1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 struct hugepage_subpool *spool;
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 spin_lock_init(&spool->lock);
137 spool->max_hpages = max_hpages;
139 spool->min_hpages = min_hpages;
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 spool->rsv_hpages = min_hpages;
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
157 unlock_or_release_subpool(spool, flags);
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 spin_lock_irq(&spool->lock);
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
203 spin_unlock_irq(&spool->lock);
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
222 spin_lock_irqsave(&spool->lock, flags);
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
243 unlock_or_release_subpool(spool, flags);
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 return HUGETLBFS_SB(inode->i_sb)->spool;
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 return subpool_inode(file_inode(vma->vm_file));
258 /* Helper that removes a struct file_region from the resv_map cache and returns
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 struct file_region *nrg;
266 VM_BUG_ON(resv->region_cache_count <= 0);
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 list_del(&nrg->link);
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
281 #ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 struct resv_map *resv,
293 struct file_region *nrg)
295 #ifdef CONFIG_CGROUP_HUGETLB
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 nrg->reservation_counter = NULL;
324 static void put_uncharge_info(struct file_region *rg)
326 #ifdef CONFIG_CGROUP_HUGETLB
332 static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
335 #ifdef CONFIG_CGROUP_HUGETLB
336 return rg->reservation_counter == org->reservation_counter &&
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 struct file_region *nrg, *prg;
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
354 put_uncharge_info(rg);
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
366 put_uncharge_info(rg);
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
376 struct file_region *nrg;
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg);
382 coalesce_file_region(map, nrg);
384 *regions_needed += 1;
390 * Must be called with resv->lock held.
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 struct hugetlb_cgroup *h_cg,
399 struct hstate *h, long *regions_needed)
402 struct list_head *head = &resv->regions;
403 long last_accounted_offset = f;
404 struct file_region *iter, *trg = NULL;
405 struct list_head *rg = NULL;
410 /* In this loop, we essentially handle an entry for the range
411 * [last_accounted_offset, iter->from), at every iteration, with some
414 list_for_each_entry_safe(iter, trg, head, link) {
415 /* Skip irrelevant regions that start before our range. */
416 if (iter->from < f) {
417 /* If this region ends after the last accounted offset,
418 * then we need to update last_accounted_offset.
420 if (iter->to > last_accounted_offset)
421 last_accounted_offset = iter->to;
425 /* When we find a region that starts beyond our range, we've
428 if (iter->from >= t) {
429 rg = iter->link.prev;
433 /* Add an entry for last_accounted_offset -> iter->from, and
434 * update last_accounted_offset.
436 if (iter->from > last_accounted_offset)
437 add += hugetlb_resv_map_add(resv, iter->link.prev,
438 last_accounted_offset,
442 last_accounted_offset = iter->to;
445 /* Handle the case where our range extends beyond
446 * last_accounted_offset.
450 if (last_accounted_offset < t)
451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 t, h, h_cg, regions_needed);
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459 static int allocate_file_region_entries(struct resv_map *resv,
461 __must_hold(&resv->lock)
463 LIST_HEAD(allocated_regions);
464 int to_allocate = 0, i = 0;
465 struct file_region *trg = NULL, *rg = NULL;
467 VM_BUG_ON(regions_needed < 0);
470 * Check for sufficient descriptors in the cache to accommodate
471 * the number of in progress add operations plus regions_needed.
473 * This is a while loop because when we drop the lock, some other call
474 * to region_add or region_del may have consumed some region_entries,
475 * so we keep looping here until we finally have enough entries for
476 * (adds_in_progress + regions_needed).
478 while (resv->region_cache_count <
479 (resv->adds_in_progress + regions_needed)) {
480 to_allocate = resv->adds_in_progress + regions_needed -
481 resv->region_cache_count;
483 /* At this point, we should have enough entries in the cache
484 * for all the existing adds_in_progress. We should only be
485 * needing to allocate for regions_needed.
487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
489 spin_unlock(&resv->lock);
490 for (i = 0; i < to_allocate; i++) {
491 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
494 list_add(&trg->link, &allocated_regions);
497 spin_lock(&resv->lock);
499 list_splice(&allocated_regions, &resv->region_cache);
500 resv->region_cache_count += to_allocate;
506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
514 * Add the huge page range represented by [f, t) to the reserve
515 * map. Regions will be taken from the cache to fill in this range.
516 * Sufficient regions should exist in the cache due to the previous
517 * call to region_chg with the same range, but in some cases the cache will not
518 * have sufficient entries due to races with other code doing region_add or
519 * region_del. The extra needed entries will be allocated.
521 * regions_needed is the out value provided by a previous call to region_chg.
523 * Return the number of new huge pages added to the map. This number is greater
524 * than or equal to zero. If file_region entries needed to be allocated for
525 * this operation and we were not able to allocate, it returns -ENOMEM.
526 * region_add of regions of length 1 never allocate file_regions and cannot
527 * fail; region_chg will always allocate at least 1 entry and a region_add for
528 * 1 page will only require at most 1 entry.
530 static long region_add(struct resv_map *resv, long f, long t,
531 long in_regions_needed, struct hstate *h,
532 struct hugetlb_cgroup *h_cg)
534 long add = 0, actual_regions_needed = 0;
536 spin_lock(&resv->lock);
539 /* Count how many regions are actually needed to execute this add. */
540 add_reservation_in_range(resv, f, t, NULL, NULL,
541 &actual_regions_needed);
544 * Check for sufficient descriptors in the cache to accommodate
545 * this add operation. Note that actual_regions_needed may be greater
546 * than in_regions_needed, as the resv_map may have been modified since
547 * the region_chg call. In this case, we need to make sure that we
548 * allocate extra entries, such that we have enough for all the
549 * existing adds_in_progress, plus the excess needed for this
552 if (actual_regions_needed > in_regions_needed &&
553 resv->region_cache_count <
554 resv->adds_in_progress +
555 (actual_regions_needed - in_regions_needed)) {
556 /* region_add operation of range 1 should never need to
557 * allocate file_region entries.
559 VM_BUG_ON(t - f <= 1);
561 if (allocate_file_region_entries(
562 resv, actual_regions_needed - in_regions_needed)) {
569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
571 resv->adds_in_progress -= in_regions_needed;
573 spin_unlock(&resv->lock);
578 * Examine the existing reserve map and determine how many
579 * huge pages in the specified range [f, t) are NOT currently
580 * represented. This routine is called before a subsequent
581 * call to region_add that will actually modify the reserve
582 * map to add the specified range [f, t). region_chg does
583 * not change the number of huge pages represented by the
584 * map. A number of new file_region structures is added to the cache as a
585 * placeholder, for the subsequent region_add call to use. At least 1
586 * file_region structure is added.
588 * out_regions_needed is the number of regions added to the
589 * resv->adds_in_progress. This value needs to be provided to a follow up call
590 * to region_add or region_abort for proper accounting.
592 * Returns the number of huge pages that need to be added to the existing
593 * reservation map for the range [f, t). This number is greater or equal to
594 * zero. -ENOMEM is returned if a new file_region structure or cache entry
595 * is needed and can not be allocated.
597 static long region_chg(struct resv_map *resv, long f, long t,
598 long *out_regions_needed)
602 spin_lock(&resv->lock);
604 /* Count how many hugepages in this range are NOT represented. */
605 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
608 if (*out_regions_needed == 0)
609 *out_regions_needed = 1;
611 if (allocate_file_region_entries(resv, *out_regions_needed))
614 resv->adds_in_progress += *out_regions_needed;
616 spin_unlock(&resv->lock);
621 * Abort the in progress add operation. The adds_in_progress field
622 * of the resv_map keeps track of the operations in progress between
623 * calls to region_chg and region_add. Operations are sometimes
624 * aborted after the call to region_chg. In such cases, region_abort
625 * is called to decrement the adds_in_progress counter. regions_needed
626 * is the value returned by the region_chg call, it is used to decrement
627 * the adds_in_progress counter.
629 * NOTE: The range arguments [f, t) are not needed or used in this
630 * routine. They are kept to make reading the calling code easier as
631 * arguments will match the associated region_chg call.
633 static void region_abort(struct resv_map *resv, long f, long t,
636 spin_lock(&resv->lock);
637 VM_BUG_ON(!resv->region_cache_count);
638 resv->adds_in_progress -= regions_needed;
639 spin_unlock(&resv->lock);
643 * Delete the specified range [f, t) from the reserve map. If the
644 * t parameter is LONG_MAX, this indicates that ALL regions after f
645 * should be deleted. Locate the regions which intersect [f, t)
646 * and either trim, delete or split the existing regions.
648 * Returns the number of huge pages deleted from the reserve map.
649 * In the normal case, the return value is zero or more. In the
650 * case where a region must be split, a new region descriptor must
651 * be allocated. If the allocation fails, -ENOMEM will be returned.
652 * NOTE: If the parameter t == LONG_MAX, then we will never split
653 * a region and possibly return -ENOMEM. Callers specifying
654 * t == LONG_MAX do not need to check for -ENOMEM error.
656 static long region_del(struct resv_map *resv, long f, long t)
658 struct list_head *head = &resv->regions;
659 struct file_region *rg, *trg;
660 struct file_region *nrg = NULL;
664 spin_lock(&resv->lock);
665 list_for_each_entry_safe(rg, trg, head, link) {
667 * Skip regions before the range to be deleted. file_region
668 * ranges are normally of the form [from, to). However, there
669 * may be a "placeholder" entry in the map which is of the form
670 * (from, to) with from == to. Check for placeholder entries
671 * at the beginning of the range to be deleted.
673 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
679 if (f > rg->from && t < rg->to) { /* Must split region */
681 * Check for an entry in the cache before dropping
682 * lock and attempting allocation.
685 resv->region_cache_count > resv->adds_in_progress) {
686 nrg = list_first_entry(&resv->region_cache,
689 list_del(&nrg->link);
690 resv->region_cache_count--;
694 spin_unlock(&resv->lock);
695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
702 hugetlb_cgroup_uncharge_file_region(
703 resv, rg, t - f, false);
705 /* New entry for end of split region */
709 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
711 INIT_LIST_HEAD(&nrg->link);
713 /* Original entry is trimmed */
716 list_add(&nrg->link, &rg->link);
721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 del += rg->to - rg->from;
723 hugetlb_cgroup_uncharge_file_region(resv, rg,
724 rg->to - rg->from, true);
730 if (f <= rg->from) { /* Trim beginning of region */
731 hugetlb_cgroup_uncharge_file_region(resv, rg,
732 t - rg->from, false);
736 } else { /* Trim end of region */
737 hugetlb_cgroup_uncharge_file_region(resv, rg,
745 spin_unlock(&resv->lock);
751 * A rare out of memory error was encountered which prevented removal of
752 * the reserve map region for a page. The huge page itself was free'ed
753 * and removed from the page cache. This routine will adjust the subpool
754 * usage count, and the global reserve count if needed. By incrementing
755 * these counts, the reserve map entry which could not be deleted will
756 * appear as a "reserved" entry instead of simply dangling with incorrect
759 void hugetlb_fix_reserve_counts(struct inode *inode)
761 struct hugepage_subpool *spool = subpool_inode(inode);
763 bool reserved = false;
765 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 if (rsv_adjust > 0) {
767 struct hstate *h = hstate_inode(inode);
769 if (!hugetlb_acct_memory(h, 1))
771 } else if (!rsv_adjust) {
776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 * Count and return the number of huge pages in the reserve map
781 * that intersect with the range [f, t).
783 static long region_count(struct resv_map *resv, long f, long t)
785 struct list_head *head = &resv->regions;
786 struct file_region *rg;
789 spin_lock(&resv->lock);
790 /* Locate each segment we overlap with, and count that overlap. */
791 list_for_each_entry(rg, head, link) {
800 seg_from = max(rg->from, f);
801 seg_to = min(rg->to, t);
803 chg += seg_to - seg_from;
805 spin_unlock(&resv->lock);
811 * Convert the address within this vma to the page offset within
812 * the mapping, in pagecache page units; huge pages here.
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 struct vm_area_struct *vma, unsigned long address)
817 return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 (vma->vm_pgoff >> huge_page_order(h));
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 unsigned long address)
824 return vma_hugecache_offset(hstate_vma(vma), vma, address);
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
829 * Return the size of the pages allocated when backing a VMA. In the majority
830 * cases this will be same size as used by the page table entries.
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
834 if (vma->vm_ops && vma->vm_ops->pagesize)
835 return vma->vm_ops->pagesize(vma);
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
841 * Return the page size being used by the MMU to back a VMA. In the majority
842 * of cases, the page size used by the kernel matches the MMU size. On
843 * architectures where it differs, an architecture-specific 'strong'
844 * version of this symbol is required.
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
848 return vma_kernel_pagesize(vma);
852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
853 * bits of the reservation map pointer, which are always clear due to
856 #define HPAGE_RESV_OWNER (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
861 * These helpers are used to track how many pages are reserved for
862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863 * is guaranteed to have their future faults succeed.
865 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866 * the reserve counters are updated with the hugetlb_lock held. It is safe
867 * to reset the VMA at fork() time as it is not in use yet and there is no
868 * chance of the global counters getting corrupted as a result of the values.
870 * The private mapping reservation is represented in a subtly different
871 * manner to a shared mapping. A shared mapping has a region map associated
872 * with the underlying file, this region map represents the backing file
873 * pages which have ever had a reservation assigned which this persists even
874 * after the page is instantiated. A private mapping has a region map
875 * associated with the original mmap which is attached to all VMAs which
876 * reference it, this region map represents those offsets which have consumed
877 * reservation ie. where pages have been instantiated.
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
881 return (unsigned long)vma->vm_private_data;
884 static void set_vma_private_data(struct vm_area_struct *vma,
887 vma->vm_private_data = (void *)value;
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 struct hugetlb_cgroup *h_cg,
895 #ifdef CONFIG_CGROUP_HUGETLB
897 resv_map->reservation_counter = NULL;
898 resv_map->pages_per_hpage = 0;
899 resv_map->css = NULL;
901 resv_map->reservation_counter =
902 &h_cg->rsvd_hugepage[hstate_index(h)];
903 resv_map->pages_per_hpage = pages_per_huge_page(h);
904 resv_map->css = &h_cg->css;
909 struct resv_map *resv_map_alloc(void)
911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
914 if (!resv_map || !rg) {
920 kref_init(&resv_map->refs);
921 spin_lock_init(&resv_map->lock);
922 INIT_LIST_HEAD(&resv_map->regions);
924 resv_map->adds_in_progress = 0;
926 * Initialize these to 0. On shared mappings, 0's here indicate these
927 * fields don't do cgroup accounting. On private mappings, these will be
928 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 * reservations are to be un-charged from here.
931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
933 INIT_LIST_HEAD(&resv_map->region_cache);
934 list_add(&rg->link, &resv_map->region_cache);
935 resv_map->region_cache_count = 1;
940 void resv_map_release(struct kref *ref)
942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 struct list_head *head = &resv_map->region_cache;
944 struct file_region *rg, *trg;
946 /* Clear out any active regions before we release the map. */
947 region_del(resv_map, 0, LONG_MAX);
949 /* ... and any entries left in the cache */
950 list_for_each_entry_safe(rg, trg, head, link) {
955 VM_BUG_ON(resv_map->adds_in_progress);
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
963 * At inode evict time, i_mapping may not point to the original
964 * address space within the inode. This original address space
965 * contains the pointer to the resv_map. So, always use the
966 * address space embedded within the inode.
967 * The VERY common case is inode->mapping == &inode->i_data but,
968 * this may not be true for device special inodes.
970 return (struct resv_map *)(&inode->i_data)->private_data;
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 if (vma->vm_flags & VM_MAYSHARE) {
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
980 return inode_resv_map(inode);
983 return (struct resv_map *)(get_vma_private_data(vma) &
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
993 set_vma_private_data(vma, (get_vma_private_data(vma) &
994 HPAGE_RESV_MASK) | (unsigned long)map);
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1009 return (get_vma_private_data(vma) & flag) != 0;
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1016 * Clear vm_private_data
1017 * - For shared mappings this is a per-vma semaphore that may be
1018 * allocated in a subsequent call to hugetlb_vm_op_open.
1019 * Before clearing, make sure pointer is not associated with vma
1020 * as this will leak the structure. This is the case when called
1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 * been called to allocate a new structure.
1023 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 * not apply to children. Faults generated by the children are
1025 * not guaranteed to succeed, even if read-only.
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1030 if (vma_lock && vma_lock->vma != vma)
1031 vma->vm_private_data = NULL;
1033 vma->vm_private_data = NULL;
1037 * Reset and decrement one ref on hugepage private reservation.
1038 * Called with mm->mmap_sem writer semaphore held.
1039 * This function should be only used by move_vma() and operate on
1040 * same sized vma. It should never come here with last ref on the
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1046 * Clear the old hugetlb private page reservation.
1047 * It has already been transferred to new_vma.
1049 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 * which copies vma into new_vma and unmaps vma. After the copy
1051 * operation both new_vma and vma share a reference to the resv_map
1052 * struct, and at that point vma is about to be unmapped. We don't
1053 * want to return the reservation to the pool at unmap of vma because
1054 * the reservation still lives on in new_vma, so simply decrement the
1055 * ref here and remove the resv_map reference from this vma.
1057 struct resv_map *reservations = vma_resv_map(vma);
1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061 kref_put(&reservations->refs, resv_map_release);
1064 hugetlb_dup_vma_private(vma);
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1070 if (vma->vm_flags & VM_NORESERVE) {
1072 * This address is already reserved by other process(chg == 0),
1073 * so, we should decrement reserved count. Without decrementing,
1074 * reserve count remains after releasing inode, because this
1075 * allocated page will go into page cache and is regarded as
1076 * coming from reserved pool in releasing step. Currently, we
1077 * don't have any other solution to deal with this situation
1078 * properly, so add work-around here.
1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1086 /* Shared mappings always use reserves */
1087 if (vma->vm_flags & VM_MAYSHARE) {
1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1090 * be a region map for all pages. The only situation where
1091 * there is no region map is if a hole was punched via
1092 * fallocate. In this case, there really are no reserves to
1093 * use. This situation is indicated if chg != 0.
1102 * Only the process that called mmap() has reserves for
1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107 * Like the shared case above, a hole punch or truncate
1108 * could have been performed on the private mapping.
1109 * Examine the value of chg to determine if reserves
1110 * actually exist or were previously consumed.
1111 * Very Subtle - The value of chg comes from a previous
1112 * call to vma_needs_reserves(). The reserve map for
1113 * private mappings has different (opposite) semantics
1114 * than that of shared mappings. vma_needs_reserves()
1115 * has already taken this difference in semantics into
1116 * account. Therefore, the meaning of chg is the same
1117 * as in the shared case above. Code could easily be
1118 * combined, but keeping it separate draws attention to
1119 * subtle differences.
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1132 int nid = page_to_nid(page);
1134 lockdep_assert_held(&hugetlb_lock);
1135 VM_BUG_ON_PAGE(page_count(page), page);
1137 list_move(&page->lru, &h->hugepage_freelists[nid]);
1138 h->free_huge_pages++;
1139 h->free_huge_pages_node[nid]++;
1140 SetHPageFreed(page);
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1148 lockdep_assert_held(&hugetlb_lock);
1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150 if (pin && !is_longterm_pinnable_page(page))
1153 if (PageHWPoison(page))
1156 list_move(&page->lru, &h->hugepage_activelist);
1157 set_page_refcounted(page);
1158 ClearHPageFreed(page);
1159 h->free_huge_pages--;
1160 h->free_huge_pages_node[nid]--;
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1170 unsigned int cpuset_mems_cookie;
1171 struct zonelist *zonelist;
1174 int node = NUMA_NO_NODE;
1176 zonelist = node_zonelist(nid, gfp_mask);
1179 cpuset_mems_cookie = read_mems_allowed_begin();
1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1183 if (!cpuset_zone_allowed(zone, gfp_mask))
1186 * no need to ask again on the same node. Pool is node rather than
1189 if (zone_to_nid(zone) == node)
1191 node = zone_to_nid(zone);
1193 page = dequeue_huge_page_node_exact(h, node);
1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1203 static unsigned long available_huge_pages(struct hstate *h)
1205 return h->free_huge_pages - h->resv_huge_pages;
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 struct vm_area_struct *vma,
1210 unsigned long address, int avoid_reserve,
1213 struct page *page = NULL;
1214 struct mempolicy *mpol;
1216 nodemask_t *nodemask;
1220 * A child process with MAP_PRIVATE mappings created by their parent
1221 * have no page reserves. This check ensures that reservations are
1222 * not "stolen". The child may still get SIGKILLed
1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1227 /* If reserves cannot be used, ensure enough pages are in the pool */
1228 if (avoid_reserve && !available_huge_pages(h))
1231 gfp_mask = htlb_alloc_mask(h);
1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1234 if (mpol_is_preferred_many(mpol)) {
1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1237 /* Fallback to all nodes if page==NULL */
1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245 SetHPageRestoreReserve(page);
1246 h->resv_huge_pages--;
1249 mpol_cond_put(mpol);
1257 * common helper functions for hstate_next_node_to_{alloc|free}.
1258 * We may have allocated or freed a huge page based on a different
1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260 * be outside of *nodes_allowed. Ensure that we use an allowed
1261 * node for alloc or free.
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1265 nid = next_node_in(nid, *nodes_allowed);
1266 VM_BUG_ON(nid >= MAX_NUMNODES);
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1273 if (!node_isset(nid, *nodes_allowed))
1274 nid = next_node_allowed(nid, nodes_allowed);
1279 * returns the previously saved node ["this node"] from which to
1280 * allocate a persistent huge page for the pool and advance the
1281 * next node from which to allocate, handling wrap at end of node
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285 nodemask_t *nodes_allowed)
1289 VM_BUG_ON(!nodes_allowed);
1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1298 * helper for remove_pool_huge_page() - return the previously saved
1299 * node ["this node"] from which to free a huge page. Advance the
1300 * next node id whether or not we find a free huge page to free so
1301 * that the next attempt to free addresses the next node.
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1307 VM_BUG_ON(!nodes_allowed);
1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1316 for (nr_nodes = nodes_weight(*mask); \
1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1322 for (nr_nodes = nodes_weight(*mask); \
1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329 unsigned int order, bool demote)
1332 int nr_pages = 1 << order;
1335 atomic_set(compound_mapcount_ptr(page), 0);
1336 atomic_set(compound_pincount_ptr(page), 0);
1338 for (i = 1; i < nr_pages; i++) {
1339 p = nth_page(page, i);
1341 clear_compound_head(p);
1343 set_page_refcounted(p);
1346 set_compound_order(page, 0);
1348 page[1].compound_nr = 0;
1350 __ClearPageHead(page);
1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1356 __destroy_compound_gigantic_page(page, order, true);
1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1360 static void destroy_compound_gigantic_page(struct page *page,
1363 __destroy_compound_gigantic_page(page, order, false);
1366 static void free_gigantic_page(struct page *page, unsigned int order)
1369 * If the page isn't allocated using the cma allocator,
1370 * cma_release() returns false.
1373 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1377 free_contig_range(page_to_pfn(page), 1 << order);
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382 int nid, nodemask_t *nodemask)
1384 unsigned long nr_pages = pages_per_huge_page(h);
1385 if (nid == NUMA_NO_NODE)
1386 nid = numa_mem_id();
1393 if (hugetlb_cma[nid]) {
1394 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 huge_page_order(h), true);
1400 if (!(gfp_mask & __GFP_THISNODE)) {
1401 for_each_node_mask(node, *nodemask) {
1402 if (node == nid || !hugetlb_cma[node])
1405 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 huge_page_order(h), true);
1414 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1417 #else /* !CONFIG_CONTIG_ALLOC */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 int nid, nodemask_t *nodemask)
1423 #endif /* CONFIG_CONTIG_ALLOC */
1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1427 int nid, nodemask_t *nodemask)
1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1432 static inline void destroy_compound_gigantic_page(struct page *page,
1433 unsigned int order) { }
1437 * Remove hugetlb page from lists, and update dtor so that page appears
1438 * as just a compound page.
1440 * A reference is held on the page, except in the case of demote.
1442 * Must be called with hugetlb lock held.
1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445 bool adjust_surplus,
1448 int nid = page_to_nid(page);
1450 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1453 lockdep_assert_held(&hugetlb_lock);
1454 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1457 list_del(&page->lru);
1459 if (HPageFreed(page)) {
1460 h->free_huge_pages--;
1461 h->free_huge_pages_node[nid]--;
1463 if (adjust_surplus) {
1464 h->surplus_huge_pages--;
1465 h->surplus_huge_pages_node[nid]--;
1471 * For non-gigantic pages set the destructor to the normal compound
1472 * page dtor. This is needed in case someone takes an additional
1473 * temporary ref to the page, and freeing is delayed until they drop
1476 * For gigantic pages set the destructor to the null dtor. This
1477 * destructor will never be called. Before freeing the gigantic
1478 * page destroy_compound_gigantic_page will turn the compound page
1479 * into a simple group of pages. After this the destructor does not
1482 * This handles the case where more than one ref is held when and
1483 * after update_and_free_page is called.
1485 * In the case of demote we do not ref count the page as it will soon
1486 * be turned into a page of smaller size.
1489 set_page_refcounted(page);
1490 if (hstate_is_gigantic(h))
1491 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1496 h->nr_huge_pages_node[nid]--;
1499 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500 bool adjust_surplus)
1502 __remove_hugetlb_page(h, page, adjust_surplus, false);
1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506 bool adjust_surplus)
1508 __remove_hugetlb_page(h, page, adjust_surplus, true);
1511 static void add_hugetlb_page(struct hstate *h, struct page *page,
1512 bool adjust_surplus)
1515 int nid = page_to_nid(page);
1517 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1519 lockdep_assert_held(&hugetlb_lock);
1521 INIT_LIST_HEAD(&page->lru);
1523 h->nr_huge_pages_node[nid]++;
1525 if (adjust_surplus) {
1526 h->surplus_huge_pages++;
1527 h->surplus_huge_pages_node[nid]++;
1530 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531 set_page_private(page, 0);
1533 * We have to set HPageVmemmapOptimized again as above
1534 * set_page_private(page, 0) cleared it.
1536 SetHPageVmemmapOptimized(page);
1539 * This page is about to be managed by the hugetlb allocator and
1540 * should have no users. Drop our reference, and check for others
1543 zeroed = put_page_testzero(page);
1546 * It is VERY unlikely soneone else has taken a ref on
1547 * the page. In this case, we simply return as the
1548 * hugetlb destructor (free_huge_page) will be called
1549 * when this other ref is dropped.
1553 arch_clear_hugepage_flags(page);
1554 enqueue_huge_page(h, page);
1557 static void __update_and_free_page(struct hstate *h, struct page *page)
1560 struct page *subpage;
1562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1566 * If we don't know which subpages are hwpoisoned, we can't free
1567 * the hugepage, so it's leaked intentionally.
1569 if (HPageRawHwpUnreliable(page))
1572 if (hugetlb_vmemmap_restore(h, page)) {
1573 spin_lock_irq(&hugetlb_lock);
1575 * If we cannot allocate vmemmap pages, just refuse to free the
1576 * page and put the page back on the hugetlb free list and treat
1577 * as a surplus page.
1579 add_hugetlb_page(h, page, true);
1580 spin_unlock_irq(&hugetlb_lock);
1585 * Move PageHWPoison flag from head page to the raw error pages,
1586 * which makes any healthy subpages reusable.
1588 if (unlikely(PageHWPoison(page)))
1589 hugetlb_clear_page_hwpoison(page);
1591 for (i = 0; i < pages_per_huge_page(h); i++) {
1592 subpage = nth_page(page, i);
1593 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1594 1 << PG_referenced | 1 << PG_dirty |
1595 1 << PG_active | 1 << PG_private |
1600 * Non-gigantic pages demoted from CMA allocated gigantic pages
1601 * need to be given back to CMA in free_gigantic_page.
1603 if (hstate_is_gigantic(h) ||
1604 hugetlb_cma_page(page, huge_page_order(h))) {
1605 destroy_compound_gigantic_page(page, huge_page_order(h));
1606 free_gigantic_page(page, huge_page_order(h));
1608 __free_pages(page, huge_page_order(h));
1613 * As update_and_free_page() can be called under any context, so we cannot
1614 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616 * the vmemmap pages.
1618 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619 * freed and frees them one-by-one. As the page->mapping pointer is going
1620 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621 * structure of a lockless linked list of huge pages to be freed.
1623 static LLIST_HEAD(hpage_freelist);
1625 static void free_hpage_workfn(struct work_struct *work)
1627 struct llist_node *node;
1629 node = llist_del_all(&hpage_freelist);
1635 page = container_of((struct address_space **)node,
1636 struct page, mapping);
1638 page->mapping = NULL;
1640 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641 * is going to trigger because a previous call to
1642 * remove_hugetlb_page() will set_compound_page_dtor(page,
1643 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1645 h = size_to_hstate(page_size(page));
1647 __update_and_free_page(h, page);
1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1654 static inline void flush_free_hpage_work(struct hstate *h)
1656 if (hugetlb_vmemmap_optimizable(h))
1657 flush_work(&free_hpage_work);
1660 static void update_and_free_page(struct hstate *h, struct page *page,
1663 if (!HPageVmemmapOptimized(page) || !atomic) {
1664 __update_and_free_page(h, page);
1669 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1671 * Only call schedule_work() if hpage_freelist is previously
1672 * empty. Otherwise, schedule_work() had been called but the workfn
1673 * hasn't retrieved the list yet.
1675 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676 schedule_work(&free_hpage_work);
1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1681 struct page *page, *t_page;
1683 list_for_each_entry_safe(page, t_page, list, lru) {
1684 update_and_free_page(h, page, false);
1689 struct hstate *size_to_hstate(unsigned long size)
1693 for_each_hstate(h) {
1694 if (huge_page_size(h) == size)
1700 void free_huge_page(struct page *page)
1703 * Can't pass hstate in here because it is called from the
1704 * compound page destructor.
1706 struct hstate *h = page_hstate(page);
1707 int nid = page_to_nid(page);
1708 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1709 bool restore_reserve;
1710 unsigned long flags;
1712 VM_BUG_ON_PAGE(page_count(page), page);
1713 VM_BUG_ON_PAGE(page_mapcount(page), page);
1715 hugetlb_set_page_subpool(page, NULL);
1717 __ClearPageAnonExclusive(page);
1718 page->mapping = NULL;
1719 restore_reserve = HPageRestoreReserve(page);
1720 ClearHPageRestoreReserve(page);
1723 * If HPageRestoreReserve was set on page, page allocation consumed a
1724 * reservation. If the page was associated with a subpool, there
1725 * would have been a page reserved in the subpool before allocation
1726 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1727 * reservation, do not call hugepage_subpool_put_pages() as this will
1728 * remove the reserved page from the subpool.
1730 if (!restore_reserve) {
1732 * A return code of zero implies that the subpool will be
1733 * under its minimum size if the reservation is not restored
1734 * after page is free. Therefore, force restore_reserve
1737 if (hugepage_subpool_put_pages(spool, 1) == 0)
1738 restore_reserve = true;
1741 spin_lock_irqsave(&hugetlb_lock, flags);
1742 ClearHPageMigratable(page);
1743 hugetlb_cgroup_uncharge_page(hstate_index(h),
1744 pages_per_huge_page(h), page);
1745 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746 pages_per_huge_page(h), page);
1747 if (restore_reserve)
1748 h->resv_huge_pages++;
1750 if (HPageTemporary(page)) {
1751 remove_hugetlb_page(h, page, false);
1752 spin_unlock_irqrestore(&hugetlb_lock, flags);
1753 update_and_free_page(h, page, true);
1754 } else if (h->surplus_huge_pages_node[nid]) {
1755 /* remove the page from active list */
1756 remove_hugetlb_page(h, page, true);
1757 spin_unlock_irqrestore(&hugetlb_lock, flags);
1758 update_and_free_page(h, page, true);
1760 arch_clear_hugepage_flags(page);
1761 enqueue_huge_page(h, page);
1762 spin_unlock_irqrestore(&hugetlb_lock, flags);
1767 * Must be called with the hugetlb lock held
1769 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1771 lockdep_assert_held(&hugetlb_lock);
1773 h->nr_huge_pages_node[nid]++;
1776 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1778 hugetlb_vmemmap_optimize(h, page);
1779 INIT_LIST_HEAD(&page->lru);
1780 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1781 hugetlb_set_page_subpool(page, NULL);
1782 set_hugetlb_cgroup(page, NULL);
1783 set_hugetlb_cgroup_rsvd(page, NULL);
1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1788 __prep_new_huge_page(h, page);
1789 spin_lock_irq(&hugetlb_lock);
1790 __prep_account_new_huge_page(h, nid);
1791 spin_unlock_irq(&hugetlb_lock);
1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1798 int nr_pages = 1 << order;
1801 /* we rely on prep_new_huge_page to set the destructor */
1802 set_compound_order(page, order);
1803 __ClearPageReserved(page);
1804 __SetPageHead(page);
1805 for (i = 0; i < nr_pages; i++) {
1806 p = nth_page(page, i);
1809 * For gigantic hugepages allocated through bootmem at
1810 * boot, it's safer to be consistent with the not-gigantic
1811 * hugepages and clear the PG_reserved bit from all tail pages
1812 * too. Otherwise drivers using get_user_pages() to access tail
1813 * pages may get the reference counting wrong if they see
1814 * PG_reserved set on a tail page (despite the head page not
1815 * having PG_reserved set). Enforcing this consistency between
1816 * head and tail pages allows drivers to optimize away a check
1817 * on the head page when they need know if put_page() is needed
1818 * after get_user_pages().
1820 if (i != 0) /* head page cleared above */
1821 __ClearPageReserved(p);
1823 * Subtle and very unlikely
1825 * Gigantic 'page allocators' such as memblock or cma will
1826 * return a set of pages with each page ref counted. We need
1827 * to turn this set of pages into a compound page with tail
1828 * page ref counts set to zero. Code such as speculative page
1829 * cache adding could take a ref on a 'to be' tail page.
1830 * We need to respect any increased ref count, and only set
1831 * the ref count to zero if count is currently 1. If count
1832 * is not 1, we return an error. An error return indicates
1833 * the set of pages can not be converted to a gigantic page.
1834 * The caller who allocated the pages should then discard the
1835 * pages using the appropriate free interface.
1837 * In the case of demote, the ref count will be zero.
1840 if (!page_ref_freeze(p, 1)) {
1841 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1845 VM_BUG_ON_PAGE(page_count(p), p);
1848 set_compound_head(p, page);
1850 atomic_set(compound_mapcount_ptr(page), -1);
1851 atomic_set(compound_pincount_ptr(page), 0);
1855 /* undo page modifications made above */
1856 for (j = 0; j < i; j++) {
1857 p = nth_page(page, j);
1859 clear_compound_head(p);
1860 set_page_refcounted(p);
1862 /* need to clear PG_reserved on remaining tail pages */
1863 for (; j < nr_pages; j++) {
1864 p = nth_page(page, j);
1865 __ClearPageReserved(p);
1867 set_compound_order(page, 0);
1869 page[1].compound_nr = 0;
1871 __ClearPageHead(page);
1875 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1877 return __prep_compound_gigantic_page(page, order, false);
1880 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1883 return __prep_compound_gigantic_page(page, order, true);
1887 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1888 * transparent huge pages. See the PageTransHuge() documentation for more
1891 int PageHuge(struct page *page)
1893 if (!PageCompound(page))
1896 page = compound_head(page);
1897 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1899 EXPORT_SYMBOL_GPL(PageHuge);
1902 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1903 * normal or transparent huge pages.
1905 int PageHeadHuge(struct page *page_head)
1907 if (!PageHead(page_head))
1910 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1912 EXPORT_SYMBOL_GPL(PageHeadHuge);
1915 * Find and lock address space (mapping) in write mode.
1917 * Upon entry, the page is locked which means that page_mapping() is
1918 * stable. Due to locking order, we can only trylock_write. If we can
1919 * not get the lock, simply return NULL to caller.
1921 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1923 struct address_space *mapping = page_mapping(hpage);
1928 if (i_mmap_trylock_write(mapping))
1934 pgoff_t hugetlb_basepage_index(struct page *page)
1936 struct page *page_head = compound_head(page);
1937 pgoff_t index = page_index(page_head);
1938 unsigned long compound_idx;
1940 if (compound_order(page_head) >= MAX_ORDER)
1941 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1943 compound_idx = page - page_head;
1945 return (index << compound_order(page_head)) + compound_idx;
1948 static struct page *alloc_buddy_huge_page(struct hstate *h,
1949 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1950 nodemask_t *node_alloc_noretry)
1952 int order = huge_page_order(h);
1954 bool alloc_try_hard = true;
1958 * By default we always try hard to allocate the page with
1959 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1960 * a loop (to adjust global huge page counts) and previous allocation
1961 * failed, do not continue to try hard on the same node. Use the
1962 * node_alloc_noretry bitmap to manage this state information.
1964 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1965 alloc_try_hard = false;
1966 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1968 gfp_mask |= __GFP_RETRY_MAYFAIL;
1969 if (nid == NUMA_NO_NODE)
1970 nid = numa_mem_id();
1972 page = __alloc_pages(gfp_mask, order, nid, nmask);
1974 /* Freeze head page */
1975 if (page && !page_ref_freeze(page, 1)) {
1976 __free_pages(page, order);
1977 if (retry) { /* retry once */
1981 /* WOW! twice in a row. */
1982 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1987 __count_vm_event(HTLB_BUDDY_PGALLOC);
1989 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1992 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1993 * indicates an overall state change. Clear bit so that we resume
1994 * normal 'try hard' allocations.
1996 if (node_alloc_noretry && page && !alloc_try_hard)
1997 node_clear(nid, *node_alloc_noretry);
2000 * If we tried hard to get a page but failed, set bit so that
2001 * subsequent attempts will not try as hard until there is an
2002 * overall state change.
2004 if (node_alloc_noretry && !page && alloc_try_hard)
2005 node_set(nid, *node_alloc_noretry);
2011 * Common helper to allocate a fresh hugetlb page. All specific allocators
2012 * should use this function to get new hugetlb pages
2014 * Note that returned page is 'frozen': ref count of head page and all tail
2017 static struct page *alloc_fresh_huge_page(struct hstate *h,
2018 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2019 nodemask_t *node_alloc_noretry)
2025 if (hstate_is_gigantic(h))
2026 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2028 page = alloc_buddy_huge_page(h, gfp_mask,
2029 nid, nmask, node_alloc_noretry);
2033 if (hstate_is_gigantic(h)) {
2034 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2036 * Rare failure to convert pages to compound page.
2037 * Free pages and try again - ONCE!
2039 free_gigantic_page(page, huge_page_order(h));
2047 prep_new_huge_page(h, page, page_to_nid(page));
2053 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2056 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2057 nodemask_t *node_alloc_noretry)
2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2063 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2064 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2065 node_alloc_noretry);
2073 free_huge_page(page); /* free it into the hugepage allocator */
2079 * Remove huge page from pool from next node to free. Attempt to keep
2080 * persistent huge pages more or less balanced over allowed nodes.
2081 * This routine only 'removes' the hugetlb page. The caller must make
2082 * an additional call to free the page to low level allocators.
2083 * Called with hugetlb_lock locked.
2085 static struct page *remove_pool_huge_page(struct hstate *h,
2086 nodemask_t *nodes_allowed,
2090 struct page *page = NULL;
2092 lockdep_assert_held(&hugetlb_lock);
2093 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2095 * If we're returning unused surplus pages, only examine
2096 * nodes with surplus pages.
2098 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2099 !list_empty(&h->hugepage_freelists[node])) {
2100 page = list_entry(h->hugepage_freelists[node].next,
2102 remove_hugetlb_page(h, page, acct_surplus);
2111 * Dissolve a given free hugepage into free buddy pages. This function does
2112 * nothing for in-use hugepages and non-hugepages.
2113 * This function returns values like below:
2115 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2116 * when the system is under memory pressure and the feature of
2117 * freeing unused vmemmap pages associated with each hugetlb page
2119 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2120 * (allocated or reserved.)
2121 * 0: successfully dissolved free hugepages or the page is not a
2122 * hugepage (considered as already dissolved)
2124 int dissolve_free_huge_page(struct page *page)
2129 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2130 if (!PageHuge(page))
2133 spin_lock_irq(&hugetlb_lock);
2134 if (!PageHuge(page)) {
2139 if (!page_count(page)) {
2140 struct page *head = compound_head(page);
2141 struct hstate *h = page_hstate(head);
2142 if (!available_huge_pages(h))
2146 * We should make sure that the page is already on the free list
2147 * when it is dissolved.
2149 if (unlikely(!HPageFreed(head))) {
2150 spin_unlock_irq(&hugetlb_lock);
2154 * Theoretically, we should return -EBUSY when we
2155 * encounter this race. In fact, we have a chance
2156 * to successfully dissolve the page if we do a
2157 * retry. Because the race window is quite small.
2158 * If we seize this opportunity, it is an optimization
2159 * for increasing the success rate of dissolving page.
2164 remove_hugetlb_page(h, head, false);
2165 h->max_huge_pages--;
2166 spin_unlock_irq(&hugetlb_lock);
2169 * Normally update_and_free_page will allocate required vmemmmap
2170 * before freeing the page. update_and_free_page will fail to
2171 * free the page if it can not allocate required vmemmap. We
2172 * need to adjust max_huge_pages if the page is not freed.
2173 * Attempt to allocate vmemmmap here so that we can take
2174 * appropriate action on failure.
2176 rc = hugetlb_vmemmap_restore(h, head);
2178 update_and_free_page(h, head, false);
2180 spin_lock_irq(&hugetlb_lock);
2181 add_hugetlb_page(h, head, false);
2182 h->max_huge_pages++;
2183 spin_unlock_irq(&hugetlb_lock);
2189 spin_unlock_irq(&hugetlb_lock);
2194 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2195 * make specified memory blocks removable from the system.
2196 * Note that this will dissolve a free gigantic hugepage completely, if any
2197 * part of it lies within the given range.
2198 * Also note that if dissolve_free_huge_page() returns with an error, all
2199 * free hugepages that were dissolved before that error are lost.
2201 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2209 if (!hugepages_supported())
2212 order = huge_page_order(&default_hstate);
2214 order = min(order, huge_page_order(h));
2216 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2217 page = pfn_to_page(pfn);
2218 rc = dissolve_free_huge_page(page);
2227 * Allocates a fresh surplus page from the page allocator.
2229 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2230 int nid, nodemask_t *nmask)
2232 struct page *page = NULL;
2234 if (hstate_is_gigantic(h))
2237 spin_lock_irq(&hugetlb_lock);
2238 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2240 spin_unlock_irq(&hugetlb_lock);
2242 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2246 spin_lock_irq(&hugetlb_lock);
2248 * We could have raced with the pool size change.
2249 * Double check that and simply deallocate the new page
2250 * if we would end up overcommiting the surpluses. Abuse
2251 * temporary page to workaround the nasty free_huge_page
2254 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2255 SetHPageTemporary(page);
2256 spin_unlock_irq(&hugetlb_lock);
2257 free_huge_page(page);
2261 h->surplus_huge_pages++;
2262 h->surplus_huge_pages_node[page_to_nid(page)]++;
2265 spin_unlock_irq(&hugetlb_lock);
2270 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2271 int nid, nodemask_t *nmask)
2275 if (hstate_is_gigantic(h))
2278 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2282 /* fresh huge pages are frozen */
2283 set_page_refcounted(page);
2286 * We do not account these pages as surplus because they are only
2287 * temporary and will be released properly on the last reference
2289 SetHPageTemporary(page);
2295 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2298 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2299 struct vm_area_struct *vma, unsigned long addr)
2301 struct page *page = NULL;
2302 struct mempolicy *mpol;
2303 gfp_t gfp_mask = htlb_alloc_mask(h);
2305 nodemask_t *nodemask;
2307 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2308 if (mpol_is_preferred_many(mpol)) {
2309 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2311 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2312 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2314 /* Fallback to all nodes if page==NULL */
2319 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2320 mpol_cond_put(mpol);
2324 /* page migration callback function */
2325 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2326 nodemask_t *nmask, gfp_t gfp_mask)
2328 spin_lock_irq(&hugetlb_lock);
2329 if (available_huge_pages(h)) {
2332 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2334 spin_unlock_irq(&hugetlb_lock);
2338 spin_unlock_irq(&hugetlb_lock);
2340 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2343 /* mempolicy aware migration callback */
2344 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2345 unsigned long address)
2347 struct mempolicy *mpol;
2348 nodemask_t *nodemask;
2353 gfp_mask = htlb_alloc_mask(h);
2354 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2355 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2356 mpol_cond_put(mpol);
2362 * Increase the hugetlb pool such that it can accommodate a reservation
2365 static int gather_surplus_pages(struct hstate *h, long delta)
2366 __must_hold(&hugetlb_lock)
2368 LIST_HEAD(surplus_list);
2369 struct page *page, *tmp;
2372 long needed, allocated;
2373 bool alloc_ok = true;
2375 lockdep_assert_held(&hugetlb_lock);
2376 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2378 h->resv_huge_pages += delta;
2386 spin_unlock_irq(&hugetlb_lock);
2387 for (i = 0; i < needed; i++) {
2388 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2389 NUMA_NO_NODE, NULL);
2394 list_add(&page->lru, &surplus_list);
2400 * After retaking hugetlb_lock, we need to recalculate 'needed'
2401 * because either resv_huge_pages or free_huge_pages may have changed.
2403 spin_lock_irq(&hugetlb_lock);
2404 needed = (h->resv_huge_pages + delta) -
2405 (h->free_huge_pages + allocated);
2410 * We were not able to allocate enough pages to
2411 * satisfy the entire reservation so we free what
2412 * we've allocated so far.
2417 * The surplus_list now contains _at_least_ the number of extra pages
2418 * needed to accommodate the reservation. Add the appropriate number
2419 * of pages to the hugetlb pool and free the extras back to the buddy
2420 * allocator. Commit the entire reservation here to prevent another
2421 * process from stealing the pages as they are added to the pool but
2422 * before they are reserved.
2424 needed += allocated;
2425 h->resv_huge_pages += delta;
2428 /* Free the needed pages to the hugetlb pool */
2429 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2432 /* Add the page to the hugetlb allocator */
2433 enqueue_huge_page(h, page);
2436 spin_unlock_irq(&hugetlb_lock);
2439 * Free unnecessary surplus pages to the buddy allocator.
2440 * Pages have no ref count, call free_huge_page directly.
2442 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2443 free_huge_page(page);
2444 spin_lock_irq(&hugetlb_lock);
2450 * This routine has two main purposes:
2451 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2452 * in unused_resv_pages. This corresponds to the prior adjustments made
2453 * to the associated reservation map.
2454 * 2) Free any unused surplus pages that may have been allocated to satisfy
2455 * the reservation. As many as unused_resv_pages may be freed.
2457 static void return_unused_surplus_pages(struct hstate *h,
2458 unsigned long unused_resv_pages)
2460 unsigned long nr_pages;
2462 LIST_HEAD(page_list);
2464 lockdep_assert_held(&hugetlb_lock);
2465 /* Uncommit the reservation */
2466 h->resv_huge_pages -= unused_resv_pages;
2468 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2472 * Part (or even all) of the reservation could have been backed
2473 * by pre-allocated pages. Only free surplus pages.
2475 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2478 * We want to release as many surplus pages as possible, spread
2479 * evenly across all nodes with memory. Iterate across these nodes
2480 * until we can no longer free unreserved surplus pages. This occurs
2481 * when the nodes with surplus pages have no free pages.
2482 * remove_pool_huge_page() will balance the freed pages across the
2483 * on-line nodes with memory and will handle the hstate accounting.
2485 while (nr_pages--) {
2486 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2490 list_add(&page->lru, &page_list);
2494 spin_unlock_irq(&hugetlb_lock);
2495 update_and_free_pages_bulk(h, &page_list);
2496 spin_lock_irq(&hugetlb_lock);
2501 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2502 * are used by the huge page allocation routines to manage reservations.
2504 * vma_needs_reservation is called to determine if the huge page at addr
2505 * within the vma has an associated reservation. If a reservation is
2506 * needed, the value 1 is returned. The caller is then responsible for
2507 * managing the global reservation and subpool usage counts. After
2508 * the huge page has been allocated, vma_commit_reservation is called
2509 * to add the page to the reservation map. If the page allocation fails,
2510 * the reservation must be ended instead of committed. vma_end_reservation
2511 * is called in such cases.
2513 * In the normal case, vma_commit_reservation returns the same value
2514 * as the preceding vma_needs_reservation call. The only time this
2515 * is not the case is if a reserve map was changed between calls. It
2516 * is the responsibility of the caller to notice the difference and
2517 * take appropriate action.
2519 * vma_add_reservation is used in error paths where a reservation must
2520 * be restored when a newly allocated huge page must be freed. It is
2521 * to be called after calling vma_needs_reservation to determine if a
2522 * reservation exists.
2524 * vma_del_reservation is used in error paths where an entry in the reserve
2525 * map was created during huge page allocation and must be removed. It is to
2526 * be called after calling vma_needs_reservation to determine if a reservation
2529 enum vma_resv_mode {
2536 static long __vma_reservation_common(struct hstate *h,
2537 struct vm_area_struct *vma, unsigned long addr,
2538 enum vma_resv_mode mode)
2540 struct resv_map *resv;
2543 long dummy_out_regions_needed;
2545 resv = vma_resv_map(vma);
2549 idx = vma_hugecache_offset(h, vma, addr);
2551 case VMA_NEEDS_RESV:
2552 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2553 /* We assume that vma_reservation_* routines always operate on
2554 * 1 page, and that adding to resv map a 1 page entry can only
2555 * ever require 1 region.
2557 VM_BUG_ON(dummy_out_regions_needed != 1);
2559 case VMA_COMMIT_RESV:
2560 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561 /* region_add calls of range 1 should never fail. */
2565 region_abort(resv, idx, idx + 1, 1);
2569 if (vma->vm_flags & VM_MAYSHARE) {
2570 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2571 /* region_add calls of range 1 should never fail. */
2574 region_abort(resv, idx, idx + 1, 1);
2575 ret = region_del(resv, idx, idx + 1);
2579 if (vma->vm_flags & VM_MAYSHARE) {
2580 region_abort(resv, idx, idx + 1, 1);
2581 ret = region_del(resv, idx, idx + 1);
2583 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2584 /* region_add calls of range 1 should never fail. */
2592 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2595 * We know private mapping must have HPAGE_RESV_OWNER set.
2597 * In most cases, reserves always exist for private mappings.
2598 * However, a file associated with mapping could have been
2599 * hole punched or truncated after reserves were consumed.
2600 * As subsequent fault on such a range will not use reserves.
2601 * Subtle - The reserve map for private mappings has the
2602 * opposite meaning than that of shared mappings. If NO
2603 * entry is in the reserve map, it means a reservation exists.
2604 * If an entry exists in the reserve map, it means the
2605 * reservation has already been consumed. As a result, the
2606 * return value of this routine is the opposite of the
2607 * value returned from reserve map manipulation routines above.
2616 static long vma_needs_reservation(struct hstate *h,
2617 struct vm_area_struct *vma, unsigned long addr)
2619 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2622 static long vma_commit_reservation(struct hstate *h,
2623 struct vm_area_struct *vma, unsigned long addr)
2625 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2628 static void vma_end_reservation(struct hstate *h,
2629 struct vm_area_struct *vma, unsigned long addr)
2631 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2634 static long vma_add_reservation(struct hstate *h,
2635 struct vm_area_struct *vma, unsigned long addr)
2637 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2640 static long vma_del_reservation(struct hstate *h,
2641 struct vm_area_struct *vma, unsigned long addr)
2643 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2647 * This routine is called to restore reservation information on error paths.
2648 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2649 * the hugetlb mutex should remain held when calling this routine.
2651 * It handles two specific cases:
2652 * 1) A reservation was in place and the page consumed the reservation.
2653 * HPageRestoreReserve is set in the page.
2654 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2655 * not set. However, alloc_huge_page always updates the reserve map.
2657 * In case 1, free_huge_page later in the error path will increment the
2658 * global reserve count. But, free_huge_page does not have enough context
2659 * to adjust the reservation map. This case deals primarily with private
2660 * mappings. Adjust the reserve map here to be consistent with global
2661 * reserve count adjustments to be made by free_huge_page. Make sure the
2662 * reserve map indicates there is a reservation present.
2664 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2666 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2667 unsigned long address, struct page *page)
2669 long rc = vma_needs_reservation(h, vma, address);
2671 if (HPageRestoreReserve(page)) {
2672 if (unlikely(rc < 0))
2674 * Rare out of memory condition in reserve map
2675 * manipulation. Clear HPageRestoreReserve so that
2676 * global reserve count will not be incremented
2677 * by free_huge_page. This will make it appear
2678 * as though the reservation for this page was
2679 * consumed. This may prevent the task from
2680 * faulting in the page at a later time. This
2681 * is better than inconsistent global huge page
2682 * accounting of reserve counts.
2684 ClearHPageRestoreReserve(page);
2686 (void)vma_add_reservation(h, vma, address);
2688 vma_end_reservation(h, vma, address);
2692 * This indicates there is an entry in the reserve map
2693 * not added by alloc_huge_page. We know it was added
2694 * before the alloc_huge_page call, otherwise
2695 * HPageRestoreReserve would be set on the page.
2696 * Remove the entry so that a subsequent allocation
2697 * does not consume a reservation.
2699 rc = vma_del_reservation(h, vma, address);
2702 * VERY rare out of memory condition. Since
2703 * we can not delete the entry, set
2704 * HPageRestoreReserve so that the reserve
2705 * count will be incremented when the page
2706 * is freed. This reserve will be consumed
2707 * on a subsequent allocation.
2709 SetHPageRestoreReserve(page);
2710 } else if (rc < 0) {
2712 * Rare out of memory condition from
2713 * vma_needs_reservation call. Memory allocation is
2714 * only attempted if a new entry is needed. Therefore,
2715 * this implies there is not an entry in the
2718 * For shared mappings, no entry in the map indicates
2719 * no reservation. We are done.
2721 if (!(vma->vm_flags & VM_MAYSHARE))
2723 * For private mappings, no entry indicates
2724 * a reservation is present. Since we can
2725 * not add an entry, set SetHPageRestoreReserve
2726 * on the page so reserve count will be
2727 * incremented when freed. This reserve will
2728 * be consumed on a subsequent allocation.
2730 SetHPageRestoreReserve(page);
2733 * No reservation present, do nothing
2735 vma_end_reservation(h, vma, address);
2740 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2741 * @h: struct hstate old page belongs to
2742 * @old_page: Old page to dissolve
2743 * @list: List to isolate the page in case we need to
2744 * Returns 0 on success, otherwise negated error.
2746 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2747 struct list_head *list)
2749 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2750 int nid = page_to_nid(old_page);
2751 struct page *new_page;
2755 * Before dissolving the page, we need to allocate a new one for the
2756 * pool to remain stable. Here, we allocate the page and 'prep' it
2757 * by doing everything but actually updating counters and adding to
2758 * the pool. This simplifies and let us do most of the processing
2761 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2764 __prep_new_huge_page(h, new_page);
2767 spin_lock_irq(&hugetlb_lock);
2768 if (!PageHuge(old_page)) {
2770 * Freed from under us. Drop new_page too.
2773 } else if (page_count(old_page)) {
2775 * Someone has grabbed the page, try to isolate it here.
2776 * Fail with -EBUSY if not possible.
2778 spin_unlock_irq(&hugetlb_lock);
2779 ret = isolate_hugetlb(old_page, list);
2780 spin_lock_irq(&hugetlb_lock);
2782 } else if (!HPageFreed(old_page)) {
2784 * Page's refcount is 0 but it has not been enqueued in the
2785 * freelist yet. Race window is small, so we can succeed here if
2788 spin_unlock_irq(&hugetlb_lock);
2793 * Ok, old_page is still a genuine free hugepage. Remove it from
2794 * the freelist and decrease the counters. These will be
2795 * incremented again when calling __prep_account_new_huge_page()
2796 * and enqueue_huge_page() for new_page. The counters will remain
2797 * stable since this happens under the lock.
2799 remove_hugetlb_page(h, old_page, false);
2802 * Ref count on new page is already zero as it was dropped
2803 * earlier. It can be directly added to the pool free list.
2805 __prep_account_new_huge_page(h, nid);
2806 enqueue_huge_page(h, new_page);
2809 * Pages have been replaced, we can safely free the old one.
2811 spin_unlock_irq(&hugetlb_lock);
2812 update_and_free_page(h, old_page, false);
2818 spin_unlock_irq(&hugetlb_lock);
2819 /* Page has a zero ref count, but needs a ref to be freed */
2820 set_page_refcounted(new_page);
2821 update_and_free_page(h, new_page, false);
2826 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2833 * The page might have been dissolved from under our feet, so make sure
2834 * to carefully check the state under the lock.
2835 * Return success when racing as if we dissolved the page ourselves.
2837 spin_lock_irq(&hugetlb_lock);
2838 if (PageHuge(page)) {
2839 head = compound_head(page);
2840 h = page_hstate(head);
2842 spin_unlock_irq(&hugetlb_lock);
2845 spin_unlock_irq(&hugetlb_lock);
2848 * Fence off gigantic pages as there is a cyclic dependency between
2849 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2850 * of bailing out right away without further retrying.
2852 if (hstate_is_gigantic(h))
2855 if (page_count(head) && !isolate_hugetlb(head, list))
2857 else if (!page_count(head))
2858 ret = alloc_and_dissolve_huge_page(h, head, list);
2863 struct page *alloc_huge_page(struct vm_area_struct *vma,
2864 unsigned long addr, int avoid_reserve)
2866 struct hugepage_subpool *spool = subpool_vma(vma);
2867 struct hstate *h = hstate_vma(vma);
2869 long map_chg, map_commit;
2872 struct hugetlb_cgroup *h_cg;
2873 bool deferred_reserve;
2875 idx = hstate_index(h);
2877 * Examine the region/reserve map to determine if the process
2878 * has a reservation for the page to be allocated. A return
2879 * code of zero indicates a reservation exists (no change).
2881 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2883 return ERR_PTR(-ENOMEM);
2886 * Processes that did not create the mapping will have no
2887 * reserves as indicated by the region/reserve map. Check
2888 * that the allocation will not exceed the subpool limit.
2889 * Allocations for MAP_NORESERVE mappings also need to be
2890 * checked against any subpool limit.
2892 if (map_chg || avoid_reserve) {
2893 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2895 vma_end_reservation(h, vma, addr);
2896 return ERR_PTR(-ENOSPC);
2900 * Even though there was no reservation in the region/reserve
2901 * map, there could be reservations associated with the
2902 * subpool that can be used. This would be indicated if the
2903 * return value of hugepage_subpool_get_pages() is zero.
2904 * However, if avoid_reserve is specified we still avoid even
2905 * the subpool reservations.
2911 /* If this allocation is not consuming a reservation, charge it now.
2913 deferred_reserve = map_chg || avoid_reserve;
2914 if (deferred_reserve) {
2915 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2916 idx, pages_per_huge_page(h), &h_cg);
2918 goto out_subpool_put;
2921 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2923 goto out_uncharge_cgroup_reservation;
2925 spin_lock_irq(&hugetlb_lock);
2927 * glb_chg is passed to indicate whether or not a page must be taken
2928 * from the global free pool (global change). gbl_chg == 0 indicates
2929 * a reservation exists for the allocation.
2931 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2933 spin_unlock_irq(&hugetlb_lock);
2934 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2936 goto out_uncharge_cgroup;
2937 spin_lock_irq(&hugetlb_lock);
2938 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2939 SetHPageRestoreReserve(page);
2940 h->resv_huge_pages--;
2942 list_add(&page->lru, &h->hugepage_activelist);
2943 set_page_refcounted(page);
2946 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2947 /* If allocation is not consuming a reservation, also store the
2948 * hugetlb_cgroup pointer on the page.
2950 if (deferred_reserve) {
2951 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2955 spin_unlock_irq(&hugetlb_lock);
2957 hugetlb_set_page_subpool(page, spool);
2959 map_commit = vma_commit_reservation(h, vma, addr);
2960 if (unlikely(map_chg > map_commit)) {
2962 * The page was added to the reservation map between
2963 * vma_needs_reservation and vma_commit_reservation.
2964 * This indicates a race with hugetlb_reserve_pages.
2965 * Adjust for the subpool count incremented above AND
2966 * in hugetlb_reserve_pages for the same page. Also,
2967 * the reservation count added in hugetlb_reserve_pages
2968 * no longer applies.
2972 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2973 hugetlb_acct_memory(h, -rsv_adjust);
2974 if (deferred_reserve)
2975 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2976 pages_per_huge_page(h), page);
2980 out_uncharge_cgroup:
2981 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2982 out_uncharge_cgroup_reservation:
2983 if (deferred_reserve)
2984 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2987 if (map_chg || avoid_reserve)
2988 hugepage_subpool_put_pages(spool, 1);
2989 vma_end_reservation(h, vma, addr);
2990 return ERR_PTR(-ENOSPC);
2993 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2994 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2995 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2997 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3000 /* do node specific alloc */
3001 if (nid != NUMA_NO_NODE) {
3002 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3003 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3008 /* allocate from next node when distributing huge pages */
3009 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3010 m = memblock_alloc_try_nid_raw(
3011 huge_page_size(h), huge_page_size(h),
3012 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3014 * Use the beginning of the huge page to store the
3015 * huge_bootmem_page struct (until gather_bootmem
3016 * puts them into the mem_map).
3024 /* Put them into a private list first because mem_map is not up yet */
3025 INIT_LIST_HEAD(&m->list);
3026 list_add(&m->list, &huge_boot_pages);
3032 * Put bootmem huge pages into the standard lists after mem_map is up.
3033 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3035 static void __init gather_bootmem_prealloc(void)
3037 struct huge_bootmem_page *m;
3039 list_for_each_entry(m, &huge_boot_pages, list) {
3040 struct page *page = virt_to_page(m);
3041 struct hstate *h = m->hstate;
3043 VM_BUG_ON(!hstate_is_gigantic(h));
3044 WARN_ON(page_count(page) != 1);
3045 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3046 WARN_ON(PageReserved(page));
3047 prep_new_huge_page(h, page, page_to_nid(page));
3048 free_huge_page(page); /* add to the hugepage allocator */
3050 /* VERY unlikely inflated ref count on a tail page */
3051 free_gigantic_page(page, huge_page_order(h));
3055 * We need to restore the 'stolen' pages to totalram_pages
3056 * in order to fix confusing memory reports from free(1) and
3057 * other side-effects, like CommitLimit going negative.
3059 adjust_managed_page_count(page, pages_per_huge_page(h));
3063 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3068 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3069 if (hstate_is_gigantic(h)) {
3070 if (!alloc_bootmem_huge_page(h, nid))
3074 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3076 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3077 &node_states[N_MEMORY], NULL);
3080 free_huge_page(page); /* free it into the hugepage allocator */
3084 if (i == h->max_huge_pages_node[nid])
3087 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3088 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3089 h->max_huge_pages_node[nid], buf, nid, i);
3090 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3091 h->max_huge_pages_node[nid] = i;
3094 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3097 nodemask_t *node_alloc_noretry;
3098 bool node_specific_alloc = false;
3100 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3101 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3102 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3106 /* do node specific alloc */
3107 for_each_online_node(i) {
3108 if (h->max_huge_pages_node[i] > 0) {
3109 hugetlb_hstate_alloc_pages_onenode(h, i);
3110 node_specific_alloc = true;
3114 if (node_specific_alloc)
3117 /* below will do all node balanced alloc */
3118 if (!hstate_is_gigantic(h)) {
3120 * Bit mask controlling how hard we retry per-node allocations.
3121 * Ignore errors as lower level routines can deal with
3122 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3123 * time, we are likely in bigger trouble.
3125 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3128 /* allocations done at boot time */
3129 node_alloc_noretry = NULL;
3132 /* bit mask controlling how hard we retry per-node allocations */
3133 if (node_alloc_noretry)
3134 nodes_clear(*node_alloc_noretry);
3136 for (i = 0; i < h->max_huge_pages; ++i) {
3137 if (hstate_is_gigantic(h)) {
3138 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3140 } else if (!alloc_pool_huge_page(h,
3141 &node_states[N_MEMORY],
3142 node_alloc_noretry))
3146 if (i < h->max_huge_pages) {
3149 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3150 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3151 h->max_huge_pages, buf, i);
3152 h->max_huge_pages = i;
3154 kfree(node_alloc_noretry);
3157 static void __init hugetlb_init_hstates(void)
3159 struct hstate *h, *h2;
3161 for_each_hstate(h) {
3162 /* oversize hugepages were init'ed in early boot */
3163 if (!hstate_is_gigantic(h))
3164 hugetlb_hstate_alloc_pages(h);
3167 * Set demote order for each hstate. Note that
3168 * h->demote_order is initially 0.
3169 * - We can not demote gigantic pages if runtime freeing
3170 * is not supported, so skip this.
3171 * - If CMA allocation is possible, we can not demote
3172 * HUGETLB_PAGE_ORDER or smaller size pages.
3174 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3176 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3178 for_each_hstate(h2) {
3181 if (h2->order < h->order &&
3182 h2->order > h->demote_order)
3183 h->demote_order = h2->order;
3188 static void __init report_hugepages(void)
3192 for_each_hstate(h) {
3195 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3196 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3197 buf, h->free_huge_pages);
3198 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3199 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3203 #ifdef CONFIG_HIGHMEM
3204 static void try_to_free_low(struct hstate *h, unsigned long count,
3205 nodemask_t *nodes_allowed)
3208 LIST_HEAD(page_list);
3210 lockdep_assert_held(&hugetlb_lock);
3211 if (hstate_is_gigantic(h))
3215 * Collect pages to be freed on a list, and free after dropping lock
3217 for_each_node_mask(i, *nodes_allowed) {
3218 struct page *page, *next;
3219 struct list_head *freel = &h->hugepage_freelists[i];
3220 list_for_each_entry_safe(page, next, freel, lru) {
3221 if (count >= h->nr_huge_pages)
3223 if (PageHighMem(page))
3225 remove_hugetlb_page(h, page, false);
3226 list_add(&page->lru, &page_list);
3231 spin_unlock_irq(&hugetlb_lock);
3232 update_and_free_pages_bulk(h, &page_list);
3233 spin_lock_irq(&hugetlb_lock);
3236 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3237 nodemask_t *nodes_allowed)
3243 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3244 * balanced by operating on them in a round-robin fashion.
3245 * Returns 1 if an adjustment was made.
3247 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3252 lockdep_assert_held(&hugetlb_lock);
3253 VM_BUG_ON(delta != -1 && delta != 1);
3256 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3257 if (h->surplus_huge_pages_node[node])
3261 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3262 if (h->surplus_huge_pages_node[node] <
3263 h->nr_huge_pages_node[node])
3270 h->surplus_huge_pages += delta;
3271 h->surplus_huge_pages_node[node] += delta;
3275 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3276 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3277 nodemask_t *nodes_allowed)
3279 unsigned long min_count, ret;
3281 LIST_HEAD(page_list);
3282 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3285 * Bit mask controlling how hard we retry per-node allocations.
3286 * If we can not allocate the bit mask, do not attempt to allocate
3287 * the requested huge pages.
3289 if (node_alloc_noretry)
3290 nodes_clear(*node_alloc_noretry);
3295 * resize_lock mutex prevents concurrent adjustments to number of
3296 * pages in hstate via the proc/sysfs interfaces.
3298 mutex_lock(&h->resize_lock);
3299 flush_free_hpage_work(h);
3300 spin_lock_irq(&hugetlb_lock);
3303 * Check for a node specific request.
3304 * Changing node specific huge page count may require a corresponding
3305 * change to the global count. In any case, the passed node mask
3306 * (nodes_allowed) will restrict alloc/free to the specified node.
3308 if (nid != NUMA_NO_NODE) {
3309 unsigned long old_count = count;
3311 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3313 * User may have specified a large count value which caused the
3314 * above calculation to overflow. In this case, they wanted
3315 * to allocate as many huge pages as possible. Set count to
3316 * largest possible value to align with their intention.
3318 if (count < old_count)
3323 * Gigantic pages runtime allocation depend on the capability for large
3324 * page range allocation.
3325 * If the system does not provide this feature, return an error when
3326 * the user tries to allocate gigantic pages but let the user free the
3327 * boottime allocated gigantic pages.
3329 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3330 if (count > persistent_huge_pages(h)) {
3331 spin_unlock_irq(&hugetlb_lock);
3332 mutex_unlock(&h->resize_lock);
3333 NODEMASK_FREE(node_alloc_noretry);
3336 /* Fall through to decrease pool */
3340 * Increase the pool size
3341 * First take pages out of surplus state. Then make up the
3342 * remaining difference by allocating fresh huge pages.
3344 * We might race with alloc_surplus_huge_page() here and be unable
3345 * to convert a surplus huge page to a normal huge page. That is
3346 * not critical, though, it just means the overall size of the
3347 * pool might be one hugepage larger than it needs to be, but
3348 * within all the constraints specified by the sysctls.
3350 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3351 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3355 while (count > persistent_huge_pages(h)) {
3357 * If this allocation races such that we no longer need the
3358 * page, free_huge_page will handle it by freeing the page
3359 * and reducing the surplus.
3361 spin_unlock_irq(&hugetlb_lock);
3363 /* yield cpu to avoid soft lockup */
3366 ret = alloc_pool_huge_page(h, nodes_allowed,
3367 node_alloc_noretry);
3368 spin_lock_irq(&hugetlb_lock);
3372 /* Bail for signals. Probably ctrl-c from user */
3373 if (signal_pending(current))
3378 * Decrease the pool size
3379 * First return free pages to the buddy allocator (being careful
3380 * to keep enough around to satisfy reservations). Then place
3381 * pages into surplus state as needed so the pool will shrink
3382 * to the desired size as pages become free.
3384 * By placing pages into the surplus state independent of the
3385 * overcommit value, we are allowing the surplus pool size to
3386 * exceed overcommit. There are few sane options here. Since
3387 * alloc_surplus_huge_page() is checking the global counter,
3388 * though, we'll note that we're not allowed to exceed surplus
3389 * and won't grow the pool anywhere else. Not until one of the
3390 * sysctls are changed, or the surplus pages go out of use.
3392 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3393 min_count = max(count, min_count);
3394 try_to_free_low(h, min_count, nodes_allowed);
3397 * Collect pages to be removed on list without dropping lock
3399 while (min_count < persistent_huge_pages(h)) {
3400 page = remove_pool_huge_page(h, nodes_allowed, 0);
3404 list_add(&page->lru, &page_list);
3406 /* free the pages after dropping lock */
3407 spin_unlock_irq(&hugetlb_lock);
3408 update_and_free_pages_bulk(h, &page_list);
3409 flush_free_hpage_work(h);
3410 spin_lock_irq(&hugetlb_lock);
3412 while (count < persistent_huge_pages(h)) {
3413 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3417 h->max_huge_pages = persistent_huge_pages(h);
3418 spin_unlock_irq(&hugetlb_lock);
3419 mutex_unlock(&h->resize_lock);
3421 NODEMASK_FREE(node_alloc_noretry);
3426 static int demote_free_huge_page(struct hstate *h, struct page *page)
3428 int i, nid = page_to_nid(page);
3429 struct hstate *target_hstate;
3430 struct page *subpage;
3433 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3435 remove_hugetlb_page_for_demote(h, page, false);
3436 spin_unlock_irq(&hugetlb_lock);
3438 rc = hugetlb_vmemmap_restore(h, page);
3440 /* Allocation of vmemmmap failed, we can not demote page */
3441 spin_lock_irq(&hugetlb_lock);
3442 set_page_refcounted(page);
3443 add_hugetlb_page(h, page, false);
3448 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3449 * sizes as it will not ref count pages.
3451 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3454 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3455 * Without the mutex, pages added to target hstate could be marked
3458 * Note that we already hold h->resize_lock. To prevent deadlock,
3459 * use the convention of always taking larger size hstate mutex first.
3461 mutex_lock(&target_hstate->resize_lock);
3462 for (i = 0; i < pages_per_huge_page(h);
3463 i += pages_per_huge_page(target_hstate)) {
3464 subpage = nth_page(page, i);
3465 if (hstate_is_gigantic(target_hstate))
3466 prep_compound_gigantic_page_for_demote(subpage,
3467 target_hstate->order);
3469 prep_compound_page(subpage, target_hstate->order);
3470 set_page_private(subpage, 0);
3471 prep_new_huge_page(target_hstate, subpage, nid);
3472 free_huge_page(subpage);
3474 mutex_unlock(&target_hstate->resize_lock);
3476 spin_lock_irq(&hugetlb_lock);
3479 * Not absolutely necessary, but for consistency update max_huge_pages
3480 * based on pool changes for the demoted page.
3482 h->max_huge_pages--;
3483 target_hstate->max_huge_pages +=
3484 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3489 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3490 __must_hold(&hugetlb_lock)
3495 lockdep_assert_held(&hugetlb_lock);
3497 /* We should never get here if no demote order */
3498 if (!h->demote_order) {
3499 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3500 return -EINVAL; /* internal error */
3503 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3504 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3505 if (PageHWPoison(page))
3508 return demote_free_huge_page(h, page);
3513 * Only way to get here is if all pages on free lists are poisoned.
3514 * Return -EBUSY so that caller will not retry.
3519 #define HSTATE_ATTR_RO(_name) \
3520 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3522 #define HSTATE_ATTR_WO(_name) \
3523 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3525 #define HSTATE_ATTR(_name) \
3526 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3528 static struct kobject *hugepages_kobj;
3529 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3531 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3533 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3537 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3538 if (hstate_kobjs[i] == kobj) {
3540 *nidp = NUMA_NO_NODE;
3544 return kobj_to_node_hstate(kobj, nidp);
3547 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3548 struct kobj_attribute *attr, char *buf)
3551 unsigned long nr_huge_pages;
3554 h = kobj_to_hstate(kobj, &nid);
3555 if (nid == NUMA_NO_NODE)
3556 nr_huge_pages = h->nr_huge_pages;
3558 nr_huge_pages = h->nr_huge_pages_node[nid];
3560 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3563 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3564 struct hstate *h, int nid,
3565 unsigned long count, size_t len)
3568 nodemask_t nodes_allowed, *n_mask;
3570 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3573 if (nid == NUMA_NO_NODE) {
3575 * global hstate attribute
3577 if (!(obey_mempolicy &&
3578 init_nodemask_of_mempolicy(&nodes_allowed)))
3579 n_mask = &node_states[N_MEMORY];
3581 n_mask = &nodes_allowed;
3584 * Node specific request. count adjustment happens in
3585 * set_max_huge_pages() after acquiring hugetlb_lock.
3587 init_nodemask_of_node(&nodes_allowed, nid);
3588 n_mask = &nodes_allowed;
3591 err = set_max_huge_pages(h, count, nid, n_mask);
3593 return err ? err : len;
3596 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3597 struct kobject *kobj, const char *buf,
3601 unsigned long count;
3605 err = kstrtoul(buf, 10, &count);
3609 h = kobj_to_hstate(kobj, &nid);
3610 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3613 static ssize_t nr_hugepages_show(struct kobject *kobj,
3614 struct kobj_attribute *attr, char *buf)
3616 return nr_hugepages_show_common(kobj, attr, buf);
3619 static ssize_t nr_hugepages_store(struct kobject *kobj,
3620 struct kobj_attribute *attr, const char *buf, size_t len)
3622 return nr_hugepages_store_common(false, kobj, buf, len);
3624 HSTATE_ATTR(nr_hugepages);
3629 * hstate attribute for optionally mempolicy-based constraint on persistent
3630 * huge page alloc/free.
3632 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3633 struct kobj_attribute *attr,
3636 return nr_hugepages_show_common(kobj, attr, buf);
3639 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3640 struct kobj_attribute *attr, const char *buf, size_t len)
3642 return nr_hugepages_store_common(true, kobj, buf, len);
3644 HSTATE_ATTR(nr_hugepages_mempolicy);
3648 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3649 struct kobj_attribute *attr, char *buf)
3651 struct hstate *h = kobj_to_hstate(kobj, NULL);
3652 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3655 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3656 struct kobj_attribute *attr, const char *buf, size_t count)
3659 unsigned long input;
3660 struct hstate *h = kobj_to_hstate(kobj, NULL);
3662 if (hstate_is_gigantic(h))
3665 err = kstrtoul(buf, 10, &input);
3669 spin_lock_irq(&hugetlb_lock);
3670 h->nr_overcommit_huge_pages = input;
3671 spin_unlock_irq(&hugetlb_lock);
3675 HSTATE_ATTR(nr_overcommit_hugepages);
3677 static ssize_t free_hugepages_show(struct kobject *kobj,
3678 struct kobj_attribute *attr, char *buf)
3681 unsigned long free_huge_pages;
3684 h = kobj_to_hstate(kobj, &nid);
3685 if (nid == NUMA_NO_NODE)
3686 free_huge_pages = h->free_huge_pages;
3688 free_huge_pages = h->free_huge_pages_node[nid];
3690 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3692 HSTATE_ATTR_RO(free_hugepages);
3694 static ssize_t resv_hugepages_show(struct kobject *kobj,
3695 struct kobj_attribute *attr, char *buf)
3697 struct hstate *h = kobj_to_hstate(kobj, NULL);
3698 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3700 HSTATE_ATTR_RO(resv_hugepages);
3702 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3703 struct kobj_attribute *attr, char *buf)
3706 unsigned long surplus_huge_pages;
3709 h = kobj_to_hstate(kobj, &nid);
3710 if (nid == NUMA_NO_NODE)
3711 surplus_huge_pages = h->surplus_huge_pages;
3713 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3715 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3717 HSTATE_ATTR_RO(surplus_hugepages);
3719 static ssize_t demote_store(struct kobject *kobj,
3720 struct kobj_attribute *attr, const char *buf, size_t len)
3722 unsigned long nr_demote;
3723 unsigned long nr_available;
3724 nodemask_t nodes_allowed, *n_mask;
3729 err = kstrtoul(buf, 10, &nr_demote);
3732 h = kobj_to_hstate(kobj, &nid);
3734 if (nid != NUMA_NO_NODE) {
3735 init_nodemask_of_node(&nodes_allowed, nid);
3736 n_mask = &nodes_allowed;
3738 n_mask = &node_states[N_MEMORY];
3741 /* Synchronize with other sysfs operations modifying huge pages */
3742 mutex_lock(&h->resize_lock);
3743 spin_lock_irq(&hugetlb_lock);
3747 * Check for available pages to demote each time thorough the
3748 * loop as demote_pool_huge_page will drop hugetlb_lock.
3750 if (nid != NUMA_NO_NODE)
3751 nr_available = h->free_huge_pages_node[nid];
3753 nr_available = h->free_huge_pages;
3754 nr_available -= h->resv_huge_pages;
3758 err = demote_pool_huge_page(h, n_mask);
3765 spin_unlock_irq(&hugetlb_lock);
3766 mutex_unlock(&h->resize_lock);
3772 HSTATE_ATTR_WO(demote);
3774 static ssize_t demote_size_show(struct kobject *kobj,
3775 struct kobj_attribute *attr, char *buf)
3777 struct hstate *h = kobj_to_hstate(kobj, NULL);
3778 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3780 return sysfs_emit(buf, "%lukB\n", demote_size);
3783 static ssize_t demote_size_store(struct kobject *kobj,
3784 struct kobj_attribute *attr,
3785 const char *buf, size_t count)
3787 struct hstate *h, *demote_hstate;
3788 unsigned long demote_size;
3789 unsigned int demote_order;
3791 demote_size = (unsigned long)memparse(buf, NULL);
3793 demote_hstate = size_to_hstate(demote_size);
3796 demote_order = demote_hstate->order;
3797 if (demote_order < HUGETLB_PAGE_ORDER)
3800 /* demote order must be smaller than hstate order */
3801 h = kobj_to_hstate(kobj, NULL);
3802 if (demote_order >= h->order)
3805 /* resize_lock synchronizes access to demote size and writes */
3806 mutex_lock(&h->resize_lock);
3807 h->demote_order = demote_order;
3808 mutex_unlock(&h->resize_lock);
3812 HSTATE_ATTR(demote_size);
3814 static struct attribute *hstate_attrs[] = {
3815 &nr_hugepages_attr.attr,
3816 &nr_overcommit_hugepages_attr.attr,
3817 &free_hugepages_attr.attr,
3818 &resv_hugepages_attr.attr,
3819 &surplus_hugepages_attr.attr,
3821 &nr_hugepages_mempolicy_attr.attr,
3826 static const struct attribute_group hstate_attr_group = {
3827 .attrs = hstate_attrs,
3830 static struct attribute *hstate_demote_attrs[] = {
3831 &demote_size_attr.attr,
3836 static const struct attribute_group hstate_demote_attr_group = {
3837 .attrs = hstate_demote_attrs,
3840 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3841 struct kobject **hstate_kobjs,
3842 const struct attribute_group *hstate_attr_group)
3845 int hi = hstate_index(h);
3847 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3848 if (!hstate_kobjs[hi])
3851 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3853 kobject_put(hstate_kobjs[hi]);
3854 hstate_kobjs[hi] = NULL;
3858 if (h->demote_order) {
3859 retval = sysfs_create_group(hstate_kobjs[hi],
3860 &hstate_demote_attr_group);
3862 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3863 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3864 kobject_put(hstate_kobjs[hi]);
3865 hstate_kobjs[hi] = NULL;
3874 static bool hugetlb_sysfs_initialized __ro_after_init;
3877 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878 * with node devices in node_devices[] using a parallel array. The array
3879 * index of a node device or _hstate == node id.
3880 * This is here to avoid any static dependency of the node device driver, in
3881 * the base kernel, on the hugetlb module.
3883 struct node_hstate {
3884 struct kobject *hugepages_kobj;
3885 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3890 * A subset of global hstate attributes for node devices
3892 static struct attribute *per_node_hstate_attrs[] = {
3893 &nr_hugepages_attr.attr,
3894 &free_hugepages_attr.attr,
3895 &surplus_hugepages_attr.attr,
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900 .attrs = per_node_hstate_attrs,
3904 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905 * Returns node id via non-NULL nidp.
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3911 for (nid = 0; nid < nr_node_ids; nid++) {
3912 struct node_hstate *nhs = &node_hstates[nid];
3914 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 if (nhs->hstate_kobjs[i] == kobj) {
3927 * Unregister hstate attributes from a single node device.
3928 * No-op if no hstate attributes attached.
3930 void hugetlb_unregister_node(struct node *node)
3933 struct node_hstate *nhs = &node_hstates[node->dev.id];
3935 if (!nhs->hugepages_kobj)
3936 return; /* no hstate attributes */
3938 for_each_hstate(h) {
3939 int idx = hstate_index(h);
3940 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3944 if (h->demote_order)
3945 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3946 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3947 kobject_put(hstate_kobj);
3948 nhs->hstate_kobjs[idx] = NULL;
3951 kobject_put(nhs->hugepages_kobj);
3952 nhs->hugepages_kobj = NULL;
3957 * Register hstate attributes for a single node device.
3958 * No-op if attributes already registered.
3960 void hugetlb_register_node(struct node *node)
3963 struct node_hstate *nhs = &node_hstates[node->dev.id];
3966 if (!hugetlb_sysfs_initialized)
3969 if (nhs->hugepages_kobj)
3970 return; /* already allocated */
3972 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3974 if (!nhs->hugepages_kobj)
3977 for_each_hstate(h) {
3978 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3980 &per_node_hstate_attr_group);
3982 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3983 h->name, node->dev.id);
3984 hugetlb_unregister_node(node);
3991 * hugetlb init time: register hstate attributes for all registered node
3992 * devices of nodes that have memory. All on-line nodes should have
3993 * registered their associated device by this time.
3995 static void __init hugetlb_register_all_nodes(void)
3999 for_each_online_node(nid)
4000 hugetlb_register_node(node_devices[nid]);
4002 #else /* !CONFIG_NUMA */
4004 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4012 static void hugetlb_register_all_nodes(void) { }
4017 static void __init hugetlb_cma_check(void);
4019 static inline __init void hugetlb_cma_check(void)
4024 static void __init hugetlb_sysfs_init(void)
4029 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4030 if (!hugepages_kobj)
4033 for_each_hstate(h) {
4034 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4035 hstate_kobjs, &hstate_attr_group);
4037 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4041 hugetlb_sysfs_initialized = true;
4043 hugetlb_register_all_nodes();
4046 static int __init hugetlb_init(void)
4050 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4053 if (!hugepages_supported()) {
4054 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4055 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4060 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4061 * architectures depend on setup being done here.
4063 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4064 if (!parsed_default_hugepagesz) {
4066 * If we did not parse a default huge page size, set
4067 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4068 * number of huge pages for this default size was implicitly
4069 * specified, set that here as well.
4070 * Note that the implicit setting will overwrite an explicit
4071 * setting. A warning will be printed in this case.
4073 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4074 if (default_hstate_max_huge_pages) {
4075 if (default_hstate.max_huge_pages) {
4078 string_get_size(huge_page_size(&default_hstate),
4079 1, STRING_UNITS_2, buf, 32);
4080 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4081 default_hstate.max_huge_pages, buf);
4082 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4083 default_hstate_max_huge_pages);
4085 default_hstate.max_huge_pages =
4086 default_hstate_max_huge_pages;
4088 for_each_online_node(i)
4089 default_hstate.max_huge_pages_node[i] =
4090 default_hugepages_in_node[i];
4094 hugetlb_cma_check();
4095 hugetlb_init_hstates();
4096 gather_bootmem_prealloc();
4099 hugetlb_sysfs_init();
4100 hugetlb_cgroup_file_init();
4103 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4105 num_fault_mutexes = 1;
4107 hugetlb_fault_mutex_table =
4108 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4110 BUG_ON(!hugetlb_fault_mutex_table);
4112 for (i = 0; i < num_fault_mutexes; i++)
4113 mutex_init(&hugetlb_fault_mutex_table[i]);
4116 subsys_initcall(hugetlb_init);
4118 /* Overwritten by architectures with more huge page sizes */
4119 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4121 return size == HPAGE_SIZE;
4124 void __init hugetlb_add_hstate(unsigned int order)
4129 if (size_to_hstate(PAGE_SIZE << order)) {
4132 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4134 h = &hstates[hugetlb_max_hstate++];
4135 mutex_init(&h->resize_lock);
4137 h->mask = ~(huge_page_size(h) - 1);
4138 for (i = 0; i < MAX_NUMNODES; ++i)
4139 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4140 INIT_LIST_HEAD(&h->hugepage_activelist);
4141 h->next_nid_to_alloc = first_memory_node;
4142 h->next_nid_to_free = first_memory_node;
4143 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4144 huge_page_size(h)/SZ_1K);
4149 bool __init __weak hugetlb_node_alloc_supported(void)
4154 static void __init hugepages_clear_pages_in_node(void)
4156 if (!hugetlb_max_hstate) {
4157 default_hstate_max_huge_pages = 0;
4158 memset(default_hugepages_in_node, 0,
4159 sizeof(default_hugepages_in_node));
4161 parsed_hstate->max_huge_pages = 0;
4162 memset(parsed_hstate->max_huge_pages_node, 0,
4163 sizeof(parsed_hstate->max_huge_pages_node));
4168 * hugepages command line processing
4169 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4170 * specification. If not, ignore the hugepages value. hugepages can also
4171 * be the first huge page command line option in which case it implicitly
4172 * specifies the number of huge pages for the default size.
4174 static int __init hugepages_setup(char *s)
4177 static unsigned long *last_mhp;
4178 int node = NUMA_NO_NODE;
4183 if (!parsed_valid_hugepagesz) {
4184 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4185 parsed_valid_hugepagesz = true;
4190 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4191 * yet, so this hugepages= parameter goes to the "default hstate".
4192 * Otherwise, it goes with the previously parsed hugepagesz or
4193 * default_hugepagesz.
4195 else if (!hugetlb_max_hstate)
4196 mhp = &default_hstate_max_huge_pages;
4198 mhp = &parsed_hstate->max_huge_pages;
4200 if (mhp == last_mhp) {
4201 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4207 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4209 /* Parameter is node format */
4210 if (p[count] == ':') {
4211 if (!hugetlb_node_alloc_supported()) {
4212 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4215 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4217 node = array_index_nospec(tmp, MAX_NUMNODES);
4219 /* Parse hugepages */
4220 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4222 if (!hugetlb_max_hstate)
4223 default_hugepages_in_node[node] = tmp;
4225 parsed_hstate->max_huge_pages_node[node] = tmp;
4227 /* Go to parse next node*/
4228 if (p[count] == ',')
4241 * Global state is always initialized later in hugetlb_init.
4242 * But we need to allocate gigantic hstates here early to still
4243 * use the bootmem allocator.
4245 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4246 hugetlb_hstate_alloc_pages(parsed_hstate);
4253 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4254 hugepages_clear_pages_in_node();
4257 __setup("hugepages=", hugepages_setup);
4260 * hugepagesz command line processing
4261 * A specific huge page size can only be specified once with hugepagesz.
4262 * hugepagesz is followed by hugepages on the command line. The global
4263 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4264 * hugepagesz argument was valid.
4266 static int __init hugepagesz_setup(char *s)
4271 parsed_valid_hugepagesz = false;
4272 size = (unsigned long)memparse(s, NULL);
4274 if (!arch_hugetlb_valid_size(size)) {
4275 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4279 h = size_to_hstate(size);
4282 * hstate for this size already exists. This is normally
4283 * an error, but is allowed if the existing hstate is the
4284 * default hstate. More specifically, it is only allowed if
4285 * the number of huge pages for the default hstate was not
4286 * previously specified.
4288 if (!parsed_default_hugepagesz || h != &default_hstate ||
4289 default_hstate.max_huge_pages) {
4290 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4295 * No need to call hugetlb_add_hstate() as hstate already
4296 * exists. But, do set parsed_hstate so that a following
4297 * hugepages= parameter will be applied to this hstate.
4300 parsed_valid_hugepagesz = true;
4304 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4305 parsed_valid_hugepagesz = true;
4308 __setup("hugepagesz=", hugepagesz_setup);
4311 * default_hugepagesz command line input
4312 * Only one instance of default_hugepagesz allowed on command line.
4314 static int __init default_hugepagesz_setup(char *s)
4319 parsed_valid_hugepagesz = false;
4320 if (parsed_default_hugepagesz) {
4321 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4325 size = (unsigned long)memparse(s, NULL);
4327 if (!arch_hugetlb_valid_size(size)) {
4328 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4332 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4333 parsed_valid_hugepagesz = true;
4334 parsed_default_hugepagesz = true;
4335 default_hstate_idx = hstate_index(size_to_hstate(size));
4338 * The number of default huge pages (for this size) could have been
4339 * specified as the first hugetlb parameter: hugepages=X. If so,
4340 * then default_hstate_max_huge_pages is set. If the default huge
4341 * page size is gigantic (>= MAX_ORDER), then the pages must be
4342 * allocated here from bootmem allocator.
4344 if (default_hstate_max_huge_pages) {
4345 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4346 for_each_online_node(i)
4347 default_hstate.max_huge_pages_node[i] =
4348 default_hugepages_in_node[i];
4349 if (hstate_is_gigantic(&default_hstate))
4350 hugetlb_hstate_alloc_pages(&default_hstate);
4351 default_hstate_max_huge_pages = 0;
4356 __setup("default_hugepagesz=", default_hugepagesz_setup);
4358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4361 struct mempolicy *mpol = get_task_policy(current);
4364 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4365 * (from policy_nodemask) specifically for hugetlb case
4367 if (mpol->mode == MPOL_BIND &&
4368 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4369 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4370 return &mpol->nodes;
4375 static unsigned int allowed_mems_nr(struct hstate *h)
4378 unsigned int nr = 0;
4379 nodemask_t *mbind_nodemask;
4380 unsigned int *array = h->free_huge_pages_node;
4381 gfp_t gfp_mask = htlb_alloc_mask(h);
4383 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4384 for_each_node_mask(node, cpuset_current_mems_allowed) {
4385 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4392 #ifdef CONFIG_SYSCTL
4393 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4394 void *buffer, size_t *length,
4395 loff_t *ppos, unsigned long *out)
4397 struct ctl_table dup_table;
4400 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4401 * can duplicate the @table and alter the duplicate of it.
4404 dup_table.data = out;
4406 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4409 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4410 struct ctl_table *table, int write,
4411 void *buffer, size_t *length, loff_t *ppos)
4413 struct hstate *h = &default_hstate;
4414 unsigned long tmp = h->max_huge_pages;
4417 if (!hugepages_supported())
4420 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4426 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4427 NUMA_NO_NODE, tmp, *length);
4432 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4433 void *buffer, size_t *length, loff_t *ppos)
4436 return hugetlb_sysctl_handler_common(false, table, write,
4437 buffer, length, ppos);
4441 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4442 void *buffer, size_t *length, loff_t *ppos)
4444 return hugetlb_sysctl_handler_common(true, table, write,
4445 buffer, length, ppos);
4447 #endif /* CONFIG_NUMA */
4449 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4450 void *buffer, size_t *length, loff_t *ppos)
4452 struct hstate *h = &default_hstate;
4456 if (!hugepages_supported())
4459 tmp = h->nr_overcommit_huge_pages;
4461 if (write && hstate_is_gigantic(h))
4464 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4470 spin_lock_irq(&hugetlb_lock);
4471 h->nr_overcommit_huge_pages = tmp;
4472 spin_unlock_irq(&hugetlb_lock);
4478 #endif /* CONFIG_SYSCTL */
4480 void hugetlb_report_meminfo(struct seq_file *m)
4483 unsigned long total = 0;
4485 if (!hugepages_supported())
4488 for_each_hstate(h) {
4489 unsigned long count = h->nr_huge_pages;
4491 total += huge_page_size(h) * count;
4493 if (h == &default_hstate)
4495 "HugePages_Total: %5lu\n"
4496 "HugePages_Free: %5lu\n"
4497 "HugePages_Rsvd: %5lu\n"
4498 "HugePages_Surp: %5lu\n"
4499 "Hugepagesize: %8lu kB\n",
4503 h->surplus_huge_pages,
4504 huge_page_size(h) / SZ_1K);
4507 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4510 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4512 struct hstate *h = &default_hstate;
4514 if (!hugepages_supported())
4517 return sysfs_emit_at(buf, len,
4518 "Node %d HugePages_Total: %5u\n"
4519 "Node %d HugePages_Free: %5u\n"
4520 "Node %d HugePages_Surp: %5u\n",
4521 nid, h->nr_huge_pages_node[nid],
4522 nid, h->free_huge_pages_node[nid],
4523 nid, h->surplus_huge_pages_node[nid]);
4526 void hugetlb_show_meminfo_node(int nid)
4530 if (!hugepages_supported())
4534 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4536 h->nr_huge_pages_node[nid],
4537 h->free_huge_pages_node[nid],
4538 h->surplus_huge_pages_node[nid],
4539 huge_page_size(h) / SZ_1K);
4542 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4544 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4545 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4548 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4549 unsigned long hugetlb_total_pages(void)
4552 unsigned long nr_total_pages = 0;
4555 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4556 return nr_total_pages;
4559 static int hugetlb_acct_memory(struct hstate *h, long delta)
4566 spin_lock_irq(&hugetlb_lock);
4568 * When cpuset is configured, it breaks the strict hugetlb page
4569 * reservation as the accounting is done on a global variable. Such
4570 * reservation is completely rubbish in the presence of cpuset because
4571 * the reservation is not checked against page availability for the
4572 * current cpuset. Application can still potentially OOM'ed by kernel
4573 * with lack of free htlb page in cpuset that the task is in.
4574 * Attempt to enforce strict accounting with cpuset is almost
4575 * impossible (or too ugly) because cpuset is too fluid that
4576 * task or memory node can be dynamically moved between cpusets.
4578 * The change of semantics for shared hugetlb mapping with cpuset is
4579 * undesirable. However, in order to preserve some of the semantics,
4580 * we fall back to check against current free page availability as
4581 * a best attempt and hopefully to minimize the impact of changing
4582 * semantics that cpuset has.
4584 * Apart from cpuset, we also have memory policy mechanism that
4585 * also determines from which node the kernel will allocate memory
4586 * in a NUMA system. So similar to cpuset, we also should consider
4587 * the memory policy of the current task. Similar to the description
4591 if (gather_surplus_pages(h, delta) < 0)
4594 if (delta > allowed_mems_nr(h)) {
4595 return_unused_surplus_pages(h, delta);
4602 return_unused_surplus_pages(h, (unsigned long) -delta);
4605 spin_unlock_irq(&hugetlb_lock);
4609 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4611 struct resv_map *resv = vma_resv_map(vma);
4614 * HPAGE_RESV_OWNER indicates a private mapping.
4615 * This new VMA should share its siblings reservation map if present.
4616 * The VMA will only ever have a valid reservation map pointer where
4617 * it is being copied for another still existing VMA. As that VMA
4618 * has a reference to the reservation map it cannot disappear until
4619 * after this open call completes. It is therefore safe to take a
4620 * new reference here without additional locking.
4622 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4623 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4624 kref_get(&resv->refs);
4628 * vma_lock structure for sharable mappings is vma specific.
4629 * Clear old pointer (if copied via vm_area_dup) and allocate
4630 * new structure. Before clearing, make sure vma_lock is not
4633 if (vma->vm_flags & VM_MAYSHARE) {
4634 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4637 if (vma_lock->vma != vma) {
4638 vma->vm_private_data = NULL;
4639 hugetlb_vma_lock_alloc(vma);
4641 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4643 hugetlb_vma_lock_alloc(vma);
4647 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4649 struct hstate *h = hstate_vma(vma);
4650 struct resv_map *resv;
4651 struct hugepage_subpool *spool = subpool_vma(vma);
4652 unsigned long reserve, start, end;
4655 hugetlb_vma_lock_free(vma);
4657 resv = vma_resv_map(vma);
4658 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4661 start = vma_hugecache_offset(h, vma, vma->vm_start);
4662 end = vma_hugecache_offset(h, vma, vma->vm_end);
4664 reserve = (end - start) - region_count(resv, start, end);
4665 hugetlb_cgroup_uncharge_counter(resv, start, end);
4668 * Decrement reserve counts. The global reserve count may be
4669 * adjusted if the subpool has a minimum size.
4671 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4672 hugetlb_acct_memory(h, -gbl_reserve);
4675 kref_put(&resv->refs, resv_map_release);
4678 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4680 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4685 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4687 return huge_page_size(hstate_vma(vma));
4691 * We cannot handle pagefaults against hugetlb pages at all. They cause
4692 * handle_mm_fault() to try to instantiate regular-sized pages in the
4693 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4696 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4703 * When a new function is introduced to vm_operations_struct and added
4704 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4705 * This is because under System V memory model, mappings created via
4706 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4707 * their original vm_ops are overwritten with shm_vm_ops.
4709 const struct vm_operations_struct hugetlb_vm_ops = {
4710 .fault = hugetlb_vm_op_fault,
4711 .open = hugetlb_vm_op_open,
4712 .close = hugetlb_vm_op_close,
4713 .may_split = hugetlb_vm_op_split,
4714 .pagesize = hugetlb_vm_op_pagesize,
4717 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4721 unsigned int shift = huge_page_shift(hstate_vma(vma));
4724 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4725 vma->vm_page_prot)));
4727 entry = huge_pte_wrprotect(mk_huge_pte(page,
4728 vma->vm_page_prot));
4730 entry = pte_mkyoung(entry);
4731 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4736 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4737 unsigned long address, pte_t *ptep)
4741 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4742 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4743 update_mmu_cache(vma, address, ptep);
4746 bool is_hugetlb_entry_migration(pte_t pte)
4750 if (huge_pte_none(pte) || pte_present(pte))
4752 swp = pte_to_swp_entry(pte);
4753 if (is_migration_entry(swp))
4759 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4763 if (huge_pte_none(pte) || pte_present(pte))
4765 swp = pte_to_swp_entry(pte);
4766 if (is_hwpoison_entry(swp))
4773 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4774 struct page *new_page)
4776 __SetPageUptodate(new_page);
4777 hugepage_add_new_anon_rmap(new_page, vma, addr);
4778 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4779 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4780 ClearHPageRestoreReserve(new_page);
4781 SetHPageMigratable(new_page);
4784 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4785 struct vm_area_struct *dst_vma,
4786 struct vm_area_struct *src_vma)
4788 pte_t *src_pte, *dst_pte, entry;
4789 struct page *ptepage;
4791 bool cow = is_cow_mapping(src_vma->vm_flags);
4792 struct hstate *h = hstate_vma(src_vma);
4793 unsigned long sz = huge_page_size(h);
4794 unsigned long npages = pages_per_huge_page(h);
4795 struct mmu_notifier_range range;
4796 unsigned long last_addr_mask;
4800 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4803 mmu_notifier_invalidate_range_start(&range);
4804 mmap_assert_write_locked(src);
4805 raw_write_seqcount_begin(&src->write_protect_seq);
4808 * For shared mappings the vma lock must be held before
4809 * calling huge_pte_offset in the src vma. Otherwise, the
4810 * returned ptep could go away if part of a shared pmd and
4811 * another thread calls huge_pmd_unshare.
4813 hugetlb_vma_lock_read(src_vma);
4816 last_addr_mask = hugetlb_mask_last_page(h);
4817 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4818 spinlock_t *src_ptl, *dst_ptl;
4819 src_pte = huge_pte_offset(src, addr, sz);
4821 addr |= last_addr_mask;
4824 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4831 * If the pagetables are shared don't copy or take references.
4833 * dst_pte == src_pte is the common case of src/dest sharing.
4834 * However, src could have 'unshared' and dst shares with
4835 * another vma. So page_count of ptep page is checked instead
4836 * to reliably determine whether pte is shared.
4838 if (page_count(virt_to_page(dst_pte)) > 1) {
4839 addr |= last_addr_mask;
4843 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4844 src_ptl = huge_pte_lockptr(h, src, src_pte);
4845 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4846 entry = huge_ptep_get(src_pte);
4848 if (huge_pte_none(entry)) {
4850 * Skip if src entry none.
4853 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4854 bool uffd_wp = huge_pte_uffd_wp(entry);
4856 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4857 entry = huge_pte_clear_uffd_wp(entry);
4858 set_huge_pte_at(dst, addr, dst_pte, entry);
4859 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4860 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4861 bool uffd_wp = huge_pte_uffd_wp(entry);
4863 if (!is_readable_migration_entry(swp_entry) && cow) {
4865 * COW mappings require pages in both
4866 * parent and child to be set to read.
4868 swp_entry = make_readable_migration_entry(
4869 swp_offset(swp_entry));
4870 entry = swp_entry_to_pte(swp_entry);
4871 if (userfaultfd_wp(src_vma) && uffd_wp)
4872 entry = huge_pte_mkuffd_wp(entry);
4873 set_huge_pte_at(src, addr, src_pte, entry);
4875 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4876 entry = huge_pte_clear_uffd_wp(entry);
4877 set_huge_pte_at(dst, addr, dst_pte, entry);
4878 } else if (unlikely(is_pte_marker(entry))) {
4880 * We copy the pte marker only if the dst vma has
4883 if (userfaultfd_wp(dst_vma))
4884 set_huge_pte_at(dst, addr, dst_pte, entry);
4886 entry = huge_ptep_get(src_pte);
4887 ptepage = pte_page(entry);
4891 * Failing to duplicate the anon rmap is a rare case
4892 * where we see pinned hugetlb pages while they're
4893 * prone to COW. We need to do the COW earlier during
4896 * When pre-allocating the page or copying data, we
4897 * need to be without the pgtable locks since we could
4898 * sleep during the process.
4900 if (!PageAnon(ptepage)) {
4901 page_dup_file_rmap(ptepage, true);
4902 } else if (page_try_dup_anon_rmap(ptepage, true,
4904 pte_t src_pte_old = entry;
4907 spin_unlock(src_ptl);
4908 spin_unlock(dst_ptl);
4909 /* Do not use reserve as it's private owned */
4910 new = alloc_huge_page(dst_vma, addr, 1);
4916 copy_user_huge_page(new, ptepage, addr, dst_vma,
4920 /* Install the new huge page if src pte stable */
4921 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4922 src_ptl = huge_pte_lockptr(h, src, src_pte);
4923 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4924 entry = huge_ptep_get(src_pte);
4925 if (!pte_same(src_pte_old, entry)) {
4926 restore_reserve_on_error(h, dst_vma, addr,
4929 /* huge_ptep of dst_pte won't change as in child */
4932 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4933 spin_unlock(src_ptl);
4934 spin_unlock(dst_ptl);
4940 * No need to notify as we are downgrading page
4941 * table protection not changing it to point
4944 * See Documentation/mm/mmu_notifier.rst
4946 huge_ptep_set_wrprotect(src, addr, src_pte);
4947 entry = huge_pte_wrprotect(entry);
4950 set_huge_pte_at(dst, addr, dst_pte, entry);
4951 hugetlb_count_add(npages, dst);
4953 spin_unlock(src_ptl);
4954 spin_unlock(dst_ptl);
4958 raw_write_seqcount_end(&src->write_protect_seq);
4959 mmu_notifier_invalidate_range_end(&range);
4961 hugetlb_vma_unlock_read(src_vma);
4967 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4968 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4970 struct hstate *h = hstate_vma(vma);
4971 struct mm_struct *mm = vma->vm_mm;
4972 spinlock_t *src_ptl, *dst_ptl;
4975 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4976 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4979 * We don't have to worry about the ordering of src and dst ptlocks
4980 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4982 if (src_ptl != dst_ptl)
4983 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4985 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4986 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4988 if (src_ptl != dst_ptl)
4989 spin_unlock(src_ptl);
4990 spin_unlock(dst_ptl);
4993 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4994 struct vm_area_struct *new_vma,
4995 unsigned long old_addr, unsigned long new_addr,
4998 struct hstate *h = hstate_vma(vma);
4999 struct address_space *mapping = vma->vm_file->f_mapping;
5000 unsigned long sz = huge_page_size(h);
5001 struct mm_struct *mm = vma->vm_mm;
5002 unsigned long old_end = old_addr + len;
5003 unsigned long last_addr_mask;
5004 pte_t *src_pte, *dst_pte;
5005 struct mmu_notifier_range range;
5006 bool shared_pmd = false;
5008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5010 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5012 * In case of shared PMDs, we should cover the maximum possible
5015 flush_cache_range(vma, range.start, range.end);
5017 mmu_notifier_invalidate_range_start(&range);
5018 last_addr_mask = hugetlb_mask_last_page(h);
5019 /* Prevent race with file truncation */
5020 hugetlb_vma_lock_write(vma);
5021 i_mmap_lock_write(mapping);
5022 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5023 src_pte = huge_pte_offset(mm, old_addr, sz);
5025 old_addr |= last_addr_mask;
5026 new_addr |= last_addr_mask;
5029 if (huge_pte_none(huge_ptep_get(src_pte)))
5032 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5034 old_addr |= last_addr_mask;
5035 new_addr |= last_addr_mask;
5039 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5043 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5047 flush_tlb_range(vma, range.start, range.end);
5049 flush_tlb_range(vma, old_end - len, old_end);
5050 mmu_notifier_invalidate_range_end(&range);
5051 i_mmap_unlock_write(mapping);
5052 hugetlb_vma_unlock_write(vma);
5054 return len + old_addr - old_end;
5057 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5058 unsigned long start, unsigned long end,
5059 struct page *ref_page, zap_flags_t zap_flags)
5061 struct mm_struct *mm = vma->vm_mm;
5062 unsigned long address;
5067 struct hstate *h = hstate_vma(vma);
5068 unsigned long sz = huge_page_size(h);
5069 struct mmu_notifier_range range;
5070 unsigned long last_addr_mask;
5071 bool force_flush = false;
5073 WARN_ON(!is_vm_hugetlb_page(vma));
5074 BUG_ON(start & ~huge_page_mask(h));
5075 BUG_ON(end & ~huge_page_mask(h));
5078 * This is a hugetlb vma, all the pte entries should point
5081 tlb_change_page_size(tlb, sz);
5082 tlb_start_vma(tlb, vma);
5085 * If sharing possible, alert mmu notifiers of worst case.
5087 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5089 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5090 mmu_notifier_invalidate_range_start(&range);
5091 last_addr_mask = hugetlb_mask_last_page(h);
5093 for (; address < end; address += sz) {
5094 ptep = huge_pte_offset(mm, address, sz);
5096 address |= last_addr_mask;
5100 ptl = huge_pte_lock(h, mm, ptep);
5101 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5103 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5105 address |= last_addr_mask;
5109 pte = huge_ptep_get(ptep);
5110 if (huge_pte_none(pte)) {
5116 * Migrating hugepage or HWPoisoned hugepage is already
5117 * unmapped and its refcount is dropped, so just clear pte here.
5119 if (unlikely(!pte_present(pte))) {
5120 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5122 * If the pte was wr-protected by uffd-wp in any of the
5123 * swap forms, meanwhile the caller does not want to
5124 * drop the uffd-wp bit in this zap, then replace the
5125 * pte with a marker.
5127 if (pte_swp_uffd_wp_any(pte) &&
5128 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5129 set_huge_pte_at(mm, address, ptep,
5130 make_pte_marker(PTE_MARKER_UFFD_WP));
5133 huge_pte_clear(mm, address, ptep, sz);
5138 page = pte_page(pte);
5140 * If a reference page is supplied, it is because a specific
5141 * page is being unmapped, not a range. Ensure the page we
5142 * are about to unmap is the actual page of interest.
5145 if (page != ref_page) {
5150 * Mark the VMA as having unmapped its page so that
5151 * future faults in this VMA will fail rather than
5152 * looking like data was lost
5154 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5157 pte = huge_ptep_get_and_clear(mm, address, ptep);
5158 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5159 if (huge_pte_dirty(pte))
5160 set_page_dirty(page);
5161 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5162 /* Leave a uffd-wp pte marker if needed */
5163 if (huge_pte_uffd_wp(pte) &&
5164 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5165 set_huge_pte_at(mm, address, ptep,
5166 make_pte_marker(PTE_MARKER_UFFD_WP));
5168 hugetlb_count_sub(pages_per_huge_page(h), mm);
5169 page_remove_rmap(page, vma, true);
5172 tlb_remove_page_size(tlb, page, huge_page_size(h));
5174 * Bail out after unmapping reference page if supplied
5179 mmu_notifier_invalidate_range_end(&range);
5180 tlb_end_vma(tlb, vma);
5183 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5184 * could defer the flush until now, since by holding i_mmap_rwsem we
5185 * guaranteed that the last refernece would not be dropped. But we must
5186 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5187 * dropped and the last reference to the shared PMDs page might be
5190 * In theory we could defer the freeing of the PMD pages as well, but
5191 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5192 * detect sharing, so we cannot defer the release of the page either.
5193 * Instead, do flush now.
5196 tlb_flush_mmu_tlbonly(tlb);
5199 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5200 struct vm_area_struct *vma, unsigned long start,
5201 unsigned long end, struct page *ref_page,
5202 zap_flags_t zap_flags)
5204 hugetlb_vma_lock_write(vma);
5205 i_mmap_lock_write(vma->vm_file->f_mapping);
5207 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5209 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5211 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5212 * When the vma_lock is freed, this makes the vma ineligible
5213 * for pmd sharing. And, i_mmap_rwsem is required to set up
5214 * pmd sharing. This is important as page tables for this
5215 * unmapped range will be asynchrously deleted. If the page
5216 * tables are shared, there will be issues when accessed by
5219 __hugetlb_vma_unlock_write_free(vma);
5220 i_mmap_unlock_write(vma->vm_file->f_mapping);
5222 i_mmap_unlock_write(vma->vm_file->f_mapping);
5223 hugetlb_vma_unlock_write(vma);
5227 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5228 unsigned long end, struct page *ref_page,
5229 zap_flags_t zap_flags)
5231 struct mmu_gather tlb;
5233 tlb_gather_mmu(&tlb, vma->vm_mm);
5234 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5235 tlb_finish_mmu(&tlb);
5239 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5240 * mapping it owns the reserve page for. The intention is to unmap the page
5241 * from other VMAs and let the children be SIGKILLed if they are faulting the
5244 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5245 struct page *page, unsigned long address)
5247 struct hstate *h = hstate_vma(vma);
5248 struct vm_area_struct *iter_vma;
5249 struct address_space *mapping;
5253 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5254 * from page cache lookup which is in HPAGE_SIZE units.
5256 address = address & huge_page_mask(h);
5257 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5259 mapping = vma->vm_file->f_mapping;
5262 * Take the mapping lock for the duration of the table walk. As
5263 * this mapping should be shared between all the VMAs,
5264 * __unmap_hugepage_range() is called as the lock is already held
5266 i_mmap_lock_write(mapping);
5267 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5268 /* Do not unmap the current VMA */
5269 if (iter_vma == vma)
5273 * Shared VMAs have their own reserves and do not affect
5274 * MAP_PRIVATE accounting but it is possible that a shared
5275 * VMA is using the same page so check and skip such VMAs.
5277 if (iter_vma->vm_flags & VM_MAYSHARE)
5281 * Unmap the page from other VMAs without their own reserves.
5282 * They get marked to be SIGKILLed if they fault in these
5283 * areas. This is because a future no-page fault on this VMA
5284 * could insert a zeroed page instead of the data existing
5285 * from the time of fork. This would look like data corruption
5287 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5288 unmap_hugepage_range(iter_vma, address,
5289 address + huge_page_size(h), page, 0);
5291 i_mmap_unlock_write(mapping);
5295 * hugetlb_wp() should be called with page lock of the original hugepage held.
5296 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5297 * cannot race with other handlers or page migration.
5298 * Keep the pte_same checks anyway to make transition from the mutex easier.
5300 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5301 unsigned long address, pte_t *ptep, unsigned int flags,
5302 struct page *pagecache_page, spinlock_t *ptl)
5304 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5306 struct hstate *h = hstate_vma(vma);
5307 struct page *old_page, *new_page;
5308 int outside_reserve = 0;
5310 unsigned long haddr = address & huge_page_mask(h);
5311 struct mmu_notifier_range range;
5313 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5314 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5317 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5318 * PTE mapped R/O such as maybe_mkwrite() would do.
5320 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5321 return VM_FAULT_SIGSEGV;
5323 /* Let's take out MAP_SHARED mappings first. */
5324 if (vma->vm_flags & VM_MAYSHARE) {
5325 if (unlikely(unshare))
5327 set_huge_ptep_writable(vma, haddr, ptep);
5331 pte = huge_ptep_get(ptep);
5332 old_page = pte_page(pte);
5334 delayacct_wpcopy_start();
5338 * If no-one else is actually using this page, we're the exclusive
5339 * owner and can reuse this page.
5341 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5342 if (!PageAnonExclusive(old_page))
5343 page_move_anon_rmap(old_page, vma);
5344 if (likely(!unshare))
5345 set_huge_ptep_writable(vma, haddr, ptep);
5347 delayacct_wpcopy_end();
5350 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5354 * If the process that created a MAP_PRIVATE mapping is about to
5355 * perform a COW due to a shared page count, attempt to satisfy
5356 * the allocation without using the existing reserves. The pagecache
5357 * page is used to determine if the reserve at this address was
5358 * consumed or not. If reserves were used, a partial faulted mapping
5359 * at the time of fork() could consume its reserves on COW instead
5360 * of the full address range.
5362 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5363 old_page != pagecache_page)
5364 outside_reserve = 1;
5369 * Drop page table lock as buddy allocator may be called. It will
5370 * be acquired again before returning to the caller, as expected.
5373 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5375 if (IS_ERR(new_page)) {
5377 * If a process owning a MAP_PRIVATE mapping fails to COW,
5378 * it is due to references held by a child and an insufficient
5379 * huge page pool. To guarantee the original mappers
5380 * reliability, unmap the page from child processes. The child
5381 * may get SIGKILLed if it later faults.
5383 if (outside_reserve) {
5384 struct address_space *mapping = vma->vm_file->f_mapping;
5390 * Drop hugetlb_fault_mutex and vma_lock before
5391 * unmapping. unmapping needs to hold vma_lock
5392 * in write mode. Dropping vma_lock in read mode
5393 * here is OK as COW mappings do not interact with
5396 * Reacquire both after unmap operation.
5398 idx = vma_hugecache_offset(h, vma, haddr);
5399 hash = hugetlb_fault_mutex_hash(mapping, idx);
5400 hugetlb_vma_unlock_read(vma);
5401 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5403 unmap_ref_private(mm, vma, old_page, haddr);
5405 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5406 hugetlb_vma_lock_read(vma);
5408 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5410 pte_same(huge_ptep_get(ptep), pte)))
5411 goto retry_avoidcopy;
5413 * race occurs while re-acquiring page table
5414 * lock, and our job is done.
5416 delayacct_wpcopy_end();
5420 ret = vmf_error(PTR_ERR(new_page));
5421 goto out_release_old;
5425 * When the original hugepage is shared one, it does not have
5426 * anon_vma prepared.
5428 if (unlikely(anon_vma_prepare(vma))) {
5430 goto out_release_all;
5433 copy_user_huge_page(new_page, old_page, address, vma,
5434 pages_per_huge_page(h));
5435 __SetPageUptodate(new_page);
5437 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5438 haddr + huge_page_size(h));
5439 mmu_notifier_invalidate_range_start(&range);
5442 * Retake the page table lock to check for racing updates
5443 * before the page tables are altered
5446 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5447 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5448 ClearHPageRestoreReserve(new_page);
5450 /* Break COW or unshare */
5451 huge_ptep_clear_flush(vma, haddr, ptep);
5452 mmu_notifier_invalidate_range(mm, range.start, range.end);
5453 page_remove_rmap(old_page, vma, true);
5454 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5455 set_huge_pte_at(mm, haddr, ptep,
5456 make_huge_pte(vma, new_page, !unshare));
5457 SetHPageMigratable(new_page);
5458 /* Make the old page be freed below */
5459 new_page = old_page;
5462 mmu_notifier_invalidate_range_end(&range);
5465 * No restore in case of successful pagetable update (Break COW or
5468 if (new_page != old_page)
5469 restore_reserve_on_error(h, vma, haddr, new_page);
5474 spin_lock(ptl); /* Caller expects lock to be held */
5476 delayacct_wpcopy_end();
5481 * Return whether there is a pagecache page to back given address within VMA.
5482 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5484 static bool hugetlbfs_pagecache_present(struct hstate *h,
5485 struct vm_area_struct *vma, unsigned long address)
5487 struct address_space *mapping;
5491 mapping = vma->vm_file->f_mapping;
5492 idx = vma_hugecache_offset(h, vma, address);
5494 page = find_get_page(mapping, idx);
5497 return page != NULL;
5500 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5503 struct folio *folio = page_folio(page);
5504 struct inode *inode = mapping->host;
5505 struct hstate *h = hstate_inode(inode);
5508 __folio_set_locked(folio);
5509 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5511 if (unlikely(err)) {
5512 __folio_clear_locked(folio);
5515 ClearHPageRestoreReserve(page);
5518 * mark folio dirty so that it will not be removed from cache/file
5519 * by non-hugetlbfs specific code paths.
5521 folio_mark_dirty(folio);
5523 spin_lock(&inode->i_lock);
5524 inode->i_blocks += blocks_per_huge_page(h);
5525 spin_unlock(&inode->i_lock);
5529 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5530 struct address_space *mapping,
5533 unsigned long haddr,
5535 unsigned long reason)
5538 struct vm_fault vmf = {
5541 .real_address = addr,
5545 * Hard to debug if it ends up being
5546 * used by a callee that assumes
5547 * something about the other
5548 * uninitialized fields... same as in
5554 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5555 * userfault. Also mmap_lock could be dropped due to handling
5556 * userfault, any vma operation should be careful from here.
5558 hugetlb_vma_unlock_read(vma);
5559 hash = hugetlb_fault_mutex_hash(mapping, idx);
5560 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5561 return handle_userfault(&vmf, reason);
5565 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5566 * false if pte changed or is changing.
5568 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5569 pte_t *ptep, pte_t old_pte)
5574 ptl = huge_pte_lock(h, mm, ptep);
5575 same = pte_same(huge_ptep_get(ptep), old_pte);
5581 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5582 struct vm_area_struct *vma,
5583 struct address_space *mapping, pgoff_t idx,
5584 unsigned long address, pte_t *ptep,
5585 pte_t old_pte, unsigned int flags)
5587 struct hstate *h = hstate_vma(vma);
5588 vm_fault_t ret = VM_FAULT_SIGBUS;
5594 unsigned long haddr = address & huge_page_mask(h);
5595 bool new_page, new_pagecache_page = false;
5596 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5599 * Currently, we are forced to kill the process in the event the
5600 * original mapper has unmapped pages from the child due to a failed
5601 * COW/unsharing. Warn that such a situation has occurred as it may not
5604 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5605 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5611 * Use page lock to guard against racing truncation
5612 * before we get page_table_lock.
5615 page = find_lock_page(mapping, idx);
5617 size = i_size_read(mapping->host) >> huge_page_shift(h);
5620 /* Check for page in userfault range */
5621 if (userfaultfd_missing(vma)) {
5623 * Since hugetlb_no_page() was examining pte
5624 * without pgtable lock, we need to re-test under
5625 * lock because the pte may not be stable and could
5626 * have changed from under us. Try to detect
5627 * either changed or during-changing ptes and retry
5628 * properly when needed.
5630 * Note that userfaultfd is actually fine with
5631 * false positives (e.g. caused by pte changed),
5632 * but not wrong logical events (e.g. caused by
5633 * reading a pte during changing). The latter can
5634 * confuse the userspace, so the strictness is very
5635 * much preferred. E.g., MISSING event should
5636 * never happen on the page after UFFDIO_COPY has
5637 * correctly installed the page and returned.
5639 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5644 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5649 page = alloc_huge_page(vma, haddr, 0);
5652 * Returning error will result in faulting task being
5653 * sent SIGBUS. The hugetlb fault mutex prevents two
5654 * tasks from racing to fault in the same page which
5655 * could result in false unable to allocate errors.
5656 * Page migration does not take the fault mutex, but
5657 * does a clear then write of pte's under page table
5658 * lock. Page fault code could race with migration,
5659 * notice the clear pte and try to allocate a page
5660 * here. Before returning error, get ptl and make
5661 * sure there really is no pte entry.
5663 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5664 ret = vmf_error(PTR_ERR(page));
5669 clear_huge_page(page, address, pages_per_huge_page(h));
5670 __SetPageUptodate(page);
5673 if (vma->vm_flags & VM_MAYSHARE) {
5674 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5677 * err can't be -EEXIST which implies someone
5678 * else consumed the reservation since hugetlb
5679 * fault mutex is held when add a hugetlb page
5680 * to the page cache. So it's safe to call
5681 * restore_reserve_on_error() here.
5683 restore_reserve_on_error(h, vma, haddr, page);
5687 new_pagecache_page = true;
5690 if (unlikely(anon_vma_prepare(vma))) {
5692 goto backout_unlocked;
5698 * If memory error occurs between mmap() and fault, some process
5699 * don't have hwpoisoned swap entry for errored virtual address.
5700 * So we need to block hugepage fault by PG_hwpoison bit check.
5702 if (unlikely(PageHWPoison(page))) {
5703 ret = VM_FAULT_HWPOISON_LARGE |
5704 VM_FAULT_SET_HINDEX(hstate_index(h));
5705 goto backout_unlocked;
5708 /* Check for page in userfault range. */
5709 if (userfaultfd_minor(vma)) {
5712 /* See comment in userfaultfd_missing() block above */
5713 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5717 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5724 * If we are going to COW a private mapping later, we examine the
5725 * pending reservations for this page now. This will ensure that
5726 * any allocations necessary to record that reservation occur outside
5729 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5730 if (vma_needs_reservation(h, vma, haddr) < 0) {
5732 goto backout_unlocked;
5734 /* Just decrements count, does not deallocate */
5735 vma_end_reservation(h, vma, haddr);
5738 ptl = huge_pte_lock(h, mm, ptep);
5740 /* If pte changed from under us, retry */
5741 if (!pte_same(huge_ptep_get(ptep), old_pte))
5745 ClearHPageRestoreReserve(page);
5746 hugepage_add_new_anon_rmap(page, vma, haddr);
5748 page_dup_file_rmap(page, true);
5749 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5750 && (vma->vm_flags & VM_SHARED)));
5752 * If this pte was previously wr-protected, keep it wr-protected even
5755 if (unlikely(pte_marker_uffd_wp(old_pte)))
5756 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5757 set_huge_pte_at(mm, haddr, ptep, new_pte);
5759 hugetlb_count_add(pages_per_huge_page(h), mm);
5760 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5761 /* Optimization, do the COW without a second fault */
5762 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5768 * Only set HPageMigratable in newly allocated pages. Existing pages
5769 * found in the pagecache may not have HPageMigratableset if they have
5770 * been isolated for migration.
5773 SetHPageMigratable(page);
5777 hugetlb_vma_unlock_read(vma);
5778 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5784 if (new_page && !new_pagecache_page)
5785 restore_reserve_on_error(h, vma, haddr, page);
5793 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5795 unsigned long key[2];
5798 key[0] = (unsigned long) mapping;
5801 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5803 return hash & (num_fault_mutexes - 1);
5807 * For uniprocessor systems we always use a single mutex, so just
5808 * return 0 and avoid the hashing overhead.
5810 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5816 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5817 unsigned long address, unsigned int flags)
5824 struct page *page = NULL;
5825 struct page *pagecache_page = NULL;
5826 struct hstate *h = hstate_vma(vma);
5827 struct address_space *mapping;
5828 int need_wait_lock = 0;
5829 unsigned long haddr = address & huge_page_mask(h);
5831 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5834 * Since we hold no locks, ptep could be stale. That is
5835 * OK as we are only making decisions based on content and
5836 * not actually modifying content here.
5838 entry = huge_ptep_get(ptep);
5839 if (unlikely(is_hugetlb_entry_migration(entry))) {
5840 migration_entry_wait_huge(vma, ptep);
5842 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5843 return VM_FAULT_HWPOISON_LARGE |
5844 VM_FAULT_SET_HINDEX(hstate_index(h));
5848 * Serialize hugepage allocation and instantiation, so that we don't
5849 * get spurious allocation failures if two CPUs race to instantiate
5850 * the same page in the page cache.
5852 mapping = vma->vm_file->f_mapping;
5853 idx = vma_hugecache_offset(h, vma, haddr);
5854 hash = hugetlb_fault_mutex_hash(mapping, idx);
5855 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5858 * Acquire vma lock before calling huge_pte_alloc and hold
5859 * until finished with ptep. This prevents huge_pmd_unshare from
5860 * being called elsewhere and making the ptep no longer valid.
5862 * ptep could have already be assigned via huge_pte_offset. That
5863 * is OK, as huge_pte_alloc will return the same value unless
5864 * something has changed.
5866 hugetlb_vma_lock_read(vma);
5867 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5869 hugetlb_vma_unlock_read(vma);
5870 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5871 return VM_FAULT_OOM;
5874 entry = huge_ptep_get(ptep);
5875 /* PTE markers should be handled the same way as none pte */
5876 if (huge_pte_none_mostly(entry))
5878 * hugetlb_no_page will drop vma lock and hugetlb fault
5879 * mutex internally, which make us return immediately.
5881 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5887 * entry could be a migration/hwpoison entry at this point, so this
5888 * check prevents the kernel from going below assuming that we have
5889 * an active hugepage in pagecache. This goto expects the 2nd page
5890 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5891 * properly handle it.
5893 if (!pte_present(entry))
5897 * If we are going to COW/unshare the mapping later, we examine the
5898 * pending reservations for this page now. This will ensure that any
5899 * allocations necessary to record that reservation occur outside the
5900 * spinlock. Also lookup the pagecache page now as it is used to
5901 * determine if a reservation has been consumed.
5903 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5904 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5905 if (vma_needs_reservation(h, vma, haddr) < 0) {
5909 /* Just decrements count, does not deallocate */
5910 vma_end_reservation(h, vma, haddr);
5912 pagecache_page = find_lock_page(mapping, idx);
5915 ptl = huge_pte_lock(h, mm, ptep);
5917 /* Check for a racing update before calling hugetlb_wp() */
5918 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5921 /* Handle userfault-wp first, before trying to lock more pages */
5922 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5923 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5924 struct vm_fault vmf = {
5927 .real_address = address,
5932 if (pagecache_page) {
5933 unlock_page(pagecache_page);
5934 put_page(pagecache_page);
5936 hugetlb_vma_unlock_read(vma);
5937 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5938 return handle_userfault(&vmf, VM_UFFD_WP);
5942 * hugetlb_wp() requires page locks of pte_page(entry) and
5943 * pagecache_page, so here we need take the former one
5944 * when page != pagecache_page or !pagecache_page.
5946 page = pte_page(entry);
5947 if (page != pagecache_page)
5948 if (!trylock_page(page)) {
5955 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5956 if (!huge_pte_write(entry)) {
5957 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5958 pagecache_page, ptl);
5960 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5961 entry = huge_pte_mkdirty(entry);
5964 entry = pte_mkyoung(entry);
5965 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5966 flags & FAULT_FLAG_WRITE))
5967 update_mmu_cache(vma, haddr, ptep);
5969 if (page != pagecache_page)
5975 if (pagecache_page) {
5976 unlock_page(pagecache_page);
5977 put_page(pagecache_page);
5980 hugetlb_vma_unlock_read(vma);
5981 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5983 * Generally it's safe to hold refcount during waiting page lock. But
5984 * here we just wait to defer the next page fault to avoid busy loop and
5985 * the page is not used after unlocked before returning from the current
5986 * page fault. So we are safe from accessing freed page, even if we wait
5987 * here without taking refcount.
5990 wait_on_page_locked(page);
5994 #ifdef CONFIG_USERFAULTFD
5996 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5997 * modifications for huge pages.
5999 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6001 struct vm_area_struct *dst_vma,
6002 unsigned long dst_addr,
6003 unsigned long src_addr,
6004 enum mcopy_atomic_mode mode,
6005 struct page **pagep,
6008 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6009 struct hstate *h = hstate_vma(dst_vma);
6010 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6011 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6013 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6019 bool page_in_pagecache = false;
6023 page = find_lock_page(mapping, idx);
6026 page_in_pagecache = true;
6027 } else if (!*pagep) {
6028 /* If a page already exists, then it's UFFDIO_COPY for
6029 * a non-missing case. Return -EEXIST.
6032 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6037 page = alloc_huge_page(dst_vma, dst_addr, 0);
6043 ret = copy_huge_page_from_user(page,
6044 (const void __user *) src_addr,
6045 pages_per_huge_page(h), false);
6047 /* fallback to copy_from_user outside mmap_lock */
6048 if (unlikely(ret)) {
6050 /* Free the allocated page which may have
6051 * consumed a reservation.
6053 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6056 /* Allocate a temporary page to hold the copied
6059 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6065 /* Set the outparam pagep and return to the caller to
6066 * copy the contents outside the lock. Don't free the
6073 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6080 page = alloc_huge_page(dst_vma, dst_addr, 0);
6087 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6088 pages_per_huge_page(h));
6094 * The memory barrier inside __SetPageUptodate makes sure that
6095 * preceding stores to the page contents become visible before
6096 * the set_pte_at() write.
6098 __SetPageUptodate(page);
6100 /* Add shared, newly allocated pages to the page cache. */
6101 if (vm_shared && !is_continue) {
6102 size = i_size_read(mapping->host) >> huge_page_shift(h);
6105 goto out_release_nounlock;
6108 * Serialization between remove_inode_hugepages() and
6109 * hugetlb_add_to_page_cache() below happens through the
6110 * hugetlb_fault_mutex_table that here must be hold by
6113 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6115 goto out_release_nounlock;
6116 page_in_pagecache = true;
6119 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6122 if (PageHWPoison(page))
6123 goto out_release_unlock;
6126 * We allow to overwrite a pte marker: consider when both MISSING|WP
6127 * registered, we firstly wr-protect a none pte which has no page cache
6128 * page backing it, then access the page.
6131 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6132 goto out_release_unlock;
6134 if (page_in_pagecache) {
6135 page_dup_file_rmap(page, true);
6137 ClearHPageRestoreReserve(page);
6138 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6142 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6143 * with wp flag set, don't set pte write bit.
6145 if (wp_copy || (is_continue && !vm_shared))
6148 writable = dst_vma->vm_flags & VM_WRITE;
6150 _dst_pte = make_huge_pte(dst_vma, page, writable);
6152 * Always mark UFFDIO_COPY page dirty; note that this may not be
6153 * extremely important for hugetlbfs for now since swapping is not
6154 * supported, but we should still be clear in that this page cannot be
6155 * thrown away at will, even if write bit not set.
6157 _dst_pte = huge_pte_mkdirty(_dst_pte);
6158 _dst_pte = pte_mkyoung(_dst_pte);
6161 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6163 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6165 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6167 /* No need to invalidate - it was non-present before */
6168 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6172 SetHPageMigratable(page);
6173 if (vm_shared || is_continue)
6180 if (vm_shared || is_continue)
6182 out_release_nounlock:
6183 if (!page_in_pagecache)
6184 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6188 #endif /* CONFIG_USERFAULTFD */
6190 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6191 int refs, struct page **pages,
6192 struct vm_area_struct **vmas)
6196 for (nr = 0; nr < refs; nr++) {
6198 pages[nr] = nth_page(page, nr);
6204 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6207 pte_t pteval = huge_ptep_get(pte);
6210 if (is_swap_pte(pteval))
6212 if (huge_pte_write(pteval))
6214 if (flags & FOLL_WRITE)
6216 if (gup_must_unshare(flags, pte_page(pteval))) {
6223 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6224 struct page **pages, struct vm_area_struct **vmas,
6225 unsigned long *position, unsigned long *nr_pages,
6226 long i, unsigned int flags, int *locked)
6228 unsigned long pfn_offset;
6229 unsigned long vaddr = *position;
6230 unsigned long remainder = *nr_pages;
6231 struct hstate *h = hstate_vma(vma);
6232 int err = -EFAULT, refs;
6234 while (vaddr < vma->vm_end && remainder) {
6236 spinlock_t *ptl = NULL;
6237 bool unshare = false;
6242 * If we have a pending SIGKILL, don't keep faulting pages and
6243 * potentially allocating memory.
6245 if (fatal_signal_pending(current)) {
6251 * Some archs (sparc64, sh*) have multiple pte_ts to
6252 * each hugepage. We have to make sure we get the
6253 * first, for the page indexing below to work.
6255 * Note that page table lock is not held when pte is null.
6257 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6260 ptl = huge_pte_lock(h, mm, pte);
6261 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6264 * When coredumping, it suits get_dump_page if we just return
6265 * an error where there's an empty slot with no huge pagecache
6266 * to back it. This way, we avoid allocating a hugepage, and
6267 * the sparse dumpfile avoids allocating disk blocks, but its
6268 * huge holes still show up with zeroes where they need to be.
6270 if (absent && (flags & FOLL_DUMP) &&
6271 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6279 * We need call hugetlb_fault for both hugepages under migration
6280 * (in which case hugetlb_fault waits for the migration,) and
6281 * hwpoisoned hugepages (in which case we need to prevent the
6282 * caller from accessing to them.) In order to do this, we use
6283 * here is_swap_pte instead of is_hugetlb_entry_migration and
6284 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6285 * both cases, and because we can't follow correct pages
6286 * directly from any kind of swap entries.
6289 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6291 unsigned int fault_flags = 0;
6295 if (flags & FOLL_WRITE)
6296 fault_flags |= FAULT_FLAG_WRITE;
6298 fault_flags |= FAULT_FLAG_UNSHARE;
6300 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6301 FAULT_FLAG_KILLABLE;
6302 if (flags & FOLL_NOWAIT)
6303 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6304 FAULT_FLAG_RETRY_NOWAIT;
6305 if (flags & FOLL_TRIED) {
6307 * Note: FAULT_FLAG_ALLOW_RETRY and
6308 * FAULT_FLAG_TRIED can co-exist
6310 fault_flags |= FAULT_FLAG_TRIED;
6312 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6313 if (ret & VM_FAULT_ERROR) {
6314 err = vm_fault_to_errno(ret, flags);
6318 if (ret & VM_FAULT_RETRY) {
6320 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6324 * VM_FAULT_RETRY must not return an
6325 * error, it will return zero
6328 * No need to update "position" as the
6329 * caller will not check it after
6330 * *nr_pages is set to 0.
6337 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6338 page = pte_page(huge_ptep_get(pte));
6340 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6341 !PageAnonExclusive(page), page);
6344 * If subpage information not requested, update counters
6345 * and skip the same_page loop below.
6347 if (!pages && !vmas && !pfn_offset &&
6348 (vaddr + huge_page_size(h) < vma->vm_end) &&
6349 (remainder >= pages_per_huge_page(h))) {
6350 vaddr += huge_page_size(h);
6351 remainder -= pages_per_huge_page(h);
6352 i += pages_per_huge_page(h);
6357 /* vaddr may not be aligned to PAGE_SIZE */
6358 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6359 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6362 record_subpages_vmas(nth_page(page, pfn_offset),
6364 likely(pages) ? pages + i : NULL,
6365 vmas ? vmas + i : NULL);
6369 * try_grab_folio() should always succeed here,
6370 * because: a) we hold the ptl lock, and b) we've just
6371 * checked that the huge page is present in the page
6372 * tables. If the huge page is present, then the tail
6373 * pages must also be present. The ptl prevents the
6374 * head page and tail pages from being rearranged in
6375 * any way. So this page must be available at this
6376 * point, unless the page refcount overflowed:
6378 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6387 vaddr += (refs << PAGE_SHIFT);
6393 *nr_pages = remainder;
6395 * setting position is actually required only if remainder is
6396 * not zero but it's faster not to add a "if (remainder)"
6404 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6405 unsigned long address, unsigned long end,
6406 pgprot_t newprot, unsigned long cp_flags)
6408 struct mm_struct *mm = vma->vm_mm;
6409 unsigned long start = address;
6412 struct hstate *h = hstate_vma(vma);
6413 unsigned long pages = 0, psize = huge_page_size(h);
6414 bool shared_pmd = false;
6415 struct mmu_notifier_range range;
6416 unsigned long last_addr_mask;
6417 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6418 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6421 * In the case of shared PMDs, the area to flush could be beyond
6422 * start/end. Set range.start/range.end to cover the maximum possible
6423 * range if PMD sharing is possible.
6425 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6426 0, vma, mm, start, end);
6427 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6429 BUG_ON(address >= end);
6430 flush_cache_range(vma, range.start, range.end);
6432 mmu_notifier_invalidate_range_start(&range);
6433 hugetlb_vma_lock_write(vma);
6434 i_mmap_lock_write(vma->vm_file->f_mapping);
6435 last_addr_mask = hugetlb_mask_last_page(h);
6436 for (; address < end; address += psize) {
6438 ptep = huge_pte_offset(mm, address, psize);
6440 address |= last_addr_mask;
6443 ptl = huge_pte_lock(h, mm, ptep);
6444 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6446 * When uffd-wp is enabled on the vma, unshare
6447 * shouldn't happen at all. Warn about it if it
6448 * happened due to some reason.
6450 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6454 address |= last_addr_mask;
6457 pte = huge_ptep_get(ptep);
6458 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6462 if (unlikely(is_hugetlb_entry_migration(pte))) {
6463 swp_entry_t entry = pte_to_swp_entry(pte);
6464 struct page *page = pfn_swap_entry_to_page(entry);
6466 if (!is_readable_migration_entry(entry)) {
6470 entry = make_readable_exclusive_migration_entry(
6473 entry = make_readable_migration_entry(
6475 newpte = swp_entry_to_pte(entry);
6477 newpte = pte_swp_mkuffd_wp(newpte);
6478 else if (uffd_wp_resolve)
6479 newpte = pte_swp_clear_uffd_wp(newpte);
6480 set_huge_pte_at(mm, address, ptep, newpte);
6486 if (unlikely(pte_marker_uffd_wp(pte))) {
6488 * This is changing a non-present pte into a none pte,
6489 * no need for huge_ptep_modify_prot_start/commit().
6491 if (uffd_wp_resolve)
6492 huge_pte_clear(mm, address, ptep, psize);
6494 if (!huge_pte_none(pte)) {
6496 unsigned int shift = huge_page_shift(hstate_vma(vma));
6498 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6499 pte = huge_pte_modify(old_pte, newprot);
6500 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6502 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6503 else if (uffd_wp_resolve)
6504 pte = huge_pte_clear_uffd_wp(pte);
6505 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6509 if (unlikely(uffd_wp))
6510 /* Safe to modify directly (none->non-present). */
6511 set_huge_pte_at(mm, address, ptep,
6512 make_pte_marker(PTE_MARKER_UFFD_WP));
6517 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6518 * may have cleared our pud entry and done put_page on the page table:
6519 * once we release i_mmap_rwsem, another task can do the final put_page
6520 * and that page table be reused and filled with junk. If we actually
6521 * did unshare a page of pmds, flush the range corresponding to the pud.
6524 flush_hugetlb_tlb_range(vma, range.start, range.end);
6526 flush_hugetlb_tlb_range(vma, start, end);
6528 * No need to call mmu_notifier_invalidate_range() we are downgrading
6529 * page table protection not changing it to point to a new page.
6531 * See Documentation/mm/mmu_notifier.rst
6533 i_mmap_unlock_write(vma->vm_file->f_mapping);
6534 hugetlb_vma_unlock_write(vma);
6535 mmu_notifier_invalidate_range_end(&range);
6537 return pages << h->order;
6540 /* Return true if reservation was successful, false otherwise. */
6541 bool hugetlb_reserve_pages(struct inode *inode,
6543 struct vm_area_struct *vma,
6544 vm_flags_t vm_flags)
6547 struct hstate *h = hstate_inode(inode);
6548 struct hugepage_subpool *spool = subpool_inode(inode);
6549 struct resv_map *resv_map;
6550 struct hugetlb_cgroup *h_cg = NULL;
6551 long gbl_reserve, regions_needed = 0;
6553 /* This should never happen */
6555 VM_WARN(1, "%s called with a negative range\n", __func__);
6560 * vma specific semaphore used for pmd sharing synchronization
6562 hugetlb_vma_lock_alloc(vma);
6565 * Only apply hugepage reservation if asked. At fault time, an
6566 * attempt will be made for VM_NORESERVE to allocate a page
6567 * without using reserves
6569 if (vm_flags & VM_NORESERVE)
6573 * Shared mappings base their reservation on the number of pages that
6574 * are already allocated on behalf of the file. Private mappings need
6575 * to reserve the full area even if read-only as mprotect() may be
6576 * called to make the mapping read-write. Assume !vma is a shm mapping
6578 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6580 * resv_map can not be NULL as hugetlb_reserve_pages is only
6581 * called for inodes for which resv_maps were created (see
6582 * hugetlbfs_get_inode).
6584 resv_map = inode_resv_map(inode);
6586 chg = region_chg(resv_map, from, to, ®ions_needed);
6588 /* Private mapping. */
6589 resv_map = resv_map_alloc();
6595 set_vma_resv_map(vma, resv_map);
6596 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6602 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6603 chg * pages_per_huge_page(h), &h_cg) < 0)
6606 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6607 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6610 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6614 * There must be enough pages in the subpool for the mapping. If
6615 * the subpool has a minimum size, there may be some global
6616 * reservations already in place (gbl_reserve).
6618 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6619 if (gbl_reserve < 0)
6620 goto out_uncharge_cgroup;
6623 * Check enough hugepages are available for the reservation.
6624 * Hand the pages back to the subpool if there are not
6626 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6630 * Account for the reservations made. Shared mappings record regions
6631 * that have reservations as they are shared by multiple VMAs.
6632 * When the last VMA disappears, the region map says how much
6633 * the reservation was and the page cache tells how much of
6634 * the reservation was consumed. Private mappings are per-VMA and
6635 * only the consumed reservations are tracked. When the VMA
6636 * disappears, the original reservation is the VMA size and the
6637 * consumed reservations are stored in the map. Hence, nothing
6638 * else has to be done for private mappings here
6640 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6641 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6643 if (unlikely(add < 0)) {
6644 hugetlb_acct_memory(h, -gbl_reserve);
6646 } else if (unlikely(chg > add)) {
6648 * pages in this range were added to the reserve
6649 * map between region_chg and region_add. This
6650 * indicates a race with alloc_huge_page. Adjust
6651 * the subpool and reserve counts modified above
6652 * based on the difference.
6657 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6658 * reference to h_cg->css. See comment below for detail.
6660 hugetlb_cgroup_uncharge_cgroup_rsvd(
6662 (chg - add) * pages_per_huge_page(h), h_cg);
6664 rsv_adjust = hugepage_subpool_put_pages(spool,
6666 hugetlb_acct_memory(h, -rsv_adjust);
6669 * The file_regions will hold their own reference to
6670 * h_cg->css. So we should release the reference held
6671 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6674 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6680 /* put back original number of pages, chg */
6681 (void)hugepage_subpool_put_pages(spool, chg);
6682 out_uncharge_cgroup:
6683 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6684 chg * pages_per_huge_page(h), h_cg);
6686 hugetlb_vma_lock_free(vma);
6687 if (!vma || vma->vm_flags & VM_MAYSHARE)
6688 /* Only call region_abort if the region_chg succeeded but the
6689 * region_add failed or didn't run.
6691 if (chg >= 0 && add < 0)
6692 region_abort(resv_map, from, to, regions_needed);
6693 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6694 kref_put(&resv_map->refs, resv_map_release);
6698 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6701 struct hstate *h = hstate_inode(inode);
6702 struct resv_map *resv_map = inode_resv_map(inode);
6704 struct hugepage_subpool *spool = subpool_inode(inode);
6708 * Since this routine can be called in the evict inode path for all
6709 * hugetlbfs inodes, resv_map could be NULL.
6712 chg = region_del(resv_map, start, end);
6714 * region_del() can fail in the rare case where a region
6715 * must be split and another region descriptor can not be
6716 * allocated. If end == LONG_MAX, it will not fail.
6722 spin_lock(&inode->i_lock);
6723 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6724 spin_unlock(&inode->i_lock);
6727 * If the subpool has a minimum size, the number of global
6728 * reservations to be released may be adjusted.
6730 * Note that !resv_map implies freed == 0. So (chg - freed)
6731 * won't go negative.
6733 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6734 hugetlb_acct_memory(h, -gbl_reserve);
6739 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6740 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6741 struct vm_area_struct *vma,
6742 unsigned long addr, pgoff_t idx)
6744 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6746 unsigned long sbase = saddr & PUD_MASK;
6747 unsigned long s_end = sbase + PUD_SIZE;
6749 /* Allow segments to share if only one is marked locked */
6750 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6751 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6754 * match the virtual addresses, permission and the alignment of the
6757 * Also, vma_lock (vm_private_data) is required for sharing.
6759 if (pmd_index(addr) != pmd_index(saddr) ||
6760 vm_flags != svm_flags ||
6761 !range_in_vma(svma, sbase, s_end) ||
6762 !svma->vm_private_data)
6768 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6770 unsigned long start = addr & PUD_MASK;
6771 unsigned long end = start + PUD_SIZE;
6773 #ifdef CONFIG_USERFAULTFD
6774 if (uffd_disable_huge_pmd_share(vma))
6778 * check on proper vm_flags and page table alignment
6780 if (!(vma->vm_flags & VM_MAYSHARE))
6782 if (!vma->vm_private_data) /* vma lock required for sharing */
6784 if (!range_in_vma(vma, start, end))
6790 * Determine if start,end range within vma could be mapped by shared pmd.
6791 * If yes, adjust start and end to cover range associated with possible
6792 * shared pmd mappings.
6794 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6795 unsigned long *start, unsigned long *end)
6797 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6798 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6801 * vma needs to span at least one aligned PUD size, and the range
6802 * must be at least partially within in.
6804 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6805 (*end <= v_start) || (*start >= v_end))
6808 /* Extend the range to be PUD aligned for a worst case scenario */
6809 if (*start > v_start)
6810 *start = ALIGN_DOWN(*start, PUD_SIZE);
6813 *end = ALIGN(*end, PUD_SIZE);
6816 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6818 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6819 vma->vm_private_data;
6822 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6824 if (__vma_shareable_flags_pmd(vma)) {
6825 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6827 down_read(&vma_lock->rw_sema);
6831 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6833 if (__vma_shareable_flags_pmd(vma)) {
6834 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6836 up_read(&vma_lock->rw_sema);
6840 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6842 if (__vma_shareable_flags_pmd(vma)) {
6843 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6845 down_write(&vma_lock->rw_sema);
6849 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6851 if (__vma_shareable_flags_pmd(vma)) {
6852 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6854 up_write(&vma_lock->rw_sema);
6858 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6860 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6862 if (!__vma_shareable_flags_pmd(vma))
6865 return down_write_trylock(&vma_lock->rw_sema);
6868 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6870 if (__vma_shareable_flags_pmd(vma)) {
6871 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6873 lockdep_assert_held(&vma_lock->rw_sema);
6877 void hugetlb_vma_lock_release(struct kref *kref)
6879 struct hugetlb_vma_lock *vma_lock = container_of(kref,
6880 struct hugetlb_vma_lock, refs);
6885 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6887 struct vm_area_struct *vma = vma_lock->vma;
6890 * vma_lock structure may or not be released as a result of put,
6891 * it certainly will no longer be attached to vma so clear pointer.
6892 * Semaphore synchronizes access to vma_lock->vma field.
6894 vma_lock->vma = NULL;
6895 vma->vm_private_data = NULL;
6896 up_write(&vma_lock->rw_sema);
6897 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6900 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6902 if (__vma_shareable_flags_pmd(vma)) {
6903 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6905 __hugetlb_vma_unlock_write_put(vma_lock);
6909 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6912 * Only present in sharable vmas.
6914 if (!vma || !__vma_shareable_flags_pmd(vma))
6917 if (vma->vm_private_data) {
6918 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6920 down_write(&vma_lock->rw_sema);
6921 __hugetlb_vma_unlock_write_put(vma_lock);
6925 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6927 struct hugetlb_vma_lock *vma_lock;
6929 /* Only establish in (flags) sharable vmas */
6930 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6933 /* Should never get here with non-NULL vm_private_data */
6934 if (vma->vm_private_data)
6937 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6940 * If we can not allocate structure, then vma can not
6941 * participate in pmd sharing. This is only a possible
6942 * performance enhancement and memory saving issue.
6943 * However, the lock is also used to synchronize page
6944 * faults with truncation. If the lock is not present,
6945 * unlikely races could leave pages in a file past i_size
6946 * until the file is removed. Warn in the unlikely case of
6947 * allocation failure.
6949 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6953 kref_init(&vma_lock->refs);
6954 init_rwsem(&vma_lock->rw_sema);
6955 vma_lock->vma = vma;
6956 vma->vm_private_data = vma_lock;
6960 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6961 * and returns the corresponding pte. While this is not necessary for the
6962 * !shared pmd case because we can allocate the pmd later as well, it makes the
6963 * code much cleaner. pmd allocation is essential for the shared case because
6964 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6965 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6966 * bad pmd for sharing.
6968 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6969 unsigned long addr, pud_t *pud)
6971 struct address_space *mapping = vma->vm_file->f_mapping;
6972 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6974 struct vm_area_struct *svma;
6975 unsigned long saddr;
6980 i_mmap_lock_read(mapping);
6981 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6985 saddr = page_table_shareable(svma, vma, addr, idx);
6987 spte = huge_pte_offset(svma->vm_mm, saddr,
6988 vma_mmu_pagesize(svma));
6990 get_page(virt_to_page(spte));
6999 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7000 if (pud_none(*pud)) {
7001 pud_populate(mm, pud,
7002 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7005 put_page(virt_to_page(spte));
7009 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7010 i_mmap_unlock_read(mapping);
7015 * unmap huge page backed by shared pte.
7017 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7018 * indicated by page_count > 1, unmap is achieved by clearing pud and
7019 * decrementing the ref count. If count == 1, the pte page is not shared.
7021 * Called with page table lock held.
7023 * returns: 1 successfully unmapped a shared pte page
7024 * 0 the underlying pte page is not shared, or it is the last user
7026 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7027 unsigned long addr, pte_t *ptep)
7029 pgd_t *pgd = pgd_offset(mm, addr);
7030 p4d_t *p4d = p4d_offset(pgd, addr);
7031 pud_t *pud = pud_offset(p4d, addr);
7033 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7034 hugetlb_vma_assert_locked(vma);
7035 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7036 if (page_count(virt_to_page(ptep)) == 1)
7040 put_page(virt_to_page(ptep));
7045 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7047 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7051 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7055 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7059 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7063 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7068 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7072 void hugetlb_vma_lock_release(struct kref *kref)
7076 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7080 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7084 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7088 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7089 unsigned long addr, pud_t *pud)
7094 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7095 unsigned long addr, pte_t *ptep)
7100 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7101 unsigned long *start, unsigned long *end)
7105 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7109 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7111 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7112 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7113 unsigned long addr, unsigned long sz)
7120 pgd = pgd_offset(mm, addr);
7121 p4d = p4d_alloc(mm, pgd, addr);
7124 pud = pud_alloc(mm, p4d, addr);
7126 if (sz == PUD_SIZE) {
7129 BUG_ON(sz != PMD_SIZE);
7130 if (want_pmd_share(vma, addr) && pud_none(*pud))
7131 pte = huge_pmd_share(mm, vma, addr, pud);
7133 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7136 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7142 * huge_pte_offset() - Walk the page table to resolve the hugepage
7143 * entry at address @addr
7145 * Return: Pointer to page table entry (PUD or PMD) for
7146 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7147 * size @sz doesn't match the hugepage size at this level of the page
7150 pte_t *huge_pte_offset(struct mm_struct *mm,
7151 unsigned long addr, unsigned long sz)
7158 pgd = pgd_offset(mm, addr);
7159 if (!pgd_present(*pgd))
7161 p4d = p4d_offset(pgd, addr);
7162 if (!p4d_present(*p4d))
7165 pud = pud_offset(p4d, addr);
7167 /* must be pud huge, non-present or none */
7168 return (pte_t *)pud;
7169 if (!pud_present(*pud))
7171 /* must have a valid entry and size to go further */
7173 pmd = pmd_offset(pud, addr);
7174 /* must be pmd huge, non-present or none */
7175 return (pte_t *)pmd;
7179 * Return a mask that can be used to update an address to the last huge
7180 * page in a page table page mapping size. Used to skip non-present
7181 * page table entries when linearly scanning address ranges. Architectures
7182 * with unique huge page to page table relationships can define their own
7183 * version of this routine.
7185 unsigned long hugetlb_mask_last_page(struct hstate *h)
7187 unsigned long hp_size = huge_page_size(h);
7189 if (hp_size == PUD_SIZE)
7190 return P4D_SIZE - PUD_SIZE;
7191 else if (hp_size == PMD_SIZE)
7192 return PUD_SIZE - PMD_SIZE;
7199 /* See description above. Architectures can provide their own version. */
7200 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7202 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7203 if (huge_page_size(h) == PMD_SIZE)
7204 return PUD_SIZE - PMD_SIZE;
7209 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7212 * These functions are overwritable if your architecture needs its own
7215 struct page * __weak
7216 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7219 return ERR_PTR(-EINVAL);
7222 struct page * __weak
7223 follow_huge_pd(struct vm_area_struct *vma,
7224 unsigned long address, hugepd_t hpd, int flags, int pdshift)
7226 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7230 struct page * __weak
7231 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7233 struct hstate *h = hstate_vma(vma);
7234 struct mm_struct *mm = vma->vm_mm;
7235 struct page *page = NULL;
7240 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7241 * follow_hugetlb_page().
7243 if (WARN_ON_ONCE(flags & FOLL_PIN))
7247 ptep = huge_pte_offset(mm, address, huge_page_size(h));
7251 ptl = huge_pte_lock(h, mm, ptep);
7252 pte = huge_ptep_get(ptep);
7253 if (pte_present(pte)) {
7254 page = pte_page(pte) +
7255 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7257 * try_grab_page() should always succeed here, because: a) we
7258 * hold the pmd (ptl) lock, and b) we've just checked that the
7259 * huge pmd (head) page is present in the page tables. The ptl
7260 * prevents the head page and tail pages from being rearranged
7261 * in any way. So this page must be available at this point,
7262 * unless the page refcount overflowed:
7264 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7269 if (is_hugetlb_entry_migration(pte)) {
7271 __migration_entry_wait_huge(ptep, ptl);
7275 * hwpoisoned entry is treated as no_page_table in
7276 * follow_page_mask().
7284 struct page * __weak
7285 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7286 pud_t *pud, int flags)
7288 struct page *page = NULL;
7292 if (WARN_ON_ONCE(flags & FOLL_PIN))
7296 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7297 if (!pud_huge(*pud))
7299 pte = huge_ptep_get((pte_t *)pud);
7300 if (pte_present(pte)) {
7301 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7302 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7307 if (is_hugetlb_entry_migration(pte)) {
7309 __migration_entry_wait(mm, (pte_t *)pud, ptl);
7313 * hwpoisoned entry is treated as no_page_table in
7314 * follow_page_mask().
7322 struct page * __weak
7323 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7325 if (flags & (FOLL_GET | FOLL_PIN))
7328 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7331 int isolate_hugetlb(struct page *page, struct list_head *list)
7335 spin_lock_irq(&hugetlb_lock);
7336 if (!PageHeadHuge(page) ||
7337 !HPageMigratable(page) ||
7338 !get_page_unless_zero(page)) {
7342 ClearHPageMigratable(page);
7343 list_move_tail(&page->lru, list);
7345 spin_unlock_irq(&hugetlb_lock);
7349 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7354 spin_lock_irq(&hugetlb_lock);
7355 if (PageHeadHuge(page)) {
7357 if (HPageFreed(page))
7359 else if (HPageMigratable(page))
7360 ret = get_page_unless_zero(page);
7364 spin_unlock_irq(&hugetlb_lock);
7368 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7372 spin_lock_irq(&hugetlb_lock);
7373 ret = __get_huge_page_for_hwpoison(pfn, flags);
7374 spin_unlock_irq(&hugetlb_lock);
7378 void putback_active_hugepage(struct page *page)
7380 spin_lock_irq(&hugetlb_lock);
7381 SetHPageMigratable(page);
7382 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7383 spin_unlock_irq(&hugetlb_lock);
7387 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7389 struct hstate *h = page_hstate(oldpage);
7391 hugetlb_cgroup_migrate(oldpage, newpage);
7392 set_page_owner_migrate_reason(newpage, reason);
7395 * transfer temporary state of the new huge page. This is
7396 * reverse to other transitions because the newpage is going to
7397 * be final while the old one will be freed so it takes over
7398 * the temporary status.
7400 * Also note that we have to transfer the per-node surplus state
7401 * here as well otherwise the global surplus count will not match
7404 if (HPageTemporary(newpage)) {
7405 int old_nid = page_to_nid(oldpage);
7406 int new_nid = page_to_nid(newpage);
7408 SetHPageTemporary(oldpage);
7409 ClearHPageTemporary(newpage);
7412 * There is no need to transfer the per-node surplus state
7413 * when we do not cross the node.
7415 if (new_nid == old_nid)
7417 spin_lock_irq(&hugetlb_lock);
7418 if (h->surplus_huge_pages_node[old_nid]) {
7419 h->surplus_huge_pages_node[old_nid]--;
7420 h->surplus_huge_pages_node[new_nid]++;
7422 spin_unlock_irq(&hugetlb_lock);
7427 * This function will unconditionally remove all the shared pmd pgtable entries
7428 * within the specific vma for a hugetlbfs memory range.
7430 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7432 struct hstate *h = hstate_vma(vma);
7433 unsigned long sz = huge_page_size(h);
7434 struct mm_struct *mm = vma->vm_mm;
7435 struct mmu_notifier_range range;
7436 unsigned long address, start, end;
7440 if (!(vma->vm_flags & VM_MAYSHARE))
7443 start = ALIGN(vma->vm_start, PUD_SIZE);
7444 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7449 flush_cache_range(vma, start, end);
7451 * No need to call adjust_range_if_pmd_sharing_possible(), because
7452 * we have already done the PUD_SIZE alignment.
7454 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7456 mmu_notifier_invalidate_range_start(&range);
7457 hugetlb_vma_lock_write(vma);
7458 i_mmap_lock_write(vma->vm_file->f_mapping);
7459 for (address = start; address < end; address += PUD_SIZE) {
7460 ptep = huge_pte_offset(mm, address, sz);
7463 ptl = huge_pte_lock(h, mm, ptep);
7464 huge_pmd_unshare(mm, vma, address, ptep);
7467 flush_hugetlb_tlb_range(vma, start, end);
7468 i_mmap_unlock_write(vma->vm_file->f_mapping);
7469 hugetlb_vma_unlock_write(vma);
7471 * No need to call mmu_notifier_invalidate_range(), see
7472 * Documentation/mm/mmu_notifier.rst.
7474 mmu_notifier_invalidate_range_end(&range);
7478 static bool cma_reserve_called __initdata;
7480 static int __init cmdline_parse_hugetlb_cma(char *p)
7487 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7490 if (s[count] == ':') {
7491 if (tmp >= MAX_NUMNODES)
7493 nid = array_index_nospec(tmp, MAX_NUMNODES);
7496 tmp = memparse(s, &s);
7497 hugetlb_cma_size_in_node[nid] = tmp;
7498 hugetlb_cma_size += tmp;
7501 * Skip the separator if have one, otherwise
7502 * break the parsing.
7509 hugetlb_cma_size = memparse(p, &p);
7517 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7519 void __init hugetlb_cma_reserve(int order)
7521 unsigned long size, reserved, per_node;
7522 bool node_specific_cma_alloc = false;
7525 cma_reserve_called = true;
7527 if (!hugetlb_cma_size)
7530 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7531 if (hugetlb_cma_size_in_node[nid] == 0)
7534 if (!node_online(nid)) {
7535 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7536 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7537 hugetlb_cma_size_in_node[nid] = 0;
7541 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7542 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7543 nid, (PAGE_SIZE << order) / SZ_1M);
7544 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7545 hugetlb_cma_size_in_node[nid] = 0;
7547 node_specific_cma_alloc = true;
7551 /* Validate the CMA size again in case some invalid nodes specified. */
7552 if (!hugetlb_cma_size)
7555 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7556 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7557 (PAGE_SIZE << order) / SZ_1M);
7558 hugetlb_cma_size = 0;
7562 if (!node_specific_cma_alloc) {
7564 * If 3 GB area is requested on a machine with 4 numa nodes,
7565 * let's allocate 1 GB on first three nodes and ignore the last one.
7567 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7568 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7569 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7573 for_each_online_node(nid) {
7575 char name[CMA_MAX_NAME];
7577 if (node_specific_cma_alloc) {
7578 if (hugetlb_cma_size_in_node[nid] == 0)
7581 size = hugetlb_cma_size_in_node[nid];
7583 size = min(per_node, hugetlb_cma_size - reserved);
7586 size = round_up(size, PAGE_SIZE << order);
7588 snprintf(name, sizeof(name), "hugetlb%d", nid);
7590 * Note that 'order per bit' is based on smallest size that
7591 * may be returned to CMA allocator in the case of
7592 * huge page demotion.
7594 res = cma_declare_contiguous_nid(0, size, 0,
7595 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7597 &hugetlb_cma[nid], nid);
7599 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7605 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7608 if (reserved >= hugetlb_cma_size)
7614 * hugetlb_cma_size is used to determine if allocations from
7615 * cma are possible. Set to zero if no cma regions are set up.
7617 hugetlb_cma_size = 0;
7620 static void __init hugetlb_cma_check(void)
7622 if (!hugetlb_cma_size || cma_reserve_called)
7625 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7628 #endif /* CONFIG_CMA */