mapping is about to
5523          * perform a COW due to a shared page count, attempt to satisfy
5524          * the allocation without using the existing reserves. The pagecache
5525          * page is used to determine if the reserve at this address was
5526          * consumed or not. If reserves were used, a partial faulted mapping
5527          * at the time of fork() could consume its reserves on COW instead
5528          * of the full address range.
5529          */
5530         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5531                         old_page != pagecache_page)
5532                 outside_reserve = 1;
5533
5534         get_page(old_page);
5535
5536         /*
5537          * Drop page table lock as buddy allocator may be called. It will
5538          * be acquired again before returning to the caller, as expected.
5539          */
5540         spin_unlock(ptl);
5541         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5542
5543         if (IS_ERR(new_page)) {
5544                 /*
5545                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5546                  * it is due to references held by a child and an insufficient
5547                  * huge page pool. To guarantee the original mappers
5548                  * reliability, unmap the page from child processes. The child
5549                  * may get SIGKILLed if it later faults.
5550                  */
5551                 if (outside_reserve) {
5552                         struct address_space *mapping = vma->vm_file->f_mapping;
5553                         pgoff_t idx;
5554                         u32 hash;
5555
5556                         put_page(old_page);
5557                         /*
5558                          * Drop hugetlb_fault_mutex and vma_lock before
5559                          * unmapping.  unmapping needs to hold vma_lock
5560                          * in write mode.  Dropping vma_lock in read mode
5561                          * here is OK as COW mappings do not interact with
5562                          * PMD sharing.
5563                          *
5564                          * Reacquire both after unmap operation.
5565                          */
5566                         idx = vma_hugecache_offset(h, vma, haddr);
5567                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5568                         hugetlb_vma_unlock_read(vma);
5569                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5570
5571                         unmap_ref_private(mm, vma, old_page, haddr);
5572
5573                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5574                         hugetlb_vma_lock_read(vma);
5575                         spin_lock(ptl);
5576                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5577                         if (likely(ptep &&
5578                                    pte_same(huge_ptep_get(ptep), pte)))
5579                                 goto retry_avoidcopy;
5580                         /*
5581                          * race occurs while re-acquiring page table
5582                          * lock, and our job is done.
5583                          */
5584                         delayacct_wpcopy_end();
5585                         return 0;
5586                 }
5587
5588                 ret = vmf_error(PTR_ERR(new_page));
5589                 goto out_release_old;
5590         }
5591
5592         /*
5593          * When the original hugepage is shared one, it does not have
5594          * anon_vma prepared.
5595          */
5596         if (unlikely(anon_vma_prepare(vma))) {
5597                 ret = VM_FAULT_OOM;
5598                 goto out_release_all;
5599         }
5600
5601         copy_user_huge_page(new_page, old_page, address, vma,
5602                             pages_per_huge_page(h));
5603         __SetPageUptodate(new_page);
5604
5605         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5606                                 haddr + huge_page_size(h));
5607         mmu_notifier_invalidate_range_start(&range);
5608
5609         /*
5610          * Retake the page table lock to check for racing updates
5611          * before the page tables are altered
5612          */
5613         spin_lock(ptl);
5614         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5615         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5616                 /* Break COW or unshare */
5617                 huge_ptep_clear_flush(vma, haddr, ptep);
5618                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5619                 page_remove_rmap(old_page, vma, true);
5620                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5621                 set_huge_pte_at(mm, haddr, ptep,
5622                                 make_huge_pte(vma, new_page, !unshare));
5623                 SetHPageMigratable(new_page);
5624                 /* Make the old page be freed below */
5625                 new_page = old_page;
5626         }
5627         spin_unlock(ptl);
5628         mmu_notifier_invalidate_range_end(&range);
5629 out_release_all:
5630         /*
5631          * No restore in case of successful pagetable update (Break COW or
5632          * unshare)
5633          */
5634         if (new_page != old_page)
5635                 restore_reserve_on_error(h, vma, haddr, new_page);
5636         put_page(new_page);
5637 out_release_old:
5638         put_page(old_page);
5639
5640         spin_lock(ptl); /* Caller expects lock to be held */
5641
5642         delayacct_wpcopy_end();
5643         return ret;
5644 }
5645
5646 /*
5647  * Return whether there is a pagecache page to back given address within VMA.
5648  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5649  */
5650 static bool hugetlbfs_pagecache_present(struct hstate *h,
5651                         struct vm_area_struct *vma, unsigned long address)
5652 {
5653         struct address_space *mapping;
5654         pgoff_t idx;
5655         struct page *page;
5656
5657         mapping = vma->vm_file->f_mapping;
5658         idx = vma_hugecache_offset(h, vma, address);
5659
5660         page = find_get_page(mapping, idx);
5661         if (page)
5662                 put_page(page);
5663         return page != NULL;
5664 }
5665
5666 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5667                            pgoff_t idx)
5668 {
5669         struct folio *folio = page_folio(page);
5670         struct inode *inode = mapping->host;
5671         struct hstate *h = hstate_inode(inode);
5672         int err;
5673
5674         __folio_set_locked(folio);
5675         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5676
5677         if (unlikely(err)) {
5678                 __folio_clear_locked(folio);
5679                 return err;
5680         }
5681         ClearHPageRestoreReserve(page);
5682
5683         /*
5684          * mark folio dirty so that it will not be removed from cache/file
5685          * by non-hugetlbfs specific code paths.
5686          */
5687         folio_mark_dirty(folio);
5688
5689         spin_lock(&inode->i_lock);
5690         inode->i_blocks += blocks_per_huge_page(h);
5691         spin_unlock(&inode->i_lock);
5692         return 0;
5693 }
5694
5695 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5696                                                   struct address_space *mapping,
5697                                                   pgoff_t idx,
5698                                                   unsigned int flags,
5699                                                   unsigned long haddr,
5700                                                   unsigned long addr,
5701                                                   unsigned long reason)
5702 {
5703         u32 hash;
5704         struct vm_fault vmf = {
5705                 .vma = vma,
5706                 .address = haddr,
5707                 .real_address = addr,
5708                 .flags = flags,
5709
5710                 /*
5711                  * Hard to debug if it ends up being
5712                  * used by a callee that assumes
5713                  * something about the other
5714                  * uninitialized fields... same as in
5715                  * memory.c
5716                  */
5717         };
5718
5719         /*
5720          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5721          * userfault. Also mmap_lock could be dropped due to handling
5722          * userfault, any vma operation should be careful from here.
5723          */
5724         hugetlb_vma_unlock_read(vma);
5725         hash = hugetlb_fault_mutex_hash(mapping, idx);
5726         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5727         return handle_userfault(&vmf, reason);
5728 }
5729
5730 /*
5731  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5732  * false if pte changed or is changing.
5733  */
5734 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5735                                pte_t *ptep, pte_t old_pte)
5736 {
5737         spinlock_t *ptl;
5738         bool same;
5739
5740         ptl = huge_pte_lock(h, mm, ptep);
5741         same = pte_same(huge_ptep_get(ptep), old_pte);
5742         spin_unlock(ptl);
5743
5744         return same;
5745 }
5746
5747 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5748                         struct vm_area_struct *vma,
5749                         struct address_space *mapping, pgoff_t idx,
5750                         unsigned long address, pte_t *ptep,
5751                         pte_t old_pte, unsigned int flags)
5752 {
5753         struct hstate *h = hstate_vma(vma);
5754         vm_fault_t ret = VM_FAULT_SIGBUS;
5755         int anon_rmap = 0;
5756         unsigned long size;
5757         struct page *page;
5758         pte_t new_pte;
5759         spinlock_t *ptl;
5760         unsigned long haddr = address & huge_page_mask(h);
5761         bool new_page, new_pagecache_page = false;
5762         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5763
5764         /*
5765          * Currently, we are forced to kill the process in the event the
5766          * original mapper has unmapped pages from the child due to a failed
5767          * COW/unsharing. Warn that such a situation has occurred as it may not
5768          * be obvious.
5769          */
5770         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5771                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5772                            current->pid);
5773                 goto out;
5774         }
5775
5776         /*
5777          * Use page lock to guard against racing truncation
5778          * before we get page_table_lock.
5779          */
5780         new_page = false;
5781         page = find_lock_page(mapping, idx);
5782         if (!page) {
5783                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5784                 if (idx >= size)
5785                         goto out;
5786                 /* Check for page in userfault range */
5787                 if (userfaultfd_missing(vma)) {
5788                         /*
5789                          * Since hugetlb_no_page() was examining pte
5790                          * without pgtable lock, we need to re-test under
5791                          * lock because the pte may not be stable and could
5792                          * have changed from under us.  Try to detect
5793                          * either changed or during-changing ptes and retry
5794                          * properly when needed.
5795                          *
5796                          * Note that userfaultfd is actually fine with
5797                          * false positives (e.g. caused by pte changed),
5798                          * but not wrong logical events (e.g. caused by
5799                          * reading a pte during changing).  The latter can
5800                          * confuse the userspace, so the strictness is very
5801                          * much preferred.  E.g., MISSING event should
5802                          * never happen on the page after UFFDIO_COPY has
5803                          * correctly installed the page and returned.
5804                          */
5805                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5806                                 ret = 0;
5807                                 goto out;
5808                         }
5809
5810                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5811                                                         haddr, address,
5812                                                         VM_UFFD_MISSING);
5813                 }
5814
5815                 page = alloc_huge_page(vma, haddr, 0);
5816                 if (IS_ERR(page)) {
5817                         /*
5818                          * Returning error will result in faulting task being
5819                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5820                          * tasks from racing to fault in the same page which
5821                          * could result in false unable to allocate errors.
5822                          * Page migration does not take the fault mutex, but
5823                          * does a clear then write of pte's under page table
5824                          * lock.  Page fault code could race with migration,
5825                          * notice the clear pte and try to allocate a page
5826                          * here.  Before returning error, get ptl and make
5827                          * sure there really is no pte entry.
5828                          */
5829                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5830                                 ret = vmf_error(PTR_ERR(page));
5831                         else
5832                                 ret = 0;
5833                         goto out;
5834                 }
5835                 clear_huge_page(page, address, pages_per_huge_page(h));
5836                 __SetPageUptodate(page);
5837                 new_page = true;
5838
5839                 if (vma->vm_flags & VM_MAYSHARE) {
5840                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5841                         if (err) {
5842                                 /*
5843                                  * err can't be -EEXIST which implies someone
5844                                  * else consumed the reservation since hugetlb
5845                                  * fault mutex is held when add a hugetlb page
5846                                  * to the page cache. So it's safe to call
5847                                  * restore_reserve_on_error() here.
5848                                  */
5849                                 restore_reserve_on_error(h, vma, haddr, page);
5850                                 put_page(page);
5851                                 goto out;
5852                         }
5853                         new_pagecache_page = true;
5854                 } else {
5855                         lock_page(page);
5856                         if (unlikely(anon_vma_prepare(vma))) {
5857                                 ret = VM_FAULT_OOM;
5858                                 goto backout_unlocked;
5859                         }
5860                         anon_rmap = 1;
5861                 }
5862         } else {
5863                 /*
5864                  * If memory error occurs between mmap() and fault, some process
5865                  * don't have hwpoisoned swap entry for errored virtual address.
5866                  * So we need to block hugepage fault by PG_hwpoison bit check.
5867                  */
5868                 if (unlikely(PageHWPoison(page))) {
5869                         ret = VM_FAULT_HWPOISON_LARGE |
5870                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5871                         goto backout_unlocked;
5872                 }
5873
5874                 /* Check for page in userfault range. */
5875                 if (userfaultfd_minor(vma)) {
5876                         unlock_page(page);
5877                         put_page(page);
5878                         /* See comment in userfaultfd_missing() block above */
5879                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5880                                 ret = 0;
5881                                 goto out;
5882                         }
5883                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5884                                                         haddr, address,
5885                                                         VM_UFFD_MINOR);
5886                 }
5887         }
5888
5889         /*
5890          * If we are going to COW a private mapping later, we examine the
5891          * pending reservations for this page now. This will ensure that
5892          * any allocations necessary to record that reservation occur outside
5893          * the spinlock.
5894          */
5895         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5896                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5897                         ret = VM_FAULT_OOM;
5898                         goto backout_unlocked;
5899                 }
5900                 /* Just decrements count, does not deallocate */
5901                 vma_end_reservation(h, vma, haddr);
5902         }
5903
5904         ptl = huge_pte_lock(h, mm, ptep);
5905         ret = 0;
5906         /* If pte changed from under us, retry */
5907         if (!pte_same(huge_ptep_get(ptep), old_pte))
5908                 goto backout;
5909
5910         if (anon_rmap)
5911                 hugepage_add_new_anon_rmap(page, vma, haddr);
5912         else
5913                 page_dup_file_rmap(page, true);
5914         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5915                                 && (vma->vm_flags & VM_SHARED)));
5916         /*
5917          * If this pte was previously wr-protected, keep it wr-protected even
5918          * if populated.
5919          */
5920         if (unlikely(pte_marker_uffd_wp(old_pte)))
5921                 new_pte = huge_pte_mkuffd_wp(new_pte);
5922         set_huge_pte_at(mm, haddr, ptep, new_pte);
5923
5924         hugetlb_count_add(pages_per_huge_page(h), mm);
5925         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5926                 /* Optimization, do the COW without a second fault */
5927                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5928         }
5929
5930         spin_unlock(ptl);
5931
5932         /*
5933          * Only set HPageMigratable in newly allocated pages.  Existing pages
5934          * found in the pagecache may not have HPageMigratableset if they have
5935          * been isolated for migration.
5936          */
5937         if (new_page)
5938                 SetHPageMigratable(page);
5939
5940         unlock_page(page);
5941 out:
5942         hugetlb_vma_unlock_read(vma);
5943         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5944         return ret;
5945
5946 backout:
5947         spin_unlock(ptl);
5948 backout_unlocked:
5949         if (new_page && !new_pagecache_page)
5950                 restore_reserve_on_error(h, vma, haddr, page);
5951
5952         unlock_page(page);
5953         put_page(page);
5954         goto out;
5955 }
5956
5957 #ifdef CONFIG_SMP
5958 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5959 {
5960         unsigned long key[2];
5961         u32 hash;
5962
5963         key[0] = (unsigned long) mapping;
5964         key[1] = idx;
5965
5966         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5967
5968         return hash & (num_fault_mutexes - 1);
5969 }
5970 #else
5971 /*
5972  * For uniprocessor systems we always use a single mutex, so just
5973  * return 0 and avoid the hashing overhead.
5974  */
5975 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5976 {
5977         return 0;
5978 }
5979 #endif
5980
5981 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5982                         unsigned long address, unsigned int flags)
5983 {
5984         pte_t *ptep, entry;
5985         spinlock_t *ptl;
5986         vm_fault_t ret;
5987         u32 hash;
5988         pgoff_t idx;
5989         struct page *page = NULL;
5990         struct page *pagecache_page = NULL;
5991         struct hstate *h = hstate_vma(vma);
5992         struct address_space *mapping;
5993         int need_wait_lock = 0;
5994         unsigned long haddr = address & huge_page_mask(h);
5995
5996         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5997         if (ptep) {
5998                 /*
5999                  * Since we hold no locks, ptep could be stale.  That is
6000                  * OK as we are only making decisions based on content and
6001                  * not actually modifying content here.
6002                  */
6003                 entry = huge_ptep_get(ptep);
6004                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6005                         migration_entry_wait_huge(vma, ptep);
6006                         return 0;
6007                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6008                         return VM_FAULT_HWPOISON_LARGE |
6009                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6010         }
6011
6012         /*
6013          * Serialize hugepage allocation and instantiation, so that we don't
6014          * get spurious allocation failures if two CPUs race to instantiate
6015          * the same page in the page cache.
6016          */
6017         mapping = vma->vm_file->f_mapping;
6018         idx = vma_hugecache_offset(h, vma, haddr);
6019         hash = hugetlb_fault_mutex_hash(mapping, idx);
6020         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6021
6022         /*
6023          * Acquire vma lock before calling huge_pte_alloc and hold
6024          * until finished with ptep.  This prevents huge_pmd_unshare from
6025          * being called elsewhere and making the ptep no longer valid.
6026          *
6027          * ptep could have already be assigned via huge_pte_offset.  That
6028          * is OK, as huge_pte_alloc will return the same value unless
6029          * something has changed.
6030          */
6031         hugetlb_vma_lock_read(vma);
6032         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6033         if (!ptep) {
6034                 hugetlb_vma_unlock_read(vma);
6035                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6036                 return VM_FAULT_OOM;
6037         }
6038
6039         entry = huge_ptep_get(ptep);
6040         /* PTE markers should be handled the same way as none pte */
6041         if (huge_pte_none_mostly(entry))
6042                 /*
6043                  * hugetlb_no_page will drop vma lock and hugetlb fault
6044                  * mutex internally, which make us return immediately.
6045                  */
6046                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6047                                       entry, flags);
6048
6049         ret = 0;
6050
6051         /*
6052          * entry could be a migration/hwpoison entry at this point, so this
6053          * check prevents the kernel from going below assuming that we have
6054          * an active hugepage in pagecache. This goto expects the 2nd page
6055          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6056          * properly handle it.
6057          */
6058         if (!pte_present(entry))
6059                 goto out_mutex;
6060
6061         /*
6062          * If we are going to COW/unshare the mapping later, we examine the
6063          * pending reservations for this page now. This will ensure that any
6064          * allocations necessary to record that reservation occur outside the
6065          * spinlock. Also lookup the pagecache page now as it is used to
6066          * determine if a reservation has been consumed.
6067          */
6068         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6069             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6070                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6071                         ret = VM_FAULT_OOM;
6072                         goto out_mutex;
6073                 }
6074                 /* Just decrements count, does not deallocate */
6075                 vma_end_reservation(h, vma, haddr);
6076
6077                 pagecache_page = find_lock_page(mapping, idx);
6078         }
6079
6080         ptl = huge_pte_lock(h, mm, ptep);
6081
6082         /* Check for a racing update before calling hugetlb_wp() */
6083         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6084                 goto out_ptl;
6085
6086         /* Handle userfault-wp first, before trying to lock more pages */
6087         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6088             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6089                 struct vm_fault vmf = {
6090                         .vma = vma,
6091                         .address = haddr,
6092                         .real_address = address,
6093                         .flags = flags,
6094                 };
6095
6096                 spin_unlock(ptl);
6097                 if (pagecache_page) {
6098                         unlock_page(pagecache_page);
6099                         put_page(pagecache_page);
6100                 }
6101                 hugetlb_vma_unlock_read(vma);
6102                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6103                 return handle_userfault(&vmf, VM_UFFD_WP);
6104         }
6105
6106         /*
6107          * hugetlb_wp() requires page locks of pte_page(entry) and
6108          * pagecache_page, so here we need take the former one
6109          * when page != pagecache_page or !pagecache_page.
6110          */
6111         page = pte_page(entry);
6112         if (page != pagecache_page)
6113                 if (!trylock_page(page)) {
6114                         need_wait_lock = 1;
6115                         goto out_ptl;
6116                 }
6117
6118         get_page(page);
6119
6120         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6121                 if (!huge_pte_write(entry)) {
6122                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6123                                          pagecache_page, ptl);
6124                         goto out_put_page;
6125                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6126                         entry = huge_pte_mkdirty(entry);
6127                 }
6128         }
6129         entry = pte_mkyoung(entry);
6130         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6131                                                 flags & FAULT_FLAG_WRITE))
6132                 update_mmu_cache(vma, haddr, ptep);
6133 out_put_page:
6134         if (page != pagecache_page)
6135                 unlock_page(page);
6136         put_page(page);
6137 out_ptl:
6138         spin_unlock(ptl);
6139
6140         if (pagecache_page) {
6141                 unlock_page(pagecache_page);
6142                 put_page(pagecache_page);
6143         }
6144 out_mutex:
6145         hugetlb_vma_unlock_read(vma);
6146         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6147         /*
6148          * Generally it's safe to hold refcount during waiting page lock. But
6149          * here we just wait to defer the next page fault to avoid busy loop and
6150          * the page is not used after unlocked before returning from the current
6151          * page fault. So we are safe from accessing freed page, even if we wait
6152          * here without taking refcount.
6153          */
6154         if (need_wait_lock)
6155                 wait_on_page_locked(page);
6156         return ret;
6157 }
6158
6159 #ifdef CONFIG_USERFAULTFD
6160 /*
6161  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6162  * modifications for huge pages.
6163  */
6164 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6165                             pte_t *dst_pte,
6166                             struct vm_area_struct *dst_vma,
6167                             unsigned long dst_addr,
6168                             unsigned long src_addr,
6169                             enum mcopy_atomic_mode mode,
6170                             struct page **pagep,
6171                             bool wp_copy)
6172 {
6173         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6174         struct hstate *h = hstate_vma(dst_vma);
6175         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6176         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6177         unsigned long size;
6178         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6179         pte_t _dst_pte;
6180         spinlock_t *ptl;
6181         int ret = -ENOMEM;
6182         struct page *page;
6183         int writable;
6184         bool page_in_pagecache = false;
6185
6186         if (is_continue) {
6187                 ret = -EFAULT;
6188                 page = find_lock_page(mapping, idx);
6189                 if (!page)
6190                         goto out;
6191                 page_in_pagecache = true;
6192         } else if (!*pagep) {
6193                 /* If a page already exists, then it's UFFDIO_COPY for
6194                  * a non-missing case. Return -EEXIST.
6195                  */
6196                 if (vm_shared &&
6197                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6198                         ret = -EEXIST;
6199                         goto out;
6200                 }
6201
6202                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6203                 if (IS_ERR(page)) {
6204                         ret = -ENOMEM;
6205                         goto out;
6206                 }
6207
6208                 ret = copy_huge_page_from_user(page,
6209                                                 (const void __user *) src_addr,
6210                                                 pages_per_huge_page(h), false);
6211
6212                 /* fallback to copy_from_user outside mmap_lock */
6213                 if (unlikely(ret)) {
6214                         ret = -ENOENT;
6215                         /* Free the allocated page which may have
6216                          * consumed a reservation.
6217                          */
6218                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6219                         put_page(page);
6220
6221                         /* Allocate a temporary page to hold the copied
6222                          * contents.
6223                          */
6224                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6225                         if (!page) {
6226                                 ret = -ENOMEM;
6227                                 goto out;
6228                         }
6229                         *pagep = page;
6230                         /* Set the outparam pagep and return to the caller to
6231                          * copy the contents outside the lock. Don't free the
6232                          * page.
6233                          */
6234                         goto out;
6235                 }
6236         } else {
6237                 if (vm_shared &&
6238                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6239                         put_page(*pagep);
6240                         ret = -EEXIST;
6241                         *pagep = NULL;
6242                         goto out;
6243                 }
6244
6245                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6246                 if (IS_ERR(page)) {
6247                         put_page(*pagep);
6248                         ret = -ENOMEM;
6249                         *pagep = NULL;
6250                         goto out;
6251                 }
6252                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6253                                     pages_per_huge_page(h));
6254                 put_page(*pagep);
6255                 *pagep = NULL;
6256         }
6257
6258         /*
6259          * The memory barrier inside __SetPageUptodate makes sure that
6260          * preceding stores to the page contents become visible before
6261          * the set_pte_at() write.
6262          */
6263         __SetPageUptodate(page);
6264
6265         /* Add shared, newly allocated pages to the page cache. */
6266         if (vm_shared && !is_continue) {
6267                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6268                 ret = -EFAULT;
6269                 if (idx >= size)
6270                         goto out_release_nounlock;
6271
6272                 /*
6273                  * Serialization between remove_inode_hugepages() and
6274                  * hugetlb_add_to_page_cache() below happens through the
6275                  * hugetlb_fault_mutex_table that here must be hold by
6276                  * the caller.
6277                  */
6278                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6279                 if (ret)
6280                         goto out_release_nounlock;
6281                 page_in_pagecache = true;
6282         }
6283
6284         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6285
6286         ret = -EIO;
6287         if (PageHWPoison(page))
6288                 goto out_release_unlock;
6289
6290         /*
6291          * We allow to overwrite a pte marker: consider when both MISSING|WP
6292          * registered, we firstly wr-protect a none pte which has no page cache
6293          * page backing it, then access the page.
6294          */
6295         ret = -EEXIST;
6296         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6297                 goto out_release_unlock;
6298
6299         if (page_in_pagecache)
6300                 page_dup_file_rmap(page, true);
6301         else
6302                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6303
6304         /*
6305          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6306          * with wp flag set, don't set pte write bit.
6307          */
6308         if (wp_copy || (is_continue && !vm_shared))
6309                 writable = 0;
6310         else
6311                 writable = dst_vma->vm_flags & VM_WRITE;
6312
6313         _dst_pte = make_huge_pte(dst_vma, page, writable);
6314         /*
6315          * Always mark UFFDIO_COPY page dirty; note that this may not be
6316          * extremely important for hugetlbfs for now since swapping is not
6317          * supported, but we should still be clear in that this page cannot be
6318          * thrown away at will, even if write bit not set.
6319          */
6320         _dst_pte = huge_pte_mkdirty(_dst_pte);
6321         _dst_pte = pte_mkyoung(_dst_pte);
6322
6323         if (wp_copy)
6324                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6325
6326         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6327
6328         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6329
6330         /* No need to invalidate - it was non-present before */
6331         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6332
6333         spin_unlock(ptl);
6334         if (!is_continue)
6335                 SetHPageMigratable(page);
6336         if (vm_shared || is_continue)
6337                 unlock_page(page);
6338         ret = 0;
6339 out:
6340         return ret;
6341 out_release_unlock:
6342         spin_unlock(ptl);
6343         if (vm_shared || is_continue)
6344                 unlock_page(page);
6345 out_release_nounlock:
6346         if (!page_in_pagecache)
6347                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6348         put_page(page);
6349         goto out;
6350 }
6351 #endif /* CONFIG_USERFAULTFD */
6352
6353 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6354                                  int refs, struct page **pages,
6355                                  struct vm_area_struct **vmas)
6356 {
6357         int nr;
6358
6359         for (nr = 0; nr < refs; nr++) {
6360                 if (likely(pages))
6361                         pages[nr] = nth_page(page, nr);
6362                 if (vmas)
6363                         vmas[nr] = vma;
6364         }
6365 }
6366
6367 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6368                                                unsigned int flags, pte_t *pte,
6369                                                bool *unshare)
6370 {
6371         pte_t pteval = huge_ptep_get(pte);
6372
6373         *unshare = false;
6374         if (is_swap_pte(pteval))
6375                 return true;
6376         if (huge_pte_write(pteval))
6377                 return false;
6378         if (flags & FOLL_WRITE)
6379                 return true;
6380         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6381                 *unshare = true;
6382                 return true;
6383         }
6384         return false;
6385 }
6386
6387 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6388                                 unsigned long address, unsigned int flags)
6389 {
6390         struct hstate *h = hstate_vma(vma);
6391         struct mm_struct *mm = vma->vm_mm;
6392         unsigned long haddr = address & huge_page_mask(h);
6393         struct page *page = NULL;
6394         spinlock_t *ptl;
6395         pte_t *pte, entry;
6396
6397         /*
6398          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6399          * follow_hugetlb_page().
6400          */
6401         if (WARN_ON_ONCE(flags & FOLL_PIN))
6402                 return NULL;
6403
6404 retry:
6405         pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6406         if (!pte)
6407                 return NULL;
6408
6409         ptl = huge_pte_lock(h, mm, pte);
6410         entry = huge_ptep_get(pte);
6411         if (pte_present(entry)) {
6412                 page = pte_page(entry) +
6413                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6414                 /*
6415                  * Note that page may be a sub-page, and with vmemmap
6416                  * optimizations the page struct may be read only.
6417                  * try_grab_page() will increase the ref count on the
6418                  * head page, so this will be OK.
6419                  *
6420                  * try_grab_page() should always be able to get the page here,
6421                  * because we hold the ptl lock and have verified pte_present().
6422                  */
6423                 if (try_grab_page(page, flags)) {
6424                         page = NULL;
6425                         goto out;
6426                 }
6427         } else {
6428                 if (is_hugetlb_entry_migration(entry)) {
6429                         spin_unlock(ptl);
6430                         __migration_entry_wait_huge(pte, ptl);
6431                         goto retry;
6432                 }
6433                 /*
6434                  * hwpoisoned entry is treated as no_page_table in
6435                  * follow_page_mask().
6436                  */
6437         }
6438 out:
6439         spin_unlock(ptl);
6440         return page;
6441 }
6442
6443 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6444                          struct page **pages, struct vm_area_struct **vmas,
6445                          unsigned long *position, unsigned long *nr_pages,
6446                          long i, unsigned int flags, int *locked)
6447 {
6448         unsigned long pfn_offset;
6449         unsigned long vaddr = *position;
6450         unsigned long remainder = *nr_pages;
6451         struct hstate *h = hstate_vma(vma);
6452         int err = -EFAULT, refs;
6453
6454         while (vaddr < vma->vm_end && remainder) {
6455                 pte_t *pte;
6456                 spinlock_t *ptl = NULL;
6457                 bool unshare = false;
6458                 int absent;
6459                 struct page *page;
6460
6461                 /*
6462                  * If we have a pending SIGKILL, don't keep faulting pages and
6463                  * potentially allocating memory.
6464                  */
6465                 if (fatal_signal_pending(current)) {
6466                         remainder = 0;
6467                         break;
6468                 }
6469
6470                 /*
6471                  * Some archs (sparc64, sh*) have multiple pte_ts to
6472                  * each hugepage.  We have to make sure we get the
6473                  * first, for the page indexing below to work.
6474                  *
6475                  * Note that page table lock is not held when pte is null.
6476                  */
6477                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6478                                       huge_page_size(h));
6479                 if (pte)
6480                         ptl = huge_pte_lock(h, mm, pte);
6481                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6482
6483                 /*
6484                  * When coredumping, it suits get_dump_page if we just return
6485                  * an error where there's an empty slot with no huge pagecache
6486                  * to back it.  This way, we avoid allocating a hugepage, and
6487                  * the sparse dumpfile avoids allocating disk blocks, but its
6488                  * huge holes still show up with zeroes where they need to be.
6489                  */
6490                 if (absent && (flags & FOLL_DUMP) &&
6491                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6492                         if (pte)
6493                                 spin_unlock(ptl);
6494                         remainder = 0;
6495                         break;
6496                 }
6497
6498                 /*
6499                  * We need call hugetlb_fault for both hugepages under migration
6500                  * (in which case hugetlb_fault waits for the migration,) and
6501                  * hwpoisoned hugepages (in which case we need to prevent the
6502                  * caller from accessing to them.) In order to do this, we use
6503                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6504                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6505                  * both cases, and because we can't follow correct pages
6506                  * directly from any kind of swap entries.
6507                  */
6508                 if (absent ||
6509                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6510                         vm_fault_t ret;
6511                         unsigned int fault_flags = 0;
6512
6513                         if (pte)
6514                                 spin_unlock(ptl);
6515                         if (flags & FOLL_WRITE)
6516                                 fault_flags |= FAULT_FLAG_WRITE;
6517                         else if (unshare)
6518                                 fault_flags |= FAULT_FLAG_UNSHARE;
6519                         if (locked) {
6520                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6521                                         FAULT_FLAG_KILLABLE;
6522                                 if (flags & FOLL_INTERRUPTIBLE)
6523                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6524                         }
6525                         if (flags & FOLL_NOWAIT)
6526                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6527                                         FAULT_FLAG_RETRY_NOWAIT;
6528                         if (flags & FOLL_TRIED) {
6529                                 /*
6530                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6531                                  * FAULT_FLAG_TRIED can co-exist
6532                                  */
6533                                 fault_flags |= FAULT_FLAG_TRIED;
6534                         }
6535                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6536                         if (ret & VM_FAULT_ERROR) {
6537                                 err = vm_fault_to_errno(ret, flags);
6538                                 remainder = 0;
6539                                 break;
6540                         }
6541                         if (ret & VM_FAULT_RETRY) {
6542                                 if (locked &&
6543                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6544                                         *locked = 0;
6545                                 *nr_pages = 0;
6546                                 /*
6547                                  * VM_FAULT_RETRY must not return an
6548                                  * error, it will return zero
6549                                  * instead.
6550                                  *
6551                                  * No need to update "position" as the
6552                                  * caller will not check it after
6553                                  * *nr_pages is set to 0.
6554                                  */
6555                                 return i;
6556                         }
6557                         continue;
6558                 }
6559
6560                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6561                 page = pte_page(huge_ptep_get(pte));
6562
6563                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6564                                !PageAnonExclusive(page), page);
6565
6566                 /*
6567                  * If subpage information not requested, update counters
6568                  * and skip the same_page loop below.
6569                  */
6570                 if (!pages && !vmas && !pfn_offset &&
6571                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6572                     (remainder >= pages_per_huge_page(h))) {
6573                         vaddr += huge_page_size(h);
6574                         remainder -= pages_per_huge_page(h);
6575                         i += pages_per_huge_page(h);
6576                         spin_unlock(ptl);
6577                         continue;
6578                 }
6579
6580                 /* vaddr may not be aligned to PAGE_SIZE */
6581                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6582                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6583
6584                 if (pages || vmas)
6585                         record_subpages_vmas(nth_page(page, pfn_offset),
6586                                              vma, refs,
6587                                              likely(pages) ? pages + i : NULL,
6588                                              vmas ? vmas + i : NULL);
6589
6590                 if (pages) {
6591                         /*
6592                          * try_grab_folio() should always succeed here,
6593                          * because: a) we hold the ptl lock, and b) we've just
6594                          * checked that the huge page is present in the page
6595                          * tables. If the huge page is present, then the tail
6596                          * pages must also be present. The ptl prevents the
6597                          * head page and tail pages from being rearranged in
6598                          * any way. As this is hugetlb, the pages will never
6599                          * be p2pdma or not longterm pinable. So this page
6600                          * must be available at this point, unless the page
6601                          * refcount overflowed:
6602                          */
6603                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6604                                                          flags))) {
6605                                 spin_unlock(ptl);
6606                                 remainder = 0;
6607                                 err = -ENOMEM;
6608                                 break;
6609                         }
6610                 }
6611
6612                 vaddr += (refs << PAGE_SHIFT);
6613                 remainder -= refs;
6614                 i += refs;
6615
6616                 spin_unlock(ptl);
6617         }
6618         *nr_pages = remainder;
6619         /*
6620          * setting position is actually required only if remainder is
6621          * not zero but it's faster not to add a "if (remainder)"
6622          * branch.
6623          */
6624         *position = vaddr;
6625
6626         return i ? i : err;
6627 }
6628
6629 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6630                 unsigned long address, unsigned long end,
6631                 pgprot_t newprot, unsigned long cp_flags)
6632 {
6633         struct mm_struct *mm = vma->vm_mm;
6634         unsigned long start = address;
6635         pte_t *ptep;
6636         pte_t pte;
6637         struct hstate *h = hstate_vma(vma);
6638         unsigned long pages = 0, psize = huge_page_size(h);
6639         bool shared_pmd = false;
6640         struct mmu_notifier_range range;
6641         unsigned long last_addr_mask;
6642         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6643         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6644
6645         /*
6646          * In the case of shared PMDs, the area to flush could be beyond
6647          * start/end.  Set range.start/range.end to cover the maximum possible
6648          * range if PMD sharing is possible.
6649          */
6650         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6651                                 0, vma, mm, start, end);
6652         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6653
6654         BUG_ON(address >= end);
6655         flush_cache_range(vma, range.start, range.end);
6656
6657         mmu_notifier_invalidate_range_start(&range);
6658         hugetlb_vma_lock_write(vma);
6659         i_mmap_lock_write(vma->vm_file->f_mapping);
6660         last_addr_mask = hugetlb_mask_last_page(h);
6661         for (; address < end; address += psize) {
6662                 spinlock_t *ptl;
6663                 ptep = huge_pte_offset(mm, address, psize);
6664                 if (!ptep) {
6665                         if (!uffd_wp) {
6666                                 address |= last_addr_mask;
6667                                 continue;
6668                         }
6669                         /*
6670                          * Userfaultfd wr-protect requires pgtable
6671                          * pre-allocations to install pte markers.
6672                          */
6673                         ptep = huge_pte_alloc(mm, vma, address, psize);
6674                         if (!ptep)
6675                                 break;
6676                 }
6677                 ptl = huge_pte_lock(h, mm, ptep);
6678                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6679                         /*
6680                          * When uffd-wp is enabled on the vma, unshare
6681                          * shouldn't happen at all.  Warn about it if it
6682                          * happened due to some reason.
6683                          */
6684                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6685                         pages++;
6686                         spin_unlock(ptl);
6687                         shared_pmd = true;
6688                         address |= last_addr_mask;
6689                         continue;
6690                 }
6691                 pte = huge_ptep_get(ptep);
6692                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6693                         /* Nothing to do. */
6694                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6695                         swp_entry_t entry = pte_to_swp_entry(pte);
6696                         struct page *page = pfn_swap_entry_to_page(entry);
6697                         pte_t newpte = pte;
6698
6699                         if (is_writable_migration_entry(entry)) {
6700                                 if (PageAnon(page))
6701                                         entry = make_readable_exclusive_migration_entry(
6702                                                                 swp_offset(entry));
6703                                 else
6704                                         entry = make_readable_migration_entry(
6705                                                                 swp_offset(entry));
6706                                 newpte = swp_entry_to_pte(entry);
6707                                 pages++;
6708                         }
6709
6710                         if (uffd_wp)
6711                                 newpte = pte_swp_mkuffd_wp(newpte);
6712                         else if (uffd_wp_resolve)
6713                                 newpte = pte_swp_clear_uffd_wp(newpte);
6714                         if (!pte_same(pte, newpte))
6715                                 set_huge_pte_at(mm, address, ptep, newpte);
6716                 } else if (unlikely(is_pte_marker(pte))) {
6717                         /* No other markers apply for now. */
6718                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6719                         if (uffd_wp_resolve)
6720                                 /* Safe to modify directly (non-present->none). */
6721                                 huge_pte_clear(mm, address, ptep, psize);
6722                 } else if (!huge_pte_none(pte)) {
6723                         pte_t old_pte;
6724                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6725
6726                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6727                         pte = huge_pte_modify(old_pte, newprot);
6728                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6729                         if (uffd_wp)
6730                                 pte = huge_pte_mkuffd_wp(pte);
6731                         else if (uffd_wp_resolve)
6732                                 pte = huge_pte_clear_uffd_wp(pte);
6733                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6734                         pages++;
6735                 } else {
6736                         /* None pte */
6737                         if (unlikely(uffd_wp))
6738                                 /* Safe to modify directly (none->non-present). */
6739                                 set_huge_pte_at(mm, address, ptep,
6740                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6741                 }
6742                 spin_unlock(ptl);
6743         }
6744         /*
6745          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6746          * may have cleared our pud entry and done put_page on the page table:
6747          * once we release i_mmap_rwsem, another task can do the final put_page
6748          * and that page table be reused and filled with junk.  If we actually
6749          * did unshare a page of pmds, flush the range corresponding to the pud.
6750          */
6751         if (shared_pmd)
6752                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6753         else
6754                 flush_hugetlb_tlb_range(vma, start, end);
6755         /*
6756          * No need to call mmu_notifier_invalidate_range() we are downgrading
6757          * page table protection not changing it to point to a new page.
6758          *
6759          * See Documentation/mm/mmu_notifier.rst
6760          */
6761         i_mmap_unlock_write(vma->vm_file->f_mapping);
6762         hugetlb_vma_unlock_write(vma);
6763         mmu_notifier_invalidate_range_end(&range);
6764
6765         return pages << h->order;
6766 }
6767
6768 /* Return true if reservation was successful, false otherwise.  */
6769 bool hugetlb_reserve_pages(struct inode *inode,
6770                                         long from, long to,
6771                                         struct vm_area_struct *vma,
6772                                         vm_flags_t vm_flags)
6773 {
6774         long chg, add = -1;
6775         struct hstate *h = hstate_inode(inode);
6776         struct hugepage_subpool *spool = subpool_inode(inode);
6777         struct resv_map *resv_map;
6778         struct hugetlb_cgroup *h_cg = NULL;
6779         long gbl_reserve, regions_needed = 0;
6780
6781         /* This should never happen */
6782         if (from > to) {
6783                 VM_WARN(1, "%s called with a negative range\n", __func__);
6784                 return false;
6785         }
6786
6787         /*
6788          * vma specific semaphore used for pmd sharing and fault/truncation
6789          * synchronization
6790          */
6791         hugetlb_vma_lock_alloc(vma);
6792
6793         /*
6794          * Only apply hugepage reservation if asked. At fault time, an
6795          * attempt will be made for VM_NORESERVE to allocate a page
6796          * without using reserves
6797          */
6798         if (vm_flags & VM_NORESERVE)
6799                 return true;
6800
6801         /*
6802          * Shared mappings base their reservation on the number of pages that
6803          * are already allocated on behalf of the file. Private mappings need
6804          * to reserve the full area even if read-only as mprotect() may be
6805          * called to make the mapping read-write. Assume !vma is a shm mapping
6806          */
6807         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6808                 /*
6809                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6810                  * called for inodes for which resv_maps were created (see
6811                  * hugetlbfs_get_inode).
6812                  */
6813                 resv_map = inode_resv_map(inode);
6814
6815                 chg = region_chg(resv_map, from, to, &regions_needed);
6816         } else {
6817                 /* Private mapping. */
6818                 resv_map = resv_map_alloc();
6819                 if (!resv_map)
6820                         goto out_err;
6821
6822                 chg = to - from;
6823
6824                 set_vma_resv_map(vma, resv_map);
6825                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6826         }
6827
6828         if (chg < 0)
6829                 goto out_err;
6830
6831         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6832                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6833                 goto out_err;
6834
6835         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6836                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6837                  * of the resv_map.
6838                  */
6839                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6840         }
6841
6842         /*
6843          * There must be enough pages in the subpool for the mapping. If
6844          * the subpool has a minimum size, there may be some global
6845          * reservations already in place (gbl_reserve).
6846          */
6847         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6848         if (gbl_reserve < 0)
6849                 goto out_uncharge_cgroup;
6850
6851         /*
6852          * Check enough hugepages are available for the reservation.
6853          * Hand the pages back to the subpool if there are not
6854          */
6855         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6856                 goto out_put_pages;
6857
6858         /*
6859          * Account for the reservations made. Shared mappings record regions
6860          * that have reservations as they are shared by multiple VMAs.
6861          * When the last VMA disappears, the region map says how much
6862          * the reservation was and the page cache tells how much of
6863          * the reservation was consumed. Private mappings are per-VMA and
6864          * only the consumed reservations are tracked. When the VMA
6865          * disappears, the original reservation is the VMA size and the
6866          * consumed reservations are stored in the map. Hence, nothing
6867          * else has to be done for private mappings here
6868          */
6869         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6870                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6871
6872                 if (unlikely(add < 0)) {
6873                         hugetlb_acct_memory(h, -gbl_reserve);
6874                         goto out_put_pages;
6875                 } else if (unlikely(chg > add)) {
6876                         /*
6877                          * pages in this range were added to the reserve
6878                          * map between region_chg and region_add.  This
6879                          * indicates a race with alloc_huge_page.  Adjust
6880                          * the subpool and reserve counts modified above
6881                          * based on the difference.
6882                          */
6883                         long rsv_adjust;
6884
6885                         /*
6886                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6887                          * reference to h_cg->css. See comment below for detail.
6888                          */
6889                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6890                                 hstate_index(h),
6891                                 (chg - add) * pages_per_huge_page(h), h_cg);
6892
6893                         rsv_adjust = hugepage_subpool_put_pages(spool,
6894                                                                 chg - add);
6895                         hugetlb_acct_memory(h, -rsv_adjust);
6896                 } else if (h_cg) {
6897                         /*
6898                          * The file_regions will hold their own reference to
6899                          * h_cg->css. So we should release the reference held
6900                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6901                          * done.
6902                          */
6903                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6904                 }
6905         }
6906         return true;
6907
6908 out_put_pages:
6909         /* put back original number of pages, chg */
6910         (void)hugepage_subpool_put_pages(spool, chg);
6911 out_uncharge_cgroup:
6912         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6913                                             chg * pages_per_huge_page(h), h_cg);
6914 out_err:
6915         hugetlb_vma_lock_free(vma);
6916         if (!vma || vma->vm_flags & VM_MAYSHARE)
6917                 /* Only call region_abort if the region_chg succeeded but the
6918                  * region_add failed or didn't run.
6919                  */
6920                 if (chg >= 0 && add < 0)
6921                         region_abort(resv_map, from, to, regions_needed);
6922         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6923                 kref_put(&resv_map->refs, resv_map_release);
6924         return false;
6925 }
6926
6927 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6928                                                                 long freed)
6929 {
6930         struct hstate *h = hstate_inode(inode);
6931         struct resv_map *resv_map = inode_resv_map(inode);
6932         long chg = 0;
6933         struct hugepage_subpool *spool = subpool_inode(inode);
6934         long gbl_reserve;
6935
6936         /*
6937          * Since this routine can be called in the evict inode path for all
6938          * hugetlbfs inodes, resv_map could be NULL.
6939          */
6940         if (resv_map) {
6941                 chg = region_del(resv_map, start, end);
6942                 /*
6943                  * region_del() can fail in the rare case where a region
6944                  * must be split and another region descriptor can not be
6945                  * allocated.  If end == LONG_MAX, it will not fail.
6946                  */
6947                 if (chg < 0)
6948                         return chg;
6949         }
6950
6951         spin_lock(&inode->i_lock);
6952         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6953         spin_unlock(&inode->i_lock);
6954
6955         /*
6956          * If the subpool has a minimum size, the number of global
6957          * reservations to be released may be adjusted.
6958          *
6959          * Note that !resv_map implies freed == 0. So (chg - freed)
6960          * won't go negative.
6961          */
6962         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6963         hugetlb_acct_memory(h, -gbl_reserve);
6964
6965         return 0;
6966 }
6967
6968 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6969 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6970                                 struct vm_area_struct *vma,
6971                                 unsigned long addr, pgoff_t idx)
6972 {
6973         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6974                                 svma->vm_start;
6975         unsigned long sbase = saddr & PUD_MASK;
6976         unsigned long s_end = sbase + PUD_SIZE;
6977
6978         /* Allow segments to share if only one is marked locked */
6979         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6980         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6981
6982         /*
6983          * match the virtual addresses, permission and the alignment of the
6984          * page table page.
6985          *
6986          * Also, vma_lock (vm_private_data) is required for sharing.
6987          */
6988         if (pmd_index(addr) != pmd_index(saddr) ||
6989             vm_flags != svm_flags ||
6990             !range_in_vma(svma, sbase, s_end) ||
6991             !svma->vm_private_data)
6992                 return 0;
6993
6994         return saddr;
6995 }
6996
6997 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6998 {
6999         unsigned long start = addr & PUD_MASK;
7000         unsigned long end = start + PUD_SIZE;
7001
7002 #ifdef CONFIG_USERFAULTFD
7003         if (uffd_disable_huge_pmd_share(vma))
7004                 return false;
7005 #endif
7006         /*
7007          * check on proper vm_flags and page table alignment
7008          */
7009         if (!(vma->vm_flags & VM_MAYSHARE))
7010                 return false;
7011         if (!vma->vm_private_data)      /* vma lock required for sharing */
7012                 return false;
7013         if (!range_in_vma(vma, start, end))
7014                 return false;
7015         return true;
7016 }
7017
7018 /*
7019  * Determine if start,end range within vma could be mapped by shared pmd.
7020  * If yes, adjust start and end to cover range associated with possible
7021  * shared pmd mappings.
7022  */
7023 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7024                                 unsigned long *start, unsigned long *end)
7025 {
7026         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7027                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7028
7029         /*
7030          * vma needs to span at least one aligned PUD size, and the range
7031          * must be at least partially within in.
7032          */
7033         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7034                 (*end <= v_start) || (*start >= v_end))
7035                 return;
7036
7037         /* Extend the range to be PUD aligned for a worst case scenario */
7038         if (*start > v_start)
7039                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7040
7041         if (*end < v_end)
7042                 *end = ALIGN(*end, PUD_SIZE);
7043 }
7044
7045 /*
7046  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7047  * and returns the corresponding pte. While this is not necessary for the
7048  * !shared pmd case because we can allocate the pmd later as well, it makes the
7049  * code much cleaner. pmd allocation is essential for the shared case because
7050  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7051  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7052  * bad pmd for sharing.
7053  */
7054 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7055                       unsigned long addr, pud_t *pud)
7056 {
7057         struct address_space *mapping = vma->vm_file->f_mapping;
7058         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7059                         vma->vm_pgoff;
7060         struct vm_area_struct *svma;
7061         unsigned long saddr;
7062         pte_t *spte = NULL;
7063         pte_t *pte;
7064         spinlock_t *ptl;
7065
7066         i_mmap_lock_read(mapping);
7067         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7068                 if (svma == vma)
7069                         continue;
7070
7071                 saddr = page_table_shareable(svma, vma, addr, idx);
7072                 if (saddr) {
7073                         spte = huge_pte_offset(svma->vm_mm, saddr,
7074                                                vma_mmu_pagesize(svma));
7075                         if (spte) {
7076                                 get_page(virt_to_page(spte));
7077                                 break;
7078                         }
7079                 }
7080         }
7081
7082         if (!spte)
7083                 goto out;
7084
7085         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7086         if (pud_none(*pud)) {
7087                 pud_populate(mm, pud,
7088                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7089                 mm_inc_nr_pmds(mm);
7090         } else {
7091                 put_page(virt_to_page(spte));
7092         }
7093         spin_unlock(ptl);
7094 out:
7095         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7096         i_mmap_unlock_read(mapping);
7097         return pte;
7098 }
7099
7100 /*
7101  * unmap huge page backed by shared pte.
7102  *
7103  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7104  * indicated by page_count > 1, unmap is achieved by clearing pud and
7105  * decrementing the ref count. If count == 1, the pte page is not shared.
7106  *
7107  * Called with page table lock held.
7108  *
7109  * returns: 1 successfully unmapped a shared pte page
7110  *          0 the underlying pte page is not shared, or it is the last user
7111  */
7112 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7113                                         unsigned long addr, pte_t *ptep)
7114 {
7115         pgd_t *pgd = pgd_offset(mm, addr);
7116         p4d_t *p4d = p4d_offset(pgd, addr);
7117         pud_t *pud = pud_offset(p4d, addr);
7118
7119         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7120         hugetlb_vma_assert_locked(vma);
7121         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7122         if (page_count(virt_to_page(ptep)) == 1)
7123                 return 0;
7124
7125         pud_clear(pud);
7126         put_page(virt_to_page(ptep));
7127         mm_dec_nr_pmds(mm);
7128         return 1;
7129 }
7130
7131 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7132
7133 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7134                       unsigned long addr, pud_t *pud)
7135 {
7136         return NULL;
7137 }
7138
7139 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7140                                 unsigned long addr, pte_t *ptep)
7141 {
7142         return 0;
7143 }
7144
7145 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7146                                 unsigned long *start, unsigned long *end)
7147 {
7148 }
7149
7150 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7151 {
7152         return false;
7153 }
7154 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7155
7156 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7157 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7158                         unsigned long addr, unsigned long sz)
7159 {
7160         pgd_t *pgd;
7161         p4d_t *p4d;
7162         pud_t *pud;
7163         pte_t *pte = NULL;
7164
7165         pgd = pgd_offset(mm, addr);
7166         p4d = p4d_alloc(mm, pgd, addr);
7167         if (!p4d)
7168                 return NULL;
7169         pud = pud_alloc(mm, p4d, addr);
7170         if (pud) {
7171                 if (sz == PUD_SIZE) {
7172                         pte = (pte_t *)pud;
7173                 } else {
7174                         BUG_ON(sz != PMD_SIZE);
7175                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7176                                 pte = huge_pmd_share(mm, vma, addr, pud);
7177                         else
7178                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7179                 }
7180         }
7181         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7182
7183         return pte;
7184 }
7185
7186 /*
7187  * huge_pte_offset() - Walk the page table to resolve the hugepage
7188  * entry at address @addr
7189  *
7190  * Return: Pointer to page table entry (PUD or PMD) for
7191  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7192  * size @sz doesn't match the hugepage size at this level of the page
7193  * table.
7194  */
7195 pte_t *huge_pte_offset(struct mm_struct *mm,
7196                        unsigned long addr, unsigned long sz)
7197 {
7198         pgd_t *pgd;
7199         p4d_t *p4d;
7200         pud_t *pud;
7201         pmd_t *pmd;
7202
7203         pgd = pgd_offset(mm, addr);
7204         if (!pgd_present(*pgd))
7205                 return NULL;
7206         p4d = p4d_offset(pgd, addr);
7207         if (!p4d_present(*p4d))
7208                 return NULL;
7209
7210         pud = pud_offset(p4d, addr);
7211         if (sz == PUD_SIZE)
7212                 /* must be pud huge, non-present or none */
7213                 return (pte_t *)pud;
7214         if (!pud_present(*pud))
7215                 return NULL;
7216         /* must have a valid entry and size to go further */
7217
7218         pmd = pmd_offset(pud, addr);
7219         /* must be pmd huge, non-present or none */
7220         return (pte_t *)pmd;
7221 }
7222
7223 /*
7224  * Return a mask that can be used to update an address to the last huge
7225  * page in a page table page mapping size.  Used to skip non-present
7226  * page table entries when linearly scanning address ranges.  Architectures
7227  * with unique huge page to page table relationships can define their own
7228  * version of this routine.
7229  */
7230 unsigned long hugetlb_mask_last_page(struct hstate *h)
7231 {
7232         unsigned long hp_size = huge_page_size(h);
7233
7234         if (hp_size == PUD_SIZE)
7235                 return P4D_SIZE - PUD_SIZE;
7236         else if (hp_size == PMD_SIZE)
7237                 return PUD_SIZE - PMD_SIZE;
7238         else
7239                 return 0UL;
7240 }
7241
7242 #else
7243
7244 /* See description above.  Architectures can provide their own version. */
7245 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7246 {
7247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7248         if (huge_page_size(h) == PMD_SIZE)
7249                 return PUD_SIZE - PMD_SIZE;
7250 #endif
7251         return 0UL;
7252 }
7253
7254 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7255
7256 /*
7257  * These functions are overwritable if your architecture needs its own
7258  * behavior.
7259  */
7260 int isolate_hugetlb(struct page *page, struct list_head *list)
7261 {
7262         int ret = 0;
7263
7264         spin_lock_irq(&hugetlb_lock);
7265         if (!PageHeadHuge(page) ||
7266             !HPageMigratable(page) ||
7267             !get_page_unless_zero(page)) {
7268                 ret = -EBUSY;
7269                 goto unlock;
7270         }
7271         ClearHPageMigratable(page);
7272         list_move_tail(&page->lru, list);
7273 unlock:
7274         spin_unlock_irq(&hugetlb_lock);
7275         return ret;
7276 }
7277
7278 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7279 {
7280         int ret = 0;
7281
7282         *hugetlb = false;
7283         spin_lock_irq(&hugetlb_lock);
7284         if (PageHeadHuge(page)) {
7285                 *hugetlb = true;
7286                 if (HPageFreed(page))
7287                         ret = 0;
7288                 else if (HPageMigratable(page) || unpoison)
7289                         ret = get_page_unless_zero(page);
7290                 else
7291                         ret = -EBUSY;
7292         }
7293         spin_unlock_irq(&hugetlb_lock);
7294         return ret;
7295 }
7296
7297 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7298                                 bool *migratable_cleared)
7299 {
7300         int ret;
7301
7302         spin_lock_irq(&hugetlb_lock);
7303         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7304         spin_unlock_irq(&hugetlb_lock);
7305         return ret;
7306 }
7307
7308 void putback_active_hugepage(struct page *page)
7309 {
7310         spin_lock_irq(&hugetlb_lock);
7311         SetHPageMigratable(page);
7312         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7313         spin_unlock_irq(&hugetlb_lock);
7314         put_page(page);
7315 }
7316
7317 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7318 {
7319         struct hstate *h = folio_hstate(old_folio);
7320
7321         hugetlb_cgroup_migrate(old_folio, new_folio);
7322         set_page_owner_migrate_reason(&new_folio->page, reason);
7323
7324         /*
7325          * transfer temporary state of the new hugetlb folio. This is
7326          * reverse to other transitions because the newpage is going to
7327          * be final while the old one will be freed so it takes over
7328          * the temporary status.
7329          *
7330          * Also note that we have to transfer the per-node surplus state
7331          * here as well otherwise the global surplus count will not match
7332          * the per-node's.
7333          */
7334         if (folio_test_hugetlb_temporary(new_folio)) {
7335                 int old_nid = folio_nid(old_folio);
7336                 int new_nid = folio_nid(new_folio);
7337
7338                 folio_set_hugetlb_temporary(old_folio);
7339                 folio_clear_hugetlb_temporary(new_folio);
7340
7341
7342                 /*
7343                  * There is no need to transfer the per-node surplus state
7344                  * when we do not cross the node.
7345                  */
7346                 if (new_nid == old_nid)
7347                         return;
7348                 spin_lock_irq(&hugetlb_lock);
7349                 if (h->surplus_huge_pages_node[old_nid]) {
7350                         h->surplus_huge_pages_node[old_nid]--;
7351                         h->surplus_huge_pages_node[new_nid]++;
7352                 }
7353                 spin_unlock_irq(&hugetlb_lock);
7354         }
7355 }
7356
7357 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7358                                    unsigned long start,
7359                                    unsigned long end)
7360 {
7361         struct hstate *h = hstate_vma(vma);
7362         unsigned long sz = huge_page_size(h);
7363         struct mm_struct *mm = vma->vm_mm;
7364         struct mmu_notifier_range range;
7365         unsigned long address;
7366         spinlock_t *ptl;
7367         pte_t *ptep;
7368
7369         if (!(vma->vm_flags & VM_MAYSHARE))
7370                 return;
7371
7372         if (start >= end)
7373                 return;
7374
7375         flush_cache_range(vma, start, end);
7376         /*
7377          * No need to call adjust_range_if_pmd_sharing_possible(), because
7378          * we have already done the PUD_SIZE alignment.
7379          */
7380         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7381                                 start, end);
7382         mmu_notifier_invalidate_range_start(&range);
7383         hugetlb_vma_lock_write(vma);
7384         i_mmap_lock_write(vma->vm_file->f_mapping);
7385         for (address = start; address < end; address += PUD_SIZE) {
7386                 ptep = huge_pte_offset(mm, address, sz);
7387                 if (!ptep)
7388                         continue;
7389                 ptl = huge_pte_lock(h, mm, ptep);
7390                 huge_pmd_unshare(mm, vma, address, ptep);
7391                 spin_unlock(ptl);
7392         }
7393         flush_hugetlb_tlb_range(vma, start, end);
7394         i_mmap_unlock_write(vma->vm_file->f_mapping);
7395         hugetlb_vma_unlock_write(vma);
7396         /*
7397          * No need to call mmu_notifier_invalidate_range(), see
7398          * Documentation/mm/mmu_notifier.rst.
7399          */
7400         mmu_notifier_invalidate_range_end(&range);
7401 }
7402
7403 /*
7404  * This function will unconditionally remove all the shared pmd pgtable entries
7405  * within the specific vma for a hugetlbfs memory range.
7406  */
7407 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7408 {
7409         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7410                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7411 }
7412
7413 #ifdef CONFIG_CMA
7414 static bool cma_reserve_called __initdata;
7415
7416 static int __init cmdline_parse_hugetlb_cma(char *p)
7417 {
7418         int nid, count = 0;
7419         unsigned long tmp;
7420         char *s = p;
7421
7422         while (*s) {
7423                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7424                         break;
7425
7426                 if (s[count] == ':') {
7427                         if (tmp >= MAX_NUMNODES)
7428                                 break;
7429                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7430
7431                         s += count + 1;
7432                         tmp = memparse(s, &s);
7433                         hugetlb_cma_size_in_node[nid] = tmp;
7434                         hugetlb_cma_size += tmp;
7435
7436                         /*
7437                          * Skip the separator if have one, otherwise
7438                          * break the parsing.
7439                          */
7440                         if (*s == ',')
7441                                 s++;
7442                         else
7443                                 break;
7444                 } else {
7445                         hugetlb_cma_size = memparse(p, &p);
7446                         break;
7447                 }
7448         }
7449
7450         return 0;
7451 }
7452
7453 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7454
7455 void __init hugetlb_cma_reserve(int order)
7456 {
7457         unsigned long size, reserved, per_node;
7458         bool node_specific_cma_alloc = false;
7459         int nid;
7460
7461         cma_reserve_called = true;
7462
7463         if (!hugetlb_cma_size)
7464                 return;
7465
7466         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7467                 if (hugetlb_cma_size_in_node[nid] == 0)
7468                         continue;
7469
7470                 if (!node_online(nid)) {
7471                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7472                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7473                         hugetlb_cma_size_in_node[nid] = 0;
7474                         continue;
7475                 }
7476
7477                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7478                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7479                                 nid, (PAGE_SIZE << order) / SZ_1M);
7480                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7481                         hugetlb_cma_size_in_node[nid] = 0;
7482                 } else {
7483                         node_specific_cma_alloc = true;
7484                 }
7485         }
7486
7487         /* Validate the CMA size again in case some invalid nodes specified. */
7488         if (!hugetlb_cma_size)
7489                 return;
7490
7491         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7492                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7493                         (PAGE_SIZE << order) / SZ_1M);
7494                 hugetlb_cma_size = 0;
7495                 return;
7496         }
7497
7498         if (!node_specific_cma_alloc) {
7499                 /*
7500                  * If 3 GB area is requested on a machine with 4 numa nodes,
7501                  * let's allocate 1 GB on first three nodes and ignore the last one.
7502                  */
7503                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7504                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7505                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7506         }
7507
7508         reserved = 0;
7509         for_each_online_node(nid) {
7510                 int res;
7511                 char name[CMA_MAX_NAME];
7512
7513                 if (node_specific_cma_alloc) {
7514                         if (hugetlb_cma_size_in_node[nid] == 0)
7515                                 continue;
7516
7517                         size = hugetlb_cma_size_in_node[nid];
7518                 } else {
7519                         size = min(per_node, hugetlb_cma_size - reserved);
7520                 }
7521
7522                 size = round_up(size, PAGE_SIZE << order);
7523
7524                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7525                 /*
7526                  * Note that 'order per bit' is based on smallest size that
7527                  * may be returned to CMA allocator in the case of
7528                  * huge page demotion.
7529                  */
7530                 res = cma_declare_contiguous_nid(0, size, 0,
7531                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7532                                                  0, false, name,
7533                                                  &hugetlb_cma[nid], nid);
7534                 if (res) {
7535                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7536                                 res, nid);
7537                         continue;
7538                 }
7539
7540                 reserved += size;
7541                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7542                         size / SZ_1M, nid);
7543
7544                 if (reserved >= hugetlb_cma_size)
7545                         break;
7546         }
7547
7548         if (!reserved)
7549                 /*
7550                  * hugetlb_cma_size is used to determine if allocations from
7551                  * cma are possible.  Set to zero if no cma regions are set up.
7552                  */
7553                 hugetlb_cma_size = 0;
7554 }
7555
7556 static void __init hugetlb_cma_check(void)
7557 {
7558         if (!hugetlb_cma_size || cma_reserve_called)
7559                 return;
7560
7561         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7562 }
7563
7564 #endif /* CONFIG_CMA */