Merge tag 'spi-fix-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /*
259  * hugetlb vma_lock helper routines
260  */
261 static bool __vma_shareable_lock(struct vm_area_struct *vma)
262 {
263         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
264                 vma->vm_private_data;
265 }
266
267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 {
269         if (__vma_shareable_lock(vma)) {
270                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271
272                 down_read(&vma_lock->rw_sema);
273         }
274 }
275
276 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
277 {
278         if (__vma_shareable_lock(vma)) {
279                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
280
281                 up_read(&vma_lock->rw_sema);
282         }
283 }
284
285 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
286 {
287         if (__vma_shareable_lock(vma)) {
288                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
289
290                 down_write(&vma_lock->rw_sema);
291         }
292 }
293
294 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
295 {
296         if (__vma_shareable_lock(vma)) {
297                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
298
299                 up_write(&vma_lock->rw_sema);
300         }
301 }
302
303 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
304 {
305         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
306
307         if (!__vma_shareable_lock(vma))
308                 return 1;
309
310         return down_write_trylock(&vma_lock->rw_sema);
311 }
312
313 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
314 {
315         if (__vma_shareable_lock(vma)) {
316                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317
318                 lockdep_assert_held(&vma_lock->rw_sema);
319         }
320 }
321
322 void hugetlb_vma_lock_release(struct kref *kref)
323 {
324         struct hugetlb_vma_lock *vma_lock = container_of(kref,
325                         struct hugetlb_vma_lock, refs);
326
327         kfree(vma_lock);
328 }
329
330 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
331 {
332         struct vm_area_struct *vma = vma_lock->vma;
333
334         /*
335          * vma_lock structure may or not be released as a result of put,
336          * it certainly will no longer be attached to vma so clear pointer.
337          * Semaphore synchronizes access to vma_lock->vma field.
338          */
339         vma_lock->vma = NULL;
340         vma->vm_private_data = NULL;
341         up_write(&vma_lock->rw_sema);
342         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
343 }
344
345 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
346 {
347         if (__vma_shareable_lock(vma)) {
348                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
349
350                 __hugetlb_vma_unlock_write_put(vma_lock);
351         }
352 }
353
354 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
355 {
356         /*
357          * Only present in sharable vmas.
358          */
359         if (!vma || !__vma_shareable_lock(vma))
360                 return;
361
362         if (vma->vm_private_data) {
363                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
364
365                 down_write(&vma_lock->rw_sema);
366                 __hugetlb_vma_unlock_write_put(vma_lock);
367         }
368 }
369
370 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
371 {
372         struct hugetlb_vma_lock *vma_lock;
373
374         /* Only establish in (flags) sharable vmas */
375         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
376                 return;
377
378         /* Should never get here with non-NULL vm_private_data */
379         if (vma->vm_private_data)
380                 return;
381
382         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
383         if (!vma_lock) {
384                 /*
385                  * If we can not allocate structure, then vma can not
386                  * participate in pmd sharing.  This is only a possible
387                  * performance enhancement and memory saving issue.
388                  * However, the lock is also used to synchronize page
389                  * faults with truncation.  If the lock is not present,
390                  * unlikely races could leave pages in a file past i_size
391                  * until the file is removed.  Warn in the unlikely case of
392                  * allocation failure.
393                  */
394                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
395                 return;
396         }
397
398         kref_init(&vma_lock->refs);
399         init_rwsem(&vma_lock->rw_sema);
400         vma_lock->vma = vma;
401         vma->vm_private_data = vma_lock;
402 }
403
404 /* Helper that removes a struct file_region from the resv_map cache and returns
405  * it for use.
406  */
407 static struct file_region *
408 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
409 {
410         struct file_region *nrg;
411
412         VM_BUG_ON(resv->region_cache_count <= 0);
413
414         resv->region_cache_count--;
415         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
416         list_del(&nrg->link);
417
418         nrg->from = from;
419         nrg->to = to;
420
421         return nrg;
422 }
423
424 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
425                                               struct file_region *rg)
426 {
427 #ifdef CONFIG_CGROUP_HUGETLB
428         nrg->reservation_counter = rg->reservation_counter;
429         nrg->css = rg->css;
430         if (rg->css)
431                 css_get(rg->css);
432 #endif
433 }
434
435 /* Helper that records hugetlb_cgroup uncharge info. */
436 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
437                                                 struct hstate *h,
438                                                 struct resv_map *resv,
439                                                 struct file_region *nrg)
440 {
441 #ifdef CONFIG_CGROUP_HUGETLB
442         if (h_cg) {
443                 nrg->reservation_counter =
444                         &h_cg->rsvd_hugepage[hstate_index(h)];
445                 nrg->css = &h_cg->css;
446                 /*
447                  * The caller will hold exactly one h_cg->css reference for the
448                  * whole contiguous reservation region. But this area might be
449                  * scattered when there are already some file_regions reside in
450                  * it. As a result, many file_regions may share only one css
451                  * reference. In order to ensure that one file_region must hold
452                  * exactly one h_cg->css reference, we should do css_get for
453                  * each file_region and leave the reference held by caller
454                  * untouched.
455                  */
456                 css_get(&h_cg->css);
457                 if (!resv->pages_per_hpage)
458                         resv->pages_per_hpage = pages_per_huge_page(h);
459                 /* pages_per_hpage should be the same for all entries in
460                  * a resv_map.
461                  */
462                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
463         } else {
464                 nrg->reservation_counter = NULL;
465                 nrg->css = NULL;
466         }
467 #endif
468 }
469
470 static void put_uncharge_info(struct file_region *rg)
471 {
472 #ifdef CONFIG_CGROUP_HUGETLB
473         if (rg->css)
474                 css_put(rg->css);
475 #endif
476 }
477
478 static bool has_same_uncharge_info(struct file_region *rg,
479                                    struct file_region *org)
480 {
481 #ifdef CONFIG_CGROUP_HUGETLB
482         return rg->reservation_counter == org->reservation_counter &&
483                rg->css == org->css;
484
485 #else
486         return true;
487 #endif
488 }
489
490 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
491 {
492         struct file_region *nrg, *prg;
493
494         prg = list_prev_entry(rg, link);
495         if (&prg->link != &resv->regions && prg->to == rg->from &&
496             has_same_uncharge_info(prg, rg)) {
497                 prg->to = rg->to;
498
499                 list_del(&rg->link);
500                 put_uncharge_info(rg);
501                 kfree(rg);
502
503                 rg = prg;
504         }
505
506         nrg = list_next_entry(rg, link);
507         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
508             has_same_uncharge_info(nrg, rg)) {
509                 nrg->from = rg->from;
510
511                 list_del(&rg->link);
512                 put_uncharge_info(rg);
513                 kfree(rg);
514         }
515 }
516
517 static inline long
518 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
519                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
520                      long *regions_needed)
521 {
522         struct file_region *nrg;
523
524         if (!regions_needed) {
525                 nrg = get_file_region_entry_from_cache(map, from, to);
526                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
527                 list_add(&nrg->link, rg);
528                 coalesce_file_region(map, nrg);
529         } else
530                 *regions_needed += 1;
531
532         return to - from;
533 }
534
535 /*
536  * Must be called with resv->lock held.
537  *
538  * Calling this with regions_needed != NULL will count the number of pages
539  * to be added but will not modify the linked list. And regions_needed will
540  * indicate the number of file_regions needed in the cache to carry out to add
541  * the regions for this range.
542  */
543 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
544                                      struct hugetlb_cgroup *h_cg,
545                                      struct hstate *h, long *regions_needed)
546 {
547         long add = 0;
548         struct list_head *head = &resv->regions;
549         long last_accounted_offset = f;
550         struct file_region *iter, *trg = NULL;
551         struct list_head *rg = NULL;
552
553         if (regions_needed)
554                 *regions_needed = 0;
555
556         /* In this loop, we essentially handle an entry for the range
557          * [last_accounted_offset, iter->from), at every iteration, with some
558          * bounds checking.
559          */
560         list_for_each_entry_safe(iter, trg, head, link) {
561                 /* Skip irrelevant regions that start before our range. */
562                 if (iter->from < f) {
563                         /* If this region ends after the last accounted offset,
564                          * then we need to update last_accounted_offset.
565                          */
566                         if (iter->to > last_accounted_offset)
567                                 last_accounted_offset = iter->to;
568                         continue;
569                 }
570
571                 /* When we find a region that starts beyond our range, we've
572                  * finished.
573                  */
574                 if (iter->from >= t) {
575                         rg = iter->link.prev;
576                         break;
577                 }
578
579                 /* Add an entry for last_accounted_offset -> iter->from, and
580                  * update last_accounted_offset.
581                  */
582                 if (iter->from > last_accounted_offset)
583                         add += hugetlb_resv_map_add(resv, iter->link.prev,
584                                                     last_accounted_offset,
585                                                     iter->from, h, h_cg,
586                                                     regions_needed);
587
588                 last_accounted_offset = iter->to;
589         }
590
591         /* Handle the case where our range extends beyond
592          * last_accounted_offset.
593          */
594         if (!rg)
595                 rg = head->prev;
596         if (last_accounted_offset < t)
597                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
598                                             t, h, h_cg, regions_needed);
599
600         return add;
601 }
602
603 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
604  */
605 static int allocate_file_region_entries(struct resv_map *resv,
606                                         int regions_needed)
607         __must_hold(&resv->lock)
608 {
609         LIST_HEAD(allocated_regions);
610         int to_allocate = 0, i = 0;
611         struct file_region *trg = NULL, *rg = NULL;
612
613         VM_BUG_ON(regions_needed < 0);
614
615         /*
616          * Check for sufficient descriptors in the cache to accommodate
617          * the number of in progress add operations plus regions_needed.
618          *
619          * This is a while loop because when we drop the lock, some other call
620          * to region_add or region_del may have consumed some region_entries,
621          * so we keep looping here until we finally have enough entries for
622          * (adds_in_progress + regions_needed).
623          */
624         while (resv->region_cache_count <
625                (resv->adds_in_progress + regions_needed)) {
626                 to_allocate = resv->adds_in_progress + regions_needed -
627                               resv->region_cache_count;
628
629                 /* At this point, we should have enough entries in the cache
630                  * for all the existing adds_in_progress. We should only be
631                  * needing to allocate for regions_needed.
632                  */
633                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
634
635                 spin_unlock(&resv->lock);
636                 for (i = 0; i < to_allocate; i++) {
637                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
638                         if (!trg)
639                                 goto out_of_memory;
640                         list_add(&trg->link, &allocated_regions);
641                 }
642
643                 spin_lock(&resv->lock);
644
645                 list_splice(&allocated_regions, &resv->region_cache);
646                 resv->region_cache_count += to_allocate;
647         }
648
649         return 0;
650
651 out_of_memory:
652         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
653                 list_del(&rg->link);
654                 kfree(rg);
655         }
656         return -ENOMEM;
657 }
658
659 /*
660  * Add the huge page range represented by [f, t) to the reserve
661  * map.  Regions will be taken from the cache to fill in this range.
662  * Sufficient regions should exist in the cache due to the previous
663  * call to region_chg with the same range, but in some cases the cache will not
664  * have sufficient entries due to races with other code doing region_add or
665  * region_del.  The extra needed entries will be allocated.
666  *
667  * regions_needed is the out value provided by a previous call to region_chg.
668  *
669  * Return the number of new huge pages added to the map.  This number is greater
670  * than or equal to zero.  If file_region entries needed to be allocated for
671  * this operation and we were not able to allocate, it returns -ENOMEM.
672  * region_add of regions of length 1 never allocate file_regions and cannot
673  * fail; region_chg will always allocate at least 1 entry and a region_add for
674  * 1 page will only require at most 1 entry.
675  */
676 static long region_add(struct resv_map *resv, long f, long t,
677                        long in_regions_needed, struct hstate *h,
678                        struct hugetlb_cgroup *h_cg)
679 {
680         long add = 0, actual_regions_needed = 0;
681
682         spin_lock(&resv->lock);
683 retry:
684
685         /* Count how many regions are actually needed to execute this add. */
686         add_reservation_in_range(resv, f, t, NULL, NULL,
687                                  &actual_regions_needed);
688
689         /*
690          * Check for sufficient descriptors in the cache to accommodate
691          * this add operation. Note that actual_regions_needed may be greater
692          * than in_regions_needed, as the resv_map may have been modified since
693          * the region_chg call. In this case, we need to make sure that we
694          * allocate extra entries, such that we have enough for all the
695          * existing adds_in_progress, plus the excess needed for this
696          * operation.
697          */
698         if (actual_regions_needed > in_regions_needed &&
699             resv->region_cache_count <
700                     resv->adds_in_progress +
701                             (actual_regions_needed - in_regions_needed)) {
702                 /* region_add operation of range 1 should never need to
703                  * allocate file_region entries.
704                  */
705                 VM_BUG_ON(t - f <= 1);
706
707                 if (allocate_file_region_entries(
708                             resv, actual_regions_needed - in_regions_needed)) {
709                         return -ENOMEM;
710                 }
711
712                 goto retry;
713         }
714
715         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
716
717         resv->adds_in_progress -= in_regions_needed;
718
719         spin_unlock(&resv->lock);
720         return add;
721 }
722
723 /*
724  * Examine the existing reserve map and determine how many
725  * huge pages in the specified range [f, t) are NOT currently
726  * represented.  This routine is called before a subsequent
727  * call to region_add that will actually modify the reserve
728  * map to add the specified range [f, t).  region_chg does
729  * not change the number of huge pages represented by the
730  * map.  A number of new file_region structures is added to the cache as a
731  * placeholder, for the subsequent region_add call to use. At least 1
732  * file_region structure is added.
733  *
734  * out_regions_needed is the number of regions added to the
735  * resv->adds_in_progress.  This value needs to be provided to a follow up call
736  * to region_add or region_abort for proper accounting.
737  *
738  * Returns the number of huge pages that need to be added to the existing
739  * reservation map for the range [f, t).  This number is greater or equal to
740  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
741  * is needed and can not be allocated.
742  */
743 static long region_chg(struct resv_map *resv, long f, long t,
744                        long *out_regions_needed)
745 {
746         long chg = 0;
747
748         spin_lock(&resv->lock);
749
750         /* Count how many hugepages in this range are NOT represented. */
751         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
752                                        out_regions_needed);
753
754         if (*out_regions_needed == 0)
755                 *out_regions_needed = 1;
756
757         if (allocate_file_region_entries(resv, *out_regions_needed))
758                 return -ENOMEM;
759
760         resv->adds_in_progress += *out_regions_needed;
761
762         spin_unlock(&resv->lock);
763         return chg;
764 }
765
766 /*
767  * Abort the in progress add operation.  The adds_in_progress field
768  * of the resv_map keeps track of the operations in progress between
769  * calls to region_chg and region_add.  Operations are sometimes
770  * aborted after the call to region_chg.  In such cases, region_abort
771  * is called to decrement the adds_in_progress counter. regions_needed
772  * is the value returned by the region_chg call, it is used to decrement
773  * the adds_in_progress counter.
774  *
775  * NOTE: The range arguments [f, t) are not needed or used in this
776  * routine.  They are kept to make reading the calling code easier as
777  * arguments will match the associated region_chg call.
778  */
779 static void region_abort(struct resv_map *resv, long f, long t,
780                          long regions_needed)
781 {
782         spin_lock(&resv->lock);
783         VM_BUG_ON(!resv->region_cache_count);
784         resv->adds_in_progress -= regions_needed;
785         spin_unlock(&resv->lock);
786 }
787
788 /*
789  * Delete the specified range [f, t) from the reserve map.  If the
790  * t parameter is LONG_MAX, this indicates that ALL regions after f
791  * should be deleted.  Locate the regions which intersect [f, t)
792  * and either trim, delete or split the existing regions.
793  *
794  * Returns the number of huge pages deleted from the reserve map.
795  * In the normal case, the return value is zero or more.  In the
796  * case where a region must be split, a new region descriptor must
797  * be allocated.  If the allocation fails, -ENOMEM will be returned.
798  * NOTE: If the parameter t == LONG_MAX, then we will never split
799  * a region and possibly return -ENOMEM.  Callers specifying
800  * t == LONG_MAX do not need to check for -ENOMEM error.
801  */
802 static long region_del(struct resv_map *resv, long f, long t)
803 {
804         struct list_head *head = &resv->regions;
805         struct file_region *rg, *trg;
806         struct file_region *nrg = NULL;
807         long del = 0;
808
809 retry:
810         spin_lock(&resv->lock);
811         list_for_each_entry_safe(rg, trg, head, link) {
812                 /*
813                  * Skip regions before the range to be deleted.  file_region
814                  * ranges are normally of the form [from, to).  However, there
815                  * may be a "placeholder" entry in the map which is of the form
816                  * (from, to) with from == to.  Check for placeholder entries
817                  * at the beginning of the range to be deleted.
818                  */
819                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
820                         continue;
821
822                 if (rg->from >= t)
823                         break;
824
825                 if (f > rg->from && t < rg->to) { /* Must split region */
826                         /*
827                          * Check for an entry in the cache before dropping
828                          * lock and attempting allocation.
829                          */
830                         if (!nrg &&
831                             resv->region_cache_count > resv->adds_in_progress) {
832                                 nrg = list_first_entry(&resv->region_cache,
833                                                         struct file_region,
834                                                         link);
835                                 list_del(&nrg->link);
836                                 resv->region_cache_count--;
837                         }
838
839                         if (!nrg) {
840                                 spin_unlock(&resv->lock);
841                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
842                                 if (!nrg)
843                                         return -ENOMEM;
844                                 goto retry;
845                         }
846
847                         del += t - f;
848                         hugetlb_cgroup_uncharge_file_region(
849                                 resv, rg, t - f, false);
850
851                         /* New entry for end of split region */
852                         nrg->from = t;
853                         nrg->to = rg->to;
854
855                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
856
857                         INIT_LIST_HEAD(&nrg->link);
858
859                         /* Original entry is trimmed */
860                         rg->to = f;
861
862                         list_add(&nrg->link, &rg->link);
863                         nrg = NULL;
864                         break;
865                 }
866
867                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
868                         del += rg->to - rg->from;
869                         hugetlb_cgroup_uncharge_file_region(resv, rg,
870                                                             rg->to - rg->from, true);
871                         list_del(&rg->link);
872                         kfree(rg);
873                         continue;
874                 }
875
876                 if (f <= rg->from) {    /* Trim beginning of region */
877                         hugetlb_cgroup_uncharge_file_region(resv, rg,
878                                                             t - rg->from, false);
879
880                         del += t - rg->from;
881                         rg->from = t;
882                 } else {                /* Trim end of region */
883                         hugetlb_cgroup_uncharge_file_region(resv, rg,
884                                                             rg->to - f, false);
885
886                         del += rg->to - f;
887                         rg->to = f;
888                 }
889         }
890
891         spin_unlock(&resv->lock);
892         kfree(nrg);
893         return del;
894 }
895
896 /*
897  * A rare out of memory error was encountered which prevented removal of
898  * the reserve map region for a page.  The huge page itself was free'ed
899  * and removed from the page cache.  This routine will adjust the subpool
900  * usage count, and the global reserve count if needed.  By incrementing
901  * these counts, the reserve map entry which could not be deleted will
902  * appear as a "reserved" entry instead of simply dangling with incorrect
903  * counts.
904  */
905 void hugetlb_fix_reserve_counts(struct inode *inode)
906 {
907         struct hugepage_subpool *spool = subpool_inode(inode);
908         long rsv_adjust;
909         bool reserved = false;
910
911         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
912         if (rsv_adjust > 0) {
913                 struct hstate *h = hstate_inode(inode);
914
915                 if (!hugetlb_acct_memory(h, 1))
916                         reserved = true;
917         } else if (!rsv_adjust) {
918                 reserved = true;
919         }
920
921         if (!reserved)
922                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
923 }
924
925 /*
926  * Count and return the number of huge pages in the reserve map
927  * that intersect with the range [f, t).
928  */
929 static long region_count(struct resv_map *resv, long f, long t)
930 {
931         struct list_head *head = &resv->regions;
932         struct file_region *rg;
933         long chg = 0;
934
935         spin_lock(&resv->lock);
936         /* Locate each segment we overlap with, and count that overlap. */
937         list_for_each_entry(rg, head, link) {
938                 long seg_from;
939                 long seg_to;
940
941                 if (rg->to <= f)
942                         continue;
943                 if (rg->from >= t)
944                         break;
945
946                 seg_from = max(rg->from, f);
947                 seg_to = min(rg->to, t);
948
949                 chg += seg_to - seg_from;
950         }
951         spin_unlock(&resv->lock);
952
953         return chg;
954 }
955
956 /*
957  * Convert the address within this vma to the page offset within
958  * the mapping, in pagecache page units; huge pages here.
959  */
960 static pgoff_t vma_hugecache_offset(struct hstate *h,
961                         struct vm_area_struct *vma, unsigned long address)
962 {
963         return ((address - vma->vm_start) >> huge_page_shift(h)) +
964                         (vma->vm_pgoff >> huge_page_order(h));
965 }
966
967 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
968                                      unsigned long address)
969 {
970         return vma_hugecache_offset(hstate_vma(vma), vma, address);
971 }
972 EXPORT_SYMBOL_GPL(linear_hugepage_index);
973
974 /*
975  * Return the size of the pages allocated when backing a VMA. In the majority
976  * cases this will be same size as used by the page table entries.
977  */
978 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
979 {
980         if (vma->vm_ops && vma->vm_ops->pagesize)
981                 return vma->vm_ops->pagesize(vma);
982         return PAGE_SIZE;
983 }
984 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
985
986 /*
987  * Return the page size being used by the MMU to back a VMA. In the majority
988  * of cases, the page size used by the kernel matches the MMU size. On
989  * architectures where it differs, an architecture-specific 'strong'
990  * version of this symbol is required.
991  */
992 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
993 {
994         return vma_kernel_pagesize(vma);
995 }
996
997 /*
998  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
999  * bits of the reservation map pointer, which are always clear due to
1000  * alignment.
1001  */
1002 #define HPAGE_RESV_OWNER    (1UL << 0)
1003 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1004 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1005
1006 /*
1007  * These helpers are used to track how many pages are reserved for
1008  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1009  * is guaranteed to have their future faults succeed.
1010  *
1011  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1012  * the reserve counters are updated with the hugetlb_lock held. It is safe
1013  * to reset the VMA at fork() time as it is not in use yet and there is no
1014  * chance of the global counters getting corrupted as a result of the values.
1015  *
1016  * The private mapping reservation is represented in a subtly different
1017  * manner to a shared mapping.  A shared mapping has a region map associated
1018  * with the underlying file, this region map represents the backing file
1019  * pages which have ever had a reservation assigned which this persists even
1020  * after the page is instantiated.  A private mapping has a region map
1021  * associated with the original mmap which is attached to all VMAs which
1022  * reference it, this region map represents those offsets which have consumed
1023  * reservation ie. where pages have been instantiated.
1024  */
1025 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1026 {
1027         return (unsigned long)vma->vm_private_data;
1028 }
1029
1030 static void set_vma_private_data(struct vm_area_struct *vma,
1031                                                         unsigned long value)
1032 {
1033         vma->vm_private_data = (void *)value;
1034 }
1035
1036 static void
1037 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1038                                           struct hugetlb_cgroup *h_cg,
1039                                           struct hstate *h)
1040 {
1041 #ifdef CONFIG_CGROUP_HUGETLB
1042         if (!h_cg || !h) {
1043                 resv_map->reservation_counter = NULL;
1044                 resv_map->pages_per_hpage = 0;
1045                 resv_map->css = NULL;
1046         } else {
1047                 resv_map->reservation_counter =
1048                         &h_cg->rsvd_hugepage[hstate_index(h)];
1049                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1050                 resv_map->css = &h_cg->css;
1051         }
1052 #endif
1053 }
1054
1055 struct resv_map *resv_map_alloc(void)
1056 {
1057         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1058         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1059
1060         if (!resv_map || !rg) {
1061                 kfree(resv_map);
1062                 kfree(rg);
1063                 return NULL;
1064         }
1065
1066         kref_init(&resv_map->refs);
1067         spin_lock_init(&resv_map->lock);
1068         INIT_LIST_HEAD(&resv_map->regions);
1069
1070         resv_map->adds_in_progress = 0;
1071         /*
1072          * Initialize these to 0. On shared mappings, 0's here indicate these
1073          * fields don't do cgroup accounting. On private mappings, these will be
1074          * re-initialized to the proper values, to indicate that hugetlb cgroup
1075          * reservations are to be un-charged from here.
1076          */
1077         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1078
1079         INIT_LIST_HEAD(&resv_map->region_cache);
1080         list_add(&rg->link, &resv_map->region_cache);
1081         resv_map->region_cache_count = 1;
1082
1083         return resv_map;
1084 }
1085
1086 void resv_map_release(struct kref *ref)
1087 {
1088         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1089         struct list_head *head = &resv_map->region_cache;
1090         struct file_region *rg, *trg;
1091
1092         /* Clear out any active regions before we release the map. */
1093         region_del(resv_map, 0, LONG_MAX);
1094
1095         /* ... and any entries left in the cache */
1096         list_for_each_entry_safe(rg, trg, head, link) {
1097                 list_del(&rg->link);
1098                 kfree(rg);
1099         }
1100
1101         VM_BUG_ON(resv_map->adds_in_progress);
1102
1103         kfree(resv_map);
1104 }
1105
1106 static inline struct resv_map *inode_resv_map(struct inode *inode)
1107 {
1108         /*
1109          * At inode evict time, i_mapping may not point to the original
1110          * address space within the inode.  This original address space
1111          * contains the pointer to the resv_map.  So, always use the
1112          * address space embedded within the inode.
1113          * The VERY common case is inode->mapping == &inode->i_data but,
1114          * this may not be true for device special inodes.
1115          */
1116         return (struct resv_map *)(&inode->i_data)->private_data;
1117 }
1118
1119 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1120 {
1121         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1122         if (vma->vm_flags & VM_MAYSHARE) {
1123                 struct address_space *mapping = vma->vm_file->f_mapping;
1124                 struct inode *inode = mapping->host;
1125
1126                 return inode_resv_map(inode);
1127
1128         } else {
1129                 return (struct resv_map *)(get_vma_private_data(vma) &
1130                                                         ~HPAGE_RESV_MASK);
1131         }
1132 }
1133
1134 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1135 {
1136         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1137         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1138
1139         set_vma_private_data(vma, (get_vma_private_data(vma) &
1140                                 HPAGE_RESV_MASK) | (unsigned long)map);
1141 }
1142
1143 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1144 {
1145         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1146         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1147
1148         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1149 }
1150
1151 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1152 {
1153         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1154
1155         return (get_vma_private_data(vma) & flag) != 0;
1156 }
1157
1158 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1159 {
1160         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1161         /*
1162          * Clear vm_private_data
1163          * - For shared mappings this is a per-vma semaphore that may be
1164          *   allocated in a subsequent call to hugetlb_vm_op_open.
1165          *   Before clearing, make sure pointer is not associated with vma
1166          *   as this will leak the structure.  This is the case when called
1167          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1168          *   been called to allocate a new structure.
1169          * - For MAP_PRIVATE mappings, this is the reserve map which does
1170          *   not apply to children.  Faults generated by the children are
1171          *   not guaranteed to succeed, even if read-only.
1172          */
1173         if (vma->vm_flags & VM_MAYSHARE) {
1174                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1175
1176                 if (vma_lock && vma_lock->vma != vma)
1177                         vma->vm_private_data = NULL;
1178         } else
1179                 vma->vm_private_data = NULL;
1180 }
1181
1182 /*
1183  * Reset and decrement one ref on hugepage private reservation.
1184  * Called with mm->mmap_sem writer semaphore held.
1185  * This function should be only used by move_vma() and operate on
1186  * same sized vma. It should never come here with last ref on the
1187  * reservation.
1188  */
1189 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1190 {
1191         /*
1192          * Clear the old hugetlb private page reservation.
1193          * It has already been transferred to new_vma.
1194          *
1195          * During a mremap() operation of a hugetlb vma we call move_vma()
1196          * which copies vma into new_vma and unmaps vma. After the copy
1197          * operation both new_vma and vma share a reference to the resv_map
1198          * struct, and at that point vma is about to be unmapped. We don't
1199          * want to return the reservation to the pool at unmap of vma because
1200          * the reservation still lives on in new_vma, so simply decrement the
1201          * ref here and remove the resv_map reference from this vma.
1202          */
1203         struct resv_map *reservations = vma_resv_map(vma);
1204
1205         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1207                 kref_put(&reservations->refs, resv_map_release);
1208         }
1209
1210         hugetlb_dup_vma_private(vma);
1211 }
1212
1213 /* Returns true if the VMA has associated reserve pages */
1214 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1215 {
1216         if (vma->vm_flags & VM_NORESERVE) {
1217                 /*
1218                  * This address is already reserved by other process(chg == 0),
1219                  * so, we should decrement reserved count. Without decrementing,
1220                  * reserve count remains after releasing inode, because this
1221                  * allocated page will go into page cache and is regarded as
1222                  * coming from reserved pool in releasing step.  Currently, we
1223                  * don't have any other solution to deal with this situation
1224                  * properly, so add work-around here.
1225                  */
1226                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1227                         return true;
1228                 else
1229                         return false;
1230         }
1231
1232         /* Shared mappings always use reserves */
1233         if (vma->vm_flags & VM_MAYSHARE) {
1234                 /*
1235                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1236                  * be a region map for all pages.  The only situation where
1237                  * there is no region map is if a hole was punched via
1238                  * fallocate.  In this case, there really are no reserves to
1239                  * use.  This situation is indicated if chg != 0.
1240                  */
1241                 if (chg)
1242                         return false;
1243                 else
1244                         return true;
1245         }
1246
1247         /*
1248          * Only the process that called mmap() has reserves for
1249          * private mappings.
1250          */
1251         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1252                 /*
1253                  * Like the shared case above, a hole punch or truncate
1254                  * could have been performed on the private mapping.
1255                  * Examine the value of chg to determine if reserves
1256                  * actually exist or were previously consumed.
1257                  * Very Subtle - The value of chg comes from a previous
1258                  * call to vma_needs_reserves().  The reserve map for
1259                  * private mappings has different (opposite) semantics
1260                  * than that of shared mappings.  vma_needs_reserves()
1261                  * has already taken this difference in semantics into
1262                  * account.  Therefore, the meaning of chg is the same
1263                  * as in the shared case above.  Code could easily be
1264                  * combined, but keeping it separate draws attention to
1265                  * subtle differences.
1266                  */
1267                 if (chg)
1268                         return false;
1269                 else
1270                         return true;
1271         }
1272
1273         return false;
1274 }
1275
1276 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1277 {
1278         int nid = folio_nid(folio);
1279
1280         lockdep_assert_held(&hugetlb_lock);
1281         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1282
1283         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1284         h->free_huge_pages++;
1285         h->free_huge_pages_node[nid]++;
1286         folio_set_hugetlb_freed(folio);
1287 }
1288
1289 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1290 {
1291         struct page *page;
1292         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1293
1294         lockdep_assert_held(&hugetlb_lock);
1295         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1296                 if (pin && !is_longterm_pinnable_page(page))
1297                         continue;
1298
1299                 if (PageHWPoison(page))
1300                         continue;
1301
1302                 list_move(&page->lru, &h->hugepage_activelist);
1303                 set_page_refcounted(page);
1304                 ClearHPageFreed(page);
1305                 h->free_huge_pages--;
1306                 h->free_huge_pages_node[nid]--;
1307                 return page;
1308         }
1309
1310         return NULL;
1311 }
1312
1313 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1314                 nodemask_t *nmask)
1315 {
1316         unsigned int cpuset_mems_cookie;
1317         struct zonelist *zonelist;
1318         struct zone *zone;
1319         struct zoneref *z;
1320         int node = NUMA_NO_NODE;
1321
1322         zonelist = node_zonelist(nid, gfp_mask);
1323
1324 retry_cpuset:
1325         cpuset_mems_cookie = read_mems_allowed_begin();
1326         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1327                 struct page *page;
1328
1329                 if (!cpuset_zone_allowed(zone, gfp_mask))
1330                         continue;
1331                 /*
1332                  * no need to ask again on the same node. Pool is node rather than
1333                  * zone aware
1334                  */
1335                 if (zone_to_nid(zone) == node)
1336                         continue;
1337                 node = zone_to_nid(zone);
1338
1339                 page = dequeue_huge_page_node_exact(h, node);
1340                 if (page)
1341                         return page;
1342         }
1343         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1344                 goto retry_cpuset;
1345
1346         return NULL;
1347 }
1348
1349 static unsigned long available_huge_pages(struct hstate *h)
1350 {
1351         return h->free_huge_pages - h->resv_huge_pages;
1352 }
1353
1354 static struct page *dequeue_huge_page_vma(struct hstate *h,
1355                                 struct vm_area_struct *vma,
1356                                 unsigned long address, int avoid_reserve,
1357                                 long chg)
1358 {
1359         struct page *page = NULL;
1360         struct mempolicy *mpol;
1361         gfp_t gfp_mask;
1362         nodemask_t *nodemask;
1363         int nid;
1364
1365         /*
1366          * A child process with MAP_PRIVATE mappings created by their parent
1367          * have no page reserves. This check ensures that reservations are
1368          * not "stolen". The child may still get SIGKILLed
1369          */
1370         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1371                 goto err;
1372
1373         /* If reserves cannot be used, ensure enough pages are in the pool */
1374         if (avoid_reserve && !available_huge_pages(h))
1375                 goto err;
1376
1377         gfp_mask = htlb_alloc_mask(h);
1378         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1379
1380         if (mpol_is_preferred_many(mpol)) {
1381                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1382
1383                 /* Fallback to all nodes if page==NULL */
1384                 nodemask = NULL;
1385         }
1386
1387         if (!page)
1388                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1389
1390         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391                 SetHPageRestoreReserve(page);
1392                 h->resv_huge_pages--;
1393         }
1394
1395         mpol_cond_put(mpol);
1396         return page;
1397
1398 err:
1399         return NULL;
1400 }
1401
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411         nid = next_node_in(nid, *nodes_allowed);
1412         VM_BUG_ON(nid >= MAX_NUMNODES);
1413
1414         return nid;
1415 }
1416
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419         if (!node_isset(nid, *nodes_allowed))
1420                 nid = next_node_allowed(nid, nodes_allowed);
1421         return nid;
1422 }
1423
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431                                         nodemask_t *nodes_allowed)
1432 {
1433         int nid;
1434
1435         VM_BUG_ON(!nodes_allowed);
1436
1437         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439
1440         return nid;
1441 }
1442
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451         int nid;
1452
1453         VM_BUG_ON(!nodes_allowed);
1454
1455         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457
1458         return nid;
1459 }
1460
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1462         for (nr_nodes = nodes_weight(*mask);                            \
1463                 nr_nodes > 0 &&                                         \
1464                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1465                 nr_nodes--)
1466
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1468         for (nr_nodes = nodes_weight(*mask);                            \
1469                 nr_nodes > 0 &&                                         \
1470                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1471                 nr_nodes--)
1472
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475                                         unsigned int order, bool demote)
1476 {
1477         int i;
1478         int nr_pages = 1 << order;
1479         struct page *p;
1480
1481         atomic_set(folio_mapcount_ptr(folio), 0);
1482         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1483         atomic_set(folio_pincount_ptr(folio), 0);
1484
1485         for (i = 1; i < nr_pages; i++) {
1486                 p = folio_page(folio, i);
1487                 p->mapping = NULL;
1488                 clear_compound_head(p);
1489                 if (!demote)
1490                         set_page_refcounted(p);
1491         }
1492
1493         folio_set_compound_order(folio, 0);
1494         __folio_clear_head(folio);
1495 }
1496
1497 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1498                                         unsigned int order)
1499 {
1500         __destroy_compound_gigantic_folio(folio, order, true);
1501 }
1502
1503 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1504 static void destroy_compound_gigantic_folio(struct folio *folio,
1505                                         unsigned int order)
1506 {
1507         __destroy_compound_gigantic_folio(folio, order, false);
1508 }
1509
1510 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1511 {
1512         /*
1513          * If the page isn't allocated using the cma allocator,
1514          * cma_release() returns false.
1515          */
1516 #ifdef CONFIG_CMA
1517         int nid = folio_nid(folio);
1518
1519         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1520                 return;
1521 #endif
1522
1523         free_contig_range(folio_pfn(folio), 1 << order);
1524 }
1525
1526 #ifdef CONFIG_CONTIG_ALLOC
1527 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1528                 int nid, nodemask_t *nodemask)
1529 {
1530         struct page *page;
1531         unsigned long nr_pages = pages_per_huge_page(h);
1532         if (nid == NUMA_NO_NODE)
1533                 nid = numa_mem_id();
1534
1535 #ifdef CONFIG_CMA
1536         {
1537                 int node;
1538
1539                 if (hugetlb_cma[nid]) {
1540                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1541                                         huge_page_order(h), true);
1542                         if (page)
1543                                 return page_folio(page);
1544                 }
1545
1546                 if (!(gfp_mask & __GFP_THISNODE)) {
1547                         for_each_node_mask(node, *nodemask) {
1548                                 if (node == nid || !hugetlb_cma[node])
1549                                         continue;
1550
1551                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1552                                                 huge_page_order(h), true);
1553                                 if (page)
1554                                         return page_folio(page);
1555                         }
1556                 }
1557         }
1558 #endif
1559
1560         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1561         return page ? page_folio(page) : NULL;
1562 }
1563
1564 #else /* !CONFIG_CONTIG_ALLOC */
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566                                         int nid, nodemask_t *nodemask)
1567 {
1568         return NULL;
1569 }
1570 #endif /* CONFIG_CONTIG_ALLOC */
1571
1572 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1573 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1574                                         int nid, nodemask_t *nodemask)
1575 {
1576         return NULL;
1577 }
1578 static inline void free_gigantic_folio(struct folio *folio,
1579                                                 unsigned int order) { }
1580 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1581                                                 unsigned int order) { }
1582 #endif
1583
1584 /*
1585  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1586  * as just a compound page.
1587  *
1588  * A reference is held on the folio, except in the case of demote.
1589  *
1590  * Must be called with hugetlb lock held.
1591  */
1592 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1593                                                         bool adjust_surplus,
1594                                                         bool demote)
1595 {
1596         int nid = folio_nid(folio);
1597
1598         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1599         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1600
1601         lockdep_assert_held(&hugetlb_lock);
1602         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1603                 return;
1604
1605         list_del(&folio->lru);
1606
1607         if (folio_test_hugetlb_freed(folio)) {
1608                 h->free_huge_pages--;
1609                 h->free_huge_pages_node[nid]--;
1610         }
1611         if (adjust_surplus) {
1612                 h->surplus_huge_pages--;
1613                 h->surplus_huge_pages_node[nid]--;
1614         }
1615
1616         /*
1617          * Very subtle
1618          *
1619          * For non-gigantic pages set the destructor to the normal compound
1620          * page dtor.  This is needed in case someone takes an additional
1621          * temporary ref to the page, and freeing is delayed until they drop
1622          * their reference.
1623          *
1624          * For gigantic pages set the destructor to the null dtor.  This
1625          * destructor will never be called.  Before freeing the gigantic
1626          * page destroy_compound_gigantic_folio will turn the folio into a
1627          * simple group of pages.  After this the destructor does not
1628          * apply.
1629          *
1630          * This handles the case where more than one ref is held when and
1631          * after update_and_free_hugetlb_folio is called.
1632          *
1633          * In the case of demote we do not ref count the page as it will soon
1634          * be turned into a page of smaller size.
1635          */
1636         if (!demote)
1637                 folio_ref_unfreeze(folio, 1);
1638         if (hstate_is_gigantic(h))
1639                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1640         else
1641                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1642
1643         h->nr_huge_pages--;
1644         h->nr_huge_pages_node[nid]--;
1645 }
1646
1647 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1648                                                         bool adjust_surplus)
1649 {
1650         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1651 }
1652
1653 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1654                                                         bool adjust_surplus)
1655 {
1656         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1657 }
1658
1659 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1660                              bool adjust_surplus)
1661 {
1662         int zeroed;
1663         int nid = folio_nid(folio);
1664
1665         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1666
1667         lockdep_assert_held(&hugetlb_lock);
1668
1669         INIT_LIST_HEAD(&folio->lru);
1670         h->nr_huge_pages++;
1671         h->nr_huge_pages_node[nid]++;
1672
1673         if (adjust_surplus) {
1674                 h->surplus_huge_pages++;
1675                 h->surplus_huge_pages_node[nid]++;
1676         }
1677
1678         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1679         folio_change_private(folio, NULL);
1680         /*
1681          * We have to set hugetlb_vmemmap_optimized again as above
1682          * folio_change_private(folio, NULL) cleared it.
1683          */
1684         folio_set_hugetlb_vmemmap_optimized(folio);
1685
1686         /*
1687          * This folio is about to be managed by the hugetlb allocator and
1688          * should have no users.  Drop our reference, and check for others
1689          * just in case.
1690          */
1691         zeroed = folio_put_testzero(folio);
1692         if (unlikely(!zeroed))
1693                 /*
1694                  * It is VERY unlikely soneone else has taken a ref on
1695                  * the page.  In this case, we simply return as the
1696                  * hugetlb destructor (free_huge_page) will be called
1697                  * when this other ref is dropped.
1698                  */
1699                 return;
1700
1701         arch_clear_hugepage_flags(&folio->page);
1702         enqueue_hugetlb_folio(h, folio);
1703 }
1704
1705 static void __update_and_free_page(struct hstate *h, struct page *page)
1706 {
1707         int i;
1708         struct folio *folio = page_folio(page);
1709         struct page *subpage;
1710
1711         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1712                 return;
1713
1714         /*
1715          * If we don't know which subpages are hwpoisoned, we can't free
1716          * the hugepage, so it's leaked intentionally.
1717          */
1718         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1719                 return;
1720
1721         if (hugetlb_vmemmap_restore(h, page)) {
1722                 spin_lock_irq(&hugetlb_lock);
1723                 /*
1724                  * If we cannot allocate vmemmap pages, just refuse to free the
1725                  * page and put the page back on the hugetlb free list and treat
1726                  * as a surplus page.
1727                  */
1728                 add_hugetlb_folio(h, folio, true);
1729                 spin_unlock_irq(&hugetlb_lock);
1730                 return;
1731         }
1732
1733         /*
1734          * Move PageHWPoison flag from head page to the raw error pages,
1735          * which makes any healthy subpages reusable.
1736          */
1737         if (unlikely(folio_test_hwpoison(folio)))
1738                 hugetlb_clear_page_hwpoison(&folio->page);
1739
1740         for (i = 0; i < pages_per_huge_page(h); i++) {
1741                 subpage = folio_page(folio, i);
1742                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1743                                 1 << PG_referenced | 1 << PG_dirty |
1744                                 1 << PG_active | 1 << PG_private |
1745                                 1 << PG_writeback);
1746         }
1747
1748         /*
1749          * Non-gigantic pages demoted from CMA allocated gigantic pages
1750          * need to be given back to CMA in free_gigantic_folio.
1751          */
1752         if (hstate_is_gigantic(h) ||
1753             hugetlb_cma_folio(folio, huge_page_order(h))) {
1754                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1755                 free_gigantic_folio(folio, huge_page_order(h));
1756         } else {
1757                 __free_pages(page, huge_page_order(h));
1758         }
1759 }
1760
1761 /*
1762  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1763  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765  * the vmemmap pages.
1766  *
1767  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768  * freed and frees them one-by-one. As the page->mapping pointer is going
1769  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770  * structure of a lockless linked list of huge pages to be freed.
1771  */
1772 static LLIST_HEAD(hpage_freelist);
1773
1774 static void free_hpage_workfn(struct work_struct *work)
1775 {
1776         struct llist_node *node;
1777
1778         node = llist_del_all(&hpage_freelist);
1779
1780         while (node) {
1781                 struct page *page;
1782                 struct hstate *h;
1783
1784                 page = container_of((struct address_space **)node,
1785                                      struct page, mapping);
1786                 node = node->next;
1787                 page->mapping = NULL;
1788                 /*
1789                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1790                  * is going to trigger because a previous call to
1791                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1792                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1793                  * directly.
1794                  */
1795                 h = size_to_hstate(page_size(page));
1796
1797                 __update_and_free_page(h, page);
1798
1799                 cond_resched();
1800         }
1801 }
1802 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803
1804 static inline void flush_free_hpage_work(struct hstate *h)
1805 {
1806         if (hugetlb_vmemmap_optimizable(h))
1807                 flush_work(&free_hpage_work);
1808 }
1809
1810 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1811                                  bool atomic)
1812 {
1813         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1814                 __update_and_free_page(h, &folio->page);
1815                 return;
1816         }
1817
1818         /*
1819          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820          *
1821          * Only call schedule_work() if hpage_freelist is previously
1822          * empty. Otherwise, schedule_work() had been called but the workfn
1823          * hasn't retrieved the list yet.
1824          */
1825         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1826                 schedule_work(&free_hpage_work);
1827 }
1828
1829 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1830 {
1831         struct page *page, *t_page;
1832         struct folio *folio;
1833
1834         list_for_each_entry_safe(page, t_page, list, lru) {
1835                 folio = page_folio(page);
1836                 update_and_free_hugetlb_folio(h, folio, false);
1837                 cond_resched();
1838         }
1839 }
1840
1841 struct hstate *size_to_hstate(unsigned long size)
1842 {
1843         struct hstate *h;
1844
1845         for_each_hstate(h) {
1846                 if (huge_page_size(h) == size)
1847                         return h;
1848         }
1849         return NULL;
1850 }
1851
1852 void free_huge_page(struct page *page)
1853 {
1854         /*
1855          * Can't pass hstate in here because it is called from the
1856          * compound page destructor.
1857          */
1858         struct folio *folio = page_folio(page);
1859         struct hstate *h = folio_hstate(folio);
1860         int nid = folio_nid(folio);
1861         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1862         bool restore_reserve;
1863         unsigned long flags;
1864
1865         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1866         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1867
1868         hugetlb_set_folio_subpool(folio, NULL);
1869         if (folio_test_anon(folio))
1870                 __ClearPageAnonExclusive(&folio->page);
1871         folio->mapping = NULL;
1872         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1873         folio_clear_hugetlb_restore_reserve(folio);
1874
1875         /*
1876          * If HPageRestoreReserve was set on page, page allocation consumed a
1877          * reservation.  If the page was associated with a subpool, there
1878          * would have been a page reserved in the subpool before allocation
1879          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1880          * reservation, do not call hugepage_subpool_put_pages() as this will
1881          * remove the reserved page from the subpool.
1882          */
1883         if (!restore_reserve) {
1884                 /*
1885                  * A return code of zero implies that the subpool will be
1886                  * under its minimum size if the reservation is not restored
1887                  * after page is free.  Therefore, force restore_reserve
1888                  * operation.
1889                  */
1890                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1891                         restore_reserve = true;
1892         }
1893
1894         spin_lock_irqsave(&hugetlb_lock, flags);
1895         folio_clear_hugetlb_migratable(folio);
1896         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1897                                      pages_per_huge_page(h), folio);
1898         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1899                                           pages_per_huge_page(h), folio);
1900         if (restore_reserve)
1901                 h->resv_huge_pages++;
1902
1903         if (folio_test_hugetlb_temporary(folio)) {
1904                 remove_hugetlb_folio(h, folio, false);
1905                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1906                 update_and_free_hugetlb_folio(h, folio, true);
1907         } else if (h->surplus_huge_pages_node[nid]) {
1908                 /* remove the page from active list */
1909                 remove_hugetlb_folio(h, folio, true);
1910                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1911                 update_and_free_hugetlb_folio(h, folio, true);
1912         } else {
1913                 arch_clear_hugepage_flags(page);
1914                 enqueue_hugetlb_folio(h, folio);
1915                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1916         }
1917 }
1918
1919 /*
1920  * Must be called with the hugetlb lock held
1921  */
1922 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1923 {
1924         lockdep_assert_held(&hugetlb_lock);
1925         h->nr_huge_pages++;
1926         h->nr_huge_pages_node[nid]++;
1927 }
1928
1929 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1930 {
1931         hugetlb_vmemmap_optimize(h, &folio->page);
1932         INIT_LIST_HEAD(&folio->lru);
1933         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1934         hugetlb_set_folio_subpool(folio, NULL);
1935         set_hugetlb_cgroup(folio, NULL);
1936         set_hugetlb_cgroup_rsvd(folio, NULL);
1937 }
1938
1939 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1940 {
1941         __prep_new_hugetlb_folio(h, folio);
1942         spin_lock_irq(&hugetlb_lock);
1943         __prep_account_new_huge_page(h, nid);
1944         spin_unlock_irq(&hugetlb_lock);
1945 }
1946
1947 static bool __prep_compound_gigantic_folio(struct folio *folio,
1948                                         unsigned int order, bool demote)
1949 {
1950         int i, j;
1951         int nr_pages = 1 << order;
1952         struct page *p;
1953
1954         __folio_clear_reserved(folio);
1955         __folio_set_head(folio);
1956         /* we rely on prep_new_hugetlb_folio to set the destructor */
1957         folio_set_compound_order(folio, order);
1958         for (i = 0; i < nr_pages; i++) {
1959                 p = folio_page(folio, i);
1960
1961                 /*
1962                  * For gigantic hugepages allocated through bootmem at
1963                  * boot, it's safer to be consistent with the not-gigantic
1964                  * hugepages and clear the PG_reserved bit from all tail pages
1965                  * too.  Otherwise drivers using get_user_pages() to access tail
1966                  * pages may get the reference counting wrong if they see
1967                  * PG_reserved set on a tail page (despite the head page not
1968                  * having PG_reserved set).  Enforcing this consistency between
1969                  * head and tail pages allows drivers to optimize away a check
1970                  * on the head page when they need know if put_page() is needed
1971                  * after get_user_pages().
1972                  */
1973                 if (i != 0)     /* head page cleared above */
1974                         __ClearPageReserved(p);
1975                 /*
1976                  * Subtle and very unlikely
1977                  *
1978                  * Gigantic 'page allocators' such as memblock or cma will
1979                  * return a set of pages with each page ref counted.  We need
1980                  * to turn this set of pages into a compound page with tail
1981                  * page ref counts set to zero.  Code such as speculative page
1982                  * cache adding could take a ref on a 'to be' tail page.
1983                  * We need to respect any increased ref count, and only set
1984                  * the ref count to zero if count is currently 1.  If count
1985                  * is not 1, we return an error.  An error return indicates
1986                  * the set of pages can not be converted to a gigantic page.
1987                  * The caller who allocated the pages should then discard the
1988                  * pages using the appropriate free interface.
1989                  *
1990                  * In the case of demote, the ref count will be zero.
1991                  */
1992                 if (!demote) {
1993                         if (!page_ref_freeze(p, 1)) {
1994                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1995                                 goto out_error;
1996                         }
1997                 } else {
1998                         VM_BUG_ON_PAGE(page_count(p), p);
1999                 }
2000                 if (i != 0)
2001                         set_compound_head(p, &folio->page);
2002         }
2003         atomic_set(folio_mapcount_ptr(folio), -1);
2004         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2005         atomic_set(folio_pincount_ptr(folio), 0);
2006         return true;
2007
2008 out_error:
2009         /* undo page modifications made above */
2010         for (j = 0; j < i; j++) {
2011                 p = folio_page(folio, j);
2012                 if (j != 0)
2013                         clear_compound_head(p);
2014                 set_page_refcounted(p);
2015         }
2016         /* need to clear PG_reserved on remaining tail pages  */
2017         for (; j < nr_pages; j++) {
2018                 p = folio_page(folio, j);
2019                 __ClearPageReserved(p);
2020         }
2021         folio_set_compound_order(folio, 0);
2022         __folio_clear_head(folio);
2023         return false;
2024 }
2025
2026 static bool prep_compound_gigantic_folio(struct folio *folio,
2027                                                         unsigned int order)
2028 {
2029         return __prep_compound_gigantic_folio(folio, order, false);
2030 }
2031
2032 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2033                                                         unsigned int order)
2034 {
2035         return __prep_compound_gigantic_folio(folio, order, true);
2036 }
2037
2038 /*
2039  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2040  * transparent huge pages.  See the PageTransHuge() documentation for more
2041  * details.
2042  */
2043 int PageHuge(struct page *page)
2044 {
2045         if (!PageCompound(page))
2046                 return 0;
2047
2048         page = compound_head(page);
2049         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2050 }
2051 EXPORT_SYMBOL_GPL(PageHuge);
2052
2053 /*
2054  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055  * normal or transparent huge pages.
2056  */
2057 int PageHeadHuge(struct page *page_head)
2058 {
2059         if (!PageHead(page_head))
2060                 return 0;
2061
2062         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2063 }
2064 EXPORT_SYMBOL_GPL(PageHeadHuge);
2065
2066 /*
2067  * Find and lock address space (mapping) in write mode.
2068  *
2069  * Upon entry, the page is locked which means that page_mapping() is
2070  * stable.  Due to locking order, we can only trylock_write.  If we can
2071  * not get the lock, simply return NULL to caller.
2072  */
2073 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2074 {
2075         struct address_space *mapping = page_mapping(hpage);
2076
2077         if (!mapping)
2078                 return mapping;
2079
2080         if (i_mmap_trylock_write(mapping))
2081                 return mapping;
2082
2083         return NULL;
2084 }
2085
2086 pgoff_t hugetlb_basepage_index(struct page *page)
2087 {
2088         struct page *page_head = compound_head(page);
2089         pgoff_t index = page_index(page_head);
2090         unsigned long compound_idx;
2091
2092         if (compound_order(page_head) >= MAX_ORDER)
2093                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2094         else
2095                 compound_idx = page - page_head;
2096
2097         return (index << compound_order(page_head)) + compound_idx;
2098 }
2099
2100 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2101                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2102                 nodemask_t *node_alloc_noretry)
2103 {
2104         int order = huge_page_order(h);
2105         struct page *page;
2106         bool alloc_try_hard = true;
2107         bool retry = true;
2108
2109         /*
2110          * By default we always try hard to allocate the page with
2111          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2112          * a loop (to adjust global huge page counts) and previous allocation
2113          * failed, do not continue to try hard on the same node.  Use the
2114          * node_alloc_noretry bitmap to manage this state information.
2115          */
2116         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2117                 alloc_try_hard = false;
2118         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2119         if (alloc_try_hard)
2120                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2121         if (nid == NUMA_NO_NODE)
2122                 nid = numa_mem_id();
2123 retry:
2124         page = __alloc_pages(gfp_mask, order, nid, nmask);
2125
2126         /* Freeze head page */
2127         if (page && !page_ref_freeze(page, 1)) {
2128                 __free_pages(page, order);
2129                 if (retry) {    /* retry once */
2130                         retry = false;
2131                         goto retry;
2132                 }
2133                 /* WOW!  twice in a row. */
2134                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2135                 page = NULL;
2136         }
2137
2138         /*
2139          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2140          * indicates an overall state change.  Clear bit so that we resume
2141          * normal 'try hard' allocations.
2142          */
2143         if (node_alloc_noretry && page && !alloc_try_hard)
2144                 node_clear(nid, *node_alloc_noretry);
2145
2146         /*
2147          * If we tried hard to get a page but failed, set bit so that
2148          * subsequent attempts will not try as hard until there is an
2149          * overall state change.
2150          */
2151         if (node_alloc_noretry && !page && alloc_try_hard)
2152                 node_set(nid, *node_alloc_noretry);
2153
2154         if (!page) {
2155                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2156                 return NULL;
2157         }
2158
2159         __count_vm_event(HTLB_BUDDY_PGALLOC);
2160         return page_folio(page);
2161 }
2162
2163 /*
2164  * Common helper to allocate a fresh hugetlb page. All specific allocators
2165  * should use this function to get new hugetlb pages
2166  *
2167  * Note that returned page is 'frozen':  ref count of head page and all tail
2168  * pages is zero.
2169  */
2170 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2171                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2172                 nodemask_t *node_alloc_noretry)
2173 {
2174         struct folio *folio;
2175         bool retry = false;
2176
2177 retry:
2178         if (hstate_is_gigantic(h))
2179                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2180         else
2181                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2182                                 nid, nmask, node_alloc_noretry);
2183         if (!folio)
2184                 return NULL;
2185         if (hstate_is_gigantic(h)) {
2186                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2187                         /*
2188                          * Rare failure to convert pages to compound page.
2189                          * Free pages and try again - ONCE!
2190                          */
2191                         free_gigantic_folio(folio, huge_page_order(h));
2192                         if (!retry) {
2193                                 retry = true;
2194                                 goto retry;
2195                         }
2196                         return NULL;
2197                 }
2198         }
2199         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2200
2201         return folio;
2202 }
2203
2204 /*
2205  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2206  * manner.
2207  */
2208 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2209                                 nodemask_t *node_alloc_noretry)
2210 {
2211         struct folio *folio;
2212         int nr_nodes, node;
2213         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2214
2215         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2216                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2217                                         nodes_allowed, node_alloc_noretry);
2218                 if (folio) {
2219                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2220                         return 1;
2221                 }
2222         }
2223
2224         return 0;
2225 }
2226
2227 /*
2228  * Remove huge page from pool from next node to free.  Attempt to keep
2229  * persistent huge pages more or less balanced over allowed nodes.
2230  * This routine only 'removes' the hugetlb page.  The caller must make
2231  * an additional call to free the page to low level allocators.
2232  * Called with hugetlb_lock locked.
2233  */
2234 static struct page *remove_pool_huge_page(struct hstate *h,
2235                                                 nodemask_t *nodes_allowed,
2236                                                  bool acct_surplus)
2237 {
2238         int nr_nodes, node;
2239         struct page *page = NULL;
2240         struct folio *folio;
2241
2242         lockdep_assert_held(&hugetlb_lock);
2243         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2244                 /*
2245                  * If we're returning unused surplus pages, only examine
2246                  * nodes with surplus pages.
2247                  */
2248                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2249                     !list_empty(&h->hugepage_freelists[node])) {
2250                         page = list_entry(h->hugepage_freelists[node].next,
2251                                           struct page, lru);
2252                         folio = page_folio(page);
2253                         remove_hugetlb_folio(h, folio, acct_surplus);
2254                         break;
2255                 }
2256         }
2257
2258         return page;
2259 }
2260
2261 /*
2262  * Dissolve a given free hugepage into free buddy pages. This function does
2263  * nothing for in-use hugepages and non-hugepages.
2264  * This function returns values like below:
2265  *
2266  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2267  *           when the system is under memory pressure and the feature of
2268  *           freeing unused vmemmap pages associated with each hugetlb page
2269  *           is enabled.
2270  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2271  *           (allocated or reserved.)
2272  *       0:  successfully dissolved free hugepages or the page is not a
2273  *           hugepage (considered as already dissolved)
2274  */
2275 int dissolve_free_huge_page(struct page *page)
2276 {
2277         int rc = -EBUSY;
2278         struct folio *folio = page_folio(page);
2279
2280 retry:
2281         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2282         if (!folio_test_hugetlb(folio))
2283                 return 0;
2284
2285         spin_lock_irq(&hugetlb_lock);
2286         if (!folio_test_hugetlb(folio)) {
2287                 rc = 0;
2288                 goto out;
2289         }
2290
2291         if (!folio_ref_count(folio)) {
2292                 struct hstate *h = folio_hstate(folio);
2293                 if (!available_huge_pages(h))
2294                         goto out;
2295
2296                 /*
2297                  * We should make sure that the page is already on the free list
2298                  * when it is dissolved.
2299                  */
2300                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2301                         spin_unlock_irq(&hugetlb_lock);
2302                         cond_resched();
2303
2304                         /*
2305                          * Theoretically, we should return -EBUSY when we
2306                          * encounter this race. In fact, we have a chance
2307                          * to successfully dissolve the page if we do a
2308                          * retry. Because the race window is quite small.
2309                          * If we seize this opportunity, it is an optimization
2310                          * for increasing the success rate of dissolving page.
2311                          */
2312                         goto retry;
2313                 }
2314
2315                 remove_hugetlb_folio(h, folio, false);
2316                 h->max_huge_pages--;
2317                 spin_unlock_irq(&hugetlb_lock);
2318
2319                 /*
2320                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2321                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2322                  * free the page if it can not allocate required vmemmap.  We
2323                  * need to adjust max_huge_pages if the page is not freed.
2324                  * Attempt to allocate vmemmmap here so that we can take
2325                  * appropriate action on failure.
2326                  */
2327                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2328                 if (!rc) {
2329                         update_and_free_hugetlb_folio(h, folio, false);
2330                 } else {
2331                         spin_lock_irq(&hugetlb_lock);
2332                         add_hugetlb_folio(h, folio, false);
2333                         h->max_huge_pages++;
2334                         spin_unlock_irq(&hugetlb_lock);
2335                 }
2336
2337                 return rc;
2338         }
2339 out:
2340         spin_unlock_irq(&hugetlb_lock);
2341         return rc;
2342 }
2343
2344 /*
2345  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2346  * make specified memory blocks removable from the system.
2347  * Note that this will dissolve a free gigantic hugepage completely, if any
2348  * part of it lies within the given range.
2349  * Also note that if dissolve_free_huge_page() returns with an error, all
2350  * free hugepages that were dissolved before that error are lost.
2351  */
2352 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2353 {
2354         unsigned long pfn;
2355         struct page *page;
2356         int rc = 0;
2357         unsigned int order;
2358         struct hstate *h;
2359
2360         if (!hugepages_supported())
2361                 return rc;
2362
2363         order = huge_page_order(&default_hstate);
2364         for_each_hstate(h)
2365                 order = min(order, huge_page_order(h));
2366
2367         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2368                 page = pfn_to_page(pfn);
2369                 rc = dissolve_free_huge_page(page);
2370                 if (rc)
2371                         break;
2372         }
2373
2374         return rc;
2375 }
2376
2377 /*
2378  * Allocates a fresh surplus page from the page allocator.
2379  */
2380 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2381                                                 int nid, nodemask_t *nmask)
2382 {
2383         struct folio *folio = NULL;
2384
2385         if (hstate_is_gigantic(h))
2386                 return NULL;
2387
2388         spin_lock_irq(&hugetlb_lock);
2389         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2390                 goto out_unlock;
2391         spin_unlock_irq(&hugetlb_lock);
2392
2393         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2394         if (!folio)
2395                 return NULL;
2396
2397         spin_lock_irq(&hugetlb_lock);
2398         /*
2399          * We could have raced with the pool size change.
2400          * Double check that and simply deallocate the new page
2401          * if we would end up overcommiting the surpluses. Abuse
2402          * temporary page to workaround the nasty free_huge_page
2403          * codeflow
2404          */
2405         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2406                 folio_set_hugetlb_temporary(folio);
2407                 spin_unlock_irq(&hugetlb_lock);
2408                 free_huge_page(&folio->page);
2409                 return NULL;
2410         }
2411
2412         h->surplus_huge_pages++;
2413         h->surplus_huge_pages_node[folio_nid(folio)]++;
2414
2415 out_unlock:
2416         spin_unlock_irq(&hugetlb_lock);
2417
2418         return &folio->page;
2419 }
2420
2421 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2422                                      int nid, nodemask_t *nmask)
2423 {
2424         struct folio *folio;
2425
2426         if (hstate_is_gigantic(h))
2427                 return NULL;
2428
2429         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2430         if (!folio)
2431                 return NULL;
2432
2433         /* fresh huge pages are frozen */
2434         folio_ref_unfreeze(folio, 1);
2435         /*
2436          * We do not account these pages as surplus because they are only
2437          * temporary and will be released properly on the last reference
2438          */
2439         folio_set_hugetlb_temporary(folio);
2440
2441         return &folio->page;
2442 }
2443
2444 /*
2445  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2446  */
2447 static
2448 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2449                 struct vm_area_struct *vma, unsigned long addr)
2450 {
2451         struct page *page = NULL;
2452         struct mempolicy *mpol;
2453         gfp_t gfp_mask = htlb_alloc_mask(h);
2454         int nid;
2455         nodemask_t *nodemask;
2456
2457         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2458         if (mpol_is_preferred_many(mpol)) {
2459                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2460
2461                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2462                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2463
2464                 /* Fallback to all nodes if page==NULL */
2465                 nodemask = NULL;
2466         }
2467
2468         if (!page)
2469                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2470         mpol_cond_put(mpol);
2471         return page;
2472 }
2473
2474 /* page migration callback function */
2475 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2476                 nodemask_t *nmask, gfp_t gfp_mask)
2477 {
2478         spin_lock_irq(&hugetlb_lock);
2479         if (available_huge_pages(h)) {
2480                 struct page *page;
2481
2482                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2483                 if (page) {
2484                         spin_unlock_irq(&hugetlb_lock);
2485                         return page;
2486                 }
2487         }
2488         spin_unlock_irq(&hugetlb_lock);
2489
2490         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2491 }
2492
2493 /* mempolicy aware migration callback */
2494 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2495                 unsigned long address)
2496 {
2497         struct mempolicy *mpol;
2498         nodemask_t *nodemask;
2499         struct page *page;
2500         gfp_t gfp_mask;
2501         int node;
2502
2503         gfp_mask = htlb_alloc_mask(h);
2504         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2505         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2506         mpol_cond_put(mpol);
2507
2508         return page;
2509 }
2510
2511 /*
2512  * Increase the hugetlb pool such that it can accommodate a reservation
2513  * of size 'delta'.
2514  */
2515 static int gather_surplus_pages(struct hstate *h, long delta)
2516         __must_hold(&hugetlb_lock)
2517 {
2518         LIST_HEAD(surplus_list);
2519         struct page *page, *tmp;
2520         int ret;
2521         long i;
2522         long needed, allocated;
2523         bool alloc_ok = true;
2524
2525         lockdep_assert_held(&hugetlb_lock);
2526         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2527         if (needed <= 0) {
2528                 h->resv_huge_pages += delta;
2529                 return 0;
2530         }
2531
2532         allocated = 0;
2533
2534         ret = -ENOMEM;
2535 retry:
2536         spin_unlock_irq(&hugetlb_lock);
2537         for (i = 0; i < needed; i++) {
2538                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2539                                 NUMA_NO_NODE, NULL);
2540                 if (!page) {
2541                         alloc_ok = false;
2542                         break;
2543                 }
2544                 list_add(&page->lru, &surplus_list);
2545                 cond_resched();
2546         }
2547         allocated += i;
2548
2549         /*
2550          * After retaking hugetlb_lock, we need to recalculate 'needed'
2551          * because either resv_huge_pages or free_huge_pages may have changed.
2552          */
2553         spin_lock_irq(&hugetlb_lock);
2554         needed = (h->resv_huge_pages + delta) -
2555                         (h->free_huge_pages + allocated);
2556         if (needed > 0) {
2557                 if (alloc_ok)
2558                         goto retry;
2559                 /*
2560                  * We were not able to allocate enough pages to
2561                  * satisfy the entire reservation so we free what
2562                  * we've allocated so far.
2563                  */
2564                 goto free;
2565         }
2566         /*
2567          * The surplus_list now contains _at_least_ the number of extra pages
2568          * needed to accommodate the reservation.  Add the appropriate number
2569          * of pages to the hugetlb pool and free the extras back to the buddy
2570          * allocator.  Commit the entire reservation here to prevent another
2571          * process from stealing the pages as they are added to the pool but
2572          * before they are reserved.
2573          */
2574         needed += allocated;
2575         h->resv_huge_pages += delta;
2576         ret = 0;
2577
2578         /* Free the needed pages to the hugetlb pool */
2579         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2580                 if ((--needed) < 0)
2581                         break;
2582                 /* Add the page to the hugetlb allocator */
2583                 enqueue_hugetlb_folio(h, page_folio(page));
2584         }
2585 free:
2586         spin_unlock_irq(&hugetlb_lock);
2587
2588         /*
2589          * Free unnecessary surplus pages to the buddy allocator.
2590          * Pages have no ref count, call free_huge_page directly.
2591          */
2592         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2593                 free_huge_page(page);
2594         spin_lock_irq(&hugetlb_lock);
2595
2596         return ret;
2597 }
2598
2599 /*
2600  * This routine has two main purposes:
2601  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2602  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2603  *    to the associated reservation map.
2604  * 2) Free any unused surplus pages that may have been allocated to satisfy
2605  *    the reservation.  As many as unused_resv_pages may be freed.
2606  */
2607 static void return_unused_surplus_pages(struct hstate *h,
2608                                         unsigned long unused_resv_pages)
2609 {
2610         unsigned long nr_pages;
2611         struct page *page;
2612         LIST_HEAD(page_list);
2613
2614         lockdep_assert_held(&hugetlb_lock);
2615         /* Uncommit the reservation */
2616         h->resv_huge_pages -= unused_resv_pages;
2617
2618         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2619                 goto out;
2620
2621         /*
2622          * Part (or even all) of the reservation could have been backed
2623          * by pre-allocated pages. Only free surplus pages.
2624          */
2625         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2626
2627         /*
2628          * We want to release as many surplus pages as possible, spread
2629          * evenly across all nodes with memory. Iterate across these nodes
2630          * until we can no longer free unreserved surplus pages. This occurs
2631          * when the nodes with surplus pages have no free pages.
2632          * remove_pool_huge_page() will balance the freed pages across the
2633          * on-line nodes with memory and will handle the hstate accounting.
2634          */
2635         while (nr_pages--) {
2636                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2637                 if (!page)
2638                         goto out;
2639
2640                 list_add(&page->lru, &page_list);
2641         }
2642
2643 out:
2644         spin_unlock_irq(&hugetlb_lock);
2645         update_and_free_pages_bulk(h, &page_list);
2646         spin_lock_irq(&hugetlb_lock);
2647 }
2648
2649
2650 /*
2651  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2652  * are used by the huge page allocation routines to manage reservations.
2653  *
2654  * vma_needs_reservation is called to determine if the huge page at addr
2655  * within the vma has an associated reservation.  If a reservation is
2656  * needed, the value 1 is returned.  The caller is then responsible for
2657  * managing the global reservation and subpool usage counts.  After
2658  * the huge page has been allocated, vma_commit_reservation is called
2659  * to add the page to the reservation map.  If the page allocation fails,
2660  * the reservation must be ended instead of committed.  vma_end_reservation
2661  * is called in such cases.
2662  *
2663  * In the normal case, vma_commit_reservation returns the same value
2664  * as the preceding vma_needs_reservation call.  The only time this
2665  * is not the case is if a reserve map was changed between calls.  It
2666  * is the responsibility of the caller to notice the difference and
2667  * take appropriate action.
2668  *
2669  * vma_add_reservation is used in error paths where a reservation must
2670  * be restored when a newly allocated huge page must be freed.  It is
2671  * to be called after calling vma_needs_reservation to determine if a
2672  * reservation exists.
2673  *
2674  * vma_del_reservation is used in error paths where an entry in the reserve
2675  * map was created during huge page allocation and must be removed.  It is to
2676  * be called after calling vma_needs_reservation to determine if a reservation
2677  * exists.
2678  */
2679 enum vma_resv_mode {
2680         VMA_NEEDS_RESV,
2681         VMA_COMMIT_RESV,
2682         VMA_END_RESV,
2683         VMA_ADD_RESV,
2684         VMA_DEL_RESV,
2685 };
2686 static long __vma_reservation_common(struct hstate *h,
2687                                 struct vm_area_struct *vma, unsigned long addr,
2688                                 enum vma_resv_mode mode)
2689 {
2690         struct resv_map *resv;
2691         pgoff_t idx;
2692         long ret;
2693         long dummy_out_regions_needed;
2694
2695         resv = vma_resv_map(vma);
2696         if (!resv)
2697                 return 1;
2698
2699         idx = vma_hugecache_offset(h, vma, addr);
2700         switch (mode) {
2701         case VMA_NEEDS_RESV:
2702                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2703                 /* We assume that vma_reservation_* routines always operate on
2704                  * 1 page, and that adding to resv map a 1 page entry can only
2705                  * ever require 1 region.
2706                  */
2707                 VM_BUG_ON(dummy_out_regions_needed != 1);
2708                 break;
2709         case VMA_COMMIT_RESV:
2710                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2711                 /* region_add calls of range 1 should never fail. */
2712                 VM_BUG_ON(ret < 0);
2713                 break;
2714         case VMA_END_RESV:
2715                 region_abort(resv, idx, idx + 1, 1);
2716                 ret = 0;
2717                 break;
2718         case VMA_ADD_RESV:
2719                 if (vma->vm_flags & VM_MAYSHARE) {
2720                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2721                         /* region_add calls of range 1 should never fail. */
2722                         VM_BUG_ON(ret < 0);
2723                 } else {
2724                         region_abort(resv, idx, idx + 1, 1);
2725                         ret = region_del(resv, idx, idx + 1);
2726                 }
2727                 break;
2728         case VMA_DEL_RESV:
2729                 if (vma->vm_flags & VM_MAYSHARE) {
2730                         region_abort(resv, idx, idx + 1, 1);
2731                         ret = region_del(resv, idx, idx + 1);
2732                 } else {
2733                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2734                         /* region_add calls of range 1 should never fail. */
2735                         VM_BUG_ON(ret < 0);
2736                 }
2737                 break;
2738         default:
2739                 BUG();
2740         }
2741
2742         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2743                 return ret;
2744         /*
2745          * We know private mapping must have HPAGE_RESV_OWNER set.
2746          *
2747          * In most cases, reserves always exist for private mappings.
2748          * However, a file associated with mapping could have been
2749          * hole punched or truncated after reserves were consumed.
2750          * As subsequent fault on such a range will not use reserves.
2751          * Subtle - The reserve map for private mappings has the
2752          * opposite meaning than that of shared mappings.  If NO
2753          * entry is in the reserve map, it means a reservation exists.
2754          * If an entry exists in the reserve map, it means the
2755          * reservation has already been consumed.  As a result, the
2756          * return value of this routine is the opposite of the
2757          * value returned from reserve map manipulation routines above.
2758          */
2759         if (ret > 0)
2760                 return 0;
2761         if (ret == 0)
2762                 return 1;
2763         return ret;
2764 }
2765
2766 static long vma_needs_reservation(struct hstate *h,
2767                         struct vm_area_struct *vma, unsigned long addr)
2768 {
2769         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2770 }
2771
2772 static long vma_commit_reservation(struct hstate *h,
2773                         struct vm_area_struct *vma, unsigned long addr)
2774 {
2775         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2776 }
2777
2778 static void vma_end_reservation(struct hstate *h,
2779                         struct vm_area_struct *vma, unsigned long addr)
2780 {
2781         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2782 }
2783
2784 static long vma_add_reservation(struct hstate *h,
2785                         struct vm_area_struct *vma, unsigned long addr)
2786 {
2787         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2788 }
2789
2790 static long vma_del_reservation(struct hstate *h,
2791                         struct vm_area_struct *vma, unsigned long addr)
2792 {
2793         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2794 }
2795
2796 /*
2797  * This routine is called to restore reservation information on error paths.
2798  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2799  * the hugetlb mutex should remain held when calling this routine.
2800  *
2801  * It handles two specific cases:
2802  * 1) A reservation was in place and the page consumed the reservation.
2803  *    HPageRestoreReserve is set in the page.
2804  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2805  *    not set.  However, alloc_huge_page always updates the reserve map.
2806  *
2807  * In case 1, free_huge_page later in the error path will increment the
2808  * global reserve count.  But, free_huge_page does not have enough context
2809  * to adjust the reservation map.  This case deals primarily with private
2810  * mappings.  Adjust the reserve map here to be consistent with global
2811  * reserve count adjustments to be made by free_huge_page.  Make sure the
2812  * reserve map indicates there is a reservation present.
2813  *
2814  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2815  */
2816 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2817                         unsigned long address, struct page *page)
2818 {
2819         long rc = vma_needs_reservation(h, vma, address);
2820
2821         if (HPageRestoreReserve(page)) {
2822                 if (unlikely(rc < 0))
2823                         /*
2824                          * Rare out of memory condition in reserve map
2825                          * manipulation.  Clear HPageRestoreReserve so that
2826                          * global reserve count will not be incremented
2827                          * by free_huge_page.  This will make it appear
2828                          * as though the reservation for this page was
2829                          * consumed.  This may prevent the task from
2830                          * faulting in the page at a later time.  This
2831                          * is better than inconsistent global huge page
2832                          * accounting of reserve counts.
2833                          */
2834                         ClearHPageRestoreReserve(page);
2835                 else if (rc)
2836                         (void)vma_add_reservation(h, vma, address);
2837                 else
2838                         vma_end_reservation(h, vma, address);
2839         } else {
2840                 if (!rc) {
2841                         /*
2842                          * This indicates there is an entry in the reserve map
2843                          * not added by alloc_huge_page.  We know it was added
2844                          * before the alloc_huge_page call, otherwise
2845                          * HPageRestoreReserve would be set on the page.
2846                          * Remove the entry so that a subsequent allocation
2847                          * does not consume a reservation.
2848                          */
2849                         rc = vma_del_reservation(h, vma, address);
2850                         if (rc < 0)
2851                                 /*
2852                                  * VERY rare out of memory condition.  Since
2853                                  * we can not delete the entry, set
2854                                  * HPageRestoreReserve so that the reserve
2855                                  * count will be incremented when the page
2856                                  * is freed.  This reserve will be consumed
2857                                  * on a subsequent allocation.
2858                                  */
2859                                 SetHPageRestoreReserve(page);
2860                 } else if (rc < 0) {
2861                         /*
2862                          * Rare out of memory condition from
2863                          * vma_needs_reservation call.  Memory allocation is
2864                          * only attempted if a new entry is needed.  Therefore,
2865                          * this implies there is not an entry in the
2866                          * reserve map.
2867                          *
2868                          * For shared mappings, no entry in the map indicates
2869                          * no reservation.  We are done.
2870                          */
2871                         if (!(vma->vm_flags & VM_MAYSHARE))
2872                                 /*
2873                                  * For private mappings, no entry indicates
2874                                  * a reservation is present.  Since we can
2875                                  * not add an entry, set SetHPageRestoreReserve
2876                                  * on the page so reserve count will be
2877                                  * incremented when freed.  This reserve will
2878                                  * be consumed on a subsequent allocation.
2879                                  */
2880                                 SetHPageRestoreReserve(page);
2881                 } else
2882                         /*
2883                          * No reservation present, do nothing
2884                          */
2885                          vma_end_reservation(h, vma, address);
2886         }
2887 }
2888
2889 /*
2890  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2891  * the old one
2892  * @h: struct hstate old page belongs to
2893  * @old_folio: Old folio to dissolve
2894  * @list: List to isolate the page in case we need to
2895  * Returns 0 on success, otherwise negated error.
2896  */
2897 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2898                         struct folio *old_folio, struct list_head *list)
2899 {
2900         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2901         int nid = folio_nid(old_folio);
2902         struct folio *new_folio;
2903         int ret = 0;
2904
2905         /*
2906          * Before dissolving the folio, we need to allocate a new one for the
2907          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2908          * by doing everything but actually updating counters and adding to
2909          * the pool.  This simplifies and let us do most of the processing
2910          * under the lock.
2911          */
2912         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2913         if (!new_folio)
2914                 return -ENOMEM;
2915         __prep_new_hugetlb_folio(h, new_folio);
2916
2917 retry:
2918         spin_lock_irq(&hugetlb_lock);
2919         if (!folio_test_hugetlb(old_folio)) {
2920                 /*
2921                  * Freed from under us. Drop new_folio too.
2922                  */
2923                 goto free_new;
2924         } else if (folio_ref_count(old_folio)) {
2925                 /*
2926                  * Someone has grabbed the folio, try to isolate it here.
2927                  * Fail with -EBUSY if not possible.
2928                  */
2929                 spin_unlock_irq(&hugetlb_lock);
2930                 ret = isolate_hugetlb(&old_folio->page, list);
2931                 spin_lock_irq(&hugetlb_lock);
2932                 goto free_new;
2933         } else if (!folio_test_hugetlb_freed(old_folio)) {
2934                 /*
2935                  * Folio's refcount is 0 but it has not been enqueued in the
2936                  * freelist yet. Race window is small, so we can succeed here if
2937                  * we retry.
2938                  */
2939                 spin_unlock_irq(&hugetlb_lock);
2940                 cond_resched();
2941                 goto retry;
2942         } else {
2943                 /*
2944                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2945                  * the freelist and decrease the counters. These will be
2946                  * incremented again when calling __prep_account_new_huge_page()
2947                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2948                  * remain stable since this happens under the lock.
2949                  */
2950                 remove_hugetlb_folio(h, old_folio, false);
2951
2952                 /*
2953                  * Ref count on new_folio is already zero as it was dropped
2954                  * earlier.  It can be directly added to the pool free list.
2955                  */
2956                 __prep_account_new_huge_page(h, nid);
2957                 enqueue_hugetlb_folio(h, new_folio);
2958
2959                 /*
2960                  * Folio has been replaced, we can safely free the old one.
2961                  */
2962                 spin_unlock_irq(&hugetlb_lock);
2963                 update_and_free_hugetlb_folio(h, old_folio, false);
2964         }
2965
2966         return ret;
2967
2968 free_new:
2969         spin_unlock_irq(&hugetlb_lock);
2970         /* Folio has a zero ref count, but needs a ref to be freed */
2971         folio_ref_unfreeze(new_folio, 1);
2972         update_and_free_hugetlb_folio(h, new_folio, false);
2973
2974         return ret;
2975 }
2976
2977 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2978 {
2979         struct hstate *h;
2980         struct folio *folio = page_folio(page);
2981         int ret = -EBUSY;
2982
2983         /*
2984          * The page might have been dissolved from under our feet, so make sure
2985          * to carefully check the state under the lock.
2986          * Return success when racing as if we dissolved the page ourselves.
2987          */
2988         spin_lock_irq(&hugetlb_lock);
2989         if (folio_test_hugetlb(folio)) {
2990                 h = folio_hstate(folio);
2991         } else {
2992                 spin_unlock_irq(&hugetlb_lock);
2993                 return 0;
2994         }
2995         spin_unlock_irq(&hugetlb_lock);
2996
2997         /*
2998          * Fence off gigantic pages as there is a cyclic dependency between
2999          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3000          * of bailing out right away without further retrying.
3001          */
3002         if (hstate_is_gigantic(h))
3003                 return -ENOMEM;
3004
3005         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3006                 ret = 0;
3007         else if (!folio_ref_count(folio))
3008                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3009
3010         return ret;
3011 }
3012
3013 struct page *alloc_huge_page(struct vm_area_struct *vma,
3014                                     unsigned long addr, int avoid_reserve)
3015 {
3016         struct hugepage_subpool *spool = subpool_vma(vma);
3017         struct hstate *h = hstate_vma(vma);
3018         struct page *page;
3019         struct folio *folio;
3020         long map_chg, map_commit;
3021         long gbl_chg;
3022         int ret, idx;
3023         struct hugetlb_cgroup *h_cg;
3024         bool deferred_reserve;
3025
3026         idx = hstate_index(h);
3027         /*
3028          * Examine the region/reserve map to determine if the process
3029          * has a reservation for the page to be allocated.  A return
3030          * code of zero indicates a reservation exists (no change).
3031          */
3032         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3033         if (map_chg < 0)
3034                 return ERR_PTR(-ENOMEM);
3035
3036         /*
3037          * Processes that did not create the mapping will have no
3038          * reserves as indicated by the region/reserve map. Check
3039          * that the allocation will not exceed the subpool limit.
3040          * Allocations for MAP_NORESERVE mappings also need to be
3041          * checked against any subpool limit.
3042          */
3043         if (map_chg || avoid_reserve) {
3044                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3045                 if (gbl_chg < 0) {
3046                         vma_end_reservation(h, vma, addr);
3047                         return ERR_PTR(-ENOSPC);
3048                 }
3049
3050                 /*
3051                  * Even though there was no reservation in the region/reserve
3052                  * map, there could be reservations associated with the
3053                  * subpool that can be used.  This would be indicated if the
3054                  * return value of hugepage_subpool_get_pages() is zero.
3055                  * However, if avoid_reserve is specified we still avoid even
3056                  * the subpool reservations.
3057                  */
3058                 if (avoid_reserve)
3059                         gbl_chg = 1;
3060         }
3061
3062         /* If this allocation is not consuming a reservation, charge it now.
3063          */
3064         deferred_reserve = map_chg || avoid_reserve;
3065         if (deferred_reserve) {
3066                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3067                         idx, pages_per_huge_page(h), &h_cg);
3068                 if (ret)
3069                         goto out_subpool_put;
3070         }
3071
3072         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3073         if (ret)
3074                 goto out_uncharge_cgroup_reservation;
3075
3076         spin_lock_irq(&hugetlb_lock);
3077         /*
3078          * glb_chg is passed to indicate whether or not a page must be taken
3079          * from the global free pool (global change).  gbl_chg == 0 indicates
3080          * a reservation exists for the allocation.
3081          */
3082         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3083         if (!page) {
3084                 spin_unlock_irq(&hugetlb_lock);
3085                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3086                 if (!page)
3087                         goto out_uncharge_cgroup;
3088                 spin_lock_irq(&hugetlb_lock);
3089                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3090                         SetHPageRestoreReserve(page);
3091                         h->resv_huge_pages--;
3092                 }
3093                 list_add(&page->lru, &h->hugepage_activelist);
3094                 set_page_refcounted(page);
3095                 /* Fall through */
3096         }
3097         folio = page_folio(page);
3098         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3099         /* If allocation is not consuming a reservation, also store the
3100          * hugetlb_cgroup pointer on the page.
3101          */
3102         if (deferred_reserve) {
3103                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3104                                                   h_cg, page);
3105         }
3106
3107         spin_unlock_irq(&hugetlb_lock);
3108
3109         hugetlb_set_page_subpool(page, spool);
3110
3111         map_commit = vma_commit_reservation(h, vma, addr);
3112         if (unlikely(map_chg > map_commit)) {
3113                 /*
3114                  * The page was added to the reservation map between
3115                  * vma_needs_reservation and vma_commit_reservation.
3116                  * This indicates a race with hugetlb_reserve_pages.
3117                  * Adjust for the subpool count incremented above AND
3118                  * in hugetlb_reserve_pages for the same page.  Also,
3119                  * the reservation count added in hugetlb_reserve_pages
3120                  * no longer applies.
3121                  */
3122                 long rsv_adjust;
3123
3124                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3125                 hugetlb_acct_memory(h, -rsv_adjust);
3126                 if (deferred_reserve)
3127                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3128                                         pages_per_huge_page(h), folio);
3129         }
3130         return page;
3131
3132 out_uncharge_cgroup:
3133         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3134 out_uncharge_cgroup_reservation:
3135         if (deferred_reserve)
3136                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3137                                                     h_cg);
3138 out_subpool_put:
3139         if (map_chg || avoid_reserve)
3140                 hugepage_subpool_put_pages(spool, 1);
3141         vma_end_reservation(h, vma, addr);
3142         return ERR_PTR(-ENOSPC);
3143 }
3144
3145 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3146         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3147 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 {
3149         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3150         int nr_nodes, node;
3151
3152         /* do node specific alloc */
3153         if (nid != NUMA_NO_NODE) {
3154                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3155                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3156                 if (!m)
3157                         return 0;
3158                 goto found;
3159         }
3160         /* allocate from next node when distributing huge pages */
3161         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3162                 m = memblock_alloc_try_nid_raw(
3163                                 huge_page_size(h), huge_page_size(h),
3164                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3165                 /*
3166                  * Use the beginning of the huge page to store the
3167                  * huge_bootmem_page struct (until gather_bootmem
3168                  * puts them into the mem_map).
3169                  */
3170                 if (!m)
3171                         return 0;
3172                 goto found;
3173         }
3174
3175 found:
3176         /* Put them into a private list first because mem_map is not up yet */
3177         INIT_LIST_HEAD(&m->list);
3178         list_add(&m->list, &huge_boot_pages);
3179         m->hstate = h;
3180         return 1;
3181 }
3182
3183 /*
3184  * Put bootmem huge pages into the standard lists after mem_map is up.
3185  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3186  */
3187 static void __init gather_bootmem_prealloc(void)
3188 {
3189         struct huge_bootmem_page *m;
3190
3191         list_for_each_entry(m, &huge_boot_pages, list) {
3192                 struct page *page = virt_to_page(m);
3193                 struct folio *folio = page_folio(page);
3194                 struct hstate *h = m->hstate;
3195
3196                 VM_BUG_ON(!hstate_is_gigantic(h));
3197                 WARN_ON(folio_ref_count(folio) != 1);
3198                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3199                         WARN_ON(folio_test_reserved(folio));
3200                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3201                         free_huge_page(page); /* add to the hugepage allocator */
3202                 } else {
3203                         /* VERY unlikely inflated ref count on a tail page */
3204                         free_gigantic_folio(folio, huge_page_order(h));
3205                 }
3206
3207                 /*
3208                  * We need to restore the 'stolen' pages to totalram_pages
3209                  * in order to fix confusing memory reports from free(1) and
3210                  * other side-effects, like CommitLimit going negative.
3211                  */
3212                 adjust_managed_page_count(page, pages_per_huge_page(h));
3213                 cond_resched();
3214         }
3215 }
3216 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3217 {
3218         unsigned long i;
3219         char buf[32];
3220
3221         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3222                 if (hstate_is_gigantic(h)) {
3223                         if (!alloc_bootmem_huge_page(h, nid))
3224                                 break;
3225                 } else {
3226                         struct folio *folio;
3227                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3228
3229                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3230                                         &node_states[N_MEMORY], NULL);
3231                         if (!folio)
3232                                 break;
3233                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3234                 }
3235                 cond_resched();
3236         }
3237         if (i == h->max_huge_pages_node[nid])
3238                 return;
3239
3240         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3241         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3242                 h->max_huge_pages_node[nid], buf, nid, i);
3243         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3244         h->max_huge_pages_node[nid] = i;
3245 }
3246
3247 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3248 {
3249         unsigned long i;
3250         nodemask_t *node_alloc_noretry;
3251         bool node_specific_alloc = false;
3252
3253         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3254         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3255                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3256                 return;
3257         }
3258
3259         /* do node specific alloc */
3260         for_each_online_node(i) {
3261                 if (h->max_huge_pages_node[i] > 0) {
3262                         hugetlb_hstate_alloc_pages_onenode(h, i);
3263                         node_specific_alloc = true;
3264                 }
3265         }
3266
3267         if (node_specific_alloc)
3268                 return;
3269
3270         /* below will do all node balanced alloc */
3271         if (!hstate_is_gigantic(h)) {
3272                 /*
3273                  * Bit mask controlling how hard we retry per-node allocations.
3274                  * Ignore errors as lower level routines can deal with
3275                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3276                  * time, we are likely in bigger trouble.
3277                  */
3278                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3279                                                 GFP_KERNEL);
3280         } else {
3281                 /* allocations done at boot time */
3282                 node_alloc_noretry = NULL;
3283         }
3284
3285         /* bit mask controlling how hard we retry per-node allocations */
3286         if (node_alloc_noretry)
3287                 nodes_clear(*node_alloc_noretry);
3288
3289         for (i = 0; i < h->max_huge_pages; ++i) {
3290                 if (hstate_is_gigantic(h)) {
3291                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3292                                 break;
3293                 } else if (!alloc_pool_huge_page(h,
3294                                          &node_states[N_MEMORY],
3295                                          node_alloc_noretry))
3296                         break;
3297                 cond_resched();
3298         }
3299         if (i < h->max_huge_pages) {
3300                 char buf[32];
3301
3302                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3303                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3304                         h->max_huge_pages, buf, i);
3305                 h->max_huge_pages = i;
3306         }
3307         kfree(node_alloc_noretry);
3308 }
3309
3310 static void __init hugetlb_init_hstates(void)
3311 {
3312         struct hstate *h, *h2;
3313
3314         for_each_hstate(h) {
3315                 /* oversize hugepages were init'ed in early boot */
3316                 if (!hstate_is_gigantic(h))
3317                         hugetlb_hstate_alloc_pages(h);
3318
3319                 /*
3320                  * Set demote order for each hstate.  Note that
3321                  * h->demote_order is initially 0.
3322                  * - We can not demote gigantic pages if runtime freeing
3323                  *   is not supported, so skip this.
3324                  * - If CMA allocation is possible, we can not demote
3325                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3326                  */
3327                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3328                         continue;
3329                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3330                         continue;
3331                 for_each_hstate(h2) {
3332                         if (h2 == h)
3333                                 continue;
3334                         if (h2->order < h->order &&
3335                             h2->order > h->demote_order)
3336                                 h->demote_order = h2->order;
3337                 }
3338         }
3339 }
3340
3341 static void __init report_hugepages(void)
3342 {
3343         struct hstate *h;
3344
3345         for_each_hstate(h) {
3346                 char buf[32];
3347
3348                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3349                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3350                         buf, h->free_huge_pages);
3351                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3352                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3353         }
3354 }
3355
3356 #ifdef CONFIG_HIGHMEM
3357 static void try_to_free_low(struct hstate *h, unsigned long count,
3358                                                 nodemask_t *nodes_allowed)
3359 {
3360         int i;
3361         LIST_HEAD(page_list);
3362
3363         lockdep_assert_held(&hugetlb_lock);
3364         if (hstate_is_gigantic(h))
3365                 return;
3366
3367         /*
3368          * Collect pages to be freed on a list, and free after dropping lock
3369          */
3370         for_each_node_mask(i, *nodes_allowed) {
3371                 struct page *page, *next;
3372                 struct list_head *freel = &h->hugepage_freelists[i];
3373                 list_for_each_entry_safe(page, next, freel, lru) {
3374                         if (count >= h->nr_huge_pages)
3375                                 goto out;
3376                         if (PageHighMem(page))
3377                                 continue;
3378                         remove_hugetlb_folio(h, page_folio(page), false);
3379                         list_add(&page->lru, &page_list);
3380                 }
3381         }
3382
3383 out:
3384         spin_unlock_irq(&hugetlb_lock);
3385         update_and_free_pages_bulk(h, &page_list);
3386         spin_lock_irq(&hugetlb_lock);
3387 }
3388 #else
3389 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3390                                                 nodemask_t *nodes_allowed)
3391 {
3392 }
3393 #endif
3394
3395 /*
3396  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3397  * balanced by operating on them in a round-robin fashion.
3398  * Returns 1 if an adjustment was made.
3399  */
3400 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3401                                 int delta)
3402 {
3403         int nr_nodes, node;
3404
3405         lockdep_assert_held(&hugetlb_lock);
3406         VM_BUG_ON(delta != -1 && delta != 1);
3407
3408         if (delta < 0) {
3409                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3410                         if (h->surplus_huge_pages_node[node])
3411                                 goto found;
3412                 }
3413         } else {
3414                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3415                         if (h->surplus_huge_pages_node[node] <
3416                                         h->nr_huge_pages_node[node])
3417                                 goto found;
3418                 }
3419         }
3420         return 0;
3421
3422 found:
3423         h->surplus_huge_pages += delta;
3424         h->surplus_huge_pages_node[node] += delta;
3425         return 1;
3426 }
3427
3428 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3429 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3430                               nodemask_t *nodes_allowed)
3431 {
3432         unsigned long min_count, ret;
3433         struct page *page;
3434         LIST_HEAD(page_list);
3435         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3436
3437         /*
3438          * Bit mask controlling how hard we retry per-node allocations.
3439          * If we can not allocate the bit mask, do not attempt to allocate
3440          * the requested huge pages.
3441          */
3442         if (node_alloc_noretry)
3443                 nodes_clear(*node_alloc_noretry);
3444         else
3445                 return -ENOMEM;
3446
3447         /*
3448          * resize_lock mutex prevents concurrent adjustments to number of
3449          * pages in hstate via the proc/sysfs interfaces.
3450          */
3451         mutex_lock(&h->resize_lock);
3452         flush_free_hpage_work(h);
3453         spin_lock_irq(&hugetlb_lock);
3454
3455         /*
3456          * Check for a node specific request.
3457          * Changing node specific huge page count may require a corresponding
3458          * change to the global count.  In any case, the passed node mask
3459          * (nodes_allowed) will restrict alloc/free to the specified node.
3460          */
3461         if (nid != NUMA_NO_NODE) {
3462                 unsigned long old_count = count;
3463
3464                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3465                 /*
3466                  * User may have specified a large count value which caused the
3467                  * above calculation to overflow.  In this case, they wanted
3468                  * to allocate as many huge pages as possible.  Set count to
3469                  * largest possible value to align with their intention.
3470                  */
3471                 if (count < old_count)
3472                         count = ULONG_MAX;
3473         }
3474
3475         /*
3476          * Gigantic pages runtime allocation depend on the capability for large
3477          * page range allocation.
3478          * If the system does not provide this feature, return an error when
3479          * the user tries to allocate gigantic pages but let the user free the
3480          * boottime allocated gigantic pages.
3481          */
3482         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3483                 if (count > persistent_huge_pages(h)) {
3484                         spin_unlock_irq(&hugetlb_lock);
3485                         mutex_unlock(&h->resize_lock);
3486                         NODEMASK_FREE(node_alloc_noretry);
3487                         return -EINVAL;
3488                 }
3489                 /* Fall through to decrease pool */
3490         }
3491
3492         /*
3493          * Increase the pool size
3494          * First take pages out of surplus state.  Then make up the
3495          * remaining difference by allocating fresh huge pages.
3496          *
3497          * We might race with alloc_surplus_huge_page() here and be unable
3498          * to convert a surplus huge page to a normal huge page. That is
3499          * not critical, though, it just means the overall size of the
3500          * pool might be one hugepage larger than it needs to be, but
3501          * within all the constraints specified by the sysctls.
3502          */
3503         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3504                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3505                         break;
3506         }
3507
3508         while (count > persistent_huge_pages(h)) {
3509                 /*
3510                  * If this allocation races such that we no longer need the
3511                  * page, free_huge_page will handle it by freeing the page
3512                  * and reducing the surplus.
3513                  */
3514                 spin_unlock_irq(&hugetlb_lock);
3515
3516                 /* yield cpu to avoid soft lockup */
3517                 cond_resched();
3518
3519                 ret = alloc_pool_huge_page(h, nodes_allowed,
3520                                                 node_alloc_noretry);
3521                 spin_lock_irq(&hugetlb_lock);
3522                 if (!ret)
3523                         goto out;
3524
3525                 /* Bail for signals. Probably ctrl-c from user */
3526                 if (signal_pending(current))
3527                         goto out;
3528         }
3529
3530         /*
3531          * Decrease the pool size
3532          * First return free pages to the buddy allocator (being careful
3533          * to keep enough around to satisfy reservations).  Then place
3534          * pages into surplus state as needed so the pool will shrink
3535          * to the desired size as pages become free.
3536          *
3537          * By placing pages into the surplus state independent of the
3538          * overcommit value, we are allowing the surplus pool size to
3539          * exceed overcommit. There are few sane options here. Since
3540          * alloc_surplus_huge_page() is checking the global counter,
3541          * though, we'll note that we're not allowed to exceed surplus
3542          * and won't grow the pool anywhere else. Not until one of the
3543          * sysctls are changed, or the surplus pages go out of use.
3544          */
3545         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3546         min_count = max(count, min_count);
3547         try_to_free_low(h, min_count, nodes_allowed);
3548
3549         /*
3550          * Collect pages to be removed on list without dropping lock
3551          */
3552         while (min_count < persistent_huge_pages(h)) {
3553                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3554                 if (!page)
3555                         break;
3556
3557                 list_add(&page->lru, &page_list);
3558         }
3559         /* free the pages after dropping lock */
3560         spin_unlock_irq(&hugetlb_lock);
3561         update_and_free_pages_bulk(h, &page_list);
3562         flush_free_hpage_work(h);
3563         spin_lock_irq(&hugetlb_lock);
3564
3565         while (count < persistent_huge_pages(h)) {
3566                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3567                         break;
3568         }
3569 out:
3570         h->max_huge_pages = persistent_huge_pages(h);
3571         spin_unlock_irq(&hugetlb_lock);
3572         mutex_unlock(&h->resize_lock);
3573
3574         NODEMASK_FREE(node_alloc_noretry);
3575
3576         return 0;
3577 }
3578
3579 static int demote_free_huge_page(struct hstate *h, struct page *page)
3580 {
3581         int i, nid = page_to_nid(page);
3582         struct hstate *target_hstate;
3583         struct folio *folio = page_folio(page);
3584         struct page *subpage;
3585         int rc = 0;
3586
3587         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3588
3589         remove_hugetlb_folio_for_demote(h, folio, false);
3590         spin_unlock_irq(&hugetlb_lock);
3591
3592         rc = hugetlb_vmemmap_restore(h, page);
3593         if (rc) {
3594                 /* Allocation of vmemmmap failed, we can not demote page */
3595                 spin_lock_irq(&hugetlb_lock);
3596                 set_page_refcounted(page);
3597                 add_hugetlb_folio(h, page_folio(page), false);
3598                 return rc;
3599         }
3600
3601         /*
3602          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3603          * sizes as it will not ref count pages.
3604          */
3605         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3606
3607         /*
3608          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3609          * Without the mutex, pages added to target hstate could be marked
3610          * as surplus.
3611          *
3612          * Note that we already hold h->resize_lock.  To prevent deadlock,
3613          * use the convention of always taking larger size hstate mutex first.
3614          */
3615         mutex_lock(&target_hstate->resize_lock);
3616         for (i = 0; i < pages_per_huge_page(h);
3617                                 i += pages_per_huge_page(target_hstate)) {
3618                 subpage = nth_page(page, i);
3619                 folio = page_folio(subpage);
3620                 if (hstate_is_gigantic(target_hstate))
3621                         prep_compound_gigantic_folio_for_demote(folio,
3622                                                         target_hstate->order);
3623                 else
3624                         prep_compound_page(subpage, target_hstate->order);
3625                 set_page_private(subpage, 0);
3626                 prep_new_hugetlb_folio(target_hstate, folio, nid);
3627                 free_huge_page(subpage);
3628         }
3629         mutex_unlock(&target_hstate->resize_lock);
3630
3631         spin_lock_irq(&hugetlb_lock);
3632
3633         /*
3634          * Not absolutely necessary, but for consistency update max_huge_pages
3635          * based on pool changes for the demoted page.
3636          */
3637         h->max_huge_pages--;
3638         target_hstate->max_huge_pages +=
3639                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3640
3641         return rc;
3642 }
3643
3644 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3645         __must_hold(&hugetlb_lock)
3646 {
3647         int nr_nodes, node;
3648         struct page *page;
3649
3650         lockdep_assert_held(&hugetlb_lock);
3651
3652         /* We should never get here if no demote order */
3653         if (!h->demote_order) {
3654                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3655                 return -EINVAL;         /* internal error */
3656         }
3657
3658         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3659                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3660                         if (PageHWPoison(page))
3661                                 continue;
3662
3663                         return demote_free_huge_page(h, page);
3664                 }
3665         }
3666
3667         /*
3668          * Only way to get here is if all pages on free lists are poisoned.
3669          * Return -EBUSY so that caller will not retry.
3670          */
3671         return -EBUSY;
3672 }
3673
3674 #define HSTATE_ATTR_RO(_name) \
3675         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3676
3677 #define HSTATE_ATTR_WO(_name) \
3678         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3679
3680 #define HSTATE_ATTR(_name) \
3681         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3682
3683 static struct kobject *hugepages_kobj;
3684 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3685
3686 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3687
3688 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3689 {
3690         int i;
3691
3692         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3693                 if (hstate_kobjs[i] == kobj) {
3694                         if (nidp)
3695                                 *nidp = NUMA_NO_NODE;
3696                         return &hstates[i];
3697                 }
3698
3699         return kobj_to_node_hstate(kobj, nidp);
3700 }
3701
3702 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3703                                         struct kobj_attribute *attr, char *buf)
3704 {
3705         struct hstate *h;
3706         unsigned long nr_huge_pages;
3707         int nid;
3708
3709         h = kobj_to_hstate(kobj, &nid);
3710         if (nid == NUMA_NO_NODE)
3711                 nr_huge_pages = h->nr_huge_pages;
3712         else
3713                 nr_huge_pages = h->nr_huge_pages_node[nid];
3714
3715         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3716 }
3717
3718 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3719                                            struct hstate *h, int nid,
3720                                            unsigned long count, size_t len)
3721 {
3722         int err;
3723         nodemask_t nodes_allowed, *n_mask;
3724
3725         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3726                 return -EINVAL;
3727
3728         if (nid == NUMA_NO_NODE) {
3729                 /*
3730                  * global hstate attribute
3731                  */
3732                 if (!(obey_mempolicy &&
3733                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3734                         n_mask = &node_states[N_MEMORY];
3735                 else
3736                         n_mask = &nodes_allowed;
3737         } else {
3738                 /*
3739                  * Node specific request.  count adjustment happens in
3740                  * set_max_huge_pages() after acquiring hugetlb_lock.
3741                  */
3742                 init_nodemask_of_node(&nodes_allowed, nid);
3743                 n_mask = &nodes_allowed;
3744         }
3745
3746         err = set_max_huge_pages(h, count, nid, n_mask);
3747
3748         return err ? err : len;
3749 }
3750
3751 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3752                                          struct kobject *kobj, const char *buf,
3753                                          size_t len)
3754 {
3755         struct hstate *h;
3756         unsigned long count;
3757         int nid;
3758         int err;
3759
3760         err = kstrtoul(buf, 10, &count);
3761         if (err)
3762                 return err;
3763
3764         h = kobj_to_hstate(kobj, &nid);
3765         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3766 }
3767
3768 static ssize_t nr_hugepages_show(struct kobject *kobj,
3769                                        struct kobj_attribute *attr, char *buf)
3770 {
3771         return nr_hugepages_show_common(kobj, attr, buf);
3772 }
3773
3774 static ssize_t nr_hugepages_store(struct kobject *kobj,
3775                struct kobj_attribute *attr, const char *buf, size_t len)
3776 {
3777         return nr_hugepages_store_common(false, kobj, buf, len);
3778 }
3779 HSTATE_ATTR(nr_hugepages);
3780
3781 #ifdef CONFIG_NUMA
3782
3783 /*
3784  * hstate attribute for optionally mempolicy-based constraint on persistent
3785  * huge page alloc/free.
3786  */
3787 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3788                                            struct kobj_attribute *attr,
3789                                            char *buf)
3790 {
3791         return nr_hugepages_show_common(kobj, attr, buf);
3792 }
3793
3794 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3795                struct kobj_attribute *attr, const char *buf, size_t len)
3796 {
3797         return nr_hugepages_store_common(true, kobj, buf, len);
3798 }
3799 HSTATE_ATTR(nr_hugepages_mempolicy);
3800 #endif
3801
3802
3803 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3804                                         struct kobj_attribute *attr, char *buf)
3805 {
3806         struct hstate *h = kobj_to_hstate(kobj, NULL);
3807         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3808 }
3809
3810 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3811                 struct kobj_attribute *attr, const char *buf, size_t count)
3812 {
3813         int err;
3814         unsigned long input;
3815         struct hstate *h = kobj_to_hstate(kobj, NULL);
3816
3817         if (hstate_is_gigantic(h))
3818                 return -EINVAL;
3819
3820         err = kstrtoul(buf, 10, &input);
3821         if (err)
3822                 return err;
3823
3824         spin_lock_irq(&hugetlb_lock);
3825         h->nr_overcommit_huge_pages = input;
3826         spin_unlock_irq(&hugetlb_lock);
3827
3828         return count;
3829 }
3830 HSTATE_ATTR(nr_overcommit_hugepages);
3831
3832 static ssize_t free_hugepages_show(struct kobject *kobj,
3833                                         struct kobj_attribute *attr, char *buf)
3834 {
3835         struct hstate *h;
3836         unsigned long free_huge_pages;
3837         int nid;
3838
3839         h = kobj_to_hstate(kobj, &nid);
3840         if (nid == NUMA_NO_NODE)
3841                 free_huge_pages = h->free_huge_pages;
3842         else
3843                 free_huge_pages = h->free_huge_pages_node[nid];
3844
3845         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3846 }
3847 HSTATE_ATTR_RO(free_hugepages);
3848
3849 static ssize_t resv_hugepages_show(struct kobject *kobj,
3850                                         struct kobj_attribute *attr, char *buf)
3851 {
3852         struct hstate *h = kobj_to_hstate(kobj, NULL);
3853         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3854 }
3855 HSTATE_ATTR_RO(resv_hugepages);
3856
3857 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3858                                         struct kobj_attribute *attr, char *buf)
3859 {
3860         struct hstate *h;
3861         unsigned long surplus_huge_pages;
3862         int nid;
3863
3864         h = kobj_to_hstate(kobj, &nid);
3865         if (nid == NUMA_NO_NODE)
3866                 surplus_huge_pages = h->surplus_huge_pages;
3867         else
3868                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3869
3870         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3871 }
3872 HSTATE_ATTR_RO(surplus_hugepages);
3873
3874 static ssize_t demote_store(struct kobject *kobj,
3875                struct kobj_attribute *attr, const char *buf, size_t len)
3876 {
3877         unsigned long nr_demote;
3878         unsigned long nr_available;
3879         nodemask_t nodes_allowed, *n_mask;
3880         struct hstate *h;
3881         int err;
3882         int nid;
3883
3884         err = kstrtoul(buf, 10, &nr_demote);
3885         if (err)
3886                 return err;
3887         h = kobj_to_hstate(kobj, &nid);
3888
3889         if (nid != NUMA_NO_NODE) {
3890                 init_nodemask_of_node(&nodes_allowed, nid);
3891                 n_mask = &nodes_allowed;
3892         } else {
3893                 n_mask = &node_states[N_MEMORY];
3894         }
3895
3896         /* Synchronize with other sysfs operations modifying huge pages */
3897         mutex_lock(&h->resize_lock);
3898         spin_lock_irq(&hugetlb_lock);
3899
3900         while (nr_demote) {
3901                 /*
3902                  * Check for available pages to demote each time thorough the
3903                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3904                  */
3905                 if (nid != NUMA_NO_NODE)
3906                         nr_available = h->free_huge_pages_node[nid];
3907                 else
3908                         nr_available = h->free_huge_pages;
3909                 nr_available -= h->resv_huge_pages;
3910                 if (!nr_available)
3911                         break;
3912
3913                 err = demote_pool_huge_page(h, n_mask);
3914                 if (err)
3915                         break;
3916
3917                 nr_demote--;
3918         }
3919
3920         spin_unlock_irq(&hugetlb_lock);
3921         mutex_unlock(&h->resize_lock);
3922
3923         if (err)
3924                 return err;
3925         return len;
3926 }
3927 HSTATE_ATTR_WO(demote);
3928
3929 static ssize_t demote_size_show(struct kobject *kobj,
3930                                         struct kobj_attribute *attr, char *buf)
3931 {
3932         struct hstate *h = kobj_to_hstate(kobj, NULL);
3933         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3934
3935         return sysfs_emit(buf, "%lukB\n", demote_size);
3936 }
3937
3938 static ssize_t demote_size_store(struct kobject *kobj,
3939                                         struct kobj_attribute *attr,
3940                                         const char *buf, size_t count)
3941 {
3942         struct hstate *h, *demote_hstate;
3943         unsigned long demote_size;
3944         unsigned int demote_order;
3945
3946         demote_size = (unsigned long)memparse(buf, NULL);
3947
3948         demote_hstate = size_to_hstate(demote_size);
3949         if (!demote_hstate)
3950                 return -EINVAL;
3951         demote_order = demote_hstate->order;
3952         if (demote_order < HUGETLB_PAGE_ORDER)
3953                 return -EINVAL;
3954
3955         /* demote order must be smaller than hstate order */
3956         h = kobj_to_hstate(kobj, NULL);
3957         if (demote_order >= h->order)
3958                 return -EINVAL;
3959
3960         /* resize_lock synchronizes access to demote size and writes */
3961         mutex_lock(&h->resize_lock);
3962         h->demote_order = demote_order;
3963         mutex_unlock(&h->resize_lock);
3964
3965         return count;
3966 }
3967 HSTATE_ATTR(demote_size);
3968
3969 static struct attribute *hstate_attrs[] = {
3970         &nr_hugepages_attr.attr,
3971         &nr_overcommit_hugepages_attr.attr,
3972         &free_hugepages_attr.attr,
3973         &resv_hugepages_attr.attr,
3974         &surplus_hugepages_attr.attr,
3975 #ifdef CONFIG_NUMA
3976         &nr_hugepages_mempolicy_attr.attr,
3977 #endif
3978         NULL,
3979 };
3980
3981 static const struct attribute_group hstate_attr_group = {
3982         .attrs = hstate_attrs,
3983 };
3984
3985 static struct attribute *hstate_demote_attrs[] = {
3986         &demote_size_attr.attr,
3987         &demote_attr.attr,
3988         NULL,
3989 };
3990
3991 static const struct attribute_group hstate_demote_attr_group = {
3992         .attrs = hstate_demote_attrs,
3993 };
3994
3995 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3996                                     struct kobject **hstate_kobjs,
3997                                     const struct attribute_group *hstate_attr_group)
3998 {
3999         int retval;
4000         int hi = hstate_index(h);
4001
4002         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4003         if (!hstate_kobjs[hi])
4004                 return -ENOMEM;
4005
4006         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4007         if (retval) {
4008                 kobject_put(hstate_kobjs[hi]);
4009                 hstate_kobjs[hi] = NULL;
4010                 return retval;
4011         }
4012
4013         if (h->demote_order) {
4014                 retval = sysfs_create_group(hstate_kobjs[hi],
4015                                             &hstate_demote_attr_group);
4016                 if (retval) {
4017                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4018                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4019                         kobject_put(hstate_kobjs[hi]);
4020                         hstate_kobjs[hi] = NULL;
4021                         return retval;
4022                 }
4023         }
4024
4025         return 0;
4026 }
4027
4028 #ifdef CONFIG_NUMA
4029 static bool hugetlb_sysfs_initialized __ro_after_init;
4030
4031 /*
4032  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4033  * with node devices in node_devices[] using a parallel array.  The array
4034  * index of a node device or _hstate == node id.
4035  * This is here to avoid any static dependency of the node device driver, in
4036  * the base kernel, on the hugetlb module.
4037  */
4038 struct node_hstate {
4039         struct kobject          *hugepages_kobj;
4040         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4041 };
4042 static struct node_hstate node_hstates[MAX_NUMNODES];
4043
4044 /*
4045  * A subset of global hstate attributes for node devices
4046  */
4047 static struct attribute *per_node_hstate_attrs[] = {
4048         &nr_hugepages_attr.attr,
4049         &free_hugepages_attr.attr,
4050         &surplus_hugepages_attr.attr,
4051         NULL,
4052 };
4053
4054 static const struct attribute_group per_node_hstate_attr_group = {
4055         .attrs = per_node_hstate_attrs,
4056 };
4057
4058 /*
4059  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4060  * Returns node id via non-NULL nidp.
4061  */
4062 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4063 {
4064         int nid;
4065
4066         for (nid = 0; nid < nr_node_ids; nid++) {
4067                 struct node_hstate *nhs = &node_hstates[nid];
4068                 int i;
4069                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4070                         if (nhs->hstate_kobjs[i] == kobj) {
4071                                 if (nidp)
4072                                         *nidp = nid;
4073                                 return &hstates[i];
4074                         }
4075         }
4076
4077         BUG();
4078         return NULL;
4079 }
4080
4081 /*
4082  * Unregister hstate attributes from a single node device.
4083  * No-op if no hstate attributes attached.
4084  */
4085 void hugetlb_unregister_node(struct node *node)
4086 {
4087         struct hstate *h;
4088         struct node_hstate *nhs = &node_hstates[node->dev.id];
4089
4090         if (!nhs->hugepages_kobj)
4091                 return;         /* no hstate attributes */
4092
4093         for_each_hstate(h) {
4094                 int idx = hstate_index(h);
4095                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4096
4097                 if (!hstate_kobj)
4098                         continue;
4099                 if (h->demote_order)
4100                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4101                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4102                 kobject_put(hstate_kobj);
4103                 nhs->hstate_kobjs[idx] = NULL;
4104         }
4105
4106         kobject_put(nhs->hugepages_kobj);
4107         nhs->hugepages_kobj = NULL;
4108 }
4109
4110
4111 /*
4112  * Register hstate attributes for a single node device.
4113  * No-op if attributes already registered.
4114  */
4115 void hugetlb_register_node(struct node *node)
4116 {
4117         struct hstate *h;
4118         struct node_hstate *nhs = &node_hstates[node->dev.id];
4119         int err;
4120
4121         if (!hugetlb_sysfs_initialized)
4122                 return;
4123
4124         if (nhs->hugepages_kobj)
4125                 return;         /* already allocated */
4126
4127         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4128                                                         &node->dev.kobj);
4129         if (!nhs->hugepages_kobj)
4130                 return;
4131
4132         for_each_hstate(h) {
4133                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4134                                                 nhs->hstate_kobjs,
4135                                                 &per_node_hstate_attr_group);
4136                 if (err) {
4137                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4138                                 h->name, node->dev.id);
4139                         hugetlb_unregister_node(node);
4140                         break;
4141                 }
4142         }
4143 }
4144
4145 /*
4146  * hugetlb init time:  register hstate attributes for all registered node
4147  * devices of nodes that have memory.  All on-line nodes should have
4148  * registered their associated device by this time.
4149  */
4150 static void __init hugetlb_register_all_nodes(void)
4151 {
4152         int nid;
4153
4154         for_each_online_node(nid)
4155                 hugetlb_register_node(node_devices[nid]);
4156 }
4157 #else   /* !CONFIG_NUMA */
4158
4159 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4160 {
4161         BUG();
4162         if (nidp)
4163                 *nidp = -1;
4164         return NULL;
4165 }
4166
4167 static void hugetlb_register_all_nodes(void) { }
4168
4169 #endif
4170
4171 #ifdef CONFIG_CMA
4172 static void __init hugetlb_cma_check(void);
4173 #else
4174 static inline __init void hugetlb_cma_check(void)
4175 {
4176 }
4177 #endif
4178
4179 static void __init hugetlb_sysfs_init(void)
4180 {
4181         struct hstate *h;
4182         int err;
4183
4184         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4185         if (!hugepages_kobj)
4186                 return;
4187
4188         for_each_hstate(h) {
4189                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4190                                          hstate_kobjs, &hstate_attr_group);
4191                 if (err)
4192                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4193         }
4194
4195 #ifdef CONFIG_NUMA
4196         hugetlb_sysfs_initialized = true;
4197 #endif
4198         hugetlb_register_all_nodes();
4199 }
4200
4201 static int __init hugetlb_init(void)
4202 {
4203         int i;
4204
4205         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4206                         __NR_HPAGEFLAGS);
4207
4208         if (!hugepages_supported()) {
4209                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4210                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4211                 return 0;
4212         }
4213
4214         /*
4215          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4216          * architectures depend on setup being done here.
4217          */
4218         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4219         if (!parsed_default_hugepagesz) {
4220                 /*
4221                  * If we did not parse a default huge page size, set
4222                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4223                  * number of huge pages for this default size was implicitly
4224                  * specified, set that here as well.
4225                  * Note that the implicit setting will overwrite an explicit
4226                  * setting.  A warning will be printed in this case.
4227                  */
4228                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4229                 if (default_hstate_max_huge_pages) {
4230                         if (default_hstate.max_huge_pages) {
4231                                 char buf[32];
4232
4233                                 string_get_size(huge_page_size(&default_hstate),
4234                                         1, STRING_UNITS_2, buf, 32);
4235                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4236                                         default_hstate.max_huge_pages, buf);
4237                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4238                                         default_hstate_max_huge_pages);
4239                         }
4240                         default_hstate.max_huge_pages =
4241                                 default_hstate_max_huge_pages;
4242
4243                         for_each_online_node(i)
4244                                 default_hstate.max_huge_pages_node[i] =
4245                                         default_hugepages_in_node[i];
4246                 }
4247         }
4248
4249         hugetlb_cma_check();
4250         hugetlb_init_hstates();
4251         gather_bootmem_prealloc();
4252         report_hugepages();
4253
4254         hugetlb_sysfs_init();
4255         hugetlb_cgroup_file_init();
4256
4257 #ifdef CONFIG_SMP
4258         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4259 #else
4260         num_fault_mutexes = 1;
4261 #endif
4262         hugetlb_fault_mutex_table =
4263                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4264                               GFP_KERNEL);
4265         BUG_ON(!hugetlb_fault_mutex_table);
4266
4267         for (i = 0; i < num_fault_mutexes; i++)
4268                 mutex_init(&hugetlb_fault_mutex_table[i]);
4269         return 0;
4270 }
4271 subsys_initcall(hugetlb_init);
4272
4273 /* Overwritten by architectures with more huge page sizes */
4274 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4275 {
4276         return size == HPAGE_SIZE;
4277 }
4278
4279 void __init hugetlb_add_hstate(unsigned int order)
4280 {
4281         struct hstate *h;
4282         unsigned long i;
4283
4284         if (size_to_hstate(PAGE_SIZE << order)) {
4285                 return;
4286         }
4287         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4288         BUG_ON(order == 0);
4289         h = &hstates[hugetlb_max_hstate++];
4290         mutex_init(&h->resize_lock);
4291         h->order = order;
4292         h->mask = ~(huge_page_size(h) - 1);
4293         for (i = 0; i < MAX_NUMNODES; ++i)
4294                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4295         INIT_LIST_HEAD(&h->hugepage_activelist);
4296         h->next_nid_to_alloc = first_memory_node;
4297         h->next_nid_to_free = first_memory_node;
4298         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4299                                         huge_page_size(h)/SZ_1K);
4300
4301         parsed_hstate = h;
4302 }
4303
4304 bool __init __weak hugetlb_node_alloc_supported(void)
4305 {
4306         return true;
4307 }
4308
4309 static void __init hugepages_clear_pages_in_node(void)
4310 {
4311         if (!hugetlb_max_hstate) {
4312                 default_hstate_max_huge_pages = 0;
4313                 memset(default_hugepages_in_node, 0,
4314                         sizeof(default_hugepages_in_node));
4315         } else {
4316                 parsed_hstate->max_huge_pages = 0;
4317                 memset(parsed_hstate->max_huge_pages_node, 0,
4318                         sizeof(parsed_hstate->max_huge_pages_node));
4319         }
4320 }
4321
4322 /*
4323  * hugepages command line processing
4324  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4325  * specification.  If not, ignore the hugepages value.  hugepages can also
4326  * be the first huge page command line  option in which case it implicitly
4327  * specifies the number of huge pages for the default size.
4328  */
4329 static int __init hugepages_setup(char *s)
4330 {
4331         unsigned long *mhp;
4332         static unsigned long *last_mhp;
4333         int node = NUMA_NO_NODE;
4334         int count;
4335         unsigned long tmp;
4336         char *p = s;
4337
4338         if (!parsed_valid_hugepagesz) {
4339                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4340                 parsed_valid_hugepagesz = true;
4341                 return 1;
4342         }
4343
4344         /*
4345          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4346          * yet, so this hugepages= parameter goes to the "default hstate".
4347          * Otherwise, it goes with the previously parsed hugepagesz or
4348          * default_hugepagesz.
4349          */
4350         else if (!hugetlb_max_hstate)
4351                 mhp = &default_hstate_max_huge_pages;
4352         else
4353                 mhp = &parsed_hstate->max_huge_pages;
4354
4355         if (mhp == last_mhp) {
4356                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4357                 return 1;
4358         }
4359
4360         while (*p) {
4361                 count = 0;
4362                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4363                         goto invalid;
4364                 /* Parameter is node format */
4365                 if (p[count] == ':') {
4366                         if (!hugetlb_node_alloc_supported()) {
4367                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4368                                 return 1;
4369                         }
4370                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4371                                 goto invalid;
4372                         node = array_index_nospec(tmp, MAX_NUMNODES);
4373                         p += count + 1;
4374                         /* Parse hugepages */
4375                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4376                                 goto invalid;
4377                         if (!hugetlb_max_hstate)
4378                                 default_hugepages_in_node[node] = tmp;
4379                         else
4380                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4381                         *mhp += tmp;
4382                         /* Go to parse next node*/
4383                         if (p[count] == ',')
4384                                 p += count + 1;
4385                         else
4386                                 break;
4387                 } else {
4388                         if (p != s)
4389                                 goto invalid;
4390                         *mhp = tmp;
4391                         break;
4392                 }
4393         }
4394
4395         /*
4396          * Global state is always initialized later in hugetlb_init.
4397          * But we need to allocate gigantic hstates here early to still
4398          * use the bootmem allocator.
4399          */
4400         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4401                 hugetlb_hstate_alloc_pages(parsed_hstate);
4402
4403         last_mhp = mhp;
4404
4405         return 1;
4406
4407 invalid:
4408         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4409         hugepages_clear_pages_in_node();
4410         return 1;
4411 }
4412 __setup("hugepages=", hugepages_setup);
4413
4414 /*
4415  * hugepagesz command line processing
4416  * A specific huge page size can only be specified once with hugepagesz.
4417  * hugepagesz is followed by hugepages on the command line.  The global
4418  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4419  * hugepagesz argument was valid.
4420  */
4421 static int __init hugepagesz_setup(char *s)
4422 {
4423         unsigned long size;
4424         struct hstate *h;
4425
4426         parsed_valid_hugepagesz = false;
4427         size = (unsigned long)memparse(s, NULL);
4428
4429         if (!arch_hugetlb_valid_size(size)) {
4430                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4431                 return 1;
4432         }
4433
4434         h = size_to_hstate(size);
4435         if (h) {
4436                 /*
4437                  * hstate for this size already exists.  This is normally
4438                  * an error, but is allowed if the existing hstate is the
4439                  * default hstate.  More specifically, it is only allowed if
4440                  * the number of huge pages for the default hstate was not
4441                  * previously specified.
4442                  */
4443                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4444                     default_hstate.max_huge_pages) {
4445                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4446                         return 1;
4447                 }
4448
4449                 /*
4450                  * No need to call hugetlb_add_hstate() as hstate already
4451                  * exists.  But, do set parsed_hstate so that a following
4452                  * hugepages= parameter will be applied to this hstate.
4453                  */
4454                 parsed_hstate = h;
4455                 parsed_valid_hugepagesz = true;
4456                 return 1;
4457         }
4458
4459         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4460         parsed_valid_hugepagesz = true;
4461         return 1;
4462 }
4463 __setup("hugepagesz=", hugepagesz_setup);
4464
4465 /*
4466  * default_hugepagesz command line input
4467  * Only one instance of default_hugepagesz allowed on command line.
4468  */
4469 static int __init default_hugepagesz_setup(char *s)
4470 {
4471         unsigned long size;
4472         int i;
4473
4474         parsed_valid_hugepagesz = false;
4475         if (parsed_default_hugepagesz) {
4476                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4477                 return 1;
4478         }
4479
4480         size = (unsigned long)memparse(s, NULL);
4481
4482         if (!arch_hugetlb_valid_size(size)) {
4483                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4484                 return 1;
4485         }
4486
4487         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4488         parsed_valid_hugepagesz = true;
4489         parsed_default_hugepagesz = true;
4490         default_hstate_idx = hstate_index(size_to_hstate(size));
4491
4492         /*
4493          * The number of default huge pages (for this size) could have been
4494          * specified as the first hugetlb parameter: hugepages=X.  If so,
4495          * then default_hstate_max_huge_pages is set.  If the default huge
4496          * page size is gigantic (>= MAX_ORDER), then the pages must be
4497          * allocated here from bootmem allocator.
4498          */
4499         if (default_hstate_max_huge_pages) {
4500                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4501                 for_each_online_node(i)
4502                         default_hstate.max_huge_pages_node[i] =
4503                                 default_hugepages_in_node[i];
4504                 if (hstate_is_gigantic(&default_hstate))
4505                         hugetlb_hstate_alloc_pages(&default_hstate);
4506                 default_hstate_max_huge_pages = 0;
4507         }
4508
4509         return 1;
4510 }
4511 __setup("default_hugepagesz=", default_hugepagesz_setup);
4512
4513 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4514 {
4515 #ifdef CONFIG_NUMA
4516         struct mempolicy *mpol = get_task_policy(current);
4517
4518         /*
4519          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4520          * (from policy_nodemask) specifically for hugetlb case
4521          */
4522         if (mpol->mode == MPOL_BIND &&
4523                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4524                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4525                 return &mpol->nodes;
4526 #endif
4527         return NULL;
4528 }
4529
4530 static unsigned int allowed_mems_nr(struct hstate *h)
4531 {
4532         int node;
4533         unsigned int nr = 0;
4534         nodemask_t *mbind_nodemask;
4535         unsigned int *array = h->free_huge_pages_node;
4536         gfp_t gfp_mask = htlb_alloc_mask(h);
4537
4538         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4539         for_each_node_mask(node, cpuset_current_mems_allowed) {
4540                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4541                         nr += array[node];
4542         }
4543
4544         return nr;
4545 }
4546
4547 #ifdef CONFIG_SYSCTL
4548 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4549                                           void *buffer, size_t *length,
4550                                           loff_t *ppos, unsigned long *out)
4551 {
4552         struct ctl_table dup_table;
4553
4554         /*
4555          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4556          * can duplicate the @table and alter the duplicate of it.
4557          */
4558         dup_table = *table;
4559         dup_table.data = out;
4560
4561         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4562 }
4563
4564 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4565                          struct ctl_table *table, int write,
4566                          void *buffer, size_t *length, loff_t *ppos)
4567 {
4568         struct hstate *h = &default_hstate;
4569         unsigned long tmp = h->max_huge_pages;
4570         int ret;
4571
4572         if (!hugepages_supported())
4573                 return -EOPNOTSUPP;
4574
4575         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4576                                              &tmp);
4577         if (ret)
4578                 goto out;
4579
4580         if (write)
4581                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4582                                                   NUMA_NO_NODE, tmp, *length);
4583 out:
4584         return ret;
4585 }
4586
4587 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4588                           void *buffer, size_t *length, loff_t *ppos)
4589 {
4590
4591         return hugetlb_sysctl_handler_common(false, table, write,
4592                                                         buffer, length, ppos);
4593 }
4594
4595 #ifdef CONFIG_NUMA
4596 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4597                           void *buffer, size_t *length, loff_t *ppos)
4598 {
4599         return hugetlb_sysctl_handler_common(true, table, write,
4600                                                         buffer, length, ppos);
4601 }
4602 #endif /* CONFIG_NUMA */
4603
4604 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4605                 void *buffer, size_t *length, loff_t *ppos)
4606 {
4607         struct hstate *h = &default_hstate;
4608         unsigned long tmp;
4609         int ret;
4610
4611         if (!hugepages_supported())
4612                 return -EOPNOTSUPP;
4613
4614         tmp = h->nr_overcommit_huge_pages;
4615
4616         if (write && hstate_is_gigantic(h))
4617                 return -EINVAL;
4618
4619         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4620                                              &tmp);
4621         if (ret)
4622                 goto out;
4623
4624         if (write) {
4625                 spin_lock_irq(&hugetlb_lock);
4626                 h->nr_overcommit_huge_pages = tmp;
4627                 spin_unlock_irq(&hugetlb_lock);
4628         }
4629 out:
4630         return ret;
4631 }
4632
4633 #endif /* CONFIG_SYSCTL */
4634
4635 void hugetlb_report_meminfo(struct seq_file *m)
4636 {
4637         struct hstate *h;
4638         unsigned long total = 0;
4639
4640         if (!hugepages_supported())
4641                 return;
4642
4643         for_each_hstate(h) {
4644                 unsigned long count = h->nr_huge_pages;
4645
4646                 total += huge_page_size(h) * count;
4647
4648                 if (h == &default_hstate)
4649                         seq_printf(m,
4650                                    "HugePages_Total:   %5lu\n"
4651                                    "HugePages_Free:    %5lu\n"
4652                                    "HugePages_Rsvd:    %5lu\n"
4653                                    "HugePages_Surp:    %5lu\n"
4654                                    "Hugepagesize:   %8lu kB\n",
4655                                    count,
4656                                    h->free_huge_pages,
4657                                    h->resv_huge_pages,
4658                                    h->surplus_huge_pages,
4659                                    huge_page_size(h) / SZ_1K);
4660         }
4661
4662         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4663 }
4664
4665 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4666 {
4667         struct hstate *h = &default_hstate;
4668
4669         if (!hugepages_supported())
4670                 return 0;
4671
4672         return sysfs_emit_at(buf, len,
4673                              "Node %d HugePages_Total: %5u\n"
4674                              "Node %d HugePages_Free:  %5u\n"
4675                              "Node %d HugePages_Surp:  %5u\n",
4676                              nid, h->nr_huge_pages_node[nid],
4677                              nid, h->free_huge_pages_node[nid],
4678                              nid, h->surplus_huge_pages_node[nid]);
4679 }
4680
4681 void hugetlb_show_meminfo_node(int nid)
4682 {
4683         struct hstate *h;
4684
4685         if (!hugepages_supported())
4686                 return;
4687
4688         for_each_hstate(h)
4689                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4690                         nid,
4691                         h->nr_huge_pages_node[nid],
4692                         h->free_huge_pages_node[nid],
4693                         h->surplus_huge_pages_node[nid],
4694                         huge_page_size(h) / SZ_1K);
4695 }
4696
4697 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4698 {
4699         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4700                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4701 }
4702
4703 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4704 unsigned long hugetlb_total_pages(void)
4705 {
4706         struct hstate *h;
4707         unsigned long nr_total_pages = 0;
4708
4709         for_each_hstate(h)
4710                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4711         return nr_total_pages;
4712 }
4713
4714 static int hugetlb_acct_memory(struct hstate *h, long delta)
4715 {
4716         int ret = -ENOMEM;
4717
4718         if (!delta)
4719                 return 0;
4720
4721         spin_lock_irq(&hugetlb_lock);
4722         /*
4723          * When cpuset is configured, it breaks the strict hugetlb page
4724          * reservation as the accounting is done on a global variable. Such
4725          * reservation is completely rubbish in the presence of cpuset because
4726          * the reservation is not checked against page availability for the
4727          * current cpuset. Application can still potentially OOM'ed by kernel
4728          * with lack of free htlb page in cpuset that the task is in.
4729          * Attempt to enforce strict accounting with cpuset is almost
4730          * impossible (or too ugly) because cpuset is too fluid that
4731          * task or memory node can be dynamically moved between cpusets.
4732          *
4733          * The change of semantics for shared hugetlb mapping with cpuset is
4734          * undesirable. However, in order to preserve some of the semantics,
4735          * we fall back to check against current free page availability as
4736          * a best attempt and hopefully to minimize the impact of changing
4737          * semantics that cpuset has.
4738          *
4739          * Apart from cpuset, we also have memory policy mechanism that
4740          * also determines from which node the kernel will allocate memory
4741          * in a NUMA system. So similar to cpuset, we also should consider
4742          * the memory policy of the current task. Similar to the description
4743          * above.
4744          */
4745         if (delta > 0) {
4746                 if (gather_surplus_pages(h, delta) < 0)
4747                         goto out;
4748
4749                 if (delta > allowed_mems_nr(h)) {
4750                         return_unused_surplus_pages(h, delta);
4751                         goto out;
4752                 }
4753         }
4754
4755         ret = 0;
4756         if (delta < 0)
4757                 return_unused_surplus_pages(h, (unsigned long) -delta);
4758
4759 out:
4760         spin_unlock_irq(&hugetlb_lock);
4761         return ret;
4762 }
4763
4764 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4765 {
4766         struct resv_map *resv = vma_resv_map(vma);
4767
4768         /*
4769          * HPAGE_RESV_OWNER indicates a private mapping.
4770          * This new VMA should share its siblings reservation map if present.
4771          * The VMA will only ever have a valid reservation map pointer where
4772          * it is being copied for another still existing VMA.  As that VMA
4773          * has a reference to the reservation map it cannot disappear until
4774          * after this open call completes.  It is therefore safe to take a
4775          * new reference here without additional locking.
4776          */
4777         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4778                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4779                 kref_get(&resv->refs);
4780         }
4781
4782         /*
4783          * vma_lock structure for sharable mappings is vma specific.
4784          * Clear old pointer (if copied via vm_area_dup) and allocate
4785          * new structure.  Before clearing, make sure vma_lock is not
4786          * for this vma.
4787          */
4788         if (vma->vm_flags & VM_MAYSHARE) {
4789                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4790
4791                 if (vma_lock) {
4792                         if (vma_lock->vma != vma) {
4793                                 vma->vm_private_data = NULL;
4794                                 hugetlb_vma_lock_alloc(vma);
4795                         } else
4796                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4797                 } else
4798                         hugetlb_vma_lock_alloc(vma);
4799         }
4800 }
4801
4802 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4803 {
4804         struct hstate *h = hstate_vma(vma);
4805         struct resv_map *resv;
4806         struct hugepage_subpool *spool = subpool_vma(vma);
4807         unsigned long reserve, start, end;
4808         long gbl_reserve;
4809
4810         hugetlb_vma_lock_free(vma);
4811
4812         resv = vma_resv_map(vma);
4813         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4814                 return;
4815
4816         start = vma_hugecache_offset(h, vma, vma->vm_start);
4817         end = vma_hugecache_offset(h, vma, vma->vm_end);
4818
4819         reserve = (end - start) - region_count(resv, start, end);
4820         hugetlb_cgroup_uncharge_counter(resv, start, end);
4821         if (reserve) {
4822                 /*
4823                  * Decrement reserve counts.  The global reserve count may be
4824                  * adjusted if the subpool has a minimum size.
4825                  */
4826                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4827                 hugetlb_acct_memory(h, -gbl_reserve);
4828         }
4829
4830         kref_put(&resv->refs, resv_map_release);
4831 }
4832
4833 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4834 {
4835         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4836                 return -EINVAL;
4837         return 0;
4838 }
4839
4840 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4841 {
4842         return huge_page_size(hstate_vma(vma));
4843 }
4844
4845 /*
4846  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4847  * handle_mm_fault() to try to instantiate regular-sized pages in the
4848  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4849  * this far.
4850  */
4851 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4852 {
4853         BUG();
4854         return 0;
4855 }
4856
4857 /*
4858  * When a new function is introduced to vm_operations_struct and added
4859  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4860  * This is because under System V memory model, mappings created via
4861  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4862  * their original vm_ops are overwritten with shm_vm_ops.
4863  */
4864 const struct vm_operations_struct hugetlb_vm_ops = {
4865         .fault = hugetlb_vm_op_fault,
4866         .open = hugetlb_vm_op_open,
4867         .close = hugetlb_vm_op_close,
4868         .may_split = hugetlb_vm_op_split,
4869         .pagesize = hugetlb_vm_op_pagesize,
4870 };
4871
4872 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4873                                 int writable)
4874 {
4875         pte_t entry;
4876         unsigned int shift = huge_page_shift(hstate_vma(vma));
4877
4878         if (writable) {
4879                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4880                                          vma->vm_page_prot)));
4881         } else {
4882                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4883                                            vma->vm_page_prot));
4884         }
4885         entry = pte_mkyoung(entry);
4886         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4887
4888         return entry;
4889 }
4890
4891 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4892                                    unsigned long address, pte_t *ptep)
4893 {
4894         pte_t entry;
4895
4896         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4897         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4898                 update_mmu_cache(vma, address, ptep);
4899 }
4900
4901 bool is_hugetlb_entry_migration(pte_t pte)
4902 {
4903         swp_entry_t swp;
4904
4905         if (huge_pte_none(pte) || pte_present(pte))
4906                 return false;
4907         swp = pte_to_swp_entry(pte);
4908         if (is_migration_entry(swp))
4909                 return true;
4910         else
4911                 return false;
4912 }
4913
4914 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4915 {
4916         swp_entry_t swp;
4917
4918         if (huge_pte_none(pte) || pte_present(pte))
4919                 return false;
4920         swp = pte_to_swp_entry(pte);
4921         if (is_hwpoison_entry(swp))
4922                 return true;
4923         else
4924                 return false;
4925 }
4926
4927 static void
4928 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4929                      struct page *new_page)
4930 {
4931         __SetPageUptodate(new_page);
4932         hugepage_add_new_anon_rmap(new_page, vma, addr);
4933         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4934         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4935         SetHPageMigratable(new_page);
4936 }
4937
4938 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4939                             struct vm_area_struct *dst_vma,
4940                             struct vm_area_struct *src_vma)
4941 {
4942         pte_t *src_pte, *dst_pte, entry;
4943         struct page *ptepage;
4944         unsigned long addr;
4945         bool cow = is_cow_mapping(src_vma->vm_flags);
4946         struct hstate *h = hstate_vma(src_vma);
4947         unsigned long sz = huge_page_size(h);
4948         unsigned long npages = pages_per_huge_page(h);
4949         struct mmu_notifier_range range;
4950         unsigned long last_addr_mask;
4951         int ret = 0;
4952
4953         if (cow) {
4954                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4955                                         src_vma->vm_start,
4956                                         src_vma->vm_end);
4957                 mmu_notifier_invalidate_range_start(&range);
4958                 mmap_assert_write_locked(src);
4959                 raw_write_seqcount_begin(&src->write_protect_seq);
4960         } else {
4961                 /*
4962                  * For shared mappings the vma lock must be held before
4963                  * calling huge_pte_offset in the src vma. Otherwise, the
4964                  * returned ptep could go away if part of a shared pmd and
4965                  * another thread calls huge_pmd_unshare.
4966                  */
4967                 hugetlb_vma_lock_read(src_vma);
4968         }
4969
4970         last_addr_mask = hugetlb_mask_last_page(h);
4971         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4972                 spinlock_t *src_ptl, *dst_ptl;
4973                 src_pte = huge_pte_offset(src, addr, sz);
4974                 if (!src_pte) {
4975                         addr |= last_addr_mask;
4976                         continue;
4977                 }
4978                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4979                 if (!dst_pte) {
4980                         ret = -ENOMEM;
4981                         break;
4982                 }
4983
4984                 /*
4985                  * If the pagetables are shared don't copy or take references.
4986                  *
4987                  * dst_pte == src_pte is the common case of src/dest sharing.
4988                  * However, src could have 'unshared' and dst shares with
4989                  * another vma. So page_count of ptep page is checked instead
4990                  * to reliably determine whether pte is shared.
4991                  */
4992                 if (page_count(virt_to_page(dst_pte)) > 1) {
4993                         addr |= last_addr_mask;
4994                         continue;
4995                 }
4996
4997                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4998                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4999                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5000                 entry = huge_ptep_get(src_pte);
5001 again:
5002                 if (huge_pte_none(entry)) {
5003                         /*
5004                          * Skip if src entry none.
5005                          */
5006                         ;
5007                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5008                         bool uffd_wp = huge_pte_uffd_wp(entry);
5009
5010                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5011                                 entry = huge_pte_clear_uffd_wp(entry);
5012                         set_huge_pte_at(dst, addr, dst_pte, entry);
5013                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5014                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5015                         bool uffd_wp = huge_pte_uffd_wp(entry);
5016
5017                         if (!is_readable_migration_entry(swp_entry) && cow) {
5018                                 /*
5019                                  * COW mappings require pages in both
5020                                  * parent and child to be set to read.
5021                                  */
5022                                 swp_entry = make_readable_migration_entry(
5023                                                         swp_offset(swp_entry));
5024                                 entry = swp_entry_to_pte(swp_entry);
5025                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5026                                         entry = huge_pte_mkuffd_wp(entry);
5027                                 set_huge_pte_at(src, addr, src_pte, entry);
5028                         }
5029                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5030                                 entry = huge_pte_clear_uffd_wp(entry);
5031                         set_huge_pte_at(dst, addr, dst_pte, entry);
5032                 } else if (unlikely(is_pte_marker(entry))) {
5033                         /*
5034                          * We copy the pte marker only if the dst vma has
5035                          * uffd-wp enabled.
5036                          */
5037                         if (userfaultfd_wp(dst_vma))
5038                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5039                 } else {
5040                         entry = huge_ptep_get(src_pte);
5041                         ptepage = pte_page(entry);
5042                         get_page(ptepage);
5043
5044                         /*
5045                          * Failing to duplicate the anon rmap is a rare case
5046                          * where we see pinned hugetlb pages while they're
5047                          * prone to COW. We need to do the COW earlier during
5048                          * fork.
5049                          *
5050                          * When pre-allocating the page or copying data, we
5051                          * need to be without the pgtable locks since we could
5052                          * sleep during the process.
5053                          */
5054                         if (!PageAnon(ptepage)) {
5055                                 page_dup_file_rmap(ptepage, true);
5056                         } else if (page_try_dup_anon_rmap(ptepage, true,
5057                                                           src_vma)) {
5058                                 pte_t src_pte_old = entry;
5059                                 struct page *new;
5060
5061                                 spin_unlock(src_ptl);
5062                                 spin_unlock(dst_ptl);
5063                                 /* Do not use reserve as it's private owned */
5064                                 new = alloc_huge_page(dst_vma, addr, 1);
5065                                 if (IS_ERR(new)) {
5066                                         put_page(ptepage);
5067                                         ret = PTR_ERR(new);
5068                                         break;
5069                                 }
5070                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5071                                                     npages);
5072                                 put_page(ptepage);
5073
5074                                 /* Install the new huge page if src pte stable */
5075                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5076                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5077                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5078                                 entry = huge_ptep_get(src_pte);
5079                                 if (!pte_same(src_pte_old, entry)) {
5080                                         restore_reserve_on_error(h, dst_vma, addr,
5081                                                                 new);
5082                                         put_page(new);
5083                                         /* huge_ptep of dst_pte won't change as in child */
5084                                         goto again;
5085                                 }
5086                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5087                                 spin_unlock(src_ptl);
5088                                 spin_unlock(dst_ptl);
5089                                 continue;
5090                         }
5091
5092                         if (cow) {
5093                                 /*
5094                                  * No need to notify as we are downgrading page
5095                                  * table protection not changing it to point
5096                                  * to a new page.
5097                                  *
5098                                  * See Documentation/mm/mmu_notifier.rst
5099                                  */
5100                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5101                                 entry = huge_pte_wrprotect(entry);
5102                         }
5103
5104                         set_huge_pte_at(dst, addr, dst_pte, entry);
5105                         hugetlb_count_add(npages, dst);
5106                 }
5107                 spin_unlock(src_ptl);
5108                 spin_unlock(dst_ptl);
5109         }
5110
5111         if (cow) {
5112                 raw_write_seqcount_end(&src->write_protect_seq);
5113                 mmu_notifier_invalidate_range_end(&range);
5114         } else {
5115                 hugetlb_vma_unlock_read(src_vma);
5116         }
5117
5118         return ret;
5119 }
5120
5121 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5122                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5123 {
5124         struct hstate *h = hstate_vma(vma);
5125         struct mm_struct *mm = vma->vm_mm;
5126         spinlock_t *src_ptl, *dst_ptl;
5127         pte_t pte;
5128
5129         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5130         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5131
5132         /*
5133          * We don't have to worry about the ordering of src and dst ptlocks
5134          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5135          */
5136         if (src_ptl != dst_ptl)
5137                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5138
5139         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5140         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5141
5142         if (src_ptl != dst_ptl)
5143                 spin_unlock(src_ptl);
5144         spin_unlock(dst_ptl);
5145 }
5146
5147 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5148                              struct vm_area_struct *new_vma,
5149                              unsigned long old_addr, unsigned long new_addr,
5150                              unsigned long len)
5151 {
5152         struct hstate *h = hstate_vma(vma);
5153         struct address_space *mapping = vma->vm_file->f_mapping;
5154         unsigned long sz = huge_page_size(h);
5155         struct mm_struct *mm = vma->vm_mm;
5156         unsigned long old_end = old_addr + len;
5157         unsigned long last_addr_mask;
5158         pte_t *src_pte, *dst_pte;
5159         struct mmu_notifier_range range;
5160         bool shared_pmd = false;
5161
5162         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5163                                 old_end);
5164         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5165         /*
5166          * In case of shared PMDs, we should cover the maximum possible
5167          * range.
5168          */
5169         flush_cache_range(vma, range.start, range.end);
5170
5171         mmu_notifier_invalidate_range_start(&range);
5172         last_addr_mask = hugetlb_mask_last_page(h);
5173         /* Prevent race with file truncation */
5174         hugetlb_vma_lock_write(vma);
5175         i_mmap_lock_write(mapping);
5176         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5177                 src_pte = huge_pte_offset(mm, old_addr, sz);
5178                 if (!src_pte) {
5179                         old_addr |= last_addr_mask;
5180                         new_addr |= last_addr_mask;
5181                         continue;
5182                 }
5183                 if (huge_pte_none(huge_ptep_get(src_pte)))
5184                         continue;
5185
5186                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5187                         shared_pmd = true;
5188                         old_addr |= last_addr_mask;
5189                         new_addr |= last_addr_mask;
5190                         continue;
5191                 }
5192
5193                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5194                 if (!dst_pte)
5195                         break;
5196
5197                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5198         }
5199
5200         if (shared_pmd)
5201                 flush_tlb_range(vma, range.start, range.end);
5202         else
5203                 flush_tlb_range(vma, old_end - len, old_end);
5204         mmu_notifier_invalidate_range_end(&range);
5205         i_mmap_unlock_write(mapping);
5206         hugetlb_vma_unlock_write(vma);
5207
5208         return len + old_addr - old_end;
5209 }
5210
5211 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5212                                    unsigned long start, unsigned long end,
5213                                    struct page *ref_page, zap_flags_t zap_flags)
5214 {
5215         struct mm_struct *mm = vma->vm_mm;
5216         unsigned long address;
5217         pte_t *ptep;
5218         pte_t pte;
5219         spinlock_t *ptl;
5220         struct page *page;
5221         struct hstate *h = hstate_vma(vma);
5222         unsigned long sz = huge_page_size(h);
5223         unsigned long last_addr_mask;
5224         bool force_flush = false;
5225
5226         WARN_ON(!is_vm_hugetlb_page(vma));
5227         BUG_ON(start & ~huge_page_mask(h));
5228         BUG_ON(end & ~huge_page_mask(h));
5229
5230         /*
5231          * This is a hugetlb vma, all the pte entries should point
5232          * to huge page.
5233          */
5234         tlb_change_page_size(tlb, sz);
5235         tlb_start_vma(tlb, vma);
5236
5237         last_addr_mask = hugetlb_mask_last_page(h);
5238         address = start;
5239         for (; address < end; address += sz) {
5240                 ptep = huge_pte_offset(mm, address, sz);
5241                 if (!ptep) {
5242                         address |= last_addr_mask;
5243                         continue;
5244                 }
5245
5246                 ptl = huge_pte_lock(h, mm, ptep);
5247                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5248                         spin_unlock(ptl);
5249                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5250                         force_flush = true;
5251                         address |= last_addr_mask;
5252                         continue;
5253                 }
5254
5255                 pte = huge_ptep_get(ptep);
5256                 if (huge_pte_none(pte)) {
5257                         spin_unlock(ptl);
5258                         continue;
5259                 }
5260
5261                 /*
5262                  * Migrating hugepage or HWPoisoned hugepage is already
5263                  * unmapped and its refcount is dropped, so just clear pte here.
5264                  */
5265                 if (unlikely(!pte_present(pte))) {
5266                         /*
5267                          * If the pte was wr-protected by uffd-wp in any of the
5268                          * swap forms, meanwhile the caller does not want to
5269                          * drop the uffd-wp bit in this zap, then replace the
5270                          * pte with a marker.
5271                          */
5272                         if (pte_swp_uffd_wp_any(pte) &&
5273                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5274                                 set_huge_pte_at(mm, address, ptep,
5275                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5276                         else
5277                                 huge_pte_clear(mm, address, ptep, sz);
5278                         spin_unlock(ptl);
5279                         continue;
5280                 }
5281
5282                 page = pte_page(pte);
5283                 /*
5284                  * If a reference page is supplied, it is because a specific
5285                  * page is being unmapped, not a range. Ensure the page we
5286                  * are about to unmap is the actual page of interest.
5287                  */
5288                 if (ref_page) {
5289                         if (page != ref_page) {
5290                                 spin_unlock(ptl);
5291                                 continue;
5292                         }
5293                         /*
5294                          * Mark the VMA as having unmapped its page so that
5295                          * future faults in this VMA will fail rather than
5296                          * looking like data was lost
5297                          */
5298                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5299                 }
5300
5301                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5302                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5303                 if (huge_pte_dirty(pte))
5304                         set_page_dirty(page);
5305                 /* Leave a uffd-wp pte marker if needed */
5306                 if (huge_pte_uffd_wp(pte) &&
5307                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5308                         set_huge_pte_at(mm, address, ptep,
5309                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5310                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5311                 page_remove_rmap(page, vma, true);
5312
5313                 spin_unlock(ptl);
5314                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5315                 /*
5316                  * Bail out after unmapping reference page if supplied
5317                  */
5318                 if (ref_page)
5319                         break;
5320         }
5321         tlb_end_vma(tlb, vma);
5322
5323         /*
5324          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5325          * could defer the flush until now, since by holding i_mmap_rwsem we
5326          * guaranteed that the last refernece would not be dropped. But we must
5327          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5328          * dropped and the last reference to the shared PMDs page might be
5329          * dropped as well.
5330          *
5331          * In theory we could defer the freeing of the PMD pages as well, but
5332          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5333          * detect sharing, so we cannot defer the release of the page either.
5334          * Instead, do flush now.
5335          */
5336         if (force_flush)
5337                 tlb_flush_mmu_tlbonly(tlb);
5338 }
5339
5340 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5341                           struct vm_area_struct *vma, unsigned long start,
5342                           unsigned long end, struct page *ref_page,
5343                           zap_flags_t zap_flags)
5344 {
5345         hugetlb_vma_lock_write(vma);
5346         i_mmap_lock_write(vma->vm_file->f_mapping);
5347
5348         /* mmu notification performed in caller */
5349         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5350
5351         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5352                 /*
5353                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5354                  * When the vma_lock is freed, this makes the vma ineligible
5355                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5356                  * pmd sharing.  This is important as page tables for this
5357                  * unmapped range will be asynchrously deleted.  If the page
5358                  * tables are shared, there will be issues when accessed by
5359                  * someone else.
5360                  */
5361                 __hugetlb_vma_unlock_write_free(vma);
5362                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5363         } else {
5364                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5365                 hugetlb_vma_unlock_write(vma);
5366         }
5367 }
5368
5369 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5370                           unsigned long end, struct page *ref_page,
5371                           zap_flags_t zap_flags)
5372 {
5373         struct mmu_notifier_range range;
5374         struct mmu_gather tlb;
5375
5376         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5377                                 start, end);
5378         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5379         mmu_notifier_invalidate_range_start(&range);
5380         tlb_gather_mmu(&tlb, vma->vm_mm);
5381
5382         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5383
5384         mmu_notifier_invalidate_range_end(&range);
5385         tlb_finish_mmu(&tlb);
5386 }
5387
5388 /*
5389  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5390  * mapping it owns the reserve page for. The intention is to unmap the page
5391  * from other VMAs and let the children be SIGKILLed if they are faulting the
5392  * same region.
5393  */
5394 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5395                               struct page *page, unsigned long address)
5396 {
5397         struct hstate *h = hstate_vma(vma);
5398         struct vm_area_struct *iter_vma;
5399         struct address_space *mapping;
5400         pgoff_t pgoff;
5401
5402         /*
5403          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5404          * from page cache lookup which is in HPAGE_SIZE units.
5405          */
5406         address = address & huge_page_mask(h);
5407         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5408                         vma->vm_pgoff;
5409         mapping = vma->vm_file->f_mapping;
5410
5411         /*
5412          * Take the mapping lock for the duration of the table walk. As
5413          * this mapping should be shared between all the VMAs,
5414          * __unmap_hugepage_range() is called as the lock is already held
5415          */
5416         i_mmap_lock_write(mapping);
5417         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5418                 /* Do not unmap the current VMA */
5419                 if (iter_vma == vma)
5420                         continue;
5421
5422                 /*
5423                  * Shared VMAs have their own reserves and do not affect
5424                  * MAP_PRIVATE accounting but it is possible that a shared
5425                  * VMA is using the same page so check and skip such VMAs.
5426                  */
5427                 if (iter_vma->vm_flags & VM_MAYSHARE)
5428                         continue;
5429
5430                 /*
5431                  * Unmap the page from other VMAs without their own reserves.
5432                  * They get marked to be SIGKILLed if they fault in these
5433                  * areas. This is because a future no-page fault on this VMA
5434                  * could insert a zeroed page instead of the data existing
5435                  * from the time of fork. This would look like data corruption
5436                  */
5437                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5438                         unmap_hugepage_range(iter_vma, address,
5439                                              address + huge_page_size(h), page, 0);
5440         }
5441         i_mmap_unlock_write(mapping);
5442 }
5443
5444 /*
5445  * hugetlb_wp() should be called with page lock of the original hugepage held.
5446  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5447  * cannot race with other handlers or page migration.
5448  * Keep the pte_same checks anyway to make transition from the mutex easier.
5449  */
5450 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5451                        unsigned long address, pte_t *ptep, unsigned int flags,
5452                        struct page *pagecache_page, spinlock_t *ptl)
5453 {
5454         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5455         pte_t pte;
5456         struct hstate *h = hstate_vma(vma);
5457         struct page *old_page, *new_page;
5458         int outside_reserve = 0;
5459         vm_fault_t ret = 0;
5460         unsigned long haddr = address & huge_page_mask(h);
5461         struct mmu_notifier_range range;
5462
5463         /*
5464          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5465          * PTE mapped R/O such as maybe_mkwrite() would do.
5466          */
5467         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5468                 return VM_FAULT_SIGSEGV;
5469
5470         /* Let's take out MAP_SHARED mappings first. */
5471         if (vma->vm_flags & VM_MAYSHARE) {
5472                 set_huge_ptep_writable(vma, haddr, ptep);
5473                 return 0;
5474         }
5475
5476         pte = huge_ptep_get(ptep);
5477         old_page = pte_page(pte);
5478
5479         delayacct_wpcopy_start();
5480
5481 retry_avoidcopy:
5482         /*
5483          * If no-one else is actually using this page, we're the exclusive
5484          * owner and can reuse this page.
5485          */
5486         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5487                 if (!PageAnonExclusive(old_page))
5488                         page_move_anon_rmap(old_page, vma);
5489                 if (likely(!unshare))
5490                         set_huge_ptep_writable(vma, haddr, ptep);
5491
5492                 delayacct_wpcopy_end();
5493                 return 0;
5494         }
5495         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5496                        old_page);
5497
5498         /*
5499          * If the process that created a MAP_PRIVATE mapping is about to
5500          * perform a COW due to a shared page count, attempt to satisfy
5501          * the allocation without using the existing reserves. The pagecache
5502          * page is used to determine if the reserve at this address was
5503          * consumed or not. If reserves were used, a partial faulted mapping
5504          * at the time of fork() could consume its reserves on COW instead
5505          * of the full address range.
5506          */
5507         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5508                         old_page != pagecache_page)
5509                 outside_reserve = 1;
5510
5511         get_page(old_page);
5512
5513         /*
5514          * Drop page table lock as buddy allocator may be called. It will
5515          * be acquired again before returning to the caller, as expected.
5516          */
5517         spin_unlock(ptl);
5518         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5519
5520         if (IS_ERR(new_page)) {
5521                 /*
5522                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5523                  * it is due to references held by a child and an insufficient
5524                  * huge page pool. To guarantee the original mappers
5525                  * reliability, unmap the page from child processes. The child
5526                  * may get SIGKILLed if it later faults.
5527                  */
5528                 if (outside_reserve) {
5529                         struct address_space *mapping = vma->vm_file->f_mapping;
5530                         pgoff_t idx;
5531                         u32 hash;
5532
5533                         put_page(old_page);
5534                         /*
5535                          * Drop hugetlb_fault_mutex and vma_lock before
5536                          * unmapping.  unmapping needs to hold vma_lock
5537                          * in write mode.  Dropping vma_lock in read mode
5538                          * here is OK as COW mappings do not interact with
5539                          * PMD sharing.
5540                          *
5541                          * Reacquire both after unmap operation.
5542                          */
5543                         idx = vma_hugecache_offset(h, vma, haddr);
5544                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5545                         hugetlb_vma_unlock_read(vma);
5546                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5547
5548                         unmap_ref_private(mm, vma, old_page, haddr);
5549
5550                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5551                         hugetlb_vma_lock_read(vma);
5552                         spin_lock(ptl);
5553                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5554                         if (likely(ptep &&
5555                                    pte_same(huge_ptep_get(ptep), pte)))
5556                                 goto retry_avoidcopy;
5557                         /*
5558                          * race occurs while re-acquiring page table
5559                          * lock, and our job is done.
5560                          */
5561                         delayacct_wpcopy_end();
5562                         return 0;
5563                 }
5564
5565                 ret = vmf_error(PTR_ERR(new_page));
5566                 goto out_release_old;
5567         }
5568
5569         /*
5570          * When the original hugepage is shared one, it does not have
5571          * anon_vma prepared.
5572          */
5573         if (unlikely(anon_vma_prepare(vma))) {
5574                 ret = VM_FAULT_OOM;
5575                 goto out_release_all;
5576         }
5577
5578         copy_user_huge_page(new_page, old_page, address, vma,
5579                             pages_per_huge_page(h));
5580         __SetPageUptodate(new_page);
5581
5582         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5583                                 haddr + huge_page_size(h));
5584         mmu_notifier_invalidate_range_start(&range);
5585
5586         /*
5587          * Retake the page table lock to check for racing updates
5588          * before the page tables are altered
5589          */
5590         spin_lock(ptl);
5591         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5592         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5593                 /* Break COW or unshare */
5594                 huge_ptep_clear_flush(vma, haddr, ptep);
5595                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5596                 page_remove_rmap(old_page, vma, true);
5597                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5598                 set_huge_pte_at(mm, haddr, ptep,
5599                                 make_huge_pte(vma, new_page, !unshare));
5600                 SetHPageMigratable(new_page);
5601                 /* Make the old page be freed below */
5602                 new_page = old_page;
5603         }
5604         spin_unlock(ptl);
5605         mmu_notifier_invalidate_range_end(&range);
5606 out_release_all:
5607         /*
5608          * No restore in case of successful pagetable update (Break COW or
5609          * unshare)
5610          */
5611         if (new_page != old_page)
5612                 restore_reserve_on_error(h, vma, haddr, new_page);
5613         put_page(new_page);
5614 out_release_old:
5615         put_page(old_page);
5616
5617         spin_lock(ptl); /* Caller expects lock to be held */
5618
5619         delayacct_wpcopy_end();
5620         return ret;
5621 }
5622
5623 /*
5624  * Return whether there is a pagecache page to back given address within VMA.
5625  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5626  */
5627 static bool hugetlbfs_pagecache_present(struct hstate *h,
5628                         struct vm_area_struct *vma, unsigned long address)
5629 {
5630         struct address_space *mapping;
5631         pgoff_t idx;
5632         struct page *page;
5633
5634         mapping = vma->vm_file->f_mapping;
5635         idx = vma_hugecache_offset(h, vma, address);
5636
5637         page = find_get_page(mapping, idx);
5638         if (page)
5639                 put_page(page);
5640         return page != NULL;
5641 }
5642
5643 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5644                            pgoff_t idx)
5645 {
5646         struct folio *folio = page_folio(page);
5647         struct inode *inode = mapping->host;
5648         struct hstate *h = hstate_inode(inode);
5649         int err;
5650
5651         __folio_set_locked(folio);
5652         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5653
5654         if (unlikely(err)) {
5655                 __folio_clear_locked(folio);
5656                 return err;
5657         }
5658         ClearHPageRestoreReserve(page);
5659
5660         /*
5661          * mark folio dirty so that it will not be removed from cache/file
5662          * by non-hugetlbfs specific code paths.
5663          */
5664         folio_mark_dirty(folio);
5665
5666         spin_lock(&inode->i_lock);
5667         inode->i_blocks += blocks_per_huge_page(h);
5668         spin_unlock(&inode->i_lock);
5669         return 0;
5670 }
5671
5672 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5673                                                   struct address_space *mapping,
5674                                                   pgoff_t idx,
5675                                                   unsigned int flags,
5676                                                   unsigned long haddr,
5677                                                   unsigned long addr,
5678                                                   unsigned long reason)
5679 {
5680         u32 hash;
5681         struct vm_fault vmf = {
5682                 .vma = vma,
5683                 .address = haddr,
5684                 .real_address = addr,
5685                 .flags = flags,
5686
5687                 /*
5688                  * Hard to debug if it ends up being
5689                  * used by a callee that assumes
5690                  * something about the other
5691                  * uninitialized fields... same as in
5692                  * memory.c
5693                  */
5694         };
5695
5696         /*
5697          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5698          * userfault. Also mmap_lock could be dropped due to handling
5699          * userfault, any vma operation should be careful from here.
5700          */
5701         hugetlb_vma_unlock_read(vma);
5702         hash = hugetlb_fault_mutex_hash(mapping, idx);
5703         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5704         return handle_userfault(&vmf, reason);
5705 }
5706
5707 /*
5708  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5709  * false if pte changed or is changing.
5710  */
5711 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5712                                pte_t *ptep, pte_t old_pte)
5713 {
5714         spinlock_t *ptl;
5715         bool same;
5716
5717         ptl = huge_pte_lock(h, mm, ptep);
5718         same = pte_same(huge_ptep_get(ptep), old_pte);
5719         spin_unlock(ptl);
5720
5721         return same;
5722 }
5723
5724 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5725                         struct vm_area_struct *vma,
5726                         struct address_space *mapping, pgoff_t idx,
5727                         unsigned long address, pte_t *ptep,
5728                         pte_t old_pte, unsigned int flags)
5729 {
5730         struct hstate *h = hstate_vma(vma);
5731         vm_fault_t ret = VM_FAULT_SIGBUS;
5732         int anon_rmap = 0;
5733         unsigned long size;
5734         struct page *page;
5735         pte_t new_pte;
5736         spinlock_t *ptl;
5737         unsigned long haddr = address & huge_page_mask(h);
5738         bool new_page, new_pagecache_page = false;
5739         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5740
5741         /*
5742          * Currently, we are forced to kill the process in the event the
5743          * original mapper has unmapped pages from the child due to a failed
5744          * COW/unsharing. Warn that such a situation has occurred as it may not
5745          * be obvious.
5746          */
5747         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5748                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5749                            current->pid);
5750                 goto out;
5751         }
5752
5753         /*
5754          * Use page lock to guard against racing truncation
5755          * before we get page_table_lock.
5756          */
5757         new_page = false;
5758         page = find_lock_page(mapping, idx);
5759         if (!page) {
5760                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5761                 if (idx >= size)
5762                         goto out;
5763                 /* Check for page in userfault range */
5764                 if (userfaultfd_missing(vma)) {
5765                         /*
5766                          * Since hugetlb_no_page() was examining pte
5767                          * without pgtable lock, we need to re-test under
5768                          * lock because the pte may not be stable and could
5769                          * have changed from under us.  Try to detect
5770                          * either changed or during-changing ptes and retry
5771                          * properly when needed.
5772                          *
5773                          * Note that userfaultfd is actually fine with
5774                          * false positives (e.g. caused by pte changed),
5775                          * but not wrong logical events (e.g. caused by
5776                          * reading a pte during changing).  The latter can
5777                          * confuse the userspace, so the strictness is very
5778                          * much preferred.  E.g., MISSING event should
5779                          * never happen on the page after UFFDIO_COPY has
5780                          * correctly installed the page and returned.
5781                          */
5782                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5783                                 ret = 0;
5784                                 goto out;
5785                         }
5786
5787                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5788                                                         haddr, address,
5789                                                         VM_UFFD_MISSING);
5790                 }
5791
5792                 page = alloc_huge_page(vma, haddr, 0);
5793                 if (IS_ERR(page)) {
5794                         /*
5795                          * Returning error will result in faulting task being
5796                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5797                          * tasks from racing to fault in the same page which
5798                          * could result in false unable to allocate errors.
5799                          * Page migration does not take the fault mutex, but
5800                          * does a clear then write of pte's under page table
5801                          * lock.  Page fault code could race with migration,
5802                          * notice the clear pte and try to allocate a page
5803                          * here.  Before returning error, get ptl and make
5804                          * sure there really is no pte entry.
5805                          */
5806                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5807                                 ret = vmf_error(PTR_ERR(page));
5808                         else
5809                                 ret = 0;
5810                         goto out;
5811                 }
5812                 clear_huge_page(page, address, pages_per_huge_page(h));
5813                 __SetPageUptodate(page);
5814                 new_page = true;
5815
5816                 if (vma->vm_flags & VM_MAYSHARE) {
5817                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5818                         if (err) {
5819                                 /*
5820                                  * err can't be -EEXIST which implies someone
5821                                  * else consumed the reservation since hugetlb
5822                                  * fault mutex is held when add a hugetlb page
5823                                  * to the page cache. So it's safe to call
5824                                  * restore_reserve_on_error() here.
5825                                  */
5826                                 restore_reserve_on_error(h, vma, haddr, page);
5827                                 put_page(page);
5828                                 goto out;
5829                         }
5830                         new_pagecache_page = true;
5831                 } else {
5832                         lock_page(page);
5833                         if (unlikely(anon_vma_prepare(vma))) {
5834                                 ret = VM_FAULT_OOM;
5835                                 goto backout_unlocked;
5836                         }
5837                         anon_rmap = 1;
5838                 }
5839         } else {
5840                 /*
5841                  * If memory error occurs between mmap() and fault, some process
5842                  * don't have hwpoisoned swap entry for errored virtual address.
5843                  * So we need to block hugepage fault by PG_hwpoison bit check.
5844                  */
5845                 if (unlikely(PageHWPoison(page))) {
5846                         ret = VM_FAULT_HWPOISON_LARGE |
5847                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5848                         goto backout_unlocked;
5849                 }
5850
5851                 /* Check for page in userfault range. */
5852                 if (userfaultfd_minor(vma)) {
5853                         unlock_page(page);
5854                         put_page(page);
5855                         /* See comment in userfaultfd_missing() block above */
5856                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5857                                 ret = 0;
5858                                 goto out;
5859                         }
5860                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5861                                                         haddr, address,
5862                                                         VM_UFFD_MINOR);
5863                 }
5864         }
5865
5866         /*
5867          * If we are going to COW a private mapping later, we examine the
5868          * pending reservations for this page now. This will ensure that
5869          * any allocations necessary to record that reservation occur outside
5870          * the spinlock.
5871          */
5872         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5873                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5874                         ret = VM_FAULT_OOM;
5875                         goto backout_unlocked;
5876                 }
5877                 /* Just decrements count, does not deallocate */
5878                 vma_end_reservation(h, vma, haddr);
5879         }
5880
5881         ptl = huge_pte_lock(h, mm, ptep);
5882         ret = 0;
5883         /* If pte changed from under us, retry */
5884         if (!pte_same(huge_ptep_get(ptep), old_pte))
5885                 goto backout;
5886
5887         if (anon_rmap)
5888                 hugepage_add_new_anon_rmap(page, vma, haddr);
5889         else
5890                 page_dup_file_rmap(page, true);
5891         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5892                                 && (vma->vm_flags & VM_SHARED)));
5893         /*
5894          * If this pte was previously wr-protected, keep it wr-protected even
5895          * if populated.
5896          */
5897         if (unlikely(pte_marker_uffd_wp(old_pte)))
5898                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5899         set_huge_pte_at(mm, haddr, ptep, new_pte);
5900
5901         hugetlb_count_add(pages_per_huge_page(h), mm);
5902         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5903                 /* Optimization, do the COW without a second fault */
5904                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5905         }
5906
5907         spin_unlock(ptl);
5908
5909         /*
5910          * Only set HPageMigratable in newly allocated pages.  Existing pages
5911          * found in the pagecache may not have HPageMigratableset if they have
5912          * been isolated for migration.
5913          */
5914         if (new_page)
5915                 SetHPageMigratable(page);
5916
5917         unlock_page(page);
5918 out:
5919         hugetlb_vma_unlock_read(vma);
5920         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5921         return ret;
5922
5923 backout:
5924         spin_unlock(ptl);
5925 backout_unlocked:
5926         if (new_page && !new_pagecache_page)
5927                 restore_reserve_on_error(h, vma, haddr, page);
5928
5929         unlock_page(page);
5930         put_page(page);
5931         goto out;
5932 }
5933
5934 #ifdef CONFIG_SMP
5935 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5936 {
5937         unsigned long key[2];
5938         u32 hash;
5939
5940         key[0] = (unsigned long) mapping;
5941         key[1] = idx;
5942
5943         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5944
5945         return hash & (num_fault_mutexes - 1);
5946 }
5947 #else
5948 /*
5949  * For uniprocessor systems we always use a single mutex, so just
5950  * return 0 and avoid the hashing overhead.
5951  */
5952 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5953 {
5954         return 0;
5955 }
5956 #endif
5957
5958 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5959                         unsigned long address, unsigned int flags)
5960 {
5961         pte_t *ptep, entry;
5962         spinlock_t *ptl;
5963         vm_fault_t ret;
5964         u32 hash;
5965         pgoff_t idx;
5966         struct page *page = NULL;
5967         struct page *pagecache_page = NULL;
5968         struct hstate *h = hstate_vma(vma);
5969         struct address_space *mapping;
5970         int need_wait_lock = 0;
5971         unsigned long haddr = address & huge_page_mask(h);
5972
5973         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5974         if (ptep) {
5975                 /*
5976                  * Since we hold no locks, ptep could be stale.  That is
5977                  * OK as we are only making decisions based on content and
5978                  * not actually modifying content here.
5979                  */
5980                 entry = huge_ptep_get(ptep);
5981                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5982                         migration_entry_wait_huge(vma, ptep);
5983                         return 0;
5984                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5985                         return VM_FAULT_HWPOISON_LARGE |
5986                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5987         }
5988
5989         /*
5990          * Serialize hugepage allocation and instantiation, so that we don't
5991          * get spurious allocation failures if two CPUs race to instantiate
5992          * the same page in the page cache.
5993          */
5994         mapping = vma->vm_file->f_mapping;
5995         idx = vma_hugecache_offset(h, vma, haddr);
5996         hash = hugetlb_fault_mutex_hash(mapping, idx);
5997         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5998
5999         /*
6000          * Acquire vma lock before calling huge_pte_alloc and hold
6001          * until finished with ptep.  This prevents huge_pmd_unshare from
6002          * being called elsewhere and making the ptep no longer valid.
6003          *
6004          * ptep could have already be assigned via huge_pte_offset.  That
6005          * is OK, as huge_pte_alloc will return the same value unless
6006          * something has changed.
6007          */
6008         hugetlb_vma_lock_read(vma);
6009         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6010         if (!ptep) {
6011                 hugetlb_vma_unlock_read(vma);
6012                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013                 return VM_FAULT_OOM;
6014         }
6015
6016         entry = huge_ptep_get(ptep);
6017         /* PTE markers should be handled the same way as none pte */
6018         if (huge_pte_none_mostly(entry))
6019                 /*
6020                  * hugetlb_no_page will drop vma lock and hugetlb fault
6021                  * mutex internally, which make us return immediately.
6022                  */
6023                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6024                                       entry, flags);
6025
6026         ret = 0;
6027
6028         /*
6029          * entry could be a migration/hwpoison entry at this point, so this
6030          * check prevents the kernel from going below assuming that we have
6031          * an active hugepage in pagecache. This goto expects the 2nd page
6032          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033          * properly handle it.
6034          */
6035         if (!pte_present(entry))
6036                 goto out_mutex;
6037
6038         /*
6039          * If we are going to COW/unshare the mapping later, we examine the
6040          * pending reservations for this page now. This will ensure that any
6041          * allocations necessary to record that reservation occur outside the
6042          * spinlock. Also lookup the pagecache page now as it is used to
6043          * determine if a reservation has been consumed.
6044          */
6045         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6046             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6047                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6048                         ret = VM_FAULT_OOM;
6049                         goto out_mutex;
6050                 }
6051                 /* Just decrements count, does not deallocate */
6052                 vma_end_reservation(h, vma, haddr);
6053
6054                 pagecache_page = find_lock_page(mapping, idx);
6055         }
6056
6057         ptl = huge_pte_lock(h, mm, ptep);
6058
6059         /* Check for a racing update before calling hugetlb_wp() */
6060         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6061                 goto out_ptl;
6062
6063         /* Handle userfault-wp first, before trying to lock more pages */
6064         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6065             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6066                 struct vm_fault vmf = {
6067                         .vma = vma,
6068                         .address = haddr,
6069                         .real_address = address,
6070                         .flags = flags,
6071                 };
6072
6073                 spin_unlock(ptl);
6074                 if (pagecache_page) {
6075                         unlock_page(pagecache_page);
6076                         put_page(pagecache_page);
6077                 }
6078                 hugetlb_vma_unlock_read(vma);
6079                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6080                 return handle_userfault(&vmf, VM_UFFD_WP);
6081         }
6082
6083         /*
6084          * hugetlb_wp() requires page locks of pte_page(entry) and
6085          * pagecache_page, so here we need take the former one
6086          * when page != pagecache_page or !pagecache_page.
6087          */
6088         page = pte_page(entry);
6089         if (page != pagecache_page)
6090                 if (!trylock_page(page)) {
6091                         need_wait_lock = 1;
6092                         goto out_ptl;
6093                 }
6094
6095         get_page(page);
6096
6097         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6098                 if (!huge_pte_write(entry)) {
6099                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6100                                          pagecache_page, ptl);
6101                         goto out_put_page;
6102                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6103                         entry = huge_pte_mkdirty(entry);
6104                 }
6105         }
6106         entry = pte_mkyoung(entry);
6107         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6108                                                 flags & FAULT_FLAG_WRITE))
6109                 update_mmu_cache(vma, haddr, ptep);
6110 out_put_page:
6111         if (page != pagecache_page)
6112                 unlock_page(page);
6113         put_page(page);
6114 out_ptl:
6115         spin_unlock(ptl);
6116
6117         if (pagecache_page) {
6118                 unlock_page(pagecache_page);
6119                 put_page(pagecache_page);
6120         }
6121 out_mutex:
6122         hugetlb_vma_unlock_read(vma);
6123         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6124         /*
6125          * Generally it's safe to hold refcount during waiting page lock. But
6126          * here we just wait to defer the next page fault to avoid busy loop and
6127          * the page is not used after unlocked before returning from the current
6128          * page fault. So we are safe from accessing freed page, even if we wait
6129          * here without taking refcount.
6130          */
6131         if (need_wait_lock)
6132                 wait_on_page_locked(page);
6133         return ret;
6134 }
6135
6136 #ifdef CONFIG_USERFAULTFD
6137 /*
6138  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6139  * modifications for huge pages.
6140  */
6141 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6142                             pte_t *dst_pte,
6143                             struct vm_area_struct *dst_vma,
6144                             unsigned long dst_addr,
6145                             unsigned long src_addr,
6146                             enum mcopy_atomic_mode mode,
6147                             struct page **pagep,
6148                             bool wp_copy)
6149 {
6150         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6151         struct hstate *h = hstate_vma(dst_vma);
6152         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6153         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6154         unsigned long size;
6155         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6156         pte_t _dst_pte;
6157         spinlock_t *ptl;
6158         int ret = -ENOMEM;
6159         struct page *page;
6160         int writable;
6161         bool page_in_pagecache = false;
6162
6163         if (is_continue) {
6164                 ret = -EFAULT;
6165                 page = find_lock_page(mapping, idx);
6166                 if (!page)
6167                         goto out;
6168                 page_in_pagecache = true;
6169         } else if (!*pagep) {
6170                 /* If a page already exists, then it's UFFDIO_COPY for
6171                  * a non-missing case. Return -EEXIST.
6172                  */
6173                 if (vm_shared &&
6174                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6175                         ret = -EEXIST;
6176                         goto out;
6177                 }
6178
6179                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6180                 if (IS_ERR(page)) {
6181                         ret = -ENOMEM;
6182                         goto out;
6183                 }
6184
6185                 ret = copy_huge_page_from_user(page,
6186                                                 (const void __user *) src_addr,
6187                                                 pages_per_huge_page(h), false);
6188
6189                 /* fallback to copy_from_user outside mmap_lock */
6190                 if (unlikely(ret)) {
6191                         ret = -ENOENT;
6192                         /* Free the allocated page which may have
6193                          * consumed a reservation.
6194                          */
6195                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6196                         put_page(page);
6197
6198                         /* Allocate a temporary page to hold the copied
6199                          * contents.
6200                          */
6201                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6202                         if (!page) {
6203                                 ret = -ENOMEM;
6204                                 goto out;
6205                         }
6206                         *pagep = page;
6207                         /* Set the outparam pagep and return to the caller to
6208                          * copy the contents outside the lock. Don't free the
6209                          * page.
6210                          */
6211                         goto out;
6212                 }
6213         } else {
6214                 if (vm_shared &&
6215                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6216                         put_page(*pagep);
6217                         ret = -EEXIST;
6218                         *pagep = NULL;
6219                         goto out;
6220                 }
6221
6222                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6223                 if (IS_ERR(page)) {
6224                         put_page(*pagep);
6225                         ret = -ENOMEM;
6226                         *pagep = NULL;
6227                         goto out;
6228                 }
6229                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6230                                     pages_per_huge_page(h));
6231                 put_page(*pagep);
6232                 *pagep = NULL;
6233         }
6234
6235         /*
6236          * The memory barrier inside __SetPageUptodate makes sure that
6237          * preceding stores to the page contents become visible before
6238          * the set_pte_at() write.
6239          */
6240         __SetPageUptodate(page);
6241
6242         /* Add shared, newly allocated pages to the page cache. */
6243         if (vm_shared && !is_continue) {
6244                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6245                 ret = -EFAULT;
6246                 if (idx >= size)
6247                         goto out_release_nounlock;
6248
6249                 /*
6250                  * Serialization between remove_inode_hugepages() and
6251                  * hugetlb_add_to_page_cache() below happens through the
6252                  * hugetlb_fault_mutex_table that here must be hold by
6253                  * the caller.
6254                  */
6255                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6256                 if (ret)
6257                         goto out_release_nounlock;
6258                 page_in_pagecache = true;
6259         }
6260
6261         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6262
6263         ret = -EIO;
6264         if (PageHWPoison(page))
6265                 goto out_release_unlock;
6266
6267         /*
6268          * We allow to overwrite a pte marker: consider when both MISSING|WP
6269          * registered, we firstly wr-protect a none pte which has no page cache
6270          * page backing it, then access the page.
6271          */
6272         ret = -EEXIST;
6273         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6274                 goto out_release_unlock;
6275
6276         if (page_in_pagecache)
6277                 page_dup_file_rmap(page, true);
6278         else
6279                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6280
6281         /*
6282          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6283          * with wp flag set, don't set pte write bit.
6284          */
6285         if (wp_copy || (is_continue && !vm_shared))
6286                 writable = 0;
6287         else
6288                 writable = dst_vma->vm_flags & VM_WRITE;
6289
6290         _dst_pte = make_huge_pte(dst_vma, page, writable);
6291         /*
6292          * Always mark UFFDIO_COPY page dirty; note that this may not be
6293          * extremely important for hugetlbfs for now since swapping is not
6294          * supported, but we should still be clear in that this page cannot be
6295          * thrown away at will, even if write bit not set.
6296          */
6297         _dst_pte = huge_pte_mkdirty(_dst_pte);
6298         _dst_pte = pte_mkyoung(_dst_pte);
6299
6300         if (wp_copy)
6301                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6302
6303         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6304
6305         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6306
6307         /* No need to invalidate - it was non-present before */
6308         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6309
6310         spin_unlock(ptl);
6311         if (!is_continue)
6312                 SetHPageMigratable(page);
6313         if (vm_shared || is_continue)
6314                 unlock_page(page);
6315         ret = 0;
6316 out:
6317         return ret;
6318 out_release_unlock:
6319         spin_unlock(ptl);
6320         if (vm_shared || is_continue)
6321                 unlock_page(page);
6322 out_release_nounlock:
6323         if (!page_in_pagecache)
6324                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6325         put_page(page);
6326         goto out;
6327 }
6328 #endif /* CONFIG_USERFAULTFD */
6329
6330 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6331                                  int refs, struct page **pages,
6332                                  struct vm_area_struct **vmas)
6333 {
6334         int nr;
6335
6336         for (nr = 0; nr < refs; nr++) {
6337                 if (likely(pages))
6338                         pages[nr] = nth_page(page, nr);
6339                 if (vmas)
6340                         vmas[nr] = vma;
6341         }
6342 }
6343
6344 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6345                                                unsigned int flags, pte_t *pte,
6346                                                bool *unshare)
6347 {
6348         pte_t pteval = huge_ptep_get(pte);
6349
6350         *unshare = false;
6351         if (is_swap_pte(pteval))
6352                 return true;
6353         if (huge_pte_write(pteval))
6354                 return false;
6355         if (flags & FOLL_WRITE)
6356                 return true;
6357         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6358                 *unshare = true;
6359                 return true;
6360         }
6361         return false;
6362 }
6363
6364 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6365                                 unsigned long address, unsigned int flags)
6366 {
6367         struct hstate *h = hstate_vma(vma);
6368         struct mm_struct *mm = vma->vm_mm;
6369         unsigned long haddr = address & huge_page_mask(h);
6370         struct page *page = NULL;
6371         spinlock_t *ptl;
6372         pte_t *pte, entry;
6373
6374         /*
6375          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6376          * follow_hugetlb_page().
6377          */
6378         if (WARN_ON_ONCE(flags & FOLL_PIN))
6379                 return NULL;
6380
6381 retry:
6382         pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6383         if (!pte)
6384                 return NULL;
6385
6386         ptl = huge_pte_lock(h, mm, pte);
6387         entry = huge_ptep_get(pte);
6388         if (pte_present(entry)) {
6389                 page = pte_page(entry) +
6390                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6391                 /*
6392                  * Note that page may be a sub-page, and with vmemmap
6393                  * optimizations the page struct may be read only.
6394                  * try_grab_page() will increase the ref count on the
6395                  * head page, so this will be OK.
6396                  *
6397                  * try_grab_page() should always be able to get the page here,
6398                  * because we hold the ptl lock and have verified pte_present().
6399                  */
6400                 if (try_grab_page(page, flags)) {
6401                         page = NULL;
6402                         goto out;
6403                 }
6404         } else {
6405                 if (is_hugetlb_entry_migration(entry)) {
6406                         spin_unlock(ptl);
6407                         __migration_entry_wait_huge(pte, ptl);
6408                         goto retry;
6409                 }
6410                 /*
6411                  * hwpoisoned entry is treated as no_page_table in
6412                  * follow_page_mask().
6413                  */
6414         }
6415 out:
6416         spin_unlock(ptl);
6417         return page;
6418 }
6419
6420 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6421                          struct page **pages, struct vm_area_struct **vmas,
6422                          unsigned long *position, unsigned long *nr_pages,
6423                          long i, unsigned int flags, int *locked)
6424 {
6425         unsigned long pfn_offset;
6426         unsigned long vaddr = *position;
6427         unsigned long remainder = *nr_pages;
6428         struct hstate *h = hstate_vma(vma);
6429         int err = -EFAULT, refs;
6430
6431         while (vaddr < vma->vm_end && remainder) {
6432                 pte_t *pte;
6433                 spinlock_t *ptl = NULL;
6434                 bool unshare = false;
6435                 int absent;
6436                 struct page *page;
6437
6438                 /*
6439                  * If we have a pending SIGKILL, don't keep faulting pages and
6440                  * potentially allocating memory.
6441                  */
6442                 if (fatal_signal_pending(current)) {
6443                         remainder = 0;
6444                         break;
6445                 }
6446
6447                 /*
6448                  * Some archs (sparc64, sh*) have multiple pte_ts to
6449                  * each hugepage.  We have to make sure we get the
6450                  * first, for the page indexing below to work.
6451                  *
6452                  * Note that page table lock is not held when pte is null.
6453                  */
6454                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6455                                       huge_page_size(h));
6456                 if (pte)
6457                         ptl = huge_pte_lock(h, mm, pte);
6458                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6459
6460                 /*
6461                  * When coredumping, it suits get_dump_page if we just return
6462                  * an error where there's an empty slot with no huge pagecache
6463                  * to back it.  This way, we avoid allocating a hugepage, and
6464                  * the sparse dumpfile avoids allocating disk blocks, but its
6465                  * huge holes still show up with zeroes where they need to be.
6466                  */
6467                 if (absent && (flags & FOLL_DUMP) &&
6468                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6469                         if (pte)
6470                                 spin_unlock(ptl);
6471                         remainder = 0;
6472                         break;
6473                 }
6474
6475                 /*
6476                  * We need call hugetlb_fault for both hugepages under migration
6477                  * (in which case hugetlb_fault waits for the migration,) and
6478                  * hwpoisoned hugepages (in which case we need to prevent the
6479                  * caller from accessing to them.) In order to do this, we use
6480                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6481                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6482                  * both cases, and because we can't follow correct pages
6483                  * directly from any kind of swap entries.
6484                  */
6485                 if (absent ||
6486                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6487                         vm_fault_t ret;
6488                         unsigned int fault_flags = 0;
6489
6490                         if (pte)
6491                                 spin_unlock(ptl);
6492                         if (flags & FOLL_WRITE)
6493                                 fault_flags |= FAULT_FLAG_WRITE;
6494                         else if (unshare)
6495                                 fault_flags |= FAULT_FLAG_UNSHARE;
6496                         if (locked) {
6497                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6498                                         FAULT_FLAG_KILLABLE;
6499                                 if (flags & FOLL_INTERRUPTIBLE)
6500                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6501                         }
6502                         if (flags & FOLL_NOWAIT)
6503                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6504                                         FAULT_FLAG_RETRY_NOWAIT;
6505                         if (flags & FOLL_TRIED) {
6506                                 /*
6507                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6508                                  * FAULT_FLAG_TRIED can co-exist
6509                                  */
6510                                 fault_flags |= FAULT_FLAG_TRIED;
6511                         }
6512                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6513                         if (ret & VM_FAULT_ERROR) {
6514                                 err = vm_fault_to_errno(ret, flags);
6515                                 remainder = 0;
6516                                 break;
6517                         }
6518                         if (ret & VM_FAULT_RETRY) {
6519                                 if (locked &&
6520                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6521                                         *locked = 0;
6522                                 *nr_pages = 0;
6523                                 /*
6524                                  * VM_FAULT_RETRY must not return an
6525                                  * error, it will return zero
6526                                  * instead.
6527                                  *
6528                                  * No need to update "position" as the
6529                                  * caller will not check it after
6530                                  * *nr_pages is set to 0.
6531                                  */
6532                                 return i;
6533                         }
6534                         continue;
6535                 }
6536
6537                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6538                 page = pte_page(huge_ptep_get(pte));
6539
6540                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6541                                !PageAnonExclusive(page), page);
6542
6543                 /*
6544                  * If subpage information not requested, update counters
6545                  * and skip the same_page loop below.
6546                  */
6547                 if (!pages && !vmas && !pfn_offset &&
6548                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6549                     (remainder >= pages_per_huge_page(h))) {
6550                         vaddr += huge_page_size(h);
6551                         remainder -= pages_per_huge_page(h);
6552                         i += pages_per_huge_page(h);
6553                         spin_unlock(ptl);
6554                         continue;
6555                 }
6556
6557                 /* vaddr may not be aligned to PAGE_SIZE */
6558                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6559                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6560
6561                 if (pages || vmas)
6562                         record_subpages_vmas(nth_page(page, pfn_offset),
6563                                              vma, refs,
6564                                              likely(pages) ? pages + i : NULL,
6565                                              vmas ? vmas + i : NULL);
6566
6567                 if (pages) {
6568                         /*
6569                          * try_grab_folio() should always succeed here,
6570                          * because: a) we hold the ptl lock, and b) we've just
6571                          * checked that the huge page is present in the page
6572                          * tables. If the huge page is present, then the tail
6573                          * pages must also be present. The ptl prevents the
6574                          * head page and tail pages from being rearranged in
6575                          * any way. As this is hugetlb, the pages will never
6576                          * be p2pdma or not longterm pinable. So this page
6577                          * must be available at this point, unless the page
6578                          * refcount overflowed:
6579                          */
6580                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6581                                                          flags))) {
6582                                 spin_unlock(ptl);
6583                                 remainder = 0;
6584                                 err = -ENOMEM;
6585                                 break;
6586                         }
6587                 }
6588
6589                 vaddr += (refs << PAGE_SHIFT);
6590                 remainder -= refs;
6591                 i += refs;
6592
6593                 spin_unlock(ptl);
6594         }
6595         *nr_pages = remainder;
6596         /*
6597          * setting position is actually required only if remainder is
6598          * not zero but it's faster not to add a "if (remainder)"
6599          * branch.
6600          */
6601         *position = vaddr;
6602
6603         return i ? i : err;
6604 }
6605
6606 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6607                 unsigned long address, unsigned long end,
6608                 pgprot_t newprot, unsigned long cp_flags)
6609 {
6610         struct mm_struct *mm = vma->vm_mm;
6611         unsigned long start = address;
6612         pte_t *ptep;
6613         pte_t pte;
6614         struct hstate *h = hstate_vma(vma);
6615         unsigned long pages = 0, psize = huge_page_size(h);
6616         bool shared_pmd = false;
6617         struct mmu_notifier_range range;
6618         unsigned long last_addr_mask;
6619         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6620         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6621
6622         /*
6623          * In the case of shared PMDs, the area to flush could be beyond
6624          * start/end.  Set range.start/range.end to cover the maximum possible
6625          * range if PMD sharing is possible.
6626          */
6627         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6628                                 0, vma, mm, start, end);
6629         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6630
6631         BUG_ON(address >= end);
6632         flush_cache_range(vma, range.start, range.end);
6633
6634         mmu_notifier_invalidate_range_start(&range);
6635         hugetlb_vma_lock_write(vma);
6636         i_mmap_lock_write(vma->vm_file->f_mapping);
6637         last_addr_mask = hugetlb_mask_last_page(h);
6638         for (; address < end; address += psize) {
6639                 spinlock_t *ptl;
6640                 ptep = huge_pte_offset(mm, address, psize);
6641                 if (!ptep) {
6642                         address |= last_addr_mask;
6643                         continue;
6644                 }
6645                 ptl = huge_pte_lock(h, mm, ptep);
6646                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6647                         /*
6648                          * When uffd-wp is enabled on the vma, unshare
6649                          * shouldn't happen at all.  Warn about it if it
6650                          * happened due to some reason.
6651                          */
6652                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6653                         pages++;
6654                         spin_unlock(ptl);
6655                         shared_pmd = true;
6656                         address |= last_addr_mask;
6657                         continue;
6658                 }
6659                 pte = huge_ptep_get(ptep);
6660                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6661                         spin_unlock(ptl);
6662                         continue;
6663                 }
6664                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6665                         swp_entry_t entry = pte_to_swp_entry(pte);
6666                         struct page *page = pfn_swap_entry_to_page(entry);
6667
6668                         if (!is_readable_migration_entry(entry)) {
6669                                 pte_t newpte;
6670
6671                                 if (PageAnon(page))
6672                                         entry = make_readable_exclusive_migration_entry(
6673                                                                 swp_offset(entry));
6674                                 else
6675                                         entry = make_readable_migration_entry(
6676                                                                 swp_offset(entry));
6677                                 newpte = swp_entry_to_pte(entry);
6678                                 if (uffd_wp)
6679                                         newpte = pte_swp_mkuffd_wp(newpte);
6680                                 else if (uffd_wp_resolve)
6681                                         newpte = pte_swp_clear_uffd_wp(newpte);
6682                                 set_huge_pte_at(mm, address, ptep, newpte);
6683                                 pages++;
6684                         }
6685                         spin_unlock(ptl);
6686                         continue;
6687                 }
6688                 if (unlikely(pte_marker_uffd_wp(pte))) {
6689                         /*
6690                          * This is changing a non-present pte into a none pte,
6691                          * no need for huge_ptep_modify_prot_start/commit().
6692                          */
6693                         if (uffd_wp_resolve)
6694                                 huge_pte_clear(mm, address, ptep, psize);
6695                 }
6696                 if (!huge_pte_none(pte)) {
6697                         pte_t old_pte;
6698                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6699
6700                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6701                         pte = huge_pte_modify(old_pte, newprot);
6702                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6703                         if (uffd_wp)
6704                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6705                         else if (uffd_wp_resolve)
6706                                 pte = huge_pte_clear_uffd_wp(pte);
6707                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6708                         pages++;
6709                 } else {
6710                         /* None pte */
6711                         if (unlikely(uffd_wp))
6712                                 /* Safe to modify directly (none->non-present). */
6713                                 set_huge_pte_at(mm, address, ptep,
6714                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6715                 }
6716                 spin_unlock(ptl);
6717         }
6718         /*
6719          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6720          * may have cleared our pud entry and done put_page on the page table:
6721          * once we release i_mmap_rwsem, another task can do the final put_page
6722          * and that page table be reused and filled with junk.  If we actually
6723          * did unshare a page of pmds, flush the range corresponding to the pud.
6724          */
6725         if (shared_pmd)
6726                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6727         else
6728                 flush_hugetlb_tlb_range(vma, start, end);
6729         /*
6730          * No need to call mmu_notifier_invalidate_range() we are downgrading
6731          * page table protection not changing it to point to a new page.
6732          *
6733          * See Documentation/mm/mmu_notifier.rst
6734          */
6735         i_mmap_unlock_write(vma->vm_file->f_mapping);
6736         hugetlb_vma_unlock_write(vma);
6737         mmu_notifier_invalidate_range_end(&range);
6738
6739         return pages << h->order;
6740 }
6741
6742 /* Return true if reservation was successful, false otherwise.  */
6743 bool hugetlb_reserve_pages(struct inode *inode,
6744                                         long from, long to,
6745                                         struct vm_area_struct *vma,
6746                                         vm_flags_t vm_flags)
6747 {
6748         long chg, add = -1;
6749         struct hstate *h = hstate_inode(inode);
6750         struct hugepage_subpool *spool = subpool_inode(inode);
6751         struct resv_map *resv_map;
6752         struct hugetlb_cgroup *h_cg = NULL;
6753         long gbl_reserve, regions_needed = 0;
6754
6755         /* This should never happen */
6756         if (from > to) {
6757                 VM_WARN(1, "%s called with a negative range\n", __func__);
6758                 return false;
6759         }
6760
6761         /*
6762          * vma specific semaphore used for pmd sharing and fault/truncation
6763          * synchronization
6764          */
6765         hugetlb_vma_lock_alloc(vma);
6766
6767         /*
6768          * Only apply hugepage reservation if asked. At fault time, an
6769          * attempt will be made for VM_NORESERVE to allocate a page
6770          * without using reserves
6771          */
6772         if (vm_flags & VM_NORESERVE)
6773                 return true;
6774
6775         /*
6776          * Shared mappings base their reservation on the number of pages that
6777          * are already allocated on behalf of the file. Private mappings need
6778          * to reserve the full area even if read-only as mprotect() may be
6779          * called to make the mapping read-write. Assume !vma is a shm mapping
6780          */
6781         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6782                 /*
6783                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6784                  * called for inodes for which resv_maps were created (see
6785                  * hugetlbfs_get_inode).
6786                  */
6787                 resv_map = inode_resv_map(inode);
6788
6789                 chg = region_chg(resv_map, from, to, &regions_needed);
6790         } else {
6791                 /* Private mapping. */
6792                 resv_map = resv_map_alloc();
6793                 if (!resv_map)
6794                         goto out_err;
6795
6796                 chg = to - from;
6797
6798                 set_vma_resv_map(vma, resv_map);
6799                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6800         }
6801
6802         if (chg < 0)
6803                 goto out_err;
6804
6805         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6806                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6807                 goto out_err;
6808
6809         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6810                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6811                  * of the resv_map.
6812                  */
6813                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6814         }
6815
6816         /*
6817          * There must be enough pages in the subpool for the mapping. If
6818          * the subpool has a minimum size, there may be some global
6819          * reservations already in place (gbl_reserve).
6820          */
6821         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6822         if (gbl_reserve < 0)
6823                 goto out_uncharge_cgroup;
6824
6825         /*
6826          * Check enough hugepages are available for the reservation.
6827          * Hand the pages back to the subpool if there are not
6828          */
6829         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6830                 goto out_put_pages;
6831
6832         /*
6833          * Account for the reservations made. Shared mappings record regions
6834          * that have reservations as they are shared by multiple VMAs.
6835          * When the last VMA disappears, the region map says how much
6836          * the reservation was and the page cache tells how much of
6837          * the reservation was consumed. Private mappings are per-VMA and
6838          * only the consumed reservations are tracked. When the VMA
6839          * disappears, the original reservation is the VMA size and the
6840          * consumed reservations are stored in the map. Hence, nothing
6841          * else has to be done for private mappings here
6842          */
6843         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6844                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6845
6846                 if (unlikely(add < 0)) {
6847                         hugetlb_acct_memory(h, -gbl_reserve);
6848                         goto out_put_pages;
6849                 } else if (unlikely(chg > add)) {
6850                         /*
6851                          * pages in this range were added to the reserve
6852                          * map between region_chg and region_add.  This
6853                          * indicates a race with alloc_huge_page.  Adjust
6854                          * the subpool and reserve counts modified above
6855                          * based on the difference.
6856                          */
6857                         long rsv_adjust;
6858
6859                         /*
6860                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6861                          * reference to h_cg->css. See comment below for detail.
6862                          */
6863                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6864                                 hstate_index(h),
6865                                 (chg - add) * pages_per_huge_page(h), h_cg);
6866
6867                         rsv_adjust = hugepage_subpool_put_pages(spool,
6868                                                                 chg - add);
6869                         hugetlb_acct_memory(h, -rsv_adjust);
6870                 } else if (h_cg) {
6871                         /*
6872                          * The file_regions will hold their own reference to
6873                          * h_cg->css. So we should release the reference held
6874                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6875                          * done.
6876                          */
6877                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6878                 }
6879         }
6880         return true;
6881
6882 out_put_pages:
6883         /* put back original number of pages, chg */
6884         (void)hugepage_subpool_put_pages(spool, chg);
6885 out_uncharge_cgroup:
6886         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6887                                             chg * pages_per_huge_page(h), h_cg);
6888 out_err:
6889         hugetlb_vma_lock_free(vma);
6890         if (!vma || vma->vm_flags & VM_MAYSHARE)
6891                 /* Only call region_abort if the region_chg succeeded but the
6892                  * region_add failed or didn't run.
6893                  */
6894                 if (chg >= 0 && add < 0)
6895                         region_abort(resv_map, from, to, regions_needed);
6896         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6897                 kref_put(&resv_map->refs, resv_map_release);
6898         return false;
6899 }
6900
6901 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6902                                                                 long freed)
6903 {
6904         struct hstate *h = hstate_inode(inode);
6905         struct resv_map *resv_map = inode_resv_map(inode);
6906         long chg = 0;
6907         struct hugepage_subpool *spool = subpool_inode(inode);
6908         long gbl_reserve;
6909
6910         /*
6911          * Since this routine can be called in the evict inode path for all
6912          * hugetlbfs inodes, resv_map could be NULL.
6913          */
6914         if (resv_map) {
6915                 chg = region_del(resv_map, start, end);
6916                 /*
6917                  * region_del() can fail in the rare case where a region
6918                  * must be split and another region descriptor can not be
6919                  * allocated.  If end == LONG_MAX, it will not fail.
6920                  */
6921                 if (chg < 0)
6922                         return chg;
6923         }
6924
6925         spin_lock(&inode->i_lock);
6926         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6927         spin_unlock(&inode->i_lock);
6928
6929         /*
6930          * If the subpool has a minimum size, the number of global
6931          * reservations to be released may be adjusted.
6932          *
6933          * Note that !resv_map implies freed == 0. So (chg - freed)
6934          * won't go negative.
6935          */
6936         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6937         hugetlb_acct_memory(h, -gbl_reserve);
6938
6939         return 0;
6940 }
6941
6942 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6943 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6944                                 struct vm_area_struct *vma,
6945                                 unsigned long addr, pgoff_t idx)
6946 {
6947         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6948                                 svma->vm_start;
6949         unsigned long sbase = saddr & PUD_MASK;
6950         unsigned long s_end = sbase + PUD_SIZE;
6951
6952         /* Allow segments to share if only one is marked locked */
6953         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6954         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6955
6956         /*
6957          * match the virtual addresses, permission and the alignment of the
6958          * page table page.
6959          *
6960          * Also, vma_lock (vm_private_data) is required for sharing.
6961          */
6962         if (pmd_index(addr) != pmd_index(saddr) ||
6963             vm_flags != svm_flags ||
6964             !range_in_vma(svma, sbase, s_end) ||
6965             !svma->vm_private_data)
6966                 return 0;
6967
6968         return saddr;
6969 }
6970
6971 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6972 {
6973         unsigned long start = addr & PUD_MASK;
6974         unsigned long end = start + PUD_SIZE;
6975
6976 #ifdef CONFIG_USERFAULTFD
6977         if (uffd_disable_huge_pmd_share(vma))
6978                 return false;
6979 #endif
6980         /*
6981          * check on proper vm_flags and page table alignment
6982          */
6983         if (!(vma->vm_flags & VM_MAYSHARE))
6984                 return false;
6985         if (!vma->vm_private_data)      /* vma lock required for sharing */
6986                 return false;
6987         if (!range_in_vma(vma, start, end))
6988                 return false;
6989         return true;
6990 }
6991
6992 /*
6993  * Determine if start,end range within vma could be mapped by shared pmd.
6994  * If yes, adjust start and end to cover range associated with possible
6995  * shared pmd mappings.
6996  */
6997 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6998                                 unsigned long *start, unsigned long *end)
6999 {
7000         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7001                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7002
7003         /*
7004          * vma needs to span at least one aligned PUD size, and the range
7005          * must be at least partially within in.
7006          */
7007         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7008                 (*end <= v_start) || (*start >= v_end))
7009                 return;
7010
7011         /* Extend the range to be PUD aligned for a worst case scenario */
7012         if (*start > v_start)
7013                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7014
7015         if (*end < v_end)
7016                 *end = ALIGN(*end, PUD_SIZE);
7017 }
7018
7019 /*
7020  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7021  * and returns the corresponding pte. While this is not necessary for the
7022  * !shared pmd case because we can allocate the pmd later as well, it makes the
7023  * code much cleaner. pmd allocation is essential for the shared case because
7024  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7025  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7026  * bad pmd for sharing.
7027  */
7028 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7029                       unsigned long addr, pud_t *pud)
7030 {
7031         struct address_space *mapping = vma->vm_file->f_mapping;
7032         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7033                         vma->vm_pgoff;
7034         struct vm_area_struct *svma;
7035         unsigned long saddr;
7036         pte_t *spte = NULL;
7037         pte_t *pte;
7038         spinlock_t *ptl;
7039
7040         i_mmap_lock_read(mapping);
7041         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7042                 if (svma == vma)
7043                         continue;
7044
7045                 saddr = page_table_shareable(svma, vma, addr, idx);
7046                 if (saddr) {
7047                         spte = huge_pte_offset(svma->vm_mm, saddr,
7048                                                vma_mmu_pagesize(svma));
7049                         if (spte) {
7050                                 get_page(virt_to_page(spte));
7051                                 break;
7052                         }
7053                 }
7054         }
7055
7056         if (!spte)
7057                 goto out;
7058
7059         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7060         if (pud_none(*pud)) {
7061                 pud_populate(mm, pud,
7062                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7063                 mm_inc_nr_pmds(mm);
7064         } else {
7065                 put_page(virt_to_page(spte));
7066         }
7067         spin_unlock(ptl);
7068 out:
7069         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7070         i_mmap_unlock_read(mapping);
7071         return pte;
7072 }
7073
7074 /*
7075  * unmap huge page backed by shared pte.
7076  *
7077  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7078  * indicated by page_count > 1, unmap is achieved by clearing pud and
7079  * decrementing the ref count. If count == 1, the pte page is not shared.
7080  *
7081  * Called with page table lock held.
7082  *
7083  * returns: 1 successfully unmapped a shared pte page
7084  *          0 the underlying pte page is not shared, or it is the last user
7085  */
7086 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7087                                         unsigned long addr, pte_t *ptep)
7088 {
7089         pgd_t *pgd = pgd_offset(mm, addr);
7090         p4d_t *p4d = p4d_offset(pgd, addr);
7091         pud_t *pud = pud_offset(p4d, addr);
7092
7093         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7094         hugetlb_vma_assert_locked(vma);
7095         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7096         if (page_count(virt_to_page(ptep)) == 1)
7097                 return 0;
7098
7099         pud_clear(pud);
7100         put_page(virt_to_page(ptep));
7101         mm_dec_nr_pmds(mm);
7102         return 1;
7103 }
7104
7105 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7106
7107 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7108                       unsigned long addr, pud_t *pud)
7109 {
7110         return NULL;
7111 }
7112
7113 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7114                                 unsigned long addr, pte_t *ptep)
7115 {
7116         return 0;
7117 }
7118
7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120                                 unsigned long *start, unsigned long *end)
7121 {
7122 }
7123
7124 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7125 {
7126         return false;
7127 }
7128 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7129
7130 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7131 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7132                         unsigned long addr, unsigned long sz)
7133 {
7134         pgd_t *pgd;
7135         p4d_t *p4d;
7136         pud_t *pud;
7137         pte_t *pte = NULL;
7138
7139         pgd = pgd_offset(mm, addr);
7140         p4d = p4d_alloc(mm, pgd, addr);
7141         if (!p4d)
7142                 return NULL;
7143         pud = pud_alloc(mm, p4d, addr);
7144         if (pud) {
7145                 if (sz == PUD_SIZE) {
7146                         pte = (pte_t *)pud;
7147                 } else {
7148                         BUG_ON(sz != PMD_SIZE);
7149                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7150                                 pte = huge_pmd_share(mm, vma, addr, pud);
7151                         else
7152                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7153                 }
7154         }
7155         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7156
7157         return pte;
7158 }
7159
7160 /*
7161  * huge_pte_offset() - Walk the page table to resolve the hugepage
7162  * entry at address @addr
7163  *
7164  * Return: Pointer to page table entry (PUD or PMD) for
7165  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7166  * size @sz doesn't match the hugepage size at this level of the page
7167  * table.
7168  */
7169 pte_t *huge_pte_offset(struct mm_struct *mm,
7170                        unsigned long addr, unsigned long sz)
7171 {
7172         pgd_t *pgd;
7173         p4d_t *p4d;
7174         pud_t *pud;
7175         pmd_t *pmd;
7176
7177         pgd = pgd_offset(mm, addr);
7178         if (!pgd_present(*pgd))
7179                 return NULL;
7180         p4d = p4d_offset(pgd, addr);
7181         if (!p4d_present(*p4d))
7182                 return NULL;
7183
7184         pud = pud_offset(p4d, addr);
7185         if (sz == PUD_SIZE)
7186                 /* must be pud huge, non-present or none */
7187                 return (pte_t *)pud;
7188         if (!pud_present(*pud))
7189                 return NULL;
7190         /* must have a valid entry and size to go further */
7191
7192         pmd = pmd_offset(pud, addr);
7193         /* must be pmd huge, non-present or none */
7194         return (pte_t *)pmd;
7195 }
7196
7197 /*
7198  * Return a mask that can be used to update an address to the last huge
7199  * page in a page table page mapping size.  Used to skip non-present
7200  * page table entries when linearly scanning address ranges.  Architectures
7201  * with unique huge page to page table relationships can define their own
7202  * version of this routine.
7203  */
7204 unsigned long hugetlb_mask_last_page(struct hstate *h)
7205 {
7206         unsigned long hp_size = huge_page_size(h);
7207
7208         if (hp_size == PUD_SIZE)
7209                 return P4D_SIZE - PUD_SIZE;
7210         else if (hp_size == PMD_SIZE)
7211                 return PUD_SIZE - PMD_SIZE;
7212         else
7213                 return 0UL;
7214 }
7215
7216 #else
7217
7218 /* See description above.  Architectures can provide their own version. */
7219 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7220 {
7221 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7222         if (huge_page_size(h) == PMD_SIZE)
7223                 return PUD_SIZE - PMD_SIZE;
7224 #endif
7225         return 0UL;
7226 }
7227
7228 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7229
7230 /*
7231  * These functions are overwritable if your architecture needs its own
7232  * behavior.
7233  */
7234 int isolate_hugetlb(struct page *page, struct list_head *list)
7235 {
7236         int ret = 0;
7237
7238         spin_lock_irq(&hugetlb_lock);
7239         if (!PageHeadHuge(page) ||
7240             !HPageMigratable(page) ||
7241             !get_page_unless_zero(page)) {
7242                 ret = -EBUSY;
7243                 goto unlock;
7244         }
7245         ClearHPageMigratable(page);
7246         list_move_tail(&page->lru, list);
7247 unlock:
7248         spin_unlock_irq(&hugetlb_lock);
7249         return ret;
7250 }
7251
7252 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7253 {
7254         int ret = 0;
7255
7256         *hugetlb = false;
7257         spin_lock_irq(&hugetlb_lock);
7258         if (PageHeadHuge(page)) {
7259                 *hugetlb = true;
7260                 if (HPageFreed(page))
7261                         ret = 0;
7262                 else if (HPageMigratable(page) || unpoison)
7263                         ret = get_page_unless_zero(page);
7264                 else
7265                         ret = -EBUSY;
7266         }
7267         spin_unlock_irq(&hugetlb_lock);
7268         return ret;
7269 }
7270
7271 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7272                                 bool *migratable_cleared)
7273 {
7274         int ret;
7275
7276         spin_lock_irq(&hugetlb_lock);
7277         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7278         spin_unlock_irq(&hugetlb_lock);
7279         return ret;
7280 }
7281
7282 void putback_active_hugepage(struct page *page)
7283 {
7284         spin_lock_irq(&hugetlb_lock);
7285         SetHPageMigratable(page);
7286         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7287         spin_unlock_irq(&hugetlb_lock);
7288         put_page(page);
7289 }
7290
7291 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7292 {
7293         struct hstate *h = folio_hstate(old_folio);
7294
7295         hugetlb_cgroup_migrate(old_folio, new_folio);
7296         set_page_owner_migrate_reason(&new_folio->page, reason);
7297
7298         /*
7299          * transfer temporary state of the new hugetlb folio. This is
7300          * reverse to other transitions because the newpage is going to
7301          * be final while the old one will be freed so it takes over
7302          * the temporary status.
7303          *
7304          * Also note that we have to transfer the per-node surplus state
7305          * here as well otherwise the global surplus count will not match
7306          * the per-node's.
7307          */
7308         if (folio_test_hugetlb_temporary(new_folio)) {
7309                 int old_nid = folio_nid(old_folio);
7310                 int new_nid = folio_nid(new_folio);
7311
7312                 folio_set_hugetlb_temporary(old_folio);
7313                 folio_clear_hugetlb_temporary(new_folio);
7314
7315
7316                 /*
7317                  * There is no need to transfer the per-node surplus state
7318                  * when we do not cross the node.
7319                  */
7320                 if (new_nid == old_nid)
7321                         return;
7322                 spin_lock_irq(&hugetlb_lock);
7323                 if (h->surplus_huge_pages_node[old_nid]) {
7324                         h->surplus_huge_pages_node[old_nid]--;
7325                         h->surplus_huge_pages_node[new_nid]++;
7326                 }
7327                 spin_unlock_irq(&hugetlb_lock);
7328         }
7329 }
7330
7331 /*
7332  * This function will unconditionally remove all the shared pmd pgtable entries
7333  * within the specific vma for a hugetlbfs memory range.
7334  */
7335 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7336 {
7337         struct hstate *h = hstate_vma(vma);
7338         unsigned long sz = huge_page_size(h);
7339         struct mm_struct *mm = vma->vm_mm;
7340         struct mmu_notifier_range range;
7341         unsigned long address, start, end;
7342         spinlock_t *ptl;
7343         pte_t *ptep;
7344
7345         if (!(vma->vm_flags & VM_MAYSHARE))
7346                 return;
7347
7348         start = ALIGN(vma->vm_start, PUD_SIZE);
7349         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7350
7351         if (start >= end)
7352                 return;
7353
7354         flush_cache_range(vma, start, end);
7355         /*
7356          * No need to call adjust_range_if_pmd_sharing_possible(), because
7357          * we have already done the PUD_SIZE alignment.
7358          */
7359         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7360                                 start, end);
7361         mmu_notifier_invalidate_range_start(&range);
7362         hugetlb_vma_lock_write(vma);
7363         i_mmap_lock_write(vma->vm_file->f_mapping);
7364         for (address = start; address < end; address += PUD_SIZE) {
7365                 ptep = huge_pte_offset(mm, address, sz);
7366                 if (!ptep)
7367                         continue;
7368                 ptl = huge_pte_lock(h, mm, ptep);
7369                 huge_pmd_unshare(mm, vma, address, ptep);
7370                 spin_unlock(ptl);
7371         }
7372         flush_hugetlb_tlb_range(vma, start, end);
7373         i_mmap_unlock_write(vma->vm_file->f_mapping);
7374         hugetlb_vma_unlock_write(vma);
7375         /*
7376          * No need to call mmu_notifier_invalidate_range(), see
7377          * Documentation/mm/mmu_notifier.rst.
7378          */
7379         mmu_notifier_invalidate_range_end(&range);
7380 }
7381
7382 #ifdef CONFIG_CMA
7383 static bool cma_reserve_called __initdata;
7384
7385 static int __init cmdline_parse_hugetlb_cma(char *p)
7386 {
7387         int nid, count = 0;
7388         unsigned long tmp;
7389         char *s = p;
7390
7391         while (*s) {
7392                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7393                         break;
7394
7395                 if (s[count] == ':') {
7396                         if (tmp >= MAX_NUMNODES)
7397                                 break;
7398                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7399
7400                         s += count + 1;
7401                         tmp = memparse(s, &s);
7402                         hugetlb_cma_size_in_node[nid] = tmp;
7403                         hugetlb_cma_size += tmp;
7404
7405                         /*
7406                          * Skip the separator if have one, otherwise
7407                          * break the parsing.
7408                          */
7409                         if (*s == ',')
7410                                 s++;
7411                         else
7412                                 break;
7413                 } else {
7414                         hugetlb_cma_size = memparse(p, &p);
7415                         break;
7416                 }
7417         }
7418
7419         return 0;
7420 }
7421
7422 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7423
7424 void __init hugetlb_cma_reserve(int order)
7425 {
7426         unsigned long size, reserved, per_node;
7427         bool node_specific_cma_alloc = false;
7428         int nid;
7429
7430         cma_reserve_called = true;
7431
7432         if (!hugetlb_cma_size)
7433                 return;
7434
7435         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7436                 if (hugetlb_cma_size_in_node[nid] == 0)
7437                         continue;
7438
7439                 if (!node_online(nid)) {
7440                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7441                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7442                         hugetlb_cma_size_in_node[nid] = 0;
7443                         continue;
7444                 }
7445
7446                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7447                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7448                                 nid, (PAGE_SIZE << order) / SZ_1M);
7449                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7450                         hugetlb_cma_size_in_node[nid] = 0;
7451                 } else {
7452                         node_specific_cma_alloc = true;
7453                 }
7454         }
7455
7456         /* Validate the CMA size again in case some invalid nodes specified. */
7457         if (!hugetlb_cma_size)
7458                 return;
7459
7460         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7461                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7462                         (PAGE_SIZE << order) / SZ_1M);
7463                 hugetlb_cma_size = 0;
7464                 return;
7465         }
7466
7467         if (!node_specific_cma_alloc) {
7468                 /*
7469                  * If 3 GB area is requested on a machine with 4 numa nodes,
7470                  * let's allocate 1 GB on first three nodes and ignore the last one.
7471                  */
7472                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7473                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7474                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7475         }
7476
7477         reserved = 0;
7478         for_each_online_node(nid) {
7479                 int res;
7480                 char name[CMA_MAX_NAME];
7481
7482                 if (node_specific_cma_alloc) {
7483                         if (hugetlb_cma_size_in_node[nid] == 0)
7484                                 continue;
7485
7486                         size = hugetlb_cma_size_in_node[nid];
7487                 } else {
7488                         size = min(per_node, hugetlb_cma_size - reserved);
7489                 }
7490
7491                 size = round_up(size, PAGE_SIZE << order);
7492
7493                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7494                 /*
7495                  * Note that 'order per bit' is based on smallest size that
7496                  * may be returned to CMA allocator in the case of
7497                  * huge page demotion.
7498                  */
7499                 res = cma_declare_contiguous_nid(0, size, 0,
7500                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7501                                                  0, false, name,
7502                                                  &hugetlb_cma[nid], nid);
7503                 if (res) {
7504                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7505                                 res, nid);
7506                         continue;
7507                 }
7508
7509                 reserved += size;
7510                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7511                         size / SZ_1M, nid);
7512
7513                 if (reserved >= hugetlb_cma_size)
7514                         break;
7515         }
7516
7517         if (!reserved)
7518                 /*
7519                  * hugetlb_cma_size is used to determine if allocations from
7520                  * cma are possible.  Set to zero if no cma regions are set up.
7521                  */
7522                 hugetlb_cma_size = 0;
7523 }
7524
7525 static void __init hugetlb_cma_check(void)
7526 {
7527         if (!hugetlb_cma_size || cma_reserve_called)
7528                 return;
7529
7530         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7531 }
7532
7533 #endif /* CONFIG_CMA */