cbc25826c9b04cad90a8cc8a4be5523b4d10c416
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61                                 1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66         return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99                 unsigned long start, unsigned long end);
100
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 {
103         if (spool->count)
104                 return false;
105         if (spool->max_hpages != -1)
106                 return spool->used_hpages == 0;
107         if (spool->min_hpages != -1)
108                 return spool->rsv_hpages == spool->min_hpages;
109
110         return true;
111 }
112
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114                                                 unsigned long irq_flags)
115 {
116         spin_unlock_irqrestore(&spool->lock, irq_flags);
117
118         /* If no pages are used, and no other handles to the subpool
119          * remain, give up any reservations based on minimum size and
120          * free the subpool */
121         if (subpool_is_free(spool)) {
122                 if (spool->min_hpages != -1)
123                         hugetlb_acct_memory(spool->hstate,
124                                                 -spool->min_hpages);
125                 kfree(spool);
126         }
127 }
128
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130                                                 long min_hpages)
131 {
132         struct hugepage_subpool *spool;
133
134         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135         if (!spool)
136                 return NULL;
137
138         spin_lock_init(&spool->lock);
139         spool->count = 1;
140         spool->max_hpages = max_hpages;
141         spool->hstate = h;
142         spool->min_hpages = min_hpages;
143
144         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145                 kfree(spool);
146                 return NULL;
147         }
148         spool->rsv_hpages = min_hpages;
149
150         return spool;
151 }
152
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 {
155         unsigned long flags;
156
157         spin_lock_irqsave(&spool->lock, flags);
158         BUG_ON(!spool->count);
159         spool->count--;
160         unlock_or_release_subpool(spool, flags);
161 }
162
163 /*
164  * Subpool accounting for allocating and reserving pages.
165  * Return -ENOMEM if there are not enough resources to satisfy the
166  * request.  Otherwise, return the number of pages by which the
167  * global pools must be adjusted (upward).  The returned value may
168  * only be different than the passed value (delta) in the case where
169  * a subpool minimum size must be maintained.
170  */
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
172                                       long delta)
173 {
174         long ret = delta;
175
176         if (!spool)
177                 return ret;
178
179         spin_lock_irq(&spool->lock);
180
181         if (spool->max_hpages != -1) {          /* maximum size accounting */
182                 if ((spool->used_hpages + delta) <= spool->max_hpages)
183                         spool->used_hpages += delta;
184                 else {
185                         ret = -ENOMEM;
186                         goto unlock_ret;
187                 }
188         }
189
190         /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->rsv_hpages) {
192                 if (delta > spool->rsv_hpages) {
193                         /*
194                          * Asking for more reserves than those already taken on
195                          * behalf of subpool.  Return difference.
196                          */
197                         ret = delta - spool->rsv_hpages;
198                         spool->rsv_hpages = 0;
199                 } else {
200                         ret = 0;        /* reserves already accounted for */
201                         spool->rsv_hpages -= delta;
202                 }
203         }
204
205 unlock_ret:
206         spin_unlock_irq(&spool->lock);
207         return ret;
208 }
209
210 /*
211  * Subpool accounting for freeing and unreserving pages.
212  * Return the number of global page reservations that must be dropped.
213  * The return value may only be different than the passed value (delta)
214  * in the case where a subpool minimum size must be maintained.
215  */
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
217                                        long delta)
218 {
219         long ret = delta;
220         unsigned long flags;
221
222         if (!spool)
223                 return delta;
224
225         spin_lock_irqsave(&spool->lock, flags);
226
227         if (spool->max_hpages != -1)            /* maximum size accounting */
228                 spool->used_hpages -= delta;
229
230          /* minimum size accounting */
231         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232                 if (spool->rsv_hpages + delta <= spool->min_hpages)
233                         ret = 0;
234                 else
235                         ret = spool->rsv_hpages + delta - spool->min_hpages;
236
237                 spool->rsv_hpages += delta;
238                 if (spool->rsv_hpages > spool->min_hpages)
239                         spool->rsv_hpages = spool->min_hpages;
240         }
241
242         /*
243          * If hugetlbfs_put_super couldn't free spool due to an outstanding
244          * quota reference, free it now.
245          */
246         unlock_or_release_subpool(spool, flags);
247
248         return ret;
249 }
250
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 {
253         return HUGETLBFS_SB(inode->i_sb)->spool;
254 }
255
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 {
258         return subpool_inode(file_inode(vma->vm_file));
259 }
260
261 /*
262  * hugetlb vma_lock helper routines
263  */
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 {
266         if (__vma_shareable_lock(vma)) {
267                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268
269                 down_read(&vma_lock->rw_sema);
270         }
271 }
272
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 {
275         if (__vma_shareable_lock(vma)) {
276                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277
278                 up_read(&vma_lock->rw_sema);
279         }
280 }
281
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 {
284         if (__vma_shareable_lock(vma)) {
285                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286
287                 down_write(&vma_lock->rw_sema);
288         }
289 }
290
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 {
293         if (__vma_shareable_lock(vma)) {
294                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296                 up_write(&vma_lock->rw_sema);
297         }
298 }
299
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 {
302         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303
304         if (!__vma_shareable_lock(vma))
305                 return 1;
306
307         return down_write_trylock(&vma_lock->rw_sema);
308 }
309
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 {
312         if (__vma_shareable_lock(vma)) {
313                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314
315                 lockdep_assert_held(&vma_lock->rw_sema);
316         }
317 }
318
319 void hugetlb_vma_lock_release(struct kref *kref)
320 {
321         struct hugetlb_vma_lock *vma_lock = container_of(kref,
322                         struct hugetlb_vma_lock, refs);
323
324         kfree(vma_lock);
325 }
326
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 {
329         struct vm_area_struct *vma = vma_lock->vma;
330
331         /*
332          * vma_lock structure may or not be released as a result of put,
333          * it certainly will no longer be attached to vma so clear pointer.
334          * Semaphore synchronizes access to vma_lock->vma field.
335          */
336         vma_lock->vma = NULL;
337         vma->vm_private_data = NULL;
338         up_write(&vma_lock->rw_sema);
339         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
340 }
341
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 {
344         if (__vma_shareable_lock(vma)) {
345                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346
347                 __hugetlb_vma_unlock_write_put(vma_lock);
348         }
349 }
350
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
352 {
353         /*
354          * Only present in sharable vmas.
355          */
356         if (!vma || !__vma_shareable_lock(vma))
357                 return;
358
359         if (vma->vm_private_data) {
360                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361
362                 down_write(&vma_lock->rw_sema);
363                 __hugetlb_vma_unlock_write_put(vma_lock);
364         }
365 }
366
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 {
369         struct hugetlb_vma_lock *vma_lock;
370
371         /* Only establish in (flags) sharable vmas */
372         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
373                 return;
374
375         /* Should never get here with non-NULL vm_private_data */
376         if (vma->vm_private_data)
377                 return;
378
379         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
380         if (!vma_lock) {
381                 /*
382                  * If we can not allocate structure, then vma can not
383                  * participate in pmd sharing.  This is only a possible
384                  * performance enhancement and memory saving issue.
385                  * However, the lock is also used to synchronize page
386                  * faults with truncation.  If the lock is not present,
387                  * unlikely races could leave pages in a file past i_size
388                  * until the file is removed.  Warn in the unlikely case of
389                  * allocation failure.
390                  */
391                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
392                 return;
393         }
394
395         kref_init(&vma_lock->refs);
396         init_rwsem(&vma_lock->rw_sema);
397         vma_lock->vma = vma;
398         vma->vm_private_data = vma_lock;
399 }
400
401 /* Helper that removes a struct file_region from the resv_map cache and returns
402  * it for use.
403  */
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 {
407         struct file_region *nrg;
408
409         VM_BUG_ON(resv->region_cache_count <= 0);
410
411         resv->region_cache_count--;
412         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413         list_del(&nrg->link);
414
415         nrg->from = from;
416         nrg->to = to;
417
418         return nrg;
419 }
420
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422                                               struct file_region *rg)
423 {
424 #ifdef CONFIG_CGROUP_HUGETLB
425         nrg->reservation_counter = rg->reservation_counter;
426         nrg->css = rg->css;
427         if (rg->css)
428                 css_get(rg->css);
429 #endif
430 }
431
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434                                                 struct hstate *h,
435                                                 struct resv_map *resv,
436                                                 struct file_region *nrg)
437 {
438 #ifdef CONFIG_CGROUP_HUGETLB
439         if (h_cg) {
440                 nrg->reservation_counter =
441                         &h_cg->rsvd_hugepage[hstate_index(h)];
442                 nrg->css = &h_cg->css;
443                 /*
444                  * The caller will hold exactly one h_cg->css reference for the
445                  * whole contiguous reservation region. But this area might be
446                  * scattered when there are already some file_regions reside in
447                  * it. As a result, many file_regions may share only one css
448                  * reference. In order to ensure that one file_region must hold
449                  * exactly one h_cg->css reference, we should do css_get for
450                  * each file_region and leave the reference held by caller
451                  * untouched.
452                  */
453                 css_get(&h_cg->css);
454                 if (!resv->pages_per_hpage)
455                         resv->pages_per_hpage = pages_per_huge_page(h);
456                 /* pages_per_hpage should be the same for all entries in
457                  * a resv_map.
458                  */
459                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460         } else {
461                 nrg->reservation_counter = NULL;
462                 nrg->css = NULL;
463         }
464 #endif
465 }
466
467 static void put_uncharge_info(struct file_region *rg)
468 {
469 #ifdef CONFIG_CGROUP_HUGETLB
470         if (rg->css)
471                 css_put(rg->css);
472 #endif
473 }
474
475 static bool has_same_uncharge_info(struct file_region *rg,
476                                    struct file_region *org)
477 {
478 #ifdef CONFIG_CGROUP_HUGETLB
479         return rg->reservation_counter == org->reservation_counter &&
480                rg->css == org->css;
481
482 #else
483         return true;
484 #endif
485 }
486
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 {
489         struct file_region *nrg, *prg;
490
491         prg = list_prev_entry(rg, link);
492         if (&prg->link != &resv->regions && prg->to == rg->from &&
493             has_same_uncharge_info(prg, rg)) {
494                 prg->to = rg->to;
495
496                 list_del(&rg->link);
497                 put_uncharge_info(rg);
498                 kfree(rg);
499
500                 rg = prg;
501         }
502
503         nrg = list_next_entry(rg, link);
504         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505             has_same_uncharge_info(nrg, rg)) {
506                 nrg->from = rg->from;
507
508                 list_del(&rg->link);
509                 put_uncharge_info(rg);
510                 kfree(rg);
511         }
512 }
513
514 static inline long
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
517                      long *regions_needed)
518 {
519         struct file_region *nrg;
520
521         if (!regions_needed) {
522                 nrg = get_file_region_entry_from_cache(map, from, to);
523                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524                 list_add(&nrg->link, rg);
525                 coalesce_file_region(map, nrg);
526         } else
527                 *regions_needed += 1;
528
529         return to - from;
530 }
531
532 /*
533  * Must be called with resv->lock held.
534  *
535  * Calling this with regions_needed != NULL will count the number of pages
536  * to be added but will not modify the linked list. And regions_needed will
537  * indicate the number of file_regions needed in the cache to carry out to add
538  * the regions for this range.
539  */
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541                                      struct hugetlb_cgroup *h_cg,
542                                      struct hstate *h, long *regions_needed)
543 {
544         long add = 0;
545         struct list_head *head = &resv->regions;
546         long last_accounted_offset = f;
547         struct file_region *iter, *trg = NULL;
548         struct list_head *rg = NULL;
549
550         if (regions_needed)
551                 *regions_needed = 0;
552
553         /* In this loop, we essentially handle an entry for the range
554          * [last_accounted_offset, iter->from), at every iteration, with some
555          * bounds checking.
556          */
557         list_for_each_entry_safe(iter, trg, head, link) {
558                 /* Skip irrelevant regions that start before our range. */
559                 if (iter->from < f) {
560                         /* If this region ends after the last accounted offset,
561                          * then we need to update last_accounted_offset.
562                          */
563                         if (iter->to > last_accounted_offset)
564                                 last_accounted_offset = iter->to;
565                         continue;
566                 }
567
568                 /* When we find a region that starts beyond our range, we've
569                  * finished.
570                  */
571                 if (iter->from >= t) {
572                         rg = iter->link.prev;
573                         break;
574                 }
575
576                 /* Add an entry for last_accounted_offset -> iter->from, and
577                  * update last_accounted_offset.
578                  */
579                 if (iter->from > last_accounted_offset)
580                         add += hugetlb_resv_map_add(resv, iter->link.prev,
581                                                     last_accounted_offset,
582                                                     iter->from, h, h_cg,
583                                                     regions_needed);
584
585                 last_accounted_offset = iter->to;
586         }
587
588         /* Handle the case where our range extends beyond
589          * last_accounted_offset.
590          */
591         if (!rg)
592                 rg = head->prev;
593         if (last_accounted_offset < t)
594                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595                                             t, h, h_cg, regions_needed);
596
597         return add;
598 }
599
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601  */
602 static int allocate_file_region_entries(struct resv_map *resv,
603                                         int regions_needed)
604         __must_hold(&resv->lock)
605 {
606         LIST_HEAD(allocated_regions);
607         int to_allocate = 0, i = 0;
608         struct file_region *trg = NULL, *rg = NULL;
609
610         VM_BUG_ON(regions_needed < 0);
611
612         /*
613          * Check for sufficient descriptors in the cache to accommodate
614          * the number of in progress add operations plus regions_needed.
615          *
616          * This is a while loop because when we drop the lock, some other call
617          * to region_add or region_del may have consumed some region_entries,
618          * so we keep looping here until we finally have enough entries for
619          * (adds_in_progress + regions_needed).
620          */
621         while (resv->region_cache_count <
622                (resv->adds_in_progress + regions_needed)) {
623                 to_allocate = resv->adds_in_progress + regions_needed -
624                               resv->region_cache_count;
625
626                 /* At this point, we should have enough entries in the cache
627                  * for all the existing adds_in_progress. We should only be
628                  * needing to allocate for regions_needed.
629                  */
630                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631
632                 spin_unlock(&resv->lock);
633                 for (i = 0; i < to_allocate; i++) {
634                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
635                         if (!trg)
636                                 goto out_of_memory;
637                         list_add(&trg->link, &allocated_regions);
638                 }
639
640                 spin_lock(&resv->lock);
641
642                 list_splice(&allocated_regions, &resv->region_cache);
643                 resv->region_cache_count += to_allocate;
644         }
645
646         return 0;
647
648 out_of_memory:
649         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
650                 list_del(&rg->link);
651                 kfree(rg);
652         }
653         return -ENOMEM;
654 }
655
656 /*
657  * Add the huge page range represented by [f, t) to the reserve
658  * map.  Regions will be taken from the cache to fill in this range.
659  * Sufficient regions should exist in the cache due to the previous
660  * call to region_chg with the same range, but in some cases the cache will not
661  * have sufficient entries due to races with other code doing region_add or
662  * region_del.  The extra needed entries will be allocated.
663  *
664  * regions_needed is the out value provided by a previous call to region_chg.
665  *
666  * Return the number of new huge pages added to the map.  This number is greater
667  * than or equal to zero.  If file_region entries needed to be allocated for
668  * this operation and we were not able to allocate, it returns -ENOMEM.
669  * region_add of regions of length 1 never allocate file_regions and cannot
670  * fail; region_chg will always allocate at least 1 entry and a region_add for
671  * 1 page will only require at most 1 entry.
672  */
673 static long region_add(struct resv_map *resv, long f, long t,
674                        long in_regions_needed, struct hstate *h,
675                        struct hugetlb_cgroup *h_cg)
676 {
677         long add = 0, actual_regions_needed = 0;
678
679         spin_lock(&resv->lock);
680 retry:
681
682         /* Count how many regions are actually needed to execute this add. */
683         add_reservation_in_range(resv, f, t, NULL, NULL,
684                                  &actual_regions_needed);
685
686         /*
687          * Check for sufficient descriptors in the cache to accommodate
688          * this add operation. Note that actual_regions_needed may be greater
689          * than in_regions_needed, as the resv_map may have been modified since
690          * the region_chg call. In this case, we need to make sure that we
691          * allocate extra entries, such that we have enough for all the
692          * existing adds_in_progress, plus the excess needed for this
693          * operation.
694          */
695         if (actual_regions_needed > in_regions_needed &&
696             resv->region_cache_count <
697                     resv->adds_in_progress +
698                             (actual_regions_needed - in_regions_needed)) {
699                 /* region_add operation of range 1 should never need to
700                  * allocate file_region entries.
701                  */
702                 VM_BUG_ON(t - f <= 1);
703
704                 if (allocate_file_region_entries(
705                             resv, actual_regions_needed - in_regions_needed)) {
706                         return -ENOMEM;
707                 }
708
709                 goto retry;
710         }
711
712         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713
714         resv->adds_in_progress -= in_regions_needed;
715
716         spin_unlock(&resv->lock);
717         return add;
718 }
719
720 /*
721  * Examine the existing reserve map and determine how many
722  * huge pages in the specified range [f, t) are NOT currently
723  * represented.  This routine is called before a subsequent
724  * call to region_add that will actually modify the reserve
725  * map to add the specified range [f, t).  region_chg does
726  * not change the number of huge pages represented by the
727  * map.  A number of new file_region structures is added to the cache as a
728  * placeholder, for the subsequent region_add call to use. At least 1
729  * file_region structure is added.
730  *
731  * out_regions_needed is the number of regions added to the
732  * resv->adds_in_progress.  This value needs to be provided to a follow up call
733  * to region_add or region_abort for proper accounting.
734  *
735  * Returns the number of huge pages that need to be added to the existing
736  * reservation map for the range [f, t).  This number is greater or equal to
737  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
738  * is needed and can not be allocated.
739  */
740 static long region_chg(struct resv_map *resv, long f, long t,
741                        long *out_regions_needed)
742 {
743         long chg = 0;
744
745         spin_lock(&resv->lock);
746
747         /* Count how many hugepages in this range are NOT represented. */
748         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
749                                        out_regions_needed);
750
751         if (*out_regions_needed == 0)
752                 *out_regions_needed = 1;
753
754         if (allocate_file_region_entries(resv, *out_regions_needed))
755                 return -ENOMEM;
756
757         resv->adds_in_progress += *out_regions_needed;
758
759         spin_unlock(&resv->lock);
760         return chg;
761 }
762
763 /*
764  * Abort the in progress add operation.  The adds_in_progress field
765  * of the resv_map keeps track of the operations in progress between
766  * calls to region_chg and region_add.  Operations are sometimes
767  * aborted after the call to region_chg.  In such cases, region_abort
768  * is called to decrement the adds_in_progress counter. regions_needed
769  * is the value returned by the region_chg call, it is used to decrement
770  * the adds_in_progress counter.
771  *
772  * NOTE: The range arguments [f, t) are not needed or used in this
773  * routine.  They are kept to make reading the calling code easier as
774  * arguments will match the associated region_chg call.
775  */
776 static void region_abort(struct resv_map *resv, long f, long t,
777                          long regions_needed)
778 {
779         spin_lock(&resv->lock);
780         VM_BUG_ON(!resv->region_cache_count);
781         resv->adds_in_progress -= regions_needed;
782         spin_unlock(&resv->lock);
783 }
784
785 /*
786  * Delete the specified range [f, t) from the reserve map.  If the
787  * t parameter is LONG_MAX, this indicates that ALL regions after f
788  * should be deleted.  Locate the regions which intersect [f, t)
789  * and either trim, delete or split the existing regions.
790  *
791  * Returns the number of huge pages deleted from the reserve map.
792  * In the normal case, the return value is zero or more.  In the
793  * case where a region must be split, a new region descriptor must
794  * be allocated.  If the allocation fails, -ENOMEM will be returned.
795  * NOTE: If the parameter t == LONG_MAX, then we will never split
796  * a region and possibly return -ENOMEM.  Callers specifying
797  * t == LONG_MAX do not need to check for -ENOMEM error.
798  */
799 static long region_del(struct resv_map *resv, long f, long t)
800 {
801         struct list_head *head = &resv->regions;
802         struct file_region *rg, *trg;
803         struct file_region *nrg = NULL;
804         long del = 0;
805
806 retry:
807         spin_lock(&resv->lock);
808         list_for_each_entry_safe(rg, trg, head, link) {
809                 /*
810                  * Skip regions before the range to be deleted.  file_region
811                  * ranges are normally of the form [from, to).  However, there
812                  * may be a "placeholder" entry in the map which is of the form
813                  * (from, to) with from == to.  Check for placeholder entries
814                  * at the beginning of the range to be deleted.
815                  */
816                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
817                         continue;
818
819                 if (rg->from >= t)
820                         break;
821
822                 if (f > rg->from && t < rg->to) { /* Must split region */
823                         /*
824                          * Check for an entry in the cache before dropping
825                          * lock and attempting allocation.
826                          */
827                         if (!nrg &&
828                             resv->region_cache_count > resv->adds_in_progress) {
829                                 nrg = list_first_entry(&resv->region_cache,
830                                                         struct file_region,
831                                                         link);
832                                 list_del(&nrg->link);
833                                 resv->region_cache_count--;
834                         }
835
836                         if (!nrg) {
837                                 spin_unlock(&resv->lock);
838                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
839                                 if (!nrg)
840                                         return -ENOMEM;
841                                 goto retry;
842                         }
843
844                         del += t - f;
845                         hugetlb_cgroup_uncharge_file_region(
846                                 resv, rg, t - f, false);
847
848                         /* New entry for end of split region */
849                         nrg->from = t;
850                         nrg->to = rg->to;
851
852                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853
854                         INIT_LIST_HEAD(&nrg->link);
855
856                         /* Original entry is trimmed */
857                         rg->to = f;
858
859                         list_add(&nrg->link, &rg->link);
860                         nrg = NULL;
861                         break;
862                 }
863
864                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865                         del += rg->to - rg->from;
866                         hugetlb_cgroup_uncharge_file_region(resv, rg,
867                                                             rg->to - rg->from, true);
868                         list_del(&rg->link);
869                         kfree(rg);
870                         continue;
871                 }
872
873                 if (f <= rg->from) {    /* Trim beginning of region */
874                         hugetlb_cgroup_uncharge_file_region(resv, rg,
875                                                             t - rg->from, false);
876
877                         del += t - rg->from;
878                         rg->from = t;
879                 } else {                /* Trim end of region */
880                         hugetlb_cgroup_uncharge_file_region(resv, rg,
881                                                             rg->to - f, false);
882
883                         del += rg->to - f;
884                         rg->to = f;
885                 }
886         }
887
888         spin_unlock(&resv->lock);
889         kfree(nrg);
890         return del;
891 }
892
893 /*
894  * A rare out of memory error was encountered which prevented removal of
895  * the reserve map region for a page.  The huge page itself was free'ed
896  * and removed from the page cache.  This routine will adjust the subpool
897  * usage count, and the global reserve count if needed.  By incrementing
898  * these counts, the reserve map entry which could not be deleted will
899  * appear as a "reserved" entry instead of simply dangling with incorrect
900  * counts.
901  */
902 void hugetlb_fix_reserve_counts(struct inode *inode)
903 {
904         struct hugepage_subpool *spool = subpool_inode(inode);
905         long rsv_adjust;
906         bool reserved = false;
907
908         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909         if (rsv_adjust > 0) {
910                 struct hstate *h = hstate_inode(inode);
911
912                 if (!hugetlb_acct_memory(h, 1))
913                         reserved = true;
914         } else if (!rsv_adjust) {
915                 reserved = true;
916         }
917
918         if (!reserved)
919                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
920 }
921
922 /*
923  * Count and return the number of huge pages in the reserve map
924  * that intersect with the range [f, t).
925  */
926 static long region_count(struct resv_map *resv, long f, long t)
927 {
928         struct list_head *head = &resv->regions;
929         struct file_region *rg;
930         long chg = 0;
931
932         spin_lock(&resv->lock);
933         /* Locate each segment we overlap with, and count that overlap. */
934         list_for_each_entry(rg, head, link) {
935                 long seg_from;
936                 long seg_to;
937
938                 if (rg->to <= f)
939                         continue;
940                 if (rg->from >= t)
941                         break;
942
943                 seg_from = max(rg->from, f);
944                 seg_to = min(rg->to, t);
945
946                 chg += seg_to - seg_from;
947         }
948         spin_unlock(&resv->lock);
949
950         return chg;
951 }
952
953 /*
954  * Convert the address within this vma to the page offset within
955  * the mapping, in pagecache page units; huge pages here.
956  */
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958                         struct vm_area_struct *vma, unsigned long address)
959 {
960         return ((address - vma->vm_start) >> huge_page_shift(h)) +
961                         (vma->vm_pgoff >> huge_page_order(h));
962 }
963
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965                                      unsigned long address)
966 {
967         return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 }
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
970
971 /*
972  * Return the size of the pages allocated when backing a VMA. In the majority
973  * cases this will be same size as used by the page table entries.
974  */
975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 {
977         if (vma->vm_ops && vma->vm_ops->pagesize)
978                 return vma->vm_ops->pagesize(vma);
979         return PAGE_SIZE;
980 }
981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
982
983 /*
984  * Return the page size being used by the MMU to back a VMA. In the majority
985  * of cases, the page size used by the kernel matches the MMU size. On
986  * architectures where it differs, an architecture-specific 'strong'
987  * version of this symbol is required.
988  */
989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 {
991         return vma_kernel_pagesize(vma);
992 }
993
994 /*
995  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
996  * bits of the reservation map pointer, which are always clear due to
997  * alignment.
998  */
999 #define HPAGE_RESV_OWNER    (1UL << 0)
1000 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1002
1003 /*
1004  * These helpers are used to track how many pages are reserved for
1005  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1006  * is guaranteed to have their future faults succeed.
1007  *
1008  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1009  * the reserve counters are updated with the hugetlb_lock held. It is safe
1010  * to reset the VMA at fork() time as it is not in use yet and there is no
1011  * chance of the global counters getting corrupted as a result of the values.
1012  *
1013  * The private mapping reservation is represented in a subtly different
1014  * manner to a shared mapping.  A shared mapping has a region map associated
1015  * with the underlying file, this region map represents the backing file
1016  * pages which have ever had a reservation assigned which this persists even
1017  * after the page is instantiated.  A private mapping has a region map
1018  * associated with the original mmap which is attached to all VMAs which
1019  * reference it, this region map represents those offsets which have consumed
1020  * reservation ie. where pages have been instantiated.
1021  */
1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 {
1024         return (unsigned long)vma->vm_private_data;
1025 }
1026
1027 static void set_vma_private_data(struct vm_area_struct *vma,
1028                                                         unsigned long value)
1029 {
1030         vma->vm_private_data = (void *)value;
1031 }
1032
1033 static void
1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1035                                           struct hugetlb_cgroup *h_cg,
1036                                           struct hstate *h)
1037 {
1038 #ifdef CONFIG_CGROUP_HUGETLB
1039         if (!h_cg || !h) {
1040                 resv_map->reservation_counter = NULL;
1041                 resv_map->pages_per_hpage = 0;
1042                 resv_map->css = NULL;
1043         } else {
1044                 resv_map->reservation_counter =
1045                         &h_cg->rsvd_hugepage[hstate_index(h)];
1046                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1047                 resv_map->css = &h_cg->css;
1048         }
1049 #endif
1050 }
1051
1052 struct resv_map *resv_map_alloc(void)
1053 {
1054         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1055         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056
1057         if (!resv_map || !rg) {
1058                 kfree(resv_map);
1059                 kfree(rg);
1060                 return NULL;
1061         }
1062
1063         kref_init(&resv_map->refs);
1064         spin_lock_init(&resv_map->lock);
1065         INIT_LIST_HEAD(&resv_map->regions);
1066
1067         resv_map->adds_in_progress = 0;
1068         /*
1069          * Initialize these to 0. On shared mappings, 0's here indicate these
1070          * fields don't do cgroup accounting. On private mappings, these will be
1071          * re-initialized to the proper values, to indicate that hugetlb cgroup
1072          * reservations are to be un-charged from here.
1073          */
1074         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075
1076         INIT_LIST_HEAD(&resv_map->region_cache);
1077         list_add(&rg->link, &resv_map->region_cache);
1078         resv_map->region_cache_count = 1;
1079
1080         return resv_map;
1081 }
1082
1083 void resv_map_release(struct kref *ref)
1084 {
1085         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1086         struct list_head *head = &resv_map->region_cache;
1087         struct file_region *rg, *trg;
1088
1089         /* Clear out any active regions before we release the map. */
1090         region_del(resv_map, 0, LONG_MAX);
1091
1092         /* ... and any entries left in the cache */
1093         list_for_each_entry_safe(rg, trg, head, link) {
1094                 list_del(&rg->link);
1095                 kfree(rg);
1096         }
1097
1098         VM_BUG_ON(resv_map->adds_in_progress);
1099
1100         kfree(resv_map);
1101 }
1102
1103 static inline struct resv_map *inode_resv_map(struct inode *inode)
1104 {
1105         /*
1106          * At inode evict time, i_mapping may not point to the original
1107          * address space within the inode.  This original address space
1108          * contains the pointer to the resv_map.  So, always use the
1109          * address space embedded within the inode.
1110          * The VERY common case is inode->mapping == &inode->i_data but,
1111          * this may not be true for device special inodes.
1112          */
1113         return (struct resv_map *)(&inode->i_data)->private_data;
1114 }
1115
1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 {
1118         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1119         if (vma->vm_flags & VM_MAYSHARE) {
1120                 struct address_space *mapping = vma->vm_file->f_mapping;
1121                 struct inode *inode = mapping->host;
1122
1123                 return inode_resv_map(inode);
1124
1125         } else {
1126                 return (struct resv_map *)(get_vma_private_data(vma) &
1127                                                         ~HPAGE_RESV_MASK);
1128         }
1129 }
1130
1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 {
1133         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1134         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135
1136         set_vma_private_data(vma, (get_vma_private_data(vma) &
1137                                 HPAGE_RESV_MASK) | (unsigned long)map);
1138 }
1139
1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 {
1142         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1143         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144
1145         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1146 }
1147
1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151
1152         return (get_vma_private_data(vma) & flag) != 0;
1153 }
1154
1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 {
1157         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158         /*
1159          * Clear vm_private_data
1160          * - For shared mappings this is a per-vma semaphore that may be
1161          *   allocated in a subsequent call to hugetlb_vm_op_open.
1162          *   Before clearing, make sure pointer is not associated with vma
1163          *   as this will leak the structure.  This is the case when called
1164          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1165          *   been called to allocate a new structure.
1166          * - For MAP_PRIVATE mappings, this is the reserve map which does
1167          *   not apply to children.  Faults generated by the children are
1168          *   not guaranteed to succeed, even if read-only.
1169          */
1170         if (vma->vm_flags & VM_MAYSHARE) {
1171                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172
1173                 if (vma_lock && vma_lock->vma != vma)
1174                         vma->vm_private_data = NULL;
1175         } else
1176                 vma->vm_private_data = NULL;
1177 }
1178
1179 /*
1180  * Reset and decrement one ref on hugepage private reservation.
1181  * Called with mm->mmap_lock writer semaphore held.
1182  * This function should be only used by move_vma() and operate on
1183  * same sized vma. It should never come here with last ref on the
1184  * reservation.
1185  */
1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1187 {
1188         /*
1189          * Clear the old hugetlb private page reservation.
1190          * It has already been transferred to new_vma.
1191          *
1192          * During a mremap() operation of a hugetlb vma we call move_vma()
1193          * which copies vma into new_vma and unmaps vma. After the copy
1194          * operation both new_vma and vma share a reference to the resv_map
1195          * struct, and at that point vma is about to be unmapped. We don't
1196          * want to return the reservation to the pool at unmap of vma because
1197          * the reservation still lives on in new_vma, so simply decrement the
1198          * ref here and remove the resv_map reference from this vma.
1199          */
1200         struct resv_map *reservations = vma_resv_map(vma);
1201
1202         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1203                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1204                 kref_put(&reservations->refs, resv_map_release);
1205         }
1206
1207         hugetlb_dup_vma_private(vma);
1208 }
1209
1210 /* Returns true if the VMA has associated reserve pages */
1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 {
1213         if (vma->vm_flags & VM_NORESERVE) {
1214                 /*
1215                  * This address is already reserved by other process(chg == 0),
1216                  * so, we should decrement reserved count. Without decrementing,
1217                  * reserve count remains after releasing inode, because this
1218                  * allocated page will go into page cache and is regarded as
1219                  * coming from reserved pool in releasing step.  Currently, we
1220                  * don't have any other solution to deal with this situation
1221                  * properly, so add work-around here.
1222                  */
1223                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1224                         return true;
1225                 else
1226                         return false;
1227         }
1228
1229         /* Shared mappings always use reserves */
1230         if (vma->vm_flags & VM_MAYSHARE) {
1231                 /*
1232                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1233                  * be a region map for all pages.  The only situation where
1234                  * there is no region map is if a hole was punched via
1235                  * fallocate.  In this case, there really are no reserves to
1236                  * use.  This situation is indicated if chg != 0.
1237                  */
1238                 if (chg)
1239                         return false;
1240                 else
1241                         return true;
1242         }
1243
1244         /*
1245          * Only the process that called mmap() has reserves for
1246          * private mappings.
1247          */
1248         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249                 /*
1250                  * Like the shared case above, a hole punch or truncate
1251                  * could have been performed on the private mapping.
1252                  * Examine the value of chg to determine if reserves
1253                  * actually exist or were previously consumed.
1254                  * Very Subtle - The value of chg comes from a previous
1255                  * call to vma_needs_reserves().  The reserve map for
1256                  * private mappings has different (opposite) semantics
1257                  * than that of shared mappings.  vma_needs_reserves()
1258                  * has already taken this difference in semantics into
1259                  * account.  Therefore, the meaning of chg is the same
1260                  * as in the shared case above.  Code could easily be
1261                  * combined, but keeping it separate draws attention to
1262                  * subtle differences.
1263                  */
1264                 if (chg)
1265                         return false;
1266                 else
1267                         return true;
1268         }
1269
1270         return false;
1271 }
1272
1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 {
1275         int nid = folio_nid(folio);
1276
1277         lockdep_assert_held(&hugetlb_lock);
1278         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279
1280         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1281         h->free_huge_pages++;
1282         h->free_huge_pages_node[nid]++;
1283         folio_set_hugetlb_freed(folio);
1284 }
1285
1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1287                                                                 int nid)
1288 {
1289         struct folio *folio;
1290         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291
1292         lockdep_assert_held(&hugetlb_lock);
1293         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1294                 if (pin && !folio_is_longterm_pinnable(folio))
1295                         continue;
1296
1297                 if (folio_test_hwpoison(folio))
1298                         continue;
1299
1300                 list_move(&folio->lru, &h->hugepage_activelist);
1301                 folio_ref_unfreeze(folio, 1);
1302                 folio_clear_hugetlb_freed(folio);
1303                 h->free_huge_pages--;
1304                 h->free_huge_pages_node[nid]--;
1305                 return folio;
1306         }
1307
1308         return NULL;
1309 }
1310
1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1312                                                         int nid, nodemask_t *nmask)
1313 {
1314         unsigned int cpuset_mems_cookie;
1315         struct zonelist *zonelist;
1316         struct zone *zone;
1317         struct zoneref *z;
1318         int node = NUMA_NO_NODE;
1319
1320         zonelist = node_zonelist(nid, gfp_mask);
1321
1322 retry_cpuset:
1323         cpuset_mems_cookie = read_mems_allowed_begin();
1324         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325                 struct folio *folio;
1326
1327                 if (!cpuset_zone_allowed(zone, gfp_mask))
1328                         continue;
1329                 /*
1330                  * no need to ask again on the same node. Pool is node rather than
1331                  * zone aware
1332                  */
1333                 if (zone_to_nid(zone) == node)
1334                         continue;
1335                 node = zone_to_nid(zone);
1336
1337                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1338                 if (folio)
1339                         return folio;
1340         }
1341         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1342                 goto retry_cpuset;
1343
1344         return NULL;
1345 }
1346
1347 static unsigned long available_huge_pages(struct hstate *h)
1348 {
1349         return h->free_huge_pages - h->resv_huge_pages;
1350 }
1351
1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1353                                 struct vm_area_struct *vma,
1354                                 unsigned long address, int avoid_reserve,
1355                                 long chg)
1356 {
1357         struct folio *folio = NULL;
1358         struct mempolicy *mpol;
1359         gfp_t gfp_mask;
1360         nodemask_t *nodemask;
1361         int nid;
1362
1363         /*
1364          * A child process with MAP_PRIVATE mappings created by their parent
1365          * have no page reserves. This check ensures that reservations are
1366          * not "stolen". The child may still get SIGKILLed
1367          */
1368         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1369                 goto err;
1370
1371         /* If reserves cannot be used, ensure enough pages are in the pool */
1372         if (avoid_reserve && !available_huge_pages(h))
1373                 goto err;
1374
1375         gfp_mask = htlb_alloc_mask(h);
1376         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377
1378         if (mpol_is_preferred_many(mpol)) {
1379                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1380                                                         nid, nodemask);
1381
1382                 /* Fallback to all nodes if page==NULL */
1383                 nodemask = NULL;
1384         }
1385
1386         if (!folio)
1387                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1388                                                         nid, nodemask);
1389
1390         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391                 folio_set_hugetlb_restore_reserve(folio);
1392                 h->resv_huge_pages--;
1393         }
1394
1395         mpol_cond_put(mpol);
1396         return folio;
1397
1398 err:
1399         return NULL;
1400 }
1401
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411         nid = next_node_in(nid, *nodes_allowed);
1412         VM_BUG_ON(nid >= MAX_NUMNODES);
1413
1414         return nid;
1415 }
1416
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419         if (!node_isset(nid, *nodes_allowed))
1420                 nid = next_node_allowed(nid, nodes_allowed);
1421         return nid;
1422 }
1423
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431                                         nodemask_t *nodes_allowed)
1432 {
1433         int nid;
1434
1435         VM_BUG_ON(!nodes_allowed);
1436
1437         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439
1440         return nid;
1441 }
1442
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451         int nid;
1452
1453         VM_BUG_ON(!nodes_allowed);
1454
1455         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457
1458         return nid;
1459 }
1460
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1462         for (nr_nodes = nodes_weight(*mask);                            \
1463                 nr_nodes > 0 &&                                         \
1464                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1465                 nr_nodes--)
1466
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1468         for (nr_nodes = nodes_weight(*mask);                            \
1469                 nr_nodes > 0 &&                                         \
1470                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1471                 nr_nodes--)
1472
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475                                         unsigned int order, bool demote)
1476 {
1477         int i;
1478         int nr_pages = 1 << order;
1479         struct page *p;
1480
1481         atomic_set(&folio->_entire_mapcount, 0);
1482         atomic_set(&folio->_nr_pages_mapped, 0);
1483         atomic_set(&folio->_pincount, 0);
1484
1485         for (i = 1; i < nr_pages; i++) {
1486                 p = folio_page(folio, i);
1487                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1488                 p->mapping = NULL;
1489                 clear_compound_head(p);
1490                 if (!demote)
1491                         set_page_refcounted(p);
1492         }
1493
1494         __folio_clear_head(folio);
1495 }
1496
1497 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1498                                         unsigned int order)
1499 {
1500         __destroy_compound_gigantic_folio(folio, order, true);
1501 }
1502
1503 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1504 static void destroy_compound_gigantic_folio(struct folio *folio,
1505                                         unsigned int order)
1506 {
1507         __destroy_compound_gigantic_folio(folio, order, false);
1508 }
1509
1510 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1511 {
1512         /*
1513          * If the page isn't allocated using the cma allocator,
1514          * cma_release() returns false.
1515          */
1516 #ifdef CONFIG_CMA
1517         int nid = folio_nid(folio);
1518
1519         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1520                 return;
1521 #endif
1522
1523         free_contig_range(folio_pfn(folio), 1 << order);
1524 }
1525
1526 #ifdef CONFIG_CONTIG_ALLOC
1527 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1528                 int nid, nodemask_t *nodemask)
1529 {
1530         struct page *page;
1531         unsigned long nr_pages = pages_per_huge_page(h);
1532         if (nid == NUMA_NO_NODE)
1533                 nid = numa_mem_id();
1534
1535 #ifdef CONFIG_CMA
1536         {
1537                 int node;
1538
1539                 if (hugetlb_cma[nid]) {
1540                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1541                                         huge_page_order(h), true);
1542                         if (page)
1543                                 return page_folio(page);
1544                 }
1545
1546                 if (!(gfp_mask & __GFP_THISNODE)) {
1547                         for_each_node_mask(node, *nodemask) {
1548                                 if (node == nid || !hugetlb_cma[node])
1549                                         continue;
1550
1551                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1552                                                 huge_page_order(h), true);
1553                                 if (page)
1554                                         return page_folio(page);
1555                         }
1556                 }
1557         }
1558 #endif
1559
1560         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1561         return page ? page_folio(page) : NULL;
1562 }
1563
1564 #else /* !CONFIG_CONTIG_ALLOC */
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566                                         int nid, nodemask_t *nodemask)
1567 {
1568         return NULL;
1569 }
1570 #endif /* CONFIG_CONTIG_ALLOC */
1571
1572 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1573 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1574                                         int nid, nodemask_t *nodemask)
1575 {
1576         return NULL;
1577 }
1578 static inline void free_gigantic_folio(struct folio *folio,
1579                                                 unsigned int order) { }
1580 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1581                                                 unsigned int order) { }
1582 #endif
1583
1584 static inline void __clear_hugetlb_destructor(struct hstate *h,
1585                                                 struct folio *folio)
1586 {
1587         lockdep_assert_held(&hugetlb_lock);
1588
1589         folio_clear_hugetlb(folio);
1590 }
1591
1592 /*
1593  * Remove hugetlb folio from lists.
1594  * If vmemmap exists for the folio, update dtor so that the folio appears
1595  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1596  * to update dtor.
1597  *
1598  * A reference is held on the folio, except in the case of demote.
1599  *
1600  * Must be called with hugetlb lock held.
1601  */
1602 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1603                                                         bool adjust_surplus,
1604                                                         bool demote)
1605 {
1606         int nid = folio_nid(folio);
1607
1608         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1609         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1610
1611         lockdep_assert_held(&hugetlb_lock);
1612         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1613                 return;
1614
1615         list_del(&folio->lru);
1616
1617         if (folio_test_hugetlb_freed(folio)) {
1618                 h->free_huge_pages--;
1619                 h->free_huge_pages_node[nid]--;
1620         }
1621         if (adjust_surplus) {
1622                 h->surplus_huge_pages--;
1623                 h->surplus_huge_pages_node[nid]--;
1624         }
1625
1626         /*
1627          * We can only clear the hugetlb destructor after allocating vmemmap
1628          * pages.  Otherwise, someone (memory error handling) may try to write
1629          * to tail struct pages.
1630          */
1631         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1632                 __clear_hugetlb_destructor(h, folio);
1633
1634          /*
1635           * In the case of demote we do not ref count the page as it will soon
1636           * be turned into a page of smaller size.
1637          */
1638         if (!demote)
1639                 folio_ref_unfreeze(folio, 1);
1640
1641         h->nr_huge_pages--;
1642         h->nr_huge_pages_node[nid]--;
1643 }
1644
1645 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1646                                                         bool adjust_surplus)
1647 {
1648         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1649 }
1650
1651 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1652                                                         bool adjust_surplus)
1653 {
1654         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1655 }
1656
1657 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1658                              bool adjust_surplus)
1659 {
1660         int zeroed;
1661         int nid = folio_nid(folio);
1662
1663         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1664
1665         lockdep_assert_held(&hugetlb_lock);
1666
1667         INIT_LIST_HEAD(&folio->lru);
1668         h->nr_huge_pages++;
1669         h->nr_huge_pages_node[nid]++;
1670
1671         if (adjust_surplus) {
1672                 h->surplus_huge_pages++;
1673                 h->surplus_huge_pages_node[nid]++;
1674         }
1675
1676         folio_set_hugetlb(folio);
1677         folio_change_private(folio, NULL);
1678         /*
1679          * We have to set hugetlb_vmemmap_optimized again as above
1680          * folio_change_private(folio, NULL) cleared it.
1681          */
1682         folio_set_hugetlb_vmemmap_optimized(folio);
1683
1684         /*
1685          * This folio is about to be managed by the hugetlb allocator and
1686          * should have no users.  Drop our reference, and check for others
1687          * just in case.
1688          */
1689         zeroed = folio_put_testzero(folio);
1690         if (unlikely(!zeroed))
1691                 /*
1692                  * It is VERY unlikely soneone else has taken a ref
1693                  * on the folio.  In this case, we simply return as
1694                  * free_huge_folio() will be called when this other ref
1695                  * is dropped.
1696                  */
1697                 return;
1698
1699         arch_clear_hugepage_flags(&folio->page);
1700         enqueue_hugetlb_folio(h, folio);
1701 }
1702
1703 static void __update_and_free_hugetlb_folio(struct hstate *h,
1704                                                 struct folio *folio)
1705 {
1706         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1707
1708         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1709                 return;
1710
1711         /*
1712          * If we don't know which subpages are hwpoisoned, we can't free
1713          * the hugepage, so it's leaked intentionally.
1714          */
1715         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1716                 return;
1717
1718         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1719                 spin_lock_irq(&hugetlb_lock);
1720                 /*
1721                  * If we cannot allocate vmemmap pages, just refuse to free the
1722                  * page and put the page back on the hugetlb free list and treat
1723                  * as a surplus page.
1724                  */
1725                 add_hugetlb_folio(h, folio, true);
1726                 spin_unlock_irq(&hugetlb_lock);
1727                 return;
1728         }
1729
1730         /*
1731          * Move PageHWPoison flag from head page to the raw error pages,
1732          * which makes any healthy subpages reusable.
1733          */
1734         if (unlikely(folio_test_hwpoison(folio)))
1735                 folio_clear_hugetlb_hwpoison(folio);
1736
1737         /*
1738          * If vmemmap pages were allocated above, then we need to clear the
1739          * hugetlb destructor under the hugetlb lock.
1740          */
1741         if (clear_dtor) {
1742                 spin_lock_irq(&hugetlb_lock);
1743                 __clear_hugetlb_destructor(h, folio);
1744                 spin_unlock_irq(&hugetlb_lock);
1745         }
1746
1747         /*
1748          * Non-gigantic pages demoted from CMA allocated gigantic pages
1749          * need to be given back to CMA in free_gigantic_folio.
1750          */
1751         if (hstate_is_gigantic(h) ||
1752             hugetlb_cma_folio(folio, huge_page_order(h))) {
1753                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754                 free_gigantic_folio(folio, huge_page_order(h));
1755         } else {
1756                 __free_pages(&folio->page, huge_page_order(h));
1757         }
1758 }
1759
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775         struct llist_node *node;
1776
1777         node = llist_del_all(&hpage_freelist);
1778
1779         while (node) {
1780                 struct page *page;
1781                 struct hstate *h;
1782
1783                 page = container_of((struct address_space **)node,
1784                                      struct page, mapping);
1785                 node = node->next;
1786                 page->mapping = NULL;
1787                 /*
1788                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1789                  * folio_hstate() is going to trigger because a previous call to
1790                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1791                  * not use folio_hstate() directly.
1792                  */
1793                 h = size_to_hstate(page_size(page));
1794
1795                 __update_and_free_hugetlb_folio(h, page_folio(page));
1796
1797                 cond_resched();
1798         }
1799 }
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1801
1802 static inline void flush_free_hpage_work(struct hstate *h)
1803 {
1804         if (hugetlb_vmemmap_optimizable(h))
1805                 flush_work(&free_hpage_work);
1806 }
1807
1808 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1809                                  bool atomic)
1810 {
1811         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1812                 __update_and_free_hugetlb_folio(h, folio);
1813                 return;
1814         }
1815
1816         /*
1817          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1818          *
1819          * Only call schedule_work() if hpage_freelist is previously
1820          * empty. Otherwise, schedule_work() had been called but the workfn
1821          * hasn't retrieved the list yet.
1822          */
1823         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1824                 schedule_work(&free_hpage_work);
1825 }
1826
1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1828 {
1829         struct page *page, *t_page;
1830         struct folio *folio;
1831
1832         list_for_each_entry_safe(page, t_page, list, lru) {
1833                 folio = page_folio(page);
1834                 update_and_free_hugetlb_folio(h, folio, false);
1835                 cond_resched();
1836         }
1837 }
1838
1839 struct hstate *size_to_hstate(unsigned long size)
1840 {
1841         struct hstate *h;
1842
1843         for_each_hstate(h) {
1844                 if (huge_page_size(h) == size)
1845                         return h;
1846         }
1847         return NULL;
1848 }
1849
1850 void free_huge_folio(struct folio *folio)
1851 {
1852         /*
1853          * Can't pass hstate in here because it is called from the
1854          * compound page destructor.
1855          */
1856         struct hstate *h = folio_hstate(folio);
1857         int nid = folio_nid(folio);
1858         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1859         bool restore_reserve;
1860         unsigned long flags;
1861
1862         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1863         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1864
1865         hugetlb_set_folio_subpool(folio, NULL);
1866         if (folio_test_anon(folio))
1867                 __ClearPageAnonExclusive(&folio->page);
1868         folio->mapping = NULL;
1869         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1870         folio_clear_hugetlb_restore_reserve(folio);
1871
1872         /*
1873          * If HPageRestoreReserve was set on page, page allocation consumed a
1874          * reservation.  If the page was associated with a subpool, there
1875          * would have been a page reserved in the subpool before allocation
1876          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1877          * reservation, do not call hugepage_subpool_put_pages() as this will
1878          * remove the reserved page from the subpool.
1879          */
1880         if (!restore_reserve) {
1881                 /*
1882                  * A return code of zero implies that the subpool will be
1883                  * under its minimum size if the reservation is not restored
1884                  * after page is free.  Therefore, force restore_reserve
1885                  * operation.
1886                  */
1887                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1888                         restore_reserve = true;
1889         }
1890
1891         spin_lock_irqsave(&hugetlb_lock, flags);
1892         folio_clear_hugetlb_migratable(folio);
1893         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1894                                      pages_per_huge_page(h), folio);
1895         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1896                                           pages_per_huge_page(h), folio);
1897         if (restore_reserve)
1898                 h->resv_huge_pages++;
1899
1900         if (folio_test_hugetlb_temporary(folio)) {
1901                 remove_hugetlb_folio(h, folio, false);
1902                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1903                 update_and_free_hugetlb_folio(h, folio, true);
1904         } else if (h->surplus_huge_pages_node[nid]) {
1905                 /* remove the page from active list */
1906                 remove_hugetlb_folio(h, folio, true);
1907                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1908                 update_and_free_hugetlb_folio(h, folio, true);
1909         } else {
1910                 arch_clear_hugepage_flags(&folio->page);
1911                 enqueue_hugetlb_folio(h, folio);
1912                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1913         }
1914 }
1915
1916 /*
1917  * Must be called with the hugetlb lock held
1918  */
1919 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1920 {
1921         lockdep_assert_held(&hugetlb_lock);
1922         h->nr_huge_pages++;
1923         h->nr_huge_pages_node[nid]++;
1924 }
1925
1926 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1927 {
1928         hugetlb_vmemmap_optimize(h, &folio->page);
1929         INIT_LIST_HEAD(&folio->lru);
1930         folio_set_hugetlb(folio);
1931         hugetlb_set_folio_subpool(folio, NULL);
1932         set_hugetlb_cgroup(folio, NULL);
1933         set_hugetlb_cgroup_rsvd(folio, NULL);
1934 }
1935
1936 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1937 {
1938         __prep_new_hugetlb_folio(h, folio);
1939         spin_lock_irq(&hugetlb_lock);
1940         __prep_account_new_huge_page(h, nid);
1941         spin_unlock_irq(&hugetlb_lock);
1942 }
1943
1944 static bool __prep_compound_gigantic_folio(struct folio *folio,
1945                                         unsigned int order, bool demote)
1946 {
1947         int i, j;
1948         int nr_pages = 1 << order;
1949         struct page *p;
1950
1951         __folio_clear_reserved(folio);
1952         for (i = 0; i < nr_pages; i++) {
1953                 p = folio_page(folio, i);
1954
1955                 /*
1956                  * For gigantic hugepages allocated through bootmem at
1957                  * boot, it's safer to be consistent with the not-gigantic
1958                  * hugepages and clear the PG_reserved bit from all tail pages
1959                  * too.  Otherwise drivers using get_user_pages() to access tail
1960                  * pages may get the reference counting wrong if they see
1961                  * PG_reserved set on a tail page (despite the head page not
1962                  * having PG_reserved set).  Enforcing this consistency between
1963                  * head and tail pages allows drivers to optimize away a check
1964                  * on the head page when they need know if put_page() is needed
1965                  * after get_user_pages().
1966                  */
1967                 if (i != 0)     /* head page cleared above */
1968                         __ClearPageReserved(p);
1969                 /*
1970                  * Subtle and very unlikely
1971                  *
1972                  * Gigantic 'page allocators' such as memblock or cma will
1973                  * return a set of pages with each page ref counted.  We need
1974                  * to turn this set of pages into a compound page with tail
1975                  * page ref counts set to zero.  Code such as speculative page
1976                  * cache adding could take a ref on a 'to be' tail page.
1977                  * We need to respect any increased ref count, and only set
1978                  * the ref count to zero if count is currently 1.  If count
1979                  * is not 1, we return an error.  An error return indicates
1980                  * the set of pages can not be converted to a gigantic page.
1981                  * The caller who allocated the pages should then discard the
1982                  * pages using the appropriate free interface.
1983                  *
1984                  * In the case of demote, the ref count will be zero.
1985                  */
1986                 if (!demote) {
1987                         if (!page_ref_freeze(p, 1)) {
1988                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1989                                 goto out_error;
1990                         }
1991                 } else {
1992                         VM_BUG_ON_PAGE(page_count(p), p);
1993                 }
1994                 if (i != 0)
1995                         set_compound_head(p, &folio->page);
1996         }
1997         __folio_set_head(folio);
1998         /* we rely on prep_new_hugetlb_folio to set the destructor */
1999         folio_set_order(folio, order);
2000         atomic_set(&folio->_entire_mapcount, -1);
2001         atomic_set(&folio->_nr_pages_mapped, 0);
2002         atomic_set(&folio->_pincount, 0);
2003         return true;
2004
2005 out_error:
2006         /* undo page modifications made above */
2007         for (j = 0; j < i; j++) {
2008                 p = folio_page(folio, j);
2009                 if (j != 0)
2010                         clear_compound_head(p);
2011                 set_page_refcounted(p);
2012         }
2013         /* need to clear PG_reserved on remaining tail pages  */
2014         for (; j < nr_pages; j++) {
2015                 p = folio_page(folio, j);
2016                 __ClearPageReserved(p);
2017         }
2018         return false;
2019 }
2020
2021 static bool prep_compound_gigantic_folio(struct folio *folio,
2022                                                         unsigned int order)
2023 {
2024         return __prep_compound_gigantic_folio(folio, order, false);
2025 }
2026
2027 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2028                                                         unsigned int order)
2029 {
2030         return __prep_compound_gigantic_folio(folio, order, true);
2031 }
2032
2033 /*
2034  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2035  * transparent huge pages.  See the PageTransHuge() documentation for more
2036  * details.
2037  */
2038 int PageHuge(struct page *page)
2039 {
2040         struct folio *folio;
2041
2042         if (!PageCompound(page))
2043                 return 0;
2044         folio = page_folio(page);
2045         return folio_test_hugetlb(folio);
2046 }
2047 EXPORT_SYMBOL_GPL(PageHuge);
2048
2049 /*
2050  * Find and lock address space (mapping) in write mode.
2051  *
2052  * Upon entry, the page is locked which means that page_mapping() is
2053  * stable.  Due to locking order, we can only trylock_write.  If we can
2054  * not get the lock, simply return NULL to caller.
2055  */
2056 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2057 {
2058         struct address_space *mapping = page_mapping(hpage);
2059
2060         if (!mapping)
2061                 return mapping;
2062
2063         if (i_mmap_trylock_write(mapping))
2064                 return mapping;
2065
2066         return NULL;
2067 }
2068
2069 pgoff_t hugetlb_basepage_index(struct page *page)
2070 {
2071         struct page *page_head = compound_head(page);
2072         pgoff_t index = page_index(page_head);
2073         unsigned long compound_idx;
2074
2075         if (compound_order(page_head) > MAX_ORDER)
2076                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2077         else
2078                 compound_idx = page - page_head;
2079
2080         return (index << compound_order(page_head)) + compound_idx;
2081 }
2082
2083 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2084                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2085                 nodemask_t *node_alloc_noretry)
2086 {
2087         int order = huge_page_order(h);
2088         struct page *page;
2089         bool alloc_try_hard = true;
2090         bool retry = true;
2091
2092         /*
2093          * By default we always try hard to allocate the page with
2094          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2095          * a loop (to adjust global huge page counts) and previous allocation
2096          * failed, do not continue to try hard on the same node.  Use the
2097          * node_alloc_noretry bitmap to manage this state information.
2098          */
2099         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2100                 alloc_try_hard = false;
2101         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2102         if (alloc_try_hard)
2103                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2104         if (nid == NUMA_NO_NODE)
2105                 nid = numa_mem_id();
2106 retry:
2107         page = __alloc_pages(gfp_mask, order, nid, nmask);
2108
2109         /* Freeze head page */
2110         if (page && !page_ref_freeze(page, 1)) {
2111                 __free_pages(page, order);
2112                 if (retry) {    /* retry once */
2113                         retry = false;
2114                         goto retry;
2115                 }
2116                 /* WOW!  twice in a row. */
2117                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2118                 page = NULL;
2119         }
2120
2121         /*
2122          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2123          * indicates an overall state change.  Clear bit so that we resume
2124          * normal 'try hard' allocations.
2125          */
2126         if (node_alloc_noretry && page && !alloc_try_hard)
2127                 node_clear(nid, *node_alloc_noretry);
2128
2129         /*
2130          * If we tried hard to get a page but failed, set bit so that
2131          * subsequent attempts will not try as hard until there is an
2132          * overall state change.
2133          */
2134         if (node_alloc_noretry && !page && alloc_try_hard)
2135                 node_set(nid, *node_alloc_noretry);
2136
2137         if (!page) {
2138                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2139                 return NULL;
2140         }
2141
2142         __count_vm_event(HTLB_BUDDY_PGALLOC);
2143         return page_folio(page);
2144 }
2145
2146 /*
2147  * Common helper to allocate a fresh hugetlb page. All specific allocators
2148  * should use this function to get new hugetlb pages
2149  *
2150  * Note that returned page is 'frozen':  ref count of head page and all tail
2151  * pages is zero.
2152  */
2153 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2154                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2155                 nodemask_t *node_alloc_noretry)
2156 {
2157         struct folio *folio;
2158         bool retry = false;
2159
2160 retry:
2161         if (hstate_is_gigantic(h))
2162                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2163         else
2164                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2165                                 nid, nmask, node_alloc_noretry);
2166         if (!folio)
2167                 return NULL;
2168         if (hstate_is_gigantic(h)) {
2169                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2170                         /*
2171                          * Rare failure to convert pages to compound page.
2172                          * Free pages and try again - ONCE!
2173                          */
2174                         free_gigantic_folio(folio, huge_page_order(h));
2175                         if (!retry) {
2176                                 retry = true;
2177                                 goto retry;
2178                         }
2179                         return NULL;
2180                 }
2181         }
2182         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2183
2184         return folio;
2185 }
2186
2187 /*
2188  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2189  * manner.
2190  */
2191 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2192                                 nodemask_t *node_alloc_noretry)
2193 {
2194         struct folio *folio;
2195         int nr_nodes, node;
2196         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2197
2198         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2199                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2200                                         nodes_allowed, node_alloc_noretry);
2201                 if (folio) {
2202                         free_huge_folio(folio); /* free it into the hugepage allocator */
2203                         return 1;
2204                 }
2205         }
2206
2207         return 0;
2208 }
2209
2210 /*
2211  * Remove huge page from pool from next node to free.  Attempt to keep
2212  * persistent huge pages more or less balanced over allowed nodes.
2213  * This routine only 'removes' the hugetlb page.  The caller must make
2214  * an additional call to free the page to low level allocators.
2215  * Called with hugetlb_lock locked.
2216  */
2217 static struct page *remove_pool_huge_page(struct hstate *h,
2218                                                 nodemask_t *nodes_allowed,
2219                                                  bool acct_surplus)
2220 {
2221         int nr_nodes, node;
2222         struct page *page = NULL;
2223         struct folio *folio;
2224
2225         lockdep_assert_held(&hugetlb_lock);
2226         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2227                 /*
2228                  * If we're returning unused surplus pages, only examine
2229                  * nodes with surplus pages.
2230                  */
2231                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2232                     !list_empty(&h->hugepage_freelists[node])) {
2233                         page = list_entry(h->hugepage_freelists[node].next,
2234                                           struct page, lru);
2235                         folio = page_folio(page);
2236                         remove_hugetlb_folio(h, folio, acct_surplus);
2237                         break;
2238                 }
2239         }
2240
2241         return page;
2242 }
2243
2244 /*
2245  * Dissolve a given free hugepage into free buddy pages. This function does
2246  * nothing for in-use hugepages and non-hugepages.
2247  * This function returns values like below:
2248  *
2249  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2250  *           when the system is under memory pressure and the feature of
2251  *           freeing unused vmemmap pages associated with each hugetlb page
2252  *           is enabled.
2253  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2254  *           (allocated or reserved.)
2255  *       0:  successfully dissolved free hugepages or the page is not a
2256  *           hugepage (considered as already dissolved)
2257  */
2258 int dissolve_free_huge_page(struct page *page)
2259 {
2260         int rc = -EBUSY;
2261         struct folio *folio = page_folio(page);
2262
2263 retry:
2264         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2265         if (!folio_test_hugetlb(folio))
2266                 return 0;
2267
2268         spin_lock_irq(&hugetlb_lock);
2269         if (!folio_test_hugetlb(folio)) {
2270                 rc = 0;
2271                 goto out;
2272         }
2273
2274         if (!folio_ref_count(folio)) {
2275                 struct hstate *h = folio_hstate(folio);
2276                 if (!available_huge_pages(h))
2277                         goto out;
2278
2279                 /*
2280                  * We should make sure that the page is already on the free list
2281                  * when it is dissolved.
2282                  */
2283                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2284                         spin_unlock_irq(&hugetlb_lock);
2285                         cond_resched();
2286
2287                         /*
2288                          * Theoretically, we should return -EBUSY when we
2289                          * encounter this race. In fact, we have a chance
2290                          * to successfully dissolve the page if we do a
2291                          * retry. Because the race window is quite small.
2292                          * If we seize this opportunity, it is an optimization
2293                          * for increasing the success rate of dissolving page.
2294                          */
2295                         goto retry;
2296                 }
2297
2298                 remove_hugetlb_folio(h, folio, false);
2299                 h->max_huge_pages--;
2300                 spin_unlock_irq(&hugetlb_lock);
2301
2302                 /*
2303                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2304                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2305                  * free the page if it can not allocate required vmemmap.  We
2306                  * need to adjust max_huge_pages if the page is not freed.
2307                  * Attempt to allocate vmemmmap here so that we can take
2308                  * appropriate action on failure.
2309                  */
2310                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2311                 if (!rc) {
2312                         update_and_free_hugetlb_folio(h, folio, false);
2313                 } else {
2314                         spin_lock_irq(&hugetlb_lock);
2315                         add_hugetlb_folio(h, folio, false);
2316                         h->max_huge_pages++;
2317                         spin_unlock_irq(&hugetlb_lock);
2318                 }
2319
2320                 return rc;
2321         }
2322 out:
2323         spin_unlock_irq(&hugetlb_lock);
2324         return rc;
2325 }
2326
2327 /*
2328  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2329  * make specified memory blocks removable from the system.
2330  * Note that this will dissolve a free gigantic hugepage completely, if any
2331  * part of it lies within the given range.
2332  * Also note that if dissolve_free_huge_page() returns with an error, all
2333  * free hugepages that were dissolved before that error are lost.
2334  */
2335 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2336 {
2337         unsigned long pfn;
2338         struct page *page;
2339         int rc = 0;
2340         unsigned int order;
2341         struct hstate *h;
2342
2343         if (!hugepages_supported())
2344                 return rc;
2345
2346         order = huge_page_order(&default_hstate);
2347         for_each_hstate(h)
2348                 order = min(order, huge_page_order(h));
2349
2350         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2351                 page = pfn_to_page(pfn);
2352                 rc = dissolve_free_huge_page(page);
2353                 if (rc)
2354                         break;
2355         }
2356
2357         return rc;
2358 }
2359
2360 /*
2361  * Allocates a fresh surplus page from the page allocator.
2362  */
2363 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2364                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2365 {
2366         struct folio *folio = NULL;
2367
2368         if (hstate_is_gigantic(h))
2369                 return NULL;
2370
2371         spin_lock_irq(&hugetlb_lock);
2372         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2373                 goto out_unlock;
2374         spin_unlock_irq(&hugetlb_lock);
2375
2376         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2377         if (!folio)
2378                 return NULL;
2379
2380         spin_lock_irq(&hugetlb_lock);
2381         /*
2382          * We could have raced with the pool size change.
2383          * Double check that and simply deallocate the new page
2384          * if we would end up overcommiting the surpluses. Abuse
2385          * temporary page to workaround the nasty free_huge_folio
2386          * codeflow
2387          */
2388         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2389                 folio_set_hugetlb_temporary(folio);
2390                 spin_unlock_irq(&hugetlb_lock);
2391                 free_huge_folio(folio);
2392                 return NULL;
2393         }
2394
2395         h->surplus_huge_pages++;
2396         h->surplus_huge_pages_node[folio_nid(folio)]++;
2397
2398 out_unlock:
2399         spin_unlock_irq(&hugetlb_lock);
2400
2401         return folio;
2402 }
2403
2404 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2405                                      int nid, nodemask_t *nmask)
2406 {
2407         struct folio *folio;
2408
2409         if (hstate_is_gigantic(h))
2410                 return NULL;
2411
2412         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2413         if (!folio)
2414                 return NULL;
2415
2416         /* fresh huge pages are frozen */
2417         folio_ref_unfreeze(folio, 1);
2418         /*
2419          * We do not account these pages as surplus because they are only
2420          * temporary and will be released properly on the last reference
2421          */
2422         folio_set_hugetlb_temporary(folio);
2423
2424         return folio;
2425 }
2426
2427 /*
2428  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2429  */
2430 static
2431 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2432                 struct vm_area_struct *vma, unsigned long addr)
2433 {
2434         struct folio *folio = NULL;
2435         struct mempolicy *mpol;
2436         gfp_t gfp_mask = htlb_alloc_mask(h);
2437         int nid;
2438         nodemask_t *nodemask;
2439
2440         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2441         if (mpol_is_preferred_many(mpol)) {
2442                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2443
2444                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2445                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2446
2447                 /* Fallback to all nodes if page==NULL */
2448                 nodemask = NULL;
2449         }
2450
2451         if (!folio)
2452                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2453         mpol_cond_put(mpol);
2454         return folio;
2455 }
2456
2457 /* folio migration callback function */
2458 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2459                 nodemask_t *nmask, gfp_t gfp_mask)
2460 {
2461         spin_lock_irq(&hugetlb_lock);
2462         if (available_huge_pages(h)) {
2463                 struct folio *folio;
2464
2465                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2466                                                 preferred_nid, nmask);
2467                 if (folio) {
2468                         spin_unlock_irq(&hugetlb_lock);
2469                         return folio;
2470                 }
2471         }
2472         spin_unlock_irq(&hugetlb_lock);
2473
2474         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2475 }
2476
2477 /* mempolicy aware migration callback */
2478 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2479                 unsigned long address)
2480 {
2481         struct mempolicy *mpol;
2482         nodemask_t *nodemask;
2483         struct folio *folio;
2484         gfp_t gfp_mask;
2485         int node;
2486
2487         gfp_mask = htlb_alloc_mask(h);
2488         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2489         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2490         mpol_cond_put(mpol);
2491
2492         return folio;
2493 }
2494
2495 /*
2496  * Increase the hugetlb pool such that it can accommodate a reservation
2497  * of size 'delta'.
2498  */
2499 static int gather_surplus_pages(struct hstate *h, long delta)
2500         __must_hold(&hugetlb_lock)
2501 {
2502         LIST_HEAD(surplus_list);
2503         struct folio *folio, *tmp;
2504         int ret;
2505         long i;
2506         long needed, allocated;
2507         bool alloc_ok = true;
2508
2509         lockdep_assert_held(&hugetlb_lock);
2510         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2511         if (needed <= 0) {
2512                 h->resv_huge_pages += delta;
2513                 return 0;
2514         }
2515
2516         allocated = 0;
2517
2518         ret = -ENOMEM;
2519 retry:
2520         spin_unlock_irq(&hugetlb_lock);
2521         for (i = 0; i < needed; i++) {
2522                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2523                                 NUMA_NO_NODE, NULL);
2524                 if (!folio) {
2525                         alloc_ok = false;
2526                         break;
2527                 }
2528                 list_add(&folio->lru, &surplus_list);
2529                 cond_resched();
2530         }
2531         allocated += i;
2532
2533         /*
2534          * After retaking hugetlb_lock, we need to recalculate 'needed'
2535          * because either resv_huge_pages or free_huge_pages may have changed.
2536          */
2537         spin_lock_irq(&hugetlb_lock);
2538         needed = (h->resv_huge_pages + delta) -
2539                         (h->free_huge_pages + allocated);
2540         if (needed > 0) {
2541                 if (alloc_ok)
2542                         goto retry;
2543                 /*
2544                  * We were not able to allocate enough pages to
2545                  * satisfy the entire reservation so we free what
2546                  * we've allocated so far.
2547                  */
2548                 goto free;
2549         }
2550         /*
2551          * The surplus_list now contains _at_least_ the number of extra pages
2552          * needed to accommodate the reservation.  Add the appropriate number
2553          * of pages to the hugetlb pool and free the extras back to the buddy
2554          * allocator.  Commit the entire reservation here to prevent another
2555          * process from stealing the pages as they are added to the pool but
2556          * before they are reserved.
2557          */
2558         needed += allocated;
2559         h->resv_huge_pages += delta;
2560         ret = 0;
2561
2562         /* Free the needed pages to the hugetlb pool */
2563         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2564                 if ((--needed) < 0)
2565                         break;
2566                 /* Add the page to the hugetlb allocator */
2567                 enqueue_hugetlb_folio(h, folio);
2568         }
2569 free:
2570         spin_unlock_irq(&hugetlb_lock);
2571
2572         /*
2573          * Free unnecessary surplus pages to the buddy allocator.
2574          * Pages have no ref count, call free_huge_folio directly.
2575          */
2576         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2577                 free_huge_folio(folio);
2578         spin_lock_irq(&hugetlb_lock);
2579
2580         return ret;
2581 }
2582
2583 /*
2584  * This routine has two main purposes:
2585  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2586  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2587  *    to the associated reservation map.
2588  * 2) Free any unused surplus pages that may have been allocated to satisfy
2589  *    the reservation.  As many as unused_resv_pages may be freed.
2590  */
2591 static void return_unused_surplus_pages(struct hstate *h,
2592                                         unsigned long unused_resv_pages)
2593 {
2594         unsigned long nr_pages;
2595         struct page *page;
2596         LIST_HEAD(page_list);
2597
2598         lockdep_assert_held(&hugetlb_lock);
2599         /* Uncommit the reservation */
2600         h->resv_huge_pages -= unused_resv_pages;
2601
2602         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2603                 goto out;
2604
2605         /*
2606          * Part (or even all) of the reservation could have been backed
2607          * by pre-allocated pages. Only free surplus pages.
2608          */
2609         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2610
2611         /*
2612          * We want to release as many surplus pages as possible, spread
2613          * evenly across all nodes with memory. Iterate across these nodes
2614          * until we can no longer free unreserved surplus pages. This occurs
2615          * when the nodes with surplus pages have no free pages.
2616          * remove_pool_huge_page() will balance the freed pages across the
2617          * on-line nodes with memory and will handle the hstate accounting.
2618          */
2619         while (nr_pages--) {
2620                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2621                 if (!page)
2622                         goto out;
2623
2624                 list_add(&page->lru, &page_list);
2625         }
2626
2627 out:
2628         spin_unlock_irq(&hugetlb_lock);
2629         update_and_free_pages_bulk(h, &page_list);
2630         spin_lock_irq(&hugetlb_lock);
2631 }
2632
2633
2634 /*
2635  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2636  * are used by the huge page allocation routines to manage reservations.
2637  *
2638  * vma_needs_reservation is called to determine if the huge page at addr
2639  * within the vma has an associated reservation.  If a reservation is
2640  * needed, the value 1 is returned.  The caller is then responsible for
2641  * managing the global reservation and subpool usage counts.  After
2642  * the huge page has been allocated, vma_commit_reservation is called
2643  * to add the page to the reservation map.  If the page allocation fails,
2644  * the reservation must be ended instead of committed.  vma_end_reservation
2645  * is called in such cases.
2646  *
2647  * In the normal case, vma_commit_reservation returns the same value
2648  * as the preceding vma_needs_reservation call.  The only time this
2649  * is not the case is if a reserve map was changed between calls.  It
2650  * is the responsibility of the caller to notice the difference and
2651  * take appropriate action.
2652  *
2653  * vma_add_reservation is used in error paths where a reservation must
2654  * be restored when a newly allocated huge page must be freed.  It is
2655  * to be called after calling vma_needs_reservation to determine if a
2656  * reservation exists.
2657  *
2658  * vma_del_reservation is used in error paths where an entry in the reserve
2659  * map was created during huge page allocation and must be removed.  It is to
2660  * be called after calling vma_needs_reservation to determine if a reservation
2661  * exists.
2662  */
2663 enum vma_resv_mode {
2664         VMA_NEEDS_RESV,
2665         VMA_COMMIT_RESV,
2666         VMA_END_RESV,
2667         VMA_ADD_RESV,
2668         VMA_DEL_RESV,
2669 };
2670 static long __vma_reservation_common(struct hstate *h,
2671                                 struct vm_area_struct *vma, unsigned long addr,
2672                                 enum vma_resv_mode mode)
2673 {
2674         struct resv_map *resv;
2675         pgoff_t idx;
2676         long ret;
2677         long dummy_out_regions_needed;
2678
2679         resv = vma_resv_map(vma);
2680         if (!resv)
2681                 return 1;
2682
2683         idx = vma_hugecache_offset(h, vma, addr);
2684         switch (mode) {
2685         case VMA_NEEDS_RESV:
2686                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2687                 /* We assume that vma_reservation_* routines always operate on
2688                  * 1 page, and that adding to resv map a 1 page entry can only
2689                  * ever require 1 region.
2690                  */
2691                 VM_BUG_ON(dummy_out_regions_needed != 1);
2692                 break;
2693         case VMA_COMMIT_RESV:
2694                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2695                 /* region_add calls of range 1 should never fail. */
2696                 VM_BUG_ON(ret < 0);
2697                 break;
2698         case VMA_END_RESV:
2699                 region_abort(resv, idx, idx + 1, 1);
2700                 ret = 0;
2701                 break;
2702         case VMA_ADD_RESV:
2703                 if (vma->vm_flags & VM_MAYSHARE) {
2704                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2705                         /* region_add calls of range 1 should never fail. */
2706                         VM_BUG_ON(ret < 0);
2707                 } else {
2708                         region_abort(resv, idx, idx + 1, 1);
2709                         ret = region_del(resv, idx, idx + 1);
2710                 }
2711                 break;
2712         case VMA_DEL_RESV:
2713                 if (vma->vm_flags & VM_MAYSHARE) {
2714                         region_abort(resv, idx, idx + 1, 1);
2715                         ret = region_del(resv, idx, idx + 1);
2716                 } else {
2717                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2718                         /* region_add calls of range 1 should never fail. */
2719                         VM_BUG_ON(ret < 0);
2720                 }
2721                 break;
2722         default:
2723                 BUG();
2724         }
2725
2726         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2727                 return ret;
2728         /*
2729          * We know private mapping must have HPAGE_RESV_OWNER set.
2730          *
2731          * In most cases, reserves always exist for private mappings.
2732          * However, a file associated with mapping could have been
2733          * hole punched or truncated after reserves were consumed.
2734          * As subsequent fault on such a range will not use reserves.
2735          * Subtle - The reserve map for private mappings has the
2736          * opposite meaning than that of shared mappings.  If NO
2737          * entry is in the reserve map, it means a reservation exists.
2738          * If an entry exists in the reserve map, it means the
2739          * reservation has already been consumed.  As a result, the
2740          * return value of this routine is the opposite of the
2741          * value returned from reserve map manipulation routines above.
2742          */
2743         if (ret > 0)
2744                 return 0;
2745         if (ret == 0)
2746                 return 1;
2747         return ret;
2748 }
2749
2750 static long vma_needs_reservation(struct hstate *h,
2751                         struct vm_area_struct *vma, unsigned long addr)
2752 {
2753         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2754 }
2755
2756 static long vma_commit_reservation(struct hstate *h,
2757                         struct vm_area_struct *vma, unsigned long addr)
2758 {
2759         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2760 }
2761
2762 static void vma_end_reservation(struct hstate *h,
2763                         struct vm_area_struct *vma, unsigned long addr)
2764 {
2765         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2766 }
2767
2768 static long vma_add_reservation(struct hstate *h,
2769                         struct vm_area_struct *vma, unsigned long addr)
2770 {
2771         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2772 }
2773
2774 static long vma_del_reservation(struct hstate *h,
2775                         struct vm_area_struct *vma, unsigned long addr)
2776 {
2777         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2778 }
2779
2780 /*
2781  * This routine is called to restore reservation information on error paths.
2782  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2783  * and the hugetlb mutex should remain held when calling this routine.
2784  *
2785  * It handles two specific cases:
2786  * 1) A reservation was in place and the folio consumed the reservation.
2787  *    hugetlb_restore_reserve is set in the folio.
2788  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2789  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2790  *
2791  * In case 1, free_huge_folio later in the error path will increment the
2792  * global reserve count.  But, free_huge_folio does not have enough context
2793  * to adjust the reservation map.  This case deals primarily with private
2794  * mappings.  Adjust the reserve map here to be consistent with global
2795  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2796  * reserve map indicates there is a reservation present.
2797  *
2798  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2799  */
2800 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2801                         unsigned long address, struct folio *folio)
2802 {
2803         long rc = vma_needs_reservation(h, vma, address);
2804
2805         if (folio_test_hugetlb_restore_reserve(folio)) {
2806                 if (unlikely(rc < 0))
2807                         /*
2808                          * Rare out of memory condition in reserve map
2809                          * manipulation.  Clear hugetlb_restore_reserve so
2810                          * that global reserve count will not be incremented
2811                          * by free_huge_folio.  This will make it appear
2812                          * as though the reservation for this folio was
2813                          * consumed.  This may prevent the task from
2814                          * faulting in the folio at a later time.  This
2815                          * is better than inconsistent global huge page
2816                          * accounting of reserve counts.
2817                          */
2818                         folio_clear_hugetlb_restore_reserve(folio);
2819                 else if (rc)
2820                         (void)vma_add_reservation(h, vma, address);
2821                 else
2822                         vma_end_reservation(h, vma, address);
2823         } else {
2824                 if (!rc) {
2825                         /*
2826                          * This indicates there is an entry in the reserve map
2827                          * not added by alloc_hugetlb_folio.  We know it was added
2828                          * before the alloc_hugetlb_folio call, otherwise
2829                          * hugetlb_restore_reserve would be set on the folio.
2830                          * Remove the entry so that a subsequent allocation
2831                          * does not consume a reservation.
2832                          */
2833                         rc = vma_del_reservation(h, vma, address);
2834                         if (rc < 0)
2835                                 /*
2836                                  * VERY rare out of memory condition.  Since
2837                                  * we can not delete the entry, set
2838                                  * hugetlb_restore_reserve so that the reserve
2839                                  * count will be incremented when the folio
2840                                  * is freed.  This reserve will be consumed
2841                                  * on a subsequent allocation.
2842                                  */
2843                                 folio_set_hugetlb_restore_reserve(folio);
2844                 } else if (rc < 0) {
2845                         /*
2846                          * Rare out of memory condition from
2847                          * vma_needs_reservation call.  Memory allocation is
2848                          * only attempted if a new entry is needed.  Therefore,
2849                          * this implies there is not an entry in the
2850                          * reserve map.
2851                          *
2852                          * For shared mappings, no entry in the map indicates
2853                          * no reservation.  We are done.
2854                          */
2855                         if (!(vma->vm_flags & VM_MAYSHARE))
2856                                 /*
2857                                  * For private mappings, no entry indicates
2858                                  * a reservation is present.  Since we can
2859                                  * not add an entry, set hugetlb_restore_reserve
2860                                  * on the folio so reserve count will be
2861                                  * incremented when freed.  This reserve will
2862                                  * be consumed on a subsequent allocation.
2863                                  */
2864                                 folio_set_hugetlb_restore_reserve(folio);
2865                 } else
2866                         /*
2867                          * No reservation present, do nothing
2868                          */
2869                          vma_end_reservation(h, vma, address);
2870         }
2871 }
2872
2873 /*
2874  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2875  * the old one
2876  * @h: struct hstate old page belongs to
2877  * @old_folio: Old folio to dissolve
2878  * @list: List to isolate the page in case we need to
2879  * Returns 0 on success, otherwise negated error.
2880  */
2881 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2882                         struct folio *old_folio, struct list_head *list)
2883 {
2884         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2885         int nid = folio_nid(old_folio);
2886         struct folio *new_folio;
2887         int ret = 0;
2888
2889         /*
2890          * Before dissolving the folio, we need to allocate a new one for the
2891          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2892          * by doing everything but actually updating counters and adding to
2893          * the pool.  This simplifies and let us do most of the processing
2894          * under the lock.
2895          */
2896         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2897         if (!new_folio)
2898                 return -ENOMEM;
2899         __prep_new_hugetlb_folio(h, new_folio);
2900
2901 retry:
2902         spin_lock_irq(&hugetlb_lock);
2903         if (!folio_test_hugetlb(old_folio)) {
2904                 /*
2905                  * Freed from under us. Drop new_folio too.
2906                  */
2907                 goto free_new;
2908         } else if (folio_ref_count(old_folio)) {
2909                 bool isolated;
2910
2911                 /*
2912                  * Someone has grabbed the folio, try to isolate it here.
2913                  * Fail with -EBUSY if not possible.
2914                  */
2915                 spin_unlock_irq(&hugetlb_lock);
2916                 isolated = isolate_hugetlb(old_folio, list);
2917                 ret = isolated ? 0 : -EBUSY;
2918                 spin_lock_irq(&hugetlb_lock);
2919                 goto free_new;
2920         } else if (!folio_test_hugetlb_freed(old_folio)) {
2921                 /*
2922                  * Folio's refcount is 0 but it has not been enqueued in the
2923                  * freelist yet. Race window is small, so we can succeed here if
2924                  * we retry.
2925                  */
2926                 spin_unlock_irq(&hugetlb_lock);
2927                 cond_resched();
2928                 goto retry;
2929         } else {
2930                 /*
2931                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2932                  * the freelist and decrease the counters. These will be
2933                  * incremented again when calling __prep_account_new_huge_page()
2934                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2935                  * remain stable since this happens under the lock.
2936                  */
2937                 remove_hugetlb_folio(h, old_folio, false);
2938
2939                 /*
2940                  * Ref count on new_folio is already zero as it was dropped
2941                  * earlier.  It can be directly added to the pool free list.
2942                  */
2943                 __prep_account_new_huge_page(h, nid);
2944                 enqueue_hugetlb_folio(h, new_folio);
2945
2946                 /*
2947                  * Folio has been replaced, we can safely free the old one.
2948                  */
2949                 spin_unlock_irq(&hugetlb_lock);
2950                 update_and_free_hugetlb_folio(h, old_folio, false);
2951         }
2952
2953         return ret;
2954
2955 free_new:
2956         spin_unlock_irq(&hugetlb_lock);
2957         /* Folio has a zero ref count, but needs a ref to be freed */
2958         folio_ref_unfreeze(new_folio, 1);
2959         update_and_free_hugetlb_folio(h, new_folio, false);
2960
2961         return ret;
2962 }
2963
2964 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2965 {
2966         struct hstate *h;
2967         struct folio *folio = page_folio(page);
2968         int ret = -EBUSY;
2969
2970         /*
2971          * The page might have been dissolved from under our feet, so make sure
2972          * to carefully check the state under the lock.
2973          * Return success when racing as if we dissolved the page ourselves.
2974          */
2975         spin_lock_irq(&hugetlb_lock);
2976         if (folio_test_hugetlb(folio)) {
2977                 h = folio_hstate(folio);
2978         } else {
2979                 spin_unlock_irq(&hugetlb_lock);
2980                 return 0;
2981         }
2982         spin_unlock_irq(&hugetlb_lock);
2983
2984         /*
2985          * Fence off gigantic pages as there is a cyclic dependency between
2986          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2987          * of bailing out right away without further retrying.
2988          */
2989         if (hstate_is_gigantic(h))
2990                 return -ENOMEM;
2991
2992         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2993                 ret = 0;
2994         else if (!folio_ref_count(folio))
2995                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2996
2997         return ret;
2998 }
2999
3000 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3001                                     unsigned long addr, int avoid_reserve)
3002 {
3003         struct hugepage_subpool *spool = subpool_vma(vma);
3004         struct hstate *h = hstate_vma(vma);
3005         struct folio *folio;
3006         long map_chg, map_commit;
3007         long gbl_chg;
3008         int ret, idx;
3009         struct hugetlb_cgroup *h_cg = NULL;
3010         bool deferred_reserve;
3011
3012         idx = hstate_index(h);
3013         /*
3014          * Examine the region/reserve map to determine if the process
3015          * has a reservation for the page to be allocated.  A return
3016          * code of zero indicates a reservation exists (no change).
3017          */
3018         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3019         if (map_chg < 0)
3020                 return ERR_PTR(-ENOMEM);
3021
3022         /*
3023          * Processes that did not create the mapping will have no
3024          * reserves as indicated by the region/reserve map. Check
3025          * that the allocation will not exceed the subpool limit.
3026          * Allocations for MAP_NORESERVE mappings also need to be
3027          * checked against any subpool limit.
3028          */
3029         if (map_chg || avoid_reserve) {
3030                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3031                 if (gbl_chg < 0) {
3032                         vma_end_reservation(h, vma, addr);
3033                         return ERR_PTR(-ENOSPC);
3034                 }
3035
3036                 /*
3037                  * Even though there was no reservation in the region/reserve
3038                  * map, there could be reservations associated with the
3039                  * subpool that can be used.  This would be indicated if the
3040                  * return value of hugepage_subpool_get_pages() is zero.
3041                  * However, if avoid_reserve is specified we still avoid even
3042                  * the subpool reservations.
3043                  */
3044                 if (avoid_reserve)
3045                         gbl_chg = 1;
3046         }
3047
3048         /* If this allocation is not consuming a reservation, charge it now.
3049          */
3050         deferred_reserve = map_chg || avoid_reserve;
3051         if (deferred_reserve) {
3052                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3053                         idx, pages_per_huge_page(h), &h_cg);
3054                 if (ret)
3055                         goto out_subpool_put;
3056         }
3057
3058         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3059         if (ret)
3060                 goto out_uncharge_cgroup_reservation;
3061
3062         spin_lock_irq(&hugetlb_lock);
3063         /*
3064          * glb_chg is passed to indicate whether or not a page must be taken
3065          * from the global free pool (global change).  gbl_chg == 0 indicates
3066          * a reservation exists for the allocation.
3067          */
3068         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3069         if (!folio) {
3070                 spin_unlock_irq(&hugetlb_lock);
3071                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3072                 if (!folio)
3073                         goto out_uncharge_cgroup;
3074                 spin_lock_irq(&hugetlb_lock);
3075                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3076                         folio_set_hugetlb_restore_reserve(folio);
3077                         h->resv_huge_pages--;
3078                 }
3079                 list_add(&folio->lru, &h->hugepage_activelist);
3080                 folio_ref_unfreeze(folio, 1);
3081                 /* Fall through */
3082         }
3083
3084         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3085         /* If allocation is not consuming a reservation, also store the
3086          * hugetlb_cgroup pointer on the page.
3087          */
3088         if (deferred_reserve) {
3089                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3090                                                   h_cg, folio);
3091         }
3092
3093         spin_unlock_irq(&hugetlb_lock);
3094
3095         hugetlb_set_folio_subpool(folio, spool);
3096
3097         map_commit = vma_commit_reservation(h, vma, addr);
3098         if (unlikely(map_chg > map_commit)) {
3099                 /*
3100                  * The page was added to the reservation map between
3101                  * vma_needs_reservation and vma_commit_reservation.
3102                  * This indicates a race with hugetlb_reserve_pages.
3103                  * Adjust for the subpool count incremented above AND
3104                  * in hugetlb_reserve_pages for the same page.  Also,
3105                  * the reservation count added in hugetlb_reserve_pages
3106                  * no longer applies.
3107                  */
3108                 long rsv_adjust;
3109
3110                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3111                 hugetlb_acct_memory(h, -rsv_adjust);
3112                 if (deferred_reserve)
3113                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3114                                         pages_per_huge_page(h), folio);
3115         }
3116         return folio;
3117
3118 out_uncharge_cgroup:
3119         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3120 out_uncharge_cgroup_reservation:
3121         if (deferred_reserve)
3122                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3123                                                     h_cg);
3124 out_subpool_put:
3125         if (map_chg || avoid_reserve)
3126                 hugepage_subpool_put_pages(spool, 1);
3127         vma_end_reservation(h, vma, addr);
3128         return ERR_PTR(-ENOSPC);
3129 }
3130
3131 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3132         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3133 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3134 {
3135         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3136         int nr_nodes, node;
3137
3138         /* do node specific alloc */
3139         if (nid != NUMA_NO_NODE) {
3140                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3141                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3142                 if (!m)
3143                         return 0;
3144                 goto found;
3145         }
3146         /* allocate from next node when distributing huge pages */
3147         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3148                 m = memblock_alloc_try_nid_raw(
3149                                 huge_page_size(h), huge_page_size(h),
3150                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3151                 /*
3152                  * Use the beginning of the huge page to store the
3153                  * huge_bootmem_page struct (until gather_bootmem
3154                  * puts them into the mem_map).
3155                  */
3156                 if (!m)
3157                         return 0;
3158                 goto found;
3159         }
3160
3161 found:
3162         /* Put them into a private list first because mem_map is not up yet */
3163         INIT_LIST_HEAD(&m->list);
3164         list_add(&m->list, &huge_boot_pages);
3165         m->hstate = h;
3166         return 1;
3167 }
3168
3169 /*
3170  * Put bootmem huge pages into the standard lists after mem_map is up.
3171  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3172  */
3173 static void __init gather_bootmem_prealloc(void)
3174 {
3175         struct huge_bootmem_page *m;
3176
3177         list_for_each_entry(m, &huge_boot_pages, list) {
3178                 struct page *page = virt_to_page(m);
3179                 struct folio *folio = page_folio(page);
3180                 struct hstate *h = m->hstate;
3181
3182                 VM_BUG_ON(!hstate_is_gigantic(h));
3183                 WARN_ON(folio_ref_count(folio) != 1);
3184                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3185                         WARN_ON(folio_test_reserved(folio));
3186                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3187                         free_huge_folio(folio); /* add to the hugepage allocator */
3188                 } else {
3189                         /* VERY unlikely inflated ref count on a tail page */
3190                         free_gigantic_folio(folio, huge_page_order(h));
3191                 }
3192
3193                 /*
3194                  * We need to restore the 'stolen' pages to totalram_pages
3195                  * in order to fix confusing memory reports from free(1) and
3196                  * other side-effects, like CommitLimit going negative.
3197                  */
3198                 adjust_managed_page_count(page, pages_per_huge_page(h));
3199                 cond_resched();
3200         }
3201 }
3202 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3203 {
3204         unsigned long i;
3205         char buf[32];
3206
3207         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3208                 if (hstate_is_gigantic(h)) {
3209                         if (!alloc_bootmem_huge_page(h, nid))
3210                                 break;
3211                 } else {
3212                         struct folio *folio;
3213                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3214
3215                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3216                                         &node_states[N_MEMORY], NULL);
3217                         if (!folio)
3218                                 break;
3219                         free_huge_folio(folio); /* free it into the hugepage allocator */
3220                 }
3221                 cond_resched();
3222         }
3223         if (i == h->max_huge_pages_node[nid])
3224                 return;
3225
3226         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3227         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3228                 h->max_huge_pages_node[nid], buf, nid, i);
3229         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3230         h->max_huge_pages_node[nid] = i;
3231 }
3232
3233 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3234 {
3235         unsigned long i;
3236         nodemask_t *node_alloc_noretry;
3237         bool node_specific_alloc = false;
3238
3239         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3240         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3241                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3242                 return;
3243         }
3244
3245         /* do node specific alloc */
3246         for_each_online_node(i) {
3247                 if (h->max_huge_pages_node[i] > 0) {
3248                         hugetlb_hstate_alloc_pages_onenode(h, i);
3249                         node_specific_alloc = true;
3250                 }
3251         }
3252
3253         if (node_specific_alloc)
3254                 return;
3255
3256         /* below will do all node balanced alloc */
3257         if (!hstate_is_gigantic(h)) {
3258                 /*
3259                  * Bit mask controlling how hard we retry per-node allocations.
3260                  * Ignore errors as lower level routines can deal with
3261                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3262                  * time, we are likely in bigger trouble.
3263                  */
3264                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3265                                                 GFP_KERNEL);
3266         } else {
3267                 /* allocations done at boot time */
3268                 node_alloc_noretry = NULL;
3269         }
3270
3271         /* bit mask controlling how hard we retry per-node allocations */
3272         if (node_alloc_noretry)
3273                 nodes_clear(*node_alloc_noretry);
3274
3275         for (i = 0; i < h->max_huge_pages; ++i) {
3276                 if (hstate_is_gigantic(h)) {
3277                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3278                                 break;
3279                 } else if (!alloc_pool_huge_page(h,
3280                                          &node_states[N_MEMORY],
3281                                          node_alloc_noretry))
3282                         break;
3283                 cond_resched();
3284         }
3285         if (i < h->max_huge_pages) {
3286                 char buf[32];
3287
3288                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3289                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3290                         h->max_huge_pages, buf, i);
3291                 h->max_huge_pages = i;
3292         }
3293         kfree(node_alloc_noretry);
3294 }
3295
3296 static void __init hugetlb_init_hstates(void)
3297 {
3298         struct hstate *h, *h2;
3299
3300         for_each_hstate(h) {
3301                 /* oversize hugepages were init'ed in early boot */
3302                 if (!hstate_is_gigantic(h))
3303                         hugetlb_hstate_alloc_pages(h);
3304
3305                 /*
3306                  * Set demote order for each hstate.  Note that
3307                  * h->demote_order is initially 0.
3308                  * - We can not demote gigantic pages if runtime freeing
3309                  *   is not supported, so skip this.
3310                  * - If CMA allocation is possible, we can not demote
3311                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3312                  */
3313                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3314                         continue;
3315                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3316                         continue;
3317                 for_each_hstate(h2) {
3318                         if (h2 == h)
3319                                 continue;
3320                         if (h2->order < h->order &&
3321                             h2->order > h->demote_order)
3322                                 h->demote_order = h2->order;
3323                 }
3324         }
3325 }
3326
3327 static void __init report_hugepages(void)
3328 {
3329         struct hstate *h;
3330
3331         for_each_hstate(h) {
3332                 char buf[32];
3333
3334                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3335                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3336                         buf, h->free_huge_pages);
3337                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3338                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3339         }
3340 }
3341
3342 #ifdef CONFIG_HIGHMEM
3343 static void try_to_free_low(struct hstate *h, unsigned long count,
3344                                                 nodemask_t *nodes_allowed)
3345 {
3346         int i;
3347         LIST_HEAD(page_list);
3348
3349         lockdep_assert_held(&hugetlb_lock);
3350         if (hstate_is_gigantic(h))
3351                 return;
3352
3353         /*
3354          * Collect pages to be freed on a list, and free after dropping lock
3355          */
3356         for_each_node_mask(i, *nodes_allowed) {
3357                 struct page *page, *next;
3358                 struct list_head *freel = &h->hugepage_freelists[i];
3359                 list_for_each_entry_safe(page, next, freel, lru) {
3360                         if (count >= h->nr_huge_pages)
3361                                 goto out;
3362                         if (PageHighMem(page))
3363                                 continue;
3364                         remove_hugetlb_folio(h, page_folio(page), false);
3365                         list_add(&page->lru, &page_list);
3366                 }
3367         }
3368
3369 out:
3370         spin_unlock_irq(&hugetlb_lock);
3371         update_and_free_pages_bulk(h, &page_list);
3372         spin_lock_irq(&hugetlb_lock);
3373 }
3374 #else
3375 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3376                                                 nodemask_t *nodes_allowed)
3377 {
3378 }
3379 #endif
3380
3381 /*
3382  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3383  * balanced by operating on them in a round-robin fashion.
3384  * Returns 1 if an adjustment was made.
3385  */
3386 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3387                                 int delta)
3388 {
3389         int nr_nodes, node;
3390
3391         lockdep_assert_held(&hugetlb_lock);
3392         VM_BUG_ON(delta != -1 && delta != 1);
3393
3394         if (delta < 0) {
3395                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3396                         if (h->surplus_huge_pages_node[node])
3397                                 goto found;
3398                 }
3399         } else {
3400                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3401                         if (h->surplus_huge_pages_node[node] <
3402                                         h->nr_huge_pages_node[node])
3403                                 goto found;
3404                 }
3405         }
3406         return 0;
3407
3408 found:
3409         h->surplus_huge_pages += delta;
3410         h->surplus_huge_pages_node[node] += delta;
3411         return 1;
3412 }
3413
3414 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3415 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3416                               nodemask_t *nodes_allowed)
3417 {
3418         unsigned long min_count, ret;
3419         struct page *page;
3420         LIST_HEAD(page_list);
3421         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3422
3423         /*
3424          * Bit mask controlling how hard we retry per-node allocations.
3425          * If we can not allocate the bit mask, do not attempt to allocate
3426          * the requested huge pages.
3427          */
3428         if (node_alloc_noretry)
3429                 nodes_clear(*node_alloc_noretry);
3430         else
3431                 return -ENOMEM;
3432
3433         /*
3434          * resize_lock mutex prevents concurrent adjustments to number of
3435          * pages in hstate via the proc/sysfs interfaces.
3436          */
3437         mutex_lock(&h->resize_lock);
3438         flush_free_hpage_work(h);
3439         spin_lock_irq(&hugetlb_lock);
3440
3441         /*
3442          * Check for a node specific request.
3443          * Changing node specific huge page count may require a corresponding
3444          * change to the global count.  In any case, the passed node mask
3445          * (nodes_allowed) will restrict alloc/free to the specified node.
3446          */
3447         if (nid != NUMA_NO_NODE) {
3448                 unsigned long old_count = count;
3449
3450                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3451                 /*
3452                  * User may have specified a large count value which caused the
3453                  * above calculation to overflow.  In this case, they wanted
3454                  * to allocate as many huge pages as possible.  Set count to
3455                  * largest possible value to align with their intention.
3456                  */
3457                 if (count < old_count)
3458                         count = ULONG_MAX;
3459         }
3460
3461         /*
3462          * Gigantic pages runtime allocation depend on the capability for large
3463          * page range allocation.
3464          * If the system does not provide this feature, return an error when
3465          * the user tries to allocate gigantic pages but let the user free the
3466          * boottime allocated gigantic pages.
3467          */
3468         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3469                 if (count > persistent_huge_pages(h)) {
3470                         spin_unlock_irq(&hugetlb_lock);
3471                         mutex_unlock(&h->resize_lock);
3472                         NODEMASK_FREE(node_alloc_noretry);
3473                         return -EINVAL;
3474                 }
3475                 /* Fall through to decrease pool */
3476         }
3477
3478         /*
3479          * Increase the pool size
3480          * First take pages out of surplus state.  Then make up the
3481          * remaining difference by allocating fresh huge pages.
3482          *
3483          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3484          * to convert a surplus huge page to a normal huge page. That is
3485          * not critical, though, it just means the overall size of the
3486          * pool might be one hugepage larger than it needs to be, but
3487          * within all the constraints specified by the sysctls.
3488          */
3489         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3490                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3491                         break;
3492         }
3493
3494         while (count > persistent_huge_pages(h)) {
3495                 /*
3496                  * If this allocation races such that we no longer need the
3497                  * page, free_huge_folio will handle it by freeing the page
3498                  * and reducing the surplus.
3499                  */
3500                 spin_unlock_irq(&hugetlb_lock);
3501
3502                 /* yield cpu to avoid soft lockup */
3503                 cond_resched();
3504
3505                 ret = alloc_pool_huge_page(h, nodes_allowed,
3506                                                 node_alloc_noretry);
3507                 spin_lock_irq(&hugetlb_lock);
3508                 if (!ret)
3509                         goto out;
3510
3511                 /* Bail for signals. Probably ctrl-c from user */
3512                 if (signal_pending(current))
3513                         goto out;
3514         }
3515
3516         /*
3517          * Decrease the pool size
3518          * First return free pages to the buddy allocator (being careful
3519          * to keep enough around to satisfy reservations).  Then place
3520          * pages into surplus state as needed so the pool will shrink
3521          * to the desired size as pages become free.
3522          *
3523          * By placing pages into the surplus state independent of the
3524          * overcommit value, we are allowing the surplus pool size to
3525          * exceed overcommit. There are few sane options here. Since
3526          * alloc_surplus_hugetlb_folio() is checking the global counter,
3527          * though, we'll note that we're not allowed to exceed surplus
3528          * and won't grow the pool anywhere else. Not until one of the
3529          * sysctls are changed, or the surplus pages go out of use.
3530          */
3531         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3532         min_count = max(count, min_count);
3533         try_to_free_low(h, min_count, nodes_allowed);
3534
3535         /*
3536          * Collect pages to be removed on list without dropping lock
3537          */
3538         while (min_count < persistent_huge_pages(h)) {
3539                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3540                 if (!page)
3541                         break;
3542
3543                 list_add(&page->lru, &page_list);
3544         }
3545         /* free the pages after dropping lock */
3546         spin_unlock_irq(&hugetlb_lock);
3547         update_and_free_pages_bulk(h, &page_list);
3548         flush_free_hpage_work(h);
3549         spin_lock_irq(&hugetlb_lock);
3550
3551         while (count < persistent_huge_pages(h)) {
3552                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3553                         break;
3554         }
3555 out:
3556         h->max_huge_pages = persistent_huge_pages(h);
3557         spin_unlock_irq(&hugetlb_lock);
3558         mutex_unlock(&h->resize_lock);
3559
3560         NODEMASK_FREE(node_alloc_noretry);
3561
3562         return 0;
3563 }
3564
3565 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3566 {
3567         int i, nid = folio_nid(folio);
3568         struct hstate *target_hstate;
3569         struct page *subpage;
3570         struct folio *inner_folio;
3571         int rc = 0;
3572
3573         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3574
3575         remove_hugetlb_folio_for_demote(h, folio, false);
3576         spin_unlock_irq(&hugetlb_lock);
3577
3578         rc = hugetlb_vmemmap_restore(h, &folio->page);
3579         if (rc) {
3580                 /* Allocation of vmemmmap failed, we can not demote folio */
3581                 spin_lock_irq(&hugetlb_lock);
3582                 folio_ref_unfreeze(folio, 1);
3583                 add_hugetlb_folio(h, folio, false);
3584                 return rc;
3585         }
3586
3587         /*
3588          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3589          * sizes as it will not ref count folios.
3590          */
3591         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3592
3593         /*
3594          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3595          * Without the mutex, pages added to target hstate could be marked
3596          * as surplus.
3597          *
3598          * Note that we already hold h->resize_lock.  To prevent deadlock,
3599          * use the convention of always taking larger size hstate mutex first.
3600          */
3601         mutex_lock(&target_hstate->resize_lock);
3602         for (i = 0; i < pages_per_huge_page(h);
3603                                 i += pages_per_huge_page(target_hstate)) {
3604                 subpage = folio_page(folio, i);
3605                 inner_folio = page_folio(subpage);
3606                 if (hstate_is_gigantic(target_hstate))
3607                         prep_compound_gigantic_folio_for_demote(inner_folio,
3608                                                         target_hstate->order);
3609                 else
3610                         prep_compound_page(subpage, target_hstate->order);
3611                 folio_change_private(inner_folio, NULL);
3612                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3613                 free_huge_folio(inner_folio);
3614         }
3615         mutex_unlock(&target_hstate->resize_lock);
3616
3617         spin_lock_irq(&hugetlb_lock);
3618
3619         /*
3620          * Not absolutely necessary, but for consistency update max_huge_pages
3621          * based on pool changes for the demoted page.
3622          */
3623         h->max_huge_pages--;
3624         target_hstate->max_huge_pages +=
3625                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3626
3627         return rc;
3628 }
3629
3630 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3631         __must_hold(&hugetlb_lock)
3632 {
3633         int nr_nodes, node;
3634         struct folio *folio;
3635
3636         lockdep_assert_held(&hugetlb_lock);
3637
3638         /* We should never get here if no demote order */
3639         if (!h->demote_order) {
3640                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3641                 return -EINVAL;         /* internal error */
3642         }
3643
3644         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3645                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3646                         if (folio_test_hwpoison(folio))
3647                                 continue;
3648                         return demote_free_hugetlb_folio(h, folio);
3649                 }
3650         }
3651
3652         /*
3653          * Only way to get here is if all pages on free lists are poisoned.
3654          * Return -EBUSY so that caller will not retry.
3655          */
3656         return -EBUSY;
3657 }
3658
3659 #define HSTATE_ATTR_RO(_name) \
3660         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3661
3662 #define HSTATE_ATTR_WO(_name) \
3663         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3664
3665 #define HSTATE_ATTR(_name) \
3666         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3667
3668 static struct kobject *hugepages_kobj;
3669 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3670
3671 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3672
3673 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3674 {
3675         int i;
3676
3677         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3678                 if (hstate_kobjs[i] == kobj) {
3679                         if (nidp)
3680                                 *nidp = NUMA_NO_NODE;
3681                         return &hstates[i];
3682                 }
3683
3684         return kobj_to_node_hstate(kobj, nidp);
3685 }
3686
3687 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3688                                         struct kobj_attribute *attr, char *buf)
3689 {
3690         struct hstate *h;
3691         unsigned long nr_huge_pages;
3692         int nid;
3693
3694         h = kobj_to_hstate(kobj, &nid);
3695         if (nid == NUMA_NO_NODE)
3696                 nr_huge_pages = h->nr_huge_pages;
3697         else
3698                 nr_huge_pages = h->nr_huge_pages_node[nid];
3699
3700         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3701 }
3702
3703 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3704                                            struct hstate *h, int nid,
3705                                            unsigned long count, size_t len)
3706 {
3707         int err;
3708         nodemask_t nodes_allowed, *n_mask;
3709
3710         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3711                 return -EINVAL;
3712
3713         if (nid == NUMA_NO_NODE) {
3714                 /*
3715                  * global hstate attribute
3716                  */
3717                 if (!(obey_mempolicy &&
3718                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3719                         n_mask = &node_states[N_MEMORY];
3720                 else
3721                         n_mask = &nodes_allowed;
3722         } else {
3723                 /*
3724                  * Node specific request.  count adjustment happens in
3725                  * set_max_huge_pages() after acquiring hugetlb_lock.
3726                  */
3727                 init_nodemask_of_node(&nodes_allowed, nid);
3728                 n_mask = &nodes_allowed;
3729         }
3730
3731         err = set_max_huge_pages(h, count, nid, n_mask);
3732
3733         return err ? err : len;
3734 }
3735
3736 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3737                                          struct kobject *kobj, const char *buf,
3738                                          size_t len)
3739 {
3740         struct hstate *h;
3741         unsigned long count;
3742         int nid;
3743         int err;
3744
3745         err = kstrtoul(buf, 10, &count);
3746         if (err)
3747                 return err;
3748
3749         h = kobj_to_hstate(kobj, &nid);
3750         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3751 }
3752
3753 static ssize_t nr_hugepages_show(struct kobject *kobj,
3754                                        struct kobj_attribute *attr, char *buf)
3755 {
3756         return nr_hugepages_show_common(kobj, attr, buf);
3757 }
3758
3759 static ssize_t nr_hugepages_store(struct kobject *kobj,
3760                struct kobj_attribute *attr, const char *buf, size_t len)
3761 {
3762         return nr_hugepages_store_common(false, kobj, buf, len);
3763 }
3764 HSTATE_ATTR(nr_hugepages);
3765
3766 #ifdef CONFIG_NUMA
3767
3768 /*
3769  * hstate attribute for optionally mempolicy-based constraint on persistent
3770  * huge page alloc/free.
3771  */
3772 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3773                                            struct kobj_attribute *attr,
3774                                            char *buf)
3775 {
3776         return nr_hugepages_show_common(kobj, attr, buf);
3777 }
3778
3779 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3780                struct kobj_attribute *attr, const char *buf, size_t len)
3781 {
3782         return nr_hugepages_store_common(true, kobj, buf, len);
3783 }
3784 HSTATE_ATTR(nr_hugepages_mempolicy);
3785 #endif
3786
3787
3788 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3789                                         struct kobj_attribute *attr, char *buf)
3790 {
3791         struct hstate *h = kobj_to_hstate(kobj, NULL);
3792         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3793 }
3794
3795 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3796                 struct kobj_attribute *attr, const char *buf, size_t count)
3797 {
3798         int err;
3799         unsigned long input;
3800         struct hstate *h = kobj_to_hstate(kobj, NULL);
3801
3802         if (hstate_is_gigantic(h))
3803                 return -EINVAL;
3804
3805         err = kstrtoul(buf, 10, &input);
3806         if (err)
3807                 return err;
3808
3809         spin_lock_irq(&hugetlb_lock);
3810         h->nr_overcommit_huge_pages = input;
3811         spin_unlock_irq(&hugetlb_lock);
3812
3813         return count;
3814 }
3815 HSTATE_ATTR(nr_overcommit_hugepages);
3816
3817 static ssize_t free_hugepages_show(struct kobject *kobj,
3818                                         struct kobj_attribute *attr, char *buf)
3819 {
3820         struct hstate *h;
3821         unsigned long free_huge_pages;
3822         int nid;
3823
3824         h = kobj_to_hstate(kobj, &nid);
3825         if (nid == NUMA_NO_NODE)
3826                 free_huge_pages = h->free_huge_pages;
3827         else
3828                 free_huge_pages = h->free_huge_pages_node[nid];
3829
3830         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3831 }
3832 HSTATE_ATTR_RO(free_hugepages);
3833
3834 static ssize_t resv_hugepages_show(struct kobject *kobj,
3835                                         struct kobj_attribute *attr, char *buf)
3836 {
3837         struct hstate *h = kobj_to_hstate(kobj, NULL);
3838         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3839 }
3840 HSTATE_ATTR_RO(resv_hugepages);
3841
3842 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3843                                         struct kobj_attribute *attr, char *buf)
3844 {
3845         struct hstate *h;
3846         unsigned long surplus_huge_pages;
3847         int nid;
3848
3849         h = kobj_to_hstate(kobj, &nid);
3850         if (nid == NUMA_NO_NODE)
3851                 surplus_huge_pages = h->surplus_huge_pages;
3852         else
3853                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3854
3855         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3856 }
3857 HSTATE_ATTR_RO(surplus_hugepages);
3858
3859 static ssize_t demote_store(struct kobject *kobj,
3860                struct kobj_attribute *attr, const char *buf, size_t len)
3861 {
3862         unsigned long nr_demote;
3863         unsigned long nr_available;
3864         nodemask_t nodes_allowed, *n_mask;
3865         struct hstate *h;
3866         int err;
3867         int nid;
3868
3869         err = kstrtoul(buf, 10, &nr_demote);
3870         if (err)
3871                 return err;
3872         h = kobj_to_hstate(kobj, &nid);
3873
3874         if (nid != NUMA_NO_NODE) {
3875                 init_nodemask_of_node(&nodes_allowed, nid);
3876                 n_mask = &nodes_allowed;
3877         } else {
3878                 n_mask = &node_states[N_MEMORY];
3879         }
3880
3881         /* Synchronize with other sysfs operations modifying huge pages */
3882         mutex_lock(&h->resize_lock);
3883         spin_lock_irq(&hugetlb_lock);
3884
3885         while (nr_demote) {
3886                 /*
3887                  * Check for available pages to demote each time thorough the
3888                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3889                  */
3890                 if (nid != NUMA_NO_NODE)
3891                         nr_available = h->free_huge_pages_node[nid];
3892                 else
3893                         nr_available = h->free_huge_pages;
3894                 nr_available -= h->resv_huge_pages;
3895                 if (!nr_available)
3896                         break;
3897
3898                 err = demote_pool_huge_page(h, n_mask);
3899                 if (err)
3900                         break;
3901
3902                 nr_demote--;
3903         }
3904
3905         spin_unlock_irq(&hugetlb_lock);
3906         mutex_unlock(&h->resize_lock);
3907
3908         if (err)
3909                 return err;
3910         return len;
3911 }
3912 HSTATE_ATTR_WO(demote);
3913
3914 static ssize_t demote_size_show(struct kobject *kobj,
3915                                         struct kobj_attribute *attr, char *buf)
3916 {
3917         struct hstate *h = kobj_to_hstate(kobj, NULL);
3918         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3919
3920         return sysfs_emit(buf, "%lukB\n", demote_size);
3921 }
3922
3923 static ssize_t demote_size_store(struct kobject *kobj,
3924                                         struct kobj_attribute *attr,
3925                                         const char *buf, size_t count)
3926 {
3927         struct hstate *h, *demote_hstate;
3928         unsigned long demote_size;
3929         unsigned int demote_order;
3930
3931         demote_size = (unsigned long)memparse(buf, NULL);
3932
3933         demote_hstate = size_to_hstate(demote_size);
3934         if (!demote_hstate)
3935                 return -EINVAL;
3936         demote_order = demote_hstate->order;
3937         if (demote_order < HUGETLB_PAGE_ORDER)
3938                 return -EINVAL;
3939
3940         /* demote order must be smaller than hstate order */
3941         h = kobj_to_hstate(kobj, NULL);
3942         if (demote_order >= h->order)
3943                 return -EINVAL;
3944
3945         /* resize_lock synchronizes access to demote size and writes */
3946         mutex_lock(&h->resize_lock);
3947         h->demote_order = demote_order;
3948         mutex_unlock(&h->resize_lock);
3949
3950         return count;
3951 }
3952 HSTATE_ATTR(demote_size);
3953
3954 static struct attribute *hstate_attrs[] = {
3955         &nr_hugepages_attr.attr,
3956         &nr_overcommit_hugepages_attr.attr,
3957         &free_hugepages_attr.attr,
3958         &resv_hugepages_attr.attr,
3959         &surplus_hugepages_attr.attr,
3960 #ifdef CONFIG_NUMA
3961         &nr_hugepages_mempolicy_attr.attr,
3962 #endif
3963         NULL,
3964 };
3965
3966 static const struct attribute_group hstate_attr_group = {
3967         .attrs = hstate_attrs,
3968 };
3969
3970 static struct attribute *hstate_demote_attrs[] = {
3971         &demote_size_attr.attr,
3972         &demote_attr.attr,
3973         NULL,
3974 };
3975
3976 static const struct attribute_group hstate_demote_attr_group = {
3977         .attrs = hstate_demote_attrs,
3978 };
3979
3980 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3981                                     struct kobject **hstate_kobjs,
3982                                     const struct attribute_group *hstate_attr_group)
3983 {
3984         int retval;
3985         int hi = hstate_index(h);
3986
3987         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3988         if (!hstate_kobjs[hi])
3989                 return -ENOMEM;
3990
3991         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3992         if (retval) {
3993                 kobject_put(hstate_kobjs[hi]);
3994                 hstate_kobjs[hi] = NULL;
3995                 return retval;
3996         }
3997
3998         if (h->demote_order) {
3999                 retval = sysfs_create_group(hstate_kobjs[hi],
4000                                             &hstate_demote_attr_group);
4001                 if (retval) {
4002                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4003                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4004                         kobject_put(hstate_kobjs[hi]);
4005                         hstate_kobjs[hi] = NULL;
4006                         return retval;
4007                 }
4008         }
4009
4010         return 0;
4011 }
4012
4013 #ifdef CONFIG_NUMA
4014 static bool hugetlb_sysfs_initialized __ro_after_init;
4015
4016 /*
4017  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4018  * with node devices in node_devices[] using a parallel array.  The array
4019  * index of a node device or _hstate == node id.
4020  * This is here to avoid any static dependency of the node device driver, in
4021  * the base kernel, on the hugetlb module.
4022  */
4023 struct node_hstate {
4024         struct kobject          *hugepages_kobj;
4025         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4026 };
4027 static struct node_hstate node_hstates[MAX_NUMNODES];
4028
4029 /*
4030  * A subset of global hstate attributes for node devices
4031  */
4032 static struct attribute *per_node_hstate_attrs[] = {
4033         &nr_hugepages_attr.attr,
4034         &free_hugepages_attr.attr,
4035         &surplus_hugepages_attr.attr,
4036         NULL,
4037 };
4038
4039 static const struct attribute_group per_node_hstate_attr_group = {
4040         .attrs = per_node_hstate_attrs,
4041 };
4042
4043 /*
4044  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4045  * Returns node id via non-NULL nidp.
4046  */
4047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4048 {
4049         int nid;
4050
4051         for (nid = 0; nid < nr_node_ids; nid++) {
4052                 struct node_hstate *nhs = &node_hstates[nid];
4053                 int i;
4054                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4055                         if (nhs->hstate_kobjs[i] == kobj) {
4056                                 if (nidp)
4057                                         *nidp = nid;
4058                                 return &hstates[i];
4059                         }
4060         }
4061
4062         BUG();
4063         return NULL;
4064 }
4065
4066 /*
4067  * Unregister hstate attributes from a single node device.
4068  * No-op if no hstate attributes attached.
4069  */
4070 void hugetlb_unregister_node(struct node *node)
4071 {
4072         struct hstate *h;
4073         struct node_hstate *nhs = &node_hstates[node->dev.id];
4074
4075         if (!nhs->hugepages_kobj)
4076                 return;         /* no hstate attributes */
4077
4078         for_each_hstate(h) {
4079                 int idx = hstate_index(h);
4080                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4081
4082                 if (!hstate_kobj)
4083                         continue;
4084                 if (h->demote_order)
4085                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4086                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4087                 kobject_put(hstate_kobj);
4088                 nhs->hstate_kobjs[idx] = NULL;
4089         }
4090
4091         kobject_put(nhs->hugepages_kobj);
4092         nhs->hugepages_kobj = NULL;
4093 }
4094
4095
4096 /*
4097  * Register hstate attributes for a single node device.
4098  * No-op if attributes already registered.
4099  */
4100 void hugetlb_register_node(struct node *node)
4101 {
4102         struct hstate *h;
4103         struct node_hstate *nhs = &node_hstates[node->dev.id];
4104         int err;
4105
4106         if (!hugetlb_sysfs_initialized)
4107                 return;
4108
4109         if (nhs->hugepages_kobj)
4110                 return;         /* already allocated */
4111
4112         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4113                                                         &node->dev.kobj);
4114         if (!nhs->hugepages_kobj)
4115                 return;
4116
4117         for_each_hstate(h) {
4118                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4119                                                 nhs->hstate_kobjs,
4120                                                 &per_node_hstate_attr_group);
4121                 if (err) {
4122                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4123                                 h->name, node->dev.id);
4124                         hugetlb_unregister_node(node);
4125                         break;
4126                 }
4127         }
4128 }
4129
4130 /*
4131  * hugetlb init time:  register hstate attributes for all registered node
4132  * devices of nodes that have memory.  All on-line nodes should have
4133  * registered their associated device by this time.
4134  */
4135 static void __init hugetlb_register_all_nodes(void)
4136 {
4137         int nid;
4138
4139         for_each_online_node(nid)
4140                 hugetlb_register_node(node_devices[nid]);
4141 }
4142 #else   /* !CONFIG_NUMA */
4143
4144 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4145 {
4146         BUG();
4147         if (nidp)
4148                 *nidp = -1;
4149         return NULL;
4150 }
4151
4152 static void hugetlb_register_all_nodes(void) { }
4153
4154 #endif
4155
4156 #ifdef CONFIG_CMA
4157 static void __init hugetlb_cma_check(void);
4158 #else
4159 static inline __init void hugetlb_cma_check(void)
4160 {
4161 }
4162 #endif
4163
4164 static void __init hugetlb_sysfs_init(void)
4165 {
4166         struct hstate *h;
4167         int err;
4168
4169         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4170         if (!hugepages_kobj)
4171                 return;
4172
4173         for_each_hstate(h) {
4174                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4175                                          hstate_kobjs, &hstate_attr_group);
4176                 if (err)
4177                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4178         }
4179
4180 #ifdef CONFIG_NUMA
4181         hugetlb_sysfs_initialized = true;
4182 #endif
4183         hugetlb_register_all_nodes();
4184 }
4185
4186 #ifdef CONFIG_SYSCTL
4187 static void hugetlb_sysctl_init(void);
4188 #else
4189 static inline void hugetlb_sysctl_init(void) { }
4190 #endif
4191
4192 static int __init hugetlb_init(void)
4193 {
4194         int i;
4195
4196         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4197                         __NR_HPAGEFLAGS);
4198
4199         if (!hugepages_supported()) {
4200                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4201                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4202                 return 0;
4203         }
4204
4205         /*
4206          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4207          * architectures depend on setup being done here.
4208          */
4209         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4210         if (!parsed_default_hugepagesz) {
4211                 /*
4212                  * If we did not parse a default huge page size, set
4213                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4214                  * number of huge pages for this default size was implicitly
4215                  * specified, set that here as well.
4216                  * Note that the implicit setting will overwrite an explicit
4217                  * setting.  A warning will be printed in this case.
4218                  */
4219                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4220                 if (default_hstate_max_huge_pages) {
4221                         if (default_hstate.max_huge_pages) {
4222                                 char buf[32];
4223
4224                                 string_get_size(huge_page_size(&default_hstate),
4225                                         1, STRING_UNITS_2, buf, 32);
4226                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4227                                         default_hstate.max_huge_pages, buf);
4228                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4229                                         default_hstate_max_huge_pages);
4230                         }
4231                         default_hstate.max_huge_pages =
4232                                 default_hstate_max_huge_pages;
4233
4234                         for_each_online_node(i)
4235                                 default_hstate.max_huge_pages_node[i] =
4236                                         default_hugepages_in_node[i];
4237                 }
4238         }
4239
4240         hugetlb_cma_check();
4241         hugetlb_init_hstates();
4242         gather_bootmem_prealloc();
4243         report_hugepages();
4244
4245         hugetlb_sysfs_init();
4246         hugetlb_cgroup_file_init();
4247         hugetlb_sysctl_init();
4248
4249 #ifdef CONFIG_SMP
4250         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4251 #else
4252         num_fault_mutexes = 1;
4253 #endif
4254         hugetlb_fault_mutex_table =
4255                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4256                               GFP_KERNEL);
4257         BUG_ON(!hugetlb_fault_mutex_table);
4258
4259         for (i = 0; i < num_fault_mutexes; i++)
4260                 mutex_init(&hugetlb_fault_mutex_table[i]);
4261         return 0;
4262 }
4263 subsys_initcall(hugetlb_init);
4264
4265 /* Overwritten by architectures with more huge page sizes */
4266 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4267 {
4268         return size == HPAGE_SIZE;
4269 }
4270
4271 void __init hugetlb_add_hstate(unsigned int order)
4272 {
4273         struct hstate *h;
4274         unsigned long i;
4275
4276         if (size_to_hstate(PAGE_SIZE << order)) {
4277                 return;
4278         }
4279         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4280         BUG_ON(order == 0);
4281         h = &hstates[hugetlb_max_hstate++];
4282         mutex_init(&h->resize_lock);
4283         h->order = order;
4284         h->mask = ~(huge_page_size(h) - 1);
4285         for (i = 0; i < MAX_NUMNODES; ++i)
4286                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4287         INIT_LIST_HEAD(&h->hugepage_activelist);
4288         h->next_nid_to_alloc = first_memory_node;
4289         h->next_nid_to_free = first_memory_node;
4290         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4291                                         huge_page_size(h)/SZ_1K);
4292
4293         parsed_hstate = h;
4294 }
4295
4296 bool __init __weak hugetlb_node_alloc_supported(void)
4297 {
4298         return true;
4299 }
4300
4301 static void __init hugepages_clear_pages_in_node(void)
4302 {
4303         if (!hugetlb_max_hstate) {
4304                 default_hstate_max_huge_pages = 0;
4305                 memset(default_hugepages_in_node, 0,
4306                         sizeof(default_hugepages_in_node));
4307         } else {
4308                 parsed_hstate->max_huge_pages = 0;
4309                 memset(parsed_hstate->max_huge_pages_node, 0,
4310                         sizeof(parsed_hstate->max_huge_pages_node));
4311         }
4312 }
4313
4314 /*
4315  * hugepages command line processing
4316  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4317  * specification.  If not, ignore the hugepages value.  hugepages can also
4318  * be the first huge page command line  option in which case it implicitly
4319  * specifies the number of huge pages for the default size.
4320  */
4321 static int __init hugepages_setup(char *s)
4322 {
4323         unsigned long *mhp;
4324         static unsigned long *last_mhp;
4325         int node = NUMA_NO_NODE;
4326         int count;
4327         unsigned long tmp;
4328         char *p = s;
4329
4330         if (!parsed_valid_hugepagesz) {
4331                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4332                 parsed_valid_hugepagesz = true;
4333                 return 1;
4334         }
4335
4336         /*
4337          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4338          * yet, so this hugepages= parameter goes to the "default hstate".
4339          * Otherwise, it goes with the previously parsed hugepagesz or
4340          * default_hugepagesz.
4341          */
4342         else if (!hugetlb_max_hstate)
4343                 mhp = &default_hstate_max_huge_pages;
4344         else
4345                 mhp = &parsed_hstate->max_huge_pages;
4346
4347         if (mhp == last_mhp) {
4348                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4349                 return 1;
4350         }
4351
4352         while (*p) {
4353                 count = 0;
4354                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4355                         goto invalid;
4356                 /* Parameter is node format */
4357                 if (p[count] == ':') {
4358                         if (!hugetlb_node_alloc_supported()) {
4359                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4360                                 return 1;
4361                         }
4362                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4363                                 goto invalid;
4364                         node = array_index_nospec(tmp, MAX_NUMNODES);
4365                         p += count + 1;
4366                         /* Parse hugepages */
4367                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4368                                 goto invalid;
4369                         if (!hugetlb_max_hstate)
4370                                 default_hugepages_in_node[node] = tmp;
4371                         else
4372                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4373                         *mhp += tmp;
4374                         /* Go to parse next node*/
4375                         if (p[count] == ',')
4376                                 p += count + 1;
4377                         else
4378                                 break;
4379                 } else {
4380                         if (p != s)
4381                                 goto invalid;
4382                         *mhp = tmp;
4383                         break;
4384                 }
4385         }
4386
4387         /*
4388          * Global state is always initialized later in hugetlb_init.
4389          * But we need to allocate gigantic hstates here early to still
4390          * use the bootmem allocator.
4391          */
4392         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4393                 hugetlb_hstate_alloc_pages(parsed_hstate);
4394
4395         last_mhp = mhp;
4396
4397         return 1;
4398
4399 invalid:
4400         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4401         hugepages_clear_pages_in_node();
4402         return 1;
4403 }
4404 __setup("hugepages=", hugepages_setup);
4405
4406 /*
4407  * hugepagesz command line processing
4408  * A specific huge page size can only be specified once with hugepagesz.
4409  * hugepagesz is followed by hugepages on the command line.  The global
4410  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4411  * hugepagesz argument was valid.
4412  */
4413 static int __init hugepagesz_setup(char *s)
4414 {
4415         unsigned long size;
4416         struct hstate *h;
4417
4418         parsed_valid_hugepagesz = false;
4419         size = (unsigned long)memparse(s, NULL);
4420
4421         if (!arch_hugetlb_valid_size(size)) {
4422                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4423                 return 1;
4424         }
4425
4426         h = size_to_hstate(size);
4427         if (h) {
4428                 /*
4429                  * hstate for this size already exists.  This is normally
4430                  * an error, but is allowed if the existing hstate is the
4431                  * default hstate.  More specifically, it is only allowed if
4432                  * the number of huge pages for the default hstate was not
4433                  * previously specified.
4434                  */
4435                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4436                     default_hstate.max_huge_pages) {
4437                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4438                         return 1;
4439                 }
4440
4441                 /*
4442                  * No need to call hugetlb_add_hstate() as hstate already
4443                  * exists.  But, do set parsed_hstate so that a following
4444                  * hugepages= parameter will be applied to this hstate.
4445                  */
4446                 parsed_hstate = h;
4447                 parsed_valid_hugepagesz = true;
4448                 return 1;
4449         }
4450
4451         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4452         parsed_valid_hugepagesz = true;
4453         return 1;
4454 }
4455 __setup("hugepagesz=", hugepagesz_setup);
4456
4457 /*
4458  * default_hugepagesz command line input
4459  * Only one instance of default_hugepagesz allowed on command line.
4460  */
4461 static int __init default_hugepagesz_setup(char *s)
4462 {
4463         unsigned long size;
4464         int i;
4465
4466         parsed_valid_hugepagesz = false;
4467         if (parsed_default_hugepagesz) {
4468                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4469                 return 1;
4470         }
4471
4472         size = (unsigned long)memparse(s, NULL);
4473
4474         if (!arch_hugetlb_valid_size(size)) {
4475                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4476                 return 1;
4477         }
4478
4479         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4480         parsed_valid_hugepagesz = true;
4481         parsed_default_hugepagesz = true;
4482         default_hstate_idx = hstate_index(size_to_hstate(size));
4483
4484         /*
4485          * The number of default huge pages (for this size) could have been
4486          * specified as the first hugetlb parameter: hugepages=X.  If so,
4487          * then default_hstate_max_huge_pages is set.  If the default huge
4488          * page size is gigantic (> MAX_ORDER), then the pages must be
4489          * allocated here from bootmem allocator.
4490          */
4491         if (default_hstate_max_huge_pages) {
4492                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4493                 for_each_online_node(i)
4494                         default_hstate.max_huge_pages_node[i] =
4495                                 default_hugepages_in_node[i];
4496                 if (hstate_is_gigantic(&default_hstate))
4497                         hugetlb_hstate_alloc_pages(&default_hstate);
4498                 default_hstate_max_huge_pages = 0;
4499         }
4500
4501         return 1;
4502 }
4503 __setup("default_hugepagesz=", default_hugepagesz_setup);
4504
4505 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4506 {
4507 #ifdef CONFIG_NUMA
4508         struct mempolicy *mpol = get_task_policy(current);
4509
4510         /*
4511          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4512          * (from policy_nodemask) specifically for hugetlb case
4513          */
4514         if (mpol->mode == MPOL_BIND &&
4515                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4516                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4517                 return &mpol->nodes;
4518 #endif
4519         return NULL;
4520 }
4521
4522 static unsigned int allowed_mems_nr(struct hstate *h)
4523 {
4524         int node;
4525         unsigned int nr = 0;
4526         nodemask_t *mbind_nodemask;
4527         unsigned int *array = h->free_huge_pages_node;
4528         gfp_t gfp_mask = htlb_alloc_mask(h);
4529
4530         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4531         for_each_node_mask(node, cpuset_current_mems_allowed) {
4532                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4533                         nr += array[node];
4534         }
4535
4536         return nr;
4537 }
4538
4539 #ifdef CONFIG_SYSCTL
4540 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4541                                           void *buffer, size_t *length,
4542                                           loff_t *ppos, unsigned long *out)
4543 {
4544         struct ctl_table dup_table;
4545
4546         /*
4547          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4548          * can duplicate the @table and alter the duplicate of it.
4549          */
4550         dup_table = *table;
4551         dup_table.data = out;
4552
4553         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4554 }
4555
4556 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4557                          struct ctl_table *table, int write,
4558                          void *buffer, size_t *length, loff_t *ppos)
4559 {
4560         struct hstate *h = &default_hstate;
4561         unsigned long tmp = h->max_huge_pages;
4562         int ret;
4563
4564         if (!hugepages_supported())
4565                 return -EOPNOTSUPP;
4566
4567         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4568                                              &tmp);
4569         if (ret)
4570                 goto out;
4571
4572         if (write)
4573                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4574                                                   NUMA_NO_NODE, tmp, *length);
4575 out:
4576         return ret;
4577 }
4578
4579 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4580                           void *buffer, size_t *length, loff_t *ppos)
4581 {
4582
4583         return hugetlb_sysctl_handler_common(false, table, write,
4584                                                         buffer, length, ppos);
4585 }
4586
4587 #ifdef CONFIG_NUMA
4588 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4589                           void *buffer, size_t *length, loff_t *ppos)
4590 {
4591         return hugetlb_sysctl_handler_common(true, table, write,
4592                                                         buffer, length, ppos);
4593 }
4594 #endif /* CONFIG_NUMA */
4595
4596 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4597                 void *buffer, size_t *length, loff_t *ppos)
4598 {
4599         struct hstate *h = &default_hstate;
4600         unsigned long tmp;
4601         int ret;
4602
4603         if (!hugepages_supported())
4604                 return -EOPNOTSUPP;
4605
4606         tmp = h->nr_overcommit_huge_pages;
4607
4608         if (write && hstate_is_gigantic(h))
4609                 return -EINVAL;
4610
4611         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4612                                              &tmp);
4613         if (ret)
4614                 goto out;
4615
4616         if (write) {
4617                 spin_lock_irq(&hugetlb_lock);
4618                 h->nr_overcommit_huge_pages = tmp;
4619                 spin_unlock_irq(&hugetlb_lock);
4620         }
4621 out:
4622         return ret;
4623 }
4624
4625 static struct ctl_table hugetlb_table[] = {
4626         {
4627                 .procname       = "nr_hugepages",
4628                 .data           = NULL,
4629                 .maxlen         = sizeof(unsigned long),
4630                 .mode           = 0644,
4631                 .proc_handler   = hugetlb_sysctl_handler,
4632         },
4633 #ifdef CONFIG_NUMA
4634         {
4635                 .procname       = "nr_hugepages_mempolicy",
4636                 .data           = NULL,
4637                 .maxlen         = sizeof(unsigned long),
4638                 .mode           = 0644,
4639                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4640         },
4641 #endif
4642         {
4643                 .procname       = "hugetlb_shm_group",
4644                 .data           = &sysctl_hugetlb_shm_group,
4645                 .maxlen         = sizeof(gid_t),
4646                 .mode           = 0644,
4647                 .proc_handler   = proc_dointvec,
4648         },
4649         {
4650                 .procname       = "nr_overcommit_hugepages",
4651                 .data           = NULL,
4652                 .maxlen         = sizeof(unsigned long),
4653                 .mode           = 0644,
4654                 .proc_handler   = hugetlb_overcommit_handler,
4655         },
4656         { }
4657 };
4658
4659 static void hugetlb_sysctl_init(void)
4660 {
4661         register_sysctl_init("vm", hugetlb_table);
4662 }
4663 #endif /* CONFIG_SYSCTL */
4664
4665 void hugetlb_report_meminfo(struct seq_file *m)
4666 {
4667         struct hstate *h;
4668         unsigned long total = 0;
4669
4670         if (!hugepages_supported())
4671                 return;
4672
4673         for_each_hstate(h) {
4674                 unsigned long count = h->nr_huge_pages;
4675
4676                 total += huge_page_size(h) * count;
4677
4678                 if (h == &default_hstate)
4679                         seq_printf(m,
4680                                    "HugePages_Total:   %5lu\n"
4681                                    "HugePages_Free:    %5lu\n"
4682                                    "HugePages_Rsvd:    %5lu\n"
4683                                    "HugePages_Surp:    %5lu\n"
4684                                    "Hugepagesize:   %8lu kB\n",
4685                                    count,
4686                                    h->free_huge_pages,
4687                                    h->resv_huge_pages,
4688                                    h->surplus_huge_pages,
4689                                    huge_page_size(h) / SZ_1K);
4690         }
4691
4692         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4693 }
4694
4695 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4696 {
4697         struct hstate *h = &default_hstate;
4698
4699         if (!hugepages_supported())
4700                 return 0;
4701
4702         return sysfs_emit_at(buf, len,
4703                              "Node %d HugePages_Total: %5u\n"
4704                              "Node %d HugePages_Free:  %5u\n"
4705                              "Node %d HugePages_Surp:  %5u\n",
4706                              nid, h->nr_huge_pages_node[nid],
4707                              nid, h->free_huge_pages_node[nid],
4708                              nid, h->surplus_huge_pages_node[nid]);
4709 }
4710
4711 void hugetlb_show_meminfo_node(int nid)
4712 {
4713         struct hstate *h;
4714
4715         if (!hugepages_supported())
4716                 return;
4717
4718         for_each_hstate(h)
4719                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4720                         nid,
4721                         h->nr_huge_pages_node[nid],
4722                         h->free_huge_pages_node[nid],
4723                         h->surplus_huge_pages_node[nid],
4724                         huge_page_size(h) / SZ_1K);
4725 }
4726
4727 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4728 {
4729         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4730                    K(atomic_long_read(&mm->hugetlb_usage)));
4731 }
4732
4733 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4734 unsigned long hugetlb_total_pages(void)
4735 {
4736         struct hstate *h;
4737         unsigned long nr_total_pages = 0;
4738
4739         for_each_hstate(h)
4740                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4741         return nr_total_pages;
4742 }
4743
4744 static int hugetlb_acct_memory(struct hstate *h, long delta)
4745 {
4746         int ret = -ENOMEM;
4747
4748         if (!delta)
4749                 return 0;
4750
4751         spin_lock_irq(&hugetlb_lock);
4752         /*
4753          * When cpuset is configured, it breaks the strict hugetlb page
4754          * reservation as the accounting is done on a global variable. Such
4755          * reservation is completely rubbish in the presence of cpuset because
4756          * the reservation is not checked against page availability for the
4757          * current cpuset. Application can still potentially OOM'ed by kernel
4758          * with lack of free htlb page in cpuset that the task is in.
4759          * Attempt to enforce strict accounting with cpuset is almost
4760          * impossible (or too ugly) because cpuset is too fluid that
4761          * task or memory node can be dynamically moved between cpusets.
4762          *
4763          * The change of semantics for shared hugetlb mapping with cpuset is
4764          * undesirable. However, in order to preserve some of the semantics,
4765          * we fall back to check against current free page availability as
4766          * a best attempt and hopefully to minimize the impact of changing
4767          * semantics that cpuset has.
4768          *
4769          * Apart from cpuset, we also have memory policy mechanism that
4770          * also determines from which node the kernel will allocate memory
4771          * in a NUMA system. So similar to cpuset, we also should consider
4772          * the memory policy of the current task. Similar to the description
4773          * above.
4774          */
4775         if (delta > 0) {
4776                 if (gather_surplus_pages(h, delta) < 0)
4777                         goto out;
4778
4779                 if (delta > allowed_mems_nr(h)) {
4780                         return_unused_surplus_pages(h, delta);
4781                         goto out;
4782                 }
4783         }
4784
4785         ret = 0;
4786         if (delta < 0)
4787                 return_unused_surplus_pages(h, (unsigned long) -delta);
4788
4789 out:
4790         spin_unlock_irq(&hugetlb_lock);
4791         return ret;
4792 }
4793
4794 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4795 {
4796         struct resv_map *resv = vma_resv_map(vma);
4797
4798         /*
4799          * HPAGE_RESV_OWNER indicates a private mapping.
4800          * This new VMA should share its siblings reservation map if present.
4801          * The VMA will only ever have a valid reservation map pointer where
4802          * it is being copied for another still existing VMA.  As that VMA
4803          * has a reference to the reservation map it cannot disappear until
4804          * after this open call completes.  It is therefore safe to take a
4805          * new reference here without additional locking.
4806          */
4807         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4808                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4809                 kref_get(&resv->refs);
4810         }
4811
4812         /*
4813          * vma_lock structure for sharable mappings is vma specific.
4814          * Clear old pointer (if copied via vm_area_dup) and allocate
4815          * new structure.  Before clearing, make sure vma_lock is not
4816          * for this vma.
4817          */
4818         if (vma->vm_flags & VM_MAYSHARE) {
4819                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4820
4821                 if (vma_lock) {
4822                         if (vma_lock->vma != vma) {
4823                                 vma->vm_private_data = NULL;
4824                                 hugetlb_vma_lock_alloc(vma);
4825                         } else
4826                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4827                 } else
4828                         hugetlb_vma_lock_alloc(vma);
4829         }
4830 }
4831
4832 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4833 {
4834         struct hstate *h = hstate_vma(vma);
4835         struct resv_map *resv;
4836         struct hugepage_subpool *spool = subpool_vma(vma);
4837         unsigned long reserve, start, end;
4838         long gbl_reserve;
4839
4840         hugetlb_vma_lock_free(vma);
4841
4842         resv = vma_resv_map(vma);
4843         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4844                 return;
4845
4846         start = vma_hugecache_offset(h, vma, vma->vm_start);
4847         end = vma_hugecache_offset(h, vma, vma->vm_end);
4848
4849         reserve = (end - start) - region_count(resv, start, end);
4850         hugetlb_cgroup_uncharge_counter(resv, start, end);
4851         if (reserve) {
4852                 /*
4853                  * Decrement reserve counts.  The global reserve count may be
4854                  * adjusted if the subpool has a minimum size.
4855                  */
4856                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4857                 hugetlb_acct_memory(h, -gbl_reserve);
4858         }
4859
4860         kref_put(&resv->refs, resv_map_release);
4861 }
4862
4863 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4864 {
4865         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4866                 return -EINVAL;
4867
4868         /*
4869          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4870          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4871          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4872          */
4873         if (addr & ~PUD_MASK) {
4874                 /*
4875                  * hugetlb_vm_op_split is called right before we attempt to
4876                  * split the VMA. We will need to unshare PMDs in the old and
4877                  * new VMAs, so let's unshare before we split.
4878                  */
4879                 unsigned long floor = addr & PUD_MASK;
4880                 unsigned long ceil = floor + PUD_SIZE;
4881
4882                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4883                         hugetlb_unshare_pmds(vma, floor, ceil);
4884         }
4885
4886         return 0;
4887 }
4888
4889 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4890 {
4891         return huge_page_size(hstate_vma(vma));
4892 }
4893
4894 /*
4895  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4896  * handle_mm_fault() to try to instantiate regular-sized pages in the
4897  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4898  * this far.
4899  */
4900 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4901 {
4902         BUG();
4903         return 0;
4904 }
4905
4906 /*
4907  * When a new function is introduced to vm_operations_struct and added
4908  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4909  * This is because under System V memory model, mappings created via
4910  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4911  * their original vm_ops are overwritten with shm_vm_ops.
4912  */
4913 const struct vm_operations_struct hugetlb_vm_ops = {
4914         .fault = hugetlb_vm_op_fault,
4915         .open = hugetlb_vm_op_open,
4916         .close = hugetlb_vm_op_close,
4917         .may_split = hugetlb_vm_op_split,
4918         .pagesize = hugetlb_vm_op_pagesize,
4919 };
4920
4921 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4922                                 int writable)
4923 {
4924         pte_t entry;
4925         unsigned int shift = huge_page_shift(hstate_vma(vma));
4926
4927         if (writable) {
4928                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4929                                          vma->vm_page_prot)));
4930         } else {
4931                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4932                                            vma->vm_page_prot));
4933         }
4934         entry = pte_mkyoung(entry);
4935         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4936
4937         return entry;
4938 }
4939
4940 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4941                                    unsigned long address, pte_t *ptep)
4942 {
4943         pte_t entry;
4944
4945         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4946         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4947                 update_mmu_cache(vma, address, ptep);
4948 }
4949
4950 bool is_hugetlb_entry_migration(pte_t pte)
4951 {
4952         swp_entry_t swp;
4953
4954         if (huge_pte_none(pte) || pte_present(pte))
4955                 return false;
4956         swp = pte_to_swp_entry(pte);
4957         if (is_migration_entry(swp))
4958                 return true;
4959         else
4960                 return false;
4961 }
4962
4963 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4964 {
4965         swp_entry_t swp;
4966
4967         if (huge_pte_none(pte) || pte_present(pte))
4968                 return false;
4969         swp = pte_to_swp_entry(pte);
4970         if (is_hwpoison_entry(swp))
4971                 return true;
4972         else
4973                 return false;
4974 }
4975
4976 static void
4977 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4978                       struct folio *new_folio, pte_t old)
4979 {
4980         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
4981
4982         __folio_mark_uptodate(new_folio);
4983         hugepage_add_new_anon_rmap(new_folio, vma, addr);
4984         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4985                 newpte = huge_pte_mkuffd_wp(newpte);
4986         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
4987         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4988         folio_set_hugetlb_migratable(new_folio);
4989 }
4990
4991 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4992                             struct vm_area_struct *dst_vma,
4993                             struct vm_area_struct *src_vma)
4994 {
4995         pte_t *src_pte, *dst_pte, entry;
4996         struct folio *pte_folio;
4997         unsigned long addr;
4998         bool cow = is_cow_mapping(src_vma->vm_flags);
4999         struct hstate *h = hstate_vma(src_vma);
5000         unsigned long sz = huge_page_size(h);
5001         unsigned long npages = pages_per_huge_page(h);
5002         struct mmu_notifier_range range;
5003         unsigned long last_addr_mask;
5004         int ret = 0;
5005
5006         if (cow) {
5007                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5008                                         src_vma->vm_start,
5009                                         src_vma->vm_end);
5010                 mmu_notifier_invalidate_range_start(&range);
5011                 vma_assert_write_locked(src_vma);
5012                 raw_write_seqcount_begin(&src->write_protect_seq);
5013         } else {
5014                 /*
5015                  * For shared mappings the vma lock must be held before
5016                  * calling hugetlb_walk() in the src vma. Otherwise, the
5017                  * returned ptep could go away if part of a shared pmd and
5018                  * another thread calls huge_pmd_unshare.
5019                  */
5020                 hugetlb_vma_lock_read(src_vma);
5021         }
5022
5023         last_addr_mask = hugetlb_mask_last_page(h);
5024         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5025                 spinlock_t *src_ptl, *dst_ptl;
5026                 src_pte = hugetlb_walk(src_vma, addr, sz);
5027                 if (!src_pte) {
5028                         addr |= last_addr_mask;
5029                         continue;
5030                 }
5031                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5032                 if (!dst_pte) {
5033                         ret = -ENOMEM;
5034                         break;
5035                 }
5036
5037                 /*
5038                  * If the pagetables are shared don't copy or take references.
5039                  *
5040                  * dst_pte == src_pte is the common case of src/dest sharing.
5041                  * However, src could have 'unshared' and dst shares with
5042                  * another vma. So page_count of ptep page is checked instead
5043                  * to reliably determine whether pte is shared.
5044                  */
5045                 if (page_count(virt_to_page(dst_pte)) > 1) {
5046                         addr |= last_addr_mask;
5047                         continue;
5048                 }
5049
5050                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5051                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5052                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5053                 entry = huge_ptep_get(src_pte);
5054 again:
5055                 if (huge_pte_none(entry)) {
5056                         /*
5057                          * Skip if src entry none.
5058                          */
5059                         ;
5060                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5061                         if (!userfaultfd_wp(dst_vma))
5062                                 entry = huge_pte_clear_uffd_wp(entry);
5063                         set_huge_pte_at(dst, addr, dst_pte, entry);
5064                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5065                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5066                         bool uffd_wp = pte_swp_uffd_wp(entry);
5067
5068                         if (!is_readable_migration_entry(swp_entry) && cow) {
5069                                 /*
5070                                  * COW mappings require pages in both
5071                                  * parent and child to be set to read.
5072                                  */
5073                                 swp_entry = make_readable_migration_entry(
5074                                                         swp_offset(swp_entry));
5075                                 entry = swp_entry_to_pte(swp_entry);
5076                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5077                                         entry = pte_swp_mkuffd_wp(entry);
5078                                 set_huge_pte_at(src, addr, src_pte, entry);
5079                         }
5080                         if (!userfaultfd_wp(dst_vma))
5081                                 entry = huge_pte_clear_uffd_wp(entry);
5082                         set_huge_pte_at(dst, addr, dst_pte, entry);
5083                 } else if (unlikely(is_pte_marker(entry))) {
5084                         pte_marker marker = copy_pte_marker(
5085                                 pte_to_swp_entry(entry), dst_vma);
5086
5087                         if (marker)
5088                                 set_huge_pte_at(dst, addr, dst_pte,
5089                                                 make_pte_marker(marker));
5090                 } else {
5091                         entry = huge_ptep_get(src_pte);
5092                         pte_folio = page_folio(pte_page(entry));
5093                         folio_get(pte_folio);
5094
5095                         /*
5096                          * Failing to duplicate the anon rmap is a rare case
5097                          * where we see pinned hugetlb pages while they're
5098                          * prone to COW. We need to do the COW earlier during
5099                          * fork.
5100                          *
5101                          * When pre-allocating the page or copying data, we
5102                          * need to be without the pgtable locks since we could
5103                          * sleep during the process.
5104                          */
5105                         if (!folio_test_anon(pte_folio)) {
5106                                 page_dup_file_rmap(&pte_folio->page, true);
5107                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5108                                                           true, src_vma)) {
5109                                 pte_t src_pte_old = entry;
5110                                 struct folio *new_folio;
5111
5112                                 spin_unlock(src_ptl);
5113                                 spin_unlock(dst_ptl);
5114                                 /* Do not use reserve as it's private owned */
5115                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5116                                 if (IS_ERR(new_folio)) {
5117                                         folio_put(pte_folio);
5118                                         ret = PTR_ERR(new_folio);
5119                                         break;
5120                                 }
5121                                 ret = copy_user_large_folio(new_folio,
5122                                                             pte_folio,
5123                                                             addr, dst_vma);
5124                                 folio_put(pte_folio);
5125                                 if (ret) {
5126                                         folio_put(new_folio);
5127                                         break;
5128                                 }
5129
5130                                 /* Install the new hugetlb folio if src pte stable */
5131                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5132                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5133                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5134                                 entry = huge_ptep_get(src_pte);
5135                                 if (!pte_same(src_pte_old, entry)) {
5136                                         restore_reserve_on_error(h, dst_vma, addr,
5137                                                                 new_folio);
5138                                         folio_put(new_folio);
5139                                         /* huge_ptep of dst_pte won't change as in child */
5140                                         goto again;
5141                                 }
5142                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5143                                                       new_folio, src_pte_old);
5144                                 spin_unlock(src_ptl);
5145                                 spin_unlock(dst_ptl);
5146                                 continue;
5147                         }
5148
5149                         if (cow) {
5150                                 /*
5151                                  * No need to notify as we are downgrading page
5152                                  * table protection not changing it to point
5153                                  * to a new page.
5154                                  *
5155                                  * See Documentation/mm/mmu_notifier.rst
5156                                  */
5157                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5158                                 entry = huge_pte_wrprotect(entry);
5159                         }
5160
5161                         if (!userfaultfd_wp(dst_vma))
5162                                 entry = huge_pte_clear_uffd_wp(entry);
5163
5164                         set_huge_pte_at(dst, addr, dst_pte, entry);
5165                         hugetlb_count_add(npages, dst);
5166                 }
5167                 spin_unlock(src_ptl);
5168                 spin_unlock(dst_ptl);
5169         }
5170
5171         if (cow) {
5172                 raw_write_seqcount_end(&src->write_protect_seq);
5173                 mmu_notifier_invalidate_range_end(&range);
5174         } else {
5175                 hugetlb_vma_unlock_read(src_vma);
5176         }
5177
5178         return ret;
5179 }
5180
5181 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5182                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5183 {
5184         struct hstate *h = hstate_vma(vma);
5185         struct mm_struct *mm = vma->vm_mm;
5186         spinlock_t *src_ptl, *dst_ptl;
5187         pte_t pte;
5188
5189         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5190         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5191
5192         /*
5193          * We don't have to worry about the ordering of src and dst ptlocks
5194          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5195          */
5196         if (src_ptl != dst_ptl)
5197                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5198
5199         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5200         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5201
5202         if (src_ptl != dst_ptl)
5203                 spin_unlock(src_ptl);
5204         spin_unlock(dst_ptl);
5205 }
5206
5207 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5208                              struct vm_area_struct *new_vma,
5209                              unsigned long old_addr, unsigned long new_addr,
5210                              unsigned long len)
5211 {
5212         struct hstate *h = hstate_vma(vma);
5213         struct address_space *mapping = vma->vm_file->f_mapping;
5214         unsigned long sz = huge_page_size(h);
5215         struct mm_struct *mm = vma->vm_mm;
5216         unsigned long old_end = old_addr + len;
5217         unsigned long last_addr_mask;
5218         pte_t *src_pte, *dst_pte;
5219         struct mmu_notifier_range range;
5220         bool shared_pmd = false;
5221
5222         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5223                                 old_end);
5224         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5225         /*
5226          * In case of shared PMDs, we should cover the maximum possible
5227          * range.
5228          */
5229         flush_cache_range(vma, range.start, range.end);
5230
5231         mmu_notifier_invalidate_range_start(&range);
5232         last_addr_mask = hugetlb_mask_last_page(h);
5233         /* Prevent race with file truncation */
5234         hugetlb_vma_lock_write(vma);
5235         i_mmap_lock_write(mapping);
5236         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5237                 src_pte = hugetlb_walk(vma, old_addr, sz);
5238                 if (!src_pte) {
5239                         old_addr |= last_addr_mask;
5240                         new_addr |= last_addr_mask;
5241                         continue;
5242                 }
5243                 if (huge_pte_none(huge_ptep_get(src_pte)))
5244                         continue;
5245
5246                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5247                         shared_pmd = true;
5248                         old_addr |= last_addr_mask;
5249                         new_addr |= last_addr_mask;
5250                         continue;
5251                 }
5252
5253                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5254                 if (!dst_pte)
5255                         break;
5256
5257                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5258         }
5259
5260         if (shared_pmd)
5261                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5262         else
5263                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5264         mmu_notifier_invalidate_range_end(&range);
5265         i_mmap_unlock_write(mapping);
5266         hugetlb_vma_unlock_write(vma);
5267
5268         return len + old_addr - old_end;
5269 }
5270
5271 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5272                                    unsigned long start, unsigned long end,
5273                                    struct page *ref_page, zap_flags_t zap_flags)
5274 {
5275         struct mm_struct *mm = vma->vm_mm;
5276         unsigned long address;
5277         pte_t *ptep;
5278         pte_t pte;
5279         spinlock_t *ptl;
5280         struct page *page;
5281         struct hstate *h = hstate_vma(vma);
5282         unsigned long sz = huge_page_size(h);
5283         unsigned long last_addr_mask;
5284         bool force_flush = false;
5285
5286         WARN_ON(!is_vm_hugetlb_page(vma));
5287         BUG_ON(start & ~huge_page_mask(h));
5288         BUG_ON(end & ~huge_page_mask(h));
5289
5290         /*
5291          * This is a hugetlb vma, all the pte entries should point
5292          * to huge page.
5293          */
5294         tlb_change_page_size(tlb, sz);
5295         tlb_start_vma(tlb, vma);
5296
5297         last_addr_mask = hugetlb_mask_last_page(h);
5298         address = start;
5299         for (; address < end; address += sz) {
5300                 ptep = hugetlb_walk(vma, address, sz);
5301                 if (!ptep) {
5302                         address |= last_addr_mask;
5303                         continue;
5304                 }
5305
5306                 ptl = huge_pte_lock(h, mm, ptep);
5307                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5308                         spin_unlock(ptl);
5309                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5310                         force_flush = true;
5311                         address |= last_addr_mask;
5312                         continue;
5313                 }
5314
5315                 pte = huge_ptep_get(ptep);
5316                 if (huge_pte_none(pte)) {
5317                         spin_unlock(ptl);
5318                         continue;
5319                 }
5320
5321                 /*
5322                  * Migrating hugepage or HWPoisoned hugepage is already
5323                  * unmapped and its refcount is dropped, so just clear pte here.
5324                  */
5325                 if (unlikely(!pte_present(pte))) {
5326                         /*
5327                          * If the pte was wr-protected by uffd-wp in any of the
5328                          * swap forms, meanwhile the caller does not want to
5329                          * drop the uffd-wp bit in this zap, then replace the
5330                          * pte with a marker.
5331                          */
5332                         if (pte_swp_uffd_wp_any(pte) &&
5333                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5334                                 set_huge_pte_at(mm, address, ptep,
5335                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5336                         else
5337                                 huge_pte_clear(mm, address, ptep, sz);
5338                         spin_unlock(ptl);
5339                         continue;
5340                 }
5341
5342                 page = pte_page(pte);
5343                 /*
5344                  * If a reference page is supplied, it is because a specific
5345                  * page is being unmapped, not a range. Ensure the page we
5346                  * are about to unmap is the actual page of interest.
5347                  */
5348                 if (ref_page) {
5349                         if (page != ref_page) {
5350                                 spin_unlock(ptl);
5351                                 continue;
5352                         }
5353                         /*
5354                          * Mark the VMA as having unmapped its page so that
5355                          * future faults in this VMA will fail rather than
5356                          * looking like data was lost
5357                          */
5358                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5359                 }
5360
5361                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5362                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5363                 if (huge_pte_dirty(pte))
5364                         set_page_dirty(page);
5365                 /* Leave a uffd-wp pte marker if needed */
5366                 if (huge_pte_uffd_wp(pte) &&
5367                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5368                         set_huge_pte_at(mm, address, ptep,
5369                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5370                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5371                 page_remove_rmap(page, vma, true);
5372
5373                 spin_unlock(ptl);
5374                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5375                 /*
5376                  * Bail out after unmapping reference page if supplied
5377                  */
5378                 if (ref_page)
5379                         break;
5380         }
5381         tlb_end_vma(tlb, vma);
5382
5383         /*
5384          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5385          * could defer the flush until now, since by holding i_mmap_rwsem we
5386          * guaranteed that the last refernece would not be dropped. But we must
5387          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5388          * dropped and the last reference to the shared PMDs page might be
5389          * dropped as well.
5390          *
5391          * In theory we could defer the freeing of the PMD pages as well, but
5392          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5393          * detect sharing, so we cannot defer the release of the page either.
5394          * Instead, do flush now.
5395          */
5396         if (force_flush)
5397                 tlb_flush_mmu_tlbonly(tlb);
5398 }
5399
5400 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5401                           struct vm_area_struct *vma, unsigned long start,
5402                           unsigned long end, struct page *ref_page,
5403                           zap_flags_t zap_flags)
5404 {
5405         hugetlb_vma_lock_write(vma);
5406         i_mmap_lock_write(vma->vm_file->f_mapping);
5407
5408         /* mmu notification performed in caller */
5409         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5410
5411         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5412                 /*
5413                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5414                  * When the vma_lock is freed, this makes the vma ineligible
5415                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5416                  * pmd sharing.  This is important as page tables for this
5417                  * unmapped range will be asynchrously deleted.  If the page
5418                  * tables are shared, there will be issues when accessed by
5419                  * someone else.
5420                  */
5421                 __hugetlb_vma_unlock_write_free(vma);
5422                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5423         } else {
5424                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5425                 hugetlb_vma_unlock_write(vma);
5426         }
5427 }
5428
5429 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5430                           unsigned long end, struct page *ref_page,
5431                           zap_flags_t zap_flags)
5432 {
5433         struct mmu_notifier_range range;
5434         struct mmu_gather tlb;
5435
5436         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5437                                 start, end);
5438         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5439         mmu_notifier_invalidate_range_start(&range);
5440         tlb_gather_mmu(&tlb, vma->vm_mm);
5441
5442         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5443
5444         mmu_notifier_invalidate_range_end(&range);
5445         tlb_finish_mmu(&tlb);
5446 }
5447
5448 /*
5449  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5450  * mapping it owns the reserve page for. The intention is to unmap the page
5451  * from other VMAs and let the children be SIGKILLed if they are faulting the
5452  * same region.
5453  */
5454 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5455                               struct page *page, unsigned long address)
5456 {
5457         struct hstate *h = hstate_vma(vma);
5458         struct vm_area_struct *iter_vma;
5459         struct address_space *mapping;
5460         pgoff_t pgoff;
5461
5462         /*
5463          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5464          * from page cache lookup which is in HPAGE_SIZE units.
5465          */
5466         address = address & huge_page_mask(h);
5467         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5468                         vma->vm_pgoff;
5469         mapping = vma->vm_file->f_mapping;
5470
5471         /*
5472          * Take the mapping lock for the duration of the table walk. As
5473          * this mapping should be shared between all the VMAs,
5474          * __unmap_hugepage_range() is called as the lock is already held
5475          */
5476         i_mmap_lock_write(mapping);
5477         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5478                 /* Do not unmap the current VMA */
5479                 if (iter_vma == vma)
5480                         continue;
5481
5482                 /*
5483                  * Shared VMAs have their own reserves and do not affect
5484                  * MAP_PRIVATE accounting but it is possible that a shared
5485                  * VMA is using the same page so check and skip such VMAs.
5486                  */
5487                 if (iter_vma->vm_flags & VM_MAYSHARE)
5488                         continue;
5489
5490                 /*
5491                  * Unmap the page from other VMAs without their own reserves.
5492                  * They get marked to be SIGKILLed if they fault in these
5493                  * areas. This is because a future no-page fault on this VMA
5494                  * could insert a zeroed page instead of the data existing
5495                  * from the time of fork. This would look like data corruption
5496                  */
5497                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5498                         unmap_hugepage_range(iter_vma, address,
5499                                              address + huge_page_size(h), page, 0);
5500         }
5501         i_mmap_unlock_write(mapping);
5502 }
5503
5504 /*
5505  * hugetlb_wp() should be called with page lock of the original hugepage held.
5506  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5507  * cannot race with other handlers or page migration.
5508  * Keep the pte_same checks anyway to make transition from the mutex easier.
5509  */
5510 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5511                        unsigned long address, pte_t *ptep, unsigned int flags,
5512                        struct folio *pagecache_folio, spinlock_t *ptl)
5513 {
5514         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5515         pte_t pte = huge_ptep_get(ptep);
5516         struct hstate *h = hstate_vma(vma);
5517         struct folio *old_folio;
5518         struct folio *new_folio;
5519         int outside_reserve = 0;
5520         vm_fault_t ret = 0;
5521         unsigned long haddr = address & huge_page_mask(h);
5522         struct mmu_notifier_range range;
5523
5524         /*
5525          * Never handle CoW for uffd-wp protected pages.  It should be only
5526          * handled when the uffd-wp protection is removed.
5527          *
5528          * Note that only the CoW optimization path (in hugetlb_no_page())
5529          * can trigger this, because hugetlb_fault() will always resolve
5530          * uffd-wp bit first.
5531          */
5532         if (!unshare && huge_pte_uffd_wp(pte))
5533                 return 0;
5534
5535         /*
5536          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5537          * PTE mapped R/O such as maybe_mkwrite() would do.
5538          */
5539         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5540                 return VM_FAULT_SIGSEGV;
5541
5542         /* Let's take out MAP_SHARED mappings first. */
5543         if (vma->vm_flags & VM_MAYSHARE) {
5544                 set_huge_ptep_writable(vma, haddr, ptep);
5545                 return 0;
5546         }
5547
5548         old_folio = page_folio(pte_page(pte));
5549
5550         delayacct_wpcopy_start();
5551
5552 retry_avoidcopy:
5553         /*
5554          * If no-one else is actually using this page, we're the exclusive
5555          * owner and can reuse this page.
5556          */
5557         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5558                 if (!PageAnonExclusive(&old_folio->page))
5559                         page_move_anon_rmap(&old_folio->page, vma);
5560                 if (likely(!unshare))
5561                         set_huge_ptep_writable(vma, haddr, ptep);
5562
5563                 delayacct_wpcopy_end();
5564                 return 0;
5565         }
5566         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5567                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5568
5569         /*
5570          * If the process that created a MAP_PRIVATE mapping is about to
5571          * perform a COW due to a shared page count, attempt to satisfy
5572          * the allocation without using the existing reserves. The pagecache
5573          * page is used to determine if the reserve at this address was
5574          * consumed or not. If reserves were used, a partial faulted mapping
5575          * at the time of fork() could consume its reserves on COW instead
5576          * of the full address range.
5577          */
5578         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5579                         old_folio != pagecache_folio)
5580                 outside_reserve = 1;
5581
5582         folio_get(old_folio);
5583
5584         /*
5585          * Drop page table lock as buddy allocator may be called. It will
5586          * be acquired again before returning to the caller, as expected.
5587          */
5588         spin_unlock(ptl);
5589         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5590
5591         if (IS_ERR(new_folio)) {
5592                 /*
5593                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5594                  * it is due to references held by a child and an insufficient
5595                  * huge page pool. To guarantee the original mappers
5596                  * reliability, unmap the page from child processes. The child
5597                  * may get SIGKILLed if it later faults.
5598                  */
5599                 if (outside_reserve) {
5600                         struct address_space *mapping = vma->vm_file->f_mapping;
5601                         pgoff_t idx;
5602                         u32 hash;
5603
5604                         folio_put(old_folio);
5605                         /*
5606                          * Drop hugetlb_fault_mutex and vma_lock before
5607                          * unmapping.  unmapping needs to hold vma_lock
5608                          * in write mode.  Dropping vma_lock in read mode
5609                          * here is OK as COW mappings do not interact with
5610                          * PMD sharing.
5611                          *
5612                          * Reacquire both after unmap operation.
5613                          */
5614                         idx = vma_hugecache_offset(h, vma, haddr);
5615                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5616                         hugetlb_vma_unlock_read(vma);
5617                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5618
5619                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5620
5621                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5622                         hugetlb_vma_lock_read(vma);
5623                         spin_lock(ptl);
5624                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5625                         if (likely(ptep &&
5626                                    pte_same(huge_ptep_get(ptep), pte)))
5627                                 goto retry_avoidcopy;
5628                         /*
5629                          * race occurs while re-acquiring page table
5630                          * lock, and our job is done.
5631                          */
5632                         delayacct_wpcopy_end();
5633                         return 0;
5634                 }
5635
5636                 ret = vmf_error(PTR_ERR(new_folio));
5637                 goto out_release_old;
5638         }
5639
5640         /*
5641          * When the original hugepage is shared one, it does not have
5642          * anon_vma prepared.
5643          */
5644         if (unlikely(anon_vma_prepare(vma))) {
5645                 ret = VM_FAULT_OOM;
5646                 goto out_release_all;
5647         }
5648
5649         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5650                 ret = VM_FAULT_HWPOISON_LARGE;
5651                 goto out_release_all;
5652         }
5653         __folio_mark_uptodate(new_folio);
5654
5655         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5656                                 haddr + huge_page_size(h));
5657         mmu_notifier_invalidate_range_start(&range);
5658
5659         /*
5660          * Retake the page table lock to check for racing updates
5661          * before the page tables are altered
5662          */
5663         spin_lock(ptl);
5664         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5665         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5666                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5667
5668                 /* Break COW or unshare */
5669                 huge_ptep_clear_flush(vma, haddr, ptep);
5670                 page_remove_rmap(&old_folio->page, vma, true);
5671                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5672                 if (huge_pte_uffd_wp(pte))
5673                         newpte = huge_pte_mkuffd_wp(newpte);
5674                 set_huge_pte_at(mm, haddr, ptep, newpte);
5675                 folio_set_hugetlb_migratable(new_folio);
5676                 /* Make the old page be freed below */
5677                 new_folio = old_folio;
5678         }
5679         spin_unlock(ptl);
5680         mmu_notifier_invalidate_range_end(&range);
5681 out_release_all:
5682         /*
5683          * No restore in case of successful pagetable update (Break COW or
5684          * unshare)
5685          */
5686         if (new_folio != old_folio)
5687                 restore_reserve_on_error(h, vma, haddr, new_folio);
5688         folio_put(new_folio);
5689 out_release_old:
5690         folio_put(old_folio);
5691
5692         spin_lock(ptl); /* Caller expects lock to be held */
5693
5694         delayacct_wpcopy_end();
5695         return ret;
5696 }
5697
5698 /*
5699  * Return whether there is a pagecache page to back given address within VMA.
5700  */
5701 static bool hugetlbfs_pagecache_present(struct hstate *h,
5702                         struct vm_area_struct *vma, unsigned long address)
5703 {
5704         struct address_space *mapping = vma->vm_file->f_mapping;
5705         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5706         struct folio *folio;
5707
5708         folio = filemap_get_folio(mapping, idx);
5709         if (IS_ERR(folio))
5710                 return false;
5711         folio_put(folio);
5712         return true;
5713 }
5714
5715 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5716                            pgoff_t idx)
5717 {
5718         struct inode *inode = mapping->host;
5719         struct hstate *h = hstate_inode(inode);
5720         int err;
5721
5722         __folio_set_locked(folio);
5723         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5724
5725         if (unlikely(err)) {
5726                 __folio_clear_locked(folio);
5727                 return err;
5728         }
5729         folio_clear_hugetlb_restore_reserve(folio);
5730
5731         /*
5732          * mark folio dirty so that it will not be removed from cache/file
5733          * by non-hugetlbfs specific code paths.
5734          */
5735         folio_mark_dirty(folio);
5736
5737         spin_lock(&inode->i_lock);
5738         inode->i_blocks += blocks_per_huge_page(h);
5739         spin_unlock(&inode->i_lock);
5740         return 0;
5741 }
5742
5743 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5744                                                   struct address_space *mapping,
5745                                                   pgoff_t idx,
5746                                                   unsigned int flags,
5747                                                   unsigned long haddr,
5748                                                   unsigned long addr,
5749                                                   unsigned long reason)
5750 {
5751         u32 hash;
5752         struct vm_fault vmf = {
5753                 .vma = vma,
5754                 .address = haddr,
5755                 .real_address = addr,
5756                 .flags = flags,
5757
5758                 /*
5759                  * Hard to debug if it ends up being
5760                  * used by a callee that assumes
5761                  * something about the other
5762                  * uninitialized fields... same as in
5763                  * memory.c
5764                  */
5765         };
5766
5767         /*
5768          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5769          * userfault. Also mmap_lock could be dropped due to handling
5770          * userfault, any vma operation should be careful from here.
5771          */
5772         hugetlb_vma_unlock_read(vma);
5773         hash = hugetlb_fault_mutex_hash(mapping, idx);
5774         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5775         return handle_userfault(&vmf, reason);
5776 }
5777
5778 /*
5779  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5780  * false if pte changed or is changing.
5781  */
5782 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5783                                pte_t *ptep, pte_t old_pte)
5784 {
5785         spinlock_t *ptl;
5786         bool same;
5787
5788         ptl = huge_pte_lock(h, mm, ptep);
5789         same = pte_same(huge_ptep_get(ptep), old_pte);
5790         spin_unlock(ptl);
5791
5792         return same;
5793 }
5794
5795 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5796                         struct vm_area_struct *vma,
5797                         struct address_space *mapping, pgoff_t idx,
5798                         unsigned long address, pte_t *ptep,
5799                         pte_t old_pte, unsigned int flags)
5800 {
5801         struct hstate *h = hstate_vma(vma);
5802         vm_fault_t ret = VM_FAULT_SIGBUS;
5803         int anon_rmap = 0;
5804         unsigned long size;
5805         struct folio *folio;
5806         pte_t new_pte;
5807         spinlock_t *ptl;
5808         unsigned long haddr = address & huge_page_mask(h);
5809         bool new_folio, new_pagecache_folio = false;
5810         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5811
5812         /*
5813          * Currently, we are forced to kill the process in the event the
5814          * original mapper has unmapped pages from the child due to a failed
5815          * COW/unsharing. Warn that such a situation has occurred as it may not
5816          * be obvious.
5817          */
5818         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5819                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5820                            current->pid);
5821                 goto out;
5822         }
5823
5824         /*
5825          * Use page lock to guard against racing truncation
5826          * before we get page_table_lock.
5827          */
5828         new_folio = false;
5829         folio = filemap_lock_folio(mapping, idx);
5830         if (IS_ERR(folio)) {
5831                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5832                 if (idx >= size)
5833                         goto out;
5834                 /* Check for page in userfault range */
5835                 if (userfaultfd_missing(vma)) {
5836                         /*
5837                          * Since hugetlb_no_page() was examining pte
5838                          * without pgtable lock, we need to re-test under
5839                          * lock because the pte may not be stable and could
5840                          * have changed from under us.  Try to detect
5841                          * either changed or during-changing ptes and retry
5842                          * properly when needed.
5843                          *
5844                          * Note that userfaultfd is actually fine with
5845                          * false positives (e.g. caused by pte changed),
5846                          * but not wrong logical events (e.g. caused by
5847                          * reading a pte during changing).  The latter can
5848                          * confuse the userspace, so the strictness is very
5849                          * much preferred.  E.g., MISSING event should
5850                          * never happen on the page after UFFDIO_COPY has
5851                          * correctly installed the page and returned.
5852                          */
5853                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5854                                 ret = 0;
5855                                 goto out;
5856                         }
5857
5858                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5859                                                         haddr, address,
5860                                                         VM_UFFD_MISSING);
5861                 }
5862
5863                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5864                 if (IS_ERR(folio)) {
5865                         /*
5866                          * Returning error will result in faulting task being
5867                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5868                          * tasks from racing to fault in the same page which
5869                          * could result in false unable to allocate errors.
5870                          * Page migration does not take the fault mutex, but
5871                          * does a clear then write of pte's under page table
5872                          * lock.  Page fault code could race with migration,
5873                          * notice the clear pte and try to allocate a page
5874                          * here.  Before returning error, get ptl and make
5875                          * sure there really is no pte entry.
5876                          */
5877                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5878                                 ret = vmf_error(PTR_ERR(folio));
5879                         else
5880                                 ret = 0;
5881                         goto out;
5882                 }
5883                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5884                 __folio_mark_uptodate(folio);
5885                 new_folio = true;
5886
5887                 if (vma->vm_flags & VM_MAYSHARE) {
5888                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5889                         if (err) {
5890                                 /*
5891                                  * err can't be -EEXIST which implies someone
5892                                  * else consumed the reservation since hugetlb
5893                                  * fault mutex is held when add a hugetlb page
5894                                  * to the page cache. So it's safe to call
5895                                  * restore_reserve_on_error() here.
5896                                  */
5897                                 restore_reserve_on_error(h, vma, haddr, folio);
5898                                 folio_put(folio);
5899                                 goto out;
5900                         }
5901                         new_pagecache_folio = true;
5902                 } else {
5903                         folio_lock(folio);
5904                         if (unlikely(anon_vma_prepare(vma))) {
5905                                 ret = VM_FAULT_OOM;
5906                                 goto backout_unlocked;
5907                         }
5908                         anon_rmap = 1;
5909                 }
5910         } else {
5911                 /*
5912                  * If memory error occurs between mmap() and fault, some process
5913                  * don't have hwpoisoned swap entry for errored virtual address.
5914                  * So we need to block hugepage fault by PG_hwpoison bit check.
5915                  */
5916                 if (unlikely(folio_test_hwpoison(folio))) {
5917                         ret = VM_FAULT_HWPOISON_LARGE |
5918                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5919                         goto backout_unlocked;
5920                 }
5921
5922                 /* Check for page in userfault range. */
5923                 if (userfaultfd_minor(vma)) {
5924                         folio_unlock(folio);
5925                         folio_put(folio);
5926                         /* See comment in userfaultfd_missing() block above */
5927                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5928                                 ret = 0;
5929                                 goto out;
5930                         }
5931                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5932                                                         haddr, address,
5933                                                         VM_UFFD_MINOR);
5934                 }
5935         }
5936
5937         /*
5938          * If we are going to COW a private mapping later, we examine the
5939          * pending reservations for this page now. This will ensure that
5940          * any allocations necessary to record that reservation occur outside
5941          * the spinlock.
5942          */
5943         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5944                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5945                         ret = VM_FAULT_OOM;
5946                         goto backout_unlocked;
5947                 }
5948                 /* Just decrements count, does not deallocate */
5949                 vma_end_reservation(h, vma, haddr);
5950         }
5951
5952         ptl = huge_pte_lock(h, mm, ptep);
5953         ret = 0;
5954         /* If pte changed from under us, retry */
5955         if (!pte_same(huge_ptep_get(ptep), old_pte))
5956                 goto backout;
5957
5958         if (anon_rmap)
5959                 hugepage_add_new_anon_rmap(folio, vma, haddr);
5960         else
5961                 page_dup_file_rmap(&folio->page, true);
5962         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5963                                 && (vma->vm_flags & VM_SHARED)));
5964         /*
5965          * If this pte was previously wr-protected, keep it wr-protected even
5966          * if populated.
5967          */
5968         if (unlikely(pte_marker_uffd_wp(old_pte)))
5969                 new_pte = huge_pte_mkuffd_wp(new_pte);
5970         set_huge_pte_at(mm, haddr, ptep, new_pte);
5971
5972         hugetlb_count_add(pages_per_huge_page(h), mm);
5973         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5974                 /* Optimization, do the COW without a second fault */
5975                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5976         }
5977
5978         spin_unlock(ptl);
5979
5980         /*
5981          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5982          * found in the pagecache may not have hugetlb_migratable if they have
5983          * been isolated for migration.
5984          */
5985         if (new_folio)
5986                 folio_set_hugetlb_migratable(folio);
5987
5988         folio_unlock(folio);
5989 out:
5990         hugetlb_vma_unlock_read(vma);
5991         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5992         return ret;
5993
5994 backout:
5995         spin_unlock(ptl);
5996 backout_unlocked:
5997         if (new_folio && !new_pagecache_folio)
5998                 restore_reserve_on_error(h, vma, haddr, folio);
5999
6000         folio_unlock(folio);
6001         folio_put(folio);
6002         goto out;
6003 }
6004
6005 #ifdef CONFIG_SMP
6006 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6007 {
6008         unsigned long key[2];
6009         u32 hash;
6010
6011         key[0] = (unsigned long) mapping;
6012         key[1] = idx;
6013
6014         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6015
6016         return hash & (num_fault_mutexes - 1);
6017 }
6018 #else
6019 /*
6020  * For uniprocessor systems we always use a single mutex, so just
6021  * return 0 and avoid the hashing overhead.
6022  */
6023 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6024 {
6025         return 0;
6026 }
6027 #endif
6028
6029 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6030                         unsigned long address, unsigned int flags)
6031 {
6032         pte_t *ptep, entry;
6033         spinlock_t *ptl;
6034         vm_fault_t ret;
6035         u32 hash;
6036         pgoff_t idx;
6037         struct folio *folio = NULL;
6038         struct folio *pagecache_folio = NULL;
6039         struct hstate *h = hstate_vma(vma);
6040         struct address_space *mapping;
6041         int need_wait_lock = 0;
6042         unsigned long haddr = address & huge_page_mask(h);
6043
6044         /* TODO: Handle faults under the VMA lock */
6045         if (flags & FAULT_FLAG_VMA_LOCK) {
6046                 vma_end_read(vma);
6047                 return VM_FAULT_RETRY;
6048         }
6049
6050         /*
6051          * Serialize hugepage allocation and instantiation, so that we don't
6052          * get spurious allocation failures if two CPUs race to instantiate
6053          * the same page in the page cache.
6054          */
6055         mapping = vma->vm_file->f_mapping;
6056         idx = vma_hugecache_offset(h, vma, haddr);
6057         hash = hugetlb_fault_mutex_hash(mapping, idx);
6058         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6059
6060         /*
6061          * Acquire vma lock before calling huge_pte_alloc and hold
6062          * until finished with ptep.  This prevents huge_pmd_unshare from
6063          * being called elsewhere and making the ptep no longer valid.
6064          */
6065         hugetlb_vma_lock_read(vma);
6066         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6067         if (!ptep) {
6068                 hugetlb_vma_unlock_read(vma);
6069                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6070                 return VM_FAULT_OOM;
6071         }
6072
6073         entry = huge_ptep_get(ptep);
6074         if (huge_pte_none_mostly(entry)) {
6075                 if (is_pte_marker(entry)) {
6076                         pte_marker marker =
6077                                 pte_marker_get(pte_to_swp_entry(entry));
6078
6079                         if (marker & PTE_MARKER_POISONED) {
6080                                 ret = VM_FAULT_HWPOISON_LARGE;
6081                                 goto out_mutex;
6082                         }
6083                 }
6084
6085                 /*
6086                  * Other PTE markers should be handled the same way as none PTE.
6087                  *
6088                  * hugetlb_no_page will drop vma lock and hugetlb fault
6089                  * mutex internally, which make us return immediately.
6090                  */
6091                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6092                                       entry, flags);
6093         }
6094
6095         ret = 0;
6096
6097         /*
6098          * entry could be a migration/hwpoison entry at this point, so this
6099          * check prevents the kernel from going below assuming that we have
6100          * an active hugepage in pagecache. This goto expects the 2nd page
6101          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6102          * properly handle it.
6103          */
6104         if (!pte_present(entry)) {
6105                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6106                         /*
6107                          * Release the hugetlb fault lock now, but retain
6108                          * the vma lock, because it is needed to guard the
6109                          * huge_pte_lockptr() later in
6110                          * migration_entry_wait_huge(). The vma lock will
6111                          * be released there.
6112                          */
6113                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6114                         migration_entry_wait_huge(vma, ptep);
6115                         return 0;
6116                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6117                         ret = VM_FAULT_HWPOISON_LARGE |
6118                             VM_FAULT_SET_HINDEX(hstate_index(h));
6119                 goto out_mutex;
6120         }
6121
6122         /*
6123          * If we are going to COW/unshare the mapping later, we examine the
6124          * pending reservations for this page now. This will ensure that any
6125          * allocations necessary to record that reservation occur outside the
6126          * spinlock. Also lookup the pagecache page now as it is used to
6127          * determine if a reservation has been consumed.
6128          */
6129         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6130             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6131                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6132                         ret = VM_FAULT_OOM;
6133                         goto out_mutex;
6134                 }
6135                 /* Just decrements count, does not deallocate */
6136                 vma_end_reservation(h, vma, haddr);
6137
6138                 pagecache_folio = filemap_lock_folio(mapping, idx);
6139                 if (IS_ERR(pagecache_folio))
6140                         pagecache_folio = NULL;
6141         }
6142
6143         ptl = huge_pte_lock(h, mm, ptep);
6144
6145         /* Check for a racing update before calling hugetlb_wp() */
6146         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6147                 goto out_ptl;
6148
6149         /* Handle userfault-wp first, before trying to lock more pages */
6150         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6151             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6152                 struct vm_fault vmf = {
6153                         .vma = vma,
6154                         .address = haddr,
6155                         .real_address = address,
6156                         .flags = flags,
6157                 };
6158
6159                 spin_unlock(ptl);
6160                 if (pagecache_folio) {
6161                         folio_unlock(pagecache_folio);
6162                         folio_put(pagecache_folio);
6163                 }
6164                 hugetlb_vma_unlock_read(vma);
6165                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6166                 return handle_userfault(&vmf, VM_UFFD_WP);
6167         }
6168
6169         /*
6170          * hugetlb_wp() requires page locks of pte_page(entry) and
6171          * pagecache_folio, so here we need take the former one
6172          * when folio != pagecache_folio or !pagecache_folio.
6173          */
6174         folio = page_folio(pte_page(entry));
6175         if (folio != pagecache_folio)
6176                 if (!folio_trylock(folio)) {
6177                         need_wait_lock = 1;
6178                         goto out_ptl;
6179                 }
6180
6181         folio_get(folio);
6182
6183         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6184                 if (!huge_pte_write(entry)) {
6185                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6186                                          pagecache_folio, ptl);
6187                         goto out_put_page;
6188                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6189                         entry = huge_pte_mkdirty(entry);
6190                 }
6191         }
6192         entry = pte_mkyoung(entry);
6193         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6194                                                 flags & FAULT_FLAG_WRITE))
6195                 update_mmu_cache(vma, haddr, ptep);
6196 out_put_page:
6197         if (folio != pagecache_folio)
6198                 folio_unlock(folio);
6199         folio_put(folio);
6200 out_ptl:
6201         spin_unlock(ptl);
6202
6203         if (pagecache_folio) {
6204                 folio_unlock(pagecache_folio);
6205                 folio_put(pagecache_folio);
6206         }
6207 out_mutex:
6208         hugetlb_vma_unlock_read(vma);
6209         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6210         /*
6211          * Generally it's safe to hold refcount during waiting page lock. But
6212          * here we just wait to defer the next page fault to avoid busy loop and
6213          * the page is not used after unlocked before returning from the current
6214          * page fault. So we are safe from accessing freed page, even if we wait
6215          * here without taking refcount.
6216          */
6217         if (need_wait_lock)
6218                 folio_wait_locked(folio);
6219         return ret;
6220 }
6221
6222 #ifdef CONFIG_USERFAULTFD
6223 /*
6224  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6225  * with modifications for hugetlb pages.
6226  */
6227 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6228                              struct vm_area_struct *dst_vma,
6229                              unsigned long dst_addr,
6230                              unsigned long src_addr,
6231                              uffd_flags_t flags,
6232                              struct folio **foliop)
6233 {
6234         struct mm_struct *dst_mm = dst_vma->vm_mm;
6235         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6236         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6237         struct hstate *h = hstate_vma(dst_vma);
6238         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6239         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6240         unsigned long size;
6241         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6242         pte_t _dst_pte;
6243         spinlock_t *ptl;
6244         int ret = -ENOMEM;
6245         struct folio *folio;
6246         int writable;
6247         bool folio_in_pagecache = false;
6248
6249         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6250                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6251
6252                 /* Don't overwrite any existing PTEs (even markers) */
6253                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6254                         spin_unlock(ptl);
6255                         return -EEXIST;
6256                 }
6257
6258                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6259                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6260
6261                 /* No need to invalidate - it was non-present before */
6262                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6263
6264                 spin_unlock(ptl);
6265                 return 0;
6266         }
6267
6268         if (is_continue) {
6269                 ret = -EFAULT;
6270                 folio = filemap_lock_folio(mapping, idx);
6271                 if (IS_ERR(folio))
6272                         goto out;
6273                 folio_in_pagecache = true;
6274         } else if (!*foliop) {
6275                 /* If a folio already exists, then it's UFFDIO_COPY for
6276                  * a non-missing case. Return -EEXIST.
6277                  */
6278                 if (vm_shared &&
6279                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6280                         ret = -EEXIST;
6281                         goto out;
6282                 }
6283
6284                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6285                 if (IS_ERR(folio)) {
6286                         ret = -ENOMEM;
6287                         goto out;
6288                 }
6289
6290                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6291                                            false);
6292
6293                 /* fallback to copy_from_user outside mmap_lock */
6294                 if (unlikely(ret)) {
6295                         ret = -ENOENT;
6296                         /* Free the allocated folio which may have
6297                          * consumed a reservation.
6298                          */
6299                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6300                         folio_put(folio);
6301
6302                         /* Allocate a temporary folio to hold the copied
6303                          * contents.
6304                          */
6305                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6306                         if (!folio) {
6307                                 ret = -ENOMEM;
6308                                 goto out;
6309                         }
6310                         *foliop = folio;
6311                         /* Set the outparam foliop and return to the caller to
6312                          * copy the contents outside the lock. Don't free the
6313                          * folio.
6314                          */
6315                         goto out;
6316                 }
6317         } else {
6318                 if (vm_shared &&
6319                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6320                         folio_put(*foliop);
6321                         ret = -EEXIST;
6322                         *foliop = NULL;
6323                         goto out;
6324                 }
6325
6326                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6327                 if (IS_ERR(folio)) {
6328                         folio_put(*foliop);
6329                         ret = -ENOMEM;
6330                         *foliop = NULL;
6331                         goto out;
6332                 }
6333                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6334                 folio_put(*foliop);
6335                 *foliop = NULL;
6336                 if (ret) {
6337                         folio_put(folio);
6338                         goto out;
6339                 }
6340         }
6341
6342         /*
6343          * The memory barrier inside __folio_mark_uptodate makes sure that
6344          * preceding stores to the page contents become visible before
6345          * the set_pte_at() write.
6346          */
6347         __folio_mark_uptodate(folio);
6348
6349         /* Add shared, newly allocated pages to the page cache. */
6350         if (vm_shared && !is_continue) {
6351                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6352                 ret = -EFAULT;
6353                 if (idx >= size)
6354                         goto out_release_nounlock;
6355
6356                 /*
6357                  * Serialization between remove_inode_hugepages() and
6358                  * hugetlb_add_to_page_cache() below happens through the
6359                  * hugetlb_fault_mutex_table that here must be hold by
6360                  * the caller.
6361                  */
6362                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6363                 if (ret)
6364                         goto out_release_nounlock;
6365                 folio_in_pagecache = true;
6366         }
6367
6368         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6369
6370         ret = -EIO;
6371         if (folio_test_hwpoison(folio))
6372                 goto out_release_unlock;
6373
6374         /*
6375          * We allow to overwrite a pte marker: consider when both MISSING|WP
6376          * registered, we firstly wr-protect a none pte which has no page cache
6377          * page backing it, then access the page.
6378          */
6379         ret = -EEXIST;
6380         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6381                 goto out_release_unlock;
6382
6383         if (folio_in_pagecache)
6384                 page_dup_file_rmap(&folio->page, true);
6385         else
6386                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6387
6388         /*
6389          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6390          * with wp flag set, don't set pte write bit.
6391          */
6392         if (wp_enabled || (is_continue && !vm_shared))
6393                 writable = 0;
6394         else
6395                 writable = dst_vma->vm_flags & VM_WRITE;
6396
6397         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6398         /*
6399          * Always mark UFFDIO_COPY page dirty; note that this may not be
6400          * extremely important for hugetlbfs for now since swapping is not
6401          * supported, but we should still be clear in that this page cannot be
6402          * thrown away at will, even if write bit not set.
6403          */
6404         _dst_pte = huge_pte_mkdirty(_dst_pte);
6405         _dst_pte = pte_mkyoung(_dst_pte);
6406
6407         if (wp_enabled)
6408                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6409
6410         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6411
6412         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6413
6414         /* No need to invalidate - it was non-present before */
6415         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6416
6417         spin_unlock(ptl);
6418         if (!is_continue)
6419                 folio_set_hugetlb_migratable(folio);
6420         if (vm_shared || is_continue)
6421                 folio_unlock(folio);
6422         ret = 0;
6423 out:
6424         return ret;
6425 out_release_unlock:
6426         spin_unlock(ptl);
6427         if (vm_shared || is_continue)
6428                 folio_unlock(folio);
6429 out_release_nounlock:
6430         if (!folio_in_pagecache)
6431                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6432         folio_put(folio);
6433         goto out;
6434 }
6435 #endif /* CONFIG_USERFAULTFD */
6436
6437 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6438                                       unsigned long address, unsigned int flags,
6439                                       unsigned int *page_mask)
6440 {
6441         struct hstate *h = hstate_vma(vma);
6442         struct mm_struct *mm = vma->vm_mm;
6443         unsigned long haddr = address & huge_page_mask(h);
6444         struct page *page = NULL;
6445         spinlock_t *ptl;
6446         pte_t *pte, entry;
6447         int ret;
6448
6449         hugetlb_vma_lock_read(vma);
6450         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6451         if (!pte)
6452                 goto out_unlock;
6453
6454         ptl = huge_pte_lock(h, mm, pte);
6455         entry = huge_ptep_get(pte);
6456         if (pte_present(entry)) {
6457                 page = pte_page(entry);
6458
6459                 if (!huge_pte_write(entry)) {
6460                         if (flags & FOLL_WRITE) {
6461                                 page = NULL;
6462                                 goto out;
6463                         }
6464
6465                         if (gup_must_unshare(vma, flags, page)) {
6466                                 /* Tell the caller to do unsharing */
6467                                 page = ERR_PTR(-EMLINK);
6468                                 goto out;
6469                         }
6470                 }
6471
6472                 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6473
6474                 /*
6475                  * Note that page may be a sub-page, and with vmemmap
6476                  * optimizations the page struct may be read only.
6477                  * try_grab_page() will increase the ref count on the
6478                  * head page, so this will be OK.
6479                  *
6480                  * try_grab_page() should always be able to get the page here,
6481                  * because we hold the ptl lock and have verified pte_present().
6482                  */
6483                 ret = try_grab_page(page, flags);
6484
6485                 if (WARN_ON_ONCE(ret)) {
6486                         page = ERR_PTR(ret);
6487                         goto out;
6488                 }
6489
6490                 *page_mask = (1U << huge_page_order(h)) - 1;
6491         }
6492 out:
6493         spin_unlock(ptl);
6494 out_unlock:
6495         hugetlb_vma_unlock_read(vma);
6496
6497         /*
6498          * Fixup retval for dump requests: if pagecache doesn't exist,
6499          * don't try to allocate a new page but just skip it.
6500          */
6501         if (!page && (flags & FOLL_DUMP) &&
6502             !hugetlbfs_pagecache_present(h, vma, address))
6503                 page = ERR_PTR(-EFAULT);
6504
6505         return page;
6506 }
6507
6508 long hugetlb_change_protection(struct vm_area_struct *vma,
6509                 unsigned long address, unsigned long end,
6510                 pgprot_t newprot, unsigned long cp_flags)
6511 {
6512         struct mm_struct *mm = vma->vm_mm;
6513         unsigned long start = address;
6514         pte_t *ptep;
6515         pte_t pte;
6516         struct hstate *h = hstate_vma(vma);
6517         long pages = 0, psize = huge_page_size(h);
6518         bool shared_pmd = false;
6519         struct mmu_notifier_range range;
6520         unsigned long last_addr_mask;
6521         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6522         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6523
6524         /*
6525          * In the case of shared PMDs, the area to flush could be beyond
6526          * start/end.  Set range.start/range.end to cover the maximum possible
6527          * range if PMD sharing is possible.
6528          */
6529         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6530                                 0, mm, start, end);
6531         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6532
6533         BUG_ON(address >= end);
6534         flush_cache_range(vma, range.start, range.end);
6535
6536         mmu_notifier_invalidate_range_start(&range);
6537         hugetlb_vma_lock_write(vma);
6538         i_mmap_lock_write(vma->vm_file->f_mapping);
6539         last_addr_mask = hugetlb_mask_last_page(h);
6540         for (; address < end; address += psize) {
6541                 spinlock_t *ptl;
6542                 ptep = hugetlb_walk(vma, address, psize);
6543                 if (!ptep) {
6544                         if (!uffd_wp) {
6545                                 address |= last_addr_mask;
6546                                 continue;
6547                         }
6548                         /*
6549                          * Userfaultfd wr-protect requires pgtable
6550                          * pre-allocations to install pte markers.
6551                          */
6552                         ptep = huge_pte_alloc(mm, vma, address, psize);
6553                         if (!ptep) {
6554                                 pages = -ENOMEM;
6555                                 break;
6556                         }
6557                 }
6558                 ptl = huge_pte_lock(h, mm, ptep);
6559                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6560                         /*
6561                          * When uffd-wp is enabled on the vma, unshare
6562                          * shouldn't happen at all.  Warn about it if it
6563                          * happened due to some reason.
6564                          */
6565                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6566                         pages++;
6567                         spin_unlock(ptl);
6568                         shared_pmd = true;
6569                         address |= last_addr_mask;
6570                         continue;
6571                 }
6572                 pte = huge_ptep_get(ptep);
6573                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6574                         /* Nothing to do. */
6575                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6576                         swp_entry_t entry = pte_to_swp_entry(pte);
6577                         struct page *page = pfn_swap_entry_to_page(entry);
6578                         pte_t newpte = pte;
6579
6580                         if (is_writable_migration_entry(entry)) {
6581                                 if (PageAnon(page))
6582                                         entry = make_readable_exclusive_migration_entry(
6583                                                                 swp_offset(entry));
6584                                 else
6585                                         entry = make_readable_migration_entry(
6586                                                                 swp_offset(entry));
6587                                 newpte = swp_entry_to_pte(entry);
6588                                 pages++;
6589                         }
6590
6591                         if (uffd_wp)
6592                                 newpte = pte_swp_mkuffd_wp(newpte);
6593                         else if (uffd_wp_resolve)
6594                                 newpte = pte_swp_clear_uffd_wp(newpte);
6595                         if (!pte_same(pte, newpte))
6596                                 set_huge_pte_at(mm, address, ptep, newpte);
6597                 } else if (unlikely(is_pte_marker(pte))) {
6598                         /* No other markers apply for now. */
6599                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6600                         if (uffd_wp_resolve)
6601                                 /* Safe to modify directly (non-present->none). */
6602                                 huge_pte_clear(mm, address, ptep, psize);
6603                 } else if (!huge_pte_none(pte)) {
6604                         pte_t old_pte;
6605                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6606
6607                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6608                         pte = huge_pte_modify(old_pte, newprot);
6609                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6610                         if (uffd_wp)
6611                                 pte = huge_pte_mkuffd_wp(pte);
6612                         else if (uffd_wp_resolve)
6613                                 pte = huge_pte_clear_uffd_wp(pte);
6614                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6615                         pages++;
6616                 } else {
6617                         /* None pte */
6618                         if (unlikely(uffd_wp))
6619                                 /* Safe to modify directly (none->non-present). */
6620                                 set_huge_pte_at(mm, address, ptep,
6621                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6622                 }
6623                 spin_unlock(ptl);
6624         }
6625         /*
6626          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6627          * may have cleared our pud entry and done put_page on the page table:
6628          * once we release i_mmap_rwsem, another task can do the final put_page
6629          * and that page table be reused and filled with junk.  If we actually
6630          * did unshare a page of pmds, flush the range corresponding to the pud.
6631          */
6632         if (shared_pmd)
6633                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6634         else
6635                 flush_hugetlb_tlb_range(vma, start, end);
6636         /*
6637          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6638          * downgrading page table protection not changing it to point to a new
6639          * page.
6640          *
6641          * See Documentation/mm/mmu_notifier.rst
6642          */
6643         i_mmap_unlock_write(vma->vm_file->f_mapping);
6644         hugetlb_vma_unlock_write(vma);
6645         mmu_notifier_invalidate_range_end(&range);
6646
6647         return pages > 0 ? (pages << h->order) : pages;
6648 }
6649
6650 /* Return true if reservation was successful, false otherwise.  */
6651 bool hugetlb_reserve_pages(struct inode *inode,
6652                                         long from, long to,
6653                                         struct vm_area_struct *vma,
6654                                         vm_flags_t vm_flags)
6655 {
6656         long chg = -1, add = -1;
6657         struct hstate *h = hstate_inode(inode);
6658         struct hugepage_subpool *spool = subpool_inode(inode);
6659         struct resv_map *resv_map;
6660         struct hugetlb_cgroup *h_cg = NULL;
6661         long gbl_reserve, regions_needed = 0;
6662
6663         /* This should never happen */
6664         if (from > to) {
6665                 VM_WARN(1, "%s called with a negative range\n", __func__);
6666                 return false;
6667         }
6668
6669         /*
6670          * vma specific semaphore used for pmd sharing and fault/truncation
6671          * synchronization
6672          */
6673         hugetlb_vma_lock_alloc(vma);
6674
6675         /*
6676          * Only apply hugepage reservation if asked. At fault time, an
6677          * attempt will be made for VM_NORESERVE to allocate a page
6678          * without using reserves
6679          */
6680         if (vm_flags & VM_NORESERVE)
6681                 return true;
6682
6683         /*
6684          * Shared mappings base their reservation on the number of pages that
6685          * are already allocated on behalf of the file. Private mappings need
6686          * to reserve the full area even if read-only as mprotect() may be
6687          * called to make the mapping read-write. Assume !vma is a shm mapping
6688          */
6689         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6690                 /*
6691                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6692                  * called for inodes for which resv_maps were created (see
6693                  * hugetlbfs_get_inode).
6694                  */
6695                 resv_map = inode_resv_map(inode);
6696
6697                 chg = region_chg(resv_map, from, to, &regions_needed);
6698         } else {
6699                 /* Private mapping. */
6700                 resv_map = resv_map_alloc();
6701                 if (!resv_map)
6702                         goto out_err;
6703
6704                 chg = to - from;
6705
6706                 set_vma_resv_map(vma, resv_map);
6707                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6708         }
6709
6710         if (chg < 0)
6711                 goto out_err;
6712
6713         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6714                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6715                 goto out_err;
6716
6717         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6718                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6719                  * of the resv_map.
6720                  */
6721                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6722         }
6723
6724         /*
6725          * There must be enough pages in the subpool for the mapping. If
6726          * the subpool has a minimum size, there may be some global
6727          * reservations already in place (gbl_reserve).
6728          */
6729         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6730         if (gbl_reserve < 0)
6731                 goto out_uncharge_cgroup;
6732
6733         /*
6734          * Check enough hugepages are available for the reservation.
6735          * Hand the pages back to the subpool if there are not
6736          */
6737         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6738                 goto out_put_pages;
6739
6740         /*
6741          * Account for the reservations made. Shared mappings record regions
6742          * that have reservations as they are shared by multiple VMAs.
6743          * When the last VMA disappears, the region map says how much
6744          * the reservation was and the page cache tells how much of
6745          * the reservation was consumed. Private mappings are per-VMA and
6746          * only the consumed reservations are tracked. When the VMA
6747          * disappears, the original reservation is the VMA size and the
6748          * consumed reservations are stored in the map. Hence, nothing
6749          * else has to be done for private mappings here
6750          */
6751         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6752                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6753
6754                 if (unlikely(add < 0)) {
6755                         hugetlb_acct_memory(h, -gbl_reserve);
6756                         goto out_put_pages;
6757                 } else if (unlikely(chg > add)) {
6758                         /*
6759                          * pages in this range were added to the reserve
6760                          * map between region_chg and region_add.  This
6761                          * indicates a race with alloc_hugetlb_folio.  Adjust
6762                          * the subpool and reserve counts modified above
6763                          * based on the difference.
6764                          */
6765                         long rsv_adjust;
6766
6767                         /*
6768                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6769                          * reference to h_cg->css. See comment below for detail.
6770                          */
6771                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6772                                 hstate_index(h),
6773                                 (chg - add) * pages_per_huge_page(h), h_cg);
6774
6775                         rsv_adjust = hugepage_subpool_put_pages(spool,
6776                                                                 chg - add);
6777                         hugetlb_acct_memory(h, -rsv_adjust);
6778                 } else if (h_cg) {
6779                         /*
6780                          * The file_regions will hold their own reference to
6781                          * h_cg->css. So we should release the reference held
6782                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6783                          * done.
6784                          */
6785                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6786                 }
6787         }
6788         return true;
6789
6790 out_put_pages:
6791         /* put back original number of pages, chg */
6792         (void)hugepage_subpool_put_pages(spool, chg);
6793 out_uncharge_cgroup:
6794         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6795                                             chg * pages_per_huge_page(h), h_cg);
6796 out_err:
6797         hugetlb_vma_lock_free(vma);
6798         if (!vma || vma->vm_flags & VM_MAYSHARE)
6799                 /* Only call region_abort if the region_chg succeeded but the
6800                  * region_add failed or didn't run.
6801                  */
6802                 if (chg >= 0 && add < 0)
6803                         region_abort(resv_map, from, to, regions_needed);
6804         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6805                 kref_put(&resv_map->refs, resv_map_release);
6806         return false;
6807 }
6808
6809 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6810                                                                 long freed)
6811 {
6812         struct hstate *h = hstate_inode(inode);
6813         struct resv_map *resv_map = inode_resv_map(inode);
6814         long chg = 0;
6815         struct hugepage_subpool *spool = subpool_inode(inode);
6816         long gbl_reserve;
6817
6818         /*
6819          * Since this routine can be called in the evict inode path for all
6820          * hugetlbfs inodes, resv_map could be NULL.
6821          */
6822         if (resv_map) {
6823                 chg = region_del(resv_map, start, end);
6824                 /*
6825                  * region_del() can fail in the rare case where a region
6826                  * must be split and another region descriptor can not be
6827                  * allocated.  If end == LONG_MAX, it will not fail.
6828                  */
6829                 if (chg < 0)
6830                         return chg;
6831         }
6832
6833         spin_lock(&inode->i_lock);
6834         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6835         spin_unlock(&inode->i_lock);
6836
6837         /*
6838          * If the subpool has a minimum size, the number of global
6839          * reservations to be released may be adjusted.
6840          *
6841          * Note that !resv_map implies freed == 0. So (chg - freed)
6842          * won't go negative.
6843          */
6844         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6845         hugetlb_acct_memory(h, -gbl_reserve);
6846
6847         return 0;
6848 }
6849
6850 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6851 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6852                                 struct vm_area_struct *vma,
6853                                 unsigned long addr, pgoff_t idx)
6854 {
6855         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6856                                 svma->vm_start;
6857         unsigned long sbase = saddr & PUD_MASK;
6858         unsigned long s_end = sbase + PUD_SIZE;
6859
6860         /* Allow segments to share if only one is marked locked */
6861         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6862         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6863
6864         /*
6865          * match the virtual addresses, permission and the alignment of the
6866          * page table page.
6867          *
6868          * Also, vma_lock (vm_private_data) is required for sharing.
6869          */
6870         if (pmd_index(addr) != pmd_index(saddr) ||
6871             vm_flags != svm_flags ||
6872             !range_in_vma(svma, sbase, s_end) ||
6873             !svma->vm_private_data)
6874                 return 0;
6875
6876         return saddr;
6877 }
6878
6879 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6880 {
6881         unsigned long start = addr & PUD_MASK;
6882         unsigned long end = start + PUD_SIZE;
6883
6884 #ifdef CONFIG_USERFAULTFD
6885         if (uffd_disable_huge_pmd_share(vma))
6886                 return false;
6887 #endif
6888         /*
6889          * check on proper vm_flags and page table alignment
6890          */
6891         if (!(vma->vm_flags & VM_MAYSHARE))
6892                 return false;
6893         if (!vma->vm_private_data)      /* vma lock required for sharing */
6894                 return false;
6895         if (!range_in_vma(vma, start, end))
6896                 return false;
6897         return true;
6898 }
6899
6900 /*
6901  * Determine if start,end range within vma could be mapped by shared pmd.
6902  * If yes, adjust start and end to cover range associated with possible
6903  * shared pmd mappings.
6904  */
6905 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6906                                 unsigned long *start, unsigned long *end)
6907 {
6908         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6909                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6910
6911         /*
6912          * vma needs to span at least one aligned PUD size, and the range
6913          * must be at least partially within in.
6914          */
6915         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6916                 (*end <= v_start) || (*start >= v_end))
6917                 return;
6918
6919         /* Extend the range to be PUD aligned for a worst case scenario */
6920         if (*start > v_start)
6921                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6922
6923         if (*end < v_end)
6924                 *end = ALIGN(*end, PUD_SIZE);
6925 }
6926
6927 /*
6928  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6929  * and returns the corresponding pte. While this is not necessary for the
6930  * !shared pmd case because we can allocate the pmd later as well, it makes the
6931  * code much cleaner. pmd allocation is essential for the shared case because
6932  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6933  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6934  * bad pmd for sharing.
6935  */
6936 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6937                       unsigned long addr, pud_t *pud)
6938 {
6939         struct address_space *mapping = vma->vm_file->f_mapping;
6940         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6941                         vma->vm_pgoff;
6942         struct vm_area_struct *svma;
6943         unsigned long saddr;
6944         pte_t *spte = NULL;
6945         pte_t *pte;
6946
6947         i_mmap_lock_read(mapping);
6948         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6949                 if (svma == vma)
6950                         continue;
6951
6952                 saddr = page_table_shareable(svma, vma, addr, idx);
6953                 if (saddr) {
6954                         spte = hugetlb_walk(svma, saddr,
6955                                             vma_mmu_pagesize(svma));
6956                         if (spte) {
6957                                 get_page(virt_to_page(spte));
6958                                 break;
6959                         }
6960                 }
6961         }
6962
6963         if (!spte)
6964                 goto out;
6965
6966         spin_lock(&mm->page_table_lock);
6967         if (pud_none(*pud)) {
6968                 pud_populate(mm, pud,
6969                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6970                 mm_inc_nr_pmds(mm);
6971         } else {
6972                 put_page(virt_to_page(spte));
6973         }
6974         spin_unlock(&mm->page_table_lock);
6975 out:
6976         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6977         i_mmap_unlock_read(mapping);
6978         return pte;
6979 }
6980
6981 /*
6982  * unmap huge page backed by shared pte.
6983  *
6984  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6985  * indicated by page_count > 1, unmap is achieved by clearing pud and
6986  * decrementing the ref count. If count == 1, the pte page is not shared.
6987  *
6988  * Called with page table lock held.
6989  *
6990  * returns: 1 successfully unmapped a shared pte page
6991  *          0 the underlying pte page is not shared, or it is the last user
6992  */
6993 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6994                                         unsigned long addr, pte_t *ptep)
6995 {
6996         pgd_t *pgd = pgd_offset(mm, addr);
6997         p4d_t *p4d = p4d_offset(pgd, addr);
6998         pud_t *pud = pud_offset(p4d, addr);
6999
7000         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7001         hugetlb_vma_assert_locked(vma);
7002         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7003         if (page_count(virt_to_page(ptep)) == 1)
7004                 return 0;
7005
7006         pud_clear(pud);
7007         put_page(virt_to_page(ptep));
7008         mm_dec_nr_pmds(mm);
7009         return 1;
7010 }
7011
7012 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7013
7014 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7015                       unsigned long addr, pud_t *pud)
7016 {
7017         return NULL;
7018 }
7019
7020 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7021                                 unsigned long addr, pte_t *ptep)
7022 {
7023         return 0;
7024 }
7025
7026 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7027                                 unsigned long *start, unsigned long *end)
7028 {
7029 }
7030
7031 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7032 {
7033         return false;
7034 }
7035 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7036
7037 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7038 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7039                         unsigned long addr, unsigned long sz)
7040 {
7041         pgd_t *pgd;
7042         p4d_t *p4d;
7043         pud_t *pud;
7044         pte_t *pte = NULL;
7045
7046         pgd = pgd_offset(mm, addr);
7047         p4d = p4d_alloc(mm, pgd, addr);
7048         if (!p4d)
7049                 return NULL;
7050         pud = pud_alloc(mm, p4d, addr);
7051         if (pud) {
7052                 if (sz == PUD_SIZE) {
7053                         pte = (pte_t *)pud;
7054                 } else {
7055                         BUG_ON(sz != PMD_SIZE);
7056                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7057                                 pte = huge_pmd_share(mm, vma, addr, pud);
7058                         else
7059                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7060                 }
7061         }
7062
7063         if (pte) {
7064                 pte_t pteval = ptep_get_lockless(pte);
7065
7066                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7067         }
7068
7069         return pte;
7070 }
7071
7072 /*
7073  * huge_pte_offset() - Walk the page table to resolve the hugepage
7074  * entry at address @addr
7075  *
7076  * Return: Pointer to page table entry (PUD or PMD) for
7077  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7078  * size @sz doesn't match the hugepage size at this level of the page
7079  * table.
7080  */
7081 pte_t *huge_pte_offset(struct mm_struct *mm,
7082                        unsigned long addr, unsigned long sz)
7083 {
7084         pgd_t *pgd;
7085         p4d_t *p4d;
7086         pud_t *pud;
7087         pmd_t *pmd;
7088
7089         pgd = pgd_offset(mm, addr);
7090         if (!pgd_present(*pgd))
7091                 return NULL;
7092         p4d = p4d_offset(pgd, addr);
7093         if (!p4d_present(*p4d))
7094                 return NULL;
7095
7096         pud = pud_offset(p4d, addr);
7097         if (sz == PUD_SIZE)
7098                 /* must be pud huge, non-present or none */
7099                 return (pte_t *)pud;
7100         if (!pud_present(*pud))
7101                 return NULL;
7102         /* must have a valid entry and size to go further */
7103
7104         pmd = pmd_offset(pud, addr);
7105         /* must be pmd huge, non-present or none */
7106         return (pte_t *)pmd;
7107 }
7108
7109 /*
7110  * Return a mask that can be used to update an address to the last huge
7111  * page in a page table page mapping size.  Used to skip non-present
7112  * page table entries when linearly scanning address ranges.  Architectures
7113  * with unique huge page to page table relationships can define their own
7114  * version of this routine.
7115  */
7116 unsigned long hugetlb_mask_last_page(struct hstate *h)
7117 {
7118         unsigned long hp_size = huge_page_size(h);
7119
7120         if (hp_size == PUD_SIZE)
7121                 return P4D_SIZE - PUD_SIZE;
7122         else if (hp_size == PMD_SIZE)
7123                 return PUD_SIZE - PMD_SIZE;
7124         else
7125                 return 0UL;
7126 }
7127
7128 #else
7129
7130 /* See description above.  Architectures can provide their own version. */
7131 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7132 {
7133 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7134         if (huge_page_size(h) == PMD_SIZE)
7135                 return PUD_SIZE - PMD_SIZE;
7136 #endif
7137         return 0UL;
7138 }
7139
7140 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7141
7142 /*
7143  * These functions are overwritable if your architecture needs its own
7144  * behavior.
7145  */
7146 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7147 {
7148         bool ret = true;
7149
7150         spin_lock_irq(&hugetlb_lock);
7151         if (!folio_test_hugetlb(folio) ||
7152             !folio_test_hugetlb_migratable(folio) ||
7153             !folio_try_get(folio)) {
7154                 ret = false;
7155                 goto unlock;
7156         }
7157         folio_clear_hugetlb_migratable(folio);
7158         list_move_tail(&folio->lru, list);
7159 unlock:
7160         spin_unlock_irq(&hugetlb_lock);
7161         return ret;
7162 }
7163
7164 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7165 {
7166         int ret = 0;
7167
7168         *hugetlb = false;
7169         spin_lock_irq(&hugetlb_lock);
7170         if (folio_test_hugetlb(folio)) {
7171                 *hugetlb = true;
7172                 if (folio_test_hugetlb_freed(folio))
7173                         ret = 0;
7174                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7175                         ret = folio_try_get(folio);
7176                 else
7177                         ret = -EBUSY;
7178         }
7179         spin_unlock_irq(&hugetlb_lock);
7180         return ret;
7181 }
7182
7183 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7184                                 bool *migratable_cleared)
7185 {
7186         int ret;
7187
7188         spin_lock_irq(&hugetlb_lock);
7189         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7190         spin_unlock_irq(&hugetlb_lock);
7191         return ret;
7192 }
7193
7194 void folio_putback_active_hugetlb(struct folio *folio)
7195 {
7196         spin_lock_irq(&hugetlb_lock);
7197         folio_set_hugetlb_migratable(folio);
7198         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7199         spin_unlock_irq(&hugetlb_lock);
7200         folio_put(folio);
7201 }
7202
7203 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7204 {
7205         struct hstate *h = folio_hstate(old_folio);
7206
7207         hugetlb_cgroup_migrate(old_folio, new_folio);
7208         set_page_owner_migrate_reason(&new_folio->page, reason);
7209
7210         /*
7211          * transfer temporary state of the new hugetlb folio. This is
7212          * reverse to other transitions because the newpage is going to
7213          * be final while the old one will be freed so it takes over
7214          * the temporary status.
7215          *
7216          * Also note that we have to transfer the per-node surplus state
7217          * here as well otherwise the global surplus count will not match
7218          * the per-node's.
7219          */
7220         if (folio_test_hugetlb_temporary(new_folio)) {
7221                 int old_nid = folio_nid(old_folio);
7222                 int new_nid = folio_nid(new_folio);
7223
7224                 folio_set_hugetlb_temporary(old_folio);
7225                 folio_clear_hugetlb_temporary(new_folio);
7226
7227
7228                 /*
7229                  * There is no need to transfer the per-node surplus state
7230                  * when we do not cross the node.
7231                  */
7232                 if (new_nid == old_nid)
7233                         return;
7234                 spin_lock_irq(&hugetlb_lock);
7235                 if (h->surplus_huge_pages_node[old_nid]) {
7236                         h->surplus_huge_pages_node[old_nid]--;
7237                         h->surplus_huge_pages_node[new_nid]++;
7238                 }
7239                 spin_unlock_irq(&hugetlb_lock);
7240         }
7241 }
7242
7243 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7244                                    unsigned long start,
7245                                    unsigned long end)
7246 {
7247         struct hstate *h = hstate_vma(vma);
7248         unsigned long sz = huge_page_size(h);
7249         struct mm_struct *mm = vma->vm_mm;
7250         struct mmu_notifier_range range;
7251         unsigned long address;
7252         spinlock_t *ptl;
7253         pte_t *ptep;
7254
7255         if (!(vma->vm_flags & VM_MAYSHARE))
7256                 return;
7257
7258         if (start >= end)
7259                 return;
7260
7261         flush_cache_range(vma, start, end);
7262         /*
7263          * No need to call adjust_range_if_pmd_sharing_possible(), because
7264          * we have already done the PUD_SIZE alignment.
7265          */
7266         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7267                                 start, end);
7268         mmu_notifier_invalidate_range_start(&range);
7269         hugetlb_vma_lock_write(vma);
7270         i_mmap_lock_write(vma->vm_file->f_mapping);
7271         for (address = start; address < end; address += PUD_SIZE) {
7272                 ptep = hugetlb_walk(vma, address, sz);
7273                 if (!ptep)
7274                         continue;
7275                 ptl = huge_pte_lock(h, mm, ptep);
7276                 huge_pmd_unshare(mm, vma, address, ptep);
7277                 spin_unlock(ptl);
7278         }
7279         flush_hugetlb_tlb_range(vma, start, end);
7280         i_mmap_unlock_write(vma->vm_file->f_mapping);
7281         hugetlb_vma_unlock_write(vma);
7282         /*
7283          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7284          * Documentation/mm/mmu_notifier.rst.
7285          */
7286         mmu_notifier_invalidate_range_end(&range);
7287 }
7288
7289 /*
7290  * This function will unconditionally remove all the shared pmd pgtable entries
7291  * within the specific vma for a hugetlbfs memory range.
7292  */
7293 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7294 {
7295         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7296                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7297 }
7298
7299 #ifdef CONFIG_CMA
7300 static bool cma_reserve_called __initdata;
7301
7302 static int __init cmdline_parse_hugetlb_cma(char *p)
7303 {
7304         int nid, count = 0;
7305         unsigned long tmp;
7306         char *s = p;
7307
7308         while (*s) {
7309                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7310                         break;
7311
7312                 if (s[count] == ':') {
7313                         if (tmp >= MAX_NUMNODES)
7314                                 break;
7315                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7316
7317                         s += count + 1;
7318                         tmp = memparse(s, &s);
7319                         hugetlb_cma_size_in_node[nid] = tmp;
7320                         hugetlb_cma_size += tmp;
7321
7322                         /*
7323                          * Skip the separator if have one, otherwise
7324                          * break the parsing.
7325                          */
7326                         if (*s == ',')
7327                                 s++;
7328                         else
7329                                 break;
7330                 } else {
7331                         hugetlb_cma_size = memparse(p, &p);
7332                         break;
7333                 }
7334         }
7335
7336         return 0;
7337 }
7338
7339 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7340
7341 void __init hugetlb_cma_reserve(int order)
7342 {
7343         unsigned long size, reserved, per_node;
7344         bool node_specific_cma_alloc = false;
7345         int nid;
7346
7347         cma_reserve_called = true;
7348
7349         if (!hugetlb_cma_size)
7350                 return;
7351
7352         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7353                 if (hugetlb_cma_size_in_node[nid] == 0)
7354                         continue;
7355
7356                 if (!node_online(nid)) {
7357                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7358                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7359                         hugetlb_cma_size_in_node[nid] = 0;
7360                         continue;
7361                 }
7362
7363                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7364                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7365                                 nid, (PAGE_SIZE << order) / SZ_1M);
7366                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7367                         hugetlb_cma_size_in_node[nid] = 0;
7368                 } else {
7369                         node_specific_cma_alloc = true;
7370                 }
7371         }
7372
7373         /* Validate the CMA size again in case some invalid nodes specified. */
7374         if (!hugetlb_cma_size)
7375                 return;
7376
7377         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7378                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7379                         (PAGE_SIZE << order) / SZ_1M);
7380                 hugetlb_cma_size = 0;
7381                 return;
7382         }
7383
7384         if (!node_specific_cma_alloc) {
7385                 /*
7386                  * If 3 GB area is requested on a machine with 4 numa nodes,
7387                  * let's allocate 1 GB on first three nodes and ignore the last one.
7388                  */
7389                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7390                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7391                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7392         }
7393
7394         reserved = 0;
7395         for_each_online_node(nid) {
7396                 int res;
7397                 char name[CMA_MAX_NAME];
7398
7399                 if (node_specific_cma_alloc) {
7400                         if (hugetlb_cma_size_in_node[nid] == 0)
7401                                 continue;
7402
7403                         size = hugetlb_cma_size_in_node[nid];
7404                 } else {
7405                         size = min(per_node, hugetlb_cma_size - reserved);
7406                 }
7407
7408                 size = round_up(size, PAGE_SIZE << order);
7409
7410                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7411                 /*
7412                  * Note that 'order per bit' is based on smallest size that
7413                  * may be returned to CMA allocator in the case of
7414                  * huge page demotion.
7415                  */
7416                 res = cma_declare_contiguous_nid(0, size, 0,
7417                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7418                                                  0, false, name,
7419                                                  &hugetlb_cma[nid], nid);
7420                 if (res) {
7421                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7422                                 res, nid);
7423                         continue;
7424                 }
7425
7426                 reserved += size;
7427                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7428                         size / SZ_1M, nid);
7429
7430                 if (reserved >= hugetlb_cma_size)
7431                         break;
7432         }
7433
7434         if (!reserved)
7435                 /*
7436                  * hugetlb_cma_size is used to determine if allocations from
7437                  * cma are possible.  Set to zero if no cma regions are set up.
7438                  */
7439                 hugetlb_cma_size = 0;
7440 }
7441
7442 static void __init hugetlb_cma_check(void)
7443 {
7444         if (!hugetlb_cma_size || cma_reserve_called)
7445                 return;
7446
7447         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7448 }
7449
7450 #endif /* CONFIG_CMA */