Merge branch 'akpm' (patches from Andrew)
[platform/kernel/linux-exynos.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         /* minimum size accounting */
149         if (spool->min_hpages != -1 && spool->rsv_hpages) {
150                 if (delta > spool->rsv_hpages) {
151                         /*
152                          * Asking for more reserves than those already taken on
153                          * behalf of subpool.  Return difference.
154                          */
155                         ret = delta - spool->rsv_hpages;
156                         spool->rsv_hpages = 0;
157                 } else {
158                         ret = 0;        /* reserves already accounted for */
159                         spool->rsv_hpages -= delta;
160                 }
161         }
162
163 unlock_ret:
164         spin_unlock(&spool->lock);
165         return ret;
166 }
167
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175                                        long delta)
176 {
177         long ret = delta;
178
179         if (!spool)
180                 return delta;
181
182         spin_lock(&spool->lock);
183
184         if (spool->max_hpages != -1)            /* maximum size accounting */
185                 spool->used_hpages -= delta;
186
187          /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189                 if (spool->rsv_hpages + delta <= spool->min_hpages)
190                         ret = 0;
191                 else
192                         ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194                 spool->rsv_hpages += delta;
195                 if (spool->rsv_hpages > spool->min_hpages)
196                         spool->rsv_hpages = spool->min_hpages;
197         }
198
199         /*
200          * If hugetlbfs_put_super couldn't free spool due to an outstanding
201          * quota reference, free it now.
202          */
203         unlock_or_release_subpool(spool);
204
205         return ret;
206 }
207
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210         return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215         return subpool_inode(file_inode(vma->vm_file));
216 }
217
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238         struct list_head link;
239         long from;
240         long to;
241 };
242
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259         struct list_head *head = &resv->regions;
260         struct file_region *rg, *nrg, *trg;
261         long add = 0;
262
263         spin_lock(&resv->lock);
264         /* Locate the region we are either in or before. */
265         list_for_each_entry(rg, head, link)
266                 if (f <= rg->to)
267                         break;
268
269         /*
270          * If no region exists which can be expanded to include the
271          * specified range, the list must have been modified by an
272          * interleving call to region_del().  Pull a region descriptor
273          * from the cache and use it for this range.
274          */
275         if (&rg->link == head || t < rg->from) {
276                 VM_BUG_ON(resv->region_cache_count <= 0);
277
278                 resv->region_cache_count--;
279                 nrg = list_first_entry(&resv->region_cache, struct file_region,
280                                         link);
281                 list_del(&nrg->link);
282
283                 nrg->from = f;
284                 nrg->to = t;
285                 list_add(&nrg->link, rg->link.prev);
286
287                 add += t - f;
288                 goto out_locked;
289         }
290
291         /* Round our left edge to the current segment if it encloses us. */
292         if (f > rg->from)
293                 f = rg->from;
294
295         /* Check for and consume any regions we now overlap with. */
296         nrg = rg;
297         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298                 if (&rg->link == head)
299                         break;
300                 if (rg->from > t)
301                         break;
302
303                 /* If this area reaches higher then extend our area to
304                  * include it completely.  If this is not the first area
305                  * which we intend to reuse, free it. */
306                 if (rg->to > t)
307                         t = rg->to;
308                 if (rg != nrg) {
309                         /* Decrement return value by the deleted range.
310                          * Another range will span this area so that by
311                          * end of routine add will be >= zero
312                          */
313                         add -= (rg->to - rg->from);
314                         list_del(&rg->link);
315                         kfree(rg);
316                 }
317         }
318
319         add += (nrg->from - f);         /* Added to beginning of region */
320         nrg->from = f;
321         add += t - nrg->to;             /* Added to end of region */
322         nrg->to = t;
323
324 out_locked:
325         resv->adds_in_progress--;
326         spin_unlock(&resv->lock);
327         VM_BUG_ON(add < 0);
328         return add;
329 }
330
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355         struct list_head *head = &resv->regions;
356         struct file_region *rg, *nrg = NULL;
357         long chg = 0;
358
359 retry:
360         spin_lock(&resv->lock);
361 retry_locked:
362         resv->adds_in_progress++;
363
364         /*
365          * Check for sufficient descriptors in the cache to accommodate
366          * the number of in progress add operations.
367          */
368         if (resv->adds_in_progress > resv->region_cache_count) {
369                 struct file_region *trg;
370
371                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372                 /* Must drop lock to allocate a new descriptor. */
373                 resv->adds_in_progress--;
374                 spin_unlock(&resv->lock);
375
376                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377                 if (!trg) {
378                         kfree(nrg);
379                         return -ENOMEM;
380                 }
381
382                 spin_lock(&resv->lock);
383                 list_add(&trg->link, &resv->region_cache);
384                 resv->region_cache_count++;
385                 goto retry_locked;
386         }
387
388         /* Locate the region we are before or in. */
389         list_for_each_entry(rg, head, link)
390                 if (f <= rg->to)
391                         break;
392
393         /* If we are below the current region then a new region is required.
394          * Subtle, allocate a new region at the position but make it zero
395          * size such that we can guarantee to record the reservation. */
396         if (&rg->link == head || t < rg->from) {
397                 if (!nrg) {
398                         resv->adds_in_progress--;
399                         spin_unlock(&resv->lock);
400                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401                         if (!nrg)
402                                 return -ENOMEM;
403
404                         nrg->from = f;
405                         nrg->to   = f;
406                         INIT_LIST_HEAD(&nrg->link);
407                         goto retry;
408                 }
409
410                 list_add(&nrg->link, rg->link.prev);
411                 chg = t - f;
412                 goto out_nrg;
413         }
414
415         /* Round our left edge to the current segment if it encloses us. */
416         if (f > rg->from)
417                 f = rg->from;
418         chg = t - f;
419
420         /* Check for and consume any regions we now overlap with. */
421         list_for_each_entry(rg, rg->link.prev, link) {
422                 if (&rg->link == head)
423                         break;
424                 if (rg->from > t)
425                         goto out;
426
427                 /* We overlap with this area, if it extends further than
428                  * us then we must extend ourselves.  Account for its
429                  * existing reservation. */
430                 if (rg->to > t) {
431                         chg += rg->to - t;
432                         t = rg->to;
433                 }
434                 chg -= rg->to - rg->from;
435         }
436
437 out:
438         spin_unlock(&resv->lock);
439         /*  We already know we raced and no longer need the new region */
440         kfree(nrg);
441         return chg;
442 out_nrg:
443         spin_unlock(&resv->lock);
444         return chg;
445 }
446
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460         spin_lock(&resv->lock);
461         VM_BUG_ON(!resv->region_cache_count);
462         resv->adds_in_progress--;
463         spin_unlock(&resv->lock);
464 }
465
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482         struct list_head *head = &resv->regions;
483         struct file_region *rg, *trg;
484         struct file_region *nrg = NULL;
485         long del = 0;
486
487 retry:
488         spin_lock(&resv->lock);
489         list_for_each_entry_safe(rg, trg, head, link) {
490                 /*
491                  * Skip regions before the range to be deleted.  file_region
492                  * ranges are normally of the form [from, to).  However, there
493                  * may be a "placeholder" entry in the map which is of the form
494                  * (from, to) with from == to.  Check for placeholder entries
495                  * at the beginning of the range to be deleted.
496                  */
497                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498                         continue;
499
500                 if (rg->from >= t)
501                         break;
502
503                 if (f > rg->from && t < rg->to) { /* Must split region */
504                         /*
505                          * Check for an entry in the cache before dropping
506                          * lock and attempting allocation.
507                          */
508                         if (!nrg &&
509                             resv->region_cache_count > resv->adds_in_progress) {
510                                 nrg = list_first_entry(&resv->region_cache,
511                                                         struct file_region,
512                                                         link);
513                                 list_del(&nrg->link);
514                                 resv->region_cache_count--;
515                         }
516
517                         if (!nrg) {
518                                 spin_unlock(&resv->lock);
519                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520                                 if (!nrg)
521                                         return -ENOMEM;
522                                 goto retry;
523                         }
524
525                         del += t - f;
526
527                         /* New entry for end of split region */
528                         nrg->from = t;
529                         nrg->to = rg->to;
530                         INIT_LIST_HEAD(&nrg->link);
531
532                         /* Original entry is trimmed */
533                         rg->to = f;
534
535                         list_add(&nrg->link, &rg->link);
536                         nrg = NULL;
537                         break;
538                 }
539
540                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541                         del += rg->to - rg->from;
542                         list_del(&rg->link);
543                         kfree(rg);
544                         continue;
545                 }
546
547                 if (f <= rg->from) {    /* Trim beginning of region */
548                         del += t - rg->from;
549                         rg->from = t;
550                 } else {                /* Trim end of region */
551                         del += rg->to - f;
552                         rg->to = f;
553                 }
554         }
555
556         spin_unlock(&resv->lock);
557         kfree(nrg);
558         return del;
559 }
560
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode)
571 {
572         struct hugepage_subpool *spool = subpool_inode(inode);
573         long rsv_adjust;
574
575         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576         if (rsv_adjust) {
577                 struct hstate *h = hstate_inode(inode);
578
579                 hugetlb_acct_memory(h, 1);
580         }
581 }
582
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589         struct list_head *head = &resv->regions;
590         struct file_region *rg;
591         long chg = 0;
592
593         spin_lock(&resv->lock);
594         /* Locate each segment we overlap with, and count that overlap. */
595         list_for_each_entry(rg, head, link) {
596                 long seg_from;
597                 long seg_to;
598
599                 if (rg->to <= f)
600                         continue;
601                 if (rg->from >= t)
602                         break;
603
604                 seg_from = max(rg->from, f);
605                 seg_to = min(rg->to, t);
606
607                 chg += seg_to - seg_from;
608         }
609         spin_unlock(&resv->lock);
610
611         return chg;
612 }
613
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619                         struct vm_area_struct *vma, unsigned long address)
620 {
621         return ((address - vma->vm_start) >> huge_page_shift(h)) +
622                         (vma->vm_pgoff >> huge_page_order(h));
623 }
624
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626                                      unsigned long address)
627 {
628         return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638         struct hstate *hstate;
639
640         if (!is_vm_hugetlb_page(vma))
641                 return PAGE_SIZE;
642
643         hstate = hstate_vma(vma);
644
645         return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658         return vma_kernel_pagesize(vma);
659 }
660 #endif
661
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692         return (unsigned long)vma->vm_private_data;
693 }
694
695 static void set_vma_private_data(struct vm_area_struct *vma,
696                                                         unsigned long value)
697 {
698         vma->vm_private_data = (void *)value;
699 }
700
701 struct resv_map *resv_map_alloc(void)
702 {
703         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706         if (!resv_map || !rg) {
707                 kfree(resv_map);
708                 kfree(rg);
709                 return NULL;
710         }
711
712         kref_init(&resv_map->refs);
713         spin_lock_init(&resv_map->lock);
714         INIT_LIST_HEAD(&resv_map->regions);
715
716         resv_map->adds_in_progress = 0;
717
718         INIT_LIST_HEAD(&resv_map->region_cache);
719         list_add(&rg->link, &resv_map->region_cache);
720         resv_map->region_cache_count = 1;
721
722         return resv_map;
723 }
724
725 void resv_map_release(struct kref *ref)
726 {
727         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728         struct list_head *head = &resv_map->region_cache;
729         struct file_region *rg, *trg;
730
731         /* Clear out any active regions before we release the map. */
732         region_del(resv_map, 0, LONG_MAX);
733
734         /* ... and any entries left in the cache */
735         list_for_each_entry_safe(rg, trg, head, link) {
736                 list_del(&rg->link);
737                 kfree(rg);
738         }
739
740         VM_BUG_ON(resv_map->adds_in_progress);
741
742         kfree(resv_map);
743 }
744
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747         return inode->i_mapping->private_data;
748 }
749
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753         if (vma->vm_flags & VM_MAYSHARE) {
754                 struct address_space *mapping = vma->vm_file->f_mapping;
755                 struct inode *inode = mapping->host;
756
757                 return inode_resv_map(inode);
758
759         } else {
760                 return (struct resv_map *)(get_vma_private_data(vma) &
761                                                         ~HPAGE_RESV_MASK);
762         }
763 }
764
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770         set_vma_private_data(vma, (get_vma_private_data(vma) &
771                                 HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786         return (get_vma_private_data(vma) & flag) != 0;
787 }
788
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793         if (!(vma->vm_flags & VM_MAYSHARE))
794                 vma->vm_private_data = (void *)0;
795 }
796
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800         if (vma->vm_flags & VM_NORESERVE) {
801                 /*
802                  * This address is already reserved by other process(chg == 0),
803                  * so, we should decrement reserved count. Without decrementing,
804                  * reserve count remains after releasing inode, because this
805                  * allocated page will go into page cache and is regarded as
806                  * coming from reserved pool in releasing step.  Currently, we
807                  * don't have any other solution to deal with this situation
808                  * properly, so add work-around here.
809                  */
810                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811                         return true;
812                 else
813                         return false;
814         }
815
816         /* Shared mappings always use reserves */
817         if (vma->vm_flags & VM_MAYSHARE) {
818                 /*
819                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820                  * be a region map for all pages.  The only situation where
821                  * there is no region map is if a hole was punched via
822                  * fallocate.  In this case, there really are no reverves to
823                  * use.  This situation is indicated if chg != 0.
824                  */
825                 if (chg)
826                         return false;
827                 else
828                         return true;
829         }
830
831         /*
832          * Only the process that called mmap() has reserves for
833          * private mappings.
834          */
835         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836                 /*
837                  * Like the shared case above, a hole punch or truncate
838                  * could have been performed on the private mapping.
839                  * Examine the value of chg to determine if reserves
840                  * actually exist or were previously consumed.
841                  * Very Subtle - The value of chg comes from a previous
842                  * call to vma_needs_reserves().  The reserve map for
843                  * private mappings has different (opposite) semantics
844                  * than that of shared mappings.  vma_needs_reserves()
845                  * has already taken this difference in semantics into
846                  * account.  Therefore, the meaning of chg is the same
847                  * as in the shared case above.  Code could easily be
848                  * combined, but keeping it separate draws attention to
849                  * subtle differences.
850                  */
851                 if (chg)
852                         return false;
853                 else
854                         return true;
855         }
856
857         return false;
858 }
859
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862         int nid = page_to_nid(page);
863         list_move(&page->lru, &h->hugepage_freelists[nid]);
864         h->free_huge_pages++;
865         h->free_huge_pages_node[nid]++;
866 }
867
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870         struct page *page;
871
872         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873                 if (!is_migrate_isolate_page(page))
874                         break;
875         /*
876          * if 'non-isolated free hugepage' not found on the list,
877          * the allocation fails.
878          */
879         if (&h->hugepage_freelists[nid] == &page->lru)
880                 return NULL;
881         list_move(&page->lru, &h->hugepage_activelist);
882         set_page_refcounted(page);
883         h->free_huge_pages--;
884         h->free_huge_pages_node[nid]--;
885         return page;
886 }
887
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892                 return GFP_HIGHUSER_MOVABLE;
893         else
894                 return GFP_HIGHUSER;
895 }
896
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898                                 struct vm_area_struct *vma,
899                                 unsigned long address, int avoid_reserve,
900                                 long chg)
901 {
902         struct page *page = NULL;
903         struct mempolicy *mpol;
904         nodemask_t *nodemask;
905         struct zonelist *zonelist;
906         struct zone *zone;
907         struct zoneref *z;
908         unsigned int cpuset_mems_cookie;
909
910         /*
911          * A child process with MAP_PRIVATE mappings created by their parent
912          * have no page reserves. This check ensures that reservations are
913          * not "stolen". The child may still get SIGKILLed
914          */
915         if (!vma_has_reserves(vma, chg) &&
916                         h->free_huge_pages - h->resv_huge_pages == 0)
917                 goto err;
918
919         /* If reserves cannot be used, ensure enough pages are in the pool */
920         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921                 goto err;
922
923 retry_cpuset:
924         cpuset_mems_cookie = read_mems_allowed_begin();
925         zonelist = huge_zonelist(vma, address,
926                                         htlb_alloc_mask(h), &mpol, &nodemask);
927
928         for_each_zone_zonelist_nodemask(zone, z, zonelist,
929                                                 MAX_NR_ZONES - 1, nodemask) {
930                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
932                         if (page) {
933                                 if (avoid_reserve)
934                                         break;
935                                 if (!vma_has_reserves(vma, chg))
936                                         break;
937
938                                 SetPagePrivate(page);
939                                 h->resv_huge_pages--;
940                                 break;
941                         }
942                 }
943         }
944
945         mpol_cond_put(mpol);
946         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947                 goto retry_cpuset;
948         return page;
949
950 err:
951         return NULL;
952 }
953
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963         nid = next_node_in(nid, *nodes_allowed);
964         VM_BUG_ON(nid >= MAX_NUMNODES);
965
966         return nid;
967 }
968
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971         if (!node_isset(nid, *nodes_allowed))
972                 nid = next_node_allowed(nid, nodes_allowed);
973         return nid;
974 }
975
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983                                         nodemask_t *nodes_allowed)
984 {
985         int nid;
986
987         VM_BUG_ON(!nodes_allowed);
988
989         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992         return nid;
993 }
994
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003         int nid;
1004
1005         VM_BUG_ON(!nodes_allowed);
1006
1007         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010         return nid;
1011 }
1012
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1014         for (nr_nodes = nodes_weight(*mask);                            \
1015                 nr_nodes > 0 &&                                         \
1016                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1017                 nr_nodes--)
1018
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1020         for (nr_nodes = nodes_weight(*mask);                            \
1021                 nr_nodes > 0 &&                                         \
1022                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1023                 nr_nodes--)
1024
1025 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027         defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029                                         unsigned int order)
1030 {
1031         int i;
1032         int nr_pages = 1 << order;
1033         struct page *p = page + 1;
1034
1035         atomic_set(compound_mapcount_ptr(page), 0);
1036         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037                 clear_compound_head(p);
1038                 set_page_refcounted(p);
1039         }
1040
1041         set_compound_order(page, 0);
1042         __ClearPageHead(page);
1043 }
1044
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047         free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051                                 unsigned long nr_pages)
1052 {
1053         unsigned long end_pfn = start_pfn + nr_pages;
1054         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058                         unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060         unsigned long i, end_pfn = start_pfn + nr_pages;
1061         struct page *page;
1062
1063         for (i = start_pfn; i < end_pfn; i++) {
1064                 if (!pfn_valid(i))
1065                         return false;
1066
1067                 page = pfn_to_page(i);
1068
1069                 if (page_zone(page) != z)
1070                         return false;
1071
1072                 if (PageReserved(page))
1073                         return false;
1074
1075                 if (page_count(page) > 0)
1076                         return false;
1077
1078                 if (PageHuge(page))
1079                         return false;
1080         }
1081
1082         return true;
1083 }
1084
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086                         unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088         unsigned long last_pfn = start_pfn + nr_pages - 1;
1089         return zone_spans_pfn(zone, last_pfn);
1090 }
1091
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094         unsigned long nr_pages = 1 << order;
1095         unsigned long ret, pfn, flags;
1096         struct zone *z;
1097
1098         z = NODE_DATA(nid)->node_zones;
1099         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100                 spin_lock_irqsave(&z->lock, flags);
1101
1102                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105                                 /*
1106                                  * We release the zone lock here because
1107                                  * alloc_contig_range() will also lock the zone
1108                                  * at some point. If there's an allocation
1109                                  * spinning on this lock, it may win the race
1110                                  * and cause alloc_contig_range() to fail...
1111                                  */
1112                                 spin_unlock_irqrestore(&z->lock, flags);
1113                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1114                                 if (!ret)
1115                                         return pfn_to_page(pfn);
1116                                 spin_lock_irqsave(&z->lock, flags);
1117                         }
1118                         pfn += nr_pages;
1119                 }
1120
1121                 spin_unlock_irqrestore(&z->lock, flags);
1122         }
1123
1124         return NULL;
1125 }
1126
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132         struct page *page;
1133
1134         page = alloc_gigantic_page(nid, huge_page_order(h));
1135         if (page) {
1136                 prep_compound_gigantic_page(page, huge_page_order(h));
1137                 prep_new_huge_page(h, page, nid);
1138         }
1139
1140         return page;
1141 }
1142
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144                                 nodemask_t *nodes_allowed)
1145 {
1146         struct page *page = NULL;
1147         int nr_nodes, node;
1148
1149         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150                 page = alloc_fresh_gigantic_page_node(h, node);
1151                 if (page)
1152                         return 1;
1153         }
1154
1155         return 0;
1156 }
1157
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165                                         nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170         int i;
1171
1172         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173                 return;
1174
1175         h->nr_huge_pages--;
1176         h->nr_huge_pages_node[page_to_nid(page)]--;
1177         for (i = 0; i < pages_per_huge_page(h); i++) {
1178                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179                                 1 << PG_referenced | 1 << PG_dirty |
1180                                 1 << PG_active | 1 << PG_private |
1181                                 1 << PG_writeback);
1182         }
1183         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185         set_page_refcounted(page);
1186         if (hstate_is_gigantic(h)) {
1187                 destroy_compound_gigantic_page(page, huge_page_order(h));
1188                 free_gigantic_page(page, huge_page_order(h));
1189         } else {
1190                 __free_pages(page, huge_page_order(h));
1191         }
1192 }
1193
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196         struct hstate *h;
1197
1198         for_each_hstate(h) {
1199                 if (huge_page_size(h) == size)
1200                         return h;
1201         }
1202         return NULL;
1203 }
1204
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHuge(page), page);
1214         return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221         SetPagePrivate(&page[1]);
1222 }
1223
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227         ClearPagePrivate(&page[1]);
1228 }
1229
1230 void free_huge_page(struct page *page)
1231 {
1232         /*
1233          * Can't pass hstate in here because it is called from the
1234          * compound page destructor.
1235          */
1236         struct hstate *h = page_hstate(page);
1237         int nid = page_to_nid(page);
1238         struct hugepage_subpool *spool =
1239                 (struct hugepage_subpool *)page_private(page);
1240         bool restore_reserve;
1241
1242         set_page_private(page, 0);
1243         page->mapping = NULL;
1244         VM_BUG_ON_PAGE(page_count(page), page);
1245         VM_BUG_ON_PAGE(page_mapcount(page), page);
1246         restore_reserve = PagePrivate(page);
1247         ClearPagePrivate(page);
1248
1249         /*
1250          * A return code of zero implies that the subpool will be under its
1251          * minimum size if the reservation is not restored after page is free.
1252          * Therefore, force restore_reserve operation.
1253          */
1254         if (hugepage_subpool_put_pages(spool, 1) == 0)
1255                 restore_reserve = true;
1256
1257         spin_lock(&hugetlb_lock);
1258         clear_page_huge_active(page);
1259         hugetlb_cgroup_uncharge_page(hstate_index(h),
1260                                      pages_per_huge_page(h), page);
1261         if (restore_reserve)
1262                 h->resv_huge_pages++;
1263
1264         if (h->surplus_huge_pages_node[nid]) {
1265                 /* remove the page from active list */
1266                 list_del(&page->lru);
1267                 update_and_free_page(h, page);
1268                 h->surplus_huge_pages--;
1269                 h->surplus_huge_pages_node[nid]--;
1270         } else {
1271                 arch_clear_hugepage_flags(page);
1272                 enqueue_huge_page(h, page);
1273         }
1274         spin_unlock(&hugetlb_lock);
1275 }
1276
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279         INIT_LIST_HEAD(&page->lru);
1280         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281         spin_lock(&hugetlb_lock);
1282         set_hugetlb_cgroup(page, NULL);
1283         h->nr_huge_pages++;
1284         h->nr_huge_pages_node[nid]++;
1285         spin_unlock(&hugetlb_lock);
1286         put_page(page); /* free it into the hugepage allocator */
1287 }
1288
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291         int i;
1292         int nr_pages = 1 << order;
1293         struct page *p = page + 1;
1294
1295         /* we rely on prep_new_huge_page to set the destructor */
1296         set_compound_order(page, order);
1297         __ClearPageReserved(page);
1298         __SetPageHead(page);
1299         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300                 /*
1301                  * For gigantic hugepages allocated through bootmem at
1302                  * boot, it's safer to be consistent with the not-gigantic
1303                  * hugepages and clear the PG_reserved bit from all tail pages
1304                  * too.  Otherwse drivers using get_user_pages() to access tail
1305                  * pages may get the reference counting wrong if they see
1306                  * PG_reserved set on a tail page (despite the head page not
1307                  * having PG_reserved set).  Enforcing this consistency between
1308                  * head and tail pages allows drivers to optimize away a check
1309                  * on the head page when they need know if put_page() is needed
1310                  * after get_user_pages().
1311                  */
1312                 __ClearPageReserved(p);
1313                 set_page_count(p, 0);
1314                 set_compound_head(p, page);
1315         }
1316         atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326         if (!PageCompound(page))
1327                 return 0;
1328
1329         page = compound_head(page);
1330         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340         if (!PageHead(page_head))
1341                 return 0;
1342
1343         return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348         struct page *page_head = compound_head(page);
1349         pgoff_t index = page_index(page_head);
1350         unsigned long compound_idx;
1351
1352         if (!PageHuge(page_head))
1353                 return page_index(page);
1354
1355         if (compound_order(page_head) >= MAX_ORDER)
1356                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357         else
1358                 compound_idx = page - page_head;
1359
1360         return (index << compound_order(page_head)) + compound_idx;
1361 }
1362
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365         struct page *page;
1366
1367         page = __alloc_pages_node(nid,
1368                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369                                                 __GFP_REPEAT|__GFP_NOWARN,
1370                 huge_page_order(h));
1371         if (page) {
1372                 prep_new_huge_page(h, page, nid);
1373         }
1374
1375         return page;
1376 }
1377
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380         struct page *page;
1381         int nr_nodes, node;
1382         int ret = 0;
1383
1384         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385                 page = alloc_fresh_huge_page_node(h, node);
1386                 if (page) {
1387                         ret = 1;
1388                         break;
1389                 }
1390         }
1391
1392         if (ret)
1393                 count_vm_event(HTLB_BUDDY_PGALLOC);
1394         else
1395                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397         return ret;
1398 }
1399
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407                                                          bool acct_surplus)
1408 {
1409         int nr_nodes, node;
1410         int ret = 0;
1411
1412         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413                 /*
1414                  * If we're returning unused surplus pages, only examine
1415                  * nodes with surplus pages.
1416                  */
1417                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418                     !list_empty(&h->hugepage_freelists[node])) {
1419                         struct page *page =
1420                                 list_entry(h->hugepage_freelists[node].next,
1421                                           struct page, lru);
1422                         list_del(&page->lru);
1423                         h->free_huge_pages--;
1424                         h->free_huge_pages_node[node]--;
1425                         if (acct_surplus) {
1426                                 h->surplus_huge_pages--;
1427                                 h->surplus_huge_pages_node[node]--;
1428                         }
1429                         update_and_free_page(h, page);
1430                         ret = 1;
1431                         break;
1432                 }
1433         }
1434
1435         return ret;
1436 }
1437
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441  * number of free hugepages would be reduced below the number of reserved
1442  * hugepages.
1443  */
1444 static int dissolve_free_huge_page(struct page *page)
1445 {
1446         int rc = 0;
1447
1448         spin_lock(&hugetlb_lock);
1449         if (PageHuge(page) && !page_count(page)) {
1450                 struct page *head = compound_head(page);
1451                 struct hstate *h = page_hstate(head);
1452                 int nid = page_to_nid(head);
1453                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1454                         rc = -EBUSY;
1455                         goto out;
1456                 }
1457                 list_del(&head->lru);
1458                 h->free_huge_pages--;
1459                 h->free_huge_pages_node[nid]--;
1460                 h->max_huge_pages--;
1461                 update_and_free_page(h, head);
1462         }
1463 out:
1464         spin_unlock(&hugetlb_lock);
1465         return rc;
1466 }
1467
1468 /*
1469  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470  * make specified memory blocks removable from the system.
1471  * Note that this will dissolve a free gigantic hugepage completely, if any
1472  * part of it lies within the given range.
1473  * Also note that if dissolve_free_huge_page() returns with an error, all
1474  * free hugepages that were dissolved before that error are lost.
1475  */
1476 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1477 {
1478         unsigned long pfn;
1479         struct page *page;
1480         int rc = 0;
1481
1482         if (!hugepages_supported())
1483                 return rc;
1484
1485         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1486                 page = pfn_to_page(pfn);
1487                 if (PageHuge(page) && !page_count(page)) {
1488                         rc = dissolve_free_huge_page(page);
1489                         if (rc)
1490                                 break;
1491                 }
1492         }
1493
1494         return rc;
1495 }
1496
1497 /*
1498  * There are 3 ways this can get called:
1499  * 1. With vma+addr: we use the VMA's memory policy
1500  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1501  *    page from any node, and let the buddy allocator itself figure
1502  *    it out.
1503  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1504  *    strictly from 'nid'
1505  */
1506 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1507                 struct vm_area_struct *vma, unsigned long addr, int nid)
1508 {
1509         int order = huge_page_order(h);
1510         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1511         unsigned int cpuset_mems_cookie;
1512
1513         /*
1514          * We need a VMA to get a memory policy.  If we do not
1515          * have one, we use the 'nid' argument.
1516          *
1517          * The mempolicy stuff below has some non-inlined bits
1518          * and calls ->vm_ops.  That makes it hard to optimize at
1519          * compile-time, even when NUMA is off and it does
1520          * nothing.  This helps the compiler optimize it out.
1521          */
1522         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1523                 /*
1524                  * If a specific node is requested, make sure to
1525                  * get memory from there, but only when a node
1526                  * is explicitly specified.
1527                  */
1528                 if (nid != NUMA_NO_NODE)
1529                         gfp |= __GFP_THISNODE;
1530                 /*
1531                  * Make sure to call something that can handle
1532                  * nid=NUMA_NO_NODE
1533                  */
1534                 return alloc_pages_node(nid, gfp, order);
1535         }
1536
1537         /*
1538          * OK, so we have a VMA.  Fetch the mempolicy and try to
1539          * allocate a huge page with it.  We will only reach this
1540          * when CONFIG_NUMA=y.
1541          */
1542         do {
1543                 struct page *page;
1544                 struct mempolicy *mpol;
1545                 struct zonelist *zl;
1546                 nodemask_t *nodemask;
1547
1548                 cpuset_mems_cookie = read_mems_allowed_begin();
1549                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1550                 mpol_cond_put(mpol);
1551                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1552                 if (page)
1553                         return page;
1554         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1555
1556         return NULL;
1557 }
1558
1559 /*
1560  * There are two ways to allocate a huge page:
1561  * 1. When you have a VMA and an address (like a fault)
1562  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1563  *
1564  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1565  * this case which signifies that the allocation should be done with
1566  * respect for the VMA's memory policy.
1567  *
1568  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1569  * implies that memory policies will not be taken in to account.
1570  */
1571 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1572                 struct vm_area_struct *vma, unsigned long addr, int nid)
1573 {
1574         struct page *page;
1575         unsigned int r_nid;
1576
1577         if (hstate_is_gigantic(h))
1578                 return NULL;
1579
1580         /*
1581          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1582          * This makes sure the caller is picking _one_ of the modes with which
1583          * we can call this function, not both.
1584          */
1585         if (vma || (addr != -1)) {
1586                 VM_WARN_ON_ONCE(addr == -1);
1587                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1588         }
1589         /*
1590          * Assume we will successfully allocate the surplus page to
1591          * prevent racing processes from causing the surplus to exceed
1592          * overcommit
1593          *
1594          * This however introduces a different race, where a process B
1595          * tries to grow the static hugepage pool while alloc_pages() is
1596          * called by process A. B will only examine the per-node
1597          * counters in determining if surplus huge pages can be
1598          * converted to normal huge pages in adjust_pool_surplus(). A
1599          * won't be able to increment the per-node counter, until the
1600          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1601          * no more huge pages can be converted from surplus to normal
1602          * state (and doesn't try to convert again). Thus, we have a
1603          * case where a surplus huge page exists, the pool is grown, and
1604          * the surplus huge page still exists after, even though it
1605          * should just have been converted to a normal huge page. This
1606          * does not leak memory, though, as the hugepage will be freed
1607          * once it is out of use. It also does not allow the counters to
1608          * go out of whack in adjust_pool_surplus() as we don't modify
1609          * the node values until we've gotten the hugepage and only the
1610          * per-node value is checked there.
1611          */
1612         spin_lock(&hugetlb_lock);
1613         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1614                 spin_unlock(&hugetlb_lock);
1615                 return NULL;
1616         } else {
1617                 h->nr_huge_pages++;
1618                 h->surplus_huge_pages++;
1619         }
1620         spin_unlock(&hugetlb_lock);
1621
1622         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1623
1624         spin_lock(&hugetlb_lock);
1625         if (page) {
1626                 INIT_LIST_HEAD(&page->lru);
1627                 r_nid = page_to_nid(page);
1628                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1629                 set_hugetlb_cgroup(page, NULL);
1630                 /*
1631                  * We incremented the global counters already
1632                  */
1633                 h->nr_huge_pages_node[r_nid]++;
1634                 h->surplus_huge_pages_node[r_nid]++;
1635                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1636         } else {
1637                 h->nr_huge_pages--;
1638                 h->surplus_huge_pages--;
1639                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1640         }
1641         spin_unlock(&hugetlb_lock);
1642
1643         return page;
1644 }
1645
1646 /*
1647  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1648  * NUMA_NO_NODE, which means that it may be allocated
1649  * anywhere.
1650  */
1651 static
1652 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1653 {
1654         unsigned long addr = -1;
1655
1656         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1657 }
1658
1659 /*
1660  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1661  */
1662 static
1663 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1664                 struct vm_area_struct *vma, unsigned long addr)
1665 {
1666         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1667 }
1668
1669 /*
1670  * This allocation function is useful in the context where vma is irrelevant.
1671  * E.g. soft-offlining uses this function because it only cares physical
1672  * address of error page.
1673  */
1674 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675 {
1676         struct page *page = NULL;
1677
1678         spin_lock(&hugetlb_lock);
1679         if (h->free_huge_pages - h->resv_huge_pages > 0)
1680                 page = dequeue_huge_page_node(h, nid);
1681         spin_unlock(&hugetlb_lock);
1682
1683         if (!page)
1684                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1685
1686         return page;
1687 }
1688
1689 /*
1690  * Increase the hugetlb pool such that it can accommodate a reservation
1691  * of size 'delta'.
1692  */
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1694 {
1695         struct list_head surplus_list;
1696         struct page *page, *tmp;
1697         int ret, i;
1698         int needed, allocated;
1699         bool alloc_ok = true;
1700
1701         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702         if (needed <= 0) {
1703                 h->resv_huge_pages += delta;
1704                 return 0;
1705         }
1706
1707         allocated = 0;
1708         INIT_LIST_HEAD(&surplus_list);
1709
1710         ret = -ENOMEM;
1711 retry:
1712         spin_unlock(&hugetlb_lock);
1713         for (i = 0; i < needed; i++) {
1714                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1715                 if (!page) {
1716                         alloc_ok = false;
1717                         break;
1718                 }
1719                 list_add(&page->lru, &surplus_list);
1720         }
1721         allocated += i;
1722
1723         /*
1724          * After retaking hugetlb_lock, we need to recalculate 'needed'
1725          * because either resv_huge_pages or free_huge_pages may have changed.
1726          */
1727         spin_lock(&hugetlb_lock);
1728         needed = (h->resv_huge_pages + delta) -
1729                         (h->free_huge_pages + allocated);
1730         if (needed > 0) {
1731                 if (alloc_ok)
1732                         goto retry;
1733                 /*
1734                  * We were not able to allocate enough pages to
1735                  * satisfy the entire reservation so we free what
1736                  * we've allocated so far.
1737                  */
1738                 goto free;
1739         }
1740         /*
1741          * The surplus_list now contains _at_least_ the number of extra pages
1742          * needed to accommodate the reservation.  Add the appropriate number
1743          * of pages to the hugetlb pool and free the extras back to the buddy
1744          * allocator.  Commit the entire reservation here to prevent another
1745          * process from stealing the pages as they are added to the pool but
1746          * before they are reserved.
1747          */
1748         needed += allocated;
1749         h->resv_huge_pages += delta;
1750         ret = 0;
1751
1752         /* Free the needed pages to the hugetlb pool */
1753         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1754                 if ((--needed) < 0)
1755                         break;
1756                 /*
1757                  * This page is now managed by the hugetlb allocator and has
1758                  * no users -- drop the buddy allocator's reference.
1759                  */
1760                 put_page_testzero(page);
1761                 VM_BUG_ON_PAGE(page_count(page), page);
1762                 enqueue_huge_page(h, page);
1763         }
1764 free:
1765         spin_unlock(&hugetlb_lock);
1766
1767         /* Free unnecessary surplus pages to the buddy allocator */
1768         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1769                 put_page(page);
1770         spin_lock(&hugetlb_lock);
1771
1772         return ret;
1773 }
1774
1775 /*
1776  * When releasing a hugetlb pool reservation, any surplus pages that were
1777  * allocated to satisfy the reservation must be explicitly freed if they were
1778  * never used.
1779  * Called with hugetlb_lock held.
1780  */
1781 static void return_unused_surplus_pages(struct hstate *h,
1782                                         unsigned long unused_resv_pages)
1783 {
1784         unsigned long nr_pages;
1785
1786         /* Uncommit the reservation */
1787         h->resv_huge_pages -= unused_resv_pages;
1788
1789         /* Cannot return gigantic pages currently */
1790         if (hstate_is_gigantic(h))
1791                 return;
1792
1793         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1794
1795         /*
1796          * We want to release as many surplus pages as possible, spread
1797          * evenly across all nodes with memory. Iterate across these nodes
1798          * until we can no longer free unreserved surplus pages. This occurs
1799          * when the nodes with surplus pages have no free pages.
1800          * free_pool_huge_page() will balance the the freed pages across the
1801          * on-line nodes with memory and will handle the hstate accounting.
1802          */
1803         while (nr_pages--) {
1804                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1805                         break;
1806                 cond_resched_lock(&hugetlb_lock);
1807         }
1808 }
1809
1810
1811 /*
1812  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1813  * are used by the huge page allocation routines to manage reservations.
1814  *
1815  * vma_needs_reservation is called to determine if the huge page at addr
1816  * within the vma has an associated reservation.  If a reservation is
1817  * needed, the value 1 is returned.  The caller is then responsible for
1818  * managing the global reservation and subpool usage counts.  After
1819  * the huge page has been allocated, vma_commit_reservation is called
1820  * to add the page to the reservation map.  If the page allocation fails,
1821  * the reservation must be ended instead of committed.  vma_end_reservation
1822  * is called in such cases.
1823  *
1824  * In the normal case, vma_commit_reservation returns the same value
1825  * as the preceding vma_needs_reservation call.  The only time this
1826  * is not the case is if a reserve map was changed between calls.  It
1827  * is the responsibility of the caller to notice the difference and
1828  * take appropriate action.
1829  */
1830 enum vma_resv_mode {
1831         VMA_NEEDS_RESV,
1832         VMA_COMMIT_RESV,
1833         VMA_END_RESV,
1834 };
1835 static long __vma_reservation_common(struct hstate *h,
1836                                 struct vm_area_struct *vma, unsigned long addr,
1837                                 enum vma_resv_mode mode)
1838 {
1839         struct resv_map *resv;
1840         pgoff_t idx;
1841         long ret;
1842
1843         resv = vma_resv_map(vma);
1844         if (!resv)
1845                 return 1;
1846
1847         idx = vma_hugecache_offset(h, vma, addr);
1848         switch (mode) {
1849         case VMA_NEEDS_RESV:
1850                 ret = region_chg(resv, idx, idx + 1);
1851                 break;
1852         case VMA_COMMIT_RESV:
1853                 ret = region_add(resv, idx, idx + 1);
1854                 break;
1855         case VMA_END_RESV:
1856                 region_abort(resv, idx, idx + 1);
1857                 ret = 0;
1858                 break;
1859         default:
1860                 BUG();
1861         }
1862
1863         if (vma->vm_flags & VM_MAYSHARE)
1864                 return ret;
1865         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1866                 /*
1867                  * In most cases, reserves always exist for private mappings.
1868                  * However, a file associated with mapping could have been
1869                  * hole punched or truncated after reserves were consumed.
1870                  * As subsequent fault on such a range will not use reserves.
1871                  * Subtle - The reserve map for private mappings has the
1872                  * opposite meaning than that of shared mappings.  If NO
1873                  * entry is in the reserve map, it means a reservation exists.
1874                  * If an entry exists in the reserve map, it means the
1875                  * reservation has already been consumed.  As a result, the
1876                  * return value of this routine is the opposite of the
1877                  * value returned from reserve map manipulation routines above.
1878                  */
1879                 if (ret)
1880                         return 0;
1881                 else
1882                         return 1;
1883         }
1884         else
1885                 return ret < 0 ? ret : 0;
1886 }
1887
1888 static long vma_needs_reservation(struct hstate *h,
1889                         struct vm_area_struct *vma, unsigned long addr)
1890 {
1891         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1892 }
1893
1894 static long vma_commit_reservation(struct hstate *h,
1895                         struct vm_area_struct *vma, unsigned long addr)
1896 {
1897         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1898 }
1899
1900 static void vma_end_reservation(struct hstate *h,
1901                         struct vm_area_struct *vma, unsigned long addr)
1902 {
1903         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1904 }
1905
1906 struct page *alloc_huge_page(struct vm_area_struct *vma,
1907                                     unsigned long addr, int avoid_reserve)
1908 {
1909         struct hugepage_subpool *spool = subpool_vma(vma);
1910         struct hstate *h = hstate_vma(vma);
1911         struct page *page;
1912         long map_chg, map_commit;
1913         long gbl_chg;
1914         int ret, idx;
1915         struct hugetlb_cgroup *h_cg;
1916
1917         idx = hstate_index(h);
1918         /*
1919          * Examine the region/reserve map to determine if the process
1920          * has a reservation for the page to be allocated.  A return
1921          * code of zero indicates a reservation exists (no change).
1922          */
1923         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1924         if (map_chg < 0)
1925                 return ERR_PTR(-ENOMEM);
1926
1927         /*
1928          * Processes that did not create the mapping will have no
1929          * reserves as indicated by the region/reserve map. Check
1930          * that the allocation will not exceed the subpool limit.
1931          * Allocations for MAP_NORESERVE mappings also need to be
1932          * checked against any subpool limit.
1933          */
1934         if (map_chg || avoid_reserve) {
1935                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1936                 if (gbl_chg < 0) {
1937                         vma_end_reservation(h, vma, addr);
1938                         return ERR_PTR(-ENOSPC);
1939                 }
1940
1941                 /*
1942                  * Even though there was no reservation in the region/reserve
1943                  * map, there could be reservations associated with the
1944                  * subpool that can be used.  This would be indicated if the
1945                  * return value of hugepage_subpool_get_pages() is zero.
1946                  * However, if avoid_reserve is specified we still avoid even
1947                  * the subpool reservations.
1948                  */
1949                 if (avoid_reserve)
1950                         gbl_chg = 1;
1951         }
1952
1953         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1954         if (ret)
1955                 goto out_subpool_put;
1956
1957         spin_lock(&hugetlb_lock);
1958         /*
1959          * glb_chg is passed to indicate whether or not a page must be taken
1960          * from the global free pool (global change).  gbl_chg == 0 indicates
1961          * a reservation exists for the allocation.
1962          */
1963         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1964         if (!page) {
1965                 spin_unlock(&hugetlb_lock);
1966                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1967                 if (!page)
1968                         goto out_uncharge_cgroup;
1969                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1970                         SetPagePrivate(page);
1971                         h->resv_huge_pages--;
1972                 }
1973                 spin_lock(&hugetlb_lock);
1974                 list_move(&page->lru, &h->hugepage_activelist);
1975                 /* Fall through */
1976         }
1977         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1978         spin_unlock(&hugetlb_lock);
1979
1980         set_page_private(page, (unsigned long)spool);
1981
1982         map_commit = vma_commit_reservation(h, vma, addr);
1983         if (unlikely(map_chg > map_commit)) {
1984                 /*
1985                  * The page was added to the reservation map between
1986                  * vma_needs_reservation and vma_commit_reservation.
1987                  * This indicates a race with hugetlb_reserve_pages.
1988                  * Adjust for the subpool count incremented above AND
1989                  * in hugetlb_reserve_pages for the same page.  Also,
1990                  * the reservation count added in hugetlb_reserve_pages
1991                  * no longer applies.
1992                  */
1993                 long rsv_adjust;
1994
1995                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1996                 hugetlb_acct_memory(h, -rsv_adjust);
1997         }
1998         return page;
1999
2000 out_uncharge_cgroup:
2001         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2002 out_subpool_put:
2003         if (map_chg || avoid_reserve)
2004                 hugepage_subpool_put_pages(spool, 1);
2005         vma_end_reservation(h, vma, addr);
2006         return ERR_PTR(-ENOSPC);
2007 }
2008
2009 /*
2010  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2011  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2012  * where no ERR_VALUE is expected to be returned.
2013  */
2014 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2015                                 unsigned long addr, int avoid_reserve)
2016 {
2017         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2018         if (IS_ERR(page))
2019                 page = NULL;
2020         return page;
2021 }
2022
2023 int __weak alloc_bootmem_huge_page(struct hstate *h)
2024 {
2025         struct huge_bootmem_page *m;
2026         int nr_nodes, node;
2027
2028         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2029                 void *addr;
2030
2031                 addr = memblock_virt_alloc_try_nid_nopanic(
2032                                 huge_page_size(h), huge_page_size(h),
2033                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2034                 if (addr) {
2035                         /*
2036                          * Use the beginning of the huge page to store the
2037                          * huge_bootmem_page struct (until gather_bootmem
2038                          * puts them into the mem_map).
2039                          */
2040                         m = addr;
2041                         goto found;
2042                 }
2043         }
2044         return 0;
2045
2046 found:
2047         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2048         /* Put them into a private list first because mem_map is not up yet */
2049         list_add(&m->list, &huge_boot_pages);
2050         m->hstate = h;
2051         return 1;
2052 }
2053
2054 static void __init prep_compound_huge_page(struct page *page,
2055                 unsigned int order)
2056 {
2057         if (unlikely(order > (MAX_ORDER - 1)))
2058                 prep_compound_gigantic_page(page, order);
2059         else
2060                 prep_compound_page(page, order);
2061 }
2062
2063 /* Put bootmem huge pages into the standard lists after mem_map is up */
2064 static void __init gather_bootmem_prealloc(void)
2065 {
2066         struct huge_bootmem_page *m;
2067
2068         list_for_each_entry(m, &huge_boot_pages, list) {
2069                 struct hstate *h = m->hstate;
2070                 struct page *page;
2071
2072 #ifdef CONFIG_HIGHMEM
2073                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2074                 memblock_free_late(__pa(m),
2075                                    sizeof(struct huge_bootmem_page));
2076 #else
2077                 page = virt_to_page(m);
2078 #endif
2079                 WARN_ON(page_count(page) != 1);
2080                 prep_compound_huge_page(page, h->order);
2081                 WARN_ON(PageReserved(page));
2082                 prep_new_huge_page(h, page, page_to_nid(page));
2083                 /*
2084                  * If we had gigantic hugepages allocated at boot time, we need
2085                  * to restore the 'stolen' pages to totalram_pages in order to
2086                  * fix confusing memory reports from free(1) and another
2087                  * side-effects, like CommitLimit going negative.
2088                  */
2089                 if (hstate_is_gigantic(h))
2090                         adjust_managed_page_count(page, 1 << h->order);
2091         }
2092 }
2093
2094 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2095 {
2096         unsigned long i;
2097
2098         for (i = 0; i < h->max_huge_pages; ++i) {
2099                 if (hstate_is_gigantic(h)) {
2100                         if (!alloc_bootmem_huge_page(h))
2101                                 break;
2102                 } else if (!alloc_fresh_huge_page(h,
2103                                          &node_states[N_MEMORY]))
2104                         break;
2105         }
2106         h->max_huge_pages = i;
2107 }
2108
2109 static void __init hugetlb_init_hstates(void)
2110 {
2111         struct hstate *h;
2112
2113         for_each_hstate(h) {
2114                 if (minimum_order > huge_page_order(h))
2115                         minimum_order = huge_page_order(h);
2116
2117                 /* oversize hugepages were init'ed in early boot */
2118                 if (!hstate_is_gigantic(h))
2119                         hugetlb_hstate_alloc_pages(h);
2120         }
2121         VM_BUG_ON(minimum_order == UINT_MAX);
2122 }
2123
2124 static char * __init memfmt(char *buf, unsigned long n)
2125 {
2126         if (n >= (1UL << 30))
2127                 sprintf(buf, "%lu GB", n >> 30);
2128         else if (n >= (1UL << 20))
2129                 sprintf(buf, "%lu MB", n >> 20);
2130         else
2131                 sprintf(buf, "%lu KB", n >> 10);
2132         return buf;
2133 }
2134
2135 static void __init report_hugepages(void)
2136 {
2137         struct hstate *h;
2138
2139         for_each_hstate(h) {
2140                 char buf[32];
2141                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2142                         memfmt(buf, huge_page_size(h)),
2143                         h->free_huge_pages);
2144         }
2145 }
2146
2147 #ifdef CONFIG_HIGHMEM
2148 static void try_to_free_low(struct hstate *h, unsigned long count,
2149                                                 nodemask_t *nodes_allowed)
2150 {
2151         int i;
2152
2153         if (hstate_is_gigantic(h))
2154                 return;
2155
2156         for_each_node_mask(i, *nodes_allowed) {
2157                 struct page *page, *next;
2158                 struct list_head *freel = &h->hugepage_freelists[i];
2159                 list_for_each_entry_safe(page, next, freel, lru) {
2160                         if (count >= h->nr_huge_pages)
2161                                 return;
2162                         if (PageHighMem(page))
2163                                 continue;
2164                         list_del(&page->lru);
2165                         update_and_free_page(h, page);
2166                         h->free_huge_pages--;
2167                         h->free_huge_pages_node[page_to_nid(page)]--;
2168                 }
2169         }
2170 }
2171 #else
2172 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2173                                                 nodemask_t *nodes_allowed)
2174 {
2175 }
2176 #endif
2177
2178 /*
2179  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2180  * balanced by operating on them in a round-robin fashion.
2181  * Returns 1 if an adjustment was made.
2182  */
2183 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2184                                 int delta)
2185 {
2186         int nr_nodes, node;
2187
2188         VM_BUG_ON(delta != -1 && delta != 1);
2189
2190         if (delta < 0) {
2191                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2192                         if (h->surplus_huge_pages_node[node])
2193                                 goto found;
2194                 }
2195         } else {
2196                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2197                         if (h->surplus_huge_pages_node[node] <
2198                                         h->nr_huge_pages_node[node])
2199                                 goto found;
2200                 }
2201         }
2202         return 0;
2203
2204 found:
2205         h->surplus_huge_pages += delta;
2206         h->surplus_huge_pages_node[node] += delta;
2207         return 1;
2208 }
2209
2210 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2211 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2212                                                 nodemask_t *nodes_allowed)
2213 {
2214         unsigned long min_count, ret;
2215
2216         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2217                 return h->max_huge_pages;
2218
2219         /*
2220          * Increase the pool size
2221          * First take pages out of surplus state.  Then make up the
2222          * remaining difference by allocating fresh huge pages.
2223          *
2224          * We might race with __alloc_buddy_huge_page() here and be unable
2225          * to convert a surplus huge page to a normal huge page. That is
2226          * not critical, though, it just means the overall size of the
2227          * pool might be one hugepage larger than it needs to be, but
2228          * within all the constraints specified by the sysctls.
2229          */
2230         spin_lock(&hugetlb_lock);
2231         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2232                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2233                         break;
2234         }
2235
2236         while (count > persistent_huge_pages(h)) {
2237                 /*
2238                  * If this allocation races such that we no longer need the
2239                  * page, free_huge_page will handle it by freeing the page
2240                  * and reducing the surplus.
2241                  */
2242                 spin_unlock(&hugetlb_lock);
2243
2244                 /* yield cpu to avoid soft lockup */
2245                 cond_resched();
2246
2247                 if (hstate_is_gigantic(h))
2248                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2249                 else
2250                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2251                 spin_lock(&hugetlb_lock);
2252                 if (!ret)
2253                         goto out;
2254
2255                 /* Bail for signals. Probably ctrl-c from user */
2256                 if (signal_pending(current))
2257                         goto out;
2258         }
2259
2260         /*
2261          * Decrease the pool size
2262          * First return free pages to the buddy allocator (being careful
2263          * to keep enough around to satisfy reservations).  Then place
2264          * pages into surplus state as needed so the pool will shrink
2265          * to the desired size as pages become free.
2266          *
2267          * By placing pages into the surplus state independent of the
2268          * overcommit value, we are allowing the surplus pool size to
2269          * exceed overcommit. There are few sane options here. Since
2270          * __alloc_buddy_huge_page() is checking the global counter,
2271          * though, we'll note that we're not allowed to exceed surplus
2272          * and won't grow the pool anywhere else. Not until one of the
2273          * sysctls are changed, or the surplus pages go out of use.
2274          */
2275         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2276         min_count = max(count, min_count);
2277         try_to_free_low(h, min_count, nodes_allowed);
2278         while (min_count < persistent_huge_pages(h)) {
2279                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2280                         break;
2281                 cond_resched_lock(&hugetlb_lock);
2282         }
2283         while (count < persistent_huge_pages(h)) {
2284                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2285                         break;
2286         }
2287 out:
2288         ret = persistent_huge_pages(h);
2289         spin_unlock(&hugetlb_lock);
2290         return ret;
2291 }
2292
2293 #define HSTATE_ATTR_RO(_name) \
2294         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2295
2296 #define HSTATE_ATTR(_name) \
2297         static struct kobj_attribute _name##_attr = \
2298                 __ATTR(_name, 0644, _name##_show, _name##_store)
2299
2300 static struct kobject *hugepages_kobj;
2301 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2302
2303 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2304
2305 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2306 {
2307         int i;
2308
2309         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2310                 if (hstate_kobjs[i] == kobj) {
2311                         if (nidp)
2312                                 *nidp = NUMA_NO_NODE;
2313                         return &hstates[i];
2314                 }
2315
2316         return kobj_to_node_hstate(kobj, nidp);
2317 }
2318
2319 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2320                                         struct kobj_attribute *attr, char *buf)
2321 {
2322         struct hstate *h;
2323         unsigned long nr_huge_pages;
2324         int nid;
2325
2326         h = kobj_to_hstate(kobj, &nid);
2327         if (nid == NUMA_NO_NODE)
2328                 nr_huge_pages = h->nr_huge_pages;
2329         else
2330                 nr_huge_pages = h->nr_huge_pages_node[nid];
2331
2332         return sprintf(buf, "%lu\n", nr_huge_pages);
2333 }
2334
2335 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2336                                            struct hstate *h, int nid,
2337                                            unsigned long count, size_t len)
2338 {
2339         int err;
2340         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2341
2342         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2343                 err = -EINVAL;
2344                 goto out;
2345         }
2346
2347         if (nid == NUMA_NO_NODE) {
2348                 /*
2349                  * global hstate attribute
2350                  */
2351                 if (!(obey_mempolicy &&
2352                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2353                         NODEMASK_FREE(nodes_allowed);
2354                         nodes_allowed = &node_states[N_MEMORY];
2355                 }
2356         } else if (nodes_allowed) {
2357                 /*
2358                  * per node hstate attribute: adjust count to global,
2359                  * but restrict alloc/free to the specified node.
2360                  */
2361                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2362                 init_nodemask_of_node(nodes_allowed, nid);
2363         } else
2364                 nodes_allowed = &node_states[N_MEMORY];
2365
2366         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2367
2368         if (nodes_allowed != &node_states[N_MEMORY])
2369                 NODEMASK_FREE(nodes_allowed);
2370
2371         return len;
2372 out:
2373         NODEMASK_FREE(nodes_allowed);
2374         return err;
2375 }
2376
2377 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2378                                          struct kobject *kobj, const char *buf,
2379                                          size_t len)
2380 {
2381         struct hstate *h;
2382         unsigned long count;
2383         int nid;
2384         int err;
2385
2386         err = kstrtoul(buf, 10, &count);
2387         if (err)
2388                 return err;
2389
2390         h = kobj_to_hstate(kobj, &nid);
2391         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2392 }
2393
2394 static ssize_t nr_hugepages_show(struct kobject *kobj,
2395                                        struct kobj_attribute *attr, char *buf)
2396 {
2397         return nr_hugepages_show_common(kobj, attr, buf);
2398 }
2399
2400 static ssize_t nr_hugepages_store(struct kobject *kobj,
2401                struct kobj_attribute *attr, const char *buf, size_t len)
2402 {
2403         return nr_hugepages_store_common(false, kobj, buf, len);
2404 }
2405 HSTATE_ATTR(nr_hugepages);
2406
2407 #ifdef CONFIG_NUMA
2408
2409 /*
2410  * hstate attribute for optionally mempolicy-based constraint on persistent
2411  * huge page alloc/free.
2412  */
2413 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2414                                        struct kobj_attribute *attr, char *buf)
2415 {
2416         return nr_hugepages_show_common(kobj, attr, buf);
2417 }
2418
2419 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2420                struct kobj_attribute *attr, const char *buf, size_t len)
2421 {
2422         return nr_hugepages_store_common(true, kobj, buf, len);
2423 }
2424 HSTATE_ATTR(nr_hugepages_mempolicy);
2425 #endif
2426
2427
2428 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2429                                         struct kobj_attribute *attr, char *buf)
2430 {
2431         struct hstate *h = kobj_to_hstate(kobj, NULL);
2432         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2433 }
2434
2435 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2436                 struct kobj_attribute *attr, const char *buf, size_t count)
2437 {
2438         int err;
2439         unsigned long input;
2440         struct hstate *h = kobj_to_hstate(kobj, NULL);
2441
2442         if (hstate_is_gigantic(h))
2443                 return -EINVAL;
2444
2445         err = kstrtoul(buf, 10, &input);
2446         if (err)
2447                 return err;
2448
2449         spin_lock(&hugetlb_lock);
2450         h->nr_overcommit_huge_pages = input;
2451         spin_unlock(&hugetlb_lock);
2452
2453         return count;
2454 }
2455 HSTATE_ATTR(nr_overcommit_hugepages);
2456
2457 static ssize_t free_hugepages_show(struct kobject *kobj,
2458                                         struct kobj_attribute *attr, char *buf)
2459 {
2460         struct hstate *h;
2461         unsigned long free_huge_pages;
2462         int nid;
2463
2464         h = kobj_to_hstate(kobj, &nid);
2465         if (nid == NUMA_NO_NODE)
2466                 free_huge_pages = h->free_huge_pages;
2467         else
2468                 free_huge_pages = h->free_huge_pages_node[nid];
2469
2470         return sprintf(buf, "%lu\n", free_huge_pages);
2471 }
2472 HSTATE_ATTR_RO(free_hugepages);
2473
2474 static ssize_t resv_hugepages_show(struct kobject *kobj,
2475                                         struct kobj_attribute *attr, char *buf)
2476 {
2477         struct hstate *h = kobj_to_hstate(kobj, NULL);
2478         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2479 }
2480 HSTATE_ATTR_RO(resv_hugepages);
2481
2482 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2483                                         struct kobj_attribute *attr, char *buf)
2484 {
2485         struct hstate *h;
2486         unsigned long surplus_huge_pages;
2487         int nid;
2488
2489         h = kobj_to_hstate(kobj, &nid);
2490         if (nid == NUMA_NO_NODE)
2491                 surplus_huge_pages = h->surplus_huge_pages;
2492         else
2493                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2494
2495         return sprintf(buf, "%lu\n", surplus_huge_pages);
2496 }
2497 HSTATE_ATTR_RO(surplus_hugepages);
2498
2499 static struct attribute *hstate_attrs[] = {
2500         &nr_hugepages_attr.attr,
2501         &nr_overcommit_hugepages_attr.attr,
2502         &free_hugepages_attr.attr,
2503         &resv_hugepages_attr.attr,
2504         &surplus_hugepages_attr.attr,
2505 #ifdef CONFIG_NUMA
2506         &nr_hugepages_mempolicy_attr.attr,
2507 #endif
2508         NULL,
2509 };
2510
2511 static struct attribute_group hstate_attr_group = {
2512         .attrs = hstate_attrs,
2513 };
2514
2515 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2516                                     struct kobject **hstate_kobjs,
2517                                     struct attribute_group *hstate_attr_group)
2518 {
2519         int retval;
2520         int hi = hstate_index(h);
2521
2522         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2523         if (!hstate_kobjs[hi])
2524                 return -ENOMEM;
2525
2526         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2527         if (retval)
2528                 kobject_put(hstate_kobjs[hi]);
2529
2530         return retval;
2531 }
2532
2533 static void __init hugetlb_sysfs_init(void)
2534 {
2535         struct hstate *h;
2536         int err;
2537
2538         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2539         if (!hugepages_kobj)
2540                 return;
2541
2542         for_each_hstate(h) {
2543                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2544                                          hstate_kobjs, &hstate_attr_group);
2545                 if (err)
2546                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2547         }
2548 }
2549
2550 #ifdef CONFIG_NUMA
2551
2552 /*
2553  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2554  * with node devices in node_devices[] using a parallel array.  The array
2555  * index of a node device or _hstate == node id.
2556  * This is here to avoid any static dependency of the node device driver, in
2557  * the base kernel, on the hugetlb module.
2558  */
2559 struct node_hstate {
2560         struct kobject          *hugepages_kobj;
2561         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2562 };
2563 static struct node_hstate node_hstates[MAX_NUMNODES];
2564
2565 /*
2566  * A subset of global hstate attributes for node devices
2567  */
2568 static struct attribute *per_node_hstate_attrs[] = {
2569         &nr_hugepages_attr.attr,
2570         &free_hugepages_attr.attr,
2571         &surplus_hugepages_attr.attr,
2572         NULL,
2573 };
2574
2575 static struct attribute_group per_node_hstate_attr_group = {
2576         .attrs = per_node_hstate_attrs,
2577 };
2578
2579 /*
2580  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2581  * Returns node id via non-NULL nidp.
2582  */
2583 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2584 {
2585         int nid;
2586
2587         for (nid = 0; nid < nr_node_ids; nid++) {
2588                 struct node_hstate *nhs = &node_hstates[nid];
2589                 int i;
2590                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2591                         if (nhs->hstate_kobjs[i] == kobj) {
2592                                 if (nidp)
2593                                         *nidp = nid;
2594                                 return &hstates[i];
2595                         }
2596         }
2597
2598         BUG();
2599         return NULL;
2600 }
2601
2602 /*
2603  * Unregister hstate attributes from a single node device.
2604  * No-op if no hstate attributes attached.
2605  */
2606 static void hugetlb_unregister_node(struct node *node)
2607 {
2608         struct hstate *h;
2609         struct node_hstate *nhs = &node_hstates[node->dev.id];
2610
2611         if (!nhs->hugepages_kobj)
2612                 return;         /* no hstate attributes */
2613
2614         for_each_hstate(h) {
2615                 int idx = hstate_index(h);
2616                 if (nhs->hstate_kobjs[idx]) {
2617                         kobject_put(nhs->hstate_kobjs[idx]);
2618                         nhs->hstate_kobjs[idx] = NULL;
2619                 }
2620         }
2621
2622         kobject_put(nhs->hugepages_kobj);
2623         nhs->hugepages_kobj = NULL;
2624 }
2625
2626
2627 /*
2628  * Register hstate attributes for a single node device.
2629  * No-op if attributes already registered.
2630  */
2631 static void hugetlb_register_node(struct node *node)
2632 {
2633         struct hstate *h;
2634         struct node_hstate *nhs = &node_hstates[node->dev.id];
2635         int err;
2636
2637         if (nhs->hugepages_kobj)
2638                 return;         /* already allocated */
2639
2640         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2641                                                         &node->dev.kobj);
2642         if (!nhs->hugepages_kobj)
2643                 return;
2644
2645         for_each_hstate(h) {
2646                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2647                                                 nhs->hstate_kobjs,
2648                                                 &per_node_hstate_attr_group);
2649                 if (err) {
2650                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2651                                 h->name, node->dev.id);
2652                         hugetlb_unregister_node(node);
2653                         break;
2654                 }
2655         }
2656 }
2657
2658 /*
2659  * hugetlb init time:  register hstate attributes for all registered node
2660  * devices of nodes that have memory.  All on-line nodes should have
2661  * registered their associated device by this time.
2662  */
2663 static void __init hugetlb_register_all_nodes(void)
2664 {
2665         int nid;
2666
2667         for_each_node_state(nid, N_MEMORY) {
2668                 struct node *node = node_devices[nid];
2669                 if (node->dev.id == nid)
2670                         hugetlb_register_node(node);
2671         }
2672
2673         /*
2674          * Let the node device driver know we're here so it can
2675          * [un]register hstate attributes on node hotplug.
2676          */
2677         register_hugetlbfs_with_node(hugetlb_register_node,
2678                                      hugetlb_unregister_node);
2679 }
2680 #else   /* !CONFIG_NUMA */
2681
2682 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2683 {
2684         BUG();
2685         if (nidp)
2686                 *nidp = -1;
2687         return NULL;
2688 }
2689
2690 static void hugetlb_register_all_nodes(void) { }
2691
2692 #endif
2693
2694 static int __init hugetlb_init(void)
2695 {
2696         int i;
2697
2698         if (!hugepages_supported())
2699                 return 0;
2700
2701         if (!size_to_hstate(default_hstate_size)) {
2702                 default_hstate_size = HPAGE_SIZE;
2703                 if (!size_to_hstate(default_hstate_size))
2704                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2705         }
2706         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2707         if (default_hstate_max_huge_pages) {
2708                 if (!default_hstate.max_huge_pages)
2709                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2710         }
2711
2712         hugetlb_init_hstates();
2713         gather_bootmem_prealloc();
2714         report_hugepages();
2715
2716         hugetlb_sysfs_init();
2717         hugetlb_register_all_nodes();
2718         hugetlb_cgroup_file_init();
2719
2720 #ifdef CONFIG_SMP
2721         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2722 #else
2723         num_fault_mutexes = 1;
2724 #endif
2725         hugetlb_fault_mutex_table =
2726                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2727         BUG_ON(!hugetlb_fault_mutex_table);
2728
2729         for (i = 0; i < num_fault_mutexes; i++)
2730                 mutex_init(&hugetlb_fault_mutex_table[i]);
2731         return 0;
2732 }
2733 subsys_initcall(hugetlb_init);
2734
2735 /* Should be called on processing a hugepagesz=... option */
2736 void __init hugetlb_bad_size(void)
2737 {
2738         parsed_valid_hugepagesz = false;
2739 }
2740
2741 void __init hugetlb_add_hstate(unsigned int order)
2742 {
2743         struct hstate *h;
2744         unsigned long i;
2745
2746         if (size_to_hstate(PAGE_SIZE << order)) {
2747                 pr_warn("hugepagesz= specified twice, ignoring\n");
2748                 return;
2749         }
2750         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2751         BUG_ON(order == 0);
2752         h = &hstates[hugetlb_max_hstate++];
2753         h->order = order;
2754         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2755         h->nr_huge_pages = 0;
2756         h->free_huge_pages = 0;
2757         for (i = 0; i < MAX_NUMNODES; ++i)
2758                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2759         INIT_LIST_HEAD(&h->hugepage_activelist);
2760         h->next_nid_to_alloc = first_memory_node;
2761         h->next_nid_to_free = first_memory_node;
2762         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2763                                         huge_page_size(h)/1024);
2764
2765         parsed_hstate = h;
2766 }
2767
2768 static int __init hugetlb_nrpages_setup(char *s)
2769 {
2770         unsigned long *mhp;
2771         static unsigned long *last_mhp;
2772
2773         if (!parsed_valid_hugepagesz) {
2774                 pr_warn("hugepages = %s preceded by "
2775                         "an unsupported hugepagesz, ignoring\n", s);
2776                 parsed_valid_hugepagesz = true;
2777                 return 1;
2778         }
2779         /*
2780          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2781          * so this hugepages= parameter goes to the "default hstate".
2782          */
2783         else if (!hugetlb_max_hstate)
2784                 mhp = &default_hstate_max_huge_pages;
2785         else
2786                 mhp = &parsed_hstate->max_huge_pages;
2787
2788         if (mhp == last_mhp) {
2789                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2790                 return 1;
2791         }
2792
2793         if (sscanf(s, "%lu", mhp) <= 0)
2794                 *mhp = 0;
2795
2796         /*
2797          * Global state is always initialized later in hugetlb_init.
2798          * But we need to allocate >= MAX_ORDER hstates here early to still
2799          * use the bootmem allocator.
2800          */
2801         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2802                 hugetlb_hstate_alloc_pages(parsed_hstate);
2803
2804         last_mhp = mhp;
2805
2806         return 1;
2807 }
2808 __setup("hugepages=", hugetlb_nrpages_setup);
2809
2810 static int __init hugetlb_default_setup(char *s)
2811 {
2812         default_hstate_size = memparse(s, &s);
2813         return 1;
2814 }
2815 __setup("default_hugepagesz=", hugetlb_default_setup);
2816
2817 static unsigned int cpuset_mems_nr(unsigned int *array)
2818 {
2819         int node;
2820         unsigned int nr = 0;
2821
2822         for_each_node_mask(node, cpuset_current_mems_allowed)
2823                 nr += array[node];
2824
2825         return nr;
2826 }
2827
2828 #ifdef CONFIG_SYSCTL
2829 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2830                          struct ctl_table *table, int write,
2831                          void __user *buffer, size_t *length, loff_t *ppos)
2832 {
2833         struct hstate *h = &default_hstate;
2834         unsigned long tmp = h->max_huge_pages;
2835         int ret;
2836
2837         if (!hugepages_supported())
2838                 return -EOPNOTSUPP;
2839
2840         table->data = &tmp;
2841         table->maxlen = sizeof(unsigned long);
2842         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2843         if (ret)
2844                 goto out;
2845
2846         if (write)
2847                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2848                                                   NUMA_NO_NODE, tmp, *length);
2849 out:
2850         return ret;
2851 }
2852
2853 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2854                           void __user *buffer, size_t *length, loff_t *ppos)
2855 {
2856
2857         return hugetlb_sysctl_handler_common(false, table, write,
2858                                                         buffer, length, ppos);
2859 }
2860
2861 #ifdef CONFIG_NUMA
2862 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2863                           void __user *buffer, size_t *length, loff_t *ppos)
2864 {
2865         return hugetlb_sysctl_handler_common(true, table, write,
2866                                                         buffer, length, ppos);
2867 }
2868 #endif /* CONFIG_NUMA */
2869
2870 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2871                         void __user *buffer,
2872                         size_t *length, loff_t *ppos)
2873 {
2874         struct hstate *h = &default_hstate;
2875         unsigned long tmp;
2876         int ret;
2877
2878         if (!hugepages_supported())
2879                 return -EOPNOTSUPP;
2880
2881         tmp = h->nr_overcommit_huge_pages;
2882
2883         if (write && hstate_is_gigantic(h))
2884                 return -EINVAL;
2885
2886         table->data = &tmp;
2887         table->maxlen = sizeof(unsigned long);
2888         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2889         if (ret)
2890                 goto out;
2891
2892         if (write) {
2893                 spin_lock(&hugetlb_lock);
2894                 h->nr_overcommit_huge_pages = tmp;
2895                 spin_unlock(&hugetlb_lock);
2896         }
2897 out:
2898         return ret;
2899 }
2900
2901 #endif /* CONFIG_SYSCTL */
2902
2903 void hugetlb_report_meminfo(struct seq_file *m)
2904 {
2905         struct hstate *h = &default_hstate;
2906         if (!hugepages_supported())
2907                 return;
2908         seq_printf(m,
2909                         "HugePages_Total:   %5lu\n"
2910                         "HugePages_Free:    %5lu\n"
2911                         "HugePages_Rsvd:    %5lu\n"
2912                         "HugePages_Surp:    %5lu\n"
2913                         "Hugepagesize:   %8lu kB\n",
2914                         h->nr_huge_pages,
2915                         h->free_huge_pages,
2916                         h->resv_huge_pages,
2917                         h->surplus_huge_pages,
2918                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2919 }
2920
2921 int hugetlb_report_node_meminfo(int nid, char *buf)
2922 {
2923         struct hstate *h = &default_hstate;
2924         if (!hugepages_supported())
2925                 return 0;
2926         return sprintf(buf,
2927                 "Node %d HugePages_Total: %5u\n"
2928                 "Node %d HugePages_Free:  %5u\n"
2929                 "Node %d HugePages_Surp:  %5u\n",
2930                 nid, h->nr_huge_pages_node[nid],
2931                 nid, h->free_huge_pages_node[nid],
2932                 nid, h->surplus_huge_pages_node[nid]);
2933 }
2934
2935 void hugetlb_show_meminfo(void)
2936 {
2937         struct hstate *h;
2938         int nid;
2939
2940         if (!hugepages_supported())
2941                 return;
2942
2943         for_each_node_state(nid, N_MEMORY)
2944                 for_each_hstate(h)
2945                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2946                                 nid,
2947                                 h->nr_huge_pages_node[nid],
2948                                 h->free_huge_pages_node[nid],
2949                                 h->surplus_huge_pages_node[nid],
2950                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2951 }
2952
2953 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2954 {
2955         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2956                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2957 }
2958
2959 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2960 unsigned long hugetlb_total_pages(void)
2961 {
2962         struct hstate *h;
2963         unsigned long nr_total_pages = 0;
2964
2965         for_each_hstate(h)
2966                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2967         return nr_total_pages;
2968 }
2969
2970 static int hugetlb_acct_memory(struct hstate *h, long delta)
2971 {
2972         int ret = -ENOMEM;
2973
2974         spin_lock(&hugetlb_lock);
2975         /*
2976          * When cpuset is configured, it breaks the strict hugetlb page
2977          * reservation as the accounting is done on a global variable. Such
2978          * reservation is completely rubbish in the presence of cpuset because
2979          * the reservation is not checked against page availability for the
2980          * current cpuset. Application can still potentially OOM'ed by kernel
2981          * with lack of free htlb page in cpuset that the task is in.
2982          * Attempt to enforce strict accounting with cpuset is almost
2983          * impossible (or too ugly) because cpuset is too fluid that
2984          * task or memory node can be dynamically moved between cpusets.
2985          *
2986          * The change of semantics for shared hugetlb mapping with cpuset is
2987          * undesirable. However, in order to preserve some of the semantics,
2988          * we fall back to check against current free page availability as
2989          * a best attempt and hopefully to minimize the impact of changing
2990          * semantics that cpuset has.
2991          */
2992         if (delta > 0) {
2993                 if (gather_surplus_pages(h, delta) < 0)
2994                         goto out;
2995
2996                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2997                         return_unused_surplus_pages(h, delta);
2998                         goto out;
2999                 }
3000         }
3001
3002         ret = 0;
3003         if (delta < 0)
3004                 return_unused_surplus_pages(h, (unsigned long) -delta);
3005
3006 out:
3007         spin_unlock(&hugetlb_lock);
3008         return ret;
3009 }
3010
3011 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3012 {
3013         struct resv_map *resv = vma_resv_map(vma);
3014
3015         /*
3016          * This new VMA should share its siblings reservation map if present.
3017          * The VMA will only ever have a valid reservation map pointer where
3018          * it is being copied for another still existing VMA.  As that VMA
3019          * has a reference to the reservation map it cannot disappear until
3020          * after this open call completes.  It is therefore safe to take a
3021          * new reference here without additional locking.
3022          */
3023         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3024                 kref_get(&resv->refs);
3025 }
3026
3027 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3028 {
3029         struct hstate *h = hstate_vma(vma);
3030         struct resv_map *resv = vma_resv_map(vma);
3031         struct hugepage_subpool *spool = subpool_vma(vma);
3032         unsigned long reserve, start, end;
3033         long gbl_reserve;
3034
3035         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3036                 return;
3037
3038         start = vma_hugecache_offset(h, vma, vma->vm_start);
3039         end = vma_hugecache_offset(h, vma, vma->vm_end);
3040
3041         reserve = (end - start) - region_count(resv, start, end);
3042
3043         kref_put(&resv->refs, resv_map_release);
3044
3045         if (reserve) {
3046                 /*
3047                  * Decrement reserve counts.  The global reserve count may be
3048                  * adjusted if the subpool has a minimum size.
3049                  */
3050                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3051                 hugetlb_acct_memory(h, -gbl_reserve);
3052         }
3053 }
3054
3055 /*
3056  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3057  * handle_mm_fault() to try to instantiate regular-sized pages in the
3058  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3059  * this far.
3060  */
3061 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3062 {
3063         BUG();
3064         return 0;
3065 }
3066
3067 const struct vm_operations_struct hugetlb_vm_ops = {
3068         .fault = hugetlb_vm_op_fault,
3069         .open = hugetlb_vm_op_open,
3070         .close = hugetlb_vm_op_close,
3071 };
3072
3073 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3074                                 int writable)
3075 {
3076         pte_t entry;
3077
3078         if (writable) {
3079                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3080                                          vma->vm_page_prot)));
3081         } else {
3082                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3083                                            vma->vm_page_prot));
3084         }
3085         entry = pte_mkyoung(entry);
3086         entry = pte_mkhuge(entry);
3087         entry = arch_make_huge_pte(entry, vma, page, writable);
3088
3089         return entry;
3090 }
3091
3092 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3093                                    unsigned long address, pte_t *ptep)
3094 {
3095         pte_t entry;
3096
3097         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3098         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3099                 update_mmu_cache(vma, address, ptep);
3100 }
3101
3102 static int is_hugetlb_entry_migration(pte_t pte)
3103 {
3104         swp_entry_t swp;
3105
3106         if (huge_pte_none(pte) || pte_present(pte))
3107                 return 0;
3108         swp = pte_to_swp_entry(pte);
3109         if (non_swap_entry(swp) && is_migration_entry(swp))
3110                 return 1;
3111         else
3112                 return 0;
3113 }
3114
3115 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3116 {
3117         swp_entry_t swp;
3118
3119         if (huge_pte_none(pte) || pte_present(pte))
3120                 return 0;
3121         swp = pte_to_swp_entry(pte);
3122         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3123                 return 1;
3124         else
3125                 return 0;
3126 }
3127
3128 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3129                             struct vm_area_struct *vma)
3130 {
3131         pte_t *src_pte, *dst_pte, entry;
3132         struct page *ptepage;
3133         unsigned long addr;
3134         int cow;
3135         struct hstate *h = hstate_vma(vma);
3136         unsigned long sz = huge_page_size(h);
3137         unsigned long mmun_start;       /* For mmu_notifiers */
3138         unsigned long mmun_end;         /* For mmu_notifiers */
3139         int ret = 0;
3140
3141         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3142
3143         mmun_start = vma->vm_start;
3144         mmun_end = vma->vm_end;
3145         if (cow)
3146                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3147
3148         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3149                 spinlock_t *src_ptl, *dst_ptl;
3150                 src_pte = huge_pte_offset(src, addr);
3151                 if (!src_pte)
3152                         continue;
3153                 dst_pte = huge_pte_alloc(dst, addr, sz);
3154                 if (!dst_pte) {
3155                         ret = -ENOMEM;
3156                         break;
3157                 }
3158
3159                 /* If the pagetables are shared don't copy or take references */
3160                 if (dst_pte == src_pte)
3161                         continue;
3162
3163                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3164                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3165                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3166                 entry = huge_ptep_get(src_pte);
3167                 if (huge_pte_none(entry)) { /* skip none entry */
3168                         ;
3169                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3170                                     is_hugetlb_entry_hwpoisoned(entry))) {
3171                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3172
3173                         if (is_write_migration_entry(swp_entry) && cow) {
3174                                 /*
3175                                  * COW mappings require pages in both
3176                                  * parent and child to be set to read.
3177                                  */
3178                                 make_migration_entry_read(&swp_entry);
3179                                 entry = swp_entry_to_pte(swp_entry);
3180                                 set_huge_pte_at(src, addr, src_pte, entry);
3181                         }
3182                         set_huge_pte_at(dst, addr, dst_pte, entry);
3183                 } else {
3184                         if (cow) {
3185                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3186                                 mmu_notifier_invalidate_range(src, mmun_start,
3187                                                                    mmun_end);
3188                         }
3189                         entry = huge_ptep_get(src_pte);
3190                         ptepage = pte_page(entry);
3191                         get_page(ptepage);
3192                         page_dup_rmap(ptepage, true);
3193                         set_huge_pte_at(dst, addr, dst_pte, entry);
3194                         hugetlb_count_add(pages_per_huge_page(h), dst);
3195                 }
3196                 spin_unlock(src_ptl);
3197                 spin_unlock(dst_ptl);
3198         }
3199
3200         if (cow)
3201                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3202
3203         return ret;
3204 }
3205
3206 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3207                             unsigned long start, unsigned long end,
3208                             struct page *ref_page)
3209 {
3210         struct mm_struct *mm = vma->vm_mm;
3211         unsigned long address;
3212         pte_t *ptep;
3213         pte_t pte;
3214         spinlock_t *ptl;
3215         struct page *page;
3216         struct hstate *h = hstate_vma(vma);
3217         unsigned long sz = huge_page_size(h);
3218         const unsigned long mmun_start = start; /* For mmu_notifiers */
3219         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3220
3221         WARN_ON(!is_vm_hugetlb_page(vma));
3222         BUG_ON(start & ~huge_page_mask(h));
3223         BUG_ON(end & ~huge_page_mask(h));
3224
3225         tlb_start_vma(tlb, vma);
3226         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3227         address = start;
3228         for (; address < end; address += sz) {
3229                 ptep = huge_pte_offset(mm, address);
3230                 if (!ptep)
3231                         continue;
3232
3233                 ptl = huge_pte_lock(h, mm, ptep);
3234                 if (huge_pmd_unshare(mm, &address, ptep)) {
3235                         spin_unlock(ptl);
3236                         continue;
3237                 }
3238
3239                 pte = huge_ptep_get(ptep);
3240                 if (huge_pte_none(pte)) {
3241                         spin_unlock(ptl);
3242                         continue;
3243                 }
3244
3245                 /*
3246                  * Migrating hugepage or HWPoisoned hugepage is already
3247                  * unmapped and its refcount is dropped, so just clear pte here.
3248                  */
3249                 if (unlikely(!pte_present(pte))) {
3250                         huge_pte_clear(mm, address, ptep);
3251                         spin_unlock(ptl);
3252                         continue;
3253                 }
3254
3255                 page = pte_page(pte);
3256                 /*
3257                  * If a reference page is supplied, it is because a specific
3258                  * page is being unmapped, not a range. Ensure the page we
3259                  * are about to unmap is the actual page of interest.
3260                  */
3261                 if (ref_page) {
3262                         if (page != ref_page) {
3263                                 spin_unlock(ptl);
3264                                 continue;
3265                         }
3266                         /*
3267                          * Mark the VMA as having unmapped its page so that
3268                          * future faults in this VMA will fail rather than
3269                          * looking like data was lost
3270                          */
3271                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3272                 }
3273
3274                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3275                 tlb_remove_tlb_entry(tlb, ptep, address);
3276                 if (huge_pte_dirty(pte))
3277                         set_page_dirty(page);
3278
3279                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3280                 page_remove_rmap(page, true);
3281
3282                 spin_unlock(ptl);
3283                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3284                 /*
3285                  * Bail out after unmapping reference page if supplied
3286                  */
3287                 if (ref_page)
3288                         break;
3289         }
3290         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3291         tlb_end_vma(tlb, vma);
3292 }
3293
3294 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3295                           struct vm_area_struct *vma, unsigned long start,
3296                           unsigned long end, struct page *ref_page)
3297 {
3298         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3299
3300         /*
3301          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3302          * test will fail on a vma being torn down, and not grab a page table
3303          * on its way out.  We're lucky that the flag has such an appropriate
3304          * name, and can in fact be safely cleared here. We could clear it
3305          * before the __unmap_hugepage_range above, but all that's necessary
3306          * is to clear it before releasing the i_mmap_rwsem. This works
3307          * because in the context this is called, the VMA is about to be
3308          * destroyed and the i_mmap_rwsem is held.
3309          */
3310         vma->vm_flags &= ~VM_MAYSHARE;
3311 }
3312
3313 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3314                           unsigned long end, struct page *ref_page)
3315 {
3316         struct mm_struct *mm;
3317         struct mmu_gather tlb;
3318
3319         mm = vma->vm_mm;
3320
3321         tlb_gather_mmu(&tlb, mm, start, end);
3322         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3323         tlb_finish_mmu(&tlb, start, end);
3324 }
3325
3326 /*
3327  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3328  * mappping it owns the reserve page for. The intention is to unmap the page
3329  * from other VMAs and let the children be SIGKILLed if they are faulting the
3330  * same region.
3331  */
3332 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3333                               struct page *page, unsigned long address)
3334 {
3335         struct hstate *h = hstate_vma(vma);
3336         struct vm_area_struct *iter_vma;
3337         struct address_space *mapping;
3338         pgoff_t pgoff;
3339
3340         /*
3341          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3342          * from page cache lookup which is in HPAGE_SIZE units.
3343          */
3344         address = address & huge_page_mask(h);
3345         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3346                         vma->vm_pgoff;
3347         mapping = vma->vm_file->f_mapping;
3348
3349         /*
3350          * Take the mapping lock for the duration of the table walk. As
3351          * this mapping should be shared between all the VMAs,
3352          * __unmap_hugepage_range() is called as the lock is already held
3353          */
3354         i_mmap_lock_write(mapping);
3355         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3356                 /* Do not unmap the current VMA */
3357                 if (iter_vma == vma)
3358                         continue;
3359
3360                 /*
3361                  * Shared VMAs have their own reserves and do not affect
3362                  * MAP_PRIVATE accounting but it is possible that a shared
3363                  * VMA is using the same page so check and skip such VMAs.
3364                  */
3365                 if (iter_vma->vm_flags & VM_MAYSHARE)
3366                         continue;
3367
3368                 /*
3369                  * Unmap the page from other VMAs without their own reserves.
3370                  * They get marked to be SIGKILLed if they fault in these
3371                  * areas. This is because a future no-page fault on this VMA
3372                  * could insert a zeroed page instead of the data existing
3373                  * from the time of fork. This would look like data corruption
3374                  */
3375                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3376                         unmap_hugepage_range(iter_vma, address,
3377                                              address + huge_page_size(h), page);
3378         }
3379         i_mmap_unlock_write(mapping);
3380 }
3381
3382 /*
3383  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3384  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3385  * cannot race with other handlers or page migration.
3386  * Keep the pte_same checks anyway to make transition from the mutex easier.
3387  */
3388 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3389                         unsigned long address, pte_t *ptep, pte_t pte,
3390                         struct page *pagecache_page, spinlock_t *ptl)
3391 {
3392         struct hstate *h = hstate_vma(vma);
3393         struct page *old_page, *new_page;
3394         int ret = 0, outside_reserve = 0;
3395         unsigned long mmun_start;       /* For mmu_notifiers */
3396         unsigned long mmun_end;         /* For mmu_notifiers */
3397
3398         old_page = pte_page(pte);
3399
3400 retry_avoidcopy:
3401         /* If no-one else is actually using this page, avoid the copy
3402          * and just make the page writable */
3403         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3404                 page_move_anon_rmap(old_page, vma);
3405                 set_huge_ptep_writable(vma, address, ptep);
3406                 return 0;
3407         }
3408
3409         /*
3410          * If the process that created a MAP_PRIVATE mapping is about to
3411          * perform a COW due to a shared page count, attempt to satisfy
3412          * the allocation without using the existing reserves. The pagecache
3413          * page is used to determine if the reserve at this address was
3414          * consumed or not. If reserves were used, a partial faulted mapping
3415          * at the time of fork() could consume its reserves on COW instead
3416          * of the full address range.
3417          */
3418         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3419                         old_page != pagecache_page)
3420                 outside_reserve = 1;
3421
3422         get_page(old_page);
3423
3424         /*
3425          * Drop page table lock as buddy allocator may be called. It will
3426          * be acquired again before returning to the caller, as expected.
3427          */
3428         spin_unlock(ptl);
3429         new_page = alloc_huge_page(vma, address, outside_reserve);
3430
3431         if (IS_ERR(new_page)) {
3432                 /*
3433                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3434                  * it is due to references held by a child and an insufficient
3435                  * huge page pool. To guarantee the original mappers
3436                  * reliability, unmap the page from child processes. The child
3437                  * may get SIGKILLed if it later faults.
3438                  */
3439                 if (outside_reserve) {
3440                         put_page(old_page);
3441                         BUG_ON(huge_pte_none(pte));
3442                         unmap_ref_private(mm, vma, old_page, address);
3443                         BUG_ON(huge_pte_none(pte));
3444                         spin_lock(ptl);
3445                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3446                         if (likely(ptep &&
3447                                    pte_same(huge_ptep_get(ptep), pte)))
3448                                 goto retry_avoidcopy;
3449                         /*
3450                          * race occurs while re-acquiring page table
3451                          * lock, and our job is done.
3452                          */
3453                         return 0;
3454                 }
3455
3456                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3457                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3458                 goto out_release_old;
3459         }
3460
3461         /*
3462          * When the original hugepage is shared one, it does not have
3463          * anon_vma prepared.
3464          */
3465         if (unlikely(anon_vma_prepare(vma))) {
3466                 ret = VM_FAULT_OOM;
3467                 goto out_release_all;
3468         }
3469
3470         copy_user_huge_page(new_page, old_page, address, vma,
3471                             pages_per_huge_page(h));
3472         __SetPageUptodate(new_page);
3473         set_page_huge_active(new_page);
3474
3475         mmun_start = address & huge_page_mask(h);
3476         mmun_end = mmun_start + huge_page_size(h);
3477         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3478
3479         /*
3480          * Retake the page table lock to check for racing updates
3481          * before the page tables are altered
3482          */
3483         spin_lock(ptl);
3484         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3485         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3486                 ClearPagePrivate(new_page);
3487
3488                 /* Break COW */
3489                 huge_ptep_clear_flush(vma, address, ptep);
3490                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3491                 set_huge_pte_at(mm, address, ptep,
3492                                 make_huge_pte(vma, new_page, 1));
3493                 page_remove_rmap(old_page, true);
3494                 hugepage_add_new_anon_rmap(new_page, vma, address);
3495                 /* Make the old page be freed below */
3496                 new_page = old_page;
3497         }
3498         spin_unlock(ptl);
3499         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3500 out_release_all:
3501         put_page(new_page);
3502 out_release_old:
3503         put_page(old_page);
3504
3505         spin_lock(ptl); /* Caller expects lock to be held */
3506         return ret;
3507 }
3508
3509 /* Return the pagecache page at a given address within a VMA */
3510 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3511                         struct vm_area_struct *vma, unsigned long address)
3512 {
3513         struct address_space *mapping;
3514         pgoff_t idx;
3515
3516         mapping = vma->vm_file->f_mapping;
3517         idx = vma_hugecache_offset(h, vma, address);
3518
3519         return find_lock_page(mapping, idx);
3520 }
3521
3522 /*
3523  * Return whether there is a pagecache page to back given address within VMA.
3524  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3525  */
3526 static bool hugetlbfs_pagecache_present(struct hstate *h,
3527                         struct vm_area_struct *vma, unsigned long address)
3528 {
3529         struct address_space *mapping;
3530         pgoff_t idx;
3531         struct page *page;
3532
3533         mapping = vma->vm_file->f_mapping;
3534         idx = vma_hugecache_offset(h, vma, address);
3535
3536         page = find_get_page(mapping, idx);
3537         if (page)
3538                 put_page(page);
3539         return page != NULL;
3540 }
3541
3542 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3543                            pgoff_t idx)
3544 {
3545         struct inode *inode = mapping->host;
3546         struct hstate *h = hstate_inode(inode);
3547         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3548
3549         if (err)
3550                 return err;
3551         ClearPagePrivate(page);
3552
3553         spin_lock(&inode->i_lock);
3554         inode->i_blocks += blocks_per_huge_page(h);
3555         spin_unlock(&inode->i_lock);
3556         return 0;
3557 }
3558
3559 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3560                            struct address_space *mapping, pgoff_t idx,
3561                            unsigned long address, pte_t *ptep, unsigned int flags)
3562 {
3563         struct hstate *h = hstate_vma(vma);
3564         int ret = VM_FAULT_SIGBUS;
3565         int anon_rmap = 0;
3566         unsigned long size;
3567         struct page *page;
3568         pte_t new_pte;
3569         spinlock_t *ptl;
3570
3571         /*
3572          * Currently, we are forced to kill the process in the event the
3573          * original mapper has unmapped pages from the child due to a failed
3574          * COW. Warn that such a situation has occurred as it may not be obvious
3575          */
3576         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3577                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3578                            current->pid);
3579                 return ret;
3580         }
3581
3582         /*
3583          * Use page lock to guard against racing truncation
3584          * before we get page_table_lock.
3585          */
3586 retry:
3587         page = find_lock_page(mapping, idx);
3588         if (!page) {
3589                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3590                 if (idx >= size)
3591                         goto out;
3592                 page = alloc_huge_page(vma, address, 0);
3593                 if (IS_ERR(page)) {
3594                         ret = PTR_ERR(page);
3595                         if (ret == -ENOMEM)
3596                                 ret = VM_FAULT_OOM;
3597                         else
3598                                 ret = VM_FAULT_SIGBUS;
3599                         goto out;
3600                 }
3601                 clear_huge_page(page, address, pages_per_huge_page(h));
3602                 __SetPageUptodate(page);
3603                 set_page_huge_active(page);
3604
3605                 if (vma->vm_flags & VM_MAYSHARE) {
3606                         int err = huge_add_to_page_cache(page, mapping, idx);
3607                         if (err) {
3608                                 put_page(page);
3609                                 if (err == -EEXIST)
3610                                         goto retry;
3611                                 goto out;
3612                         }
3613                 } else {
3614                         lock_page(page);
3615                         if (unlikely(anon_vma_prepare(vma))) {
3616                                 ret = VM_FAULT_OOM;
3617                                 goto backout_unlocked;
3618                         }
3619                         anon_rmap = 1;
3620                 }
3621         } else {
3622                 /*
3623                  * If memory error occurs between mmap() and fault, some process
3624                  * don't have hwpoisoned swap entry for errored virtual address.
3625                  * So we need to block hugepage fault by PG_hwpoison bit check.
3626                  */
3627                 if (unlikely(PageHWPoison(page))) {
3628                         ret = VM_FAULT_HWPOISON |
3629                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3630                         goto backout_unlocked;
3631                 }
3632         }
3633
3634         /*
3635          * If we are going to COW a private mapping later, we examine the
3636          * pending reservations for this page now. This will ensure that
3637          * any allocations necessary to record that reservation occur outside
3638          * the spinlock.
3639          */
3640         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3641                 if (vma_needs_reservation(h, vma, address) < 0) {
3642                         ret = VM_FAULT_OOM;
3643                         goto backout_unlocked;
3644                 }
3645                 /* Just decrements count, does not deallocate */
3646                 vma_end_reservation(h, vma, address);
3647         }
3648
3649         ptl = huge_pte_lockptr(h, mm, ptep);
3650         spin_lock(ptl);
3651         size = i_size_read(mapping->host) >> huge_page_shift(h);
3652         if (idx >= size)
3653                 goto backout;
3654
3655         ret = 0;
3656         if (!huge_pte_none(huge_ptep_get(ptep)))
3657                 goto backout;
3658
3659         if (anon_rmap) {
3660                 ClearPagePrivate(page);
3661                 hugepage_add_new_anon_rmap(page, vma, address);
3662         } else
3663                 page_dup_rmap(page, true);
3664         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3665                                 && (vma->vm_flags & VM_SHARED)));
3666         set_huge_pte_at(mm, address, ptep, new_pte);
3667
3668         hugetlb_count_add(pages_per_huge_page(h), mm);
3669         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3670                 /* Optimization, do the COW without a second fault */
3671                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3672         }
3673
3674         spin_unlock(ptl);
3675         unlock_page(page);
3676 out:
3677         return ret;
3678
3679 backout:
3680         spin_unlock(ptl);
3681 backout_unlocked:
3682         unlock_page(page);
3683         put_page(page);
3684         goto out;
3685 }
3686
3687 #ifdef CONFIG_SMP
3688 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3689                             struct vm_area_struct *vma,
3690                             struct address_space *mapping,
3691                             pgoff_t idx, unsigned long address)
3692 {
3693         unsigned long key[2];
3694         u32 hash;
3695
3696         if (vma->vm_flags & VM_SHARED) {
3697                 key[0] = (unsigned long) mapping;
3698                 key[1] = idx;
3699         } else {
3700                 key[0] = (unsigned long) mm;
3701                 key[1] = address >> huge_page_shift(h);
3702         }
3703
3704         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3705
3706         return hash & (num_fault_mutexes - 1);
3707 }
3708 #else
3709 /*
3710  * For uniprocesor systems we always use a single mutex, so just
3711  * return 0 and avoid the hashing overhead.
3712  */
3713 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3714                             struct vm_area_struct *vma,
3715                             struct address_space *mapping,
3716                             pgoff_t idx, unsigned long address)
3717 {
3718         return 0;
3719 }
3720 #endif
3721
3722 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3723                         unsigned long address, unsigned int flags)
3724 {
3725         pte_t *ptep, entry;
3726         spinlock_t *ptl;
3727         int ret;
3728         u32 hash;
3729         pgoff_t idx;
3730         struct page *page = NULL;
3731         struct page *pagecache_page = NULL;
3732         struct hstate *h = hstate_vma(vma);
3733         struct address_space *mapping;
3734         int need_wait_lock = 0;
3735
3736         address &= huge_page_mask(h);
3737
3738         ptep = huge_pte_offset(mm, address);
3739         if (ptep) {
3740                 entry = huge_ptep_get(ptep);
3741                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3742                         migration_entry_wait_huge(vma, mm, ptep);
3743                         return 0;
3744                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3745                         return VM_FAULT_HWPOISON_LARGE |
3746                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3747         } else {
3748                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3749                 if (!ptep)
3750                         return VM_FAULT_OOM;
3751         }
3752
3753         mapping = vma->vm_file->f_mapping;
3754         idx = vma_hugecache_offset(h, vma, address);
3755
3756         /*
3757          * Serialize hugepage allocation and instantiation, so that we don't
3758          * get spurious allocation failures if two CPUs race to instantiate
3759          * the same page in the page cache.
3760          */
3761         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3762         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3763
3764         entry = huge_ptep_get(ptep);
3765         if (huge_pte_none(entry)) {
3766                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3767                 goto out_mutex;
3768         }
3769
3770         ret = 0;
3771
3772         /*
3773          * entry could be a migration/hwpoison entry at this point, so this
3774          * check prevents the kernel from going below assuming that we have
3775          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3776          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3777          * handle it.
3778          */
3779         if (!pte_present(entry))
3780                 goto out_mutex;
3781
3782         /*
3783          * If we are going to COW the mapping later, we examine the pending
3784          * reservations for this page now. This will ensure that any
3785          * allocations necessary to record that reservation occur outside the
3786          * spinlock. For private mappings, we also lookup the pagecache
3787          * page now as it is used to determine if a reservation has been
3788          * consumed.
3789          */
3790         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3791                 if (vma_needs_reservation(h, vma, address) < 0) {
3792                         ret = VM_FAULT_OOM;
3793                         goto out_mutex;
3794                 }
3795                 /* Just decrements count, does not deallocate */
3796                 vma_end_reservation(h, vma, address);
3797
3798                 if (!(vma->vm_flags & VM_MAYSHARE))
3799                         pagecache_page = hugetlbfs_pagecache_page(h,
3800                                                                 vma, address);
3801         }
3802
3803         ptl = huge_pte_lock(h, mm, ptep);
3804
3805         /* Check for a racing update before calling hugetlb_cow */
3806         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3807                 goto out_ptl;
3808
3809         /*
3810          * hugetlb_cow() requires page locks of pte_page(entry) and
3811          * pagecache_page, so here we need take the former one
3812          * when page != pagecache_page or !pagecache_page.
3813          */
3814         page = pte_page(entry);
3815         if (page != pagecache_page)
3816                 if (!trylock_page(page)) {
3817                         need_wait_lock = 1;
3818                         goto out_ptl;
3819                 }
3820
3821         get_page(page);
3822
3823         if (flags & FAULT_FLAG_WRITE) {
3824                 if (!huge_pte_write(entry)) {
3825                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3826                                         pagecache_page, ptl);
3827                         goto out_put_page;
3828                 }
3829                 entry = huge_pte_mkdirty(entry);
3830         }
3831         entry = pte_mkyoung(entry);
3832         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3833                                                 flags & FAULT_FLAG_WRITE))
3834                 update_mmu_cache(vma, address, ptep);
3835 out_put_page:
3836         if (page != pagecache_page)
3837                 unlock_page(page);
3838         put_page(page);
3839 out_ptl:
3840         spin_unlock(ptl);
3841
3842         if (pagecache_page) {
3843                 unlock_page(pagecache_page);
3844                 put_page(pagecache_page);
3845         }
3846 out_mutex:
3847         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3848         /*
3849          * Generally it's safe to hold refcount during waiting page lock. But
3850          * here we just wait to defer the next page fault to avoid busy loop and
3851          * the page is not used after unlocked before returning from the current
3852          * page fault. So we are safe from accessing freed page, even if we wait
3853          * here without taking refcount.
3854          */
3855         if (need_wait_lock)
3856                 wait_on_page_locked(page);
3857         return ret;
3858 }
3859
3860 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3861                          struct page **pages, struct vm_area_struct **vmas,
3862                          unsigned long *position, unsigned long *nr_pages,
3863                          long i, unsigned int flags)
3864 {
3865         unsigned long pfn_offset;
3866         unsigned long vaddr = *position;
3867         unsigned long remainder = *nr_pages;
3868         struct hstate *h = hstate_vma(vma);
3869
3870         while (vaddr < vma->vm_end && remainder) {
3871                 pte_t *pte;
3872                 spinlock_t *ptl = NULL;
3873                 int absent;
3874                 struct page *page;
3875
3876                 /*
3877                  * If we have a pending SIGKILL, don't keep faulting pages and
3878                  * potentially allocating memory.
3879                  */
3880                 if (unlikely(fatal_signal_pending(current))) {
3881                         remainder = 0;
3882                         break;
3883                 }
3884
3885                 /*
3886                  * Some archs (sparc64, sh*) have multiple pte_ts to
3887                  * each hugepage.  We have to make sure we get the
3888                  * first, for the page indexing below to work.
3889                  *
3890                  * Note that page table lock is not held when pte is null.
3891                  */
3892                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3893                 if (pte)
3894                         ptl = huge_pte_lock(h, mm, pte);
3895                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3896
3897                 /*
3898                  * When coredumping, it suits get_dump_page if we just return
3899                  * an error where there's an empty slot with no huge pagecache
3900                  * to back it.  This way, we avoid allocating a hugepage, and
3901                  * the sparse dumpfile avoids allocating disk blocks, but its
3902                  * huge holes still show up with zeroes where they need to be.
3903                  */
3904                 if (absent && (flags & FOLL_DUMP) &&
3905                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3906                         if (pte)
3907                                 spin_unlock(ptl);
3908                         remainder = 0;
3909                         break;
3910                 }
3911
3912                 /*
3913                  * We need call hugetlb_fault for both hugepages under migration
3914                  * (in which case hugetlb_fault waits for the migration,) and
3915                  * hwpoisoned hugepages (in which case we need to prevent the
3916                  * caller from accessing to them.) In order to do this, we use
3917                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3918                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3919                  * both cases, and because we can't follow correct pages
3920                  * directly from any kind of swap entries.
3921                  */
3922                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3923                     ((flags & FOLL_WRITE) &&
3924                       !huge_pte_write(huge_ptep_get(pte)))) {
3925                         int ret;
3926
3927                         if (pte)
3928                                 spin_unlock(ptl);
3929                         ret = hugetlb_fault(mm, vma, vaddr,
3930                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3931                         if (!(ret & VM_FAULT_ERROR))
3932                                 continue;
3933
3934                         remainder = 0;
3935                         break;
3936                 }
3937
3938                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3939                 page = pte_page(huge_ptep_get(pte));
3940 same_page:
3941                 if (pages) {
3942                         pages[i] = mem_map_offset(page, pfn_offset);
3943                         get_page(pages[i]);
3944                 }
3945
3946                 if (vmas)
3947                         vmas[i] = vma;
3948
3949                 vaddr += PAGE_SIZE;
3950                 ++pfn_offset;
3951                 --remainder;
3952                 ++i;
3953                 if (vaddr < vma->vm_end && remainder &&
3954                                 pfn_offset < pages_per_huge_page(h)) {
3955                         /*
3956                          * We use pfn_offset to avoid touching the pageframes
3957                          * of this compound page.
3958                          */
3959                         goto same_page;
3960                 }
3961                 spin_unlock(ptl);
3962         }
3963         *nr_pages = remainder;
3964         *position = vaddr;
3965
3966         return i ? i : -EFAULT;
3967 }
3968
3969 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3970 /*
3971  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3972  * implement this.
3973  */
3974 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3975 #endif
3976
3977 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3978                 unsigned long address, unsigned long end, pgprot_t newprot)
3979 {
3980         struct mm_struct *mm = vma->vm_mm;
3981         unsigned long start = address;
3982         pte_t *ptep;
3983         pte_t pte;
3984         struct hstate *h = hstate_vma(vma);
3985         unsigned long pages = 0;
3986
3987         BUG_ON(address >= end);
3988         flush_cache_range(vma, address, end);
3989
3990         mmu_notifier_invalidate_range_start(mm, start, end);
3991         i_mmap_lock_write(vma->vm_file->f_mapping);
3992         for (; address < end; address += huge_page_size(h)) {
3993                 spinlock_t *ptl;
3994                 ptep = huge_pte_offset(mm, address);
3995                 if (!ptep)
3996                         continue;
3997                 ptl = huge_pte_lock(h, mm, ptep);
3998                 if (huge_pmd_unshare(mm, &address, ptep)) {
3999                         pages++;
4000                         spin_unlock(ptl);
4001                         continue;
4002                 }
4003                 pte = huge_ptep_get(ptep);
4004                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4005                         spin_unlock(ptl);
4006                         continue;
4007                 }
4008                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4009                         swp_entry_t entry = pte_to_swp_entry(pte);
4010
4011                         if (is_write_migration_entry(entry)) {
4012                                 pte_t newpte;
4013
4014                                 make_migration_entry_read(&entry);
4015                                 newpte = swp_entry_to_pte(entry);
4016                                 set_huge_pte_at(mm, address, ptep, newpte);
4017                                 pages++;
4018                         }
4019                         spin_unlock(ptl);
4020                         continue;
4021                 }
4022                 if (!huge_pte_none(pte)) {
4023                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4024                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4025                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4026                         set_huge_pte_at(mm, address, ptep, pte);
4027                         pages++;
4028                 }
4029                 spin_unlock(ptl);
4030         }
4031         /*
4032          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4033          * may have cleared our pud entry and done put_page on the page table:
4034          * once we release i_mmap_rwsem, another task can do the final put_page
4035          * and that page table be reused and filled with junk.
4036          */
4037         flush_hugetlb_tlb_range(vma, start, end);
4038         mmu_notifier_invalidate_range(mm, start, end);
4039         i_mmap_unlock_write(vma->vm_file->f_mapping);
4040         mmu_notifier_invalidate_range_end(mm, start, end);
4041
4042         return pages << h->order;
4043 }
4044
4045 int hugetlb_reserve_pages(struct inode *inode,
4046                                         long from, long to,
4047                                         struct vm_area_struct *vma,
4048                                         vm_flags_t vm_flags)
4049 {
4050         long ret, chg;
4051         struct hstate *h = hstate_inode(inode);
4052         struct hugepage_subpool *spool = subpool_inode(inode);
4053         struct resv_map *resv_map;
4054         long gbl_reserve;
4055
4056         /*
4057          * Only apply hugepage reservation if asked. At fault time, an
4058          * attempt will be made for VM_NORESERVE to allocate a page
4059          * without using reserves
4060          */
4061         if (vm_flags & VM_NORESERVE)
4062                 return 0;
4063
4064         /*
4065          * Shared mappings base their reservation on the number of pages that
4066          * are already allocated on behalf of the file. Private mappings need
4067          * to reserve the full area even if read-only as mprotect() may be
4068          * called to make the mapping read-write. Assume !vma is a shm mapping
4069          */
4070         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4071                 resv_map = inode_resv_map(inode);
4072
4073                 chg = region_chg(resv_map, from, to);
4074
4075         } else {
4076                 resv_map = resv_map_alloc();
4077                 if (!resv_map)
4078                         return -ENOMEM;
4079
4080                 chg = to - from;
4081
4082                 set_vma_resv_map(vma, resv_map);
4083                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4084         }
4085
4086         if (chg < 0) {
4087                 ret = chg;
4088                 goto out_err;
4089         }
4090
4091         /*
4092          * There must be enough pages in the subpool for the mapping. If
4093          * the subpool has a minimum size, there may be some global
4094          * reservations already in place (gbl_reserve).
4095          */
4096         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4097         if (gbl_reserve < 0) {
4098                 ret = -ENOSPC;
4099                 goto out_err;
4100         }
4101
4102         /*
4103          * Check enough hugepages are available for the reservation.
4104          * Hand the pages back to the subpool if there are not
4105          */
4106         ret = hugetlb_acct_memory(h, gbl_reserve);
4107         if (ret < 0) {
4108                 /* put back original number of pages, chg */
4109                 (void)hugepage_subpool_put_pages(spool, chg);
4110                 goto out_err;
4111         }
4112
4113         /*
4114          * Account for the reservations made. Shared mappings record regions
4115          * that have reservations as they are shared by multiple VMAs.
4116          * When the last VMA disappears, the region map says how much
4117          * the reservation was and the page cache tells how much of
4118          * the reservation was consumed. Private mappings are per-VMA and
4119          * only the consumed reservations are tracked. When the VMA
4120          * disappears, the original reservation is the VMA size and the
4121          * consumed reservations are stored in the map. Hence, nothing
4122          * else has to be done for private mappings here
4123          */
4124         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4125                 long add = region_add(resv_map, from, to);
4126
4127                 if (unlikely(chg > add)) {
4128                         /*
4129                          * pages in this range were added to the reserve
4130                          * map between region_chg and region_add.  This
4131                          * indicates a race with alloc_huge_page.  Adjust
4132                          * the subpool and reserve counts modified above
4133                          * based on the difference.
4134                          */
4135                         long rsv_adjust;
4136
4137                         rsv_adjust = hugepage_subpool_put_pages(spool,
4138                                                                 chg - add);
4139                         hugetlb_acct_memory(h, -rsv_adjust);
4140                 }
4141         }
4142         return 0;
4143 out_err:
4144         if (!vma || vma->vm_flags & VM_MAYSHARE)
4145                 region_abort(resv_map, from, to);
4146         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4147                 kref_put(&resv_map->refs, resv_map_release);
4148         return ret;
4149 }
4150
4151 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4152                                                                 long freed)
4153 {
4154         struct hstate *h = hstate_inode(inode);
4155         struct resv_map *resv_map = inode_resv_map(inode);
4156         long chg = 0;
4157         struct hugepage_subpool *spool = subpool_inode(inode);
4158         long gbl_reserve;
4159
4160         if (resv_map) {
4161                 chg = region_del(resv_map, start, end);
4162                 /*
4163                  * region_del() can fail in the rare case where a region
4164                  * must be split and another region descriptor can not be
4165                  * allocated.  If end == LONG_MAX, it will not fail.
4166                  */
4167                 if (chg < 0)
4168                         return chg;
4169         }
4170
4171         spin_lock(&inode->i_lock);
4172         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4173         spin_unlock(&inode->i_lock);
4174
4175         /*
4176          * If the subpool has a minimum size, the number of global
4177          * reservations to be released may be adjusted.
4178          */
4179         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4180         hugetlb_acct_memory(h, -gbl_reserve);
4181
4182         return 0;
4183 }
4184
4185 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4186 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4187                                 struct vm_area_struct *vma,
4188                                 unsigned long addr, pgoff_t idx)
4189 {
4190         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4191                                 svma->vm_start;
4192         unsigned long sbase = saddr & PUD_MASK;
4193         unsigned long s_end = sbase + PUD_SIZE;
4194
4195         /* Allow segments to share if only one is marked locked */
4196         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4197         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4198
4199         /*
4200          * match the virtual addresses, permission and the alignment of the
4201          * page table page.
4202          */
4203         if (pmd_index(addr) != pmd_index(saddr) ||
4204             vm_flags != svm_flags ||
4205             sbase < svma->vm_start || svma->vm_end < s_end)
4206                 return 0;
4207
4208         return saddr;
4209 }
4210
4211 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4212 {
4213         unsigned long base = addr & PUD_MASK;
4214         unsigned long end = base + PUD_SIZE;
4215
4216         /*
4217          * check on proper vm_flags and page table alignment
4218          */
4219         if (vma->vm_flags & VM_MAYSHARE &&
4220             vma->vm_start <= base && end <= vma->vm_end)
4221                 return true;
4222         return false;
4223 }
4224
4225 /*
4226  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4227  * and returns the corresponding pte. While this is not necessary for the
4228  * !shared pmd case because we can allocate the pmd later as well, it makes the
4229  * code much cleaner. pmd allocation is essential for the shared case because
4230  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4231  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4232  * bad pmd for sharing.
4233  */
4234 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4235 {
4236         struct vm_area_struct *vma = find_vma(mm, addr);
4237         struct address_space *mapping = vma->vm_file->f_mapping;
4238         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4239                         vma->vm_pgoff;
4240         struct vm_area_struct *svma;
4241         unsigned long saddr;
4242         pte_t *spte = NULL;
4243         pte_t *pte;
4244         spinlock_t *ptl;
4245
4246         if (!vma_shareable(vma, addr))
4247                 return (pte_t *)pmd_alloc(mm, pud, addr);
4248
4249         i_mmap_lock_write(mapping);
4250         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4251                 if (svma == vma)
4252                         continue;
4253
4254                 saddr = page_table_shareable(svma, vma, addr, idx);
4255                 if (saddr) {
4256                         spte = huge_pte_offset(svma->vm_mm, saddr);
4257                         if (spte) {
4258                                 get_page(virt_to_page(spte));
4259                                 break;
4260                         }
4261                 }
4262         }
4263
4264         if (!spte)
4265                 goto out;
4266
4267         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4268         spin_lock(ptl);
4269         if (pud_none(*pud)) {
4270                 pud_populate(mm, pud,
4271                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4272                 mm_inc_nr_pmds(mm);
4273         } else {
4274                 put_page(virt_to_page(spte));
4275         }
4276         spin_unlock(ptl);
4277 out:
4278         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4279         i_mmap_unlock_write(mapping);
4280         return pte;
4281 }
4282
4283 /*
4284  * unmap huge page backed by shared pte.
4285  *
4286  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4287  * indicated by page_count > 1, unmap is achieved by clearing pud and
4288  * decrementing the ref count. If count == 1, the pte page is not shared.
4289  *
4290  * called with page table lock held.
4291  *
4292  * returns: 1 successfully unmapped a shared pte page
4293  *          0 the underlying pte page is not shared, or it is the last user
4294  */
4295 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4296 {
4297         pgd_t *pgd = pgd_offset(mm, *addr);
4298         pud_t *pud = pud_offset(pgd, *addr);
4299
4300         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4301         if (page_count(virt_to_page(ptep)) == 1)
4302                 return 0;
4303
4304         pud_clear(pud);
4305         put_page(virt_to_page(ptep));
4306         mm_dec_nr_pmds(mm);
4307         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4308         return 1;
4309 }
4310 #define want_pmd_share()        (1)
4311 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4312 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4313 {
4314         return NULL;
4315 }
4316
4317 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4318 {
4319         return 0;
4320 }
4321 #define want_pmd_share()        (0)
4322 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4323
4324 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4325 pte_t *huge_pte_alloc(struct mm_struct *mm,
4326                         unsigned long addr, unsigned long sz)
4327 {
4328         pgd_t *pgd;
4329         pud_t *pud;
4330         pte_t *pte = NULL;
4331
4332         pgd = pgd_offset(mm, addr);
4333         pud = pud_alloc(mm, pgd, addr);
4334         if (pud) {
4335                 if (sz == PUD_SIZE) {
4336                         pte = (pte_t *)pud;
4337                 } else {
4338                         BUG_ON(sz != PMD_SIZE);
4339                         if (want_pmd_share() && pud_none(*pud))
4340                                 pte = huge_pmd_share(mm, addr, pud);
4341                         else
4342                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4343                 }
4344         }
4345         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4346
4347         return pte;
4348 }
4349
4350 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4351 {
4352         pgd_t *pgd;
4353         pud_t *pud;
4354         pmd_t *pmd = NULL;
4355
4356         pgd = pgd_offset(mm, addr);
4357         if (pgd_present(*pgd)) {
4358                 pud = pud_offset(pgd, addr);
4359                 if (pud_present(*pud)) {
4360                         if (pud_huge(*pud))
4361                                 return (pte_t *)pud;
4362                         pmd = pmd_offset(pud, addr);
4363                 }
4364         }
4365         return (pte_t *) pmd;
4366 }
4367
4368 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4369
4370 /*
4371  * These functions are overwritable if your architecture needs its own
4372  * behavior.
4373  */
4374 struct page * __weak
4375 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4376                               int write)
4377 {
4378         return ERR_PTR(-EINVAL);
4379 }
4380
4381 struct page * __weak
4382 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4383                 pmd_t *pmd, int flags)
4384 {
4385         struct page *page = NULL;
4386         spinlock_t *ptl;
4387 retry:
4388         ptl = pmd_lockptr(mm, pmd);
4389         spin_lock(ptl);
4390         /*
4391          * make sure that the address range covered by this pmd is not
4392          * unmapped from other threads.
4393          */
4394         if (!pmd_huge(*pmd))
4395                 goto out;
4396         if (pmd_present(*pmd)) {
4397                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4398                 if (flags & FOLL_GET)
4399                         get_page(page);
4400         } else {
4401                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4402                         spin_unlock(ptl);
4403                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4404                         goto retry;
4405                 }
4406                 /*
4407                  * hwpoisoned entry is treated as no_page_table in
4408                  * follow_page_mask().
4409                  */
4410         }
4411 out:
4412         spin_unlock(ptl);
4413         return page;
4414 }
4415
4416 struct page * __weak
4417 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4418                 pud_t *pud, int flags)
4419 {
4420         if (flags & FOLL_GET)
4421                 return NULL;
4422
4423         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4424 }
4425
4426 #ifdef CONFIG_MEMORY_FAILURE
4427
4428 /*
4429  * This function is called from memory failure code.
4430  */
4431 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4432 {
4433         struct hstate *h = page_hstate(hpage);
4434         int nid = page_to_nid(hpage);
4435         int ret = -EBUSY;
4436
4437         spin_lock(&hugetlb_lock);
4438         /*
4439          * Just checking !page_huge_active is not enough, because that could be
4440          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4441          */
4442         if (!page_huge_active(hpage) && !page_count(hpage)) {
4443                 /*
4444                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4445                  * but dangling hpage->lru can trigger list-debug warnings
4446                  * (this happens when we call unpoison_memory() on it),
4447                  * so let it point to itself with list_del_init().
4448                  */
4449                 list_del_init(&hpage->lru);
4450                 set_page_refcounted(hpage);
4451                 h->free_huge_pages--;
4452                 h->free_huge_pages_node[nid]--;
4453                 ret = 0;
4454         }
4455         spin_unlock(&hugetlb_lock);
4456         return ret;
4457 }
4458 #endif
4459
4460 bool isolate_huge_page(struct page *page, struct list_head *list)
4461 {
4462         bool ret = true;
4463
4464         VM_BUG_ON_PAGE(!PageHead(page), page);
4465         spin_lock(&hugetlb_lock);
4466         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4467                 ret = false;
4468                 goto unlock;
4469         }
4470         clear_page_huge_active(page);
4471         list_move_tail(&page->lru, list);
4472 unlock:
4473         spin_unlock(&hugetlb_lock);
4474         return ret;
4475 }
4476
4477 void putback_active_hugepage(struct page *page)
4478 {
4479         VM_BUG_ON_PAGE(!PageHead(page), page);
4480         spin_lock(&hugetlb_lock);
4481         set_page_huge_active(page);
4482         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4483         spin_unlock(&hugetlb_lock);
4484         put_page(page);
4485 }