2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 int hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 * Minimum page order among possible hugepage sizes, set to a proper value
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 __initdata LIST_HEAD(huge_boot_pages);
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 spin_lock_init(&spool->lock);
100 spool->max_hpages = max_hpages;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 spool->rsv_hpages = min_hpages;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
164 spin_unlock(&spool->lock);
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
182 spin_lock(&spool->lock);
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool);
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 return HUGETLBFS_SB(inode->i_sb)->spool;
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 return subpool_inode(file_inode(vma->vm_file));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
238 struct list_head link;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map *resv, long f, long t)
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 list_del(&nrg->link);
285 list_add(&nrg->link, rg->link.prev);
291 /* Round our left edge to the current segment if it encloses us. */
295 /* Check for and consume any regions we now overlap with. */
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add -= (rg->to - rg->from);
319 add += (nrg->from - f); /* Added to beginning of region */
321 add += t - nrg->to; /* Added to end of region */
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map *resv, long f, long t)
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
360 spin_lock(&resv->lock);
362 resv->adds_in_progress++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
406 INIT_LIST_HEAD(&nrg->link);
410 list_add(&nrg->link, rg->link.prev);
415 /* Round our left edge to the current segment if it encloses us. */
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
434 chg -= rg->to - rg->from;
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
443 spin_unlock(&resv->lock);
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map *resv, long f, long t)
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map *resv, long f, long t)
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
503 if (f > rg->from && t < rg->to) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
513 list_del(&nrg->link);
514 resv->region_cache_count--;
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
527 /* New entry for end of split region */
530 INIT_LIST_HEAD(&nrg->link);
532 /* Original entry is trimmed */
535 list_add(&nrg->link, &rg->link);
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
547 if (f <= rg->from) { /* Trim beginning of region */
550 } else { /* Trim end of region */
556 spin_unlock(&resv->lock);
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
572 struct hugepage_subpool *spool = subpool_inode(inode);
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
579 hugetlb_acct_memory(h, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map *resv, long f, long t)
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
607 chg += seg_to - seg_from;
609 spin_unlock(&resv->lock);
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 struct hstate *hstate;
640 if (!is_vm_hugetlb_page(vma))
643 hstate = hstate_vma(vma);
645 return 1UL << huge_page_shift(hstate);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 return vma_kernel_pagesize(vma);
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 return (unsigned long)vma->vm_private_data;
695 static void set_vma_private_data(struct vm_area_struct *vma,
698 vma->vm_private_data = (void *)value;
701 struct resv_map *resv_map_alloc(void)
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 if (!resv_map || !rg) {
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
716 resv_map->adds_in_progress = 0;
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
725 void resv_map_release(struct kref *ref)
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
740 VM_BUG_ON(resv_map->adds_in_progress);
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 return inode->i_mapping->private_data;
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
757 return inode_resv_map(inode);
760 return (struct resv_map *)(get_vma_private_data(vma) &
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 return (get_vma_private_data(vma) & flag) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 if (vma->vm_flags & VM_NORESERVE) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
832 * Only the process that called mmap() has reserves for
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h->hugepage_freelists[nid] == &page->lru)
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
908 unsigned int cpuset_mems_cookie;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
935 if (!vma_has_reserves(vma, chg))
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
987 VM_BUG_ON(!nodes_allowed);
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1005 VM_BUG_ON(!nodes_allowed);
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1025 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1032 int nr_pages = 1 << order;
1033 struct page *p = page + 1;
1035 atomic_set(compound_mapcount_ptr(page), 0);
1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 clear_compound_head(p);
1038 set_page_refcounted(p);
1041 set_compound_order(page, 0);
1042 __ClearPageHead(page);
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1047 free_contig_range(page_to_pfn(page), 1 << order);
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051 unsigned long nr_pages)
1053 unsigned long end_pfn = start_pfn + nr_pages;
1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058 unsigned long start_pfn, unsigned long nr_pages)
1060 unsigned long i, end_pfn = start_pfn + nr_pages;
1063 for (i = start_pfn; i < end_pfn; i++) {
1067 page = pfn_to_page(i);
1069 if (page_zone(page) != z)
1072 if (PageReserved(page))
1075 if (page_count(page) > 0)
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086 unsigned long start_pfn, unsigned long nr_pages)
1088 unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 return zone_spans_pfn(zone, last_pfn);
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1094 unsigned long nr_pages = 1 << order;
1095 unsigned long ret, pfn, flags;
1098 z = NODE_DATA(nid)->node_zones;
1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 spin_lock_irqsave(&z->lock, flags);
1102 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1106 * We release the zone lock here because
1107 * alloc_contig_range() will also lock the zone
1108 * at some point. If there's an allocation
1109 * spinning on this lock, it may win the race
1110 * and cause alloc_contig_range() to fail...
1112 spin_unlock_irqrestore(&z->lock, flags);
1113 ret = __alloc_gigantic_page(pfn, nr_pages);
1115 return pfn_to_page(pfn);
1116 spin_lock_irqsave(&z->lock, flags);
1121 spin_unlock_irqrestore(&z->lock, flags);
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1134 page = alloc_gigantic_page(nid, huge_page_order(h));
1136 prep_compound_gigantic_page(page, huge_page_order(h));
1137 prep_new_huge_page(h, page, nid);
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144 nodemask_t *nodes_allowed)
1146 struct page *page = NULL;
1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 page = alloc_fresh_gigantic_page_node(h, node);
1158 static inline bool gigantic_page_supported(void) { return true; }
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 nodemask_t *nodes_allowed) { return 0; }
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1172 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1176 h->nr_huge_pages_node[page_to_nid(page)]--;
1177 for (i = 0; i < pages_per_huge_page(h); i++) {
1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 1 << PG_referenced | 1 << PG_dirty |
1180 1 << PG_active | 1 << PG_private |
1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 set_page_refcounted(page);
1186 if (hstate_is_gigantic(h)) {
1187 destroy_compound_gigantic_page(page, huge_page_order(h));
1188 free_gigantic_page(page, huge_page_order(h));
1190 __free_pages(page, huge_page_order(h));
1194 struct hstate *size_to_hstate(unsigned long size)
1198 for_each_hstate(h) {
1199 if (huge_page_size(h) == size)
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1209 * This function can be called for tail pages, but never returns true for them.
1211 bool page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 return PageHead(page) && PagePrivate(&page[1]);
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 SetPagePrivate(&page[1]);
1224 static void clear_page_huge_active(struct page *page)
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 ClearPagePrivate(&page[1]);
1230 void free_huge_page(struct page *page)
1233 * Can't pass hstate in here because it is called from the
1234 * compound page destructor.
1236 struct hstate *h = page_hstate(page);
1237 int nid = page_to_nid(page);
1238 struct hugepage_subpool *spool =
1239 (struct hugepage_subpool *)page_private(page);
1240 bool restore_reserve;
1242 set_page_private(page, 0);
1243 page->mapping = NULL;
1244 VM_BUG_ON_PAGE(page_count(page), page);
1245 VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 restore_reserve = PagePrivate(page);
1247 ClearPagePrivate(page);
1250 * A return code of zero implies that the subpool will be under its
1251 * minimum size if the reservation is not restored after page is free.
1252 * Therefore, force restore_reserve operation.
1254 if (hugepage_subpool_put_pages(spool, 1) == 0)
1255 restore_reserve = true;
1257 spin_lock(&hugetlb_lock);
1258 clear_page_huge_active(page);
1259 hugetlb_cgroup_uncharge_page(hstate_index(h),
1260 pages_per_huge_page(h), page);
1261 if (restore_reserve)
1262 h->resv_huge_pages++;
1264 if (h->surplus_huge_pages_node[nid]) {
1265 /* remove the page from active list */
1266 list_del(&page->lru);
1267 update_and_free_page(h, page);
1268 h->surplus_huge_pages--;
1269 h->surplus_huge_pages_node[nid]--;
1271 arch_clear_hugepage_flags(page);
1272 enqueue_huge_page(h, page);
1274 spin_unlock(&hugetlb_lock);
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1279 INIT_LIST_HEAD(&page->lru);
1280 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281 spin_lock(&hugetlb_lock);
1282 set_hugetlb_cgroup(page, NULL);
1284 h->nr_huge_pages_node[nid]++;
1285 spin_unlock(&hugetlb_lock);
1286 put_page(page); /* free it into the hugepage allocator */
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1292 int nr_pages = 1 << order;
1293 struct page *p = page + 1;
1295 /* we rely on prep_new_huge_page to set the destructor */
1296 set_compound_order(page, order);
1297 __ClearPageReserved(page);
1298 __SetPageHead(page);
1299 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1301 * For gigantic hugepages allocated through bootmem at
1302 * boot, it's safer to be consistent with the not-gigantic
1303 * hugepages and clear the PG_reserved bit from all tail pages
1304 * too. Otherwse drivers using get_user_pages() to access tail
1305 * pages may get the reference counting wrong if they see
1306 * PG_reserved set on a tail page (despite the head page not
1307 * having PG_reserved set). Enforcing this consistency between
1308 * head and tail pages allows drivers to optimize away a check
1309 * on the head page when they need know if put_page() is needed
1310 * after get_user_pages().
1312 __ClearPageReserved(p);
1313 set_page_count(p, 0);
1314 set_compound_head(p, page);
1316 atomic_set(compound_mapcount_ptr(page), -1);
1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321 * transparent huge pages. See the PageTransHuge() documentation for more
1324 int PageHuge(struct page *page)
1326 if (!PageCompound(page))
1329 page = compound_head(page);
1330 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1332 EXPORT_SYMBOL_GPL(PageHuge);
1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336 * normal or transparent huge pages.
1338 int PageHeadHuge(struct page *page_head)
1340 if (!PageHead(page_head))
1343 return get_compound_page_dtor(page_head) == free_huge_page;
1346 pgoff_t __basepage_index(struct page *page)
1348 struct page *page_head = compound_head(page);
1349 pgoff_t index = page_index(page_head);
1350 unsigned long compound_idx;
1352 if (!PageHuge(page_head))
1353 return page_index(page);
1355 if (compound_order(page_head) >= MAX_ORDER)
1356 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1358 compound_idx = page - page_head;
1360 return (index << compound_order(page_head)) + compound_idx;
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367 page = __alloc_pages_node(nid,
1368 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369 __GFP_REPEAT|__GFP_NOWARN,
1370 huge_page_order(h));
1372 prep_new_huge_page(h, page, nid);
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1384 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385 page = alloc_fresh_huge_page_node(h, node);
1393 count_vm_event(HTLB_BUDDY_PGALLOC);
1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1401 * Free huge page from pool from next node to free.
1402 * Attempt to keep persistent huge pages more or less
1403 * balanced over allowed nodes.
1404 * Called with hugetlb_lock locked.
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1414 * If we're returning unused surplus pages, only examine
1415 * nodes with surplus pages.
1417 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418 !list_empty(&h->hugepage_freelists[node])) {
1420 list_entry(h->hugepage_freelists[node].next,
1422 list_del(&page->lru);
1423 h->free_huge_pages--;
1424 h->free_huge_pages_node[node]--;
1426 h->surplus_huge_pages--;
1427 h->surplus_huge_pages_node[node]--;
1429 update_and_free_page(h, page);
1439 * Dissolve a given free hugepage into free buddy pages. This function does
1440 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441 * number of free hugepages would be reduced below the number of reserved
1444 static int dissolve_free_huge_page(struct page *page)
1448 spin_lock(&hugetlb_lock);
1449 if (PageHuge(page) && !page_count(page)) {
1450 struct page *head = compound_head(page);
1451 struct hstate *h = page_hstate(head);
1452 int nid = page_to_nid(head);
1453 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1457 list_del(&head->lru);
1458 h->free_huge_pages--;
1459 h->free_huge_pages_node[nid]--;
1460 h->max_huge_pages--;
1461 update_and_free_page(h, head);
1464 spin_unlock(&hugetlb_lock);
1469 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470 * make specified memory blocks removable from the system.
1471 * Note that this will dissolve a free gigantic hugepage completely, if any
1472 * part of it lies within the given range.
1473 * Also note that if dissolve_free_huge_page() returns with an error, all
1474 * free hugepages that were dissolved before that error are lost.
1476 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1482 if (!hugepages_supported())
1485 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1486 page = pfn_to_page(pfn);
1487 if (PageHuge(page) && !page_count(page)) {
1488 rc = dissolve_free_huge_page(page);
1498 * There are 3 ways this can get called:
1499 * 1. With vma+addr: we use the VMA's memory policy
1500 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1501 * page from any node, and let the buddy allocator itself figure
1503 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1504 * strictly from 'nid'
1506 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1507 struct vm_area_struct *vma, unsigned long addr, int nid)
1509 int order = huge_page_order(h);
1510 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1511 unsigned int cpuset_mems_cookie;
1514 * We need a VMA to get a memory policy. If we do not
1515 * have one, we use the 'nid' argument.
1517 * The mempolicy stuff below has some non-inlined bits
1518 * and calls ->vm_ops. That makes it hard to optimize at
1519 * compile-time, even when NUMA is off and it does
1520 * nothing. This helps the compiler optimize it out.
1522 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1524 * If a specific node is requested, make sure to
1525 * get memory from there, but only when a node
1526 * is explicitly specified.
1528 if (nid != NUMA_NO_NODE)
1529 gfp |= __GFP_THISNODE;
1531 * Make sure to call something that can handle
1534 return alloc_pages_node(nid, gfp, order);
1538 * OK, so we have a VMA. Fetch the mempolicy and try to
1539 * allocate a huge page with it. We will only reach this
1540 * when CONFIG_NUMA=y.
1544 struct mempolicy *mpol;
1545 struct zonelist *zl;
1546 nodemask_t *nodemask;
1548 cpuset_mems_cookie = read_mems_allowed_begin();
1549 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1550 mpol_cond_put(mpol);
1551 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1554 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1560 * There are two ways to allocate a huge page:
1561 * 1. When you have a VMA and an address (like a fault)
1562 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1565 * this case which signifies that the allocation should be done with
1566 * respect for the VMA's memory policy.
1568 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1569 * implies that memory policies will not be taken in to account.
1571 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1572 struct vm_area_struct *vma, unsigned long addr, int nid)
1577 if (hstate_is_gigantic(h))
1581 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1582 * This makes sure the caller is picking _one_ of the modes with which
1583 * we can call this function, not both.
1585 if (vma || (addr != -1)) {
1586 VM_WARN_ON_ONCE(addr == -1);
1587 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1590 * Assume we will successfully allocate the surplus page to
1591 * prevent racing processes from causing the surplus to exceed
1594 * This however introduces a different race, where a process B
1595 * tries to grow the static hugepage pool while alloc_pages() is
1596 * called by process A. B will only examine the per-node
1597 * counters in determining if surplus huge pages can be
1598 * converted to normal huge pages in adjust_pool_surplus(). A
1599 * won't be able to increment the per-node counter, until the
1600 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1601 * no more huge pages can be converted from surplus to normal
1602 * state (and doesn't try to convert again). Thus, we have a
1603 * case where a surplus huge page exists, the pool is grown, and
1604 * the surplus huge page still exists after, even though it
1605 * should just have been converted to a normal huge page. This
1606 * does not leak memory, though, as the hugepage will be freed
1607 * once it is out of use. It also does not allow the counters to
1608 * go out of whack in adjust_pool_surplus() as we don't modify
1609 * the node values until we've gotten the hugepage and only the
1610 * per-node value is checked there.
1612 spin_lock(&hugetlb_lock);
1613 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1614 spin_unlock(&hugetlb_lock);
1618 h->surplus_huge_pages++;
1620 spin_unlock(&hugetlb_lock);
1622 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1624 spin_lock(&hugetlb_lock);
1626 INIT_LIST_HEAD(&page->lru);
1627 r_nid = page_to_nid(page);
1628 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1629 set_hugetlb_cgroup(page, NULL);
1631 * We incremented the global counters already
1633 h->nr_huge_pages_node[r_nid]++;
1634 h->surplus_huge_pages_node[r_nid]++;
1635 __count_vm_event(HTLB_BUDDY_PGALLOC);
1638 h->surplus_huge_pages--;
1639 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1641 spin_unlock(&hugetlb_lock);
1647 * Allocate a huge page from 'nid'. Note, 'nid' may be
1648 * NUMA_NO_NODE, which means that it may be allocated
1652 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1654 unsigned long addr = -1;
1656 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1660 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1664 struct vm_area_struct *vma, unsigned long addr)
1666 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1670 * This allocation function is useful in the context where vma is irrelevant.
1671 * E.g. soft-offlining uses this function because it only cares physical
1672 * address of error page.
1674 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1676 struct page *page = NULL;
1678 spin_lock(&hugetlb_lock);
1679 if (h->free_huge_pages - h->resv_huge_pages > 0)
1680 page = dequeue_huge_page_node(h, nid);
1681 spin_unlock(&hugetlb_lock);
1684 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703 h->resv_huge_pages += delta;
1708 INIT_LIST_HEAD(&surplus_list);
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1719 list_add(&page->lru, &surplus_list);
1724 * After retaking hugetlb_lock, we need to recalculate 'needed'
1725 * because either resv_huge_pages or free_huge_pages may have changed.
1727 spin_lock(&hugetlb_lock);
1728 needed = (h->resv_huge_pages + delta) -
1729 (h->free_huge_pages + allocated);
1734 * We were not able to allocate enough pages to
1735 * satisfy the entire reservation so we free what
1736 * we've allocated so far.
1741 * The surplus_list now contains _at_least_ the number of extra pages
1742 * needed to accommodate the reservation. Add the appropriate number
1743 * of pages to the hugetlb pool and free the extras back to the buddy
1744 * allocator. Commit the entire reservation here to prevent another
1745 * process from stealing the pages as they are added to the pool but
1746 * before they are reserved.
1748 needed += allocated;
1749 h->resv_huge_pages += delta;
1752 /* Free the needed pages to the hugetlb pool */
1753 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 * This page is now managed by the hugetlb allocator and has
1758 * no users -- drop the buddy allocator's reference.
1760 put_page_testzero(page);
1761 VM_BUG_ON_PAGE(page_count(page), page);
1762 enqueue_huge_page(h, page);
1765 spin_unlock(&hugetlb_lock);
1767 /* Free unnecessary surplus pages to the buddy allocator */
1768 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 spin_lock(&hugetlb_lock);
1776 * When releasing a hugetlb pool reservation, any surplus pages that were
1777 * allocated to satisfy the reservation must be explicitly freed if they were
1779 * Called with hugetlb_lock held.
1781 static void return_unused_surplus_pages(struct hstate *h,
1782 unsigned long unused_resv_pages)
1784 unsigned long nr_pages;
1786 /* Uncommit the reservation */
1787 h->resv_huge_pages -= unused_resv_pages;
1789 /* Cannot return gigantic pages currently */
1790 if (hstate_is_gigantic(h))
1793 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1796 * We want to release as many surplus pages as possible, spread
1797 * evenly across all nodes with memory. Iterate across these nodes
1798 * until we can no longer free unreserved surplus pages. This occurs
1799 * when the nodes with surplus pages have no free pages.
1800 * free_pool_huge_page() will balance the the freed pages across the
1801 * on-line nodes with memory and will handle the hstate accounting.
1803 while (nr_pages--) {
1804 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1806 cond_resched_lock(&hugetlb_lock);
1812 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1813 * are used by the huge page allocation routines to manage reservations.
1815 * vma_needs_reservation is called to determine if the huge page at addr
1816 * within the vma has an associated reservation. If a reservation is
1817 * needed, the value 1 is returned. The caller is then responsible for
1818 * managing the global reservation and subpool usage counts. After
1819 * the huge page has been allocated, vma_commit_reservation is called
1820 * to add the page to the reservation map. If the page allocation fails,
1821 * the reservation must be ended instead of committed. vma_end_reservation
1822 * is called in such cases.
1824 * In the normal case, vma_commit_reservation returns the same value
1825 * as the preceding vma_needs_reservation call. The only time this
1826 * is not the case is if a reserve map was changed between calls. It
1827 * is the responsibility of the caller to notice the difference and
1828 * take appropriate action.
1830 enum vma_resv_mode {
1835 static long __vma_reservation_common(struct hstate *h,
1836 struct vm_area_struct *vma, unsigned long addr,
1837 enum vma_resv_mode mode)
1839 struct resv_map *resv;
1843 resv = vma_resv_map(vma);
1847 idx = vma_hugecache_offset(h, vma, addr);
1849 case VMA_NEEDS_RESV:
1850 ret = region_chg(resv, idx, idx + 1);
1852 case VMA_COMMIT_RESV:
1853 ret = region_add(resv, idx, idx + 1);
1856 region_abort(resv, idx, idx + 1);
1863 if (vma->vm_flags & VM_MAYSHARE)
1865 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1867 * In most cases, reserves always exist for private mappings.
1868 * However, a file associated with mapping could have been
1869 * hole punched or truncated after reserves were consumed.
1870 * As subsequent fault on such a range will not use reserves.
1871 * Subtle - The reserve map for private mappings has the
1872 * opposite meaning than that of shared mappings. If NO
1873 * entry is in the reserve map, it means a reservation exists.
1874 * If an entry exists in the reserve map, it means the
1875 * reservation has already been consumed. As a result, the
1876 * return value of this routine is the opposite of the
1877 * value returned from reserve map manipulation routines above.
1885 return ret < 0 ? ret : 0;
1888 static long vma_needs_reservation(struct hstate *h,
1889 struct vm_area_struct *vma, unsigned long addr)
1891 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1894 static long vma_commit_reservation(struct hstate *h,
1895 struct vm_area_struct *vma, unsigned long addr)
1897 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1900 static void vma_end_reservation(struct hstate *h,
1901 struct vm_area_struct *vma, unsigned long addr)
1903 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1906 struct page *alloc_huge_page(struct vm_area_struct *vma,
1907 unsigned long addr, int avoid_reserve)
1909 struct hugepage_subpool *spool = subpool_vma(vma);
1910 struct hstate *h = hstate_vma(vma);
1912 long map_chg, map_commit;
1915 struct hugetlb_cgroup *h_cg;
1917 idx = hstate_index(h);
1919 * Examine the region/reserve map to determine if the process
1920 * has a reservation for the page to be allocated. A return
1921 * code of zero indicates a reservation exists (no change).
1923 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1925 return ERR_PTR(-ENOMEM);
1928 * Processes that did not create the mapping will have no
1929 * reserves as indicated by the region/reserve map. Check
1930 * that the allocation will not exceed the subpool limit.
1931 * Allocations for MAP_NORESERVE mappings also need to be
1932 * checked against any subpool limit.
1934 if (map_chg || avoid_reserve) {
1935 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1937 vma_end_reservation(h, vma, addr);
1938 return ERR_PTR(-ENOSPC);
1942 * Even though there was no reservation in the region/reserve
1943 * map, there could be reservations associated with the
1944 * subpool that can be used. This would be indicated if the
1945 * return value of hugepage_subpool_get_pages() is zero.
1946 * However, if avoid_reserve is specified we still avoid even
1947 * the subpool reservations.
1953 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1955 goto out_subpool_put;
1957 spin_lock(&hugetlb_lock);
1959 * glb_chg is passed to indicate whether or not a page must be taken
1960 * from the global free pool (global change). gbl_chg == 0 indicates
1961 * a reservation exists for the allocation.
1963 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1965 spin_unlock(&hugetlb_lock);
1966 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1968 goto out_uncharge_cgroup;
1969 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1970 SetPagePrivate(page);
1971 h->resv_huge_pages--;
1973 spin_lock(&hugetlb_lock);
1974 list_move(&page->lru, &h->hugepage_activelist);
1977 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1978 spin_unlock(&hugetlb_lock);
1980 set_page_private(page, (unsigned long)spool);
1982 map_commit = vma_commit_reservation(h, vma, addr);
1983 if (unlikely(map_chg > map_commit)) {
1985 * The page was added to the reservation map between
1986 * vma_needs_reservation and vma_commit_reservation.
1987 * This indicates a race with hugetlb_reserve_pages.
1988 * Adjust for the subpool count incremented above AND
1989 * in hugetlb_reserve_pages for the same page. Also,
1990 * the reservation count added in hugetlb_reserve_pages
1991 * no longer applies.
1995 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1996 hugetlb_acct_memory(h, -rsv_adjust);
2000 out_uncharge_cgroup:
2001 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2003 if (map_chg || avoid_reserve)
2004 hugepage_subpool_put_pages(spool, 1);
2005 vma_end_reservation(h, vma, addr);
2006 return ERR_PTR(-ENOSPC);
2010 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2011 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2012 * where no ERR_VALUE is expected to be returned.
2014 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2015 unsigned long addr, int avoid_reserve)
2017 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2023 int __weak alloc_bootmem_huge_page(struct hstate *h)
2025 struct huge_bootmem_page *m;
2028 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2031 addr = memblock_virt_alloc_try_nid_nopanic(
2032 huge_page_size(h), huge_page_size(h),
2033 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2036 * Use the beginning of the huge page to store the
2037 * huge_bootmem_page struct (until gather_bootmem
2038 * puts them into the mem_map).
2047 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2048 /* Put them into a private list first because mem_map is not up yet */
2049 list_add(&m->list, &huge_boot_pages);
2054 static void __init prep_compound_huge_page(struct page *page,
2057 if (unlikely(order > (MAX_ORDER - 1)))
2058 prep_compound_gigantic_page(page, order);
2060 prep_compound_page(page, order);
2063 /* Put bootmem huge pages into the standard lists after mem_map is up */
2064 static void __init gather_bootmem_prealloc(void)
2066 struct huge_bootmem_page *m;
2068 list_for_each_entry(m, &huge_boot_pages, list) {
2069 struct hstate *h = m->hstate;
2072 #ifdef CONFIG_HIGHMEM
2073 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2074 memblock_free_late(__pa(m),
2075 sizeof(struct huge_bootmem_page));
2077 page = virt_to_page(m);
2079 WARN_ON(page_count(page) != 1);
2080 prep_compound_huge_page(page, h->order);
2081 WARN_ON(PageReserved(page));
2082 prep_new_huge_page(h, page, page_to_nid(page));
2084 * If we had gigantic hugepages allocated at boot time, we need
2085 * to restore the 'stolen' pages to totalram_pages in order to
2086 * fix confusing memory reports from free(1) and another
2087 * side-effects, like CommitLimit going negative.
2089 if (hstate_is_gigantic(h))
2090 adjust_managed_page_count(page, 1 << h->order);
2094 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2098 for (i = 0; i < h->max_huge_pages; ++i) {
2099 if (hstate_is_gigantic(h)) {
2100 if (!alloc_bootmem_huge_page(h))
2102 } else if (!alloc_fresh_huge_page(h,
2103 &node_states[N_MEMORY]))
2106 h->max_huge_pages = i;
2109 static void __init hugetlb_init_hstates(void)
2113 for_each_hstate(h) {
2114 if (minimum_order > huge_page_order(h))
2115 minimum_order = huge_page_order(h);
2117 /* oversize hugepages were init'ed in early boot */
2118 if (!hstate_is_gigantic(h))
2119 hugetlb_hstate_alloc_pages(h);
2121 VM_BUG_ON(minimum_order == UINT_MAX);
2124 static char * __init memfmt(char *buf, unsigned long n)
2126 if (n >= (1UL << 30))
2127 sprintf(buf, "%lu GB", n >> 30);
2128 else if (n >= (1UL << 20))
2129 sprintf(buf, "%lu MB", n >> 20);
2131 sprintf(buf, "%lu KB", n >> 10);
2135 static void __init report_hugepages(void)
2139 for_each_hstate(h) {
2141 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2142 memfmt(buf, huge_page_size(h)),
2143 h->free_huge_pages);
2147 #ifdef CONFIG_HIGHMEM
2148 static void try_to_free_low(struct hstate *h, unsigned long count,
2149 nodemask_t *nodes_allowed)
2153 if (hstate_is_gigantic(h))
2156 for_each_node_mask(i, *nodes_allowed) {
2157 struct page *page, *next;
2158 struct list_head *freel = &h->hugepage_freelists[i];
2159 list_for_each_entry_safe(page, next, freel, lru) {
2160 if (count >= h->nr_huge_pages)
2162 if (PageHighMem(page))
2164 list_del(&page->lru);
2165 update_and_free_page(h, page);
2166 h->free_huge_pages--;
2167 h->free_huge_pages_node[page_to_nid(page)]--;
2172 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2173 nodemask_t *nodes_allowed)
2179 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2180 * balanced by operating on them in a round-robin fashion.
2181 * Returns 1 if an adjustment was made.
2183 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2188 VM_BUG_ON(delta != -1 && delta != 1);
2191 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2192 if (h->surplus_huge_pages_node[node])
2196 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2197 if (h->surplus_huge_pages_node[node] <
2198 h->nr_huge_pages_node[node])
2205 h->surplus_huge_pages += delta;
2206 h->surplus_huge_pages_node[node] += delta;
2210 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2211 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2212 nodemask_t *nodes_allowed)
2214 unsigned long min_count, ret;
2216 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2217 return h->max_huge_pages;
2220 * Increase the pool size
2221 * First take pages out of surplus state. Then make up the
2222 * remaining difference by allocating fresh huge pages.
2224 * We might race with __alloc_buddy_huge_page() here and be unable
2225 * to convert a surplus huge page to a normal huge page. That is
2226 * not critical, though, it just means the overall size of the
2227 * pool might be one hugepage larger than it needs to be, but
2228 * within all the constraints specified by the sysctls.
2230 spin_lock(&hugetlb_lock);
2231 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2232 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2236 while (count > persistent_huge_pages(h)) {
2238 * If this allocation races such that we no longer need the
2239 * page, free_huge_page will handle it by freeing the page
2240 * and reducing the surplus.
2242 spin_unlock(&hugetlb_lock);
2244 /* yield cpu to avoid soft lockup */
2247 if (hstate_is_gigantic(h))
2248 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2250 ret = alloc_fresh_huge_page(h, nodes_allowed);
2251 spin_lock(&hugetlb_lock);
2255 /* Bail for signals. Probably ctrl-c from user */
2256 if (signal_pending(current))
2261 * Decrease the pool size
2262 * First return free pages to the buddy allocator (being careful
2263 * to keep enough around to satisfy reservations). Then place
2264 * pages into surplus state as needed so the pool will shrink
2265 * to the desired size as pages become free.
2267 * By placing pages into the surplus state independent of the
2268 * overcommit value, we are allowing the surplus pool size to
2269 * exceed overcommit. There are few sane options here. Since
2270 * __alloc_buddy_huge_page() is checking the global counter,
2271 * though, we'll note that we're not allowed to exceed surplus
2272 * and won't grow the pool anywhere else. Not until one of the
2273 * sysctls are changed, or the surplus pages go out of use.
2275 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2276 min_count = max(count, min_count);
2277 try_to_free_low(h, min_count, nodes_allowed);
2278 while (min_count < persistent_huge_pages(h)) {
2279 if (!free_pool_huge_page(h, nodes_allowed, 0))
2281 cond_resched_lock(&hugetlb_lock);
2283 while (count < persistent_huge_pages(h)) {
2284 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2288 ret = persistent_huge_pages(h);
2289 spin_unlock(&hugetlb_lock);
2293 #define HSTATE_ATTR_RO(_name) \
2294 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2296 #define HSTATE_ATTR(_name) \
2297 static struct kobj_attribute _name##_attr = \
2298 __ATTR(_name, 0644, _name##_show, _name##_store)
2300 static struct kobject *hugepages_kobj;
2301 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2303 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2305 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2309 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2310 if (hstate_kobjs[i] == kobj) {
2312 *nidp = NUMA_NO_NODE;
2316 return kobj_to_node_hstate(kobj, nidp);
2319 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2320 struct kobj_attribute *attr, char *buf)
2323 unsigned long nr_huge_pages;
2326 h = kobj_to_hstate(kobj, &nid);
2327 if (nid == NUMA_NO_NODE)
2328 nr_huge_pages = h->nr_huge_pages;
2330 nr_huge_pages = h->nr_huge_pages_node[nid];
2332 return sprintf(buf, "%lu\n", nr_huge_pages);
2335 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2336 struct hstate *h, int nid,
2337 unsigned long count, size_t len)
2340 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2342 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2347 if (nid == NUMA_NO_NODE) {
2349 * global hstate attribute
2351 if (!(obey_mempolicy &&
2352 init_nodemask_of_mempolicy(nodes_allowed))) {
2353 NODEMASK_FREE(nodes_allowed);
2354 nodes_allowed = &node_states[N_MEMORY];
2356 } else if (nodes_allowed) {
2358 * per node hstate attribute: adjust count to global,
2359 * but restrict alloc/free to the specified node.
2361 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2362 init_nodemask_of_node(nodes_allowed, nid);
2364 nodes_allowed = &node_states[N_MEMORY];
2366 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2368 if (nodes_allowed != &node_states[N_MEMORY])
2369 NODEMASK_FREE(nodes_allowed);
2373 NODEMASK_FREE(nodes_allowed);
2377 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2378 struct kobject *kobj, const char *buf,
2382 unsigned long count;
2386 err = kstrtoul(buf, 10, &count);
2390 h = kobj_to_hstate(kobj, &nid);
2391 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2394 static ssize_t nr_hugepages_show(struct kobject *kobj,
2395 struct kobj_attribute *attr, char *buf)
2397 return nr_hugepages_show_common(kobj, attr, buf);
2400 static ssize_t nr_hugepages_store(struct kobject *kobj,
2401 struct kobj_attribute *attr, const char *buf, size_t len)
2403 return nr_hugepages_store_common(false, kobj, buf, len);
2405 HSTATE_ATTR(nr_hugepages);
2410 * hstate attribute for optionally mempolicy-based constraint on persistent
2411 * huge page alloc/free.
2413 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2414 struct kobj_attribute *attr, char *buf)
2416 return nr_hugepages_show_common(kobj, attr, buf);
2419 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2420 struct kobj_attribute *attr, const char *buf, size_t len)
2422 return nr_hugepages_store_common(true, kobj, buf, len);
2424 HSTATE_ATTR(nr_hugepages_mempolicy);
2428 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2429 struct kobj_attribute *attr, char *buf)
2431 struct hstate *h = kobj_to_hstate(kobj, NULL);
2432 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2435 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2436 struct kobj_attribute *attr, const char *buf, size_t count)
2439 unsigned long input;
2440 struct hstate *h = kobj_to_hstate(kobj, NULL);
2442 if (hstate_is_gigantic(h))
2445 err = kstrtoul(buf, 10, &input);
2449 spin_lock(&hugetlb_lock);
2450 h->nr_overcommit_huge_pages = input;
2451 spin_unlock(&hugetlb_lock);
2455 HSTATE_ATTR(nr_overcommit_hugepages);
2457 static ssize_t free_hugepages_show(struct kobject *kobj,
2458 struct kobj_attribute *attr, char *buf)
2461 unsigned long free_huge_pages;
2464 h = kobj_to_hstate(kobj, &nid);
2465 if (nid == NUMA_NO_NODE)
2466 free_huge_pages = h->free_huge_pages;
2468 free_huge_pages = h->free_huge_pages_node[nid];
2470 return sprintf(buf, "%lu\n", free_huge_pages);
2472 HSTATE_ATTR_RO(free_hugepages);
2474 static ssize_t resv_hugepages_show(struct kobject *kobj,
2475 struct kobj_attribute *attr, char *buf)
2477 struct hstate *h = kobj_to_hstate(kobj, NULL);
2478 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2480 HSTATE_ATTR_RO(resv_hugepages);
2482 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2483 struct kobj_attribute *attr, char *buf)
2486 unsigned long surplus_huge_pages;
2489 h = kobj_to_hstate(kobj, &nid);
2490 if (nid == NUMA_NO_NODE)
2491 surplus_huge_pages = h->surplus_huge_pages;
2493 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2495 return sprintf(buf, "%lu\n", surplus_huge_pages);
2497 HSTATE_ATTR_RO(surplus_hugepages);
2499 static struct attribute *hstate_attrs[] = {
2500 &nr_hugepages_attr.attr,
2501 &nr_overcommit_hugepages_attr.attr,
2502 &free_hugepages_attr.attr,
2503 &resv_hugepages_attr.attr,
2504 &surplus_hugepages_attr.attr,
2506 &nr_hugepages_mempolicy_attr.attr,
2511 static struct attribute_group hstate_attr_group = {
2512 .attrs = hstate_attrs,
2515 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2516 struct kobject **hstate_kobjs,
2517 struct attribute_group *hstate_attr_group)
2520 int hi = hstate_index(h);
2522 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2523 if (!hstate_kobjs[hi])
2526 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2528 kobject_put(hstate_kobjs[hi]);
2533 static void __init hugetlb_sysfs_init(void)
2538 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2539 if (!hugepages_kobj)
2542 for_each_hstate(h) {
2543 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2544 hstate_kobjs, &hstate_attr_group);
2546 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2553 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2554 * with node devices in node_devices[] using a parallel array. The array
2555 * index of a node device or _hstate == node id.
2556 * This is here to avoid any static dependency of the node device driver, in
2557 * the base kernel, on the hugetlb module.
2559 struct node_hstate {
2560 struct kobject *hugepages_kobj;
2561 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2563 static struct node_hstate node_hstates[MAX_NUMNODES];
2566 * A subset of global hstate attributes for node devices
2568 static struct attribute *per_node_hstate_attrs[] = {
2569 &nr_hugepages_attr.attr,
2570 &free_hugepages_attr.attr,
2571 &surplus_hugepages_attr.attr,
2575 static struct attribute_group per_node_hstate_attr_group = {
2576 .attrs = per_node_hstate_attrs,
2580 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2581 * Returns node id via non-NULL nidp.
2583 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2587 for (nid = 0; nid < nr_node_ids; nid++) {
2588 struct node_hstate *nhs = &node_hstates[nid];
2590 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2591 if (nhs->hstate_kobjs[i] == kobj) {
2603 * Unregister hstate attributes from a single node device.
2604 * No-op if no hstate attributes attached.
2606 static void hugetlb_unregister_node(struct node *node)
2609 struct node_hstate *nhs = &node_hstates[node->dev.id];
2611 if (!nhs->hugepages_kobj)
2612 return; /* no hstate attributes */
2614 for_each_hstate(h) {
2615 int idx = hstate_index(h);
2616 if (nhs->hstate_kobjs[idx]) {
2617 kobject_put(nhs->hstate_kobjs[idx]);
2618 nhs->hstate_kobjs[idx] = NULL;
2622 kobject_put(nhs->hugepages_kobj);
2623 nhs->hugepages_kobj = NULL;
2628 * Register hstate attributes for a single node device.
2629 * No-op if attributes already registered.
2631 static void hugetlb_register_node(struct node *node)
2634 struct node_hstate *nhs = &node_hstates[node->dev.id];
2637 if (nhs->hugepages_kobj)
2638 return; /* already allocated */
2640 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2642 if (!nhs->hugepages_kobj)
2645 for_each_hstate(h) {
2646 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2648 &per_node_hstate_attr_group);
2650 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2651 h->name, node->dev.id);
2652 hugetlb_unregister_node(node);
2659 * hugetlb init time: register hstate attributes for all registered node
2660 * devices of nodes that have memory. All on-line nodes should have
2661 * registered their associated device by this time.
2663 static void __init hugetlb_register_all_nodes(void)
2667 for_each_node_state(nid, N_MEMORY) {
2668 struct node *node = node_devices[nid];
2669 if (node->dev.id == nid)
2670 hugetlb_register_node(node);
2674 * Let the node device driver know we're here so it can
2675 * [un]register hstate attributes on node hotplug.
2677 register_hugetlbfs_with_node(hugetlb_register_node,
2678 hugetlb_unregister_node);
2680 #else /* !CONFIG_NUMA */
2682 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2690 static void hugetlb_register_all_nodes(void) { }
2694 static int __init hugetlb_init(void)
2698 if (!hugepages_supported())
2701 if (!size_to_hstate(default_hstate_size)) {
2702 default_hstate_size = HPAGE_SIZE;
2703 if (!size_to_hstate(default_hstate_size))
2704 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2706 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2707 if (default_hstate_max_huge_pages) {
2708 if (!default_hstate.max_huge_pages)
2709 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2712 hugetlb_init_hstates();
2713 gather_bootmem_prealloc();
2716 hugetlb_sysfs_init();
2717 hugetlb_register_all_nodes();
2718 hugetlb_cgroup_file_init();
2721 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2723 num_fault_mutexes = 1;
2725 hugetlb_fault_mutex_table =
2726 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2727 BUG_ON(!hugetlb_fault_mutex_table);
2729 for (i = 0; i < num_fault_mutexes; i++)
2730 mutex_init(&hugetlb_fault_mutex_table[i]);
2733 subsys_initcall(hugetlb_init);
2735 /* Should be called on processing a hugepagesz=... option */
2736 void __init hugetlb_bad_size(void)
2738 parsed_valid_hugepagesz = false;
2741 void __init hugetlb_add_hstate(unsigned int order)
2746 if (size_to_hstate(PAGE_SIZE << order)) {
2747 pr_warn("hugepagesz= specified twice, ignoring\n");
2750 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2752 h = &hstates[hugetlb_max_hstate++];
2754 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2755 h->nr_huge_pages = 0;
2756 h->free_huge_pages = 0;
2757 for (i = 0; i < MAX_NUMNODES; ++i)
2758 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2759 INIT_LIST_HEAD(&h->hugepage_activelist);
2760 h->next_nid_to_alloc = first_memory_node;
2761 h->next_nid_to_free = first_memory_node;
2762 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2763 huge_page_size(h)/1024);
2768 static int __init hugetlb_nrpages_setup(char *s)
2771 static unsigned long *last_mhp;
2773 if (!parsed_valid_hugepagesz) {
2774 pr_warn("hugepages = %s preceded by "
2775 "an unsupported hugepagesz, ignoring\n", s);
2776 parsed_valid_hugepagesz = true;
2780 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2781 * so this hugepages= parameter goes to the "default hstate".
2783 else if (!hugetlb_max_hstate)
2784 mhp = &default_hstate_max_huge_pages;
2786 mhp = &parsed_hstate->max_huge_pages;
2788 if (mhp == last_mhp) {
2789 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2793 if (sscanf(s, "%lu", mhp) <= 0)
2797 * Global state is always initialized later in hugetlb_init.
2798 * But we need to allocate >= MAX_ORDER hstates here early to still
2799 * use the bootmem allocator.
2801 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2802 hugetlb_hstate_alloc_pages(parsed_hstate);
2808 __setup("hugepages=", hugetlb_nrpages_setup);
2810 static int __init hugetlb_default_setup(char *s)
2812 default_hstate_size = memparse(s, &s);
2815 __setup("default_hugepagesz=", hugetlb_default_setup);
2817 static unsigned int cpuset_mems_nr(unsigned int *array)
2820 unsigned int nr = 0;
2822 for_each_node_mask(node, cpuset_current_mems_allowed)
2828 #ifdef CONFIG_SYSCTL
2829 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2830 struct ctl_table *table, int write,
2831 void __user *buffer, size_t *length, loff_t *ppos)
2833 struct hstate *h = &default_hstate;
2834 unsigned long tmp = h->max_huge_pages;
2837 if (!hugepages_supported())
2841 table->maxlen = sizeof(unsigned long);
2842 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2847 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2848 NUMA_NO_NODE, tmp, *length);
2853 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2854 void __user *buffer, size_t *length, loff_t *ppos)
2857 return hugetlb_sysctl_handler_common(false, table, write,
2858 buffer, length, ppos);
2862 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2863 void __user *buffer, size_t *length, loff_t *ppos)
2865 return hugetlb_sysctl_handler_common(true, table, write,
2866 buffer, length, ppos);
2868 #endif /* CONFIG_NUMA */
2870 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2871 void __user *buffer,
2872 size_t *length, loff_t *ppos)
2874 struct hstate *h = &default_hstate;
2878 if (!hugepages_supported())
2881 tmp = h->nr_overcommit_huge_pages;
2883 if (write && hstate_is_gigantic(h))
2887 table->maxlen = sizeof(unsigned long);
2888 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2893 spin_lock(&hugetlb_lock);
2894 h->nr_overcommit_huge_pages = tmp;
2895 spin_unlock(&hugetlb_lock);
2901 #endif /* CONFIG_SYSCTL */
2903 void hugetlb_report_meminfo(struct seq_file *m)
2905 struct hstate *h = &default_hstate;
2906 if (!hugepages_supported())
2909 "HugePages_Total: %5lu\n"
2910 "HugePages_Free: %5lu\n"
2911 "HugePages_Rsvd: %5lu\n"
2912 "HugePages_Surp: %5lu\n"
2913 "Hugepagesize: %8lu kB\n",
2917 h->surplus_huge_pages,
2918 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2921 int hugetlb_report_node_meminfo(int nid, char *buf)
2923 struct hstate *h = &default_hstate;
2924 if (!hugepages_supported())
2927 "Node %d HugePages_Total: %5u\n"
2928 "Node %d HugePages_Free: %5u\n"
2929 "Node %d HugePages_Surp: %5u\n",
2930 nid, h->nr_huge_pages_node[nid],
2931 nid, h->free_huge_pages_node[nid],
2932 nid, h->surplus_huge_pages_node[nid]);
2935 void hugetlb_show_meminfo(void)
2940 if (!hugepages_supported())
2943 for_each_node_state(nid, N_MEMORY)
2945 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2947 h->nr_huge_pages_node[nid],
2948 h->free_huge_pages_node[nid],
2949 h->surplus_huge_pages_node[nid],
2950 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2953 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2955 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2956 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2959 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2960 unsigned long hugetlb_total_pages(void)
2963 unsigned long nr_total_pages = 0;
2966 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2967 return nr_total_pages;
2970 static int hugetlb_acct_memory(struct hstate *h, long delta)
2974 spin_lock(&hugetlb_lock);
2976 * When cpuset is configured, it breaks the strict hugetlb page
2977 * reservation as the accounting is done on a global variable. Such
2978 * reservation is completely rubbish in the presence of cpuset because
2979 * the reservation is not checked against page availability for the
2980 * current cpuset. Application can still potentially OOM'ed by kernel
2981 * with lack of free htlb page in cpuset that the task is in.
2982 * Attempt to enforce strict accounting with cpuset is almost
2983 * impossible (or too ugly) because cpuset is too fluid that
2984 * task or memory node can be dynamically moved between cpusets.
2986 * The change of semantics for shared hugetlb mapping with cpuset is
2987 * undesirable. However, in order to preserve some of the semantics,
2988 * we fall back to check against current free page availability as
2989 * a best attempt and hopefully to minimize the impact of changing
2990 * semantics that cpuset has.
2993 if (gather_surplus_pages(h, delta) < 0)
2996 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2997 return_unused_surplus_pages(h, delta);
3004 return_unused_surplus_pages(h, (unsigned long) -delta);
3007 spin_unlock(&hugetlb_lock);
3011 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3013 struct resv_map *resv = vma_resv_map(vma);
3016 * This new VMA should share its siblings reservation map if present.
3017 * The VMA will only ever have a valid reservation map pointer where
3018 * it is being copied for another still existing VMA. As that VMA
3019 * has a reference to the reservation map it cannot disappear until
3020 * after this open call completes. It is therefore safe to take a
3021 * new reference here without additional locking.
3023 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3024 kref_get(&resv->refs);
3027 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3029 struct hstate *h = hstate_vma(vma);
3030 struct resv_map *resv = vma_resv_map(vma);
3031 struct hugepage_subpool *spool = subpool_vma(vma);
3032 unsigned long reserve, start, end;
3035 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3038 start = vma_hugecache_offset(h, vma, vma->vm_start);
3039 end = vma_hugecache_offset(h, vma, vma->vm_end);
3041 reserve = (end - start) - region_count(resv, start, end);
3043 kref_put(&resv->refs, resv_map_release);
3047 * Decrement reserve counts. The global reserve count may be
3048 * adjusted if the subpool has a minimum size.
3050 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3051 hugetlb_acct_memory(h, -gbl_reserve);
3056 * We cannot handle pagefaults against hugetlb pages at all. They cause
3057 * handle_mm_fault() to try to instantiate regular-sized pages in the
3058 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3061 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3067 const struct vm_operations_struct hugetlb_vm_ops = {
3068 .fault = hugetlb_vm_op_fault,
3069 .open = hugetlb_vm_op_open,
3070 .close = hugetlb_vm_op_close,
3073 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3079 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3080 vma->vm_page_prot)));
3082 entry = huge_pte_wrprotect(mk_huge_pte(page,
3083 vma->vm_page_prot));
3085 entry = pte_mkyoung(entry);
3086 entry = pte_mkhuge(entry);
3087 entry = arch_make_huge_pte(entry, vma, page, writable);
3092 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3093 unsigned long address, pte_t *ptep)
3097 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3098 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3099 update_mmu_cache(vma, address, ptep);
3102 static int is_hugetlb_entry_migration(pte_t pte)
3106 if (huge_pte_none(pte) || pte_present(pte))
3108 swp = pte_to_swp_entry(pte);
3109 if (non_swap_entry(swp) && is_migration_entry(swp))
3115 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3119 if (huge_pte_none(pte) || pte_present(pte))
3121 swp = pte_to_swp_entry(pte);
3122 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3128 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3129 struct vm_area_struct *vma)
3131 pte_t *src_pte, *dst_pte, entry;
3132 struct page *ptepage;
3135 struct hstate *h = hstate_vma(vma);
3136 unsigned long sz = huge_page_size(h);
3137 unsigned long mmun_start; /* For mmu_notifiers */
3138 unsigned long mmun_end; /* For mmu_notifiers */
3141 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3143 mmun_start = vma->vm_start;
3144 mmun_end = vma->vm_end;
3146 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3148 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3149 spinlock_t *src_ptl, *dst_ptl;
3150 src_pte = huge_pte_offset(src, addr);
3153 dst_pte = huge_pte_alloc(dst, addr, sz);
3159 /* If the pagetables are shared don't copy or take references */
3160 if (dst_pte == src_pte)
3163 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3164 src_ptl = huge_pte_lockptr(h, src, src_pte);
3165 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3166 entry = huge_ptep_get(src_pte);
3167 if (huge_pte_none(entry)) { /* skip none entry */
3169 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3170 is_hugetlb_entry_hwpoisoned(entry))) {
3171 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3173 if (is_write_migration_entry(swp_entry) && cow) {
3175 * COW mappings require pages in both
3176 * parent and child to be set to read.
3178 make_migration_entry_read(&swp_entry);
3179 entry = swp_entry_to_pte(swp_entry);
3180 set_huge_pte_at(src, addr, src_pte, entry);
3182 set_huge_pte_at(dst, addr, dst_pte, entry);
3185 huge_ptep_set_wrprotect(src, addr, src_pte);
3186 mmu_notifier_invalidate_range(src, mmun_start,
3189 entry = huge_ptep_get(src_pte);
3190 ptepage = pte_page(entry);
3192 page_dup_rmap(ptepage, true);
3193 set_huge_pte_at(dst, addr, dst_pte, entry);
3194 hugetlb_count_add(pages_per_huge_page(h), dst);
3196 spin_unlock(src_ptl);
3197 spin_unlock(dst_ptl);
3201 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3206 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3207 unsigned long start, unsigned long end,
3208 struct page *ref_page)
3210 struct mm_struct *mm = vma->vm_mm;
3211 unsigned long address;
3216 struct hstate *h = hstate_vma(vma);
3217 unsigned long sz = huge_page_size(h);
3218 const unsigned long mmun_start = start; /* For mmu_notifiers */
3219 const unsigned long mmun_end = end; /* For mmu_notifiers */
3221 WARN_ON(!is_vm_hugetlb_page(vma));
3222 BUG_ON(start & ~huge_page_mask(h));
3223 BUG_ON(end & ~huge_page_mask(h));
3225 tlb_start_vma(tlb, vma);
3226 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3228 for (; address < end; address += sz) {
3229 ptep = huge_pte_offset(mm, address);
3233 ptl = huge_pte_lock(h, mm, ptep);
3234 if (huge_pmd_unshare(mm, &address, ptep)) {
3239 pte = huge_ptep_get(ptep);
3240 if (huge_pte_none(pte)) {
3246 * Migrating hugepage or HWPoisoned hugepage is already
3247 * unmapped and its refcount is dropped, so just clear pte here.
3249 if (unlikely(!pte_present(pte))) {
3250 huge_pte_clear(mm, address, ptep);
3255 page = pte_page(pte);
3257 * If a reference page is supplied, it is because a specific
3258 * page is being unmapped, not a range. Ensure the page we
3259 * are about to unmap is the actual page of interest.
3262 if (page != ref_page) {
3267 * Mark the VMA as having unmapped its page so that
3268 * future faults in this VMA will fail rather than
3269 * looking like data was lost
3271 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3274 pte = huge_ptep_get_and_clear(mm, address, ptep);
3275 tlb_remove_tlb_entry(tlb, ptep, address);
3276 if (huge_pte_dirty(pte))
3277 set_page_dirty(page);
3279 hugetlb_count_sub(pages_per_huge_page(h), mm);
3280 page_remove_rmap(page, true);
3283 tlb_remove_page_size(tlb, page, huge_page_size(h));
3285 * Bail out after unmapping reference page if supplied
3290 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3291 tlb_end_vma(tlb, vma);
3294 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3295 struct vm_area_struct *vma, unsigned long start,
3296 unsigned long end, struct page *ref_page)
3298 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3301 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3302 * test will fail on a vma being torn down, and not grab a page table
3303 * on its way out. We're lucky that the flag has such an appropriate
3304 * name, and can in fact be safely cleared here. We could clear it
3305 * before the __unmap_hugepage_range above, but all that's necessary
3306 * is to clear it before releasing the i_mmap_rwsem. This works
3307 * because in the context this is called, the VMA is about to be
3308 * destroyed and the i_mmap_rwsem is held.
3310 vma->vm_flags &= ~VM_MAYSHARE;
3313 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3314 unsigned long end, struct page *ref_page)
3316 struct mm_struct *mm;
3317 struct mmu_gather tlb;
3321 tlb_gather_mmu(&tlb, mm, start, end);
3322 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3323 tlb_finish_mmu(&tlb, start, end);
3327 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3328 * mappping it owns the reserve page for. The intention is to unmap the page
3329 * from other VMAs and let the children be SIGKILLed if they are faulting the
3332 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3333 struct page *page, unsigned long address)
3335 struct hstate *h = hstate_vma(vma);
3336 struct vm_area_struct *iter_vma;
3337 struct address_space *mapping;
3341 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3342 * from page cache lookup which is in HPAGE_SIZE units.
3344 address = address & huge_page_mask(h);
3345 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3347 mapping = vma->vm_file->f_mapping;
3350 * Take the mapping lock for the duration of the table walk. As
3351 * this mapping should be shared between all the VMAs,
3352 * __unmap_hugepage_range() is called as the lock is already held
3354 i_mmap_lock_write(mapping);
3355 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3356 /* Do not unmap the current VMA */
3357 if (iter_vma == vma)
3361 * Shared VMAs have their own reserves and do not affect
3362 * MAP_PRIVATE accounting but it is possible that a shared
3363 * VMA is using the same page so check and skip such VMAs.
3365 if (iter_vma->vm_flags & VM_MAYSHARE)
3369 * Unmap the page from other VMAs without their own reserves.
3370 * They get marked to be SIGKILLed if they fault in these
3371 * areas. This is because a future no-page fault on this VMA
3372 * could insert a zeroed page instead of the data existing
3373 * from the time of fork. This would look like data corruption
3375 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3376 unmap_hugepage_range(iter_vma, address,
3377 address + huge_page_size(h), page);
3379 i_mmap_unlock_write(mapping);
3383 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3384 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3385 * cannot race with other handlers or page migration.
3386 * Keep the pte_same checks anyway to make transition from the mutex easier.
3388 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3389 unsigned long address, pte_t *ptep, pte_t pte,
3390 struct page *pagecache_page, spinlock_t *ptl)
3392 struct hstate *h = hstate_vma(vma);
3393 struct page *old_page, *new_page;
3394 int ret = 0, outside_reserve = 0;
3395 unsigned long mmun_start; /* For mmu_notifiers */
3396 unsigned long mmun_end; /* For mmu_notifiers */
3398 old_page = pte_page(pte);
3401 /* If no-one else is actually using this page, avoid the copy
3402 * and just make the page writable */
3403 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3404 page_move_anon_rmap(old_page, vma);
3405 set_huge_ptep_writable(vma, address, ptep);
3410 * If the process that created a MAP_PRIVATE mapping is about to
3411 * perform a COW due to a shared page count, attempt to satisfy
3412 * the allocation without using the existing reserves. The pagecache
3413 * page is used to determine if the reserve at this address was
3414 * consumed or not. If reserves were used, a partial faulted mapping
3415 * at the time of fork() could consume its reserves on COW instead
3416 * of the full address range.
3418 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3419 old_page != pagecache_page)
3420 outside_reserve = 1;
3425 * Drop page table lock as buddy allocator may be called. It will
3426 * be acquired again before returning to the caller, as expected.
3429 new_page = alloc_huge_page(vma, address, outside_reserve);
3431 if (IS_ERR(new_page)) {
3433 * If a process owning a MAP_PRIVATE mapping fails to COW,
3434 * it is due to references held by a child and an insufficient
3435 * huge page pool. To guarantee the original mappers
3436 * reliability, unmap the page from child processes. The child
3437 * may get SIGKILLed if it later faults.
3439 if (outside_reserve) {
3441 BUG_ON(huge_pte_none(pte));
3442 unmap_ref_private(mm, vma, old_page, address);
3443 BUG_ON(huge_pte_none(pte));
3445 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3447 pte_same(huge_ptep_get(ptep), pte)))
3448 goto retry_avoidcopy;
3450 * race occurs while re-acquiring page table
3451 * lock, and our job is done.
3456 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3457 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3458 goto out_release_old;
3462 * When the original hugepage is shared one, it does not have
3463 * anon_vma prepared.
3465 if (unlikely(anon_vma_prepare(vma))) {
3467 goto out_release_all;
3470 copy_user_huge_page(new_page, old_page, address, vma,
3471 pages_per_huge_page(h));
3472 __SetPageUptodate(new_page);
3473 set_page_huge_active(new_page);
3475 mmun_start = address & huge_page_mask(h);
3476 mmun_end = mmun_start + huge_page_size(h);
3477 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3480 * Retake the page table lock to check for racing updates
3481 * before the page tables are altered
3484 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3485 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3486 ClearPagePrivate(new_page);
3489 huge_ptep_clear_flush(vma, address, ptep);
3490 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3491 set_huge_pte_at(mm, address, ptep,
3492 make_huge_pte(vma, new_page, 1));
3493 page_remove_rmap(old_page, true);
3494 hugepage_add_new_anon_rmap(new_page, vma, address);
3495 /* Make the old page be freed below */
3496 new_page = old_page;
3499 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3505 spin_lock(ptl); /* Caller expects lock to be held */
3509 /* Return the pagecache page at a given address within a VMA */
3510 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3511 struct vm_area_struct *vma, unsigned long address)
3513 struct address_space *mapping;
3516 mapping = vma->vm_file->f_mapping;
3517 idx = vma_hugecache_offset(h, vma, address);
3519 return find_lock_page(mapping, idx);
3523 * Return whether there is a pagecache page to back given address within VMA.
3524 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3526 static bool hugetlbfs_pagecache_present(struct hstate *h,
3527 struct vm_area_struct *vma, unsigned long address)
3529 struct address_space *mapping;
3533 mapping = vma->vm_file->f_mapping;
3534 idx = vma_hugecache_offset(h, vma, address);
3536 page = find_get_page(mapping, idx);
3539 return page != NULL;
3542 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3545 struct inode *inode = mapping->host;
3546 struct hstate *h = hstate_inode(inode);
3547 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3551 ClearPagePrivate(page);
3553 spin_lock(&inode->i_lock);
3554 inode->i_blocks += blocks_per_huge_page(h);
3555 spin_unlock(&inode->i_lock);
3559 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3560 struct address_space *mapping, pgoff_t idx,
3561 unsigned long address, pte_t *ptep, unsigned int flags)
3563 struct hstate *h = hstate_vma(vma);
3564 int ret = VM_FAULT_SIGBUS;
3572 * Currently, we are forced to kill the process in the event the
3573 * original mapper has unmapped pages from the child due to a failed
3574 * COW. Warn that such a situation has occurred as it may not be obvious
3576 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3577 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3583 * Use page lock to guard against racing truncation
3584 * before we get page_table_lock.
3587 page = find_lock_page(mapping, idx);
3589 size = i_size_read(mapping->host) >> huge_page_shift(h);
3592 page = alloc_huge_page(vma, address, 0);
3594 ret = PTR_ERR(page);
3598 ret = VM_FAULT_SIGBUS;
3601 clear_huge_page(page, address, pages_per_huge_page(h));
3602 __SetPageUptodate(page);
3603 set_page_huge_active(page);
3605 if (vma->vm_flags & VM_MAYSHARE) {
3606 int err = huge_add_to_page_cache(page, mapping, idx);
3615 if (unlikely(anon_vma_prepare(vma))) {
3617 goto backout_unlocked;
3623 * If memory error occurs between mmap() and fault, some process
3624 * don't have hwpoisoned swap entry for errored virtual address.
3625 * So we need to block hugepage fault by PG_hwpoison bit check.
3627 if (unlikely(PageHWPoison(page))) {
3628 ret = VM_FAULT_HWPOISON |
3629 VM_FAULT_SET_HINDEX(hstate_index(h));
3630 goto backout_unlocked;
3635 * If we are going to COW a private mapping later, we examine the
3636 * pending reservations for this page now. This will ensure that
3637 * any allocations necessary to record that reservation occur outside
3640 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3641 if (vma_needs_reservation(h, vma, address) < 0) {
3643 goto backout_unlocked;
3645 /* Just decrements count, does not deallocate */
3646 vma_end_reservation(h, vma, address);
3649 ptl = huge_pte_lockptr(h, mm, ptep);
3651 size = i_size_read(mapping->host) >> huge_page_shift(h);
3656 if (!huge_pte_none(huge_ptep_get(ptep)))
3660 ClearPagePrivate(page);
3661 hugepage_add_new_anon_rmap(page, vma, address);
3663 page_dup_rmap(page, true);
3664 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3665 && (vma->vm_flags & VM_SHARED)));
3666 set_huge_pte_at(mm, address, ptep, new_pte);
3668 hugetlb_count_add(pages_per_huge_page(h), mm);
3669 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3670 /* Optimization, do the COW without a second fault */
3671 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3688 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3689 struct vm_area_struct *vma,
3690 struct address_space *mapping,
3691 pgoff_t idx, unsigned long address)
3693 unsigned long key[2];
3696 if (vma->vm_flags & VM_SHARED) {
3697 key[0] = (unsigned long) mapping;
3700 key[0] = (unsigned long) mm;
3701 key[1] = address >> huge_page_shift(h);
3704 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3706 return hash & (num_fault_mutexes - 1);
3710 * For uniprocesor systems we always use a single mutex, so just
3711 * return 0 and avoid the hashing overhead.
3713 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3714 struct vm_area_struct *vma,
3715 struct address_space *mapping,
3716 pgoff_t idx, unsigned long address)
3722 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3723 unsigned long address, unsigned int flags)
3730 struct page *page = NULL;
3731 struct page *pagecache_page = NULL;
3732 struct hstate *h = hstate_vma(vma);
3733 struct address_space *mapping;
3734 int need_wait_lock = 0;
3736 address &= huge_page_mask(h);
3738 ptep = huge_pte_offset(mm, address);
3740 entry = huge_ptep_get(ptep);
3741 if (unlikely(is_hugetlb_entry_migration(entry))) {
3742 migration_entry_wait_huge(vma, mm, ptep);
3744 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3745 return VM_FAULT_HWPOISON_LARGE |
3746 VM_FAULT_SET_HINDEX(hstate_index(h));
3748 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3750 return VM_FAULT_OOM;
3753 mapping = vma->vm_file->f_mapping;
3754 idx = vma_hugecache_offset(h, vma, address);
3757 * Serialize hugepage allocation and instantiation, so that we don't
3758 * get spurious allocation failures if two CPUs race to instantiate
3759 * the same page in the page cache.
3761 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3762 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3764 entry = huge_ptep_get(ptep);
3765 if (huge_pte_none(entry)) {
3766 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3773 * entry could be a migration/hwpoison entry at this point, so this
3774 * check prevents the kernel from going below assuming that we have
3775 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3776 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3779 if (!pte_present(entry))
3783 * If we are going to COW the mapping later, we examine the pending
3784 * reservations for this page now. This will ensure that any
3785 * allocations necessary to record that reservation occur outside the
3786 * spinlock. For private mappings, we also lookup the pagecache
3787 * page now as it is used to determine if a reservation has been
3790 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3791 if (vma_needs_reservation(h, vma, address) < 0) {
3795 /* Just decrements count, does not deallocate */
3796 vma_end_reservation(h, vma, address);
3798 if (!(vma->vm_flags & VM_MAYSHARE))
3799 pagecache_page = hugetlbfs_pagecache_page(h,
3803 ptl = huge_pte_lock(h, mm, ptep);
3805 /* Check for a racing update before calling hugetlb_cow */
3806 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3810 * hugetlb_cow() requires page locks of pte_page(entry) and
3811 * pagecache_page, so here we need take the former one
3812 * when page != pagecache_page or !pagecache_page.
3814 page = pte_page(entry);
3815 if (page != pagecache_page)
3816 if (!trylock_page(page)) {
3823 if (flags & FAULT_FLAG_WRITE) {
3824 if (!huge_pte_write(entry)) {
3825 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3826 pagecache_page, ptl);
3829 entry = huge_pte_mkdirty(entry);
3831 entry = pte_mkyoung(entry);
3832 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3833 flags & FAULT_FLAG_WRITE))
3834 update_mmu_cache(vma, address, ptep);
3836 if (page != pagecache_page)
3842 if (pagecache_page) {
3843 unlock_page(pagecache_page);
3844 put_page(pagecache_page);
3847 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3849 * Generally it's safe to hold refcount during waiting page lock. But
3850 * here we just wait to defer the next page fault to avoid busy loop and
3851 * the page is not used after unlocked before returning from the current
3852 * page fault. So we are safe from accessing freed page, even if we wait
3853 * here without taking refcount.
3856 wait_on_page_locked(page);
3860 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3861 struct page **pages, struct vm_area_struct **vmas,
3862 unsigned long *position, unsigned long *nr_pages,
3863 long i, unsigned int flags)
3865 unsigned long pfn_offset;
3866 unsigned long vaddr = *position;
3867 unsigned long remainder = *nr_pages;
3868 struct hstate *h = hstate_vma(vma);
3870 while (vaddr < vma->vm_end && remainder) {
3872 spinlock_t *ptl = NULL;
3877 * If we have a pending SIGKILL, don't keep faulting pages and
3878 * potentially allocating memory.
3880 if (unlikely(fatal_signal_pending(current))) {
3886 * Some archs (sparc64, sh*) have multiple pte_ts to
3887 * each hugepage. We have to make sure we get the
3888 * first, for the page indexing below to work.
3890 * Note that page table lock is not held when pte is null.
3892 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3894 ptl = huge_pte_lock(h, mm, pte);
3895 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3898 * When coredumping, it suits get_dump_page if we just return
3899 * an error where there's an empty slot with no huge pagecache
3900 * to back it. This way, we avoid allocating a hugepage, and
3901 * the sparse dumpfile avoids allocating disk blocks, but its
3902 * huge holes still show up with zeroes where they need to be.
3904 if (absent && (flags & FOLL_DUMP) &&
3905 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3913 * We need call hugetlb_fault for both hugepages under migration
3914 * (in which case hugetlb_fault waits for the migration,) and
3915 * hwpoisoned hugepages (in which case we need to prevent the
3916 * caller from accessing to them.) In order to do this, we use
3917 * here is_swap_pte instead of is_hugetlb_entry_migration and
3918 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3919 * both cases, and because we can't follow correct pages
3920 * directly from any kind of swap entries.
3922 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3923 ((flags & FOLL_WRITE) &&
3924 !huge_pte_write(huge_ptep_get(pte)))) {
3929 ret = hugetlb_fault(mm, vma, vaddr,
3930 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3931 if (!(ret & VM_FAULT_ERROR))
3938 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3939 page = pte_page(huge_ptep_get(pte));
3942 pages[i] = mem_map_offset(page, pfn_offset);
3953 if (vaddr < vma->vm_end && remainder &&
3954 pfn_offset < pages_per_huge_page(h)) {
3956 * We use pfn_offset to avoid touching the pageframes
3957 * of this compound page.
3963 *nr_pages = remainder;
3966 return i ? i : -EFAULT;
3969 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3971 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3974 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3977 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3978 unsigned long address, unsigned long end, pgprot_t newprot)
3980 struct mm_struct *mm = vma->vm_mm;
3981 unsigned long start = address;
3984 struct hstate *h = hstate_vma(vma);
3985 unsigned long pages = 0;
3987 BUG_ON(address >= end);
3988 flush_cache_range(vma, address, end);
3990 mmu_notifier_invalidate_range_start(mm, start, end);
3991 i_mmap_lock_write(vma->vm_file->f_mapping);
3992 for (; address < end; address += huge_page_size(h)) {
3994 ptep = huge_pte_offset(mm, address);
3997 ptl = huge_pte_lock(h, mm, ptep);
3998 if (huge_pmd_unshare(mm, &address, ptep)) {
4003 pte = huge_ptep_get(ptep);
4004 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4008 if (unlikely(is_hugetlb_entry_migration(pte))) {
4009 swp_entry_t entry = pte_to_swp_entry(pte);
4011 if (is_write_migration_entry(entry)) {
4014 make_migration_entry_read(&entry);
4015 newpte = swp_entry_to_pte(entry);
4016 set_huge_pte_at(mm, address, ptep, newpte);
4022 if (!huge_pte_none(pte)) {
4023 pte = huge_ptep_get_and_clear(mm, address, ptep);
4024 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4025 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4026 set_huge_pte_at(mm, address, ptep, pte);
4032 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4033 * may have cleared our pud entry and done put_page on the page table:
4034 * once we release i_mmap_rwsem, another task can do the final put_page
4035 * and that page table be reused and filled with junk.
4037 flush_hugetlb_tlb_range(vma, start, end);
4038 mmu_notifier_invalidate_range(mm, start, end);
4039 i_mmap_unlock_write(vma->vm_file->f_mapping);
4040 mmu_notifier_invalidate_range_end(mm, start, end);
4042 return pages << h->order;
4045 int hugetlb_reserve_pages(struct inode *inode,
4047 struct vm_area_struct *vma,
4048 vm_flags_t vm_flags)
4051 struct hstate *h = hstate_inode(inode);
4052 struct hugepage_subpool *spool = subpool_inode(inode);
4053 struct resv_map *resv_map;
4057 * Only apply hugepage reservation if asked. At fault time, an
4058 * attempt will be made for VM_NORESERVE to allocate a page
4059 * without using reserves
4061 if (vm_flags & VM_NORESERVE)
4065 * Shared mappings base their reservation on the number of pages that
4066 * are already allocated on behalf of the file. Private mappings need
4067 * to reserve the full area even if read-only as mprotect() may be
4068 * called to make the mapping read-write. Assume !vma is a shm mapping
4070 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4071 resv_map = inode_resv_map(inode);
4073 chg = region_chg(resv_map, from, to);
4076 resv_map = resv_map_alloc();
4082 set_vma_resv_map(vma, resv_map);
4083 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4092 * There must be enough pages in the subpool for the mapping. If
4093 * the subpool has a minimum size, there may be some global
4094 * reservations already in place (gbl_reserve).
4096 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4097 if (gbl_reserve < 0) {
4103 * Check enough hugepages are available for the reservation.
4104 * Hand the pages back to the subpool if there are not
4106 ret = hugetlb_acct_memory(h, gbl_reserve);
4108 /* put back original number of pages, chg */
4109 (void)hugepage_subpool_put_pages(spool, chg);
4114 * Account for the reservations made. Shared mappings record regions
4115 * that have reservations as they are shared by multiple VMAs.
4116 * When the last VMA disappears, the region map says how much
4117 * the reservation was and the page cache tells how much of
4118 * the reservation was consumed. Private mappings are per-VMA and
4119 * only the consumed reservations are tracked. When the VMA
4120 * disappears, the original reservation is the VMA size and the
4121 * consumed reservations are stored in the map. Hence, nothing
4122 * else has to be done for private mappings here
4124 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4125 long add = region_add(resv_map, from, to);
4127 if (unlikely(chg > add)) {
4129 * pages in this range were added to the reserve
4130 * map between region_chg and region_add. This
4131 * indicates a race with alloc_huge_page. Adjust
4132 * the subpool and reserve counts modified above
4133 * based on the difference.
4137 rsv_adjust = hugepage_subpool_put_pages(spool,
4139 hugetlb_acct_memory(h, -rsv_adjust);
4144 if (!vma || vma->vm_flags & VM_MAYSHARE)
4145 region_abort(resv_map, from, to);
4146 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4147 kref_put(&resv_map->refs, resv_map_release);
4151 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4154 struct hstate *h = hstate_inode(inode);
4155 struct resv_map *resv_map = inode_resv_map(inode);
4157 struct hugepage_subpool *spool = subpool_inode(inode);
4161 chg = region_del(resv_map, start, end);
4163 * region_del() can fail in the rare case where a region
4164 * must be split and another region descriptor can not be
4165 * allocated. If end == LONG_MAX, it will not fail.
4171 spin_lock(&inode->i_lock);
4172 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4173 spin_unlock(&inode->i_lock);
4176 * If the subpool has a minimum size, the number of global
4177 * reservations to be released may be adjusted.
4179 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4180 hugetlb_acct_memory(h, -gbl_reserve);
4185 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4186 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4187 struct vm_area_struct *vma,
4188 unsigned long addr, pgoff_t idx)
4190 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4192 unsigned long sbase = saddr & PUD_MASK;
4193 unsigned long s_end = sbase + PUD_SIZE;
4195 /* Allow segments to share if only one is marked locked */
4196 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4197 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4200 * match the virtual addresses, permission and the alignment of the
4203 if (pmd_index(addr) != pmd_index(saddr) ||
4204 vm_flags != svm_flags ||
4205 sbase < svma->vm_start || svma->vm_end < s_end)
4211 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4213 unsigned long base = addr & PUD_MASK;
4214 unsigned long end = base + PUD_SIZE;
4217 * check on proper vm_flags and page table alignment
4219 if (vma->vm_flags & VM_MAYSHARE &&
4220 vma->vm_start <= base && end <= vma->vm_end)
4226 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4227 * and returns the corresponding pte. While this is not necessary for the
4228 * !shared pmd case because we can allocate the pmd later as well, it makes the
4229 * code much cleaner. pmd allocation is essential for the shared case because
4230 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4231 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4232 * bad pmd for sharing.
4234 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4236 struct vm_area_struct *vma = find_vma(mm, addr);
4237 struct address_space *mapping = vma->vm_file->f_mapping;
4238 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4240 struct vm_area_struct *svma;
4241 unsigned long saddr;
4246 if (!vma_shareable(vma, addr))
4247 return (pte_t *)pmd_alloc(mm, pud, addr);
4249 i_mmap_lock_write(mapping);
4250 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4254 saddr = page_table_shareable(svma, vma, addr, idx);
4256 spte = huge_pte_offset(svma->vm_mm, saddr);
4258 get_page(virt_to_page(spte));
4267 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4269 if (pud_none(*pud)) {
4270 pud_populate(mm, pud,
4271 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4274 put_page(virt_to_page(spte));
4278 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4279 i_mmap_unlock_write(mapping);
4284 * unmap huge page backed by shared pte.
4286 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4287 * indicated by page_count > 1, unmap is achieved by clearing pud and
4288 * decrementing the ref count. If count == 1, the pte page is not shared.
4290 * called with page table lock held.
4292 * returns: 1 successfully unmapped a shared pte page
4293 * 0 the underlying pte page is not shared, or it is the last user
4295 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4297 pgd_t *pgd = pgd_offset(mm, *addr);
4298 pud_t *pud = pud_offset(pgd, *addr);
4300 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4301 if (page_count(virt_to_page(ptep)) == 1)
4305 put_page(virt_to_page(ptep));
4307 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4310 #define want_pmd_share() (1)
4311 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4312 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4317 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4321 #define want_pmd_share() (0)
4322 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4324 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4325 pte_t *huge_pte_alloc(struct mm_struct *mm,
4326 unsigned long addr, unsigned long sz)
4332 pgd = pgd_offset(mm, addr);
4333 pud = pud_alloc(mm, pgd, addr);
4335 if (sz == PUD_SIZE) {
4338 BUG_ON(sz != PMD_SIZE);
4339 if (want_pmd_share() && pud_none(*pud))
4340 pte = huge_pmd_share(mm, addr, pud);
4342 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4345 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4350 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4356 pgd = pgd_offset(mm, addr);
4357 if (pgd_present(*pgd)) {
4358 pud = pud_offset(pgd, addr);
4359 if (pud_present(*pud)) {
4361 return (pte_t *)pud;
4362 pmd = pmd_offset(pud, addr);
4365 return (pte_t *) pmd;
4368 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4371 * These functions are overwritable if your architecture needs its own
4374 struct page * __weak
4375 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4378 return ERR_PTR(-EINVAL);
4381 struct page * __weak
4382 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4383 pmd_t *pmd, int flags)
4385 struct page *page = NULL;
4388 ptl = pmd_lockptr(mm, pmd);
4391 * make sure that the address range covered by this pmd is not
4392 * unmapped from other threads.
4394 if (!pmd_huge(*pmd))
4396 if (pmd_present(*pmd)) {
4397 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4398 if (flags & FOLL_GET)
4401 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4403 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4407 * hwpoisoned entry is treated as no_page_table in
4408 * follow_page_mask().
4416 struct page * __weak
4417 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4418 pud_t *pud, int flags)
4420 if (flags & FOLL_GET)
4423 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4426 #ifdef CONFIG_MEMORY_FAILURE
4429 * This function is called from memory failure code.
4431 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4433 struct hstate *h = page_hstate(hpage);
4434 int nid = page_to_nid(hpage);
4437 spin_lock(&hugetlb_lock);
4439 * Just checking !page_huge_active is not enough, because that could be
4440 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4442 if (!page_huge_active(hpage) && !page_count(hpage)) {
4444 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4445 * but dangling hpage->lru can trigger list-debug warnings
4446 * (this happens when we call unpoison_memory() on it),
4447 * so let it point to itself with list_del_init().
4449 list_del_init(&hpage->lru);
4450 set_page_refcounted(hpage);
4451 h->free_huge_pages--;
4452 h->free_huge_pages_node[nid]--;
4455 spin_unlock(&hugetlb_lock);
4460 bool isolate_huge_page(struct page *page, struct list_head *list)
4464 VM_BUG_ON_PAGE(!PageHead(page), page);
4465 spin_lock(&hugetlb_lock);
4466 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4470 clear_page_huge_active(page);
4471 list_move_tail(&page->lru, list);
4473 spin_unlock(&hugetlb_lock);
4477 void putback_active_hugepage(struct page *page)
4479 VM_BUG_ON_PAGE(!PageHead(page), page);
4480 spin_lock(&hugetlb_lock);
4481 set_page_huge_active(page);
4482 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4483 spin_unlock(&hugetlb_lock);