WIP: update tizen_qemu_defconfig
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 static bool __vma_shareable_lock(struct vm_area_struct *vma)
264 {
265         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266                 vma->vm_private_data;
267 }
268
269 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270 {
271         if (__vma_shareable_lock(vma)) {
272                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273
274                 down_read(&vma_lock->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         }
285 }
286
287 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288 {
289         if (__vma_shareable_lock(vma)) {
290                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291
292                 down_write(&vma_lock->rw_sema);
293         }
294 }
295
296 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297 {
298         if (__vma_shareable_lock(vma)) {
299                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301                 up_write(&vma_lock->rw_sema);
302         }
303 }
304
305 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306 {
307         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309         if (!__vma_shareable_lock(vma))
310                 return 1;
311
312         return down_write_trylock(&vma_lock->rw_sema);
313 }
314
315 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316 {
317         if (__vma_shareable_lock(vma)) {
318                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319
320                 lockdep_assert_held(&vma_lock->rw_sema);
321         }
322 }
323
324 void hugetlb_vma_lock_release(struct kref *kref)
325 {
326         struct hugetlb_vma_lock *vma_lock = container_of(kref,
327                         struct hugetlb_vma_lock, refs);
328
329         kfree(vma_lock);
330 }
331
332 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333 {
334         struct vm_area_struct *vma = vma_lock->vma;
335
336         /*
337          * vma_lock structure may or not be released as a result of put,
338          * it certainly will no longer be attached to vma so clear pointer.
339          * Semaphore synchronizes access to vma_lock->vma field.
340          */
341         vma_lock->vma = NULL;
342         vma->vm_private_data = NULL;
343         up_write(&vma_lock->rw_sema);
344         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345 }
346
347 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348 {
349         if (__vma_shareable_lock(vma)) {
350                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351
352                 __hugetlb_vma_unlock_write_put(vma_lock);
353         }
354 }
355
356 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357 {
358         /*
359          * Only present in sharable vmas.
360          */
361         if (!vma || !__vma_shareable_lock(vma))
362                 return;
363
364         if (vma->vm_private_data) {
365                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366
367                 down_write(&vma_lock->rw_sema);
368                 __hugetlb_vma_unlock_write_put(vma_lock);
369         }
370 }
371
372 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373 {
374         struct hugetlb_vma_lock *vma_lock;
375
376         /* Only establish in (flags) sharable vmas */
377         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378                 return;
379
380         /* Should never get here with non-NULL vm_private_data */
381         if (vma->vm_private_data)
382                 return;
383
384         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385         if (!vma_lock) {
386                 /*
387                  * If we can not allocate structure, then vma can not
388                  * participate in pmd sharing.  This is only a possible
389                  * performance enhancement and memory saving issue.
390                  * However, the lock is also used to synchronize page
391                  * faults with truncation.  If the lock is not present,
392                  * unlikely races could leave pages in a file past i_size
393                  * until the file is removed.  Warn in the unlikely case of
394                  * allocation failure.
395                  */
396                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397                 return;
398         }
399
400         kref_init(&vma_lock->refs);
401         init_rwsem(&vma_lock->rw_sema);
402         vma_lock->vma = vma;
403         vma->vm_private_data = vma_lock;
404 }
405
406 /* Helper that removes a struct file_region from the resv_map cache and returns
407  * it for use.
408  */
409 static struct file_region *
410 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411 {
412         struct file_region *nrg;
413
414         VM_BUG_ON(resv->region_cache_count <= 0);
415
416         resv->region_cache_count--;
417         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418         list_del(&nrg->link);
419
420         nrg->from = from;
421         nrg->to = to;
422
423         return nrg;
424 }
425
426 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427                                               struct file_region *rg)
428 {
429 #ifdef CONFIG_CGROUP_HUGETLB
430         nrg->reservation_counter = rg->reservation_counter;
431         nrg->css = rg->css;
432         if (rg->css)
433                 css_get(rg->css);
434 #endif
435 }
436
437 /* Helper that records hugetlb_cgroup uncharge info. */
438 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439                                                 struct hstate *h,
440                                                 struct resv_map *resv,
441                                                 struct file_region *nrg)
442 {
443 #ifdef CONFIG_CGROUP_HUGETLB
444         if (h_cg) {
445                 nrg->reservation_counter =
446                         &h_cg->rsvd_hugepage[hstate_index(h)];
447                 nrg->css = &h_cg->css;
448                 /*
449                  * The caller will hold exactly one h_cg->css reference for the
450                  * whole contiguous reservation region. But this area might be
451                  * scattered when there are already some file_regions reside in
452                  * it. As a result, many file_regions may share only one css
453                  * reference. In order to ensure that one file_region must hold
454                  * exactly one h_cg->css reference, we should do css_get for
455                  * each file_region and leave the reference held by caller
456                  * untouched.
457                  */
458                 css_get(&h_cg->css);
459                 if (!resv->pages_per_hpage)
460                         resv->pages_per_hpage = pages_per_huge_page(h);
461                 /* pages_per_hpage should be the same for all entries in
462                  * a resv_map.
463                  */
464                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465         } else {
466                 nrg->reservation_counter = NULL;
467                 nrg->css = NULL;
468         }
469 #endif
470 }
471
472 static void put_uncharge_info(struct file_region *rg)
473 {
474 #ifdef CONFIG_CGROUP_HUGETLB
475         if (rg->css)
476                 css_put(rg->css);
477 #endif
478 }
479
480 static bool has_same_uncharge_info(struct file_region *rg,
481                                    struct file_region *org)
482 {
483 #ifdef CONFIG_CGROUP_HUGETLB
484         return rg->reservation_counter == org->reservation_counter &&
485                rg->css == org->css;
486
487 #else
488         return true;
489 #endif
490 }
491
492 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493 {
494         struct file_region *nrg, *prg;
495
496         prg = list_prev_entry(rg, link);
497         if (&prg->link != &resv->regions && prg->to == rg->from &&
498             has_same_uncharge_info(prg, rg)) {
499                 prg->to = rg->to;
500
501                 list_del(&rg->link);
502                 put_uncharge_info(rg);
503                 kfree(rg);
504
505                 rg = prg;
506         }
507
508         nrg = list_next_entry(rg, link);
509         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510             has_same_uncharge_info(nrg, rg)) {
511                 nrg->from = rg->from;
512
513                 list_del(&rg->link);
514                 put_uncharge_info(rg);
515                 kfree(rg);
516         }
517 }
518
519 static inline long
520 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
522                      long *regions_needed)
523 {
524         struct file_region *nrg;
525
526         if (!regions_needed) {
527                 nrg = get_file_region_entry_from_cache(map, from, to);
528                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529                 list_add(&nrg->link, rg);
530                 coalesce_file_region(map, nrg);
531         } else
532                 *regions_needed += 1;
533
534         return to - from;
535 }
536
537 /*
538  * Must be called with resv->lock held.
539  *
540  * Calling this with regions_needed != NULL will count the number of pages
541  * to be added but will not modify the linked list. And regions_needed will
542  * indicate the number of file_regions needed in the cache to carry out to add
543  * the regions for this range.
544  */
545 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546                                      struct hugetlb_cgroup *h_cg,
547                                      struct hstate *h, long *regions_needed)
548 {
549         long add = 0;
550         struct list_head *head = &resv->regions;
551         long last_accounted_offset = f;
552         struct file_region *iter, *trg = NULL;
553         struct list_head *rg = NULL;
554
555         if (regions_needed)
556                 *regions_needed = 0;
557
558         /* In this loop, we essentially handle an entry for the range
559          * [last_accounted_offset, iter->from), at every iteration, with some
560          * bounds checking.
561          */
562         list_for_each_entry_safe(iter, trg, head, link) {
563                 /* Skip irrelevant regions that start before our range. */
564                 if (iter->from < f) {
565                         /* If this region ends after the last accounted offset,
566                          * then we need to update last_accounted_offset.
567                          */
568                         if (iter->to > last_accounted_offset)
569                                 last_accounted_offset = iter->to;
570                         continue;
571                 }
572
573                 /* When we find a region that starts beyond our range, we've
574                  * finished.
575                  */
576                 if (iter->from >= t) {
577                         rg = iter->link.prev;
578                         break;
579                 }
580
581                 /* Add an entry for last_accounted_offset -> iter->from, and
582                  * update last_accounted_offset.
583                  */
584                 if (iter->from > last_accounted_offset)
585                         add += hugetlb_resv_map_add(resv, iter->link.prev,
586                                                     last_accounted_offset,
587                                                     iter->from, h, h_cg,
588                                                     regions_needed);
589
590                 last_accounted_offset = iter->to;
591         }
592
593         /* Handle the case where our range extends beyond
594          * last_accounted_offset.
595          */
596         if (!rg)
597                 rg = head->prev;
598         if (last_accounted_offset < t)
599                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600                                             t, h, h_cg, regions_needed);
601
602         return add;
603 }
604
605 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606  */
607 static int allocate_file_region_entries(struct resv_map *resv,
608                                         int regions_needed)
609         __must_hold(&resv->lock)
610 {
611         LIST_HEAD(allocated_regions);
612         int to_allocate = 0, i = 0;
613         struct file_region *trg = NULL, *rg = NULL;
614
615         VM_BUG_ON(regions_needed < 0);
616
617         /*
618          * Check for sufficient descriptors in the cache to accommodate
619          * the number of in progress add operations plus regions_needed.
620          *
621          * This is a while loop because when we drop the lock, some other call
622          * to region_add or region_del may have consumed some region_entries,
623          * so we keep looping here until we finally have enough entries for
624          * (adds_in_progress + regions_needed).
625          */
626         while (resv->region_cache_count <
627                (resv->adds_in_progress + regions_needed)) {
628                 to_allocate = resv->adds_in_progress + regions_needed -
629                               resv->region_cache_count;
630
631                 /* At this point, we should have enough entries in the cache
632                  * for all the existing adds_in_progress. We should only be
633                  * needing to allocate for regions_needed.
634                  */
635                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636
637                 spin_unlock(&resv->lock);
638                 for (i = 0; i < to_allocate; i++) {
639                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640                         if (!trg)
641                                 goto out_of_memory;
642                         list_add(&trg->link, &allocated_regions);
643                 }
644
645                 spin_lock(&resv->lock);
646
647                 list_splice(&allocated_regions, &resv->region_cache);
648                 resv->region_cache_count += to_allocate;
649         }
650
651         return 0;
652
653 out_of_memory:
654         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655                 list_del(&rg->link);
656                 kfree(rg);
657         }
658         return -ENOMEM;
659 }
660
661 /*
662  * Add the huge page range represented by [f, t) to the reserve
663  * map.  Regions will be taken from the cache to fill in this range.
664  * Sufficient regions should exist in the cache due to the previous
665  * call to region_chg with the same range, but in some cases the cache will not
666  * have sufficient entries due to races with other code doing region_add or
667  * region_del.  The extra needed entries will be allocated.
668  *
669  * regions_needed is the out value provided by a previous call to region_chg.
670  *
671  * Return the number of new huge pages added to the map.  This number is greater
672  * than or equal to zero.  If file_region entries needed to be allocated for
673  * this operation and we were not able to allocate, it returns -ENOMEM.
674  * region_add of regions of length 1 never allocate file_regions and cannot
675  * fail; region_chg will always allocate at least 1 entry and a region_add for
676  * 1 page will only require at most 1 entry.
677  */
678 static long region_add(struct resv_map *resv, long f, long t,
679                        long in_regions_needed, struct hstate *h,
680                        struct hugetlb_cgroup *h_cg)
681 {
682         long add = 0, actual_regions_needed = 0;
683
684         spin_lock(&resv->lock);
685 retry:
686
687         /* Count how many regions are actually needed to execute this add. */
688         add_reservation_in_range(resv, f, t, NULL, NULL,
689                                  &actual_regions_needed);
690
691         /*
692          * Check for sufficient descriptors in the cache to accommodate
693          * this add operation. Note that actual_regions_needed may be greater
694          * than in_regions_needed, as the resv_map may have been modified since
695          * the region_chg call. In this case, we need to make sure that we
696          * allocate extra entries, such that we have enough for all the
697          * existing adds_in_progress, plus the excess needed for this
698          * operation.
699          */
700         if (actual_regions_needed > in_regions_needed &&
701             resv->region_cache_count <
702                     resv->adds_in_progress +
703                             (actual_regions_needed - in_regions_needed)) {
704                 /* region_add operation of range 1 should never need to
705                  * allocate file_region entries.
706                  */
707                 VM_BUG_ON(t - f <= 1);
708
709                 if (allocate_file_region_entries(
710                             resv, actual_regions_needed - in_regions_needed)) {
711                         return -ENOMEM;
712                 }
713
714                 goto retry;
715         }
716
717         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718
719         resv->adds_in_progress -= in_regions_needed;
720
721         spin_unlock(&resv->lock);
722         return add;
723 }
724
725 /*
726  * Examine the existing reserve map and determine how many
727  * huge pages in the specified range [f, t) are NOT currently
728  * represented.  This routine is called before a subsequent
729  * call to region_add that will actually modify the reserve
730  * map to add the specified range [f, t).  region_chg does
731  * not change the number of huge pages represented by the
732  * map.  A number of new file_region structures is added to the cache as a
733  * placeholder, for the subsequent region_add call to use. At least 1
734  * file_region structure is added.
735  *
736  * out_regions_needed is the number of regions added to the
737  * resv->adds_in_progress.  This value needs to be provided to a follow up call
738  * to region_add or region_abort for proper accounting.
739  *
740  * Returns the number of huge pages that need to be added to the existing
741  * reservation map for the range [f, t).  This number is greater or equal to
742  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
743  * is needed and can not be allocated.
744  */
745 static long region_chg(struct resv_map *resv, long f, long t,
746                        long *out_regions_needed)
747 {
748         long chg = 0;
749
750         spin_lock(&resv->lock);
751
752         /* Count how many hugepages in this range are NOT represented. */
753         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754                                        out_regions_needed);
755
756         if (*out_regions_needed == 0)
757                 *out_regions_needed = 1;
758
759         if (allocate_file_region_entries(resv, *out_regions_needed))
760                 return -ENOMEM;
761
762         resv->adds_in_progress += *out_regions_needed;
763
764         spin_unlock(&resv->lock);
765         return chg;
766 }
767
768 /*
769  * Abort the in progress add operation.  The adds_in_progress field
770  * of the resv_map keeps track of the operations in progress between
771  * calls to region_chg and region_add.  Operations are sometimes
772  * aborted after the call to region_chg.  In such cases, region_abort
773  * is called to decrement the adds_in_progress counter. regions_needed
774  * is the value returned by the region_chg call, it is used to decrement
775  * the adds_in_progress counter.
776  *
777  * NOTE: The range arguments [f, t) are not needed or used in this
778  * routine.  They are kept to make reading the calling code easier as
779  * arguments will match the associated region_chg call.
780  */
781 static void region_abort(struct resv_map *resv, long f, long t,
782                          long regions_needed)
783 {
784         spin_lock(&resv->lock);
785         VM_BUG_ON(!resv->region_cache_count);
786         resv->adds_in_progress -= regions_needed;
787         spin_unlock(&resv->lock);
788 }
789
790 /*
791  * Delete the specified range [f, t) from the reserve map.  If the
792  * t parameter is LONG_MAX, this indicates that ALL regions after f
793  * should be deleted.  Locate the regions which intersect [f, t)
794  * and either trim, delete or split the existing regions.
795  *
796  * Returns the number of huge pages deleted from the reserve map.
797  * In the normal case, the return value is zero or more.  In the
798  * case where a region must be split, a new region descriptor must
799  * be allocated.  If the allocation fails, -ENOMEM will be returned.
800  * NOTE: If the parameter t == LONG_MAX, then we will never split
801  * a region and possibly return -ENOMEM.  Callers specifying
802  * t == LONG_MAX do not need to check for -ENOMEM error.
803  */
804 static long region_del(struct resv_map *resv, long f, long t)
805 {
806         struct list_head *head = &resv->regions;
807         struct file_region *rg, *trg;
808         struct file_region *nrg = NULL;
809         long del = 0;
810
811 retry:
812         spin_lock(&resv->lock);
813         list_for_each_entry_safe(rg, trg, head, link) {
814                 /*
815                  * Skip regions before the range to be deleted.  file_region
816                  * ranges are normally of the form [from, to).  However, there
817                  * may be a "placeholder" entry in the map which is of the form
818                  * (from, to) with from == to.  Check for placeholder entries
819                  * at the beginning of the range to be deleted.
820                  */
821                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822                         continue;
823
824                 if (rg->from >= t)
825                         break;
826
827                 if (f > rg->from && t < rg->to) { /* Must split region */
828                         /*
829                          * Check for an entry in the cache before dropping
830                          * lock and attempting allocation.
831                          */
832                         if (!nrg &&
833                             resv->region_cache_count > resv->adds_in_progress) {
834                                 nrg = list_first_entry(&resv->region_cache,
835                                                         struct file_region,
836                                                         link);
837                                 list_del(&nrg->link);
838                                 resv->region_cache_count--;
839                         }
840
841                         if (!nrg) {
842                                 spin_unlock(&resv->lock);
843                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844                                 if (!nrg)
845                                         return -ENOMEM;
846                                 goto retry;
847                         }
848
849                         del += t - f;
850                         hugetlb_cgroup_uncharge_file_region(
851                                 resv, rg, t - f, false);
852
853                         /* New entry for end of split region */
854                         nrg->from = t;
855                         nrg->to = rg->to;
856
857                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858
859                         INIT_LIST_HEAD(&nrg->link);
860
861                         /* Original entry is trimmed */
862                         rg->to = f;
863
864                         list_add(&nrg->link, &rg->link);
865                         nrg = NULL;
866                         break;
867                 }
868
869                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870                         del += rg->to - rg->from;
871                         hugetlb_cgroup_uncharge_file_region(resv, rg,
872                                                             rg->to - rg->from, true);
873                         list_del(&rg->link);
874                         kfree(rg);
875                         continue;
876                 }
877
878                 if (f <= rg->from) {    /* Trim beginning of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             t - rg->from, false);
881
882                         del += t - rg->from;
883                         rg->from = t;
884                 } else {                /* Trim end of region */
885                         hugetlb_cgroup_uncharge_file_region(resv, rg,
886                                                             rg->to - f, false);
887
888                         del += rg->to - f;
889                         rg->to = f;
890                 }
891         }
892
893         spin_unlock(&resv->lock);
894         kfree(nrg);
895         return del;
896 }
897
898 /*
899  * A rare out of memory error was encountered which prevented removal of
900  * the reserve map region for a page.  The huge page itself was free'ed
901  * and removed from the page cache.  This routine will adjust the subpool
902  * usage count, and the global reserve count if needed.  By incrementing
903  * these counts, the reserve map entry which could not be deleted will
904  * appear as a "reserved" entry instead of simply dangling with incorrect
905  * counts.
906  */
907 void hugetlb_fix_reserve_counts(struct inode *inode)
908 {
909         struct hugepage_subpool *spool = subpool_inode(inode);
910         long rsv_adjust;
911         bool reserved = false;
912
913         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914         if (rsv_adjust > 0) {
915                 struct hstate *h = hstate_inode(inode);
916
917                 if (!hugetlb_acct_memory(h, 1))
918                         reserved = true;
919         } else if (!rsv_adjust) {
920                 reserved = true;
921         }
922
923         if (!reserved)
924                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925 }
926
927 /*
928  * Count and return the number of huge pages in the reserve map
929  * that intersect with the range [f, t).
930  */
931 static long region_count(struct resv_map *resv, long f, long t)
932 {
933         struct list_head *head = &resv->regions;
934         struct file_region *rg;
935         long chg = 0;
936
937         spin_lock(&resv->lock);
938         /* Locate each segment we overlap with, and count that overlap. */
939         list_for_each_entry(rg, head, link) {
940                 long seg_from;
941                 long seg_to;
942
943                 if (rg->to <= f)
944                         continue;
945                 if (rg->from >= t)
946                         break;
947
948                 seg_from = max(rg->from, f);
949                 seg_to = min(rg->to, t);
950
951                 chg += seg_to - seg_from;
952         }
953         spin_unlock(&resv->lock);
954
955         return chg;
956 }
957
958 /*
959  * Convert the address within this vma to the page offset within
960  * the mapping, in pagecache page units; huge pages here.
961  */
962 static pgoff_t vma_hugecache_offset(struct hstate *h,
963                         struct vm_area_struct *vma, unsigned long address)
964 {
965         return ((address - vma->vm_start) >> huge_page_shift(h)) +
966                         (vma->vm_pgoff >> huge_page_order(h));
967 }
968
969 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970                                      unsigned long address)
971 {
972         return vma_hugecache_offset(hstate_vma(vma), vma, address);
973 }
974 EXPORT_SYMBOL_GPL(linear_hugepage_index);
975
976 /*
977  * Return the size of the pages allocated when backing a VMA. In the majority
978  * cases this will be same size as used by the page table entries.
979  */
980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981 {
982         if (vma->vm_ops && vma->vm_ops->pagesize)
983                 return vma->vm_ops->pagesize(vma);
984         return PAGE_SIZE;
985 }
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987
988 /*
989  * Return the page size being used by the MMU to back a VMA. In the majority
990  * of cases, the page size used by the kernel matches the MMU size. On
991  * architectures where it differs, an architecture-specific 'strong'
992  * version of this symbol is required.
993  */
994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995 {
996         return vma_kernel_pagesize(vma);
997 }
998
999 /*
1000  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1001  * bits of the reservation map pointer, which are always clear due to
1002  * alignment.
1003  */
1004 #define HPAGE_RESV_OWNER    (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007
1008 /*
1009  * These helpers are used to track how many pages are reserved for
1010  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011  * is guaranteed to have their future faults succeed.
1012  *
1013  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014  * the reserve counters are updated with the hugetlb_lock held. It is safe
1015  * to reset the VMA at fork() time as it is not in use yet and there is no
1016  * chance of the global counters getting corrupted as a result of the values.
1017  *
1018  * The private mapping reservation is represented in a subtly different
1019  * manner to a shared mapping.  A shared mapping has a region map associated
1020  * with the underlying file, this region map represents the backing file
1021  * pages which have ever had a reservation assigned which this persists even
1022  * after the page is instantiated.  A private mapping has a region map
1023  * associated with the original mmap which is attached to all VMAs which
1024  * reference it, this region map represents those offsets which have consumed
1025  * reservation ie. where pages have been instantiated.
1026  */
1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028 {
1029         return (unsigned long)vma->vm_private_data;
1030 }
1031
1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033                                                         unsigned long value)
1034 {
1035         vma->vm_private_data = (void *)value;
1036 }
1037
1038 static void
1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040                                           struct hugetlb_cgroup *h_cg,
1041                                           struct hstate *h)
1042 {
1043 #ifdef CONFIG_CGROUP_HUGETLB
1044         if (!h_cg || !h) {
1045                 resv_map->reservation_counter = NULL;
1046                 resv_map->pages_per_hpage = 0;
1047                 resv_map->css = NULL;
1048         } else {
1049                 resv_map->reservation_counter =
1050                         &h_cg->rsvd_hugepage[hstate_index(h)];
1051                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052                 resv_map->css = &h_cg->css;
1053         }
1054 #endif
1055 }
1056
1057 struct resv_map *resv_map_alloc(void)
1058 {
1059         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061
1062         if (!resv_map || !rg) {
1063                 kfree(resv_map);
1064                 kfree(rg);
1065                 return NULL;
1066         }
1067
1068         kref_init(&resv_map->refs);
1069         spin_lock_init(&resv_map->lock);
1070         INIT_LIST_HEAD(&resv_map->regions);
1071
1072         resv_map->adds_in_progress = 0;
1073         /*
1074          * Initialize these to 0. On shared mappings, 0's here indicate these
1075          * fields don't do cgroup accounting. On private mappings, these will be
1076          * re-initialized to the proper values, to indicate that hugetlb cgroup
1077          * reservations are to be un-charged from here.
1078          */
1079         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080
1081         INIT_LIST_HEAD(&resv_map->region_cache);
1082         list_add(&rg->link, &resv_map->region_cache);
1083         resv_map->region_cache_count = 1;
1084
1085         return resv_map;
1086 }
1087
1088 void resv_map_release(struct kref *ref)
1089 {
1090         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091         struct list_head *head = &resv_map->region_cache;
1092         struct file_region *rg, *trg;
1093
1094         /* Clear out any active regions before we release the map. */
1095         region_del(resv_map, 0, LONG_MAX);
1096
1097         /* ... and any entries left in the cache */
1098         list_for_each_entry_safe(rg, trg, head, link) {
1099                 list_del(&rg->link);
1100                 kfree(rg);
1101         }
1102
1103         VM_BUG_ON(resv_map->adds_in_progress);
1104
1105         kfree(resv_map);
1106 }
1107
1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 {
1110         /*
1111          * At inode evict time, i_mapping may not point to the original
1112          * address space within the inode.  This original address space
1113          * contains the pointer to the resv_map.  So, always use the
1114          * address space embedded within the inode.
1115          * The VERY common case is inode->mapping == &inode->i_data but,
1116          * this may not be true for device special inodes.
1117          */
1118         return (struct resv_map *)(&inode->i_data)->private_data;
1119 }
1120
1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122 {
1123         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124         if (vma->vm_flags & VM_MAYSHARE) {
1125                 struct address_space *mapping = vma->vm_file->f_mapping;
1126                 struct inode *inode = mapping->host;
1127
1128                 return inode_resv_map(inode);
1129
1130         } else {
1131                 return (struct resv_map *)(get_vma_private_data(vma) &
1132                                                         ~HPAGE_RESV_MASK);
1133         }
1134 }
1135
1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137 {
1138         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140
1141         set_vma_private_data(vma, (get_vma_private_data(vma) &
1142                                 HPAGE_RESV_MASK) | (unsigned long)map);
1143 }
1144
1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146 {
1147         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149
1150         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 }
1152
1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154 {
1155         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156
1157         return (get_vma_private_data(vma) & flag) != 0;
1158 }
1159
1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161 {
1162         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163         /*
1164          * Clear vm_private_data
1165          * - For shared mappings this is a per-vma semaphore that may be
1166          *   allocated in a subsequent call to hugetlb_vm_op_open.
1167          *   Before clearing, make sure pointer is not associated with vma
1168          *   as this will leak the structure.  This is the case when called
1169          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170          *   been called to allocate a new structure.
1171          * - For MAP_PRIVATE mappings, this is the reserve map which does
1172          *   not apply to children.  Faults generated by the children are
1173          *   not guaranteed to succeed, even if read-only.
1174          */
1175         if (vma->vm_flags & VM_MAYSHARE) {
1176                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177
1178                 if (vma_lock && vma_lock->vma != vma)
1179                         vma->vm_private_data = NULL;
1180         } else
1181                 vma->vm_private_data = NULL;
1182 }
1183
1184 /*
1185  * Reset and decrement one ref on hugepage private reservation.
1186  * Called with mm->mmap_sem writer semaphore held.
1187  * This function should be only used by move_vma() and operate on
1188  * same sized vma. It should never come here with last ref on the
1189  * reservation.
1190  */
1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 {
1193         /*
1194          * Clear the old hugetlb private page reservation.
1195          * It has already been transferred to new_vma.
1196          *
1197          * During a mremap() operation of a hugetlb vma we call move_vma()
1198          * which copies vma into new_vma and unmaps vma. After the copy
1199          * operation both new_vma and vma share a reference to the resv_map
1200          * struct, and at that point vma is about to be unmapped. We don't
1201          * want to return the reservation to the pool at unmap of vma because
1202          * the reservation still lives on in new_vma, so simply decrement the
1203          * ref here and remove the resv_map reference from this vma.
1204          */
1205         struct resv_map *reservations = vma_resv_map(vma);
1206
1207         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209                 kref_put(&reservations->refs, resv_map_release);
1210         }
1211
1212         hugetlb_dup_vma_private(vma);
1213 }
1214
1215 /* Returns true if the VMA has associated reserve pages */
1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217 {
1218         if (vma->vm_flags & VM_NORESERVE) {
1219                 /*
1220                  * This address is already reserved by other process(chg == 0),
1221                  * so, we should decrement reserved count. Without decrementing,
1222                  * reserve count remains after releasing inode, because this
1223                  * allocated page will go into page cache and is regarded as
1224                  * coming from reserved pool in releasing step.  Currently, we
1225                  * don't have any other solution to deal with this situation
1226                  * properly, so add work-around here.
1227                  */
1228                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229                         return true;
1230                 else
1231                         return false;
1232         }
1233
1234         /* Shared mappings always use reserves */
1235         if (vma->vm_flags & VM_MAYSHARE) {
1236                 /*
1237                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1238                  * be a region map for all pages.  The only situation where
1239                  * there is no region map is if a hole was punched via
1240                  * fallocate.  In this case, there really are no reserves to
1241                  * use.  This situation is indicated if chg != 0.
1242                  */
1243                 if (chg)
1244                         return false;
1245                 else
1246                         return true;
1247         }
1248
1249         /*
1250          * Only the process that called mmap() has reserves for
1251          * private mappings.
1252          */
1253         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254                 /*
1255                  * Like the shared case above, a hole punch or truncate
1256                  * could have been performed on the private mapping.
1257                  * Examine the value of chg to determine if reserves
1258                  * actually exist or were previously consumed.
1259                  * Very Subtle - The value of chg comes from a previous
1260                  * call to vma_needs_reserves().  The reserve map for
1261                  * private mappings has different (opposite) semantics
1262                  * than that of shared mappings.  vma_needs_reserves()
1263                  * has already taken this difference in semantics into
1264                  * account.  Therefore, the meaning of chg is the same
1265                  * as in the shared case above.  Code could easily be
1266                  * combined, but keeping it separate draws attention to
1267                  * subtle differences.
1268                  */
1269                 if (chg)
1270                         return false;
1271                 else
1272                         return true;
1273         }
1274
1275         return false;
1276 }
1277
1278 static void enqueue_huge_page(struct hstate *h, struct page *page)
1279 {
1280         int nid = page_to_nid(page);
1281
1282         lockdep_assert_held(&hugetlb_lock);
1283         VM_BUG_ON_PAGE(page_count(page), page);
1284
1285         list_move(&page->lru, &h->hugepage_freelists[nid]);
1286         h->free_huge_pages++;
1287         h->free_huge_pages_node[nid]++;
1288         SetHPageFreed(page);
1289 }
1290
1291 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292 {
1293         struct page *page;
1294         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295
1296         lockdep_assert_held(&hugetlb_lock);
1297         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298                 if (pin && !is_longterm_pinnable_page(page))
1299                         continue;
1300
1301                 if (PageHWPoison(page))
1302                         continue;
1303
1304                 list_move(&page->lru, &h->hugepage_activelist);
1305                 set_page_refcounted(page);
1306                 ClearHPageFreed(page);
1307                 h->free_huge_pages--;
1308                 h->free_huge_pages_node[nid]--;
1309                 return page;
1310         }
1311
1312         return NULL;
1313 }
1314
1315 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316                 nodemask_t *nmask)
1317 {
1318         unsigned int cpuset_mems_cookie;
1319         struct zonelist *zonelist;
1320         struct zone *zone;
1321         struct zoneref *z;
1322         int node = NUMA_NO_NODE;
1323
1324         zonelist = node_zonelist(nid, gfp_mask);
1325
1326 retry_cpuset:
1327         cpuset_mems_cookie = read_mems_allowed_begin();
1328         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329                 struct page *page;
1330
1331                 if (!cpuset_zone_allowed(zone, gfp_mask))
1332                         continue;
1333                 /*
1334                  * no need to ask again on the same node. Pool is node rather than
1335                  * zone aware
1336                  */
1337                 if (zone_to_nid(zone) == node)
1338                         continue;
1339                 node = zone_to_nid(zone);
1340
1341                 page = dequeue_huge_page_node_exact(h, node);
1342                 if (page)
1343                         return page;
1344         }
1345         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346                 goto retry_cpuset;
1347
1348         return NULL;
1349 }
1350
1351 static unsigned long available_huge_pages(struct hstate *h)
1352 {
1353         return h->free_huge_pages - h->resv_huge_pages;
1354 }
1355
1356 static struct page *dequeue_huge_page_vma(struct hstate *h,
1357                                 struct vm_area_struct *vma,
1358                                 unsigned long address, int avoid_reserve,
1359                                 long chg)
1360 {
1361         struct page *page = NULL;
1362         struct mempolicy *mpol;
1363         gfp_t gfp_mask;
1364         nodemask_t *nodemask;
1365         int nid;
1366
1367         /*
1368          * A child process with MAP_PRIVATE mappings created by their parent
1369          * have no page reserves. This check ensures that reservations are
1370          * not "stolen". The child may still get SIGKILLed
1371          */
1372         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373                 goto err;
1374
1375         /* If reserves cannot be used, ensure enough pages are in the pool */
1376         if (avoid_reserve && !available_huge_pages(h))
1377                 goto err;
1378
1379         gfp_mask = htlb_alloc_mask(h);
1380         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381
1382         if (mpol_is_preferred_many(mpol)) {
1383                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384
1385                 /* Fallback to all nodes if page==NULL */
1386                 nodemask = NULL;
1387         }
1388
1389         if (!page)
1390                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391
1392         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393                 SetHPageRestoreReserve(page);
1394                 h->resv_huge_pages--;
1395         }
1396
1397         mpol_cond_put(mpol);
1398         return page;
1399
1400 err:
1401         return NULL;
1402 }
1403
1404 /*
1405  * common helper functions for hstate_next_node_to_{alloc|free}.
1406  * We may have allocated or freed a huge page based on a different
1407  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408  * be outside of *nodes_allowed.  Ensure that we use an allowed
1409  * node for alloc or free.
1410  */
1411 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412 {
1413         nid = next_node_in(nid, *nodes_allowed);
1414         VM_BUG_ON(nid >= MAX_NUMNODES);
1415
1416         return nid;
1417 }
1418
1419 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420 {
1421         if (!node_isset(nid, *nodes_allowed))
1422                 nid = next_node_allowed(nid, nodes_allowed);
1423         return nid;
1424 }
1425
1426 /*
1427  * returns the previously saved node ["this node"] from which to
1428  * allocate a persistent huge page for the pool and advance the
1429  * next node from which to allocate, handling wrap at end of node
1430  * mask.
1431  */
1432 static int hstate_next_node_to_alloc(struct hstate *h,
1433                                         nodemask_t *nodes_allowed)
1434 {
1435         int nid;
1436
1437         VM_BUG_ON(!nodes_allowed);
1438
1439         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441
1442         return nid;
1443 }
1444
1445 /*
1446  * helper for remove_pool_huge_page() - return the previously saved
1447  * node ["this node"] from which to free a huge page.  Advance the
1448  * next node id whether or not we find a free huge page to free so
1449  * that the next attempt to free addresses the next node.
1450  */
1451 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 {
1453         int nid;
1454
1455         VM_BUG_ON(!nodes_allowed);
1456
1457         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459
1460         return nid;
1461 }
1462
1463 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1464         for (nr_nodes = nodes_weight(*mask);                            \
1465                 nr_nodes > 0 &&                                         \
1466                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1467                 nr_nodes--)
1468
1469 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1470         for (nr_nodes = nodes_weight(*mask);                            \
1471                 nr_nodes > 0 &&                                         \
1472                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1473                 nr_nodes--)
1474
1475 /* used to demote non-gigantic_huge pages as well */
1476 static void __destroy_compound_gigantic_page(struct page *page,
1477                                         unsigned int order, bool demote)
1478 {
1479         int i;
1480         int nr_pages = 1 << order;
1481         struct page *p;
1482
1483         atomic_set(compound_mapcount_ptr(page), 0);
1484         atomic_set(compound_pincount_ptr(page), 0);
1485
1486         for (i = 1; i < nr_pages; i++) {
1487                 p = nth_page(page, i);
1488                 p->mapping = NULL;
1489                 clear_compound_head(p);
1490                 if (!demote)
1491                         set_page_refcounted(p);
1492         }
1493
1494         set_compound_order(page, 0);
1495 #ifdef CONFIG_64BIT
1496         page[1].compound_nr = 0;
1497 #endif
1498         __ClearPageHead(page);
1499 }
1500
1501 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1502                                         unsigned int order)
1503 {
1504         __destroy_compound_gigantic_page(page, order, true);
1505 }
1506
1507 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1508 static void destroy_compound_gigantic_page(struct page *page,
1509                                         unsigned int order)
1510 {
1511         __destroy_compound_gigantic_page(page, order, false);
1512 }
1513
1514 static void free_gigantic_page(struct page *page, unsigned int order)
1515 {
1516         /*
1517          * If the page isn't allocated using the cma allocator,
1518          * cma_release() returns false.
1519          */
1520 #ifdef CONFIG_CMA
1521         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1522                 return;
1523 #endif
1524
1525         free_contig_range(page_to_pfn(page), 1 << order);
1526 }
1527
1528 #ifdef CONFIG_CONTIG_ALLOC
1529 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1530                 int nid, nodemask_t *nodemask)
1531 {
1532         unsigned long nr_pages = pages_per_huge_page(h);
1533         if (nid == NUMA_NO_NODE)
1534                 nid = numa_mem_id();
1535
1536 #ifdef CONFIG_CMA
1537         {
1538                 struct page *page;
1539                 int node;
1540
1541                 if (hugetlb_cma[nid]) {
1542                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543                                         huge_page_order(h), true);
1544                         if (page)
1545                                 return page;
1546                 }
1547
1548                 if (!(gfp_mask & __GFP_THISNODE)) {
1549                         for_each_node_mask(node, *nodemask) {
1550                                 if (node == nid || !hugetlb_cma[node])
1551                                         continue;
1552
1553                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1554                                                 huge_page_order(h), true);
1555                                 if (page)
1556                                         return page;
1557                         }
1558                 }
1559         }
1560 #endif
1561
1562         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 }
1564
1565 #else /* !CONFIG_CONTIG_ALLOC */
1566 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1567                                         int nid, nodemask_t *nodemask)
1568 {
1569         return NULL;
1570 }
1571 #endif /* CONFIG_CONTIG_ALLOC */
1572
1573 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1574 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1575                                         int nid, nodemask_t *nodemask)
1576 {
1577         return NULL;
1578 }
1579 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1580 static inline void destroy_compound_gigantic_page(struct page *page,
1581                                                 unsigned int order) { }
1582 #endif
1583
1584 /*
1585  * Remove hugetlb page from lists, and update dtor so that page appears
1586  * as just a compound page.
1587  *
1588  * A reference is held on the page, except in the case of demote.
1589  *
1590  * Must be called with hugetlb lock held.
1591  */
1592 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1593                                                         bool adjust_surplus,
1594                                                         bool demote)
1595 {
1596         int nid = page_to_nid(page);
1597
1598         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1599         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1600
1601         lockdep_assert_held(&hugetlb_lock);
1602         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1603                 return;
1604
1605         list_del(&page->lru);
1606
1607         if (HPageFreed(page)) {
1608                 h->free_huge_pages--;
1609                 h->free_huge_pages_node[nid]--;
1610         }
1611         if (adjust_surplus) {
1612                 h->surplus_huge_pages--;
1613                 h->surplus_huge_pages_node[nid]--;
1614         }
1615
1616         /*
1617          * Very subtle
1618          *
1619          * For non-gigantic pages set the destructor to the normal compound
1620          * page dtor.  This is needed in case someone takes an additional
1621          * temporary ref to the page, and freeing is delayed until they drop
1622          * their reference.
1623          *
1624          * For gigantic pages set the destructor to the null dtor.  This
1625          * destructor will never be called.  Before freeing the gigantic
1626          * page destroy_compound_gigantic_page will turn the compound page
1627          * into a simple group of pages.  After this the destructor does not
1628          * apply.
1629          *
1630          * This handles the case where more than one ref is held when and
1631          * after update_and_free_page is called.
1632          *
1633          * In the case of demote we do not ref count the page as it will soon
1634          * be turned into a page of smaller size.
1635          */
1636         if (!demote)
1637                 set_page_refcounted(page);
1638         if (hstate_is_gigantic(h))
1639                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1640         else
1641                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1642
1643         h->nr_huge_pages--;
1644         h->nr_huge_pages_node[nid]--;
1645 }
1646
1647 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1648                                                         bool adjust_surplus)
1649 {
1650         __remove_hugetlb_page(h, page, adjust_surplus, false);
1651 }
1652
1653 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1654                                                         bool adjust_surplus)
1655 {
1656         __remove_hugetlb_page(h, page, adjust_surplus, true);
1657 }
1658
1659 static void add_hugetlb_page(struct hstate *h, struct page *page,
1660                              bool adjust_surplus)
1661 {
1662         int zeroed;
1663         int nid = page_to_nid(page);
1664
1665         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1666
1667         lockdep_assert_held(&hugetlb_lock);
1668
1669         INIT_LIST_HEAD(&page->lru);
1670         h->nr_huge_pages++;
1671         h->nr_huge_pages_node[nid]++;
1672
1673         if (adjust_surplus) {
1674                 h->surplus_huge_pages++;
1675                 h->surplus_huge_pages_node[nid]++;
1676         }
1677
1678         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1679         set_page_private(page, 0);
1680         /*
1681          * We have to set HPageVmemmapOptimized again as above
1682          * set_page_private(page, 0) cleared it.
1683          */
1684         SetHPageVmemmapOptimized(page);
1685
1686         /*
1687          * This page is about to be managed by the hugetlb allocator and
1688          * should have no users.  Drop our reference, and check for others
1689          * just in case.
1690          */
1691         zeroed = put_page_testzero(page);
1692         if (!zeroed)
1693                 /*
1694                  * It is VERY unlikely soneone else has taken a ref on
1695                  * the page.  In this case, we simply return as the
1696                  * hugetlb destructor (free_huge_page) will be called
1697                  * when this other ref is dropped.
1698                  */
1699                 return;
1700
1701         arch_clear_hugepage_flags(page);
1702         enqueue_huge_page(h, page);
1703 }
1704
1705 static void __update_and_free_page(struct hstate *h, struct page *page)
1706 {
1707         int i;
1708         struct page *subpage;
1709
1710         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711                 return;
1712
1713         /*
1714          * If we don't know which subpages are hwpoisoned, we can't free
1715          * the hugepage, so it's leaked intentionally.
1716          */
1717         if (HPageRawHwpUnreliable(page))
1718                 return;
1719
1720         if (hugetlb_vmemmap_restore(h, page)) {
1721                 spin_lock_irq(&hugetlb_lock);
1722                 /*
1723                  * If we cannot allocate vmemmap pages, just refuse to free the
1724                  * page and put the page back on the hugetlb free list and treat
1725                  * as a surplus page.
1726                  */
1727                 add_hugetlb_page(h, page, true);
1728                 spin_unlock_irq(&hugetlb_lock);
1729                 return;
1730         }
1731
1732         /*
1733          * Move PageHWPoison flag from head page to the raw error pages,
1734          * which makes any healthy subpages reusable.
1735          */
1736         if (unlikely(PageHWPoison(page)))
1737                 hugetlb_clear_page_hwpoison(page);
1738
1739         for (i = 0; i < pages_per_huge_page(h); i++) {
1740                 subpage = nth_page(page, i);
1741                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742                                 1 << PG_referenced | 1 << PG_dirty |
1743                                 1 << PG_active | 1 << PG_private |
1744                                 1 << PG_writeback);
1745         }
1746
1747         /*
1748          * Non-gigantic pages demoted from CMA allocated gigantic pages
1749          * need to be given back to CMA in free_gigantic_page.
1750          */
1751         if (hstate_is_gigantic(h) ||
1752             hugetlb_cma_page(page, huge_page_order(h))) {
1753                 destroy_compound_gigantic_page(page, huge_page_order(h));
1754                 free_gigantic_page(page, huge_page_order(h));
1755         } else {
1756                 __free_pages(page, huge_page_order(h));
1757         }
1758 }
1759
1760 /*
1761  * As update_and_free_page() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775         struct llist_node *node;
1776
1777         node = llist_del_all(&hpage_freelist);
1778
1779         while (node) {
1780                 struct page *page;
1781                 struct hstate *h;
1782
1783                 page = container_of((struct address_space **)node,
1784                                      struct page, mapping);
1785                 node = node->next;
1786                 page->mapping = NULL;
1787                 /*
1788                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789                  * is going to trigger because a previous call to
1790                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1791                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1792                  */
1793                 h = size_to_hstate(page_size(page));
1794
1795                 __update_and_free_page(h, page);
1796
1797                 cond_resched();
1798         }
1799 }
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1801
1802 static inline void flush_free_hpage_work(struct hstate *h)
1803 {
1804         if (hugetlb_vmemmap_optimizable(h))
1805                 flush_work(&free_hpage_work);
1806 }
1807
1808 static void update_and_free_page(struct hstate *h, struct page *page,
1809                                  bool atomic)
1810 {
1811         if (!HPageVmemmapOptimized(page) || !atomic) {
1812                 __update_and_free_page(h, page);
1813                 return;
1814         }
1815
1816         /*
1817          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1818          *
1819          * Only call schedule_work() if hpage_freelist is previously
1820          * empty. Otherwise, schedule_work() had been called but the workfn
1821          * hasn't retrieved the list yet.
1822          */
1823         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1824                 schedule_work(&free_hpage_work);
1825 }
1826
1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1828 {
1829         struct page *page, *t_page;
1830
1831         list_for_each_entry_safe(page, t_page, list, lru) {
1832                 update_and_free_page(h, page, false);
1833                 cond_resched();
1834         }
1835 }
1836
1837 struct hstate *size_to_hstate(unsigned long size)
1838 {
1839         struct hstate *h;
1840
1841         for_each_hstate(h) {
1842                 if (huge_page_size(h) == size)
1843                         return h;
1844         }
1845         return NULL;
1846 }
1847
1848 void free_huge_page(struct page *page)
1849 {
1850         /*
1851          * Can't pass hstate in here because it is called from the
1852          * compound page destructor.
1853          */
1854         struct hstate *h = page_hstate(page);
1855         int nid = page_to_nid(page);
1856         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1857         bool restore_reserve;
1858         unsigned long flags;
1859
1860         VM_BUG_ON_PAGE(page_count(page), page);
1861         VM_BUG_ON_PAGE(page_mapcount(page), page);
1862
1863         hugetlb_set_page_subpool(page, NULL);
1864         if (PageAnon(page))
1865                 __ClearPageAnonExclusive(page);
1866         page->mapping = NULL;
1867         restore_reserve = HPageRestoreReserve(page);
1868         ClearHPageRestoreReserve(page);
1869
1870         /*
1871          * If HPageRestoreReserve was set on page, page allocation consumed a
1872          * reservation.  If the page was associated with a subpool, there
1873          * would have been a page reserved in the subpool before allocation
1874          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1875          * reservation, do not call hugepage_subpool_put_pages() as this will
1876          * remove the reserved page from the subpool.
1877          */
1878         if (!restore_reserve) {
1879                 /*
1880                  * A return code of zero implies that the subpool will be
1881                  * under its minimum size if the reservation is not restored
1882                  * after page is free.  Therefore, force restore_reserve
1883                  * operation.
1884                  */
1885                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1886                         restore_reserve = true;
1887         }
1888
1889         spin_lock_irqsave(&hugetlb_lock, flags);
1890         ClearHPageMigratable(page);
1891         hugetlb_cgroup_uncharge_page(hstate_index(h),
1892                                      pages_per_huge_page(h), page);
1893         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1894                                           pages_per_huge_page(h), page);
1895         if (restore_reserve)
1896                 h->resv_huge_pages++;
1897
1898         if (HPageTemporary(page)) {
1899                 remove_hugetlb_page(h, page, false);
1900                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1901                 update_and_free_page(h, page, true);
1902         } else if (h->surplus_huge_pages_node[nid]) {
1903                 /* remove the page from active list */
1904                 remove_hugetlb_page(h, page, true);
1905                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1906                 update_and_free_page(h, page, true);
1907         } else {
1908                 arch_clear_hugepage_flags(page);
1909                 enqueue_huge_page(h, page);
1910                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1911         }
1912 }
1913
1914 /*
1915  * Must be called with the hugetlb lock held
1916  */
1917 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1918 {
1919         lockdep_assert_held(&hugetlb_lock);
1920         h->nr_huge_pages++;
1921         h->nr_huge_pages_node[nid]++;
1922 }
1923
1924 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1925 {
1926         hugetlb_vmemmap_optimize(h, page);
1927         INIT_LIST_HEAD(&page->lru);
1928         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1929         hugetlb_set_page_subpool(page, NULL);
1930         set_hugetlb_cgroup(page, NULL);
1931         set_hugetlb_cgroup_rsvd(page, NULL);
1932 }
1933
1934 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1935 {
1936         __prep_new_huge_page(h, page);
1937         spin_lock_irq(&hugetlb_lock);
1938         __prep_account_new_huge_page(h, nid);
1939         spin_unlock_irq(&hugetlb_lock);
1940 }
1941
1942 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1943                                                                 bool demote)
1944 {
1945         int i, j;
1946         int nr_pages = 1 << order;
1947         struct page *p;
1948
1949         /* we rely on prep_new_huge_page to set the destructor */
1950         set_compound_order(page, order);
1951         __ClearPageReserved(page);
1952         __SetPageHead(page);
1953         for (i = 0; i < nr_pages; i++) {
1954                 p = nth_page(page, i);
1955
1956                 /*
1957                  * For gigantic hugepages allocated through bootmem at
1958                  * boot, it's safer to be consistent with the not-gigantic
1959                  * hugepages and clear the PG_reserved bit from all tail pages
1960                  * too.  Otherwise drivers using get_user_pages() to access tail
1961                  * pages may get the reference counting wrong if they see
1962                  * PG_reserved set on a tail page (despite the head page not
1963                  * having PG_reserved set).  Enforcing this consistency between
1964                  * head and tail pages allows drivers to optimize away a check
1965                  * on the head page when they need know if put_page() is needed
1966                  * after get_user_pages().
1967                  */
1968                 if (i != 0)     /* head page cleared above */
1969                         __ClearPageReserved(p);
1970                 /*
1971                  * Subtle and very unlikely
1972                  *
1973                  * Gigantic 'page allocators' such as memblock or cma will
1974                  * return a set of pages with each page ref counted.  We need
1975                  * to turn this set of pages into a compound page with tail
1976                  * page ref counts set to zero.  Code such as speculative page
1977                  * cache adding could take a ref on a 'to be' tail page.
1978                  * We need to respect any increased ref count, and only set
1979                  * the ref count to zero if count is currently 1.  If count
1980                  * is not 1, we return an error.  An error return indicates
1981                  * the set of pages can not be converted to a gigantic page.
1982                  * The caller who allocated the pages should then discard the
1983                  * pages using the appropriate free interface.
1984                  *
1985                  * In the case of demote, the ref count will be zero.
1986                  */
1987                 if (!demote) {
1988                         if (!page_ref_freeze(p, 1)) {
1989                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1990                                 goto out_error;
1991                         }
1992                 } else {
1993                         VM_BUG_ON_PAGE(page_count(p), p);
1994                 }
1995                 if (i != 0)
1996                         set_compound_head(p, page);
1997         }
1998         atomic_set(compound_mapcount_ptr(page), -1);
1999         atomic_set(compound_pincount_ptr(page), 0);
2000         return true;
2001
2002 out_error:
2003         /* undo page modifications made above */
2004         for (j = 0; j < i; j++) {
2005                 p = nth_page(page, j);
2006                 if (j != 0)
2007                         clear_compound_head(p);
2008                 set_page_refcounted(p);
2009         }
2010         /* need to clear PG_reserved on remaining tail pages  */
2011         for (; j < nr_pages; j++) {
2012                 p = nth_page(page, j);
2013                 __ClearPageReserved(p);
2014         }
2015         set_compound_order(page, 0);
2016 #ifdef CONFIG_64BIT
2017         page[1].compound_nr = 0;
2018 #endif
2019         __ClearPageHead(page);
2020         return false;
2021 }
2022
2023 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
2024 {
2025         return __prep_compound_gigantic_page(page, order, false);
2026 }
2027
2028 static bool prep_compound_gigantic_page_for_demote(struct page *page,
2029                                                         unsigned int order)
2030 {
2031         return __prep_compound_gigantic_page(page, order, true);
2032 }
2033
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
2039 int PageHuge(struct page *page)
2040 {
2041         if (!PageCompound(page))
2042                 return 0;
2043
2044         page = compound_head(page);
2045         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2046 }
2047 EXPORT_SYMBOL_GPL(PageHuge);
2048
2049 /*
2050  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2051  * normal or transparent huge pages.
2052  */
2053 int PageHeadHuge(struct page *page_head)
2054 {
2055         if (!PageHead(page_head))
2056                 return 0;
2057
2058         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2059 }
2060 EXPORT_SYMBOL_GPL(PageHeadHuge);
2061
2062 /*
2063  * Find and lock address space (mapping) in write mode.
2064  *
2065  * Upon entry, the page is locked which means that page_mapping() is
2066  * stable.  Due to locking order, we can only trylock_write.  If we can
2067  * not get the lock, simply return NULL to caller.
2068  */
2069 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2070 {
2071         struct address_space *mapping = page_mapping(hpage);
2072
2073         if (!mapping)
2074                 return mapping;
2075
2076         if (i_mmap_trylock_write(mapping))
2077                 return mapping;
2078
2079         return NULL;
2080 }
2081
2082 pgoff_t hugetlb_basepage_index(struct page *page)
2083 {
2084         struct page *page_head = compound_head(page);
2085         pgoff_t index = page_index(page_head);
2086         unsigned long compound_idx;
2087
2088         if (compound_order(page_head) >= MAX_ORDER)
2089                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2090         else
2091                 compound_idx = page - page_head;
2092
2093         return (index << compound_order(page_head)) + compound_idx;
2094 }
2095
2096 static struct page *alloc_buddy_huge_page(struct hstate *h,
2097                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2098                 nodemask_t *node_alloc_noretry)
2099 {
2100         int order = huge_page_order(h);
2101         struct page *page;
2102         bool alloc_try_hard = true;
2103         bool retry = true;
2104
2105         /*
2106          * By default we always try hard to allocate the page with
2107          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2108          * a loop (to adjust global huge page counts) and previous allocation
2109          * failed, do not continue to try hard on the same node.  Use the
2110          * node_alloc_noretry bitmap to manage this state information.
2111          */
2112         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2113                 alloc_try_hard = false;
2114         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2115         if (alloc_try_hard)
2116                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2117         if (nid == NUMA_NO_NODE)
2118                 nid = numa_mem_id();
2119 retry:
2120         page = __alloc_pages(gfp_mask, order, nid, nmask);
2121
2122         /* Freeze head page */
2123         if (page && !page_ref_freeze(page, 1)) {
2124                 __free_pages(page, order);
2125                 if (retry) {    /* retry once */
2126                         retry = false;
2127                         goto retry;
2128                 }
2129                 /* WOW!  twice in a row. */
2130                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2131                 page = NULL;
2132         }
2133
2134         if (page)
2135                 __count_vm_event(HTLB_BUDDY_PGALLOC);
2136         else
2137                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2138
2139         /*
2140          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141          * indicates an overall state change.  Clear bit so that we resume
2142          * normal 'try hard' allocations.
2143          */
2144         if (node_alloc_noretry && page && !alloc_try_hard)
2145                 node_clear(nid, *node_alloc_noretry);
2146
2147         /*
2148          * If we tried hard to get a page but failed, set bit so that
2149          * subsequent attempts will not try as hard until there is an
2150          * overall state change.
2151          */
2152         if (node_alloc_noretry && !page && alloc_try_hard)
2153                 node_set(nid, *node_alloc_noretry);
2154
2155         return page;
2156 }
2157
2158 /*
2159  * Common helper to allocate a fresh hugetlb page. All specific allocators
2160  * should use this function to get new hugetlb pages
2161  *
2162  * Note that returned page is 'frozen':  ref count of head page and all tail
2163  * pages is zero.
2164  */
2165 static struct page *alloc_fresh_huge_page(struct hstate *h,
2166                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2167                 nodemask_t *node_alloc_noretry)
2168 {
2169         struct page *page;
2170         bool retry = false;
2171
2172 retry:
2173         if (hstate_is_gigantic(h))
2174                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2175         else
2176                 page = alloc_buddy_huge_page(h, gfp_mask,
2177                                 nid, nmask, node_alloc_noretry);
2178         if (!page)
2179                 return NULL;
2180
2181         if (hstate_is_gigantic(h)) {
2182                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2183                         /*
2184                          * Rare failure to convert pages to compound page.
2185                          * Free pages and try again - ONCE!
2186                          */
2187                         free_gigantic_page(page, huge_page_order(h));
2188                         if (!retry) {
2189                                 retry = true;
2190                                 goto retry;
2191                         }
2192                         return NULL;
2193                 }
2194         }
2195         prep_new_huge_page(h, page, page_to_nid(page));
2196
2197         return page;
2198 }
2199
2200 /*
2201  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2202  * manner.
2203  */
2204 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2205                                 nodemask_t *node_alloc_noretry)
2206 {
2207         struct page *page;
2208         int nr_nodes, node;
2209         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2210
2211         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2212                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2213                                                 node_alloc_noretry);
2214                 if (page)
2215                         break;
2216         }
2217
2218         if (!page)
2219                 return 0;
2220
2221         free_huge_page(page); /* free it into the hugepage allocator */
2222
2223         return 1;
2224 }
2225
2226 /*
2227  * Remove huge page from pool from next node to free.  Attempt to keep
2228  * persistent huge pages more or less balanced over allowed nodes.
2229  * This routine only 'removes' the hugetlb page.  The caller must make
2230  * an additional call to free the page to low level allocators.
2231  * Called with hugetlb_lock locked.
2232  */
2233 static struct page *remove_pool_huge_page(struct hstate *h,
2234                                                 nodemask_t *nodes_allowed,
2235                                                  bool acct_surplus)
2236 {
2237         int nr_nodes, node;
2238         struct page *page = NULL;
2239
2240         lockdep_assert_held(&hugetlb_lock);
2241         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242                 /*
2243                  * If we're returning unused surplus pages, only examine
2244                  * nodes with surplus pages.
2245                  */
2246                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2247                     !list_empty(&h->hugepage_freelists[node])) {
2248                         page = list_entry(h->hugepage_freelists[node].next,
2249                                           struct page, lru);
2250                         remove_hugetlb_page(h, page, acct_surplus);
2251                         break;
2252                 }
2253         }
2254
2255         return page;
2256 }
2257
2258 /*
2259  * Dissolve a given free hugepage into free buddy pages. This function does
2260  * nothing for in-use hugepages and non-hugepages.
2261  * This function returns values like below:
2262  *
2263  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2264  *           when the system is under memory pressure and the feature of
2265  *           freeing unused vmemmap pages associated with each hugetlb page
2266  *           is enabled.
2267  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2268  *           (allocated or reserved.)
2269  *       0:  successfully dissolved free hugepages or the page is not a
2270  *           hugepage (considered as already dissolved)
2271  */
2272 int dissolve_free_huge_page(struct page *page)
2273 {
2274         int rc = -EBUSY;
2275
2276 retry:
2277         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2278         if (!PageHuge(page))
2279                 return 0;
2280
2281         spin_lock_irq(&hugetlb_lock);
2282         if (!PageHuge(page)) {
2283                 rc = 0;
2284                 goto out;
2285         }
2286
2287         if (!page_count(page)) {
2288                 struct page *head = compound_head(page);
2289                 struct hstate *h = page_hstate(head);
2290                 if (!available_huge_pages(h))
2291                         goto out;
2292
2293                 /*
2294                  * We should make sure that the page is already on the free list
2295                  * when it is dissolved.
2296                  */
2297                 if (unlikely(!HPageFreed(head))) {
2298                         spin_unlock_irq(&hugetlb_lock);
2299                         cond_resched();
2300
2301                         /*
2302                          * Theoretically, we should return -EBUSY when we
2303                          * encounter this race. In fact, we have a chance
2304                          * to successfully dissolve the page if we do a
2305                          * retry. Because the race window is quite small.
2306                          * If we seize this opportunity, it is an optimization
2307                          * for increasing the success rate of dissolving page.
2308                          */
2309                         goto retry;
2310                 }
2311
2312                 remove_hugetlb_page(h, head, false);
2313                 h->max_huge_pages--;
2314                 spin_unlock_irq(&hugetlb_lock);
2315
2316                 /*
2317                  * Normally update_and_free_page will allocate required vmemmmap
2318                  * before freeing the page.  update_and_free_page will fail to
2319                  * free the page if it can not allocate required vmemmap.  We
2320                  * need to adjust max_huge_pages if the page is not freed.
2321                  * Attempt to allocate vmemmmap here so that we can take
2322                  * appropriate action on failure.
2323                  */
2324                 rc = hugetlb_vmemmap_restore(h, head);
2325                 if (!rc) {
2326                         update_and_free_page(h, head, false);
2327                 } else {
2328                         spin_lock_irq(&hugetlb_lock);
2329                         add_hugetlb_page(h, head, false);
2330                         h->max_huge_pages++;
2331                         spin_unlock_irq(&hugetlb_lock);
2332                 }
2333
2334                 return rc;
2335         }
2336 out:
2337         spin_unlock_irq(&hugetlb_lock);
2338         return rc;
2339 }
2340
2341 /*
2342  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2343  * make specified memory blocks removable from the system.
2344  * Note that this will dissolve a free gigantic hugepage completely, if any
2345  * part of it lies within the given range.
2346  * Also note that if dissolve_free_huge_page() returns with an error, all
2347  * free hugepages that were dissolved before that error are lost.
2348  */
2349 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2350 {
2351         unsigned long pfn;
2352         struct page *page;
2353         int rc = 0;
2354         unsigned int order;
2355         struct hstate *h;
2356
2357         if (!hugepages_supported())
2358                 return rc;
2359
2360         order = huge_page_order(&default_hstate);
2361         for_each_hstate(h)
2362                 order = min(order, huge_page_order(h));
2363
2364         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2365                 page = pfn_to_page(pfn);
2366                 rc = dissolve_free_huge_page(page);
2367                 if (rc)
2368                         break;
2369         }
2370
2371         return rc;
2372 }
2373
2374 /*
2375  * Allocates a fresh surplus page from the page allocator.
2376  */
2377 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2378                                                 int nid, nodemask_t *nmask)
2379 {
2380         struct page *page = NULL;
2381
2382         if (hstate_is_gigantic(h))
2383                 return NULL;
2384
2385         spin_lock_irq(&hugetlb_lock);
2386         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2387                 goto out_unlock;
2388         spin_unlock_irq(&hugetlb_lock);
2389
2390         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2391         if (!page)
2392                 return NULL;
2393
2394         spin_lock_irq(&hugetlb_lock);
2395         /*
2396          * We could have raced with the pool size change.
2397          * Double check that and simply deallocate the new page
2398          * if we would end up overcommiting the surpluses. Abuse
2399          * temporary page to workaround the nasty free_huge_page
2400          * codeflow
2401          */
2402         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2403                 SetHPageTemporary(page);
2404                 spin_unlock_irq(&hugetlb_lock);
2405                 free_huge_page(page);
2406                 return NULL;
2407         }
2408
2409         h->surplus_huge_pages++;
2410         h->surplus_huge_pages_node[page_to_nid(page)]++;
2411
2412 out_unlock:
2413         spin_unlock_irq(&hugetlb_lock);
2414
2415         return page;
2416 }
2417
2418 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2419                                      int nid, nodemask_t *nmask)
2420 {
2421         struct page *page;
2422
2423         if (hstate_is_gigantic(h))
2424                 return NULL;
2425
2426         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2427         if (!page)
2428                 return NULL;
2429
2430         /* fresh huge pages are frozen */
2431         set_page_refcounted(page);
2432
2433         /*
2434          * We do not account these pages as surplus because they are only
2435          * temporary and will be released properly on the last reference
2436          */
2437         SetHPageTemporary(page);
2438
2439         return page;
2440 }
2441
2442 /*
2443  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2444  */
2445 static
2446 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2447                 struct vm_area_struct *vma, unsigned long addr)
2448 {
2449         struct page *page = NULL;
2450         struct mempolicy *mpol;
2451         gfp_t gfp_mask = htlb_alloc_mask(h);
2452         int nid;
2453         nodemask_t *nodemask;
2454
2455         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2456         if (mpol_is_preferred_many(mpol)) {
2457                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2458
2459                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2460                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2461
2462                 /* Fallback to all nodes if page==NULL */
2463                 nodemask = NULL;
2464         }
2465
2466         if (!page)
2467                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2468         mpol_cond_put(mpol);
2469         return page;
2470 }
2471
2472 /* page migration callback function */
2473 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2474                 nodemask_t *nmask, gfp_t gfp_mask)
2475 {
2476         spin_lock_irq(&hugetlb_lock);
2477         if (available_huge_pages(h)) {
2478                 struct page *page;
2479
2480                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2481                 if (page) {
2482                         spin_unlock_irq(&hugetlb_lock);
2483                         return page;
2484                 }
2485         }
2486         spin_unlock_irq(&hugetlb_lock);
2487
2488         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2489 }
2490
2491 /* mempolicy aware migration callback */
2492 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2493                 unsigned long address)
2494 {
2495         struct mempolicy *mpol;
2496         nodemask_t *nodemask;
2497         struct page *page;
2498         gfp_t gfp_mask;
2499         int node;
2500
2501         gfp_mask = htlb_alloc_mask(h);
2502         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2503         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2504         mpol_cond_put(mpol);
2505
2506         return page;
2507 }
2508
2509 /*
2510  * Increase the hugetlb pool such that it can accommodate a reservation
2511  * of size 'delta'.
2512  */
2513 static int gather_surplus_pages(struct hstate *h, long delta)
2514         __must_hold(&hugetlb_lock)
2515 {
2516         LIST_HEAD(surplus_list);
2517         struct page *page, *tmp;
2518         int ret;
2519         long i;
2520         long needed, allocated;
2521         bool alloc_ok = true;
2522
2523         lockdep_assert_held(&hugetlb_lock);
2524         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2525         if (needed <= 0) {
2526                 h->resv_huge_pages += delta;
2527                 return 0;
2528         }
2529
2530         allocated = 0;
2531
2532         ret = -ENOMEM;
2533 retry:
2534         spin_unlock_irq(&hugetlb_lock);
2535         for (i = 0; i < needed; i++) {
2536                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2537                                 NUMA_NO_NODE, NULL);
2538                 if (!page) {
2539                         alloc_ok = false;
2540                         break;
2541                 }
2542                 list_add(&page->lru, &surplus_list);
2543                 cond_resched();
2544         }
2545         allocated += i;
2546
2547         /*
2548          * After retaking hugetlb_lock, we need to recalculate 'needed'
2549          * because either resv_huge_pages or free_huge_pages may have changed.
2550          */
2551         spin_lock_irq(&hugetlb_lock);
2552         needed = (h->resv_huge_pages + delta) -
2553                         (h->free_huge_pages + allocated);
2554         if (needed > 0) {
2555                 if (alloc_ok)
2556                         goto retry;
2557                 /*
2558                  * We were not able to allocate enough pages to
2559                  * satisfy the entire reservation so we free what
2560                  * we've allocated so far.
2561                  */
2562                 goto free;
2563         }
2564         /*
2565          * The surplus_list now contains _at_least_ the number of extra pages
2566          * needed to accommodate the reservation.  Add the appropriate number
2567          * of pages to the hugetlb pool and free the extras back to the buddy
2568          * allocator.  Commit the entire reservation here to prevent another
2569          * process from stealing the pages as they are added to the pool but
2570          * before they are reserved.
2571          */
2572         needed += allocated;
2573         h->resv_huge_pages += delta;
2574         ret = 0;
2575
2576         /* Free the needed pages to the hugetlb pool */
2577         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2578                 if ((--needed) < 0)
2579                         break;
2580                 /* Add the page to the hugetlb allocator */
2581                 enqueue_huge_page(h, page);
2582         }
2583 free:
2584         spin_unlock_irq(&hugetlb_lock);
2585
2586         /*
2587          * Free unnecessary surplus pages to the buddy allocator.
2588          * Pages have no ref count, call free_huge_page directly.
2589          */
2590         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2591                 free_huge_page(page);
2592         spin_lock_irq(&hugetlb_lock);
2593
2594         return ret;
2595 }
2596
2597 /*
2598  * This routine has two main purposes:
2599  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2600  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2601  *    to the associated reservation map.
2602  * 2) Free any unused surplus pages that may have been allocated to satisfy
2603  *    the reservation.  As many as unused_resv_pages may be freed.
2604  */
2605 static void return_unused_surplus_pages(struct hstate *h,
2606                                         unsigned long unused_resv_pages)
2607 {
2608         unsigned long nr_pages;
2609         struct page *page;
2610         LIST_HEAD(page_list);
2611
2612         lockdep_assert_held(&hugetlb_lock);
2613         /* Uncommit the reservation */
2614         h->resv_huge_pages -= unused_resv_pages;
2615
2616         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2617                 goto out;
2618
2619         /*
2620          * Part (or even all) of the reservation could have been backed
2621          * by pre-allocated pages. Only free surplus pages.
2622          */
2623         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2624
2625         /*
2626          * We want to release as many surplus pages as possible, spread
2627          * evenly across all nodes with memory. Iterate across these nodes
2628          * until we can no longer free unreserved surplus pages. This occurs
2629          * when the nodes with surplus pages have no free pages.
2630          * remove_pool_huge_page() will balance the freed pages across the
2631          * on-line nodes with memory and will handle the hstate accounting.
2632          */
2633         while (nr_pages--) {
2634                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2635                 if (!page)
2636                         goto out;
2637
2638                 list_add(&page->lru, &page_list);
2639         }
2640
2641 out:
2642         spin_unlock_irq(&hugetlb_lock);
2643         update_and_free_pages_bulk(h, &page_list);
2644         spin_lock_irq(&hugetlb_lock);
2645 }
2646
2647
2648 /*
2649  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2650  * are used by the huge page allocation routines to manage reservations.
2651  *
2652  * vma_needs_reservation is called to determine if the huge page at addr
2653  * within the vma has an associated reservation.  If a reservation is
2654  * needed, the value 1 is returned.  The caller is then responsible for
2655  * managing the global reservation and subpool usage counts.  After
2656  * the huge page has been allocated, vma_commit_reservation is called
2657  * to add the page to the reservation map.  If the page allocation fails,
2658  * the reservation must be ended instead of committed.  vma_end_reservation
2659  * is called in such cases.
2660  *
2661  * In the normal case, vma_commit_reservation returns the same value
2662  * as the preceding vma_needs_reservation call.  The only time this
2663  * is not the case is if a reserve map was changed between calls.  It
2664  * is the responsibility of the caller to notice the difference and
2665  * take appropriate action.
2666  *
2667  * vma_add_reservation is used in error paths where a reservation must
2668  * be restored when a newly allocated huge page must be freed.  It is
2669  * to be called after calling vma_needs_reservation to determine if a
2670  * reservation exists.
2671  *
2672  * vma_del_reservation is used in error paths where an entry in the reserve
2673  * map was created during huge page allocation and must be removed.  It is to
2674  * be called after calling vma_needs_reservation to determine if a reservation
2675  * exists.
2676  */
2677 enum vma_resv_mode {
2678         VMA_NEEDS_RESV,
2679         VMA_COMMIT_RESV,
2680         VMA_END_RESV,
2681         VMA_ADD_RESV,
2682         VMA_DEL_RESV,
2683 };
2684 static long __vma_reservation_common(struct hstate *h,
2685                                 struct vm_area_struct *vma, unsigned long addr,
2686                                 enum vma_resv_mode mode)
2687 {
2688         struct resv_map *resv;
2689         pgoff_t idx;
2690         long ret;
2691         long dummy_out_regions_needed;
2692
2693         resv = vma_resv_map(vma);
2694         if (!resv)
2695                 return 1;
2696
2697         idx = vma_hugecache_offset(h, vma, addr);
2698         switch (mode) {
2699         case VMA_NEEDS_RESV:
2700                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2701                 /* We assume that vma_reservation_* routines always operate on
2702                  * 1 page, and that adding to resv map a 1 page entry can only
2703                  * ever require 1 region.
2704                  */
2705                 VM_BUG_ON(dummy_out_regions_needed != 1);
2706                 break;
2707         case VMA_COMMIT_RESV:
2708                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2709                 /* region_add calls of range 1 should never fail. */
2710                 VM_BUG_ON(ret < 0);
2711                 break;
2712         case VMA_END_RESV:
2713                 region_abort(resv, idx, idx + 1, 1);
2714                 ret = 0;
2715                 break;
2716         case VMA_ADD_RESV:
2717                 if (vma->vm_flags & VM_MAYSHARE) {
2718                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2719                         /* region_add calls of range 1 should never fail. */
2720                         VM_BUG_ON(ret < 0);
2721                 } else {
2722                         region_abort(resv, idx, idx + 1, 1);
2723                         ret = region_del(resv, idx, idx + 1);
2724                 }
2725                 break;
2726         case VMA_DEL_RESV:
2727                 if (vma->vm_flags & VM_MAYSHARE) {
2728                         region_abort(resv, idx, idx + 1, 1);
2729                         ret = region_del(resv, idx, idx + 1);
2730                 } else {
2731                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732                         /* region_add calls of range 1 should never fail. */
2733                         VM_BUG_ON(ret < 0);
2734                 }
2735                 break;
2736         default:
2737                 BUG();
2738         }
2739
2740         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2741                 return ret;
2742         /*
2743          * We know private mapping must have HPAGE_RESV_OWNER set.
2744          *
2745          * In most cases, reserves always exist for private mappings.
2746          * However, a file associated with mapping could have been
2747          * hole punched or truncated after reserves were consumed.
2748          * As subsequent fault on such a range will not use reserves.
2749          * Subtle - The reserve map for private mappings has the
2750          * opposite meaning than that of shared mappings.  If NO
2751          * entry is in the reserve map, it means a reservation exists.
2752          * If an entry exists in the reserve map, it means the
2753          * reservation has already been consumed.  As a result, the
2754          * return value of this routine is the opposite of the
2755          * value returned from reserve map manipulation routines above.
2756          */
2757         if (ret > 0)
2758                 return 0;
2759         if (ret == 0)
2760                 return 1;
2761         return ret;
2762 }
2763
2764 static long vma_needs_reservation(struct hstate *h,
2765                         struct vm_area_struct *vma, unsigned long addr)
2766 {
2767         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2768 }
2769
2770 static long vma_commit_reservation(struct hstate *h,
2771                         struct vm_area_struct *vma, unsigned long addr)
2772 {
2773         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2774 }
2775
2776 static void vma_end_reservation(struct hstate *h,
2777                         struct vm_area_struct *vma, unsigned long addr)
2778 {
2779         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2780 }
2781
2782 static long vma_add_reservation(struct hstate *h,
2783                         struct vm_area_struct *vma, unsigned long addr)
2784 {
2785         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2786 }
2787
2788 static long vma_del_reservation(struct hstate *h,
2789                         struct vm_area_struct *vma, unsigned long addr)
2790 {
2791         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2792 }
2793
2794 /*
2795  * This routine is called to restore reservation information on error paths.
2796  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2797  * the hugetlb mutex should remain held when calling this routine.
2798  *
2799  * It handles two specific cases:
2800  * 1) A reservation was in place and the page consumed the reservation.
2801  *    HPageRestoreReserve is set in the page.
2802  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2803  *    not set.  However, alloc_huge_page always updates the reserve map.
2804  *
2805  * In case 1, free_huge_page later in the error path will increment the
2806  * global reserve count.  But, free_huge_page does not have enough context
2807  * to adjust the reservation map.  This case deals primarily with private
2808  * mappings.  Adjust the reserve map here to be consistent with global
2809  * reserve count adjustments to be made by free_huge_page.  Make sure the
2810  * reserve map indicates there is a reservation present.
2811  *
2812  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2813  */
2814 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2815                         unsigned long address, struct page *page)
2816 {
2817         long rc = vma_needs_reservation(h, vma, address);
2818
2819         if (HPageRestoreReserve(page)) {
2820                 if (unlikely(rc < 0))
2821                         /*
2822                          * Rare out of memory condition in reserve map
2823                          * manipulation.  Clear HPageRestoreReserve so that
2824                          * global reserve count will not be incremented
2825                          * by free_huge_page.  This will make it appear
2826                          * as though the reservation for this page was
2827                          * consumed.  This may prevent the task from
2828                          * faulting in the page at a later time.  This
2829                          * is better than inconsistent global huge page
2830                          * accounting of reserve counts.
2831                          */
2832                         ClearHPageRestoreReserve(page);
2833                 else if (rc)
2834                         (void)vma_add_reservation(h, vma, address);
2835                 else
2836                         vma_end_reservation(h, vma, address);
2837         } else {
2838                 if (!rc) {
2839                         /*
2840                          * This indicates there is an entry in the reserve map
2841                          * not added by alloc_huge_page.  We know it was added
2842                          * before the alloc_huge_page call, otherwise
2843                          * HPageRestoreReserve would be set on the page.
2844                          * Remove the entry so that a subsequent allocation
2845                          * does not consume a reservation.
2846                          */
2847                         rc = vma_del_reservation(h, vma, address);
2848                         if (rc < 0)
2849                                 /*
2850                                  * VERY rare out of memory condition.  Since
2851                                  * we can not delete the entry, set
2852                                  * HPageRestoreReserve so that the reserve
2853                                  * count will be incremented when the page
2854                                  * is freed.  This reserve will be consumed
2855                                  * on a subsequent allocation.
2856                                  */
2857                                 SetHPageRestoreReserve(page);
2858                 } else if (rc < 0) {
2859                         /*
2860                          * Rare out of memory condition from
2861                          * vma_needs_reservation call.  Memory allocation is
2862                          * only attempted if a new entry is needed.  Therefore,
2863                          * this implies there is not an entry in the
2864                          * reserve map.
2865                          *
2866                          * For shared mappings, no entry in the map indicates
2867                          * no reservation.  We are done.
2868                          */
2869                         if (!(vma->vm_flags & VM_MAYSHARE))
2870                                 /*
2871                                  * For private mappings, no entry indicates
2872                                  * a reservation is present.  Since we can
2873                                  * not add an entry, set SetHPageRestoreReserve
2874                                  * on the page so reserve count will be
2875                                  * incremented when freed.  This reserve will
2876                                  * be consumed on a subsequent allocation.
2877                                  */
2878                                 SetHPageRestoreReserve(page);
2879                 } else
2880                         /*
2881                          * No reservation present, do nothing
2882                          */
2883                          vma_end_reservation(h, vma, address);
2884         }
2885 }
2886
2887 /*
2888  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2889  * @h: struct hstate old page belongs to
2890  * @old_page: Old page to dissolve
2891  * @list: List to isolate the page in case we need to
2892  * Returns 0 on success, otherwise negated error.
2893  */
2894 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2895                                         struct list_head *list)
2896 {
2897         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2898         int nid = page_to_nid(old_page);
2899         struct page *new_page;
2900         int ret = 0;
2901
2902         /*
2903          * Before dissolving the page, we need to allocate a new one for the
2904          * pool to remain stable.  Here, we allocate the page and 'prep' it
2905          * by doing everything but actually updating counters and adding to
2906          * the pool.  This simplifies and let us do most of the processing
2907          * under the lock.
2908          */
2909         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2910         if (!new_page)
2911                 return -ENOMEM;
2912         __prep_new_huge_page(h, new_page);
2913
2914 retry:
2915         spin_lock_irq(&hugetlb_lock);
2916         if (!PageHuge(old_page)) {
2917                 /*
2918                  * Freed from under us. Drop new_page too.
2919                  */
2920                 goto free_new;
2921         } else if (page_count(old_page)) {
2922                 /*
2923                  * Someone has grabbed the page, try to isolate it here.
2924                  * Fail with -EBUSY if not possible.
2925                  */
2926                 spin_unlock_irq(&hugetlb_lock);
2927                 ret = isolate_hugetlb(old_page, list);
2928                 spin_lock_irq(&hugetlb_lock);
2929                 goto free_new;
2930         } else if (!HPageFreed(old_page)) {
2931                 /*
2932                  * Page's refcount is 0 but it has not been enqueued in the
2933                  * freelist yet. Race window is small, so we can succeed here if
2934                  * we retry.
2935                  */
2936                 spin_unlock_irq(&hugetlb_lock);
2937                 cond_resched();
2938                 goto retry;
2939         } else {
2940                 /*
2941                  * Ok, old_page is still a genuine free hugepage. Remove it from
2942                  * the freelist and decrease the counters. These will be
2943                  * incremented again when calling __prep_account_new_huge_page()
2944                  * and enqueue_huge_page() for new_page. The counters will remain
2945                  * stable since this happens under the lock.
2946                  */
2947                 remove_hugetlb_page(h, old_page, false);
2948
2949                 /*
2950                  * Ref count on new page is already zero as it was dropped
2951                  * earlier.  It can be directly added to the pool free list.
2952                  */
2953                 __prep_account_new_huge_page(h, nid);
2954                 enqueue_huge_page(h, new_page);
2955
2956                 /*
2957                  * Pages have been replaced, we can safely free the old one.
2958                  */
2959                 spin_unlock_irq(&hugetlb_lock);
2960                 update_and_free_page(h, old_page, false);
2961         }
2962
2963         return ret;
2964
2965 free_new:
2966         spin_unlock_irq(&hugetlb_lock);
2967         /* Page has a zero ref count, but needs a ref to be freed */
2968         set_page_refcounted(new_page);
2969         update_and_free_page(h, new_page, false);
2970
2971         return ret;
2972 }
2973
2974 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2975 {
2976         struct hstate *h;
2977         struct page *head;
2978         int ret = -EBUSY;
2979
2980         /*
2981          * The page might have been dissolved from under our feet, so make sure
2982          * to carefully check the state under the lock.
2983          * Return success when racing as if we dissolved the page ourselves.
2984          */
2985         spin_lock_irq(&hugetlb_lock);
2986         if (PageHuge(page)) {
2987                 head = compound_head(page);
2988                 h = page_hstate(head);
2989         } else {
2990                 spin_unlock_irq(&hugetlb_lock);
2991                 return 0;
2992         }
2993         spin_unlock_irq(&hugetlb_lock);
2994
2995         /*
2996          * Fence off gigantic pages as there is a cyclic dependency between
2997          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2998          * of bailing out right away without further retrying.
2999          */
3000         if (hstate_is_gigantic(h))
3001                 return -ENOMEM;
3002
3003         if (page_count(head) && !isolate_hugetlb(head, list))
3004                 ret = 0;
3005         else if (!page_count(head))
3006                 ret = alloc_and_dissolve_huge_page(h, head, list);
3007
3008         return ret;
3009 }
3010
3011 struct page *alloc_huge_page(struct vm_area_struct *vma,
3012                                     unsigned long addr, int avoid_reserve)
3013 {
3014         struct hugepage_subpool *spool = subpool_vma(vma);
3015         struct hstate *h = hstate_vma(vma);
3016         struct page *page;
3017         long map_chg, map_commit;
3018         long gbl_chg;
3019         int ret, idx;
3020         struct hugetlb_cgroup *h_cg;
3021         bool deferred_reserve;
3022
3023         idx = hstate_index(h);
3024         /*
3025          * Examine the region/reserve map to determine if the process
3026          * has a reservation for the page to be allocated.  A return
3027          * code of zero indicates a reservation exists (no change).
3028          */
3029         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3030         if (map_chg < 0)
3031                 return ERR_PTR(-ENOMEM);
3032
3033         /*
3034          * Processes that did not create the mapping will have no
3035          * reserves as indicated by the region/reserve map. Check
3036          * that the allocation will not exceed the subpool limit.
3037          * Allocations for MAP_NORESERVE mappings also need to be
3038          * checked against any subpool limit.
3039          */
3040         if (map_chg || avoid_reserve) {
3041                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3042                 if (gbl_chg < 0) {
3043                         vma_end_reservation(h, vma, addr);
3044                         return ERR_PTR(-ENOSPC);
3045                 }
3046
3047                 /*
3048                  * Even though there was no reservation in the region/reserve
3049                  * map, there could be reservations associated with the
3050                  * subpool that can be used.  This would be indicated if the
3051                  * return value of hugepage_subpool_get_pages() is zero.
3052                  * However, if avoid_reserve is specified we still avoid even
3053                  * the subpool reservations.
3054                  */
3055                 if (avoid_reserve)
3056                         gbl_chg = 1;
3057         }
3058
3059         /* If this allocation is not consuming a reservation, charge it now.
3060          */
3061         deferred_reserve = map_chg || avoid_reserve;
3062         if (deferred_reserve) {
3063                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3064                         idx, pages_per_huge_page(h), &h_cg);
3065                 if (ret)
3066                         goto out_subpool_put;
3067         }
3068
3069         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3070         if (ret)
3071                 goto out_uncharge_cgroup_reservation;
3072
3073         spin_lock_irq(&hugetlb_lock);
3074         /*
3075          * glb_chg is passed to indicate whether or not a page must be taken
3076          * from the global free pool (global change).  gbl_chg == 0 indicates
3077          * a reservation exists for the allocation.
3078          */
3079         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3080         if (!page) {
3081                 spin_unlock_irq(&hugetlb_lock);
3082                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3083                 if (!page)
3084                         goto out_uncharge_cgroup;
3085                 spin_lock_irq(&hugetlb_lock);
3086                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3087                         SetHPageRestoreReserve(page);
3088                         h->resv_huge_pages--;
3089                 }
3090                 list_add(&page->lru, &h->hugepage_activelist);
3091                 set_page_refcounted(page);
3092                 /* Fall through */
3093         }
3094         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3095         /* If allocation is not consuming a reservation, also store the
3096          * hugetlb_cgroup pointer on the page.
3097          */
3098         if (deferred_reserve) {
3099                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3100                                                   h_cg, page);
3101         }
3102
3103         spin_unlock_irq(&hugetlb_lock);
3104
3105         hugetlb_set_page_subpool(page, spool);
3106
3107         map_commit = vma_commit_reservation(h, vma, addr);
3108         if (unlikely(map_chg > map_commit)) {
3109                 /*
3110                  * The page was added to the reservation map between
3111                  * vma_needs_reservation and vma_commit_reservation.
3112                  * This indicates a race with hugetlb_reserve_pages.
3113                  * Adjust for the subpool count incremented above AND
3114                  * in hugetlb_reserve_pages for the same page.  Also,
3115                  * the reservation count added in hugetlb_reserve_pages
3116                  * no longer applies.
3117                  */
3118                 long rsv_adjust;
3119
3120                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3121                 hugetlb_acct_memory(h, -rsv_adjust);
3122                 if (deferred_reserve)
3123                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
3124                                         pages_per_huge_page(h), page);
3125         }
3126         return page;
3127
3128 out_uncharge_cgroup:
3129         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3130 out_uncharge_cgroup_reservation:
3131         if (deferred_reserve)
3132                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3133                                                     h_cg);
3134 out_subpool_put:
3135         if (map_chg || avoid_reserve)
3136                 hugepage_subpool_put_pages(spool, 1);
3137         vma_end_reservation(h, vma, addr);
3138         return ERR_PTR(-ENOSPC);
3139 }
3140
3141 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3142         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3143 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3144 {
3145         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3146         int nr_nodes, node;
3147
3148         /* do node specific alloc */
3149         if (nid != NUMA_NO_NODE) {
3150                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3151                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3152                 if (!m)
3153                         return 0;
3154                 goto found;
3155         }
3156         /* allocate from next node when distributing huge pages */
3157         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3158                 m = memblock_alloc_try_nid_raw(
3159                                 huge_page_size(h), huge_page_size(h),
3160                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3161                 /*
3162                  * Use the beginning of the huge page to store the
3163                  * huge_bootmem_page struct (until gather_bootmem
3164                  * puts them into the mem_map).
3165                  */
3166                 if (!m)
3167                         return 0;
3168                 goto found;
3169         }
3170
3171 found:
3172         /* Put them into a private list first because mem_map is not up yet */
3173         INIT_LIST_HEAD(&m->list);
3174         list_add(&m->list, &huge_boot_pages);
3175         m->hstate = h;
3176         return 1;
3177 }
3178
3179 /*
3180  * Put bootmem huge pages into the standard lists after mem_map is up.
3181  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3182  */
3183 static void __init gather_bootmem_prealloc(void)
3184 {
3185         struct huge_bootmem_page *m;
3186
3187         list_for_each_entry(m, &huge_boot_pages, list) {
3188                 struct page *page = virt_to_page(m);
3189                 struct hstate *h = m->hstate;
3190
3191                 VM_BUG_ON(!hstate_is_gigantic(h));
3192                 WARN_ON(page_count(page) != 1);
3193                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3194                         WARN_ON(PageReserved(page));
3195                         prep_new_huge_page(h, page, page_to_nid(page));
3196                         free_huge_page(page); /* add to the hugepage allocator */
3197                 } else {
3198                         /* VERY unlikely inflated ref count on a tail page */
3199                         free_gigantic_page(page, huge_page_order(h));
3200                 }
3201
3202                 /*
3203                  * We need to restore the 'stolen' pages to totalram_pages
3204                  * in order to fix confusing memory reports from free(1) and
3205                  * other side-effects, like CommitLimit going negative.
3206                  */
3207                 adjust_managed_page_count(page, pages_per_huge_page(h));
3208                 cond_resched();
3209         }
3210 }
3211 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3212 {
3213         unsigned long i;
3214         char buf[32];
3215
3216         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3217                 if (hstate_is_gigantic(h)) {
3218                         if (!alloc_bootmem_huge_page(h, nid))
3219                                 break;
3220                 } else {
3221                         struct page *page;
3222                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3223
3224                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3225                                         &node_states[N_MEMORY], NULL);
3226                         if (!page)
3227                                 break;
3228                         free_huge_page(page); /* free it into the hugepage allocator */
3229                 }
3230                 cond_resched();
3231         }
3232         if (i == h->max_huge_pages_node[nid])
3233                 return;
3234
3235         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3236         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3237                 h->max_huge_pages_node[nid], buf, nid, i);
3238         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3239         h->max_huge_pages_node[nid] = i;
3240 }
3241
3242 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3243 {
3244         unsigned long i;
3245         nodemask_t *node_alloc_noretry;
3246         bool node_specific_alloc = false;
3247
3248         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3249         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3250                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3251                 return;
3252         }
3253
3254         /* do node specific alloc */
3255         for_each_online_node(i) {
3256                 if (h->max_huge_pages_node[i] > 0) {
3257                         hugetlb_hstate_alloc_pages_onenode(h, i);
3258                         node_specific_alloc = true;
3259                 }
3260         }
3261
3262         if (node_specific_alloc)
3263                 return;
3264
3265         /* below will do all node balanced alloc */
3266         if (!hstate_is_gigantic(h)) {
3267                 /*
3268                  * Bit mask controlling how hard we retry per-node allocations.
3269                  * Ignore errors as lower level routines can deal with
3270                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3271                  * time, we are likely in bigger trouble.
3272                  */
3273                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3274                                                 GFP_KERNEL);
3275         } else {
3276                 /* allocations done at boot time */
3277                 node_alloc_noretry = NULL;
3278         }
3279
3280         /* bit mask controlling how hard we retry per-node allocations */
3281         if (node_alloc_noretry)
3282                 nodes_clear(*node_alloc_noretry);
3283
3284         for (i = 0; i < h->max_huge_pages; ++i) {
3285                 if (hstate_is_gigantic(h)) {
3286                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3287                                 break;
3288                 } else if (!alloc_pool_huge_page(h,
3289                                          &node_states[N_MEMORY],
3290                                          node_alloc_noretry))
3291                         break;
3292                 cond_resched();
3293         }
3294         if (i < h->max_huge_pages) {
3295                 char buf[32];
3296
3297                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3298                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3299                         h->max_huge_pages, buf, i);
3300                 h->max_huge_pages = i;
3301         }
3302         kfree(node_alloc_noretry);
3303 }
3304
3305 static void __init hugetlb_init_hstates(void)
3306 {
3307         struct hstate *h, *h2;
3308
3309         for_each_hstate(h) {
3310                 /* oversize hugepages were init'ed in early boot */
3311                 if (!hstate_is_gigantic(h))
3312                         hugetlb_hstate_alloc_pages(h);
3313
3314                 /*
3315                  * Set demote order for each hstate.  Note that
3316                  * h->demote_order is initially 0.
3317                  * - We can not demote gigantic pages if runtime freeing
3318                  *   is not supported, so skip this.
3319                  * - If CMA allocation is possible, we can not demote
3320                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3321                  */
3322                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3323                         continue;
3324                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3325                         continue;
3326                 for_each_hstate(h2) {
3327                         if (h2 == h)
3328                                 continue;
3329                         if (h2->order < h->order &&
3330                             h2->order > h->demote_order)
3331                                 h->demote_order = h2->order;
3332                 }
3333         }
3334 }
3335
3336 static void __init report_hugepages(void)
3337 {
3338         struct hstate *h;
3339
3340         for_each_hstate(h) {
3341                 char buf[32];
3342
3343                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3344                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3345                         buf, h->free_huge_pages);
3346                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3347                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3348         }
3349 }
3350
3351 #ifdef CONFIG_HIGHMEM
3352 static void try_to_free_low(struct hstate *h, unsigned long count,
3353                                                 nodemask_t *nodes_allowed)
3354 {
3355         int i;
3356         LIST_HEAD(page_list);
3357
3358         lockdep_assert_held(&hugetlb_lock);
3359         if (hstate_is_gigantic(h))
3360                 return;
3361
3362         /*
3363          * Collect pages to be freed on a list, and free after dropping lock
3364          */
3365         for_each_node_mask(i, *nodes_allowed) {
3366                 struct page *page, *next;
3367                 struct list_head *freel = &h->hugepage_freelists[i];
3368                 list_for_each_entry_safe(page, next, freel, lru) {
3369                         if (count >= h->nr_huge_pages)
3370                                 goto out;
3371                         if (PageHighMem(page))
3372                                 continue;
3373                         remove_hugetlb_page(h, page, false);
3374                         list_add(&page->lru, &page_list);
3375                 }
3376         }
3377
3378 out:
3379         spin_unlock_irq(&hugetlb_lock);
3380         update_and_free_pages_bulk(h, &page_list);
3381         spin_lock_irq(&hugetlb_lock);
3382 }
3383 #else
3384 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3385                                                 nodemask_t *nodes_allowed)
3386 {
3387 }
3388 #endif
3389
3390 /*
3391  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3392  * balanced by operating on them in a round-robin fashion.
3393  * Returns 1 if an adjustment was made.
3394  */
3395 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3396                                 int delta)
3397 {
3398         int nr_nodes, node;
3399
3400         lockdep_assert_held(&hugetlb_lock);
3401         VM_BUG_ON(delta != -1 && delta != 1);
3402
3403         if (delta < 0) {
3404                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3405                         if (h->surplus_huge_pages_node[node])
3406                                 goto found;
3407                 }
3408         } else {
3409                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3410                         if (h->surplus_huge_pages_node[node] <
3411                                         h->nr_huge_pages_node[node])
3412                                 goto found;
3413                 }
3414         }
3415         return 0;
3416
3417 found:
3418         h->surplus_huge_pages += delta;
3419         h->surplus_huge_pages_node[node] += delta;
3420         return 1;
3421 }
3422
3423 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3424 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3425                               nodemask_t *nodes_allowed)
3426 {
3427         unsigned long min_count, ret;
3428         struct page *page;
3429         LIST_HEAD(page_list);
3430         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3431
3432         /*
3433          * Bit mask controlling how hard we retry per-node allocations.
3434          * If we can not allocate the bit mask, do not attempt to allocate
3435          * the requested huge pages.
3436          */
3437         if (node_alloc_noretry)
3438                 nodes_clear(*node_alloc_noretry);
3439         else
3440                 return -ENOMEM;
3441
3442         /*
3443          * resize_lock mutex prevents concurrent adjustments to number of
3444          * pages in hstate via the proc/sysfs interfaces.
3445          */
3446         mutex_lock(&h->resize_lock);
3447         flush_free_hpage_work(h);
3448         spin_lock_irq(&hugetlb_lock);
3449
3450         /*
3451          * Check for a node specific request.
3452          * Changing node specific huge page count may require a corresponding
3453          * change to the global count.  In any case, the passed node mask
3454          * (nodes_allowed) will restrict alloc/free to the specified node.
3455          */
3456         if (nid != NUMA_NO_NODE) {
3457                 unsigned long old_count = count;
3458
3459                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3460                 /*
3461                  * User may have specified a large count value which caused the
3462                  * above calculation to overflow.  In this case, they wanted
3463                  * to allocate as many huge pages as possible.  Set count to
3464                  * largest possible value to align with their intention.
3465                  */
3466                 if (count < old_count)
3467                         count = ULONG_MAX;
3468         }
3469
3470         /*
3471          * Gigantic pages runtime allocation depend on the capability for large
3472          * page range allocation.
3473          * If the system does not provide this feature, return an error when
3474          * the user tries to allocate gigantic pages but let the user free the
3475          * boottime allocated gigantic pages.
3476          */
3477         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3478                 if (count > persistent_huge_pages(h)) {
3479                         spin_unlock_irq(&hugetlb_lock);
3480                         mutex_unlock(&h->resize_lock);
3481                         NODEMASK_FREE(node_alloc_noretry);
3482                         return -EINVAL;
3483                 }
3484                 /* Fall through to decrease pool */
3485         }
3486
3487         /*
3488          * Increase the pool size
3489          * First take pages out of surplus state.  Then make up the
3490          * remaining difference by allocating fresh huge pages.
3491          *
3492          * We might race with alloc_surplus_huge_page() here and be unable
3493          * to convert a surplus huge page to a normal huge page. That is
3494          * not critical, though, it just means the overall size of the
3495          * pool might be one hugepage larger than it needs to be, but
3496          * within all the constraints specified by the sysctls.
3497          */
3498         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3499                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3500                         break;
3501         }
3502
3503         while (count > persistent_huge_pages(h)) {
3504                 /*
3505                  * If this allocation races such that we no longer need the
3506                  * page, free_huge_page will handle it by freeing the page
3507                  * and reducing the surplus.
3508                  */
3509                 spin_unlock_irq(&hugetlb_lock);
3510
3511                 /* yield cpu to avoid soft lockup */
3512                 cond_resched();
3513
3514                 ret = alloc_pool_huge_page(h, nodes_allowed,
3515                                                 node_alloc_noretry);
3516                 spin_lock_irq(&hugetlb_lock);
3517                 if (!ret)
3518                         goto out;
3519
3520                 /* Bail for signals. Probably ctrl-c from user */
3521                 if (signal_pending(current))
3522                         goto out;
3523         }
3524
3525         /*
3526          * Decrease the pool size
3527          * First return free pages to the buddy allocator (being careful
3528          * to keep enough around to satisfy reservations).  Then place
3529          * pages into surplus state as needed so the pool will shrink
3530          * to the desired size as pages become free.
3531          *
3532          * By placing pages into the surplus state independent of the
3533          * overcommit value, we are allowing the surplus pool size to
3534          * exceed overcommit. There are few sane options here. Since
3535          * alloc_surplus_huge_page() is checking the global counter,
3536          * though, we'll note that we're not allowed to exceed surplus
3537          * and won't grow the pool anywhere else. Not until one of the
3538          * sysctls are changed, or the surplus pages go out of use.
3539          */
3540         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3541         min_count = max(count, min_count);
3542         try_to_free_low(h, min_count, nodes_allowed);
3543
3544         /*
3545          * Collect pages to be removed on list without dropping lock
3546          */
3547         while (min_count < persistent_huge_pages(h)) {
3548                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3549                 if (!page)
3550                         break;
3551
3552                 list_add(&page->lru, &page_list);
3553         }
3554         /* free the pages after dropping lock */
3555         spin_unlock_irq(&hugetlb_lock);
3556         update_and_free_pages_bulk(h, &page_list);
3557         flush_free_hpage_work(h);
3558         spin_lock_irq(&hugetlb_lock);
3559
3560         while (count < persistent_huge_pages(h)) {
3561                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3562                         break;
3563         }
3564 out:
3565         h->max_huge_pages = persistent_huge_pages(h);
3566         spin_unlock_irq(&hugetlb_lock);
3567         mutex_unlock(&h->resize_lock);
3568
3569         NODEMASK_FREE(node_alloc_noretry);
3570
3571         return 0;
3572 }
3573
3574 static int demote_free_huge_page(struct hstate *h, struct page *page)
3575 {
3576         int i, nid = page_to_nid(page);
3577         struct hstate *target_hstate;
3578         struct page *subpage;
3579         int rc = 0;
3580
3581         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3582
3583         remove_hugetlb_page_for_demote(h, page, false);
3584         spin_unlock_irq(&hugetlb_lock);
3585
3586         rc = hugetlb_vmemmap_restore(h, page);
3587         if (rc) {
3588                 /* Allocation of vmemmmap failed, we can not demote page */
3589                 spin_lock_irq(&hugetlb_lock);
3590                 set_page_refcounted(page);
3591                 add_hugetlb_page(h, page, false);
3592                 return rc;
3593         }
3594
3595         /*
3596          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3597          * sizes as it will not ref count pages.
3598          */
3599         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3600
3601         /*
3602          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3603          * Without the mutex, pages added to target hstate could be marked
3604          * as surplus.
3605          *
3606          * Note that we already hold h->resize_lock.  To prevent deadlock,
3607          * use the convention of always taking larger size hstate mutex first.
3608          */
3609         mutex_lock(&target_hstate->resize_lock);
3610         for (i = 0; i < pages_per_huge_page(h);
3611                                 i += pages_per_huge_page(target_hstate)) {
3612                 subpage = nth_page(page, i);
3613                 if (hstate_is_gigantic(target_hstate))
3614                         prep_compound_gigantic_page_for_demote(subpage,
3615                                                         target_hstate->order);
3616                 else
3617                         prep_compound_page(subpage, target_hstate->order);
3618                 set_page_private(subpage, 0);
3619                 prep_new_huge_page(target_hstate, subpage, nid);
3620                 free_huge_page(subpage);
3621         }
3622         mutex_unlock(&target_hstate->resize_lock);
3623
3624         spin_lock_irq(&hugetlb_lock);
3625
3626         /*
3627          * Not absolutely necessary, but for consistency update max_huge_pages
3628          * based on pool changes for the demoted page.
3629          */
3630         h->max_huge_pages--;
3631         target_hstate->max_huge_pages +=
3632                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3633
3634         return rc;
3635 }
3636
3637 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3638         __must_hold(&hugetlb_lock)
3639 {
3640         int nr_nodes, node;
3641         struct page *page;
3642
3643         lockdep_assert_held(&hugetlb_lock);
3644
3645         /* We should never get here if no demote order */
3646         if (!h->demote_order) {
3647                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3648                 return -EINVAL;         /* internal error */
3649         }
3650
3651         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3652                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3653                         if (PageHWPoison(page))
3654                                 continue;
3655
3656                         return demote_free_huge_page(h, page);
3657                 }
3658         }
3659
3660         /*
3661          * Only way to get here is if all pages on free lists are poisoned.
3662          * Return -EBUSY so that caller will not retry.
3663          */
3664         return -EBUSY;
3665 }
3666
3667 #define HSTATE_ATTR_RO(_name) \
3668         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3669
3670 #define HSTATE_ATTR_WO(_name) \
3671         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3672
3673 #define HSTATE_ATTR(_name) \
3674         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3675
3676 static struct kobject *hugepages_kobj;
3677 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3678
3679 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3680
3681 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3682 {
3683         int i;
3684
3685         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3686                 if (hstate_kobjs[i] == kobj) {
3687                         if (nidp)
3688                                 *nidp = NUMA_NO_NODE;
3689                         return &hstates[i];
3690                 }
3691
3692         return kobj_to_node_hstate(kobj, nidp);
3693 }
3694
3695 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3696                                         struct kobj_attribute *attr, char *buf)
3697 {
3698         struct hstate *h;
3699         unsigned long nr_huge_pages;
3700         int nid;
3701
3702         h = kobj_to_hstate(kobj, &nid);
3703         if (nid == NUMA_NO_NODE)
3704                 nr_huge_pages = h->nr_huge_pages;
3705         else
3706                 nr_huge_pages = h->nr_huge_pages_node[nid];
3707
3708         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3709 }
3710
3711 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3712                                            struct hstate *h, int nid,
3713                                            unsigned long count, size_t len)
3714 {
3715         int err;
3716         nodemask_t nodes_allowed, *n_mask;
3717
3718         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3719                 return -EINVAL;
3720
3721         if (nid == NUMA_NO_NODE) {
3722                 /*
3723                  * global hstate attribute
3724                  */
3725                 if (!(obey_mempolicy &&
3726                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3727                         n_mask = &node_states[N_MEMORY];
3728                 else
3729                         n_mask = &nodes_allowed;
3730         } else {
3731                 /*
3732                  * Node specific request.  count adjustment happens in
3733                  * set_max_huge_pages() after acquiring hugetlb_lock.
3734                  */
3735                 init_nodemask_of_node(&nodes_allowed, nid);
3736                 n_mask = &nodes_allowed;
3737         }
3738
3739         err = set_max_huge_pages(h, count, nid, n_mask);
3740
3741         return err ? err : len;
3742 }
3743
3744 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3745                                          struct kobject *kobj, const char *buf,
3746                                          size_t len)
3747 {
3748         struct hstate *h;
3749         unsigned long count;
3750         int nid;
3751         int err;
3752
3753         err = kstrtoul(buf, 10, &count);
3754         if (err)
3755                 return err;
3756
3757         h = kobj_to_hstate(kobj, &nid);
3758         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3759 }
3760
3761 static ssize_t nr_hugepages_show(struct kobject *kobj,
3762                                        struct kobj_attribute *attr, char *buf)
3763 {
3764         return nr_hugepages_show_common(kobj, attr, buf);
3765 }
3766
3767 static ssize_t nr_hugepages_store(struct kobject *kobj,
3768                struct kobj_attribute *attr, const char *buf, size_t len)
3769 {
3770         return nr_hugepages_store_common(false, kobj, buf, len);
3771 }
3772 HSTATE_ATTR(nr_hugepages);
3773
3774 #ifdef CONFIG_NUMA
3775
3776 /*
3777  * hstate attribute for optionally mempolicy-based constraint on persistent
3778  * huge page alloc/free.
3779  */
3780 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3781                                            struct kobj_attribute *attr,
3782                                            char *buf)
3783 {
3784         return nr_hugepages_show_common(kobj, attr, buf);
3785 }
3786
3787 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3788                struct kobj_attribute *attr, const char *buf, size_t len)
3789 {
3790         return nr_hugepages_store_common(true, kobj, buf, len);
3791 }
3792 HSTATE_ATTR(nr_hugepages_mempolicy);
3793 #endif
3794
3795
3796 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3797                                         struct kobj_attribute *attr, char *buf)
3798 {
3799         struct hstate *h = kobj_to_hstate(kobj, NULL);
3800         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3801 }
3802
3803 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3804                 struct kobj_attribute *attr, const char *buf, size_t count)
3805 {
3806         int err;
3807         unsigned long input;
3808         struct hstate *h = kobj_to_hstate(kobj, NULL);
3809
3810         if (hstate_is_gigantic(h))
3811                 return -EINVAL;
3812
3813         err = kstrtoul(buf, 10, &input);
3814         if (err)
3815                 return err;
3816
3817         spin_lock_irq(&hugetlb_lock);
3818         h->nr_overcommit_huge_pages = input;
3819         spin_unlock_irq(&hugetlb_lock);
3820
3821         return count;
3822 }
3823 HSTATE_ATTR(nr_overcommit_hugepages);
3824
3825 static ssize_t free_hugepages_show(struct kobject *kobj,
3826                                         struct kobj_attribute *attr, char *buf)
3827 {
3828         struct hstate *h;
3829         unsigned long free_huge_pages;
3830         int nid;
3831
3832         h = kobj_to_hstate(kobj, &nid);
3833         if (nid == NUMA_NO_NODE)
3834                 free_huge_pages = h->free_huge_pages;
3835         else
3836                 free_huge_pages = h->free_huge_pages_node[nid];
3837
3838         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3839 }
3840 HSTATE_ATTR_RO(free_hugepages);
3841
3842 static ssize_t resv_hugepages_show(struct kobject *kobj,
3843                                         struct kobj_attribute *attr, char *buf)
3844 {
3845         struct hstate *h = kobj_to_hstate(kobj, NULL);
3846         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3847 }
3848 HSTATE_ATTR_RO(resv_hugepages);
3849
3850 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3851                                         struct kobj_attribute *attr, char *buf)
3852 {
3853         struct hstate *h;
3854         unsigned long surplus_huge_pages;
3855         int nid;
3856
3857         h = kobj_to_hstate(kobj, &nid);
3858         if (nid == NUMA_NO_NODE)
3859                 surplus_huge_pages = h->surplus_huge_pages;
3860         else
3861                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3862
3863         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3864 }
3865 HSTATE_ATTR_RO(surplus_hugepages);
3866
3867 static ssize_t demote_store(struct kobject *kobj,
3868                struct kobj_attribute *attr, const char *buf, size_t len)
3869 {
3870         unsigned long nr_demote;
3871         unsigned long nr_available;
3872         nodemask_t nodes_allowed, *n_mask;
3873         struct hstate *h;
3874         int err;
3875         int nid;
3876
3877         err = kstrtoul(buf, 10, &nr_demote);
3878         if (err)
3879                 return err;
3880         h = kobj_to_hstate(kobj, &nid);
3881
3882         if (nid != NUMA_NO_NODE) {
3883                 init_nodemask_of_node(&nodes_allowed, nid);
3884                 n_mask = &nodes_allowed;
3885         } else {
3886                 n_mask = &node_states[N_MEMORY];
3887         }
3888
3889         /* Synchronize with other sysfs operations modifying huge pages */
3890         mutex_lock(&h->resize_lock);
3891         spin_lock_irq(&hugetlb_lock);
3892
3893         while (nr_demote) {
3894                 /*
3895                  * Check for available pages to demote each time thorough the
3896                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3897                  */
3898                 if (nid != NUMA_NO_NODE)
3899                         nr_available = h->free_huge_pages_node[nid];
3900                 else
3901                         nr_available = h->free_huge_pages;
3902                 nr_available -= h->resv_huge_pages;
3903                 if (!nr_available)
3904                         break;
3905
3906                 err = demote_pool_huge_page(h, n_mask);
3907                 if (err)
3908                         break;
3909
3910                 nr_demote--;
3911         }
3912
3913         spin_unlock_irq(&hugetlb_lock);
3914         mutex_unlock(&h->resize_lock);
3915
3916         if (err)
3917                 return err;
3918         return len;
3919 }
3920 HSTATE_ATTR_WO(demote);
3921
3922 static ssize_t demote_size_show(struct kobject *kobj,
3923                                         struct kobj_attribute *attr, char *buf)
3924 {
3925         struct hstate *h = kobj_to_hstate(kobj, NULL);
3926         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3927
3928         return sysfs_emit(buf, "%lukB\n", demote_size);
3929 }
3930
3931 static ssize_t demote_size_store(struct kobject *kobj,
3932                                         struct kobj_attribute *attr,
3933                                         const char *buf, size_t count)
3934 {
3935         struct hstate *h, *demote_hstate;
3936         unsigned long demote_size;
3937         unsigned int demote_order;
3938
3939         demote_size = (unsigned long)memparse(buf, NULL);
3940
3941         demote_hstate = size_to_hstate(demote_size);
3942         if (!demote_hstate)
3943                 return -EINVAL;
3944         demote_order = demote_hstate->order;
3945         if (demote_order < HUGETLB_PAGE_ORDER)
3946                 return -EINVAL;
3947
3948         /* demote order must be smaller than hstate order */
3949         h = kobj_to_hstate(kobj, NULL);
3950         if (demote_order >= h->order)
3951                 return -EINVAL;
3952
3953         /* resize_lock synchronizes access to demote size and writes */
3954         mutex_lock(&h->resize_lock);
3955         h->demote_order = demote_order;
3956         mutex_unlock(&h->resize_lock);
3957
3958         return count;
3959 }
3960 HSTATE_ATTR(demote_size);
3961
3962 static struct attribute *hstate_attrs[] = {
3963         &nr_hugepages_attr.attr,
3964         &nr_overcommit_hugepages_attr.attr,
3965         &free_hugepages_attr.attr,
3966         &resv_hugepages_attr.attr,
3967         &surplus_hugepages_attr.attr,
3968 #ifdef CONFIG_NUMA
3969         &nr_hugepages_mempolicy_attr.attr,
3970 #endif
3971         NULL,
3972 };
3973
3974 static const struct attribute_group hstate_attr_group = {
3975         .attrs = hstate_attrs,
3976 };
3977
3978 static struct attribute *hstate_demote_attrs[] = {
3979         &demote_size_attr.attr,
3980         &demote_attr.attr,
3981         NULL,
3982 };
3983
3984 static const struct attribute_group hstate_demote_attr_group = {
3985         .attrs = hstate_demote_attrs,
3986 };
3987
3988 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3989                                     struct kobject **hstate_kobjs,
3990                                     const struct attribute_group *hstate_attr_group)
3991 {
3992         int retval;
3993         int hi = hstate_index(h);
3994
3995         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3996         if (!hstate_kobjs[hi])
3997                 return -ENOMEM;
3998
3999         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4000         if (retval) {
4001                 kobject_put(hstate_kobjs[hi]);
4002                 hstate_kobjs[hi] = NULL;
4003                 return retval;
4004         }
4005
4006         if (h->demote_order) {
4007                 retval = sysfs_create_group(hstate_kobjs[hi],
4008                                             &hstate_demote_attr_group);
4009                 if (retval) {
4010                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4011                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4012                         kobject_put(hstate_kobjs[hi]);
4013                         hstate_kobjs[hi] = NULL;
4014                         return retval;
4015                 }
4016         }
4017
4018         return 0;
4019 }
4020
4021 #ifdef CONFIG_NUMA
4022 static bool hugetlb_sysfs_initialized __ro_after_init;
4023
4024 /*
4025  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4026  * with node devices in node_devices[] using a parallel array.  The array
4027  * index of a node device or _hstate == node id.
4028  * This is here to avoid any static dependency of the node device driver, in
4029  * the base kernel, on the hugetlb module.
4030  */
4031 struct node_hstate {
4032         struct kobject          *hugepages_kobj;
4033         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4034 };
4035 static struct node_hstate node_hstates[MAX_NUMNODES];
4036
4037 /*
4038  * A subset of global hstate attributes for node devices
4039  */
4040 static struct attribute *per_node_hstate_attrs[] = {
4041         &nr_hugepages_attr.attr,
4042         &free_hugepages_attr.attr,
4043         &surplus_hugepages_attr.attr,
4044         NULL,
4045 };
4046
4047 static const struct attribute_group per_node_hstate_attr_group = {
4048         .attrs = per_node_hstate_attrs,
4049 };
4050
4051 /*
4052  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4053  * Returns node id via non-NULL nidp.
4054  */
4055 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4056 {
4057         int nid;
4058
4059         for (nid = 0; nid < nr_node_ids; nid++) {
4060                 struct node_hstate *nhs = &node_hstates[nid];
4061                 int i;
4062                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4063                         if (nhs->hstate_kobjs[i] == kobj) {
4064                                 if (nidp)
4065                                         *nidp = nid;
4066                                 return &hstates[i];
4067                         }
4068         }
4069
4070         BUG();
4071         return NULL;
4072 }
4073
4074 /*
4075  * Unregister hstate attributes from a single node device.
4076  * No-op if no hstate attributes attached.
4077  */
4078 void hugetlb_unregister_node(struct node *node)
4079 {
4080         struct hstate *h;
4081         struct node_hstate *nhs = &node_hstates[node->dev.id];
4082
4083         if (!nhs->hugepages_kobj)
4084                 return;         /* no hstate attributes */
4085
4086         for_each_hstate(h) {
4087                 int idx = hstate_index(h);
4088                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4089
4090                 if (!hstate_kobj)
4091                         continue;
4092                 if (h->demote_order)
4093                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4094                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4095                 kobject_put(hstate_kobj);
4096                 nhs->hstate_kobjs[idx] = NULL;
4097         }
4098
4099         kobject_put(nhs->hugepages_kobj);
4100         nhs->hugepages_kobj = NULL;
4101 }
4102
4103
4104 /*
4105  * Register hstate attributes for a single node device.
4106  * No-op if attributes already registered.
4107  */
4108 void hugetlb_register_node(struct node *node)
4109 {
4110         struct hstate *h;
4111         struct node_hstate *nhs = &node_hstates[node->dev.id];
4112         int err;
4113
4114         if (!hugetlb_sysfs_initialized)
4115                 return;
4116
4117         if (nhs->hugepages_kobj)
4118                 return;         /* already allocated */
4119
4120         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4121                                                         &node->dev.kobj);
4122         if (!nhs->hugepages_kobj)
4123                 return;
4124
4125         for_each_hstate(h) {
4126                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4127                                                 nhs->hstate_kobjs,
4128                                                 &per_node_hstate_attr_group);
4129                 if (err) {
4130                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4131                                 h->name, node->dev.id);
4132                         hugetlb_unregister_node(node);
4133                         break;
4134                 }
4135         }
4136 }
4137
4138 /*
4139  * hugetlb init time:  register hstate attributes for all registered node
4140  * devices of nodes that have memory.  All on-line nodes should have
4141  * registered their associated device by this time.
4142  */
4143 static void __init hugetlb_register_all_nodes(void)
4144 {
4145         int nid;
4146
4147         for_each_online_node(nid)
4148                 hugetlb_register_node(node_devices[nid]);
4149 }
4150 #else   /* !CONFIG_NUMA */
4151
4152 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4153 {
4154         BUG();
4155         if (nidp)
4156                 *nidp = -1;
4157         return NULL;
4158 }
4159
4160 static void hugetlb_register_all_nodes(void) { }
4161
4162 #endif
4163
4164 #ifdef CONFIG_CMA
4165 static void __init hugetlb_cma_check(void);
4166 #else
4167 static inline __init void hugetlb_cma_check(void)
4168 {
4169 }
4170 #endif
4171
4172 static void __init hugetlb_sysfs_init(void)
4173 {
4174         struct hstate *h;
4175         int err;
4176
4177         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4178         if (!hugepages_kobj)
4179                 return;
4180
4181         for_each_hstate(h) {
4182                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4183                                          hstate_kobjs, &hstate_attr_group);
4184                 if (err)
4185                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4186         }
4187
4188 #ifdef CONFIG_NUMA
4189         hugetlb_sysfs_initialized = true;
4190 #endif
4191         hugetlb_register_all_nodes();
4192 }
4193
4194 static int __init hugetlb_init(void)
4195 {
4196         int i;
4197
4198         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4199                         __NR_HPAGEFLAGS);
4200
4201         if (!hugepages_supported()) {
4202                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4203                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4204                 return 0;
4205         }
4206
4207         /*
4208          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4209          * architectures depend on setup being done here.
4210          */
4211         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4212         if (!parsed_default_hugepagesz) {
4213                 /*
4214                  * If we did not parse a default huge page size, set
4215                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4216                  * number of huge pages for this default size was implicitly
4217                  * specified, set that here as well.
4218                  * Note that the implicit setting will overwrite an explicit
4219                  * setting.  A warning will be printed in this case.
4220                  */
4221                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4222                 if (default_hstate_max_huge_pages) {
4223                         if (default_hstate.max_huge_pages) {
4224                                 char buf[32];
4225
4226                                 string_get_size(huge_page_size(&default_hstate),
4227                                         1, STRING_UNITS_2, buf, 32);
4228                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4229                                         default_hstate.max_huge_pages, buf);
4230                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4231                                         default_hstate_max_huge_pages);
4232                         }
4233                         default_hstate.max_huge_pages =
4234                                 default_hstate_max_huge_pages;
4235
4236                         for_each_online_node(i)
4237                                 default_hstate.max_huge_pages_node[i] =
4238                                         default_hugepages_in_node[i];
4239                 }
4240         }
4241
4242         hugetlb_cma_check();
4243         hugetlb_init_hstates();
4244         gather_bootmem_prealloc();
4245         report_hugepages();
4246
4247         hugetlb_sysfs_init();
4248         hugetlb_cgroup_file_init();
4249
4250 #ifdef CONFIG_SMP
4251         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4252 #else
4253         num_fault_mutexes = 1;
4254 #endif
4255         hugetlb_fault_mutex_table =
4256                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4257                               GFP_KERNEL);
4258         BUG_ON(!hugetlb_fault_mutex_table);
4259
4260         for (i = 0; i < num_fault_mutexes; i++)
4261                 mutex_init(&hugetlb_fault_mutex_table[i]);
4262         return 0;
4263 }
4264 subsys_initcall(hugetlb_init);
4265
4266 /* Overwritten by architectures with more huge page sizes */
4267 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4268 {
4269         return size == HPAGE_SIZE;
4270 }
4271
4272 void __init hugetlb_add_hstate(unsigned int order)
4273 {
4274         struct hstate *h;
4275         unsigned long i;
4276
4277         if (size_to_hstate(PAGE_SIZE << order)) {
4278                 return;
4279         }
4280         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4281         BUG_ON(order == 0);
4282         h = &hstates[hugetlb_max_hstate++];
4283         mutex_init(&h->resize_lock);
4284         h->order = order;
4285         h->mask = ~(huge_page_size(h) - 1);
4286         for (i = 0; i < MAX_NUMNODES; ++i)
4287                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4288         INIT_LIST_HEAD(&h->hugepage_activelist);
4289         h->next_nid_to_alloc = first_memory_node;
4290         h->next_nid_to_free = first_memory_node;
4291         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4292                                         huge_page_size(h)/SZ_1K);
4293
4294         parsed_hstate = h;
4295 }
4296
4297 bool __init __weak hugetlb_node_alloc_supported(void)
4298 {
4299         return true;
4300 }
4301
4302 static void __init hugepages_clear_pages_in_node(void)
4303 {
4304         if (!hugetlb_max_hstate) {
4305                 default_hstate_max_huge_pages = 0;
4306                 memset(default_hugepages_in_node, 0,
4307                         sizeof(default_hugepages_in_node));
4308         } else {
4309                 parsed_hstate->max_huge_pages = 0;
4310                 memset(parsed_hstate->max_huge_pages_node, 0,
4311                         sizeof(parsed_hstate->max_huge_pages_node));
4312         }
4313 }
4314
4315 /*
4316  * hugepages command line processing
4317  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4318  * specification.  If not, ignore the hugepages value.  hugepages can also
4319  * be the first huge page command line  option in which case it implicitly
4320  * specifies the number of huge pages for the default size.
4321  */
4322 static int __init hugepages_setup(char *s)
4323 {
4324         unsigned long *mhp;
4325         static unsigned long *last_mhp;
4326         int node = NUMA_NO_NODE;
4327         int count;
4328         unsigned long tmp;
4329         char *p = s;
4330
4331         if (!parsed_valid_hugepagesz) {
4332                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4333                 parsed_valid_hugepagesz = true;
4334                 return 1;
4335         }
4336
4337         /*
4338          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4339          * yet, so this hugepages= parameter goes to the "default hstate".
4340          * Otherwise, it goes with the previously parsed hugepagesz or
4341          * default_hugepagesz.
4342          */
4343         else if (!hugetlb_max_hstate)
4344                 mhp = &default_hstate_max_huge_pages;
4345         else
4346                 mhp = &parsed_hstate->max_huge_pages;
4347
4348         if (mhp == last_mhp) {
4349                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4350                 return 1;
4351         }
4352
4353         while (*p) {
4354                 count = 0;
4355                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4356                         goto invalid;
4357                 /* Parameter is node format */
4358                 if (p[count] == ':') {
4359                         if (!hugetlb_node_alloc_supported()) {
4360                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4361                                 return 1;
4362                         }
4363                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4364                                 goto invalid;
4365                         node = array_index_nospec(tmp, MAX_NUMNODES);
4366                         p += count + 1;
4367                         /* Parse hugepages */
4368                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4369                                 goto invalid;
4370                         if (!hugetlb_max_hstate)
4371                                 default_hugepages_in_node[node] = tmp;
4372                         else
4373                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4374                         *mhp += tmp;
4375                         /* Go to parse next node*/
4376                         if (p[count] == ',')
4377                                 p += count + 1;
4378                         else
4379                                 break;
4380                 } else {
4381                         if (p != s)
4382                                 goto invalid;
4383                         *mhp = tmp;
4384                         break;
4385                 }
4386         }
4387
4388         /*
4389          * Global state is always initialized later in hugetlb_init.
4390          * But we need to allocate gigantic hstates here early to still
4391          * use the bootmem allocator.
4392          */
4393         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4394                 hugetlb_hstate_alloc_pages(parsed_hstate);
4395
4396         last_mhp = mhp;
4397
4398         return 1;
4399
4400 invalid:
4401         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4402         hugepages_clear_pages_in_node();
4403         return 1;
4404 }
4405 __setup("hugepages=", hugepages_setup);
4406
4407 /*
4408  * hugepagesz command line processing
4409  * A specific huge page size can only be specified once with hugepagesz.
4410  * hugepagesz is followed by hugepages on the command line.  The global
4411  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4412  * hugepagesz argument was valid.
4413  */
4414 static int __init hugepagesz_setup(char *s)
4415 {
4416         unsigned long size;
4417         struct hstate *h;
4418
4419         parsed_valid_hugepagesz = false;
4420         size = (unsigned long)memparse(s, NULL);
4421
4422         if (!arch_hugetlb_valid_size(size)) {
4423                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4424                 return 1;
4425         }
4426
4427         h = size_to_hstate(size);
4428         if (h) {
4429                 /*
4430                  * hstate for this size already exists.  This is normally
4431                  * an error, but is allowed if the existing hstate is the
4432                  * default hstate.  More specifically, it is only allowed if
4433                  * the number of huge pages for the default hstate was not
4434                  * previously specified.
4435                  */
4436                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4437                     default_hstate.max_huge_pages) {
4438                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4439                         return 1;
4440                 }
4441
4442                 /*
4443                  * No need to call hugetlb_add_hstate() as hstate already
4444                  * exists.  But, do set parsed_hstate so that a following
4445                  * hugepages= parameter will be applied to this hstate.
4446                  */
4447                 parsed_hstate = h;
4448                 parsed_valid_hugepagesz = true;
4449                 return 1;
4450         }
4451
4452         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4453         parsed_valid_hugepagesz = true;
4454         return 1;
4455 }
4456 __setup("hugepagesz=", hugepagesz_setup);
4457
4458 /*
4459  * default_hugepagesz command line input
4460  * Only one instance of default_hugepagesz allowed on command line.
4461  */
4462 static int __init default_hugepagesz_setup(char *s)
4463 {
4464         unsigned long size;
4465         int i;
4466
4467         parsed_valid_hugepagesz = false;
4468         if (parsed_default_hugepagesz) {
4469                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4470                 return 1;
4471         }
4472
4473         size = (unsigned long)memparse(s, NULL);
4474
4475         if (!arch_hugetlb_valid_size(size)) {
4476                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4477                 return 1;
4478         }
4479
4480         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4481         parsed_valid_hugepagesz = true;
4482         parsed_default_hugepagesz = true;
4483         default_hstate_idx = hstate_index(size_to_hstate(size));
4484
4485         /*
4486          * The number of default huge pages (for this size) could have been
4487          * specified as the first hugetlb parameter: hugepages=X.  If so,
4488          * then default_hstate_max_huge_pages is set.  If the default huge
4489          * page size is gigantic (>= MAX_ORDER), then the pages must be
4490          * allocated here from bootmem allocator.
4491          */
4492         if (default_hstate_max_huge_pages) {
4493                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4494                 for_each_online_node(i)
4495                         default_hstate.max_huge_pages_node[i] =
4496                                 default_hugepages_in_node[i];
4497                 if (hstate_is_gigantic(&default_hstate))
4498                         hugetlb_hstate_alloc_pages(&default_hstate);
4499                 default_hstate_max_huge_pages = 0;
4500         }
4501
4502         return 1;
4503 }
4504 __setup("default_hugepagesz=", default_hugepagesz_setup);
4505
4506 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4507 {
4508 #ifdef CONFIG_NUMA
4509         struct mempolicy *mpol = get_task_policy(current);
4510
4511         /*
4512          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4513          * (from policy_nodemask) specifically for hugetlb case
4514          */
4515         if (mpol->mode == MPOL_BIND &&
4516                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4517                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4518                 return &mpol->nodes;
4519 #endif
4520         return NULL;
4521 }
4522
4523 static unsigned int allowed_mems_nr(struct hstate *h)
4524 {
4525         int node;
4526         unsigned int nr = 0;
4527         nodemask_t *mbind_nodemask;
4528         unsigned int *array = h->free_huge_pages_node;
4529         gfp_t gfp_mask = htlb_alloc_mask(h);
4530
4531         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4532         for_each_node_mask(node, cpuset_current_mems_allowed) {
4533                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4534                         nr += array[node];
4535         }
4536
4537         return nr;
4538 }
4539
4540 #ifdef CONFIG_SYSCTL
4541 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4542                                           void *buffer, size_t *length,
4543                                           loff_t *ppos, unsigned long *out)
4544 {
4545         struct ctl_table dup_table;
4546
4547         /*
4548          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4549          * can duplicate the @table and alter the duplicate of it.
4550          */
4551         dup_table = *table;
4552         dup_table.data = out;
4553
4554         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4555 }
4556
4557 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4558                          struct ctl_table *table, int write,
4559                          void *buffer, size_t *length, loff_t *ppos)
4560 {
4561         struct hstate *h = &default_hstate;
4562         unsigned long tmp = h->max_huge_pages;
4563         int ret;
4564
4565         if (!hugepages_supported())
4566                 return -EOPNOTSUPP;
4567
4568         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4569                                              &tmp);
4570         if (ret)
4571                 goto out;
4572
4573         if (write)
4574                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4575                                                   NUMA_NO_NODE, tmp, *length);
4576 out:
4577         return ret;
4578 }
4579
4580 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4581                           void *buffer, size_t *length, loff_t *ppos)
4582 {
4583
4584         return hugetlb_sysctl_handler_common(false, table, write,
4585                                                         buffer, length, ppos);
4586 }
4587
4588 #ifdef CONFIG_NUMA
4589 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4590                           void *buffer, size_t *length, loff_t *ppos)
4591 {
4592         return hugetlb_sysctl_handler_common(true, table, write,
4593                                                         buffer, length, ppos);
4594 }
4595 #endif /* CONFIG_NUMA */
4596
4597 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4598                 void *buffer, size_t *length, loff_t *ppos)
4599 {
4600         struct hstate *h = &default_hstate;
4601         unsigned long tmp;
4602         int ret;
4603
4604         if (!hugepages_supported())
4605                 return -EOPNOTSUPP;
4606
4607         tmp = h->nr_overcommit_huge_pages;
4608
4609         if (write && hstate_is_gigantic(h))
4610                 return -EINVAL;
4611
4612         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4613                                              &tmp);
4614         if (ret)
4615                 goto out;
4616
4617         if (write) {
4618                 spin_lock_irq(&hugetlb_lock);
4619                 h->nr_overcommit_huge_pages = tmp;
4620                 spin_unlock_irq(&hugetlb_lock);
4621         }
4622 out:
4623         return ret;
4624 }
4625
4626 #endif /* CONFIG_SYSCTL */
4627
4628 void hugetlb_report_meminfo(struct seq_file *m)
4629 {
4630         struct hstate *h;
4631         unsigned long total = 0;
4632
4633         if (!hugepages_supported())
4634                 return;
4635
4636         for_each_hstate(h) {
4637                 unsigned long count = h->nr_huge_pages;
4638
4639                 total += huge_page_size(h) * count;
4640
4641                 if (h == &default_hstate)
4642                         seq_printf(m,
4643                                    "HugePages_Total:   %5lu\n"
4644                                    "HugePages_Free:    %5lu\n"
4645                                    "HugePages_Rsvd:    %5lu\n"
4646                                    "HugePages_Surp:    %5lu\n"
4647                                    "Hugepagesize:   %8lu kB\n",
4648                                    count,
4649                                    h->free_huge_pages,
4650                                    h->resv_huge_pages,
4651                                    h->surplus_huge_pages,
4652                                    huge_page_size(h) / SZ_1K);
4653         }
4654
4655         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4656 }
4657
4658 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4659 {
4660         struct hstate *h = &default_hstate;
4661
4662         if (!hugepages_supported())
4663                 return 0;
4664
4665         return sysfs_emit_at(buf, len,
4666                              "Node %d HugePages_Total: %5u\n"
4667                              "Node %d HugePages_Free:  %5u\n"
4668                              "Node %d HugePages_Surp:  %5u\n",
4669                              nid, h->nr_huge_pages_node[nid],
4670                              nid, h->free_huge_pages_node[nid],
4671                              nid, h->surplus_huge_pages_node[nid]);
4672 }
4673
4674 void hugetlb_show_meminfo_node(int nid)
4675 {
4676         struct hstate *h;
4677
4678         if (!hugepages_supported())
4679                 return;
4680
4681         for_each_hstate(h)
4682                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4683                         nid,
4684                         h->nr_huge_pages_node[nid],
4685                         h->free_huge_pages_node[nid],
4686                         h->surplus_huge_pages_node[nid],
4687                         huge_page_size(h) / SZ_1K);
4688 }
4689
4690 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4691 {
4692         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4693                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4694 }
4695
4696 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4697 unsigned long hugetlb_total_pages(void)
4698 {
4699         struct hstate *h;
4700         unsigned long nr_total_pages = 0;
4701
4702         for_each_hstate(h)
4703                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4704         return nr_total_pages;
4705 }
4706
4707 static int hugetlb_acct_memory(struct hstate *h, long delta)
4708 {
4709         int ret = -ENOMEM;
4710
4711         if (!delta)
4712                 return 0;
4713
4714         spin_lock_irq(&hugetlb_lock);
4715         /*
4716          * When cpuset is configured, it breaks the strict hugetlb page
4717          * reservation as the accounting is done on a global variable. Such
4718          * reservation is completely rubbish in the presence of cpuset because
4719          * the reservation is not checked against page availability for the
4720          * current cpuset. Application can still potentially OOM'ed by kernel
4721          * with lack of free htlb page in cpuset that the task is in.
4722          * Attempt to enforce strict accounting with cpuset is almost
4723          * impossible (or too ugly) because cpuset is too fluid that
4724          * task or memory node can be dynamically moved between cpusets.
4725          *
4726          * The change of semantics for shared hugetlb mapping with cpuset is
4727          * undesirable. However, in order to preserve some of the semantics,
4728          * we fall back to check against current free page availability as
4729          * a best attempt and hopefully to minimize the impact of changing
4730          * semantics that cpuset has.
4731          *
4732          * Apart from cpuset, we also have memory policy mechanism that
4733          * also determines from which node the kernel will allocate memory
4734          * in a NUMA system. So similar to cpuset, we also should consider
4735          * the memory policy of the current task. Similar to the description
4736          * above.
4737          */
4738         if (delta > 0) {
4739                 if (gather_surplus_pages(h, delta) < 0)
4740                         goto out;
4741
4742                 if (delta > allowed_mems_nr(h)) {
4743                         return_unused_surplus_pages(h, delta);
4744                         goto out;
4745                 }
4746         }
4747
4748         ret = 0;
4749         if (delta < 0)
4750                 return_unused_surplus_pages(h, (unsigned long) -delta);
4751
4752 out:
4753         spin_unlock_irq(&hugetlb_lock);
4754         return ret;
4755 }
4756
4757 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4758 {
4759         struct resv_map *resv = vma_resv_map(vma);
4760
4761         /*
4762          * HPAGE_RESV_OWNER indicates a private mapping.
4763          * This new VMA should share its siblings reservation map if present.
4764          * The VMA will only ever have a valid reservation map pointer where
4765          * it is being copied for another still existing VMA.  As that VMA
4766          * has a reference to the reservation map it cannot disappear until
4767          * after this open call completes.  It is therefore safe to take a
4768          * new reference here without additional locking.
4769          */
4770         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4771                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4772                 kref_get(&resv->refs);
4773         }
4774
4775         /*
4776          * vma_lock structure for sharable mappings is vma specific.
4777          * Clear old pointer (if copied via vm_area_dup) and allocate
4778          * new structure.  Before clearing, make sure vma_lock is not
4779          * for this vma.
4780          */
4781         if (vma->vm_flags & VM_MAYSHARE) {
4782                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4783
4784                 if (vma_lock) {
4785                         if (vma_lock->vma != vma) {
4786                                 vma->vm_private_data = NULL;
4787                                 hugetlb_vma_lock_alloc(vma);
4788                         } else
4789                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4790                 } else
4791                         hugetlb_vma_lock_alloc(vma);
4792         }
4793 }
4794
4795 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4796 {
4797         struct hstate *h = hstate_vma(vma);
4798         struct resv_map *resv;
4799         struct hugepage_subpool *spool = subpool_vma(vma);
4800         unsigned long reserve, start, end;
4801         long gbl_reserve;
4802
4803         hugetlb_vma_lock_free(vma);
4804
4805         resv = vma_resv_map(vma);
4806         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4807                 return;
4808
4809         start = vma_hugecache_offset(h, vma, vma->vm_start);
4810         end = vma_hugecache_offset(h, vma, vma->vm_end);
4811
4812         reserve = (end - start) - region_count(resv, start, end);
4813         hugetlb_cgroup_uncharge_counter(resv, start, end);
4814         if (reserve) {
4815                 /*
4816                  * Decrement reserve counts.  The global reserve count may be
4817                  * adjusted if the subpool has a minimum size.
4818                  */
4819                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4820                 hugetlb_acct_memory(h, -gbl_reserve);
4821         }
4822
4823         kref_put(&resv->refs, resv_map_release);
4824 }
4825
4826 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4827 {
4828         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4829                 return -EINVAL;
4830
4831         /*
4832          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4833          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4834          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4835          */
4836         if (addr & ~PUD_MASK) {
4837                 /*
4838                  * hugetlb_vm_op_split is called right before we attempt to
4839                  * split the VMA. We will need to unshare PMDs in the old and
4840                  * new VMAs, so let's unshare before we split.
4841                  */
4842                 unsigned long floor = addr & PUD_MASK;
4843                 unsigned long ceil = floor + PUD_SIZE;
4844
4845                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4846                         hugetlb_unshare_pmds(vma, floor, ceil);
4847         }
4848
4849         return 0;
4850 }
4851
4852 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4853 {
4854         return huge_page_size(hstate_vma(vma));
4855 }
4856
4857 /*
4858  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4859  * handle_mm_fault() to try to instantiate regular-sized pages in the
4860  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4861  * this far.
4862  */
4863 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4864 {
4865         BUG();
4866         return 0;
4867 }
4868
4869 /*
4870  * When a new function is introduced to vm_operations_struct and added
4871  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4872  * This is because under System V memory model, mappings created via
4873  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4874  * their original vm_ops are overwritten with shm_vm_ops.
4875  */
4876 const struct vm_operations_struct hugetlb_vm_ops = {
4877         .fault = hugetlb_vm_op_fault,
4878         .open = hugetlb_vm_op_open,
4879         .close = hugetlb_vm_op_close,
4880         .may_split = hugetlb_vm_op_split,
4881         .pagesize = hugetlb_vm_op_pagesize,
4882 };
4883
4884 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4885                                 int writable)
4886 {
4887         pte_t entry;
4888         unsigned int shift = huge_page_shift(hstate_vma(vma));
4889
4890         if (writable) {
4891                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4892                                          vma->vm_page_prot)));
4893         } else {
4894                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4895                                            vma->vm_page_prot));
4896         }
4897         entry = pte_mkyoung(entry);
4898         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4899
4900         return entry;
4901 }
4902
4903 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4904                                    unsigned long address, pte_t *ptep)
4905 {
4906         pte_t entry;
4907
4908         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4909         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4910                 update_mmu_cache(vma, address, ptep);
4911 }
4912
4913 bool is_hugetlb_entry_migration(pte_t pte)
4914 {
4915         swp_entry_t swp;
4916
4917         if (huge_pte_none(pte) || pte_present(pte))
4918                 return false;
4919         swp = pte_to_swp_entry(pte);
4920         if (is_migration_entry(swp))
4921                 return true;
4922         else
4923                 return false;
4924 }
4925
4926 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4927 {
4928         swp_entry_t swp;
4929
4930         if (huge_pte_none(pte) || pte_present(pte))
4931                 return false;
4932         swp = pte_to_swp_entry(pte);
4933         if (is_hwpoison_entry(swp))
4934                 return true;
4935         else
4936                 return false;
4937 }
4938
4939 static void
4940 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4941                      struct page *new_page)
4942 {
4943         __SetPageUptodate(new_page);
4944         hugepage_add_new_anon_rmap(new_page, vma, addr);
4945         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4946         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4947         ClearHPageRestoreReserve(new_page);
4948         SetHPageMigratable(new_page);
4949 }
4950
4951 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4952                             struct vm_area_struct *dst_vma,
4953                             struct vm_area_struct *src_vma)
4954 {
4955         pte_t *src_pte, *dst_pte, entry;
4956         struct page *ptepage;
4957         unsigned long addr;
4958         bool cow = is_cow_mapping(src_vma->vm_flags);
4959         struct hstate *h = hstate_vma(src_vma);
4960         unsigned long sz = huge_page_size(h);
4961         unsigned long npages = pages_per_huge_page(h);
4962         struct mmu_notifier_range range;
4963         unsigned long last_addr_mask;
4964         int ret = 0;
4965
4966         if (cow) {
4967                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4968                                         src_vma->vm_start,
4969                                         src_vma->vm_end);
4970                 mmu_notifier_invalidate_range_start(&range);
4971                 mmap_assert_write_locked(src);
4972                 raw_write_seqcount_begin(&src->write_protect_seq);
4973         } else {
4974                 /*
4975                  * For shared mappings the vma lock must be held before
4976                  * calling huge_pte_offset in the src vma. Otherwise, the
4977                  * returned ptep could go away if part of a shared pmd and
4978                  * another thread calls huge_pmd_unshare.
4979                  */
4980                 hugetlb_vma_lock_read(src_vma);
4981         }
4982
4983         last_addr_mask = hugetlb_mask_last_page(h);
4984         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4985                 spinlock_t *src_ptl, *dst_ptl;
4986                 src_pte = huge_pte_offset(src, addr, sz);
4987                 if (!src_pte) {
4988                         addr |= last_addr_mask;
4989                         continue;
4990                 }
4991                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4992                 if (!dst_pte) {
4993                         ret = -ENOMEM;
4994                         break;
4995                 }
4996
4997                 /*
4998                  * If the pagetables are shared don't copy or take references.
4999                  *
5000                  * dst_pte == src_pte is the common case of src/dest sharing.
5001                  * However, src could have 'unshared' and dst shares with
5002                  * another vma. So page_count of ptep page is checked instead
5003                  * to reliably determine whether pte is shared.
5004                  */
5005                 if (page_count(virt_to_page(dst_pte)) > 1) {
5006                         addr |= last_addr_mask;
5007                         continue;
5008                 }
5009
5010                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5011                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5012                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5013                 entry = huge_ptep_get(src_pte);
5014 again:
5015                 if (huge_pte_none(entry)) {
5016                         /*
5017                          * Skip if src entry none.
5018                          */
5019                         ;
5020                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5021                         bool uffd_wp = huge_pte_uffd_wp(entry);
5022
5023                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5024                                 entry = huge_pte_clear_uffd_wp(entry);
5025                         set_huge_pte_at(dst, addr, dst_pte, entry);
5026                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5027                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5028                         bool uffd_wp = huge_pte_uffd_wp(entry);
5029
5030                         if (!is_readable_migration_entry(swp_entry) && cow) {
5031                                 /*
5032                                  * COW mappings require pages in both
5033                                  * parent and child to be set to read.
5034                                  */
5035                                 swp_entry = make_readable_migration_entry(
5036                                                         swp_offset(swp_entry));
5037                                 entry = swp_entry_to_pte(swp_entry);
5038                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5039                                         entry = huge_pte_mkuffd_wp(entry);
5040                                 set_huge_pte_at(src, addr, src_pte, entry);
5041                         }
5042                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5043                                 entry = huge_pte_clear_uffd_wp(entry);
5044                         set_huge_pte_at(dst, addr, dst_pte, entry);
5045                 } else if (unlikely(is_pte_marker(entry))) {
5046                         /*
5047                          * We copy the pte marker only if the dst vma has
5048                          * uffd-wp enabled.
5049                          */
5050                         if (userfaultfd_wp(dst_vma))
5051                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5052                 } else {
5053                         entry = huge_ptep_get(src_pte);
5054                         ptepage = pte_page(entry);
5055                         get_page(ptepage);
5056
5057                         /*
5058                          * Failing to duplicate the anon rmap is a rare case
5059                          * where we see pinned hugetlb pages while they're
5060                          * prone to COW. We need to do the COW earlier during
5061                          * fork.
5062                          *
5063                          * When pre-allocating the page or copying data, we
5064                          * need to be without the pgtable locks since we could
5065                          * sleep during the process.
5066                          */
5067                         if (!PageAnon(ptepage)) {
5068                                 page_dup_file_rmap(ptepage, true);
5069                         } else if (page_try_dup_anon_rmap(ptepage, true,
5070                                                           src_vma)) {
5071                                 pte_t src_pte_old = entry;
5072                                 struct page *new;
5073
5074                                 spin_unlock(src_ptl);
5075                                 spin_unlock(dst_ptl);
5076                                 /* Do not use reserve as it's private owned */
5077                                 new = alloc_huge_page(dst_vma, addr, 1);
5078                                 if (IS_ERR(new)) {
5079                                         put_page(ptepage);
5080                                         ret = PTR_ERR(new);
5081                                         break;
5082                                 }
5083                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5084                                                     npages);
5085                                 put_page(ptepage);
5086
5087                                 /* Install the new huge page if src pte stable */
5088                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5089                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5090                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5091                                 entry = huge_ptep_get(src_pte);
5092                                 if (!pte_same(src_pte_old, entry)) {
5093                                         restore_reserve_on_error(h, dst_vma, addr,
5094                                                                 new);
5095                                         put_page(new);
5096                                         /* huge_ptep of dst_pte won't change as in child */
5097                                         goto again;
5098                                 }
5099                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5100                                 spin_unlock(src_ptl);
5101                                 spin_unlock(dst_ptl);
5102                                 continue;
5103                         }
5104
5105                         if (cow) {
5106                                 /*
5107                                  * No need to notify as we are downgrading page
5108                                  * table protection not changing it to point
5109                                  * to a new page.
5110                                  *
5111                                  * See Documentation/mm/mmu_notifier.rst
5112                                  */
5113                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5114                                 entry = huge_pte_wrprotect(entry);
5115                         }
5116
5117                         set_huge_pte_at(dst, addr, dst_pte, entry);
5118                         hugetlb_count_add(npages, dst);
5119                 }
5120                 spin_unlock(src_ptl);
5121                 spin_unlock(dst_ptl);
5122         }
5123
5124         if (cow) {
5125                 raw_write_seqcount_end(&src->write_protect_seq);
5126                 mmu_notifier_invalidate_range_end(&range);
5127         } else {
5128                 hugetlb_vma_unlock_read(src_vma);
5129         }
5130
5131         return ret;
5132 }
5133
5134 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5135                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5136 {
5137         struct hstate *h = hstate_vma(vma);
5138         struct mm_struct *mm = vma->vm_mm;
5139         spinlock_t *src_ptl, *dst_ptl;
5140         pte_t pte;
5141
5142         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5143         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5144
5145         /*
5146          * We don't have to worry about the ordering of src and dst ptlocks
5147          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5148          */
5149         if (src_ptl != dst_ptl)
5150                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5151
5152         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5153         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5154
5155         if (src_ptl != dst_ptl)
5156                 spin_unlock(src_ptl);
5157         spin_unlock(dst_ptl);
5158 }
5159
5160 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5161                              struct vm_area_struct *new_vma,
5162                              unsigned long old_addr, unsigned long new_addr,
5163                              unsigned long len)
5164 {
5165         struct hstate *h = hstate_vma(vma);
5166         struct address_space *mapping = vma->vm_file->f_mapping;
5167         unsigned long sz = huge_page_size(h);
5168         struct mm_struct *mm = vma->vm_mm;
5169         unsigned long old_end = old_addr + len;
5170         unsigned long last_addr_mask;
5171         pte_t *src_pte, *dst_pte;
5172         struct mmu_notifier_range range;
5173         bool shared_pmd = false;
5174
5175         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5176                                 old_end);
5177         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5178         /*
5179          * In case of shared PMDs, we should cover the maximum possible
5180          * range.
5181          */
5182         flush_cache_range(vma, range.start, range.end);
5183
5184         mmu_notifier_invalidate_range_start(&range);
5185         last_addr_mask = hugetlb_mask_last_page(h);
5186         /* Prevent race with file truncation */
5187         hugetlb_vma_lock_write(vma);
5188         i_mmap_lock_write(mapping);
5189         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5190                 src_pte = huge_pte_offset(mm, old_addr, sz);
5191                 if (!src_pte) {
5192                         old_addr |= last_addr_mask;
5193                         new_addr |= last_addr_mask;
5194                         continue;
5195                 }
5196                 if (huge_pte_none(huge_ptep_get(src_pte)))
5197                         continue;
5198
5199                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5200                         shared_pmd = true;
5201                         old_addr |= last_addr_mask;
5202                         new_addr |= last_addr_mask;
5203                         continue;
5204                 }
5205
5206                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5207                 if (!dst_pte)
5208                         break;
5209
5210                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5211         }
5212
5213         if (shared_pmd)
5214                 flush_tlb_range(vma, range.start, range.end);
5215         else
5216                 flush_tlb_range(vma, old_end - len, old_end);
5217         mmu_notifier_invalidate_range_end(&range);
5218         i_mmap_unlock_write(mapping);
5219         hugetlb_vma_unlock_write(vma);
5220
5221         return len + old_addr - old_end;
5222 }
5223
5224 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5225                                    unsigned long start, unsigned long end,
5226                                    struct page *ref_page, zap_flags_t zap_flags)
5227 {
5228         struct mm_struct *mm = vma->vm_mm;
5229         unsigned long address;
5230         pte_t *ptep;
5231         pte_t pte;
5232         spinlock_t *ptl;
5233         struct page *page;
5234         struct hstate *h = hstate_vma(vma);
5235         unsigned long sz = huge_page_size(h);
5236         struct mmu_notifier_range range;
5237         unsigned long last_addr_mask;
5238         bool force_flush = false;
5239
5240         WARN_ON(!is_vm_hugetlb_page(vma));
5241         BUG_ON(start & ~huge_page_mask(h));
5242         BUG_ON(end & ~huge_page_mask(h));
5243
5244         /*
5245          * This is a hugetlb vma, all the pte entries should point
5246          * to huge page.
5247          */
5248         tlb_change_page_size(tlb, sz);
5249         tlb_start_vma(tlb, vma);
5250
5251         /*
5252          * If sharing possible, alert mmu notifiers of worst case.
5253          */
5254         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5255                                 end);
5256         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5257         mmu_notifier_invalidate_range_start(&range);
5258         last_addr_mask = hugetlb_mask_last_page(h);
5259         address = start;
5260         for (; address < end; address += sz) {
5261                 ptep = huge_pte_offset(mm, address, sz);
5262                 if (!ptep) {
5263                         address |= last_addr_mask;
5264                         continue;
5265                 }
5266
5267                 ptl = huge_pte_lock(h, mm, ptep);
5268                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5269                         spin_unlock(ptl);
5270                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5271                         force_flush = true;
5272                         address |= last_addr_mask;
5273                         continue;
5274                 }
5275
5276                 pte = huge_ptep_get(ptep);
5277                 if (huge_pte_none(pte)) {
5278                         spin_unlock(ptl);
5279                         continue;
5280                 }
5281
5282                 /*
5283                  * Migrating hugepage or HWPoisoned hugepage is already
5284                  * unmapped and its refcount is dropped, so just clear pte here.
5285                  */
5286                 if (unlikely(!pte_present(pte))) {
5287 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5288                         /*
5289                          * If the pte was wr-protected by uffd-wp in any of the
5290                          * swap forms, meanwhile the caller does not want to
5291                          * drop the uffd-wp bit in this zap, then replace the
5292                          * pte with a marker.
5293                          */
5294                         if (pte_swp_uffd_wp_any(pte) &&
5295                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5296                                 set_huge_pte_at(mm, address, ptep,
5297                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5298                         else
5299 #endif
5300                                 huge_pte_clear(mm, address, ptep, sz);
5301                         spin_unlock(ptl);
5302                         continue;
5303                 }
5304
5305                 page = pte_page(pte);
5306                 /*
5307                  * If a reference page is supplied, it is because a specific
5308                  * page is being unmapped, not a range. Ensure the page we
5309                  * are about to unmap is the actual page of interest.
5310                  */
5311                 if (ref_page) {
5312                         if (page != ref_page) {
5313                                 spin_unlock(ptl);
5314                                 continue;
5315                         }
5316                         /*
5317                          * Mark the VMA as having unmapped its page so that
5318                          * future faults in this VMA will fail rather than
5319                          * looking like data was lost
5320                          */
5321                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5322                 }
5323
5324                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5325                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5326                 if (huge_pte_dirty(pte))
5327                         set_page_dirty(page);
5328 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5329                 /* Leave a uffd-wp pte marker if needed */
5330                 if (huge_pte_uffd_wp(pte) &&
5331                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5332                         set_huge_pte_at(mm, address, ptep,
5333                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5334 #endif
5335                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5336                 page_remove_rmap(page, vma, true);
5337
5338                 spin_unlock(ptl);
5339                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5340                 /*
5341                  * Bail out after unmapping reference page if supplied
5342                  */
5343                 if (ref_page)
5344                         break;
5345         }
5346         mmu_notifier_invalidate_range_end(&range);
5347         tlb_end_vma(tlb, vma);
5348
5349         /*
5350          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5351          * could defer the flush until now, since by holding i_mmap_rwsem we
5352          * guaranteed that the last refernece would not be dropped. But we must
5353          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5354          * dropped and the last reference to the shared PMDs page might be
5355          * dropped as well.
5356          *
5357          * In theory we could defer the freeing of the PMD pages as well, but
5358          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5359          * detect sharing, so we cannot defer the release of the page either.
5360          * Instead, do flush now.
5361          */
5362         if (force_flush)
5363                 tlb_flush_mmu_tlbonly(tlb);
5364 }
5365
5366 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5367                           struct vm_area_struct *vma, unsigned long start,
5368                           unsigned long end, struct page *ref_page,
5369                           zap_flags_t zap_flags)
5370 {
5371         hugetlb_vma_lock_write(vma);
5372         i_mmap_lock_write(vma->vm_file->f_mapping);
5373
5374         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5375
5376         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5377                 /*
5378                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5379                  * When the vma_lock is freed, this makes the vma ineligible
5380                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5381                  * pmd sharing.  This is important as page tables for this
5382                  * unmapped range will be asynchrously deleted.  If the page
5383                  * tables are shared, there will be issues when accessed by
5384                  * someone else.
5385                  */
5386                 __hugetlb_vma_unlock_write_free(vma);
5387                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5388         } else {
5389                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5390                 hugetlb_vma_unlock_write(vma);
5391         }
5392 }
5393
5394 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5395                           unsigned long end, struct page *ref_page,
5396                           zap_flags_t zap_flags)
5397 {
5398         struct mmu_gather tlb;
5399
5400         tlb_gather_mmu(&tlb, vma->vm_mm);
5401         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5402         tlb_finish_mmu(&tlb);
5403 }
5404
5405 /*
5406  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5407  * mapping it owns the reserve page for. The intention is to unmap the page
5408  * from other VMAs and let the children be SIGKILLed if they are faulting the
5409  * same region.
5410  */
5411 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5412                               struct page *page, unsigned long address)
5413 {
5414         struct hstate *h = hstate_vma(vma);
5415         struct vm_area_struct *iter_vma;
5416         struct address_space *mapping;
5417         pgoff_t pgoff;
5418
5419         /*
5420          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5421          * from page cache lookup which is in HPAGE_SIZE units.
5422          */
5423         address = address & huge_page_mask(h);
5424         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5425                         vma->vm_pgoff;
5426         mapping = vma->vm_file->f_mapping;
5427
5428         /*
5429          * Take the mapping lock for the duration of the table walk. As
5430          * this mapping should be shared between all the VMAs,
5431          * __unmap_hugepage_range() is called as the lock is already held
5432          */
5433         i_mmap_lock_write(mapping);
5434         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5435                 /* Do not unmap the current VMA */
5436                 if (iter_vma == vma)
5437                         continue;
5438
5439                 /*
5440                  * Shared VMAs have their own reserves and do not affect
5441                  * MAP_PRIVATE accounting but it is possible that a shared
5442                  * VMA is using the same page so check and skip such VMAs.
5443                  */
5444                 if (iter_vma->vm_flags & VM_MAYSHARE)
5445                         continue;
5446
5447                 /*
5448                  * Unmap the page from other VMAs without their own reserves.
5449                  * They get marked to be SIGKILLed if they fault in these
5450                  * areas. This is because a future no-page fault on this VMA
5451                  * could insert a zeroed page instead of the data existing
5452                  * from the time of fork. This would look like data corruption
5453                  */
5454                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5455                         unmap_hugepage_range(iter_vma, address,
5456                                              address + huge_page_size(h), page, 0);
5457         }
5458         i_mmap_unlock_write(mapping);
5459 }
5460
5461 /*
5462  * hugetlb_wp() should be called with page lock of the original hugepage held.
5463  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5464  * cannot race with other handlers or page migration.
5465  * Keep the pte_same checks anyway to make transition from the mutex easier.
5466  */
5467 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5468                        unsigned long address, pte_t *ptep, unsigned int flags,
5469                        struct page *pagecache_page, spinlock_t *ptl)
5470 {
5471         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5472         pte_t pte = huge_ptep_get(ptep);
5473         struct hstate *h = hstate_vma(vma);
5474         struct page *old_page, *new_page;
5475         int outside_reserve = 0;
5476         vm_fault_t ret = 0;
5477         unsigned long haddr = address & huge_page_mask(h);
5478         struct mmu_notifier_range range;
5479
5480         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5481         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5482
5483         /*
5484          * Never handle CoW for uffd-wp protected pages.  It should be only
5485          * handled when the uffd-wp protection is removed.
5486          *
5487          * Note that only the CoW optimization path (in hugetlb_no_page())
5488          * can trigger this, because hugetlb_fault() will always resolve
5489          * uffd-wp bit first.
5490          */
5491         if (!unshare && huge_pte_uffd_wp(pte))
5492                 return 0;
5493
5494         /*
5495          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5496          * PTE mapped R/O such as maybe_mkwrite() would do.
5497          */
5498         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5499                 return VM_FAULT_SIGSEGV;
5500
5501         /* Let's take out MAP_SHARED mappings first. */
5502         if (vma->vm_flags & VM_MAYSHARE) {
5503                 if (unlikely(unshare))
5504                         return 0;
5505                 set_huge_ptep_writable(vma, haddr, ptep);
5506                 return 0;
5507         }
5508
5509         old_page = pte_page(pte);
5510
5511         delayacct_wpcopy_start();
5512
5513 retry_avoidcopy:
5514         /*
5515          * If no-one else is actually using this page, we're the exclusive
5516          * owner and can reuse this page.
5517          */
5518         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5519                 if (!PageAnonExclusive(old_page))
5520                         page_move_anon_rmap(old_page, vma);
5521                 if (likely(!unshare))
5522                         set_huge_ptep_writable(vma, haddr, ptep);
5523
5524                 delayacct_wpcopy_end();
5525                 return 0;
5526         }
5527         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5528                        old_page);
5529
5530         /*
5531          * If the process that created a MAP_PRIVATE mapping is about to
5532          * perform a COW due to a shared page count, attempt to satisfy
5533          * the allocation without using the existing reserves. The pagecache
5534          * page is used to determine if the reserve at this address was
5535          * consumed or not. If reserves were used, a partial faulted mapping
5536          * at the time of fork() could consume its reserves on COW instead
5537          * of the full address range.
5538          */
5539         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5540                         old_page != pagecache_page)
5541                 outside_reserve = 1;
5542
5543         get_page(old_page);
5544
5545         /*
5546          * Drop page table lock as buddy allocator may be called. It will
5547          * be acquired again before returning to the caller, as expected.
5548          */
5549         spin_unlock(ptl);
5550         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5551
5552         if (IS_ERR(new_page)) {
5553                 /*
5554                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5555                  * it is due to references held by a child and an insufficient
5556                  * huge page pool. To guarantee the original mappers
5557                  * reliability, unmap the page from child processes. The child
5558                  * may get SIGKILLed if it later faults.
5559                  */
5560                 if (outside_reserve) {
5561                         struct address_space *mapping = vma->vm_file->f_mapping;
5562                         pgoff_t idx;
5563                         u32 hash;
5564
5565                         put_page(old_page);
5566                         /*
5567                          * Drop hugetlb_fault_mutex and vma_lock before
5568                          * unmapping.  unmapping needs to hold vma_lock
5569                          * in write mode.  Dropping vma_lock in read mode
5570                          * here is OK as COW mappings do not interact with
5571                          * PMD sharing.
5572                          *
5573                          * Reacquire both after unmap operation.
5574                          */
5575                         idx = vma_hugecache_offset(h, vma, haddr);
5576                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5577                         hugetlb_vma_unlock_read(vma);
5578                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5579
5580                         unmap_ref_private(mm, vma, old_page, haddr);
5581
5582                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5583                         hugetlb_vma_lock_read(vma);
5584                         spin_lock(ptl);
5585                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5586                         if (likely(ptep &&
5587                                    pte_same(huge_ptep_get(ptep), pte)))
5588                                 goto retry_avoidcopy;
5589                         /*
5590                          * race occurs while re-acquiring page table
5591                          * lock, and our job is done.
5592                          */
5593                         delayacct_wpcopy_end();
5594                         return 0;
5595                 }
5596
5597                 ret = vmf_error(PTR_ERR(new_page));
5598                 goto out_release_old;
5599         }
5600
5601         /*
5602          * When the original hugepage is shared one, it does not have
5603          * anon_vma prepared.
5604          */
5605         if (unlikely(anon_vma_prepare(vma))) {
5606                 ret = VM_FAULT_OOM;
5607                 goto out_release_all;
5608         }
5609
5610         copy_user_huge_page(new_page, old_page, address, vma,
5611                             pages_per_huge_page(h));
5612         __SetPageUptodate(new_page);
5613
5614         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5615                                 haddr + huge_page_size(h));
5616         mmu_notifier_invalidate_range_start(&range);
5617
5618         /*
5619          * Retake the page table lock to check for racing updates
5620          * before the page tables are altered
5621          */
5622         spin_lock(ptl);
5623         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5624         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5625                 ClearHPageRestoreReserve(new_page);
5626
5627                 /* Break COW or unshare */
5628                 huge_ptep_clear_flush(vma, haddr, ptep);
5629                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5630                 page_remove_rmap(old_page, vma, true);
5631                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5632                 set_huge_pte_at(mm, haddr, ptep,
5633                                 make_huge_pte(vma, new_page, !unshare));
5634                 SetHPageMigratable(new_page);
5635                 /* Make the old page be freed below */
5636                 new_page = old_page;
5637         }
5638         spin_unlock(ptl);
5639         mmu_notifier_invalidate_range_end(&range);
5640 out_release_all:
5641         /*
5642          * No restore in case of successful pagetable update (Break COW or
5643          * unshare)
5644          */
5645         if (new_page != old_page)
5646                 restore_reserve_on_error(h, vma, haddr, new_page);
5647         put_page(new_page);
5648 out_release_old:
5649         put_page(old_page);
5650
5651         spin_lock(ptl); /* Caller expects lock to be held */
5652
5653         delayacct_wpcopy_end();
5654         return ret;
5655 }
5656
5657 /*
5658  * Return whether there is a pagecache page to back given address within VMA.
5659  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5660  */
5661 static bool hugetlbfs_pagecache_present(struct hstate *h,
5662                         struct vm_area_struct *vma, unsigned long address)
5663 {
5664         struct address_space *mapping;
5665         pgoff_t idx;
5666         struct page *page;
5667
5668         mapping = vma->vm_file->f_mapping;
5669         idx = vma_hugecache_offset(h, vma, address);
5670
5671         page = find_get_page(mapping, idx);
5672         if (page)
5673                 put_page(page);
5674         return page != NULL;
5675 }
5676
5677 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5678                            pgoff_t idx)
5679 {
5680         struct folio *folio = page_folio(page);
5681         struct inode *inode = mapping->host;
5682         struct hstate *h = hstate_inode(inode);
5683         int err;
5684
5685         __folio_set_locked(folio);
5686         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5687
5688         if (unlikely(err)) {
5689                 __folio_clear_locked(folio);
5690                 return err;
5691         }
5692         ClearHPageRestoreReserve(page);
5693
5694         /*
5695          * mark folio dirty so that it will not be removed from cache/file
5696          * by non-hugetlbfs specific code paths.
5697          */
5698         folio_mark_dirty(folio);
5699
5700         spin_lock(&inode->i_lock);
5701         inode->i_blocks += blocks_per_huge_page(h);
5702         spin_unlock(&inode->i_lock);
5703         return 0;
5704 }
5705
5706 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5707                                                   struct address_space *mapping,
5708                                                   pgoff_t idx,
5709                                                   unsigned int flags,
5710                                                   unsigned long haddr,
5711                                                   unsigned long addr,
5712                                                   unsigned long reason)
5713 {
5714         u32 hash;
5715         struct vm_fault vmf = {
5716                 .vma = vma,
5717                 .address = haddr,
5718                 .real_address = addr,
5719                 .flags = flags,
5720
5721                 /*
5722                  * Hard to debug if it ends up being
5723                  * used by a callee that assumes
5724                  * something about the other
5725                  * uninitialized fields... same as in
5726                  * memory.c
5727                  */
5728         };
5729
5730         /*
5731          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5732          * userfault. Also mmap_lock could be dropped due to handling
5733          * userfault, any vma operation should be careful from here.
5734          */
5735         hugetlb_vma_unlock_read(vma);
5736         hash = hugetlb_fault_mutex_hash(mapping, idx);
5737         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5738         return handle_userfault(&vmf, reason);
5739 }
5740
5741 /*
5742  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5743  * false if pte changed or is changing.
5744  */
5745 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5746                                pte_t *ptep, pte_t old_pte)
5747 {
5748         spinlock_t *ptl;
5749         bool same;
5750
5751         ptl = huge_pte_lock(h, mm, ptep);
5752         same = pte_same(huge_ptep_get(ptep), old_pte);
5753         spin_unlock(ptl);
5754
5755         return same;
5756 }
5757
5758 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5759                         struct vm_area_struct *vma,
5760                         struct address_space *mapping, pgoff_t idx,
5761                         unsigned long address, pte_t *ptep,
5762                         pte_t old_pte, unsigned int flags)
5763 {
5764         struct hstate *h = hstate_vma(vma);
5765         vm_fault_t ret = VM_FAULT_SIGBUS;
5766         int anon_rmap = 0;
5767         unsigned long size;
5768         struct page *page;
5769         pte_t new_pte;
5770         spinlock_t *ptl;
5771         unsigned long haddr = address & huge_page_mask(h);
5772         bool new_page, new_pagecache_page = false;
5773         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5774
5775         /*
5776          * Currently, we are forced to kill the process in the event the
5777          * original mapper has unmapped pages from the child due to a failed
5778          * COW/unsharing. Warn that such a situation has occurred as it may not
5779          * be obvious.
5780          */
5781         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5782                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5783                            current->pid);
5784                 goto out;
5785         }
5786
5787         /*
5788          * Use page lock to guard against racing truncation
5789          * before we get page_table_lock.
5790          */
5791         new_page = false;
5792         page = find_lock_page(mapping, idx);
5793         if (!page) {
5794                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5795                 if (idx >= size)
5796                         goto out;
5797                 /* Check for page in userfault range */
5798                 if (userfaultfd_missing(vma)) {
5799                         /*
5800                          * Since hugetlb_no_page() was examining pte
5801                          * without pgtable lock, we need to re-test under
5802                          * lock because the pte may not be stable and could
5803                          * have changed from under us.  Try to detect
5804                          * either changed or during-changing ptes and retry
5805                          * properly when needed.
5806                          *
5807                          * Note that userfaultfd is actually fine with
5808                          * false positives (e.g. caused by pte changed),
5809                          * but not wrong logical events (e.g. caused by
5810                          * reading a pte during changing).  The latter can
5811                          * confuse the userspace, so the strictness is very
5812                          * much preferred.  E.g., MISSING event should
5813                          * never happen on the page after UFFDIO_COPY has
5814                          * correctly installed the page and returned.
5815                          */
5816                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5817                                 ret = 0;
5818                                 goto out;
5819                         }
5820
5821                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5822                                                         haddr, address,
5823                                                         VM_UFFD_MISSING);
5824                 }
5825
5826                 page = alloc_huge_page(vma, haddr, 0);
5827                 if (IS_ERR(page)) {
5828                         /*
5829                          * Returning error will result in faulting task being
5830                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5831                          * tasks from racing to fault in the same page which
5832                          * could result in false unable to allocate errors.
5833                          * Page migration does not take the fault mutex, but
5834                          * does a clear then write of pte's under page table
5835                          * lock.  Page fault code could race with migration,
5836                          * notice the clear pte and try to allocate a page
5837                          * here.  Before returning error, get ptl and make
5838                          * sure there really is no pte entry.
5839                          */
5840                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5841                                 ret = vmf_error(PTR_ERR(page));
5842                         else
5843                                 ret = 0;
5844                         goto out;
5845                 }
5846                 clear_huge_page(page, address, pages_per_huge_page(h));
5847                 __SetPageUptodate(page);
5848                 new_page = true;
5849
5850                 if (vma->vm_flags & VM_MAYSHARE) {
5851                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5852                         if (err) {
5853                                 /*
5854                                  * err can't be -EEXIST which implies someone
5855                                  * else consumed the reservation since hugetlb
5856                                  * fault mutex is held when add a hugetlb page
5857                                  * to the page cache. So it's safe to call
5858                                  * restore_reserve_on_error() here.
5859                                  */
5860                                 restore_reserve_on_error(h, vma, haddr, page);
5861                                 put_page(page);
5862                                 goto out;
5863                         }
5864                         new_pagecache_page = true;
5865                 } else {
5866                         lock_page(page);
5867                         if (unlikely(anon_vma_prepare(vma))) {
5868                                 ret = VM_FAULT_OOM;
5869                                 goto backout_unlocked;
5870                         }
5871                         anon_rmap = 1;
5872                 }
5873         } else {
5874                 /*
5875                  * If memory error occurs between mmap() and fault, some process
5876                  * don't have hwpoisoned swap entry for errored virtual address.
5877                  * So we need to block hugepage fault by PG_hwpoison bit check.
5878                  */
5879                 if (unlikely(PageHWPoison(page))) {
5880                         ret = VM_FAULT_HWPOISON_LARGE |
5881                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5882                         goto backout_unlocked;
5883                 }
5884
5885                 /* Check for page in userfault range. */
5886                 if (userfaultfd_minor(vma)) {
5887                         unlock_page(page);
5888                         put_page(page);
5889                         /* See comment in userfaultfd_missing() block above */
5890                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5891                                 ret = 0;
5892                                 goto out;
5893                         }
5894                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5895                                                         haddr, address,
5896                                                         VM_UFFD_MINOR);
5897                 }
5898         }
5899
5900         /*
5901          * If we are going to COW a private mapping later, we examine the
5902          * pending reservations for this page now. This will ensure that
5903          * any allocations necessary to record that reservation occur outside
5904          * the spinlock.
5905          */
5906         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5907                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5908                         ret = VM_FAULT_OOM;
5909                         goto backout_unlocked;
5910                 }
5911                 /* Just decrements count, does not deallocate */
5912                 vma_end_reservation(h, vma, haddr);
5913         }
5914
5915         ptl = huge_pte_lock(h, mm, ptep);
5916         ret = 0;
5917         /* If pte changed from under us, retry */
5918         if (!pte_same(huge_ptep_get(ptep), old_pte))
5919                 goto backout;
5920
5921         if (anon_rmap) {
5922                 ClearHPageRestoreReserve(page);
5923                 hugepage_add_new_anon_rmap(page, vma, haddr);
5924         } else
5925                 page_dup_file_rmap(page, true);
5926         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5927                                 && (vma->vm_flags & VM_SHARED)));
5928         /*
5929          * If this pte was previously wr-protected, keep it wr-protected even
5930          * if populated.
5931          */
5932         if (unlikely(pte_marker_uffd_wp(old_pte)))
5933                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5934         set_huge_pte_at(mm, haddr, ptep, new_pte);
5935
5936         hugetlb_count_add(pages_per_huge_page(h), mm);
5937         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5938                 /* Optimization, do the COW without a second fault */
5939                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5940         }
5941
5942         spin_unlock(ptl);
5943
5944         /*
5945          * Only set HPageMigratable in newly allocated pages.  Existing pages
5946          * found in the pagecache may not have HPageMigratableset if they have
5947          * been isolated for migration.
5948          */
5949         if (new_page)
5950                 SetHPageMigratable(page);
5951
5952         unlock_page(page);
5953 out:
5954         hugetlb_vma_unlock_read(vma);
5955         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5956         return ret;
5957
5958 backout:
5959         spin_unlock(ptl);
5960 backout_unlocked:
5961         if (new_page && !new_pagecache_page)
5962                 restore_reserve_on_error(h, vma, haddr, page);
5963
5964         unlock_page(page);
5965         put_page(page);
5966         goto out;
5967 }
5968
5969 #ifdef CONFIG_SMP
5970 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5971 {
5972         unsigned long key[2];
5973         u32 hash;
5974
5975         key[0] = (unsigned long) mapping;
5976         key[1] = idx;
5977
5978         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5979
5980         return hash & (num_fault_mutexes - 1);
5981 }
5982 #else
5983 /*
5984  * For uniprocessor systems we always use a single mutex, so just
5985  * return 0 and avoid the hashing overhead.
5986  */
5987 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5988 {
5989         return 0;
5990 }
5991 #endif
5992
5993 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5994                         unsigned long address, unsigned int flags)
5995 {
5996         pte_t *ptep, entry;
5997         spinlock_t *ptl;
5998         vm_fault_t ret;
5999         u32 hash;
6000         pgoff_t idx;
6001         struct page *page = NULL;
6002         struct page *pagecache_page = NULL;
6003         struct hstate *h = hstate_vma(vma);
6004         struct address_space *mapping;
6005         int need_wait_lock = 0;
6006         unsigned long haddr = address & huge_page_mask(h);
6007
6008         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
6009         if (ptep) {
6010                 /*
6011                  * Since we hold no locks, ptep could be stale.  That is
6012                  * OK as we are only making decisions based on content and
6013                  * not actually modifying content here.
6014                  */
6015                 entry = huge_ptep_get(ptep);
6016                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6017                         migration_entry_wait_huge(vma, ptep);
6018                         return 0;
6019                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6020                         return VM_FAULT_HWPOISON_LARGE |
6021                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6022         }
6023
6024         /*
6025          * Serialize hugepage allocation and instantiation, so that we don't
6026          * get spurious allocation failures if two CPUs race to instantiate
6027          * the same page in the page cache.
6028          */
6029         mapping = vma->vm_file->f_mapping;
6030         idx = vma_hugecache_offset(h, vma, haddr);
6031         hash = hugetlb_fault_mutex_hash(mapping, idx);
6032         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6033
6034         /*
6035          * Acquire vma lock before calling huge_pte_alloc and hold
6036          * until finished with ptep.  This prevents huge_pmd_unshare from
6037          * being called elsewhere and making the ptep no longer valid.
6038          *
6039          * ptep could have already be assigned via huge_pte_offset.  That
6040          * is OK, as huge_pte_alloc will return the same value unless
6041          * something has changed.
6042          */
6043         hugetlb_vma_lock_read(vma);
6044         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6045         if (!ptep) {
6046                 hugetlb_vma_unlock_read(vma);
6047                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6048                 return VM_FAULT_OOM;
6049         }
6050
6051         entry = huge_ptep_get(ptep);
6052         /* PTE markers should be handled the same way as none pte */
6053         if (huge_pte_none_mostly(entry))
6054                 /*
6055                  * hugetlb_no_page will drop vma lock and hugetlb fault
6056                  * mutex internally, which make us return immediately.
6057                  */
6058                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6059                                       entry, flags);
6060
6061         ret = 0;
6062
6063         /*
6064          * entry could be a migration/hwpoison entry at this point, so this
6065          * check prevents the kernel from going below assuming that we have
6066          * an active hugepage in pagecache. This goto expects the 2nd page
6067          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6068          * properly handle it.
6069          */
6070         if (!pte_present(entry))
6071                 goto out_mutex;
6072
6073         /*
6074          * If we are going to COW/unshare the mapping later, we examine the
6075          * pending reservations for this page now. This will ensure that any
6076          * allocations necessary to record that reservation occur outside the
6077          * spinlock. Also lookup the pagecache page now as it is used to
6078          * determine if a reservation has been consumed.
6079          */
6080         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6081             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6082                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6083                         ret = VM_FAULT_OOM;
6084                         goto out_mutex;
6085                 }
6086                 /* Just decrements count, does not deallocate */
6087                 vma_end_reservation(h, vma, haddr);
6088
6089                 pagecache_page = find_lock_page(mapping, idx);
6090         }
6091
6092         ptl = huge_pte_lock(h, mm, ptep);
6093
6094         /* Check for a racing update before calling hugetlb_wp() */
6095         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6096                 goto out_ptl;
6097
6098         /* Handle userfault-wp first, before trying to lock more pages */
6099         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6100             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6101                 struct vm_fault vmf = {
6102                         .vma = vma,
6103                         .address = haddr,
6104                         .real_address = address,
6105                         .flags = flags,
6106                 };
6107
6108                 spin_unlock(ptl);
6109                 if (pagecache_page) {
6110                         unlock_page(pagecache_page);
6111                         put_page(pagecache_page);
6112                 }
6113                 hugetlb_vma_unlock_read(vma);
6114                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6115                 return handle_userfault(&vmf, VM_UFFD_WP);
6116         }
6117
6118         /*
6119          * hugetlb_wp() requires page locks of pte_page(entry) and
6120          * pagecache_page, so here we need take the former one
6121          * when page != pagecache_page or !pagecache_page.
6122          */
6123         page = pte_page(entry);
6124         if (page != pagecache_page)
6125                 if (!trylock_page(page)) {
6126                         need_wait_lock = 1;
6127                         goto out_ptl;
6128                 }
6129
6130         get_page(page);
6131
6132         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6133                 if (!huge_pte_write(entry)) {
6134                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6135                                          pagecache_page, ptl);
6136                         goto out_put_page;
6137                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6138                         entry = huge_pte_mkdirty(entry);
6139                 }
6140         }
6141         entry = pte_mkyoung(entry);
6142         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6143                                                 flags & FAULT_FLAG_WRITE))
6144                 update_mmu_cache(vma, haddr, ptep);
6145 out_put_page:
6146         if (page != pagecache_page)
6147                 unlock_page(page);
6148         put_page(page);
6149 out_ptl:
6150         spin_unlock(ptl);
6151
6152         if (pagecache_page) {
6153                 unlock_page(pagecache_page);
6154                 put_page(pagecache_page);
6155         }
6156 out_mutex:
6157         hugetlb_vma_unlock_read(vma);
6158         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6159         /*
6160          * Generally it's safe to hold refcount during waiting page lock. But
6161          * here we just wait to defer the next page fault to avoid busy loop and
6162          * the page is not used after unlocked before returning from the current
6163          * page fault. So we are safe from accessing freed page, even if we wait
6164          * here without taking refcount.
6165          */
6166         if (need_wait_lock)
6167                 wait_on_page_locked(page);
6168         return ret;
6169 }
6170
6171 #ifdef CONFIG_USERFAULTFD
6172 /*
6173  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6174  * modifications for huge pages.
6175  */
6176 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6177                             pte_t *dst_pte,
6178                             struct vm_area_struct *dst_vma,
6179                             unsigned long dst_addr,
6180                             unsigned long src_addr,
6181                             enum mcopy_atomic_mode mode,
6182                             struct page **pagep,
6183                             bool wp_copy)
6184 {
6185         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6186         struct hstate *h = hstate_vma(dst_vma);
6187         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6188         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6189         unsigned long size;
6190         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6191         pte_t _dst_pte;
6192         spinlock_t *ptl;
6193         int ret = -ENOMEM;
6194         struct page *page;
6195         int writable;
6196         bool page_in_pagecache = false;
6197
6198         if (is_continue) {
6199                 ret = -EFAULT;
6200                 page = find_lock_page(mapping, idx);
6201                 if (!page)
6202                         goto out;
6203                 page_in_pagecache = true;
6204         } else if (!*pagep) {
6205                 /* If a page already exists, then it's UFFDIO_COPY for
6206                  * a non-missing case. Return -EEXIST.
6207                  */
6208                 if (vm_shared &&
6209                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6210                         ret = -EEXIST;
6211                         goto out;
6212                 }
6213
6214                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6215                 if (IS_ERR(page)) {
6216                         ret = -ENOMEM;
6217                         goto out;
6218                 }
6219
6220                 ret = copy_huge_page_from_user(page,
6221                                                 (const void __user *) src_addr,
6222                                                 pages_per_huge_page(h), false);
6223
6224                 /* fallback to copy_from_user outside mmap_lock */
6225                 if (unlikely(ret)) {
6226                         ret = -ENOENT;
6227                         /* Free the allocated page which may have
6228                          * consumed a reservation.
6229                          */
6230                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6231                         put_page(page);
6232
6233                         /* Allocate a temporary page to hold the copied
6234                          * contents.
6235                          */
6236                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6237                         if (!page) {
6238                                 ret = -ENOMEM;
6239                                 goto out;
6240                         }
6241                         *pagep = page;
6242                         /* Set the outparam pagep and return to the caller to
6243                          * copy the contents outside the lock. Don't free the
6244                          * page.
6245                          */
6246                         goto out;
6247                 }
6248         } else {
6249                 if (vm_shared &&
6250                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6251                         put_page(*pagep);
6252                         ret = -EEXIST;
6253                         *pagep = NULL;
6254                         goto out;
6255                 }
6256
6257                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6258                 if (IS_ERR(page)) {
6259                         put_page(*pagep);
6260                         ret = -ENOMEM;
6261                         *pagep = NULL;
6262                         goto out;
6263                 }
6264                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6265                                     pages_per_huge_page(h));
6266                 put_page(*pagep);
6267                 *pagep = NULL;
6268         }
6269
6270         /*
6271          * The memory barrier inside __SetPageUptodate makes sure that
6272          * preceding stores to the page contents become visible before
6273          * the set_pte_at() write.
6274          */
6275         __SetPageUptodate(page);
6276
6277         /* Add shared, newly allocated pages to the page cache. */
6278         if (vm_shared && !is_continue) {
6279                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6280                 ret = -EFAULT;
6281                 if (idx >= size)
6282                         goto out_release_nounlock;
6283
6284                 /*
6285                  * Serialization between remove_inode_hugepages() and
6286                  * hugetlb_add_to_page_cache() below happens through the
6287                  * hugetlb_fault_mutex_table that here must be hold by
6288                  * the caller.
6289                  */
6290                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6291                 if (ret)
6292                         goto out_release_nounlock;
6293                 page_in_pagecache = true;
6294         }
6295
6296         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6297
6298         ret = -EIO;
6299         if (PageHWPoison(page))
6300                 goto out_release_unlock;
6301
6302         /*
6303          * We allow to overwrite a pte marker: consider when both MISSING|WP
6304          * registered, we firstly wr-protect a none pte which has no page cache
6305          * page backing it, then access the page.
6306          */
6307         ret = -EEXIST;
6308         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6309                 goto out_release_unlock;
6310
6311         if (page_in_pagecache) {
6312                 page_dup_file_rmap(page, true);
6313         } else {
6314                 ClearHPageRestoreReserve(page);
6315                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6316         }
6317
6318         /*
6319          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6320          * with wp flag set, don't set pte write bit.
6321          */
6322         if (wp_copy || (is_continue && !vm_shared))
6323                 writable = 0;
6324         else
6325                 writable = dst_vma->vm_flags & VM_WRITE;
6326
6327         _dst_pte = make_huge_pte(dst_vma, page, writable);
6328         /*
6329          * Always mark UFFDIO_COPY page dirty; note that this may not be
6330          * extremely important for hugetlbfs for now since swapping is not
6331          * supported, but we should still be clear in that this page cannot be
6332          * thrown away at will, even if write bit not set.
6333          */
6334         _dst_pte = huge_pte_mkdirty(_dst_pte);
6335         _dst_pte = pte_mkyoung(_dst_pte);
6336
6337         if (wp_copy)
6338                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6339
6340         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6341
6342         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6343
6344         /* No need to invalidate - it was non-present before */
6345         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6346
6347         spin_unlock(ptl);
6348         if (!is_continue)
6349                 SetHPageMigratable(page);
6350         if (vm_shared || is_continue)
6351                 unlock_page(page);
6352         ret = 0;
6353 out:
6354         return ret;
6355 out_release_unlock:
6356         spin_unlock(ptl);
6357         if (vm_shared || is_continue)
6358                 unlock_page(page);
6359 out_release_nounlock:
6360         if (!page_in_pagecache)
6361                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6362         put_page(page);
6363         goto out;
6364 }
6365 #endif /* CONFIG_USERFAULTFD */
6366
6367 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6368                                  int refs, struct page **pages,
6369                                  struct vm_area_struct **vmas)
6370 {
6371         int nr;
6372
6373         for (nr = 0; nr < refs; nr++) {
6374                 if (likely(pages))
6375                         pages[nr] = nth_page(page, nr);
6376                 if (vmas)
6377                         vmas[nr] = vma;
6378         }
6379 }
6380
6381 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6382                                                bool *unshare)
6383 {
6384         pte_t pteval = huge_ptep_get(pte);
6385
6386         *unshare = false;
6387         if (is_swap_pte(pteval))
6388                 return true;
6389         if (huge_pte_write(pteval))
6390                 return false;
6391         if (flags & FOLL_WRITE)
6392                 return true;
6393         if (gup_must_unshare(flags, pte_page(pteval))) {
6394                 *unshare = true;
6395                 return true;
6396         }
6397         return false;
6398 }
6399
6400 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6401                          struct page **pages, struct vm_area_struct **vmas,
6402                          unsigned long *position, unsigned long *nr_pages,
6403                          long i, unsigned int flags, int *locked)
6404 {
6405         unsigned long pfn_offset;
6406         unsigned long vaddr = *position;
6407         unsigned long remainder = *nr_pages;
6408         struct hstate *h = hstate_vma(vma);
6409         int err = -EFAULT, refs;
6410
6411         while (vaddr < vma->vm_end && remainder) {
6412                 pte_t *pte;
6413                 spinlock_t *ptl = NULL;
6414                 bool unshare = false;
6415                 int absent;
6416                 struct page *page;
6417
6418                 /*
6419                  * If we have a pending SIGKILL, don't keep faulting pages and
6420                  * potentially allocating memory.
6421                  */
6422                 if (fatal_signal_pending(current)) {
6423                         remainder = 0;
6424                         break;
6425                 }
6426
6427                 /*
6428                  * Some archs (sparc64, sh*) have multiple pte_ts to
6429                  * each hugepage.  We have to make sure we get the
6430                  * first, for the page indexing below to work.
6431                  *
6432                  * Note that page table lock is not held when pte is null.
6433                  */
6434                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6435                                       huge_page_size(h));
6436                 if (pte)
6437                         ptl = huge_pte_lock(h, mm, pte);
6438                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6439
6440                 /*
6441                  * When coredumping, it suits get_dump_page if we just return
6442                  * an error where there's an empty slot with no huge pagecache
6443                  * to back it.  This way, we avoid allocating a hugepage, and
6444                  * the sparse dumpfile avoids allocating disk blocks, but its
6445                  * huge holes still show up with zeroes where they need to be.
6446                  */
6447                 if (absent && (flags & FOLL_DUMP) &&
6448                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6449                         if (pte)
6450                                 spin_unlock(ptl);
6451                         remainder = 0;
6452                         break;
6453                 }
6454
6455                 /*
6456                  * We need call hugetlb_fault for both hugepages under migration
6457                  * (in which case hugetlb_fault waits for the migration,) and
6458                  * hwpoisoned hugepages (in which case we need to prevent the
6459                  * caller from accessing to them.) In order to do this, we use
6460                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6461                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6462                  * both cases, and because we can't follow correct pages
6463                  * directly from any kind of swap entries.
6464                  */
6465                 if (absent ||
6466                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6467                         vm_fault_t ret;
6468                         unsigned int fault_flags = 0;
6469
6470                         if (pte)
6471                                 spin_unlock(ptl);
6472                         if (flags & FOLL_WRITE)
6473                                 fault_flags |= FAULT_FLAG_WRITE;
6474                         else if (unshare)
6475                                 fault_flags |= FAULT_FLAG_UNSHARE;
6476                         if (locked)
6477                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6478                                         FAULT_FLAG_KILLABLE;
6479                         if (flags & FOLL_NOWAIT)
6480                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6481                                         FAULT_FLAG_RETRY_NOWAIT;
6482                         if (flags & FOLL_TRIED) {
6483                                 /*
6484                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6485                                  * FAULT_FLAG_TRIED can co-exist
6486                                  */
6487                                 fault_flags |= FAULT_FLAG_TRIED;
6488                         }
6489                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6490                         if (ret & VM_FAULT_ERROR) {
6491                                 err = vm_fault_to_errno(ret, flags);
6492                                 remainder = 0;
6493                                 break;
6494                         }
6495                         if (ret & VM_FAULT_RETRY) {
6496                                 if (locked &&
6497                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6498                                         *locked = 0;
6499                                 *nr_pages = 0;
6500                                 /*
6501                                  * VM_FAULT_RETRY must not return an
6502                                  * error, it will return zero
6503                                  * instead.
6504                                  *
6505                                  * No need to update "position" as the
6506                                  * caller will not check it after
6507                                  * *nr_pages is set to 0.
6508                                  */
6509                                 return i;
6510                         }
6511                         continue;
6512                 }
6513
6514                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6515                 page = pte_page(huge_ptep_get(pte));
6516
6517                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6518                                !PageAnonExclusive(page), page);
6519
6520                 /*
6521                  * If subpage information not requested, update counters
6522                  * and skip the same_page loop below.
6523                  */
6524                 if (!pages && !vmas && !pfn_offset &&
6525                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6526                     (remainder >= pages_per_huge_page(h))) {
6527                         vaddr += huge_page_size(h);
6528                         remainder -= pages_per_huge_page(h);
6529                         i += pages_per_huge_page(h);
6530                         spin_unlock(ptl);
6531                         continue;
6532                 }
6533
6534                 /* vaddr may not be aligned to PAGE_SIZE */
6535                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6536                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6537
6538                 if (pages || vmas)
6539                         record_subpages_vmas(nth_page(page, pfn_offset),
6540                                              vma, refs,
6541                                              likely(pages) ? pages + i : NULL,
6542                                              vmas ? vmas + i : NULL);
6543
6544                 if (pages) {
6545                         /*
6546                          * try_grab_folio() should always succeed here,
6547                          * because: a) we hold the ptl lock, and b) we've just
6548                          * checked that the huge page is present in the page
6549                          * tables. If the huge page is present, then the tail
6550                          * pages must also be present. The ptl prevents the
6551                          * head page and tail pages from being rearranged in
6552                          * any way. So this page must be available at this
6553                          * point, unless the page refcount overflowed:
6554                          */
6555                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6556                                                          flags))) {
6557                                 spin_unlock(ptl);
6558                                 remainder = 0;
6559                                 err = -ENOMEM;
6560                                 break;
6561                         }
6562                 }
6563
6564                 vaddr += (refs << PAGE_SHIFT);
6565                 remainder -= refs;
6566                 i += refs;
6567
6568                 spin_unlock(ptl);
6569         }
6570         *nr_pages = remainder;
6571         /*
6572          * setting position is actually required only if remainder is
6573          * not zero but it's faster not to add a "if (remainder)"
6574          * branch.
6575          */
6576         *position = vaddr;
6577
6578         return i ? i : err;
6579 }
6580
6581 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6582                 unsigned long address, unsigned long end,
6583                 pgprot_t newprot, unsigned long cp_flags)
6584 {
6585         struct mm_struct *mm = vma->vm_mm;
6586         unsigned long start = address;
6587         pte_t *ptep;
6588         pte_t pte;
6589         struct hstate *h = hstate_vma(vma);
6590         unsigned long pages = 0, psize = huge_page_size(h);
6591         bool shared_pmd = false;
6592         struct mmu_notifier_range range;
6593         unsigned long last_addr_mask;
6594         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6595         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6596
6597         /*
6598          * In the case of shared PMDs, the area to flush could be beyond
6599          * start/end.  Set range.start/range.end to cover the maximum possible
6600          * range if PMD sharing is possible.
6601          */
6602         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6603                                 0, vma, mm, start, end);
6604         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6605
6606         BUG_ON(address >= end);
6607         flush_cache_range(vma, range.start, range.end);
6608
6609         mmu_notifier_invalidate_range_start(&range);
6610         hugetlb_vma_lock_write(vma);
6611         i_mmap_lock_write(vma->vm_file->f_mapping);
6612         last_addr_mask = hugetlb_mask_last_page(h);
6613         for (; address < end; address += psize) {
6614                 spinlock_t *ptl;
6615                 ptep = huge_pte_offset(mm, address, psize);
6616                 if (!ptep) {
6617                         if (!uffd_wp) {
6618                                 address |= last_addr_mask;
6619                                 continue;
6620                         }
6621                         /*
6622                          * Userfaultfd wr-protect requires pgtable
6623                          * pre-allocations to install pte markers.
6624                          */
6625                         ptep = huge_pte_alloc(mm, vma, address, psize);
6626                         if (!ptep)
6627                                 break;
6628                 }
6629                 ptl = huge_pte_lock(h, mm, ptep);
6630                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6631                         /*
6632                          * When uffd-wp is enabled on the vma, unshare
6633                          * shouldn't happen at all.  Warn about it if it
6634                          * happened due to some reason.
6635                          */
6636                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6637                         pages++;
6638                         spin_unlock(ptl);
6639                         shared_pmd = true;
6640                         address |= last_addr_mask;
6641                         continue;
6642                 }
6643                 pte = huge_ptep_get(ptep);
6644                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6645                         /* Nothing to do. */
6646                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6647                         swp_entry_t entry = pte_to_swp_entry(pte);
6648                         struct page *page = pfn_swap_entry_to_page(entry);
6649                         pte_t newpte = pte;
6650
6651                         if (is_writable_migration_entry(entry)) {
6652                                 if (PageAnon(page))
6653                                         entry = make_readable_exclusive_migration_entry(
6654                                                                 swp_offset(entry));
6655                                 else
6656                                         entry = make_readable_migration_entry(
6657                                                                 swp_offset(entry));
6658                                 newpte = swp_entry_to_pte(entry);
6659                                 pages++;
6660                         }
6661
6662                         if (uffd_wp)
6663                                 newpte = pte_swp_mkuffd_wp(newpte);
6664                         else if (uffd_wp_resolve)
6665                                 newpte = pte_swp_clear_uffd_wp(newpte);
6666                         if (!pte_same(pte, newpte))
6667                                 set_huge_pte_at(mm, address, ptep, newpte);
6668                 } else if (unlikely(is_pte_marker(pte))) {
6669                         /* No other markers apply for now. */
6670                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6671                         if (uffd_wp_resolve)
6672                                 /* Safe to modify directly (non-present->none). */
6673                                 huge_pte_clear(mm, address, ptep, psize);
6674                 } else if (!huge_pte_none(pte)) {
6675                         pte_t old_pte;
6676                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6677
6678                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6679                         pte = huge_pte_modify(old_pte, newprot);
6680                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6681                         if (uffd_wp)
6682                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6683                         else if (uffd_wp_resolve)
6684                                 pte = huge_pte_clear_uffd_wp(pte);
6685                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6686                         pages++;
6687                 } else {
6688                         /* None pte */
6689                         if (unlikely(uffd_wp))
6690                                 /* Safe to modify directly (none->non-present). */
6691                                 set_huge_pte_at(mm, address, ptep,
6692                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6693                 }
6694                 spin_unlock(ptl);
6695         }
6696         /*
6697          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6698          * may have cleared our pud entry and done put_page on the page table:
6699          * once we release i_mmap_rwsem, another task can do the final put_page
6700          * and that page table be reused and filled with junk.  If we actually
6701          * did unshare a page of pmds, flush the range corresponding to the pud.
6702          */
6703         if (shared_pmd)
6704                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6705         else
6706                 flush_hugetlb_tlb_range(vma, start, end);
6707         /*
6708          * No need to call mmu_notifier_invalidate_range() we are downgrading
6709          * page table protection not changing it to point to a new page.
6710          *
6711          * See Documentation/mm/mmu_notifier.rst
6712          */
6713         i_mmap_unlock_write(vma->vm_file->f_mapping);
6714         hugetlb_vma_unlock_write(vma);
6715         mmu_notifier_invalidate_range_end(&range);
6716
6717         return pages << h->order;
6718 }
6719
6720 /* Return true if reservation was successful, false otherwise.  */
6721 bool hugetlb_reserve_pages(struct inode *inode,
6722                                         long from, long to,
6723                                         struct vm_area_struct *vma,
6724                                         vm_flags_t vm_flags)
6725 {
6726         long chg, add = -1;
6727         struct hstate *h = hstate_inode(inode);
6728         struct hugepage_subpool *spool = subpool_inode(inode);
6729         struct resv_map *resv_map;
6730         struct hugetlb_cgroup *h_cg = NULL;
6731         long gbl_reserve, regions_needed = 0;
6732
6733         /* This should never happen */
6734         if (from > to) {
6735                 VM_WARN(1, "%s called with a negative range\n", __func__);
6736                 return false;
6737         }
6738
6739         /*
6740          * vma specific semaphore used for pmd sharing and fault/truncation
6741          * synchronization
6742          */
6743         hugetlb_vma_lock_alloc(vma);
6744
6745         /*
6746          * Only apply hugepage reservation if asked. At fault time, an
6747          * attempt will be made for VM_NORESERVE to allocate a page
6748          * without using reserves
6749          */
6750         if (vm_flags & VM_NORESERVE)
6751                 return true;
6752
6753         /*
6754          * Shared mappings base their reservation on the number of pages that
6755          * are already allocated on behalf of the file. Private mappings need
6756          * to reserve the full area even if read-only as mprotect() may be
6757          * called to make the mapping read-write. Assume !vma is a shm mapping
6758          */
6759         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6760                 /*
6761                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6762                  * called for inodes for which resv_maps were created (see
6763                  * hugetlbfs_get_inode).
6764                  */
6765                 resv_map = inode_resv_map(inode);
6766
6767                 chg = region_chg(resv_map, from, to, &regions_needed);
6768         } else {
6769                 /* Private mapping. */
6770                 resv_map = resv_map_alloc();
6771                 if (!resv_map)
6772                         goto out_err;
6773
6774                 chg = to - from;
6775
6776                 set_vma_resv_map(vma, resv_map);
6777                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6778         }
6779
6780         if (chg < 0)
6781                 goto out_err;
6782
6783         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6784                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6785                 goto out_err;
6786
6787         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6788                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6789                  * of the resv_map.
6790                  */
6791                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6792         }
6793
6794         /*
6795          * There must be enough pages in the subpool for the mapping. If
6796          * the subpool has a minimum size, there may be some global
6797          * reservations already in place (gbl_reserve).
6798          */
6799         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6800         if (gbl_reserve < 0)
6801                 goto out_uncharge_cgroup;
6802
6803         /*
6804          * Check enough hugepages are available for the reservation.
6805          * Hand the pages back to the subpool if there are not
6806          */
6807         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6808                 goto out_put_pages;
6809
6810         /*
6811          * Account for the reservations made. Shared mappings record regions
6812          * that have reservations as they are shared by multiple VMAs.
6813          * When the last VMA disappears, the region map says how much
6814          * the reservation was and the page cache tells how much of
6815          * the reservation was consumed. Private mappings are per-VMA and
6816          * only the consumed reservations are tracked. When the VMA
6817          * disappears, the original reservation is the VMA size and the
6818          * consumed reservations are stored in the map. Hence, nothing
6819          * else has to be done for private mappings here
6820          */
6821         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6822                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6823
6824                 if (unlikely(add < 0)) {
6825                         hugetlb_acct_memory(h, -gbl_reserve);
6826                         goto out_put_pages;
6827                 } else if (unlikely(chg > add)) {
6828                         /*
6829                          * pages in this range were added to the reserve
6830                          * map between region_chg and region_add.  This
6831                          * indicates a race with alloc_huge_page.  Adjust
6832                          * the subpool and reserve counts modified above
6833                          * based on the difference.
6834                          */
6835                         long rsv_adjust;
6836
6837                         /*
6838                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6839                          * reference to h_cg->css. See comment below for detail.
6840                          */
6841                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6842                                 hstate_index(h),
6843                                 (chg - add) * pages_per_huge_page(h), h_cg);
6844
6845                         rsv_adjust = hugepage_subpool_put_pages(spool,
6846                                                                 chg - add);
6847                         hugetlb_acct_memory(h, -rsv_adjust);
6848                 } else if (h_cg) {
6849                         /*
6850                          * The file_regions will hold their own reference to
6851                          * h_cg->css. So we should release the reference held
6852                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6853                          * done.
6854                          */
6855                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6856                 }
6857         }
6858         return true;
6859
6860 out_put_pages:
6861         /* put back original number of pages, chg */
6862         (void)hugepage_subpool_put_pages(spool, chg);
6863 out_uncharge_cgroup:
6864         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6865                                             chg * pages_per_huge_page(h), h_cg);
6866 out_err:
6867         hugetlb_vma_lock_free(vma);
6868         if (!vma || vma->vm_flags & VM_MAYSHARE)
6869                 /* Only call region_abort if the region_chg succeeded but the
6870                  * region_add failed or didn't run.
6871                  */
6872                 if (chg >= 0 && add < 0)
6873                         region_abort(resv_map, from, to, regions_needed);
6874         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6875                 kref_put(&resv_map->refs, resv_map_release);
6876         return false;
6877 }
6878
6879 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6880                                                                 long freed)
6881 {
6882         struct hstate *h = hstate_inode(inode);
6883         struct resv_map *resv_map = inode_resv_map(inode);
6884         long chg = 0;
6885         struct hugepage_subpool *spool = subpool_inode(inode);
6886         long gbl_reserve;
6887
6888         /*
6889          * Since this routine can be called in the evict inode path for all
6890          * hugetlbfs inodes, resv_map could be NULL.
6891          */
6892         if (resv_map) {
6893                 chg = region_del(resv_map, start, end);
6894                 /*
6895                  * region_del() can fail in the rare case where a region
6896                  * must be split and another region descriptor can not be
6897                  * allocated.  If end == LONG_MAX, it will not fail.
6898                  */
6899                 if (chg < 0)
6900                         return chg;
6901         }
6902
6903         spin_lock(&inode->i_lock);
6904         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6905         spin_unlock(&inode->i_lock);
6906
6907         /*
6908          * If the subpool has a minimum size, the number of global
6909          * reservations to be released may be adjusted.
6910          *
6911          * Note that !resv_map implies freed == 0. So (chg - freed)
6912          * won't go negative.
6913          */
6914         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6915         hugetlb_acct_memory(h, -gbl_reserve);
6916
6917         return 0;
6918 }
6919
6920 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6921 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6922                                 struct vm_area_struct *vma,
6923                                 unsigned long addr, pgoff_t idx)
6924 {
6925         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6926                                 svma->vm_start;
6927         unsigned long sbase = saddr & PUD_MASK;
6928         unsigned long s_end = sbase + PUD_SIZE;
6929
6930         /* Allow segments to share if only one is marked locked */
6931         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6932         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6933
6934         /*
6935          * match the virtual addresses, permission and the alignment of the
6936          * page table page.
6937          *
6938          * Also, vma_lock (vm_private_data) is required for sharing.
6939          */
6940         if (pmd_index(addr) != pmd_index(saddr) ||
6941             vm_flags != svm_flags ||
6942             !range_in_vma(svma, sbase, s_end) ||
6943             !svma->vm_private_data)
6944                 return 0;
6945
6946         return saddr;
6947 }
6948
6949 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6950 {
6951         unsigned long start = addr & PUD_MASK;
6952         unsigned long end = start + PUD_SIZE;
6953
6954 #ifdef CONFIG_USERFAULTFD
6955         if (uffd_disable_huge_pmd_share(vma))
6956                 return false;
6957 #endif
6958         /*
6959          * check on proper vm_flags and page table alignment
6960          */
6961         if (!(vma->vm_flags & VM_MAYSHARE))
6962                 return false;
6963         if (!vma->vm_private_data)      /* vma lock required for sharing */
6964                 return false;
6965         if (!range_in_vma(vma, start, end))
6966                 return false;
6967         return true;
6968 }
6969
6970 /*
6971  * Determine if start,end range within vma could be mapped by shared pmd.
6972  * If yes, adjust start and end to cover range associated with possible
6973  * shared pmd mappings.
6974  */
6975 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6976                                 unsigned long *start, unsigned long *end)
6977 {
6978         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6979                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6980
6981         /*
6982          * vma needs to span at least one aligned PUD size, and the range
6983          * must be at least partially within in.
6984          */
6985         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6986                 (*end <= v_start) || (*start >= v_end))
6987                 return;
6988
6989         /* Extend the range to be PUD aligned for a worst case scenario */
6990         if (*start > v_start)
6991                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6992
6993         if (*end < v_end)
6994                 *end = ALIGN(*end, PUD_SIZE);
6995 }
6996
6997 /*
6998  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6999  * and returns the corresponding pte. While this is not necessary for the
7000  * !shared pmd case because we can allocate the pmd later as well, it makes the
7001  * code much cleaner. pmd allocation is essential for the shared case because
7002  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7003  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7004  * bad pmd for sharing.
7005  */
7006 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7007                       unsigned long addr, pud_t *pud)
7008 {
7009         struct address_space *mapping = vma->vm_file->f_mapping;
7010         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7011                         vma->vm_pgoff;
7012         struct vm_area_struct *svma;
7013         unsigned long saddr;
7014         pte_t *spte = NULL;
7015         pte_t *pte;
7016         spinlock_t *ptl;
7017
7018         i_mmap_lock_read(mapping);
7019         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7020                 if (svma == vma)
7021                         continue;
7022
7023                 saddr = page_table_shareable(svma, vma, addr, idx);
7024                 if (saddr) {
7025                         spte = huge_pte_offset(svma->vm_mm, saddr,
7026                                                vma_mmu_pagesize(svma));
7027                         if (spte) {
7028                                 get_page(virt_to_page(spte));
7029                                 break;
7030                         }
7031                 }
7032         }
7033
7034         if (!spte)
7035                 goto out;
7036
7037         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7038         if (pud_none(*pud)) {
7039                 pud_populate(mm, pud,
7040                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7041                 mm_inc_nr_pmds(mm);
7042         } else {
7043                 put_page(virt_to_page(spte));
7044         }
7045         spin_unlock(ptl);
7046 out:
7047         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7048         i_mmap_unlock_read(mapping);
7049         return pte;
7050 }
7051
7052 /*
7053  * unmap huge page backed by shared pte.
7054  *
7055  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7056  * indicated by page_count > 1, unmap is achieved by clearing pud and
7057  * decrementing the ref count. If count == 1, the pte page is not shared.
7058  *
7059  * Called with page table lock held.
7060  *
7061  * returns: 1 successfully unmapped a shared pte page
7062  *          0 the underlying pte page is not shared, or it is the last user
7063  */
7064 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7065                                         unsigned long addr, pte_t *ptep)
7066 {
7067         pgd_t *pgd = pgd_offset(mm, addr);
7068         p4d_t *p4d = p4d_offset(pgd, addr);
7069         pud_t *pud = pud_offset(p4d, addr);
7070
7071         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7072         hugetlb_vma_assert_locked(vma);
7073         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7074         if (page_count(virt_to_page(ptep)) == 1)
7075                 return 0;
7076
7077         pud_clear(pud);
7078         put_page(virt_to_page(ptep));
7079         mm_dec_nr_pmds(mm);
7080         return 1;
7081 }
7082
7083 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7084
7085 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7086                       unsigned long addr, pud_t *pud)
7087 {
7088         return NULL;
7089 }
7090
7091 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7092                                 unsigned long addr, pte_t *ptep)
7093 {
7094         return 0;
7095 }
7096
7097 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7098                                 unsigned long *start, unsigned long *end)
7099 {
7100 }
7101
7102 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7103 {
7104         return false;
7105 }
7106 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7107
7108 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7109 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7110                         unsigned long addr, unsigned long sz)
7111 {
7112         pgd_t *pgd;
7113         p4d_t *p4d;
7114         pud_t *pud;
7115         pte_t *pte = NULL;
7116
7117         pgd = pgd_offset(mm, addr);
7118         p4d = p4d_alloc(mm, pgd, addr);
7119         if (!p4d)
7120                 return NULL;
7121         pud = pud_alloc(mm, p4d, addr);
7122         if (pud) {
7123                 if (sz == PUD_SIZE) {
7124                         pte = (pte_t *)pud;
7125                 } else {
7126                         BUG_ON(sz != PMD_SIZE);
7127                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7128                                 pte = huge_pmd_share(mm, vma, addr, pud);
7129                         else
7130                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7131                 }
7132         }
7133         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7134
7135         return pte;
7136 }
7137
7138 /*
7139  * huge_pte_offset() - Walk the page table to resolve the hugepage
7140  * entry at address @addr
7141  *
7142  * Return: Pointer to page table entry (PUD or PMD) for
7143  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7144  * size @sz doesn't match the hugepage size at this level of the page
7145  * table.
7146  */
7147 pte_t *huge_pte_offset(struct mm_struct *mm,
7148                        unsigned long addr, unsigned long sz)
7149 {
7150         pgd_t *pgd;
7151         p4d_t *p4d;
7152         pud_t *pud;
7153         pmd_t *pmd;
7154
7155         pgd = pgd_offset(mm, addr);
7156         if (!pgd_present(*pgd))
7157                 return NULL;
7158         p4d = p4d_offset(pgd, addr);
7159         if (!p4d_present(*p4d))
7160                 return NULL;
7161
7162         pud = pud_offset(p4d, addr);
7163         if (sz == PUD_SIZE)
7164                 /* must be pud huge, non-present or none */
7165                 return (pte_t *)pud;
7166         if (!pud_present(*pud))
7167                 return NULL;
7168         /* must have a valid entry and size to go further */
7169
7170         pmd = pmd_offset(pud, addr);
7171         /* must be pmd huge, non-present or none */
7172         return (pte_t *)pmd;
7173 }
7174
7175 /*
7176  * Return a mask that can be used to update an address to the last huge
7177  * page in a page table page mapping size.  Used to skip non-present
7178  * page table entries when linearly scanning address ranges.  Architectures
7179  * with unique huge page to page table relationships can define their own
7180  * version of this routine.
7181  */
7182 unsigned long hugetlb_mask_last_page(struct hstate *h)
7183 {
7184         unsigned long hp_size = huge_page_size(h);
7185
7186         if (hp_size == PUD_SIZE)
7187                 return P4D_SIZE - PUD_SIZE;
7188         else if (hp_size == PMD_SIZE)
7189                 return PUD_SIZE - PMD_SIZE;
7190         else
7191                 return 0UL;
7192 }
7193
7194 #else
7195
7196 /* See description above.  Architectures can provide their own version. */
7197 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7198 {
7199 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7200         if (huge_page_size(h) == PMD_SIZE)
7201                 return PUD_SIZE - PMD_SIZE;
7202 #endif
7203         return 0UL;
7204 }
7205
7206 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7207
7208 /*
7209  * These functions are overwritable if your architecture needs its own
7210  * behavior.
7211  */
7212 struct page * __weak
7213 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7214                               int write)
7215 {
7216         return ERR_PTR(-EINVAL);
7217 }
7218
7219 struct page * __weak
7220 follow_huge_pd(struct vm_area_struct *vma,
7221                unsigned long address, hugepd_t hpd, int flags, int pdshift)
7222 {
7223         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7224         return NULL;
7225 }
7226
7227 struct page * __weak
7228 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7229 {
7230         struct hstate *h = hstate_vma(vma);
7231         struct mm_struct *mm = vma->vm_mm;
7232         struct page *page = NULL;
7233         spinlock_t *ptl;
7234         pte_t *ptep, pte;
7235
7236         /*
7237          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7238          * follow_hugetlb_page().
7239          */
7240         if (WARN_ON_ONCE(flags & FOLL_PIN))
7241                 return NULL;
7242
7243 retry:
7244         ptep = huge_pte_offset(mm, address, huge_page_size(h));
7245         if (!ptep)
7246                 return NULL;
7247
7248         ptl = huge_pte_lock(h, mm, ptep);
7249         pte = huge_ptep_get(ptep);
7250         if (pte_present(pte)) {
7251                 page = pte_page(pte) +
7252                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7253                 /*
7254                  * try_grab_page() should always succeed here, because: a) we
7255                  * hold the pmd (ptl) lock, and b) we've just checked that the
7256                  * huge pmd (head) page is present in the page tables. The ptl
7257                  * prevents the head page and tail pages from being rearranged
7258                  * in any way. So this page must be available at this point,
7259                  * unless the page refcount overflowed:
7260                  */
7261                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7262                         page = NULL;
7263                         goto out;
7264                 }
7265         } else {
7266                 if (is_hugetlb_entry_migration(pte)) {
7267                         spin_unlock(ptl);
7268                         __migration_entry_wait_huge(ptep, ptl);
7269                         goto retry;
7270                 }
7271                 /*
7272                  * hwpoisoned entry is treated as no_page_table in
7273                  * follow_page_mask().
7274                  */
7275         }
7276 out:
7277         spin_unlock(ptl);
7278         return page;
7279 }
7280
7281 struct page * __weak
7282 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7283                 pud_t *pud, int flags)
7284 {
7285         struct page *page = NULL;
7286         spinlock_t *ptl;
7287         pte_t pte;
7288
7289         if (WARN_ON_ONCE(flags & FOLL_PIN))
7290                 return NULL;
7291
7292 retry:
7293         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7294         if (!pud_huge(*pud))
7295                 goto out;
7296         pte = huge_ptep_get((pte_t *)pud);
7297         if (pte_present(pte)) {
7298                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7299                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7300                         page = NULL;
7301                         goto out;
7302                 }
7303         } else {
7304                 if (is_hugetlb_entry_migration(pte)) {
7305                         spin_unlock(ptl);
7306                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7307                         goto retry;
7308                 }
7309                 /*
7310                  * hwpoisoned entry is treated as no_page_table in
7311                  * follow_page_mask().
7312                  */
7313         }
7314 out:
7315         spin_unlock(ptl);
7316         return page;
7317 }
7318
7319 struct page * __weak
7320 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7321 {
7322         if (flags & (FOLL_GET | FOLL_PIN))
7323                 return NULL;
7324
7325         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7326 }
7327
7328 int isolate_hugetlb(struct page *page, struct list_head *list)
7329 {
7330         int ret = 0;
7331
7332         spin_lock_irq(&hugetlb_lock);
7333         if (!PageHeadHuge(page) ||
7334             !HPageMigratable(page) ||
7335             !get_page_unless_zero(page)) {
7336                 ret = -EBUSY;
7337                 goto unlock;
7338         }
7339         ClearHPageMigratable(page);
7340         list_move_tail(&page->lru, list);
7341 unlock:
7342         spin_unlock_irq(&hugetlb_lock);
7343         return ret;
7344 }
7345
7346 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7347 {
7348         int ret = 0;
7349
7350         *hugetlb = false;
7351         spin_lock_irq(&hugetlb_lock);
7352         if (PageHeadHuge(page)) {
7353                 *hugetlb = true;
7354                 if (HPageFreed(page))
7355                         ret = 0;
7356                 else if (HPageMigratable(page))
7357                         ret = get_page_unless_zero(page);
7358                 else
7359                         ret = -EBUSY;
7360         }
7361         spin_unlock_irq(&hugetlb_lock);
7362         return ret;
7363 }
7364
7365 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7366 {
7367         int ret;
7368
7369         spin_lock_irq(&hugetlb_lock);
7370         ret = __get_huge_page_for_hwpoison(pfn, flags);
7371         spin_unlock_irq(&hugetlb_lock);
7372         return ret;
7373 }
7374
7375 void putback_active_hugepage(struct page *page)
7376 {
7377         spin_lock_irq(&hugetlb_lock);
7378         SetHPageMigratable(page);
7379         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7380         spin_unlock_irq(&hugetlb_lock);
7381         put_page(page);
7382 }
7383
7384 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7385 {
7386         struct hstate *h = page_hstate(oldpage);
7387
7388         hugetlb_cgroup_migrate(oldpage, newpage);
7389         set_page_owner_migrate_reason(newpage, reason);
7390
7391         /*
7392          * transfer temporary state of the new huge page. This is
7393          * reverse to other transitions because the newpage is going to
7394          * be final while the old one will be freed so it takes over
7395          * the temporary status.
7396          *
7397          * Also note that we have to transfer the per-node surplus state
7398          * here as well otherwise the global surplus count will not match
7399          * the per-node's.
7400          */
7401         if (HPageTemporary(newpage)) {
7402                 int old_nid = page_to_nid(oldpage);
7403                 int new_nid = page_to_nid(newpage);
7404
7405                 SetHPageTemporary(oldpage);
7406                 ClearHPageTemporary(newpage);
7407
7408                 /*
7409                  * There is no need to transfer the per-node surplus state
7410                  * when we do not cross the node.
7411                  */
7412                 if (new_nid == old_nid)
7413                         return;
7414                 spin_lock_irq(&hugetlb_lock);
7415                 if (h->surplus_huge_pages_node[old_nid]) {
7416                         h->surplus_huge_pages_node[old_nid]--;
7417                         h->surplus_huge_pages_node[new_nid]++;
7418                 }
7419                 spin_unlock_irq(&hugetlb_lock);
7420         }
7421 }
7422
7423 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7424                                    unsigned long start,
7425                                    unsigned long end)
7426 {
7427         struct hstate *h = hstate_vma(vma);
7428         unsigned long sz = huge_page_size(h);
7429         struct mm_struct *mm = vma->vm_mm;
7430         struct mmu_notifier_range range;
7431         unsigned long address;
7432         spinlock_t *ptl;
7433         pte_t *ptep;
7434
7435         if (!(vma->vm_flags & VM_MAYSHARE))
7436                 return;
7437
7438         if (start >= end)
7439                 return;
7440
7441         flush_cache_range(vma, start, end);
7442         /*
7443          * No need to call adjust_range_if_pmd_sharing_possible(), because
7444          * we have already done the PUD_SIZE alignment.
7445          */
7446         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7447                                 start, end);
7448         mmu_notifier_invalidate_range_start(&range);
7449         hugetlb_vma_lock_write(vma);
7450         i_mmap_lock_write(vma->vm_file->f_mapping);
7451         for (address = start; address < end; address += PUD_SIZE) {
7452                 ptep = huge_pte_offset(mm, address, sz);
7453                 if (!ptep)
7454                         continue;
7455                 ptl = huge_pte_lock(h, mm, ptep);
7456                 huge_pmd_unshare(mm, vma, address, ptep);
7457                 spin_unlock(ptl);
7458         }
7459         flush_hugetlb_tlb_range(vma, start, end);
7460         i_mmap_unlock_write(vma->vm_file->f_mapping);
7461         hugetlb_vma_unlock_write(vma);
7462         /*
7463          * No need to call mmu_notifier_invalidate_range(), see
7464          * Documentation/mm/mmu_notifier.rst.
7465          */
7466         mmu_notifier_invalidate_range_end(&range);
7467 }
7468
7469 /*
7470  * This function will unconditionally remove all the shared pmd pgtable entries
7471  * within the specific vma for a hugetlbfs memory range.
7472  */
7473 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7474 {
7475         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7476                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7477 }
7478
7479 #ifdef CONFIG_CMA
7480 static bool cma_reserve_called __initdata;
7481
7482 static int __init cmdline_parse_hugetlb_cma(char *p)
7483 {
7484         int nid, count = 0;
7485         unsigned long tmp;
7486         char *s = p;
7487
7488         while (*s) {
7489                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7490                         break;
7491
7492                 if (s[count] == ':') {
7493                         if (tmp >= MAX_NUMNODES)
7494                                 break;
7495                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7496
7497                         s += count + 1;
7498                         tmp = memparse(s, &s);
7499                         hugetlb_cma_size_in_node[nid] = tmp;
7500                         hugetlb_cma_size += tmp;
7501
7502                         /*
7503                          * Skip the separator if have one, otherwise
7504                          * break the parsing.
7505                          */
7506                         if (*s == ',')
7507                                 s++;
7508                         else
7509                                 break;
7510                 } else {
7511                         hugetlb_cma_size = memparse(p, &p);
7512                         break;
7513                 }
7514         }
7515
7516         return 0;
7517 }
7518
7519 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7520
7521 void __init hugetlb_cma_reserve(int order)
7522 {
7523         unsigned long size, reserved, per_node;
7524         bool node_specific_cma_alloc = false;
7525         int nid;
7526
7527         cma_reserve_called = true;
7528
7529         if (!hugetlb_cma_size)
7530                 return;
7531
7532         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7533                 if (hugetlb_cma_size_in_node[nid] == 0)
7534                         continue;
7535
7536                 if (!node_online(nid)) {
7537                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7538                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7539                         hugetlb_cma_size_in_node[nid] = 0;
7540                         continue;
7541                 }
7542
7543                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7544                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7545                                 nid, (PAGE_SIZE << order) / SZ_1M);
7546                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7547                         hugetlb_cma_size_in_node[nid] = 0;
7548                 } else {
7549                         node_specific_cma_alloc = true;
7550                 }
7551         }
7552
7553         /* Validate the CMA size again in case some invalid nodes specified. */
7554         if (!hugetlb_cma_size)
7555                 return;
7556
7557         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7558                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7559                         (PAGE_SIZE << order) / SZ_1M);
7560                 hugetlb_cma_size = 0;
7561                 return;
7562         }
7563
7564         if (!node_specific_cma_alloc) {
7565                 /*
7566                  * If 3 GB area is requested on a machine with 4 numa nodes,
7567                  * let's allocate 1 GB on first three nodes and ignore the last one.
7568                  */
7569                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7570                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7571                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7572         }
7573
7574         reserved = 0;
7575         for_each_online_node(nid) {
7576                 int res;
7577                 char name[CMA_MAX_NAME];
7578
7579                 if (node_specific_cma_alloc) {
7580                         if (hugetlb_cma_size_in_node[nid] == 0)
7581                                 continue;
7582
7583                         size = hugetlb_cma_size_in_node[nid];
7584                 } else {
7585                         size = min(per_node, hugetlb_cma_size - reserved);
7586                 }
7587
7588                 size = round_up(size, PAGE_SIZE << order);
7589
7590                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7591                 /*
7592                  * Note that 'order per bit' is based on smallest size that
7593                  * may be returned to CMA allocator in the case of
7594                  * huge page demotion.
7595                  */
7596                 res = cma_declare_contiguous_nid(0, size, 0,
7597                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7598                                                  0, false, name,
7599                                                  &hugetlb_cma[nid], nid);
7600                 if (res) {
7601                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7602                                 res, nid);
7603                         continue;
7604                 }
7605
7606                 reserved += size;
7607                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7608                         size / SZ_1M, nid);
7609
7610                 if (reserved >= hugetlb_cma_size)
7611                         break;
7612         }
7613
7614         if (!reserved)
7615                 /*
7616                  * hugetlb_cma_size is used to determine if allocations from
7617                  * cma are possible.  Set to zero if no cma regions are set up.
7618                  */
7619                 hugetlb_cma_size = 0;
7620 }
7621
7622 static void __init hugetlb_cma_check(void)
7623 {
7624         if (!hugetlb_cma_size || cma_reserve_called)
7625                 return;
7626
7627         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7628 }
7629
7630 #endif /* CONFIG_CMA */