mm: add a call to flush_cache_vmap() in vmap_pfn()
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 static bool __vma_shareable_lock(struct vm_area_struct *vma)
264 {
265         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266                 vma->vm_private_data;
267 }
268
269 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270 {
271         if (__vma_shareable_lock(vma)) {
272                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273
274                 down_read(&vma_lock->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         }
285 }
286
287 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288 {
289         if (__vma_shareable_lock(vma)) {
290                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291
292                 down_write(&vma_lock->rw_sema);
293         }
294 }
295
296 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297 {
298         if (__vma_shareable_lock(vma)) {
299                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301                 up_write(&vma_lock->rw_sema);
302         }
303 }
304
305 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306 {
307         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309         if (!__vma_shareable_lock(vma))
310                 return 1;
311
312         return down_write_trylock(&vma_lock->rw_sema);
313 }
314
315 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316 {
317         if (__vma_shareable_lock(vma)) {
318                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319
320                 lockdep_assert_held(&vma_lock->rw_sema);
321         }
322 }
323
324 void hugetlb_vma_lock_release(struct kref *kref)
325 {
326         struct hugetlb_vma_lock *vma_lock = container_of(kref,
327                         struct hugetlb_vma_lock, refs);
328
329         kfree(vma_lock);
330 }
331
332 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333 {
334         struct vm_area_struct *vma = vma_lock->vma;
335
336         /*
337          * vma_lock structure may or not be released as a result of put,
338          * it certainly will no longer be attached to vma so clear pointer.
339          * Semaphore synchronizes access to vma_lock->vma field.
340          */
341         vma_lock->vma = NULL;
342         vma->vm_private_data = NULL;
343         up_write(&vma_lock->rw_sema);
344         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345 }
346
347 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348 {
349         if (__vma_shareable_lock(vma)) {
350                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351
352                 __hugetlb_vma_unlock_write_put(vma_lock);
353         }
354 }
355
356 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357 {
358         /*
359          * Only present in sharable vmas.
360          */
361         if (!vma || !__vma_shareable_lock(vma))
362                 return;
363
364         if (vma->vm_private_data) {
365                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366
367                 down_write(&vma_lock->rw_sema);
368                 __hugetlb_vma_unlock_write_put(vma_lock);
369         }
370 }
371
372 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373 {
374         struct hugetlb_vma_lock *vma_lock;
375
376         /* Only establish in (flags) sharable vmas */
377         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378                 return;
379
380         /* Should never get here with non-NULL vm_private_data */
381         if (vma->vm_private_data)
382                 return;
383
384         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385         if (!vma_lock) {
386                 /*
387                  * If we can not allocate structure, then vma can not
388                  * participate in pmd sharing.  This is only a possible
389                  * performance enhancement and memory saving issue.
390                  * However, the lock is also used to synchronize page
391                  * faults with truncation.  If the lock is not present,
392                  * unlikely races could leave pages in a file past i_size
393                  * until the file is removed.  Warn in the unlikely case of
394                  * allocation failure.
395                  */
396                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397                 return;
398         }
399
400         kref_init(&vma_lock->refs);
401         init_rwsem(&vma_lock->rw_sema);
402         vma_lock->vma = vma;
403         vma->vm_private_data = vma_lock;
404 }
405
406 /* Helper that removes a struct file_region from the resv_map cache and returns
407  * it for use.
408  */
409 static struct file_region *
410 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411 {
412         struct file_region *nrg;
413
414         VM_BUG_ON(resv->region_cache_count <= 0);
415
416         resv->region_cache_count--;
417         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418         list_del(&nrg->link);
419
420         nrg->from = from;
421         nrg->to = to;
422
423         return nrg;
424 }
425
426 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427                                               struct file_region *rg)
428 {
429 #ifdef CONFIG_CGROUP_HUGETLB
430         nrg->reservation_counter = rg->reservation_counter;
431         nrg->css = rg->css;
432         if (rg->css)
433                 css_get(rg->css);
434 #endif
435 }
436
437 /* Helper that records hugetlb_cgroup uncharge info. */
438 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439                                                 struct hstate *h,
440                                                 struct resv_map *resv,
441                                                 struct file_region *nrg)
442 {
443 #ifdef CONFIG_CGROUP_HUGETLB
444         if (h_cg) {
445                 nrg->reservation_counter =
446                         &h_cg->rsvd_hugepage[hstate_index(h)];
447                 nrg->css = &h_cg->css;
448                 /*
449                  * The caller will hold exactly one h_cg->css reference for the
450                  * whole contiguous reservation region. But this area might be
451                  * scattered when there are already some file_regions reside in
452                  * it. As a result, many file_regions may share only one css
453                  * reference. In order to ensure that one file_region must hold
454                  * exactly one h_cg->css reference, we should do css_get for
455                  * each file_region and leave the reference held by caller
456                  * untouched.
457                  */
458                 css_get(&h_cg->css);
459                 if (!resv->pages_per_hpage)
460                         resv->pages_per_hpage = pages_per_huge_page(h);
461                 /* pages_per_hpage should be the same for all entries in
462                  * a resv_map.
463                  */
464                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465         } else {
466                 nrg->reservation_counter = NULL;
467                 nrg->css = NULL;
468         }
469 #endif
470 }
471
472 static void put_uncharge_info(struct file_region *rg)
473 {
474 #ifdef CONFIG_CGROUP_HUGETLB
475         if (rg->css)
476                 css_put(rg->css);
477 #endif
478 }
479
480 static bool has_same_uncharge_info(struct file_region *rg,
481                                    struct file_region *org)
482 {
483 #ifdef CONFIG_CGROUP_HUGETLB
484         return rg->reservation_counter == org->reservation_counter &&
485                rg->css == org->css;
486
487 #else
488         return true;
489 #endif
490 }
491
492 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493 {
494         struct file_region *nrg, *prg;
495
496         prg = list_prev_entry(rg, link);
497         if (&prg->link != &resv->regions && prg->to == rg->from &&
498             has_same_uncharge_info(prg, rg)) {
499                 prg->to = rg->to;
500
501                 list_del(&rg->link);
502                 put_uncharge_info(rg);
503                 kfree(rg);
504
505                 rg = prg;
506         }
507
508         nrg = list_next_entry(rg, link);
509         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510             has_same_uncharge_info(nrg, rg)) {
511                 nrg->from = rg->from;
512
513                 list_del(&rg->link);
514                 put_uncharge_info(rg);
515                 kfree(rg);
516         }
517 }
518
519 static inline long
520 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
522                      long *regions_needed)
523 {
524         struct file_region *nrg;
525
526         if (!regions_needed) {
527                 nrg = get_file_region_entry_from_cache(map, from, to);
528                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529                 list_add(&nrg->link, rg);
530                 coalesce_file_region(map, nrg);
531         } else
532                 *regions_needed += 1;
533
534         return to - from;
535 }
536
537 /*
538  * Must be called with resv->lock held.
539  *
540  * Calling this with regions_needed != NULL will count the number of pages
541  * to be added but will not modify the linked list. And regions_needed will
542  * indicate the number of file_regions needed in the cache to carry out to add
543  * the regions for this range.
544  */
545 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546                                      struct hugetlb_cgroup *h_cg,
547                                      struct hstate *h, long *regions_needed)
548 {
549         long add = 0;
550         struct list_head *head = &resv->regions;
551         long last_accounted_offset = f;
552         struct file_region *iter, *trg = NULL;
553         struct list_head *rg = NULL;
554
555         if (regions_needed)
556                 *regions_needed = 0;
557
558         /* In this loop, we essentially handle an entry for the range
559          * [last_accounted_offset, iter->from), at every iteration, with some
560          * bounds checking.
561          */
562         list_for_each_entry_safe(iter, trg, head, link) {
563                 /* Skip irrelevant regions that start before our range. */
564                 if (iter->from < f) {
565                         /* If this region ends after the last accounted offset,
566                          * then we need to update last_accounted_offset.
567                          */
568                         if (iter->to > last_accounted_offset)
569                                 last_accounted_offset = iter->to;
570                         continue;
571                 }
572
573                 /* When we find a region that starts beyond our range, we've
574                  * finished.
575                  */
576                 if (iter->from >= t) {
577                         rg = iter->link.prev;
578                         break;
579                 }
580
581                 /* Add an entry for last_accounted_offset -> iter->from, and
582                  * update last_accounted_offset.
583                  */
584                 if (iter->from > last_accounted_offset)
585                         add += hugetlb_resv_map_add(resv, iter->link.prev,
586                                                     last_accounted_offset,
587                                                     iter->from, h, h_cg,
588                                                     regions_needed);
589
590                 last_accounted_offset = iter->to;
591         }
592
593         /* Handle the case where our range extends beyond
594          * last_accounted_offset.
595          */
596         if (!rg)
597                 rg = head->prev;
598         if (last_accounted_offset < t)
599                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600                                             t, h, h_cg, regions_needed);
601
602         return add;
603 }
604
605 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606  */
607 static int allocate_file_region_entries(struct resv_map *resv,
608                                         int regions_needed)
609         __must_hold(&resv->lock)
610 {
611         LIST_HEAD(allocated_regions);
612         int to_allocate = 0, i = 0;
613         struct file_region *trg = NULL, *rg = NULL;
614
615         VM_BUG_ON(regions_needed < 0);
616
617         /*
618          * Check for sufficient descriptors in the cache to accommodate
619          * the number of in progress add operations plus regions_needed.
620          *
621          * This is a while loop because when we drop the lock, some other call
622          * to region_add or region_del may have consumed some region_entries,
623          * so we keep looping here until we finally have enough entries for
624          * (adds_in_progress + regions_needed).
625          */
626         while (resv->region_cache_count <
627                (resv->adds_in_progress + regions_needed)) {
628                 to_allocate = resv->adds_in_progress + regions_needed -
629                               resv->region_cache_count;
630
631                 /* At this point, we should have enough entries in the cache
632                  * for all the existing adds_in_progress. We should only be
633                  * needing to allocate for regions_needed.
634                  */
635                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636
637                 spin_unlock(&resv->lock);
638                 for (i = 0; i < to_allocate; i++) {
639                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640                         if (!trg)
641                                 goto out_of_memory;
642                         list_add(&trg->link, &allocated_regions);
643                 }
644
645                 spin_lock(&resv->lock);
646
647                 list_splice(&allocated_regions, &resv->region_cache);
648                 resv->region_cache_count += to_allocate;
649         }
650
651         return 0;
652
653 out_of_memory:
654         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655                 list_del(&rg->link);
656                 kfree(rg);
657         }
658         return -ENOMEM;
659 }
660
661 /*
662  * Add the huge page range represented by [f, t) to the reserve
663  * map.  Regions will be taken from the cache to fill in this range.
664  * Sufficient regions should exist in the cache due to the previous
665  * call to region_chg with the same range, but in some cases the cache will not
666  * have sufficient entries due to races with other code doing region_add or
667  * region_del.  The extra needed entries will be allocated.
668  *
669  * regions_needed is the out value provided by a previous call to region_chg.
670  *
671  * Return the number of new huge pages added to the map.  This number is greater
672  * than or equal to zero.  If file_region entries needed to be allocated for
673  * this operation and we were not able to allocate, it returns -ENOMEM.
674  * region_add of regions of length 1 never allocate file_regions and cannot
675  * fail; region_chg will always allocate at least 1 entry and a region_add for
676  * 1 page will only require at most 1 entry.
677  */
678 static long region_add(struct resv_map *resv, long f, long t,
679                        long in_regions_needed, struct hstate *h,
680                        struct hugetlb_cgroup *h_cg)
681 {
682         long add = 0, actual_regions_needed = 0;
683
684         spin_lock(&resv->lock);
685 retry:
686
687         /* Count how many regions are actually needed to execute this add. */
688         add_reservation_in_range(resv, f, t, NULL, NULL,
689                                  &actual_regions_needed);
690
691         /*
692          * Check for sufficient descriptors in the cache to accommodate
693          * this add operation. Note that actual_regions_needed may be greater
694          * than in_regions_needed, as the resv_map may have been modified since
695          * the region_chg call. In this case, we need to make sure that we
696          * allocate extra entries, such that we have enough for all the
697          * existing adds_in_progress, plus the excess needed for this
698          * operation.
699          */
700         if (actual_regions_needed > in_regions_needed &&
701             resv->region_cache_count <
702                     resv->adds_in_progress +
703                             (actual_regions_needed - in_regions_needed)) {
704                 /* region_add operation of range 1 should never need to
705                  * allocate file_region entries.
706                  */
707                 VM_BUG_ON(t - f <= 1);
708
709                 if (allocate_file_region_entries(
710                             resv, actual_regions_needed - in_regions_needed)) {
711                         return -ENOMEM;
712                 }
713
714                 goto retry;
715         }
716
717         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718
719         resv->adds_in_progress -= in_regions_needed;
720
721         spin_unlock(&resv->lock);
722         return add;
723 }
724
725 /*
726  * Examine the existing reserve map and determine how many
727  * huge pages in the specified range [f, t) are NOT currently
728  * represented.  This routine is called before a subsequent
729  * call to region_add that will actually modify the reserve
730  * map to add the specified range [f, t).  region_chg does
731  * not change the number of huge pages represented by the
732  * map.  A number of new file_region structures is added to the cache as a
733  * placeholder, for the subsequent region_add call to use. At least 1
734  * file_region structure is added.
735  *
736  * out_regions_needed is the number of regions added to the
737  * resv->adds_in_progress.  This value needs to be provided to a follow up call
738  * to region_add or region_abort for proper accounting.
739  *
740  * Returns the number of huge pages that need to be added to the existing
741  * reservation map for the range [f, t).  This number is greater or equal to
742  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
743  * is needed and can not be allocated.
744  */
745 static long region_chg(struct resv_map *resv, long f, long t,
746                        long *out_regions_needed)
747 {
748         long chg = 0;
749
750         spin_lock(&resv->lock);
751
752         /* Count how many hugepages in this range are NOT represented. */
753         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754                                        out_regions_needed);
755
756         if (*out_regions_needed == 0)
757                 *out_regions_needed = 1;
758
759         if (allocate_file_region_entries(resv, *out_regions_needed))
760                 return -ENOMEM;
761
762         resv->adds_in_progress += *out_regions_needed;
763
764         spin_unlock(&resv->lock);
765         return chg;
766 }
767
768 /*
769  * Abort the in progress add operation.  The adds_in_progress field
770  * of the resv_map keeps track of the operations in progress between
771  * calls to region_chg and region_add.  Operations are sometimes
772  * aborted after the call to region_chg.  In such cases, region_abort
773  * is called to decrement the adds_in_progress counter. regions_needed
774  * is the value returned by the region_chg call, it is used to decrement
775  * the adds_in_progress counter.
776  *
777  * NOTE: The range arguments [f, t) are not needed or used in this
778  * routine.  They are kept to make reading the calling code easier as
779  * arguments will match the associated region_chg call.
780  */
781 static void region_abort(struct resv_map *resv, long f, long t,
782                          long regions_needed)
783 {
784         spin_lock(&resv->lock);
785         VM_BUG_ON(!resv->region_cache_count);
786         resv->adds_in_progress -= regions_needed;
787         spin_unlock(&resv->lock);
788 }
789
790 /*
791  * Delete the specified range [f, t) from the reserve map.  If the
792  * t parameter is LONG_MAX, this indicates that ALL regions after f
793  * should be deleted.  Locate the regions which intersect [f, t)
794  * and either trim, delete or split the existing regions.
795  *
796  * Returns the number of huge pages deleted from the reserve map.
797  * In the normal case, the return value is zero or more.  In the
798  * case where a region must be split, a new region descriptor must
799  * be allocated.  If the allocation fails, -ENOMEM will be returned.
800  * NOTE: If the parameter t == LONG_MAX, then we will never split
801  * a region and possibly return -ENOMEM.  Callers specifying
802  * t == LONG_MAX do not need to check for -ENOMEM error.
803  */
804 static long region_del(struct resv_map *resv, long f, long t)
805 {
806         struct list_head *head = &resv->regions;
807         struct file_region *rg, *trg;
808         struct file_region *nrg = NULL;
809         long del = 0;
810
811 retry:
812         spin_lock(&resv->lock);
813         list_for_each_entry_safe(rg, trg, head, link) {
814                 /*
815                  * Skip regions before the range to be deleted.  file_region
816                  * ranges are normally of the form [from, to).  However, there
817                  * may be a "placeholder" entry in the map which is of the form
818                  * (from, to) with from == to.  Check for placeholder entries
819                  * at the beginning of the range to be deleted.
820                  */
821                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822                         continue;
823
824                 if (rg->from >= t)
825                         break;
826
827                 if (f > rg->from && t < rg->to) { /* Must split region */
828                         /*
829                          * Check for an entry in the cache before dropping
830                          * lock and attempting allocation.
831                          */
832                         if (!nrg &&
833                             resv->region_cache_count > resv->adds_in_progress) {
834                                 nrg = list_first_entry(&resv->region_cache,
835                                                         struct file_region,
836                                                         link);
837                                 list_del(&nrg->link);
838                                 resv->region_cache_count--;
839                         }
840
841                         if (!nrg) {
842                                 spin_unlock(&resv->lock);
843                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844                                 if (!nrg)
845                                         return -ENOMEM;
846                                 goto retry;
847                         }
848
849                         del += t - f;
850                         hugetlb_cgroup_uncharge_file_region(
851                                 resv, rg, t - f, false);
852
853                         /* New entry for end of split region */
854                         nrg->from = t;
855                         nrg->to = rg->to;
856
857                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858
859                         INIT_LIST_HEAD(&nrg->link);
860
861                         /* Original entry is trimmed */
862                         rg->to = f;
863
864                         list_add(&nrg->link, &rg->link);
865                         nrg = NULL;
866                         break;
867                 }
868
869                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870                         del += rg->to - rg->from;
871                         hugetlb_cgroup_uncharge_file_region(resv, rg,
872                                                             rg->to - rg->from, true);
873                         list_del(&rg->link);
874                         kfree(rg);
875                         continue;
876                 }
877
878                 if (f <= rg->from) {    /* Trim beginning of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             t - rg->from, false);
881
882                         del += t - rg->from;
883                         rg->from = t;
884                 } else {                /* Trim end of region */
885                         hugetlb_cgroup_uncharge_file_region(resv, rg,
886                                                             rg->to - f, false);
887
888                         del += rg->to - f;
889                         rg->to = f;
890                 }
891         }
892
893         spin_unlock(&resv->lock);
894         kfree(nrg);
895         return del;
896 }
897
898 /*
899  * A rare out of memory error was encountered which prevented removal of
900  * the reserve map region for a page.  The huge page itself was free'ed
901  * and removed from the page cache.  This routine will adjust the subpool
902  * usage count, and the global reserve count if needed.  By incrementing
903  * these counts, the reserve map entry which could not be deleted will
904  * appear as a "reserved" entry instead of simply dangling with incorrect
905  * counts.
906  */
907 void hugetlb_fix_reserve_counts(struct inode *inode)
908 {
909         struct hugepage_subpool *spool = subpool_inode(inode);
910         long rsv_adjust;
911         bool reserved = false;
912
913         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914         if (rsv_adjust > 0) {
915                 struct hstate *h = hstate_inode(inode);
916
917                 if (!hugetlb_acct_memory(h, 1))
918                         reserved = true;
919         } else if (!rsv_adjust) {
920                 reserved = true;
921         }
922
923         if (!reserved)
924                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925 }
926
927 /*
928  * Count and return the number of huge pages in the reserve map
929  * that intersect with the range [f, t).
930  */
931 static long region_count(struct resv_map *resv, long f, long t)
932 {
933         struct list_head *head = &resv->regions;
934         struct file_region *rg;
935         long chg = 0;
936
937         spin_lock(&resv->lock);
938         /* Locate each segment we overlap with, and count that overlap. */
939         list_for_each_entry(rg, head, link) {
940                 long seg_from;
941                 long seg_to;
942
943                 if (rg->to <= f)
944                         continue;
945                 if (rg->from >= t)
946                         break;
947
948                 seg_from = max(rg->from, f);
949                 seg_to = min(rg->to, t);
950
951                 chg += seg_to - seg_from;
952         }
953         spin_unlock(&resv->lock);
954
955         return chg;
956 }
957
958 /*
959  * Convert the address within this vma to the page offset within
960  * the mapping, in pagecache page units; huge pages here.
961  */
962 static pgoff_t vma_hugecache_offset(struct hstate *h,
963                         struct vm_area_struct *vma, unsigned long address)
964 {
965         return ((address - vma->vm_start) >> huge_page_shift(h)) +
966                         (vma->vm_pgoff >> huge_page_order(h));
967 }
968
969 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970                                      unsigned long address)
971 {
972         return vma_hugecache_offset(hstate_vma(vma), vma, address);
973 }
974 EXPORT_SYMBOL_GPL(linear_hugepage_index);
975
976 /*
977  * Return the size of the pages allocated when backing a VMA. In the majority
978  * cases this will be same size as used by the page table entries.
979  */
980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981 {
982         if (vma->vm_ops && vma->vm_ops->pagesize)
983                 return vma->vm_ops->pagesize(vma);
984         return PAGE_SIZE;
985 }
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987
988 /*
989  * Return the page size being used by the MMU to back a VMA. In the majority
990  * of cases, the page size used by the kernel matches the MMU size. On
991  * architectures where it differs, an architecture-specific 'strong'
992  * version of this symbol is required.
993  */
994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995 {
996         return vma_kernel_pagesize(vma);
997 }
998
999 /*
1000  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1001  * bits of the reservation map pointer, which are always clear due to
1002  * alignment.
1003  */
1004 #define HPAGE_RESV_OWNER    (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007
1008 /*
1009  * These helpers are used to track how many pages are reserved for
1010  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011  * is guaranteed to have their future faults succeed.
1012  *
1013  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014  * the reserve counters are updated with the hugetlb_lock held. It is safe
1015  * to reset the VMA at fork() time as it is not in use yet and there is no
1016  * chance of the global counters getting corrupted as a result of the values.
1017  *
1018  * The private mapping reservation is represented in a subtly different
1019  * manner to a shared mapping.  A shared mapping has a region map associated
1020  * with the underlying file, this region map represents the backing file
1021  * pages which have ever had a reservation assigned which this persists even
1022  * after the page is instantiated.  A private mapping has a region map
1023  * associated with the original mmap which is attached to all VMAs which
1024  * reference it, this region map represents those offsets which have consumed
1025  * reservation ie. where pages have been instantiated.
1026  */
1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028 {
1029         return (unsigned long)vma->vm_private_data;
1030 }
1031
1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033                                                         unsigned long value)
1034 {
1035         vma->vm_private_data = (void *)value;
1036 }
1037
1038 static void
1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040                                           struct hugetlb_cgroup *h_cg,
1041                                           struct hstate *h)
1042 {
1043 #ifdef CONFIG_CGROUP_HUGETLB
1044         if (!h_cg || !h) {
1045                 resv_map->reservation_counter = NULL;
1046                 resv_map->pages_per_hpage = 0;
1047                 resv_map->css = NULL;
1048         } else {
1049                 resv_map->reservation_counter =
1050                         &h_cg->rsvd_hugepage[hstate_index(h)];
1051                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052                 resv_map->css = &h_cg->css;
1053         }
1054 #endif
1055 }
1056
1057 struct resv_map *resv_map_alloc(void)
1058 {
1059         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061
1062         if (!resv_map || !rg) {
1063                 kfree(resv_map);
1064                 kfree(rg);
1065                 return NULL;
1066         }
1067
1068         kref_init(&resv_map->refs);
1069         spin_lock_init(&resv_map->lock);
1070         INIT_LIST_HEAD(&resv_map->regions);
1071
1072         resv_map->adds_in_progress = 0;
1073         /*
1074          * Initialize these to 0. On shared mappings, 0's here indicate these
1075          * fields don't do cgroup accounting. On private mappings, these will be
1076          * re-initialized to the proper values, to indicate that hugetlb cgroup
1077          * reservations are to be un-charged from here.
1078          */
1079         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080
1081         INIT_LIST_HEAD(&resv_map->region_cache);
1082         list_add(&rg->link, &resv_map->region_cache);
1083         resv_map->region_cache_count = 1;
1084
1085         return resv_map;
1086 }
1087
1088 void resv_map_release(struct kref *ref)
1089 {
1090         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091         struct list_head *head = &resv_map->region_cache;
1092         struct file_region *rg, *trg;
1093
1094         /* Clear out any active regions before we release the map. */
1095         region_del(resv_map, 0, LONG_MAX);
1096
1097         /* ... and any entries left in the cache */
1098         list_for_each_entry_safe(rg, trg, head, link) {
1099                 list_del(&rg->link);
1100                 kfree(rg);
1101         }
1102
1103         VM_BUG_ON(resv_map->adds_in_progress);
1104
1105         kfree(resv_map);
1106 }
1107
1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 {
1110         /*
1111          * At inode evict time, i_mapping may not point to the original
1112          * address space within the inode.  This original address space
1113          * contains the pointer to the resv_map.  So, always use the
1114          * address space embedded within the inode.
1115          * The VERY common case is inode->mapping == &inode->i_data but,
1116          * this may not be true for device special inodes.
1117          */
1118         return (struct resv_map *)(&inode->i_data)->private_data;
1119 }
1120
1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122 {
1123         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124         if (vma->vm_flags & VM_MAYSHARE) {
1125                 struct address_space *mapping = vma->vm_file->f_mapping;
1126                 struct inode *inode = mapping->host;
1127
1128                 return inode_resv_map(inode);
1129
1130         } else {
1131                 return (struct resv_map *)(get_vma_private_data(vma) &
1132                                                         ~HPAGE_RESV_MASK);
1133         }
1134 }
1135
1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137 {
1138         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140
1141         set_vma_private_data(vma, (get_vma_private_data(vma) &
1142                                 HPAGE_RESV_MASK) | (unsigned long)map);
1143 }
1144
1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146 {
1147         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149
1150         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 }
1152
1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154 {
1155         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156
1157         return (get_vma_private_data(vma) & flag) != 0;
1158 }
1159
1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161 {
1162         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163         /*
1164          * Clear vm_private_data
1165          * - For shared mappings this is a per-vma semaphore that may be
1166          *   allocated in a subsequent call to hugetlb_vm_op_open.
1167          *   Before clearing, make sure pointer is not associated with vma
1168          *   as this will leak the structure.  This is the case when called
1169          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170          *   been called to allocate a new structure.
1171          * - For MAP_PRIVATE mappings, this is the reserve map which does
1172          *   not apply to children.  Faults generated by the children are
1173          *   not guaranteed to succeed, even if read-only.
1174          */
1175         if (vma->vm_flags & VM_MAYSHARE) {
1176                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177
1178                 if (vma_lock && vma_lock->vma != vma)
1179                         vma->vm_private_data = NULL;
1180         } else
1181                 vma->vm_private_data = NULL;
1182 }
1183
1184 /*
1185  * Reset and decrement one ref on hugepage private reservation.
1186  * Called with mm->mmap_sem writer semaphore held.
1187  * This function should be only used by move_vma() and operate on
1188  * same sized vma. It should never come here with last ref on the
1189  * reservation.
1190  */
1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 {
1193         /*
1194          * Clear the old hugetlb private page reservation.
1195          * It has already been transferred to new_vma.
1196          *
1197          * During a mremap() operation of a hugetlb vma we call move_vma()
1198          * which copies vma into new_vma and unmaps vma. After the copy
1199          * operation both new_vma and vma share a reference to the resv_map
1200          * struct, and at that point vma is about to be unmapped. We don't
1201          * want to return the reservation to the pool at unmap of vma because
1202          * the reservation still lives on in new_vma, so simply decrement the
1203          * ref here and remove the resv_map reference from this vma.
1204          */
1205         struct resv_map *reservations = vma_resv_map(vma);
1206
1207         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209                 kref_put(&reservations->refs, resv_map_release);
1210         }
1211
1212         hugetlb_dup_vma_private(vma);
1213 }
1214
1215 /* Returns true if the VMA has associated reserve pages */
1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217 {
1218         if (vma->vm_flags & VM_NORESERVE) {
1219                 /*
1220                  * This address is already reserved by other process(chg == 0),
1221                  * so, we should decrement reserved count. Without decrementing,
1222                  * reserve count remains after releasing inode, because this
1223                  * allocated page will go into page cache and is regarded as
1224                  * coming from reserved pool in releasing step.  Currently, we
1225                  * don't have any other solution to deal with this situation
1226                  * properly, so add work-around here.
1227                  */
1228                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229                         return true;
1230                 else
1231                         return false;
1232         }
1233
1234         /* Shared mappings always use reserves */
1235         if (vma->vm_flags & VM_MAYSHARE) {
1236                 /*
1237                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1238                  * be a region map for all pages.  The only situation where
1239                  * there is no region map is if a hole was punched via
1240                  * fallocate.  In this case, there really are no reserves to
1241                  * use.  This situation is indicated if chg != 0.
1242                  */
1243                 if (chg)
1244                         return false;
1245                 else
1246                         return true;
1247         }
1248
1249         /*
1250          * Only the process that called mmap() has reserves for
1251          * private mappings.
1252          */
1253         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254                 /*
1255                  * Like the shared case above, a hole punch or truncate
1256                  * could have been performed on the private mapping.
1257                  * Examine the value of chg to determine if reserves
1258                  * actually exist or were previously consumed.
1259                  * Very Subtle - The value of chg comes from a previous
1260                  * call to vma_needs_reserves().  The reserve map for
1261                  * private mappings has different (opposite) semantics
1262                  * than that of shared mappings.  vma_needs_reserves()
1263                  * has already taken this difference in semantics into
1264                  * account.  Therefore, the meaning of chg is the same
1265                  * as in the shared case above.  Code could easily be
1266                  * combined, but keeping it separate draws attention to
1267                  * subtle differences.
1268                  */
1269                 if (chg)
1270                         return false;
1271                 else
1272                         return true;
1273         }
1274
1275         return false;
1276 }
1277
1278 static void enqueue_huge_page(struct hstate *h, struct page *page)
1279 {
1280         int nid = page_to_nid(page);
1281
1282         lockdep_assert_held(&hugetlb_lock);
1283         VM_BUG_ON_PAGE(page_count(page), page);
1284
1285         list_move(&page->lru, &h->hugepage_freelists[nid]);
1286         h->free_huge_pages++;
1287         h->free_huge_pages_node[nid]++;
1288         SetHPageFreed(page);
1289 }
1290
1291 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292 {
1293         struct page *page;
1294         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295
1296         lockdep_assert_held(&hugetlb_lock);
1297         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298                 if (pin && !is_longterm_pinnable_page(page))
1299                         continue;
1300
1301                 if (PageHWPoison(page))
1302                         continue;
1303
1304                 list_move(&page->lru, &h->hugepage_activelist);
1305                 set_page_refcounted(page);
1306                 ClearHPageFreed(page);
1307                 h->free_huge_pages--;
1308                 h->free_huge_pages_node[nid]--;
1309                 return page;
1310         }
1311
1312         return NULL;
1313 }
1314
1315 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316                 nodemask_t *nmask)
1317 {
1318         unsigned int cpuset_mems_cookie;
1319         struct zonelist *zonelist;
1320         struct zone *zone;
1321         struct zoneref *z;
1322         int node = NUMA_NO_NODE;
1323
1324         zonelist = node_zonelist(nid, gfp_mask);
1325
1326 retry_cpuset:
1327         cpuset_mems_cookie = read_mems_allowed_begin();
1328         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329                 struct page *page;
1330
1331                 if (!cpuset_zone_allowed(zone, gfp_mask))
1332                         continue;
1333                 /*
1334                  * no need to ask again on the same node. Pool is node rather than
1335                  * zone aware
1336                  */
1337                 if (zone_to_nid(zone) == node)
1338                         continue;
1339                 node = zone_to_nid(zone);
1340
1341                 page = dequeue_huge_page_node_exact(h, node);
1342                 if (page)
1343                         return page;
1344         }
1345         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346                 goto retry_cpuset;
1347
1348         return NULL;
1349 }
1350
1351 static unsigned long available_huge_pages(struct hstate *h)
1352 {
1353         return h->free_huge_pages - h->resv_huge_pages;
1354 }
1355
1356 static struct page *dequeue_huge_page_vma(struct hstate *h,
1357                                 struct vm_area_struct *vma,
1358                                 unsigned long address, int avoid_reserve,
1359                                 long chg)
1360 {
1361         struct page *page = NULL;
1362         struct mempolicy *mpol;
1363         gfp_t gfp_mask;
1364         nodemask_t *nodemask;
1365         int nid;
1366
1367         /*
1368          * A child process with MAP_PRIVATE mappings created by their parent
1369          * have no page reserves. This check ensures that reservations are
1370          * not "stolen". The child may still get SIGKILLed
1371          */
1372         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373                 goto err;
1374
1375         /* If reserves cannot be used, ensure enough pages are in the pool */
1376         if (avoid_reserve && !available_huge_pages(h))
1377                 goto err;
1378
1379         gfp_mask = htlb_alloc_mask(h);
1380         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381
1382         if (mpol_is_preferred_many(mpol)) {
1383                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384
1385                 /* Fallback to all nodes if page==NULL */
1386                 nodemask = NULL;
1387         }
1388
1389         if (!page)
1390                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391
1392         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393                 SetHPageRestoreReserve(page);
1394                 h->resv_huge_pages--;
1395         }
1396
1397         mpol_cond_put(mpol);
1398         return page;
1399
1400 err:
1401         return NULL;
1402 }
1403
1404 /*
1405  * common helper functions for hstate_next_node_to_{alloc|free}.
1406  * We may have allocated or freed a huge page based on a different
1407  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408  * be outside of *nodes_allowed.  Ensure that we use an allowed
1409  * node for alloc or free.
1410  */
1411 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412 {
1413         nid = next_node_in(nid, *nodes_allowed);
1414         VM_BUG_ON(nid >= MAX_NUMNODES);
1415
1416         return nid;
1417 }
1418
1419 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420 {
1421         if (!node_isset(nid, *nodes_allowed))
1422                 nid = next_node_allowed(nid, nodes_allowed);
1423         return nid;
1424 }
1425
1426 /*
1427  * returns the previously saved node ["this node"] from which to
1428  * allocate a persistent huge page for the pool and advance the
1429  * next node from which to allocate, handling wrap at end of node
1430  * mask.
1431  */
1432 static int hstate_next_node_to_alloc(struct hstate *h,
1433                                         nodemask_t *nodes_allowed)
1434 {
1435         int nid;
1436
1437         VM_BUG_ON(!nodes_allowed);
1438
1439         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441
1442         return nid;
1443 }
1444
1445 /*
1446  * helper for remove_pool_huge_page() - return the previously saved
1447  * node ["this node"] from which to free a huge page.  Advance the
1448  * next node id whether or not we find a free huge page to free so
1449  * that the next attempt to free addresses the next node.
1450  */
1451 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 {
1453         int nid;
1454
1455         VM_BUG_ON(!nodes_allowed);
1456
1457         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459
1460         return nid;
1461 }
1462
1463 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1464         for (nr_nodes = nodes_weight(*mask);                            \
1465                 nr_nodes > 0 &&                                         \
1466                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1467                 nr_nodes--)
1468
1469 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1470         for (nr_nodes = nodes_weight(*mask);                            \
1471                 nr_nodes > 0 &&                                         \
1472                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1473                 nr_nodes--)
1474
1475 /* used to demote non-gigantic_huge pages as well */
1476 static void __destroy_compound_gigantic_page(struct page *page,
1477                                         unsigned int order, bool demote)
1478 {
1479         int i;
1480         int nr_pages = 1 << order;
1481         struct page *p;
1482
1483         atomic_set(compound_mapcount_ptr(page), 0);
1484         atomic_set(compound_pincount_ptr(page), 0);
1485
1486         for (i = 1; i < nr_pages; i++) {
1487                 p = nth_page(page, i);
1488                 p->mapping = NULL;
1489                 clear_compound_head(p);
1490                 if (!demote)
1491                         set_page_refcounted(p);
1492         }
1493
1494         set_compound_order(page, 0);
1495 #ifdef CONFIG_64BIT
1496         page[1].compound_nr = 0;
1497 #endif
1498         __ClearPageHead(page);
1499 }
1500
1501 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1502                                         unsigned int order)
1503 {
1504         __destroy_compound_gigantic_page(page, order, true);
1505 }
1506
1507 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1508 static void destroy_compound_gigantic_page(struct page *page,
1509                                         unsigned int order)
1510 {
1511         __destroy_compound_gigantic_page(page, order, false);
1512 }
1513
1514 static void free_gigantic_page(struct page *page, unsigned int order)
1515 {
1516         /*
1517          * If the page isn't allocated using the cma allocator,
1518          * cma_release() returns false.
1519          */
1520 #ifdef CONFIG_CMA
1521         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1522                 return;
1523 #endif
1524
1525         free_contig_range(page_to_pfn(page), 1 << order);
1526 }
1527
1528 #ifdef CONFIG_CONTIG_ALLOC
1529 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1530                 int nid, nodemask_t *nodemask)
1531 {
1532         unsigned long nr_pages = pages_per_huge_page(h);
1533         if (nid == NUMA_NO_NODE)
1534                 nid = numa_mem_id();
1535
1536 #ifdef CONFIG_CMA
1537         {
1538                 struct page *page;
1539                 int node;
1540
1541                 if (hugetlb_cma[nid]) {
1542                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543                                         huge_page_order(h), true);
1544                         if (page)
1545                                 return page;
1546                 }
1547
1548                 if (!(gfp_mask & __GFP_THISNODE)) {
1549                         for_each_node_mask(node, *nodemask) {
1550                                 if (node == nid || !hugetlb_cma[node])
1551                                         continue;
1552
1553                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1554                                                 huge_page_order(h), true);
1555                                 if (page)
1556                                         return page;
1557                         }
1558                 }
1559         }
1560 #endif
1561
1562         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 }
1564
1565 #else /* !CONFIG_CONTIG_ALLOC */
1566 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1567                                         int nid, nodemask_t *nodemask)
1568 {
1569         return NULL;
1570 }
1571 #endif /* CONFIG_CONTIG_ALLOC */
1572
1573 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1574 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1575                                         int nid, nodemask_t *nodemask)
1576 {
1577         return NULL;
1578 }
1579 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1580 static inline void destroy_compound_gigantic_page(struct page *page,
1581                                                 unsigned int order) { }
1582 #endif
1583
1584 static inline void __clear_hugetlb_destructor(struct hstate *h,
1585                                                 struct page *page)
1586 {
1587         lockdep_assert_held(&hugetlb_lock);
1588
1589         /*
1590          * Very subtle
1591          *
1592          * For non-gigantic pages set the destructor to the normal compound
1593          * page dtor.  This is needed in case someone takes an additional
1594          * temporary ref to the page, and freeing is delayed until they drop
1595          * their reference.
1596          *
1597          * For gigantic pages set the destructor to the null dtor.  This
1598          * destructor will never be called.  Before freeing the gigantic
1599          * page destroy_compound_gigantic_folio will turn the folio into a
1600          * simple group of pages.  After this the destructor does not
1601          * apply.
1602          *
1603          */
1604         if (hstate_is_gigantic(h))
1605                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1606         else
1607                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1608 }
1609
1610 /*
1611  * Remove hugetlb page from lists.
1612  * If vmemmap exists for the page, update dtor so that the page appears
1613  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1614  * to update dtor.
1615  *
1616  * A reference is held on the page, except in the case of demote.
1617  *
1618  * Must be called with hugetlb lock held.
1619  */
1620 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1621                                                         bool adjust_surplus,
1622                                                         bool demote)
1623 {
1624         int nid = page_to_nid(page);
1625
1626         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1627         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1628
1629         lockdep_assert_held(&hugetlb_lock);
1630         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1631                 return;
1632
1633         list_del(&page->lru);
1634
1635         if (HPageFreed(page)) {
1636                 h->free_huge_pages--;
1637                 h->free_huge_pages_node[nid]--;
1638         }
1639         if (adjust_surplus) {
1640                 h->surplus_huge_pages--;
1641                 h->surplus_huge_pages_node[nid]--;
1642         }
1643
1644         /*
1645          * We can only clear the hugetlb destructor after allocating vmemmap
1646          * pages.  Otherwise, someone (memory error handling) may try to write
1647          * to tail struct pages.
1648          */
1649         if (!HPageVmemmapOptimized(page))
1650                 __clear_hugetlb_destructor(h, page);
1651
1652          /*
1653           * In the case of demote we do not ref count the page as it will soon
1654           * be turned into a page of smaller size.
1655          */
1656         if (!demote)
1657                 set_page_refcounted(page);
1658
1659         h->nr_huge_pages--;
1660         h->nr_huge_pages_node[nid]--;
1661 }
1662
1663 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1664                                                         bool adjust_surplus)
1665 {
1666         __remove_hugetlb_page(h, page, adjust_surplus, false);
1667 }
1668
1669 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1670                                                         bool adjust_surplus)
1671 {
1672         __remove_hugetlb_page(h, page, adjust_surplus, true);
1673 }
1674
1675 static void add_hugetlb_page(struct hstate *h, struct page *page,
1676                              bool adjust_surplus)
1677 {
1678         int zeroed;
1679         int nid = page_to_nid(page);
1680
1681         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1682
1683         lockdep_assert_held(&hugetlb_lock);
1684
1685         INIT_LIST_HEAD(&page->lru);
1686         h->nr_huge_pages++;
1687         h->nr_huge_pages_node[nid]++;
1688
1689         if (adjust_surplus) {
1690                 h->surplus_huge_pages++;
1691                 h->surplus_huge_pages_node[nid]++;
1692         }
1693
1694         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1695         set_page_private(page, 0);
1696         /*
1697          * We have to set HPageVmemmapOptimized again as above
1698          * set_page_private(page, 0) cleared it.
1699          */
1700         SetHPageVmemmapOptimized(page);
1701
1702         /*
1703          * This page is about to be managed by the hugetlb allocator and
1704          * should have no users.  Drop our reference, and check for others
1705          * just in case.
1706          */
1707         zeroed = put_page_testzero(page);
1708         if (!zeroed)
1709                 /*
1710                  * It is VERY unlikely soneone else has taken a ref on
1711                  * the page.  In this case, we simply return as the
1712                  * hugetlb destructor (free_huge_page) will be called
1713                  * when this other ref is dropped.
1714                  */
1715                 return;
1716
1717         arch_clear_hugepage_flags(page);
1718         enqueue_huge_page(h, page);
1719 }
1720
1721 static void __update_and_free_page(struct hstate *h, struct page *page)
1722 {
1723         int i;
1724         struct page *subpage;
1725         bool clear_dtor = HPageVmemmapOptimized(page);
1726
1727         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1728                 return;
1729
1730         /*
1731          * If we don't know which subpages are hwpoisoned, we can't free
1732          * the hugepage, so it's leaked intentionally.
1733          */
1734         if (HPageRawHwpUnreliable(page))
1735                 return;
1736
1737         if (hugetlb_vmemmap_restore(h, page)) {
1738                 spin_lock_irq(&hugetlb_lock);
1739                 /*
1740                  * If we cannot allocate vmemmap pages, just refuse to free the
1741                  * page and put the page back on the hugetlb free list and treat
1742                  * as a surplus page.
1743                  */
1744                 add_hugetlb_page(h, page, true);
1745                 spin_unlock_irq(&hugetlb_lock);
1746                 return;
1747         }
1748
1749         /*
1750          * Move PageHWPoison flag from head page to the raw error pages,
1751          * which makes any healthy subpages reusable.
1752          */
1753         if (unlikely(PageHWPoison(page)))
1754                 hugetlb_clear_page_hwpoison(page);
1755
1756         /*
1757          * If vmemmap pages were allocated above, then we need to clear the
1758          * hugetlb destructor under the hugetlb lock.
1759          */
1760         if (clear_dtor) {
1761                 spin_lock_irq(&hugetlb_lock);
1762                 __clear_hugetlb_destructor(h, page);
1763                 spin_unlock_irq(&hugetlb_lock);
1764         }
1765
1766         for (i = 0; i < pages_per_huge_page(h); i++) {
1767                 subpage = nth_page(page, i);
1768                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1769                                 1 << PG_referenced | 1 << PG_dirty |
1770                                 1 << PG_active | 1 << PG_private |
1771                                 1 << PG_writeback);
1772         }
1773
1774         /*
1775          * Non-gigantic pages demoted from CMA allocated gigantic pages
1776          * need to be given back to CMA in free_gigantic_page.
1777          */
1778         if (hstate_is_gigantic(h) ||
1779             hugetlb_cma_page(page, huge_page_order(h))) {
1780                 destroy_compound_gigantic_page(page, huge_page_order(h));
1781                 free_gigantic_page(page, huge_page_order(h));
1782         } else {
1783                 __free_pages(page, huge_page_order(h));
1784         }
1785 }
1786
1787 /*
1788  * As update_and_free_page() can be called under any context, so we cannot
1789  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1790  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1791  * the vmemmap pages.
1792  *
1793  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1794  * freed and frees them one-by-one. As the page->mapping pointer is going
1795  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1796  * structure of a lockless linked list of huge pages to be freed.
1797  */
1798 static LLIST_HEAD(hpage_freelist);
1799
1800 static void free_hpage_workfn(struct work_struct *work)
1801 {
1802         struct llist_node *node;
1803
1804         node = llist_del_all(&hpage_freelist);
1805
1806         while (node) {
1807                 struct page *page;
1808                 struct hstate *h;
1809
1810                 page = container_of((struct address_space **)node,
1811                                      struct page, mapping);
1812                 node = node->next;
1813                 page->mapping = NULL;
1814                 /*
1815                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1816                  * is going to trigger because a previous call to
1817                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1818                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1819                  */
1820                 h = size_to_hstate(page_size(page));
1821
1822                 __update_and_free_page(h, page);
1823
1824                 cond_resched();
1825         }
1826 }
1827 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1828
1829 static inline void flush_free_hpage_work(struct hstate *h)
1830 {
1831         if (hugetlb_vmemmap_optimizable(h))
1832                 flush_work(&free_hpage_work);
1833 }
1834
1835 static void update_and_free_page(struct hstate *h, struct page *page,
1836                                  bool atomic)
1837 {
1838         if (!HPageVmemmapOptimized(page) || !atomic) {
1839                 __update_and_free_page(h, page);
1840                 return;
1841         }
1842
1843         /*
1844          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1845          *
1846          * Only call schedule_work() if hpage_freelist is previously
1847          * empty. Otherwise, schedule_work() had been called but the workfn
1848          * hasn't retrieved the list yet.
1849          */
1850         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1851                 schedule_work(&free_hpage_work);
1852 }
1853
1854 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1855 {
1856         struct page *page, *t_page;
1857
1858         list_for_each_entry_safe(page, t_page, list, lru) {
1859                 update_and_free_page(h, page, false);
1860                 cond_resched();
1861         }
1862 }
1863
1864 struct hstate *size_to_hstate(unsigned long size)
1865 {
1866         struct hstate *h;
1867
1868         for_each_hstate(h) {
1869                 if (huge_page_size(h) == size)
1870                         return h;
1871         }
1872         return NULL;
1873 }
1874
1875 void free_huge_page(struct page *page)
1876 {
1877         /*
1878          * Can't pass hstate in here because it is called from the
1879          * compound page destructor.
1880          */
1881         struct hstate *h = page_hstate(page);
1882         int nid = page_to_nid(page);
1883         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1884         bool restore_reserve;
1885         unsigned long flags;
1886
1887         VM_BUG_ON_PAGE(page_count(page), page);
1888         VM_BUG_ON_PAGE(page_mapcount(page), page);
1889
1890         hugetlb_set_page_subpool(page, NULL);
1891         if (PageAnon(page))
1892                 __ClearPageAnonExclusive(page);
1893         page->mapping = NULL;
1894         restore_reserve = HPageRestoreReserve(page);
1895         ClearHPageRestoreReserve(page);
1896
1897         /*
1898          * If HPageRestoreReserve was set on page, page allocation consumed a
1899          * reservation.  If the page was associated with a subpool, there
1900          * would have been a page reserved in the subpool before allocation
1901          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1902          * reservation, do not call hugepage_subpool_put_pages() as this will
1903          * remove the reserved page from the subpool.
1904          */
1905         if (!restore_reserve) {
1906                 /*
1907                  * A return code of zero implies that the subpool will be
1908                  * under its minimum size if the reservation is not restored
1909                  * after page is free.  Therefore, force restore_reserve
1910                  * operation.
1911                  */
1912                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1913                         restore_reserve = true;
1914         }
1915
1916         spin_lock_irqsave(&hugetlb_lock, flags);
1917         ClearHPageMigratable(page);
1918         hugetlb_cgroup_uncharge_page(hstate_index(h),
1919                                      pages_per_huge_page(h), page);
1920         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1921                                           pages_per_huge_page(h), page);
1922         if (restore_reserve)
1923                 h->resv_huge_pages++;
1924
1925         if (HPageTemporary(page)) {
1926                 remove_hugetlb_page(h, page, false);
1927                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1928                 update_and_free_page(h, page, true);
1929         } else if (h->surplus_huge_pages_node[nid]) {
1930                 /* remove the page from active list */
1931                 remove_hugetlb_page(h, page, true);
1932                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1933                 update_and_free_page(h, page, true);
1934         } else {
1935                 arch_clear_hugepage_flags(page);
1936                 enqueue_huge_page(h, page);
1937                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1938         }
1939 }
1940
1941 /*
1942  * Must be called with the hugetlb lock held
1943  */
1944 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1945 {
1946         lockdep_assert_held(&hugetlb_lock);
1947         h->nr_huge_pages++;
1948         h->nr_huge_pages_node[nid]++;
1949 }
1950
1951 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1952 {
1953         hugetlb_vmemmap_optimize(h, page);
1954         INIT_LIST_HEAD(&page->lru);
1955         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1956         hugetlb_set_page_subpool(page, NULL);
1957         set_hugetlb_cgroup(page, NULL);
1958         set_hugetlb_cgroup_rsvd(page, NULL);
1959 }
1960
1961 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1962 {
1963         __prep_new_huge_page(h, page);
1964         spin_lock_irq(&hugetlb_lock);
1965         __prep_account_new_huge_page(h, nid);
1966         spin_unlock_irq(&hugetlb_lock);
1967 }
1968
1969 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1970                                                                 bool demote)
1971 {
1972         int i, j;
1973         int nr_pages = 1 << order;
1974         struct page *p;
1975
1976         /* we rely on prep_new_huge_page to set the destructor */
1977         set_compound_order(page, order);
1978         __ClearPageReserved(page);
1979         __SetPageHead(page);
1980         for (i = 0; i < nr_pages; i++) {
1981                 p = nth_page(page, i);
1982
1983                 /*
1984                  * For gigantic hugepages allocated through bootmem at
1985                  * boot, it's safer to be consistent with the not-gigantic
1986                  * hugepages and clear the PG_reserved bit from all tail pages
1987                  * too.  Otherwise drivers using get_user_pages() to access tail
1988                  * pages may get the reference counting wrong if they see
1989                  * PG_reserved set on a tail page (despite the head page not
1990                  * having PG_reserved set).  Enforcing this consistency between
1991                  * head and tail pages allows drivers to optimize away a check
1992                  * on the head page when they need know if put_page() is needed
1993                  * after get_user_pages().
1994                  */
1995                 if (i != 0)     /* head page cleared above */
1996                         __ClearPageReserved(p);
1997                 /*
1998                  * Subtle and very unlikely
1999                  *
2000                  * Gigantic 'page allocators' such as memblock or cma will
2001                  * return a set of pages with each page ref counted.  We need
2002                  * to turn this set of pages into a compound page with tail
2003                  * page ref counts set to zero.  Code such as speculative page
2004                  * cache adding could take a ref on a 'to be' tail page.
2005                  * We need to respect any increased ref count, and only set
2006                  * the ref count to zero if count is currently 1.  If count
2007                  * is not 1, we return an error.  An error return indicates
2008                  * the set of pages can not be converted to a gigantic page.
2009                  * The caller who allocated the pages should then discard the
2010                  * pages using the appropriate free interface.
2011                  *
2012                  * In the case of demote, the ref count will be zero.
2013                  */
2014                 if (!demote) {
2015                         if (!page_ref_freeze(p, 1)) {
2016                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2017                                 goto out_error;
2018                         }
2019                 } else {
2020                         VM_BUG_ON_PAGE(page_count(p), p);
2021                 }
2022                 if (i != 0)
2023                         set_compound_head(p, page);
2024         }
2025         atomic_set(compound_mapcount_ptr(page), -1);
2026         atomic_set(compound_pincount_ptr(page), 0);
2027         return true;
2028
2029 out_error:
2030         /* undo page modifications made above */
2031         for (j = 0; j < i; j++) {
2032                 p = nth_page(page, j);
2033                 if (j != 0)
2034                         clear_compound_head(p);
2035                 set_page_refcounted(p);
2036         }
2037         /* need to clear PG_reserved on remaining tail pages  */
2038         for (; j < nr_pages; j++) {
2039                 p = nth_page(page, j);
2040                 __ClearPageReserved(p);
2041         }
2042         set_compound_order(page, 0);
2043 #ifdef CONFIG_64BIT
2044         page[1].compound_nr = 0;
2045 #endif
2046         __ClearPageHead(page);
2047         return false;
2048 }
2049
2050 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
2051 {
2052         return __prep_compound_gigantic_page(page, order, false);
2053 }
2054
2055 static bool prep_compound_gigantic_page_for_demote(struct page *page,
2056                                                         unsigned int order)
2057 {
2058         return __prep_compound_gigantic_page(page, order, true);
2059 }
2060
2061 /*
2062  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2063  * transparent huge pages.  See the PageTransHuge() documentation for more
2064  * details.
2065  */
2066 int PageHuge(struct page *page)
2067 {
2068         if (!PageCompound(page))
2069                 return 0;
2070
2071         page = compound_head(page);
2072         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2073 }
2074 EXPORT_SYMBOL_GPL(PageHuge);
2075
2076 /*
2077  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2078  * normal or transparent huge pages.
2079  */
2080 int PageHeadHuge(struct page *page_head)
2081 {
2082         if (!PageHead(page_head))
2083                 return 0;
2084
2085         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2086 }
2087 EXPORT_SYMBOL_GPL(PageHeadHuge);
2088
2089 /*
2090  * Find and lock address space (mapping) in write mode.
2091  *
2092  * Upon entry, the page is locked which means that page_mapping() is
2093  * stable.  Due to locking order, we can only trylock_write.  If we can
2094  * not get the lock, simply return NULL to caller.
2095  */
2096 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2097 {
2098         struct address_space *mapping = page_mapping(hpage);
2099
2100         if (!mapping)
2101                 return mapping;
2102
2103         if (i_mmap_trylock_write(mapping))
2104                 return mapping;
2105
2106         return NULL;
2107 }
2108
2109 pgoff_t hugetlb_basepage_index(struct page *page)
2110 {
2111         struct page *page_head = compound_head(page);
2112         pgoff_t index = page_index(page_head);
2113         unsigned long compound_idx;
2114
2115         if (compound_order(page_head) >= MAX_ORDER)
2116                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2117         else
2118                 compound_idx = page - page_head;
2119
2120         return (index << compound_order(page_head)) + compound_idx;
2121 }
2122
2123 static struct page *alloc_buddy_huge_page(struct hstate *h,
2124                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2125                 nodemask_t *node_alloc_noretry)
2126 {
2127         int order = huge_page_order(h);
2128         struct page *page;
2129         bool alloc_try_hard = true;
2130         bool retry = true;
2131
2132         /*
2133          * By default we always try hard to allocate the page with
2134          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2135          * a loop (to adjust global huge page counts) and previous allocation
2136          * failed, do not continue to try hard on the same node.  Use the
2137          * node_alloc_noretry bitmap to manage this state information.
2138          */
2139         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2140                 alloc_try_hard = false;
2141         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2142         if (alloc_try_hard)
2143                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2144         if (nid == NUMA_NO_NODE)
2145                 nid = numa_mem_id();
2146 retry:
2147         page = __alloc_pages(gfp_mask, order, nid, nmask);
2148
2149         /* Freeze head page */
2150         if (page && !page_ref_freeze(page, 1)) {
2151                 __free_pages(page, order);
2152                 if (retry) {    /* retry once */
2153                         retry = false;
2154                         goto retry;
2155                 }
2156                 /* WOW!  twice in a row. */
2157                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2158                 page = NULL;
2159         }
2160
2161         if (page)
2162                 __count_vm_event(HTLB_BUDDY_PGALLOC);
2163         else
2164                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2165
2166         /*
2167          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2168          * indicates an overall state change.  Clear bit so that we resume
2169          * normal 'try hard' allocations.
2170          */
2171         if (node_alloc_noretry && page && !alloc_try_hard)
2172                 node_clear(nid, *node_alloc_noretry);
2173
2174         /*
2175          * If we tried hard to get a page but failed, set bit so that
2176          * subsequent attempts will not try as hard until there is an
2177          * overall state change.
2178          */
2179         if (node_alloc_noretry && !page && alloc_try_hard)
2180                 node_set(nid, *node_alloc_noretry);
2181
2182         return page;
2183 }
2184
2185 /*
2186  * Common helper to allocate a fresh hugetlb page. All specific allocators
2187  * should use this function to get new hugetlb pages
2188  *
2189  * Note that returned page is 'frozen':  ref count of head page and all tail
2190  * pages is zero.
2191  */
2192 static struct page *alloc_fresh_huge_page(struct hstate *h,
2193                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2194                 nodemask_t *node_alloc_noretry)
2195 {
2196         struct page *page;
2197         bool retry = false;
2198
2199 retry:
2200         if (hstate_is_gigantic(h))
2201                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2202         else
2203                 page = alloc_buddy_huge_page(h, gfp_mask,
2204                                 nid, nmask, node_alloc_noretry);
2205         if (!page)
2206                 return NULL;
2207
2208         if (hstate_is_gigantic(h)) {
2209                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2210                         /*
2211                          * Rare failure to convert pages to compound page.
2212                          * Free pages and try again - ONCE!
2213                          */
2214                         free_gigantic_page(page, huge_page_order(h));
2215                         if (!retry) {
2216                                 retry = true;
2217                                 goto retry;
2218                         }
2219                         return NULL;
2220                 }
2221         }
2222         prep_new_huge_page(h, page, page_to_nid(page));
2223
2224         return page;
2225 }
2226
2227 /*
2228  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2229  * manner.
2230  */
2231 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2232                                 nodemask_t *node_alloc_noretry)
2233 {
2234         struct page *page;
2235         int nr_nodes, node;
2236         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2237
2238         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2239                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2240                                                 node_alloc_noretry);
2241                 if (page)
2242                         break;
2243         }
2244
2245         if (!page)
2246                 return 0;
2247
2248         free_huge_page(page); /* free it into the hugepage allocator */
2249
2250         return 1;
2251 }
2252
2253 /*
2254  * Remove huge page from pool from next node to free.  Attempt to keep
2255  * persistent huge pages more or less balanced over allowed nodes.
2256  * This routine only 'removes' the hugetlb page.  The caller must make
2257  * an additional call to free the page to low level allocators.
2258  * Called with hugetlb_lock locked.
2259  */
2260 static struct page *remove_pool_huge_page(struct hstate *h,
2261                                                 nodemask_t *nodes_allowed,
2262                                                  bool acct_surplus)
2263 {
2264         int nr_nodes, node;
2265         struct page *page = NULL;
2266
2267         lockdep_assert_held(&hugetlb_lock);
2268         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2269                 /*
2270                  * If we're returning unused surplus pages, only examine
2271                  * nodes with surplus pages.
2272                  */
2273                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2274                     !list_empty(&h->hugepage_freelists[node])) {
2275                         page = list_entry(h->hugepage_freelists[node].next,
2276                                           struct page, lru);
2277                         remove_hugetlb_page(h, page, acct_surplus);
2278                         break;
2279                 }
2280         }
2281
2282         return page;
2283 }
2284
2285 /*
2286  * Dissolve a given free hugepage into free buddy pages. This function does
2287  * nothing for in-use hugepages and non-hugepages.
2288  * This function returns values like below:
2289  *
2290  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2291  *           when the system is under memory pressure and the feature of
2292  *           freeing unused vmemmap pages associated with each hugetlb page
2293  *           is enabled.
2294  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2295  *           (allocated or reserved.)
2296  *       0:  successfully dissolved free hugepages or the page is not a
2297  *           hugepage (considered as already dissolved)
2298  */
2299 int dissolve_free_huge_page(struct page *page)
2300 {
2301         int rc = -EBUSY;
2302
2303 retry:
2304         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2305         if (!PageHuge(page))
2306                 return 0;
2307
2308         spin_lock_irq(&hugetlb_lock);
2309         if (!PageHuge(page)) {
2310                 rc = 0;
2311                 goto out;
2312         }
2313
2314         if (!page_count(page)) {
2315                 struct page *head = compound_head(page);
2316                 struct hstate *h = page_hstate(head);
2317                 if (!available_huge_pages(h))
2318                         goto out;
2319
2320                 /*
2321                  * We should make sure that the page is already on the free list
2322                  * when it is dissolved.
2323                  */
2324                 if (unlikely(!HPageFreed(head))) {
2325                         spin_unlock_irq(&hugetlb_lock);
2326                         cond_resched();
2327
2328                         /*
2329                          * Theoretically, we should return -EBUSY when we
2330                          * encounter this race. In fact, we have a chance
2331                          * to successfully dissolve the page if we do a
2332                          * retry. Because the race window is quite small.
2333                          * If we seize this opportunity, it is an optimization
2334                          * for increasing the success rate of dissolving page.
2335                          */
2336                         goto retry;
2337                 }
2338
2339                 remove_hugetlb_page(h, head, false);
2340                 h->max_huge_pages--;
2341                 spin_unlock_irq(&hugetlb_lock);
2342
2343                 /*
2344                  * Normally update_and_free_page will allocate required vmemmmap
2345                  * before freeing the page.  update_and_free_page will fail to
2346                  * free the page if it can not allocate required vmemmap.  We
2347                  * need to adjust max_huge_pages if the page is not freed.
2348                  * Attempt to allocate vmemmmap here so that we can take
2349                  * appropriate action on failure.
2350                  */
2351                 rc = hugetlb_vmemmap_restore(h, head);
2352                 if (!rc) {
2353                         update_and_free_page(h, head, false);
2354                 } else {
2355                         spin_lock_irq(&hugetlb_lock);
2356                         add_hugetlb_page(h, head, false);
2357                         h->max_huge_pages++;
2358                         spin_unlock_irq(&hugetlb_lock);
2359                 }
2360
2361                 return rc;
2362         }
2363 out:
2364         spin_unlock_irq(&hugetlb_lock);
2365         return rc;
2366 }
2367
2368 /*
2369  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2370  * make specified memory blocks removable from the system.
2371  * Note that this will dissolve a free gigantic hugepage completely, if any
2372  * part of it lies within the given range.
2373  * Also note that if dissolve_free_huge_page() returns with an error, all
2374  * free hugepages that were dissolved before that error are lost.
2375  */
2376 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2377 {
2378         unsigned long pfn;
2379         struct page *page;
2380         int rc = 0;
2381         unsigned int order;
2382         struct hstate *h;
2383
2384         if (!hugepages_supported())
2385                 return rc;
2386
2387         order = huge_page_order(&default_hstate);
2388         for_each_hstate(h)
2389                 order = min(order, huge_page_order(h));
2390
2391         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2392                 page = pfn_to_page(pfn);
2393                 rc = dissolve_free_huge_page(page);
2394                 if (rc)
2395                         break;
2396         }
2397
2398         return rc;
2399 }
2400
2401 /*
2402  * Allocates a fresh surplus page from the page allocator.
2403  */
2404 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2405                                                 int nid, nodemask_t *nmask)
2406 {
2407         struct page *page = NULL;
2408
2409         if (hstate_is_gigantic(h))
2410                 return NULL;
2411
2412         spin_lock_irq(&hugetlb_lock);
2413         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2414                 goto out_unlock;
2415         spin_unlock_irq(&hugetlb_lock);
2416
2417         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2418         if (!page)
2419                 return NULL;
2420
2421         spin_lock_irq(&hugetlb_lock);
2422         /*
2423          * We could have raced with the pool size change.
2424          * Double check that and simply deallocate the new page
2425          * if we would end up overcommiting the surpluses. Abuse
2426          * temporary page to workaround the nasty free_huge_page
2427          * codeflow
2428          */
2429         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2430                 SetHPageTemporary(page);
2431                 spin_unlock_irq(&hugetlb_lock);
2432                 free_huge_page(page);
2433                 return NULL;
2434         }
2435
2436         h->surplus_huge_pages++;
2437         h->surplus_huge_pages_node[page_to_nid(page)]++;
2438
2439 out_unlock:
2440         spin_unlock_irq(&hugetlb_lock);
2441
2442         return page;
2443 }
2444
2445 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2446                                      int nid, nodemask_t *nmask)
2447 {
2448         struct page *page;
2449
2450         if (hstate_is_gigantic(h))
2451                 return NULL;
2452
2453         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2454         if (!page)
2455                 return NULL;
2456
2457         /* fresh huge pages are frozen */
2458         set_page_refcounted(page);
2459
2460         /*
2461          * We do not account these pages as surplus because they are only
2462          * temporary and will be released properly on the last reference
2463          */
2464         SetHPageTemporary(page);
2465
2466         return page;
2467 }
2468
2469 /*
2470  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2471  */
2472 static
2473 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2474                 struct vm_area_struct *vma, unsigned long addr)
2475 {
2476         struct page *page = NULL;
2477         struct mempolicy *mpol;
2478         gfp_t gfp_mask = htlb_alloc_mask(h);
2479         int nid;
2480         nodemask_t *nodemask;
2481
2482         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2483         if (mpol_is_preferred_many(mpol)) {
2484                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2485
2486                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2487                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2488
2489                 /* Fallback to all nodes if page==NULL */
2490                 nodemask = NULL;
2491         }
2492
2493         if (!page)
2494                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2495         mpol_cond_put(mpol);
2496         return page;
2497 }
2498
2499 /* page migration callback function */
2500 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2501                 nodemask_t *nmask, gfp_t gfp_mask)
2502 {
2503         spin_lock_irq(&hugetlb_lock);
2504         if (available_huge_pages(h)) {
2505                 struct page *page;
2506
2507                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2508                 if (page) {
2509                         spin_unlock_irq(&hugetlb_lock);
2510                         return page;
2511                 }
2512         }
2513         spin_unlock_irq(&hugetlb_lock);
2514
2515         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2516 }
2517
2518 /* mempolicy aware migration callback */
2519 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2520                 unsigned long address)
2521 {
2522         struct mempolicy *mpol;
2523         nodemask_t *nodemask;
2524         struct page *page;
2525         gfp_t gfp_mask;
2526         int node;
2527
2528         gfp_mask = htlb_alloc_mask(h);
2529         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2530         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2531         mpol_cond_put(mpol);
2532
2533         return page;
2534 }
2535
2536 /*
2537  * Increase the hugetlb pool such that it can accommodate a reservation
2538  * of size 'delta'.
2539  */
2540 static int gather_surplus_pages(struct hstate *h, long delta)
2541         __must_hold(&hugetlb_lock)
2542 {
2543         LIST_HEAD(surplus_list);
2544         struct page *page, *tmp;
2545         int ret;
2546         long i;
2547         long needed, allocated;
2548         bool alloc_ok = true;
2549
2550         lockdep_assert_held(&hugetlb_lock);
2551         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2552         if (needed <= 0) {
2553                 h->resv_huge_pages += delta;
2554                 return 0;
2555         }
2556
2557         allocated = 0;
2558
2559         ret = -ENOMEM;
2560 retry:
2561         spin_unlock_irq(&hugetlb_lock);
2562         for (i = 0; i < needed; i++) {
2563                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2564                                 NUMA_NO_NODE, NULL);
2565                 if (!page) {
2566                         alloc_ok = false;
2567                         break;
2568                 }
2569                 list_add(&page->lru, &surplus_list);
2570                 cond_resched();
2571         }
2572         allocated += i;
2573
2574         /*
2575          * After retaking hugetlb_lock, we need to recalculate 'needed'
2576          * because either resv_huge_pages or free_huge_pages may have changed.
2577          */
2578         spin_lock_irq(&hugetlb_lock);
2579         needed = (h->resv_huge_pages + delta) -
2580                         (h->free_huge_pages + allocated);
2581         if (needed > 0) {
2582                 if (alloc_ok)
2583                         goto retry;
2584                 /*
2585                  * We were not able to allocate enough pages to
2586                  * satisfy the entire reservation so we free what
2587                  * we've allocated so far.
2588                  */
2589                 goto free;
2590         }
2591         /*
2592          * The surplus_list now contains _at_least_ the number of extra pages
2593          * needed to accommodate the reservation.  Add the appropriate number
2594          * of pages to the hugetlb pool and free the extras back to the buddy
2595          * allocator.  Commit the entire reservation here to prevent another
2596          * process from stealing the pages as they are added to the pool but
2597          * before they are reserved.
2598          */
2599         needed += allocated;
2600         h->resv_huge_pages += delta;
2601         ret = 0;
2602
2603         /* Free the needed pages to the hugetlb pool */
2604         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2605                 if ((--needed) < 0)
2606                         break;
2607                 /* Add the page to the hugetlb allocator */
2608                 enqueue_huge_page(h, page);
2609         }
2610 free:
2611         spin_unlock_irq(&hugetlb_lock);
2612
2613         /*
2614          * Free unnecessary surplus pages to the buddy allocator.
2615          * Pages have no ref count, call free_huge_page directly.
2616          */
2617         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2618                 free_huge_page(page);
2619         spin_lock_irq(&hugetlb_lock);
2620
2621         return ret;
2622 }
2623
2624 /*
2625  * This routine has two main purposes:
2626  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2627  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2628  *    to the associated reservation map.
2629  * 2) Free any unused surplus pages that may have been allocated to satisfy
2630  *    the reservation.  As many as unused_resv_pages may be freed.
2631  */
2632 static void return_unused_surplus_pages(struct hstate *h,
2633                                         unsigned long unused_resv_pages)
2634 {
2635         unsigned long nr_pages;
2636         struct page *page;
2637         LIST_HEAD(page_list);
2638
2639         lockdep_assert_held(&hugetlb_lock);
2640         /* Uncommit the reservation */
2641         h->resv_huge_pages -= unused_resv_pages;
2642
2643         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2644                 goto out;
2645
2646         /*
2647          * Part (or even all) of the reservation could have been backed
2648          * by pre-allocated pages. Only free surplus pages.
2649          */
2650         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2651
2652         /*
2653          * We want to release as many surplus pages as possible, spread
2654          * evenly across all nodes with memory. Iterate across these nodes
2655          * until we can no longer free unreserved surplus pages. This occurs
2656          * when the nodes with surplus pages have no free pages.
2657          * remove_pool_huge_page() will balance the freed pages across the
2658          * on-line nodes with memory and will handle the hstate accounting.
2659          */
2660         while (nr_pages--) {
2661                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2662                 if (!page)
2663                         goto out;
2664
2665                 list_add(&page->lru, &page_list);
2666         }
2667
2668 out:
2669         spin_unlock_irq(&hugetlb_lock);
2670         update_and_free_pages_bulk(h, &page_list);
2671         spin_lock_irq(&hugetlb_lock);
2672 }
2673
2674
2675 /*
2676  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2677  * are used by the huge page allocation routines to manage reservations.
2678  *
2679  * vma_needs_reservation is called to determine if the huge page at addr
2680  * within the vma has an associated reservation.  If a reservation is
2681  * needed, the value 1 is returned.  The caller is then responsible for
2682  * managing the global reservation and subpool usage counts.  After
2683  * the huge page has been allocated, vma_commit_reservation is called
2684  * to add the page to the reservation map.  If the page allocation fails,
2685  * the reservation must be ended instead of committed.  vma_end_reservation
2686  * is called in such cases.
2687  *
2688  * In the normal case, vma_commit_reservation returns the same value
2689  * as the preceding vma_needs_reservation call.  The only time this
2690  * is not the case is if a reserve map was changed between calls.  It
2691  * is the responsibility of the caller to notice the difference and
2692  * take appropriate action.
2693  *
2694  * vma_add_reservation is used in error paths where a reservation must
2695  * be restored when a newly allocated huge page must be freed.  It is
2696  * to be called after calling vma_needs_reservation to determine if a
2697  * reservation exists.
2698  *
2699  * vma_del_reservation is used in error paths where an entry in the reserve
2700  * map was created during huge page allocation and must be removed.  It is to
2701  * be called after calling vma_needs_reservation to determine if a reservation
2702  * exists.
2703  */
2704 enum vma_resv_mode {
2705         VMA_NEEDS_RESV,
2706         VMA_COMMIT_RESV,
2707         VMA_END_RESV,
2708         VMA_ADD_RESV,
2709         VMA_DEL_RESV,
2710 };
2711 static long __vma_reservation_common(struct hstate *h,
2712                                 struct vm_area_struct *vma, unsigned long addr,
2713                                 enum vma_resv_mode mode)
2714 {
2715         struct resv_map *resv;
2716         pgoff_t idx;
2717         long ret;
2718         long dummy_out_regions_needed;
2719
2720         resv = vma_resv_map(vma);
2721         if (!resv)
2722                 return 1;
2723
2724         idx = vma_hugecache_offset(h, vma, addr);
2725         switch (mode) {
2726         case VMA_NEEDS_RESV:
2727                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2728                 /* We assume that vma_reservation_* routines always operate on
2729                  * 1 page, and that adding to resv map a 1 page entry can only
2730                  * ever require 1 region.
2731                  */
2732                 VM_BUG_ON(dummy_out_regions_needed != 1);
2733                 break;
2734         case VMA_COMMIT_RESV:
2735                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2736                 /* region_add calls of range 1 should never fail. */
2737                 VM_BUG_ON(ret < 0);
2738                 break;
2739         case VMA_END_RESV:
2740                 region_abort(resv, idx, idx + 1, 1);
2741                 ret = 0;
2742                 break;
2743         case VMA_ADD_RESV:
2744                 if (vma->vm_flags & VM_MAYSHARE) {
2745                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2746                         /* region_add calls of range 1 should never fail. */
2747                         VM_BUG_ON(ret < 0);
2748                 } else {
2749                         region_abort(resv, idx, idx + 1, 1);
2750                         ret = region_del(resv, idx, idx + 1);
2751                 }
2752                 break;
2753         case VMA_DEL_RESV:
2754                 if (vma->vm_flags & VM_MAYSHARE) {
2755                         region_abort(resv, idx, idx + 1, 1);
2756                         ret = region_del(resv, idx, idx + 1);
2757                 } else {
2758                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2759                         /* region_add calls of range 1 should never fail. */
2760                         VM_BUG_ON(ret < 0);
2761                 }
2762                 break;
2763         default:
2764                 BUG();
2765         }
2766
2767         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2768                 return ret;
2769         /*
2770          * We know private mapping must have HPAGE_RESV_OWNER set.
2771          *
2772          * In most cases, reserves always exist for private mappings.
2773          * However, a file associated with mapping could have been
2774          * hole punched or truncated after reserves were consumed.
2775          * As subsequent fault on such a range will not use reserves.
2776          * Subtle - The reserve map for private mappings has the
2777          * opposite meaning than that of shared mappings.  If NO
2778          * entry is in the reserve map, it means a reservation exists.
2779          * If an entry exists in the reserve map, it means the
2780          * reservation has already been consumed.  As a result, the
2781          * return value of this routine is the opposite of the
2782          * value returned from reserve map manipulation routines above.
2783          */
2784         if (ret > 0)
2785                 return 0;
2786         if (ret == 0)
2787                 return 1;
2788         return ret;
2789 }
2790
2791 static long vma_needs_reservation(struct hstate *h,
2792                         struct vm_area_struct *vma, unsigned long addr)
2793 {
2794         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2795 }
2796
2797 static long vma_commit_reservation(struct hstate *h,
2798                         struct vm_area_struct *vma, unsigned long addr)
2799 {
2800         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2801 }
2802
2803 static void vma_end_reservation(struct hstate *h,
2804                         struct vm_area_struct *vma, unsigned long addr)
2805 {
2806         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2807 }
2808
2809 static long vma_add_reservation(struct hstate *h,
2810                         struct vm_area_struct *vma, unsigned long addr)
2811 {
2812         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2813 }
2814
2815 static long vma_del_reservation(struct hstate *h,
2816                         struct vm_area_struct *vma, unsigned long addr)
2817 {
2818         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2819 }
2820
2821 /*
2822  * This routine is called to restore reservation information on error paths.
2823  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2824  * the hugetlb mutex should remain held when calling this routine.
2825  *
2826  * It handles two specific cases:
2827  * 1) A reservation was in place and the page consumed the reservation.
2828  *    HPageRestoreReserve is set in the page.
2829  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2830  *    not set.  However, alloc_huge_page always updates the reserve map.
2831  *
2832  * In case 1, free_huge_page later in the error path will increment the
2833  * global reserve count.  But, free_huge_page does not have enough context
2834  * to adjust the reservation map.  This case deals primarily with private
2835  * mappings.  Adjust the reserve map here to be consistent with global
2836  * reserve count adjustments to be made by free_huge_page.  Make sure the
2837  * reserve map indicates there is a reservation present.
2838  *
2839  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2840  */
2841 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2842                         unsigned long address, struct page *page)
2843 {
2844         long rc = vma_needs_reservation(h, vma, address);
2845
2846         if (HPageRestoreReserve(page)) {
2847                 if (unlikely(rc < 0))
2848                         /*
2849                          * Rare out of memory condition in reserve map
2850                          * manipulation.  Clear HPageRestoreReserve so that
2851                          * global reserve count will not be incremented
2852                          * by free_huge_page.  This will make it appear
2853                          * as though the reservation for this page was
2854                          * consumed.  This may prevent the task from
2855                          * faulting in the page at a later time.  This
2856                          * is better than inconsistent global huge page
2857                          * accounting of reserve counts.
2858                          */
2859                         ClearHPageRestoreReserve(page);
2860                 else if (rc)
2861                         (void)vma_add_reservation(h, vma, address);
2862                 else
2863                         vma_end_reservation(h, vma, address);
2864         } else {
2865                 if (!rc) {
2866                         /*
2867                          * This indicates there is an entry in the reserve map
2868                          * not added by alloc_huge_page.  We know it was added
2869                          * before the alloc_huge_page call, otherwise
2870                          * HPageRestoreReserve would be set on the page.
2871                          * Remove the entry so that a subsequent allocation
2872                          * does not consume a reservation.
2873                          */
2874                         rc = vma_del_reservation(h, vma, address);
2875                         if (rc < 0)
2876                                 /*
2877                                  * VERY rare out of memory condition.  Since
2878                                  * we can not delete the entry, set
2879                                  * HPageRestoreReserve so that the reserve
2880                                  * count will be incremented when the page
2881                                  * is freed.  This reserve will be consumed
2882                                  * on a subsequent allocation.
2883                                  */
2884                                 SetHPageRestoreReserve(page);
2885                 } else if (rc < 0) {
2886                         /*
2887                          * Rare out of memory condition from
2888                          * vma_needs_reservation call.  Memory allocation is
2889                          * only attempted if a new entry is needed.  Therefore,
2890                          * this implies there is not an entry in the
2891                          * reserve map.
2892                          *
2893                          * For shared mappings, no entry in the map indicates
2894                          * no reservation.  We are done.
2895                          */
2896                         if (!(vma->vm_flags & VM_MAYSHARE))
2897                                 /*
2898                                  * For private mappings, no entry indicates
2899                                  * a reservation is present.  Since we can
2900                                  * not add an entry, set SetHPageRestoreReserve
2901                                  * on the page so reserve count will be
2902                                  * incremented when freed.  This reserve will
2903                                  * be consumed on a subsequent allocation.
2904                                  */
2905                                 SetHPageRestoreReserve(page);
2906                 } else
2907                         /*
2908                          * No reservation present, do nothing
2909                          */
2910                          vma_end_reservation(h, vma, address);
2911         }
2912 }
2913
2914 /*
2915  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2916  * @h: struct hstate old page belongs to
2917  * @old_page: Old page to dissolve
2918  * @list: List to isolate the page in case we need to
2919  * Returns 0 on success, otherwise negated error.
2920  */
2921 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2922                                         struct list_head *list)
2923 {
2924         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2925         int nid = page_to_nid(old_page);
2926         struct page *new_page;
2927         int ret = 0;
2928
2929         /*
2930          * Before dissolving the page, we need to allocate a new one for the
2931          * pool to remain stable.  Here, we allocate the page and 'prep' it
2932          * by doing everything but actually updating counters and adding to
2933          * the pool.  This simplifies and let us do most of the processing
2934          * under the lock.
2935          */
2936         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2937         if (!new_page)
2938                 return -ENOMEM;
2939         __prep_new_huge_page(h, new_page);
2940
2941 retry:
2942         spin_lock_irq(&hugetlb_lock);
2943         if (!PageHuge(old_page)) {
2944                 /*
2945                  * Freed from under us. Drop new_page too.
2946                  */
2947                 goto free_new;
2948         } else if (page_count(old_page)) {
2949                 /*
2950                  * Someone has grabbed the page, try to isolate it here.
2951                  * Fail with -EBUSY if not possible.
2952                  */
2953                 spin_unlock_irq(&hugetlb_lock);
2954                 ret = isolate_hugetlb(old_page, list);
2955                 spin_lock_irq(&hugetlb_lock);
2956                 goto free_new;
2957         } else if (!HPageFreed(old_page)) {
2958                 /*
2959                  * Page's refcount is 0 but it has not been enqueued in the
2960                  * freelist yet. Race window is small, so we can succeed here if
2961                  * we retry.
2962                  */
2963                 spin_unlock_irq(&hugetlb_lock);
2964                 cond_resched();
2965                 goto retry;
2966         } else {
2967                 /*
2968                  * Ok, old_page is still a genuine free hugepage. Remove it from
2969                  * the freelist and decrease the counters. These will be
2970                  * incremented again when calling __prep_account_new_huge_page()
2971                  * and enqueue_huge_page() for new_page. The counters will remain
2972                  * stable since this happens under the lock.
2973                  */
2974                 remove_hugetlb_page(h, old_page, false);
2975
2976                 /*
2977                  * Ref count on new page is already zero as it was dropped
2978                  * earlier.  It can be directly added to the pool free list.
2979                  */
2980                 __prep_account_new_huge_page(h, nid);
2981                 enqueue_huge_page(h, new_page);
2982
2983                 /*
2984                  * Pages have been replaced, we can safely free the old one.
2985                  */
2986                 spin_unlock_irq(&hugetlb_lock);
2987                 update_and_free_page(h, old_page, false);
2988         }
2989
2990         return ret;
2991
2992 free_new:
2993         spin_unlock_irq(&hugetlb_lock);
2994         /* Page has a zero ref count, but needs a ref to be freed */
2995         set_page_refcounted(new_page);
2996         update_and_free_page(h, new_page, false);
2997
2998         return ret;
2999 }
3000
3001 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3002 {
3003         struct hstate *h;
3004         struct page *head;
3005         int ret = -EBUSY;
3006
3007         /*
3008          * The page might have been dissolved from under our feet, so make sure
3009          * to carefully check the state under the lock.
3010          * Return success when racing as if we dissolved the page ourselves.
3011          */
3012         spin_lock_irq(&hugetlb_lock);
3013         if (PageHuge(page)) {
3014                 head = compound_head(page);
3015                 h = page_hstate(head);
3016         } else {
3017                 spin_unlock_irq(&hugetlb_lock);
3018                 return 0;
3019         }
3020         spin_unlock_irq(&hugetlb_lock);
3021
3022         /*
3023          * Fence off gigantic pages as there is a cyclic dependency between
3024          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3025          * of bailing out right away without further retrying.
3026          */
3027         if (hstate_is_gigantic(h))
3028                 return -ENOMEM;
3029
3030         if (page_count(head) && !isolate_hugetlb(head, list))
3031                 ret = 0;
3032         else if (!page_count(head))
3033                 ret = alloc_and_dissolve_huge_page(h, head, list);
3034
3035         return ret;
3036 }
3037
3038 struct page *alloc_huge_page(struct vm_area_struct *vma,
3039                                     unsigned long addr, int avoid_reserve)
3040 {
3041         struct hugepage_subpool *spool = subpool_vma(vma);
3042         struct hstate *h = hstate_vma(vma);
3043         struct page *page;
3044         long map_chg, map_commit;
3045         long gbl_chg;
3046         int ret, idx;
3047         struct hugetlb_cgroup *h_cg;
3048         bool deferred_reserve;
3049
3050         idx = hstate_index(h);
3051         /*
3052          * Examine the region/reserve map to determine if the process
3053          * has a reservation for the page to be allocated.  A return
3054          * code of zero indicates a reservation exists (no change).
3055          */
3056         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3057         if (map_chg < 0)
3058                 return ERR_PTR(-ENOMEM);
3059
3060         /*
3061          * Processes that did not create the mapping will have no
3062          * reserves as indicated by the region/reserve map. Check
3063          * that the allocation will not exceed the subpool limit.
3064          * Allocations for MAP_NORESERVE mappings also need to be
3065          * checked against any subpool limit.
3066          */
3067         if (map_chg || avoid_reserve) {
3068                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3069                 if (gbl_chg < 0) {
3070                         vma_end_reservation(h, vma, addr);
3071                         return ERR_PTR(-ENOSPC);
3072                 }
3073
3074                 /*
3075                  * Even though there was no reservation in the region/reserve
3076                  * map, there could be reservations associated with the
3077                  * subpool that can be used.  This would be indicated if the
3078                  * return value of hugepage_subpool_get_pages() is zero.
3079                  * However, if avoid_reserve is specified we still avoid even
3080                  * the subpool reservations.
3081                  */
3082                 if (avoid_reserve)
3083                         gbl_chg = 1;
3084         }
3085
3086         /* If this allocation is not consuming a reservation, charge it now.
3087          */
3088         deferred_reserve = map_chg || avoid_reserve;
3089         if (deferred_reserve) {
3090                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3091                         idx, pages_per_huge_page(h), &h_cg);
3092                 if (ret)
3093                         goto out_subpool_put;
3094         }
3095
3096         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3097         if (ret)
3098                 goto out_uncharge_cgroup_reservation;
3099
3100         spin_lock_irq(&hugetlb_lock);
3101         /*
3102          * glb_chg is passed to indicate whether or not a page must be taken
3103          * from the global free pool (global change).  gbl_chg == 0 indicates
3104          * a reservation exists for the allocation.
3105          */
3106         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3107         if (!page) {
3108                 spin_unlock_irq(&hugetlb_lock);
3109                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3110                 if (!page)
3111                         goto out_uncharge_cgroup;
3112                 spin_lock_irq(&hugetlb_lock);
3113                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3114                         SetHPageRestoreReserve(page);
3115                         h->resv_huge_pages--;
3116                 }
3117                 list_add(&page->lru, &h->hugepage_activelist);
3118                 set_page_refcounted(page);
3119                 /* Fall through */
3120         }
3121         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3122         /* If allocation is not consuming a reservation, also store the
3123          * hugetlb_cgroup pointer on the page.
3124          */
3125         if (deferred_reserve) {
3126                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3127                                                   h_cg, page);
3128         }
3129
3130         spin_unlock_irq(&hugetlb_lock);
3131
3132         hugetlb_set_page_subpool(page, spool);
3133
3134         map_commit = vma_commit_reservation(h, vma, addr);
3135         if (unlikely(map_chg > map_commit)) {
3136                 /*
3137                  * The page was added to the reservation map between
3138                  * vma_needs_reservation and vma_commit_reservation.
3139                  * This indicates a race with hugetlb_reserve_pages.
3140                  * Adjust for the subpool count incremented above AND
3141                  * in hugetlb_reserve_pages for the same page.  Also,
3142                  * the reservation count added in hugetlb_reserve_pages
3143                  * no longer applies.
3144                  */
3145                 long rsv_adjust;
3146
3147                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3148                 hugetlb_acct_memory(h, -rsv_adjust);
3149                 if (deferred_reserve)
3150                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
3151                                         pages_per_huge_page(h), page);
3152         }
3153         return page;
3154
3155 out_uncharge_cgroup:
3156         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3157 out_uncharge_cgroup_reservation:
3158         if (deferred_reserve)
3159                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3160                                                     h_cg);
3161 out_subpool_put:
3162         if (map_chg || avoid_reserve)
3163                 hugepage_subpool_put_pages(spool, 1);
3164         vma_end_reservation(h, vma, addr);
3165         return ERR_PTR(-ENOSPC);
3166 }
3167
3168 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3169         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3170 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3171 {
3172         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3173         int nr_nodes, node;
3174
3175         /* do node specific alloc */
3176         if (nid != NUMA_NO_NODE) {
3177                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3178                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3179                 if (!m)
3180                         return 0;
3181                 goto found;
3182         }
3183         /* allocate from next node when distributing huge pages */
3184         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3185                 m = memblock_alloc_try_nid_raw(
3186                                 huge_page_size(h), huge_page_size(h),
3187                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3188                 /*
3189                  * Use the beginning of the huge page to store the
3190                  * huge_bootmem_page struct (until gather_bootmem
3191                  * puts them into the mem_map).
3192                  */
3193                 if (!m)
3194                         return 0;
3195                 goto found;
3196         }
3197
3198 found:
3199         /* Put them into a private list first because mem_map is not up yet */
3200         INIT_LIST_HEAD(&m->list);
3201         list_add(&m->list, &huge_boot_pages);
3202         m->hstate = h;
3203         return 1;
3204 }
3205
3206 /*
3207  * Put bootmem huge pages into the standard lists after mem_map is up.
3208  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3209  */
3210 static void __init gather_bootmem_prealloc(void)
3211 {
3212         struct huge_bootmem_page *m;
3213
3214         list_for_each_entry(m, &huge_boot_pages, list) {
3215                 struct page *page = virt_to_page(m);
3216                 struct hstate *h = m->hstate;
3217
3218                 VM_BUG_ON(!hstate_is_gigantic(h));
3219                 WARN_ON(page_count(page) != 1);
3220                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3221                         WARN_ON(PageReserved(page));
3222                         prep_new_huge_page(h, page, page_to_nid(page));
3223                         free_huge_page(page); /* add to the hugepage allocator */
3224                 } else {
3225                         /* VERY unlikely inflated ref count on a tail page */
3226                         free_gigantic_page(page, huge_page_order(h));
3227                 }
3228
3229                 /*
3230                  * We need to restore the 'stolen' pages to totalram_pages
3231                  * in order to fix confusing memory reports from free(1) and
3232                  * other side-effects, like CommitLimit going negative.
3233                  */
3234                 adjust_managed_page_count(page, pages_per_huge_page(h));
3235                 cond_resched();
3236         }
3237 }
3238 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3239 {
3240         unsigned long i;
3241         char buf[32];
3242
3243         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3244                 if (hstate_is_gigantic(h)) {
3245                         if (!alloc_bootmem_huge_page(h, nid))
3246                                 break;
3247                 } else {
3248                         struct page *page;
3249                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3250
3251                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3252                                         &node_states[N_MEMORY], NULL);
3253                         if (!page)
3254                                 break;
3255                         free_huge_page(page); /* free it into the hugepage allocator */
3256                 }
3257                 cond_resched();
3258         }
3259         if (i == h->max_huge_pages_node[nid])
3260                 return;
3261
3262         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3263         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3264                 h->max_huge_pages_node[nid], buf, nid, i);
3265         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3266         h->max_huge_pages_node[nid] = i;
3267 }
3268
3269 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3270 {
3271         unsigned long i;
3272         nodemask_t *node_alloc_noretry;
3273         bool node_specific_alloc = false;
3274
3275         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3276         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3277                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3278                 return;
3279         }
3280
3281         /* do node specific alloc */
3282         for_each_online_node(i) {
3283                 if (h->max_huge_pages_node[i] > 0) {
3284                         hugetlb_hstate_alloc_pages_onenode(h, i);
3285                         node_specific_alloc = true;
3286                 }
3287         }
3288
3289         if (node_specific_alloc)
3290                 return;
3291
3292         /* below will do all node balanced alloc */
3293         if (!hstate_is_gigantic(h)) {
3294                 /*
3295                  * Bit mask controlling how hard we retry per-node allocations.
3296                  * Ignore errors as lower level routines can deal with
3297                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3298                  * time, we are likely in bigger trouble.
3299                  */
3300                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3301                                                 GFP_KERNEL);
3302         } else {
3303                 /* allocations done at boot time */
3304                 node_alloc_noretry = NULL;
3305         }
3306
3307         /* bit mask controlling how hard we retry per-node allocations */
3308         if (node_alloc_noretry)
3309                 nodes_clear(*node_alloc_noretry);
3310
3311         for (i = 0; i < h->max_huge_pages; ++i) {
3312                 if (hstate_is_gigantic(h)) {
3313                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3314                                 break;
3315                 } else if (!alloc_pool_huge_page(h,
3316                                          &node_states[N_MEMORY],
3317                                          node_alloc_noretry))
3318                         break;
3319                 cond_resched();
3320         }
3321         if (i < h->max_huge_pages) {
3322                 char buf[32];
3323
3324                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3325                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3326                         h->max_huge_pages, buf, i);
3327                 h->max_huge_pages = i;
3328         }
3329         kfree(node_alloc_noretry);
3330 }
3331
3332 static void __init hugetlb_init_hstates(void)
3333 {
3334         struct hstate *h, *h2;
3335
3336         for_each_hstate(h) {
3337                 /* oversize hugepages were init'ed in early boot */
3338                 if (!hstate_is_gigantic(h))
3339                         hugetlb_hstate_alloc_pages(h);
3340
3341                 /*
3342                  * Set demote order for each hstate.  Note that
3343                  * h->demote_order is initially 0.
3344                  * - We can not demote gigantic pages if runtime freeing
3345                  *   is not supported, so skip this.
3346                  * - If CMA allocation is possible, we can not demote
3347                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3348                  */
3349                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3350                         continue;
3351                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3352                         continue;
3353                 for_each_hstate(h2) {
3354                         if (h2 == h)
3355                                 continue;
3356                         if (h2->order < h->order &&
3357                             h2->order > h->demote_order)
3358                                 h->demote_order = h2->order;
3359                 }
3360         }
3361 }
3362
3363 static void __init report_hugepages(void)
3364 {
3365         struct hstate *h;
3366
3367         for_each_hstate(h) {
3368                 char buf[32];
3369
3370                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3371                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3372                         buf, h->free_huge_pages);
3373                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3374                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3375         }
3376 }
3377
3378 #ifdef CONFIG_HIGHMEM
3379 static void try_to_free_low(struct hstate *h, unsigned long count,
3380                                                 nodemask_t *nodes_allowed)
3381 {
3382         int i;
3383         LIST_HEAD(page_list);
3384
3385         lockdep_assert_held(&hugetlb_lock);
3386         if (hstate_is_gigantic(h))
3387                 return;
3388
3389         /*
3390          * Collect pages to be freed on a list, and free after dropping lock
3391          */
3392         for_each_node_mask(i, *nodes_allowed) {
3393                 struct page *page, *next;
3394                 struct list_head *freel = &h->hugepage_freelists[i];
3395                 list_for_each_entry_safe(page, next, freel, lru) {
3396                         if (count >= h->nr_huge_pages)
3397                                 goto out;
3398                         if (PageHighMem(page))
3399                                 continue;
3400                         remove_hugetlb_page(h, page, false);
3401                         list_add(&page->lru, &page_list);
3402                 }
3403         }
3404
3405 out:
3406         spin_unlock_irq(&hugetlb_lock);
3407         update_and_free_pages_bulk(h, &page_list);
3408         spin_lock_irq(&hugetlb_lock);
3409 }
3410 #else
3411 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3412                                                 nodemask_t *nodes_allowed)
3413 {
3414 }
3415 #endif
3416
3417 /*
3418  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3419  * balanced by operating on them in a round-robin fashion.
3420  * Returns 1 if an adjustment was made.
3421  */
3422 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3423                                 int delta)
3424 {
3425         int nr_nodes, node;
3426
3427         lockdep_assert_held(&hugetlb_lock);
3428         VM_BUG_ON(delta != -1 && delta != 1);
3429
3430         if (delta < 0) {
3431                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3432                         if (h->surplus_huge_pages_node[node])
3433                                 goto found;
3434                 }
3435         } else {
3436                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3437                         if (h->surplus_huge_pages_node[node] <
3438                                         h->nr_huge_pages_node[node])
3439                                 goto found;
3440                 }
3441         }
3442         return 0;
3443
3444 found:
3445         h->surplus_huge_pages += delta;
3446         h->surplus_huge_pages_node[node] += delta;
3447         return 1;
3448 }
3449
3450 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3451 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3452                               nodemask_t *nodes_allowed)
3453 {
3454         unsigned long min_count, ret;
3455         struct page *page;
3456         LIST_HEAD(page_list);
3457         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3458
3459         /*
3460          * Bit mask controlling how hard we retry per-node allocations.
3461          * If we can not allocate the bit mask, do not attempt to allocate
3462          * the requested huge pages.
3463          */
3464         if (node_alloc_noretry)
3465                 nodes_clear(*node_alloc_noretry);
3466         else
3467                 return -ENOMEM;
3468
3469         /*
3470          * resize_lock mutex prevents concurrent adjustments to number of
3471          * pages in hstate via the proc/sysfs interfaces.
3472          */
3473         mutex_lock(&h->resize_lock);
3474         flush_free_hpage_work(h);
3475         spin_lock_irq(&hugetlb_lock);
3476
3477         /*
3478          * Check for a node specific request.
3479          * Changing node specific huge page count may require a corresponding
3480          * change to the global count.  In any case, the passed node mask
3481          * (nodes_allowed) will restrict alloc/free to the specified node.
3482          */
3483         if (nid != NUMA_NO_NODE) {
3484                 unsigned long old_count = count;
3485
3486                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3487                 /*
3488                  * User may have specified a large count value which caused the
3489                  * above calculation to overflow.  In this case, they wanted
3490                  * to allocate as many huge pages as possible.  Set count to
3491                  * largest possible value to align with their intention.
3492                  */
3493                 if (count < old_count)
3494                         count = ULONG_MAX;
3495         }
3496
3497         /*
3498          * Gigantic pages runtime allocation depend on the capability for large
3499          * page range allocation.
3500          * If the system does not provide this feature, return an error when
3501          * the user tries to allocate gigantic pages but let the user free the
3502          * boottime allocated gigantic pages.
3503          */
3504         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3505                 if (count > persistent_huge_pages(h)) {
3506                         spin_unlock_irq(&hugetlb_lock);
3507                         mutex_unlock(&h->resize_lock);
3508                         NODEMASK_FREE(node_alloc_noretry);
3509                         return -EINVAL;
3510                 }
3511                 /* Fall through to decrease pool */
3512         }
3513
3514         /*
3515          * Increase the pool size
3516          * First take pages out of surplus state.  Then make up the
3517          * remaining difference by allocating fresh huge pages.
3518          *
3519          * We might race with alloc_surplus_huge_page() here and be unable
3520          * to convert a surplus huge page to a normal huge page. That is
3521          * not critical, though, it just means the overall size of the
3522          * pool might be one hugepage larger than it needs to be, but
3523          * within all the constraints specified by the sysctls.
3524          */
3525         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3526                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3527                         break;
3528         }
3529
3530         while (count > persistent_huge_pages(h)) {
3531                 /*
3532                  * If this allocation races such that we no longer need the
3533                  * page, free_huge_page will handle it by freeing the page
3534                  * and reducing the surplus.
3535                  */
3536                 spin_unlock_irq(&hugetlb_lock);
3537
3538                 /* yield cpu to avoid soft lockup */
3539                 cond_resched();
3540
3541                 ret = alloc_pool_huge_page(h, nodes_allowed,
3542                                                 node_alloc_noretry);
3543                 spin_lock_irq(&hugetlb_lock);
3544                 if (!ret)
3545                         goto out;
3546
3547                 /* Bail for signals. Probably ctrl-c from user */
3548                 if (signal_pending(current))
3549                         goto out;
3550         }
3551
3552         /*
3553          * Decrease the pool size
3554          * First return free pages to the buddy allocator (being careful
3555          * to keep enough around to satisfy reservations).  Then place
3556          * pages into surplus state as needed so the pool will shrink
3557          * to the desired size as pages become free.
3558          *
3559          * By placing pages into the surplus state independent of the
3560          * overcommit value, we are allowing the surplus pool size to
3561          * exceed overcommit. There are few sane options here. Since
3562          * alloc_surplus_huge_page() is checking the global counter,
3563          * though, we'll note that we're not allowed to exceed surplus
3564          * and won't grow the pool anywhere else. Not until one of the
3565          * sysctls are changed, or the surplus pages go out of use.
3566          */
3567         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3568         min_count = max(count, min_count);
3569         try_to_free_low(h, min_count, nodes_allowed);
3570
3571         /*
3572          * Collect pages to be removed on list without dropping lock
3573          */
3574         while (min_count < persistent_huge_pages(h)) {
3575                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3576                 if (!page)
3577                         break;
3578
3579                 list_add(&page->lru, &page_list);
3580         }
3581         /* free the pages after dropping lock */
3582         spin_unlock_irq(&hugetlb_lock);
3583         update_and_free_pages_bulk(h, &page_list);
3584         flush_free_hpage_work(h);
3585         spin_lock_irq(&hugetlb_lock);
3586
3587         while (count < persistent_huge_pages(h)) {
3588                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3589                         break;
3590         }
3591 out:
3592         h->max_huge_pages = persistent_huge_pages(h);
3593         spin_unlock_irq(&hugetlb_lock);
3594         mutex_unlock(&h->resize_lock);
3595
3596         NODEMASK_FREE(node_alloc_noretry);
3597
3598         return 0;
3599 }
3600
3601 static int demote_free_huge_page(struct hstate *h, struct page *page)
3602 {
3603         int i, nid = page_to_nid(page);
3604         struct hstate *target_hstate;
3605         struct page *subpage;
3606         int rc = 0;
3607
3608         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3609
3610         remove_hugetlb_page_for_demote(h, page, false);
3611         spin_unlock_irq(&hugetlb_lock);
3612
3613         rc = hugetlb_vmemmap_restore(h, page);
3614         if (rc) {
3615                 /* Allocation of vmemmmap failed, we can not demote page */
3616                 spin_lock_irq(&hugetlb_lock);
3617                 set_page_refcounted(page);
3618                 add_hugetlb_page(h, page, false);
3619                 return rc;
3620         }
3621
3622         /*
3623          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3624          * sizes as it will not ref count pages.
3625          */
3626         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3627
3628         /*
3629          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3630          * Without the mutex, pages added to target hstate could be marked
3631          * as surplus.
3632          *
3633          * Note that we already hold h->resize_lock.  To prevent deadlock,
3634          * use the convention of always taking larger size hstate mutex first.
3635          */
3636         mutex_lock(&target_hstate->resize_lock);
3637         for (i = 0; i < pages_per_huge_page(h);
3638                                 i += pages_per_huge_page(target_hstate)) {
3639                 subpage = nth_page(page, i);
3640                 if (hstate_is_gigantic(target_hstate))
3641                         prep_compound_gigantic_page_for_demote(subpage,
3642                                                         target_hstate->order);
3643                 else
3644                         prep_compound_page(subpage, target_hstate->order);
3645                 set_page_private(subpage, 0);
3646                 prep_new_huge_page(target_hstate, subpage, nid);
3647                 free_huge_page(subpage);
3648         }
3649         mutex_unlock(&target_hstate->resize_lock);
3650
3651         spin_lock_irq(&hugetlb_lock);
3652
3653         /*
3654          * Not absolutely necessary, but for consistency update max_huge_pages
3655          * based on pool changes for the demoted page.
3656          */
3657         h->max_huge_pages--;
3658         target_hstate->max_huge_pages +=
3659                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3660
3661         return rc;
3662 }
3663
3664 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3665         __must_hold(&hugetlb_lock)
3666 {
3667         int nr_nodes, node;
3668         struct page *page;
3669
3670         lockdep_assert_held(&hugetlb_lock);
3671
3672         /* We should never get here if no demote order */
3673         if (!h->demote_order) {
3674                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3675                 return -EINVAL;         /* internal error */
3676         }
3677
3678         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3679                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3680                         if (PageHWPoison(page))
3681                                 continue;
3682
3683                         return demote_free_huge_page(h, page);
3684                 }
3685         }
3686
3687         /*
3688          * Only way to get here is if all pages on free lists are poisoned.
3689          * Return -EBUSY so that caller will not retry.
3690          */
3691         return -EBUSY;
3692 }
3693
3694 #define HSTATE_ATTR_RO(_name) \
3695         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3696
3697 #define HSTATE_ATTR_WO(_name) \
3698         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3699
3700 #define HSTATE_ATTR(_name) \
3701         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3702
3703 static struct kobject *hugepages_kobj;
3704 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3705
3706 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3707
3708 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3709 {
3710         int i;
3711
3712         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3713                 if (hstate_kobjs[i] == kobj) {
3714                         if (nidp)
3715                                 *nidp = NUMA_NO_NODE;
3716                         return &hstates[i];
3717                 }
3718
3719         return kobj_to_node_hstate(kobj, nidp);
3720 }
3721
3722 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3723                                         struct kobj_attribute *attr, char *buf)
3724 {
3725         struct hstate *h;
3726         unsigned long nr_huge_pages;
3727         int nid;
3728
3729         h = kobj_to_hstate(kobj, &nid);
3730         if (nid == NUMA_NO_NODE)
3731                 nr_huge_pages = h->nr_huge_pages;
3732         else
3733                 nr_huge_pages = h->nr_huge_pages_node[nid];
3734
3735         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3736 }
3737
3738 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3739                                            struct hstate *h, int nid,
3740                                            unsigned long count, size_t len)
3741 {
3742         int err;
3743         nodemask_t nodes_allowed, *n_mask;
3744
3745         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3746                 return -EINVAL;
3747
3748         if (nid == NUMA_NO_NODE) {
3749                 /*
3750                  * global hstate attribute
3751                  */
3752                 if (!(obey_mempolicy &&
3753                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3754                         n_mask = &node_states[N_MEMORY];
3755                 else
3756                         n_mask = &nodes_allowed;
3757         } else {
3758                 /*
3759                  * Node specific request.  count adjustment happens in
3760                  * set_max_huge_pages() after acquiring hugetlb_lock.
3761                  */
3762                 init_nodemask_of_node(&nodes_allowed, nid);
3763                 n_mask = &nodes_allowed;
3764         }
3765
3766         err = set_max_huge_pages(h, count, nid, n_mask);
3767
3768         return err ? err : len;
3769 }
3770
3771 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3772                                          struct kobject *kobj, const char *buf,
3773                                          size_t len)
3774 {
3775         struct hstate *h;
3776         unsigned long count;
3777         int nid;
3778         int err;
3779
3780         err = kstrtoul(buf, 10, &count);
3781         if (err)
3782                 return err;
3783
3784         h = kobj_to_hstate(kobj, &nid);
3785         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3786 }
3787
3788 static ssize_t nr_hugepages_show(struct kobject *kobj,
3789                                        struct kobj_attribute *attr, char *buf)
3790 {
3791         return nr_hugepages_show_common(kobj, attr, buf);
3792 }
3793
3794 static ssize_t nr_hugepages_store(struct kobject *kobj,
3795                struct kobj_attribute *attr, const char *buf, size_t len)
3796 {
3797         return nr_hugepages_store_common(false, kobj, buf, len);
3798 }
3799 HSTATE_ATTR(nr_hugepages);
3800
3801 #ifdef CONFIG_NUMA
3802
3803 /*
3804  * hstate attribute for optionally mempolicy-based constraint on persistent
3805  * huge page alloc/free.
3806  */
3807 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3808                                            struct kobj_attribute *attr,
3809                                            char *buf)
3810 {
3811         return nr_hugepages_show_common(kobj, attr, buf);
3812 }
3813
3814 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3815                struct kobj_attribute *attr, const char *buf, size_t len)
3816 {
3817         return nr_hugepages_store_common(true, kobj, buf, len);
3818 }
3819 HSTATE_ATTR(nr_hugepages_mempolicy);
3820 #endif
3821
3822
3823 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3824                                         struct kobj_attribute *attr, char *buf)
3825 {
3826         struct hstate *h = kobj_to_hstate(kobj, NULL);
3827         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3828 }
3829
3830 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3831                 struct kobj_attribute *attr, const char *buf, size_t count)
3832 {
3833         int err;
3834         unsigned long input;
3835         struct hstate *h = kobj_to_hstate(kobj, NULL);
3836
3837         if (hstate_is_gigantic(h))
3838                 return -EINVAL;
3839
3840         err = kstrtoul(buf, 10, &input);
3841         if (err)
3842                 return err;
3843
3844         spin_lock_irq(&hugetlb_lock);
3845         h->nr_overcommit_huge_pages = input;
3846         spin_unlock_irq(&hugetlb_lock);
3847
3848         return count;
3849 }
3850 HSTATE_ATTR(nr_overcommit_hugepages);
3851
3852 static ssize_t free_hugepages_show(struct kobject *kobj,
3853                                         struct kobj_attribute *attr, char *buf)
3854 {
3855         struct hstate *h;
3856         unsigned long free_huge_pages;
3857         int nid;
3858
3859         h = kobj_to_hstate(kobj, &nid);
3860         if (nid == NUMA_NO_NODE)
3861                 free_huge_pages = h->free_huge_pages;
3862         else
3863                 free_huge_pages = h->free_huge_pages_node[nid];
3864
3865         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3866 }
3867 HSTATE_ATTR_RO(free_hugepages);
3868
3869 static ssize_t resv_hugepages_show(struct kobject *kobj,
3870                                         struct kobj_attribute *attr, char *buf)
3871 {
3872         struct hstate *h = kobj_to_hstate(kobj, NULL);
3873         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3874 }
3875 HSTATE_ATTR_RO(resv_hugepages);
3876
3877 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3878                                         struct kobj_attribute *attr, char *buf)
3879 {
3880         struct hstate *h;
3881         unsigned long surplus_huge_pages;
3882         int nid;
3883
3884         h = kobj_to_hstate(kobj, &nid);
3885         if (nid == NUMA_NO_NODE)
3886                 surplus_huge_pages = h->surplus_huge_pages;
3887         else
3888                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3889
3890         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3891 }
3892 HSTATE_ATTR_RO(surplus_hugepages);
3893
3894 static ssize_t demote_store(struct kobject *kobj,
3895                struct kobj_attribute *attr, const char *buf, size_t len)
3896 {
3897         unsigned long nr_demote;
3898         unsigned long nr_available;
3899         nodemask_t nodes_allowed, *n_mask;
3900         struct hstate *h;
3901         int err;
3902         int nid;
3903
3904         err = kstrtoul(buf, 10, &nr_demote);
3905         if (err)
3906                 return err;
3907         h = kobj_to_hstate(kobj, &nid);
3908
3909         if (nid != NUMA_NO_NODE) {
3910                 init_nodemask_of_node(&nodes_allowed, nid);
3911                 n_mask = &nodes_allowed;
3912         } else {
3913                 n_mask = &node_states[N_MEMORY];
3914         }
3915
3916         /* Synchronize with other sysfs operations modifying huge pages */
3917         mutex_lock(&h->resize_lock);
3918         spin_lock_irq(&hugetlb_lock);
3919
3920         while (nr_demote) {
3921                 /*
3922                  * Check for available pages to demote each time thorough the
3923                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3924                  */
3925                 if (nid != NUMA_NO_NODE)
3926                         nr_available = h->free_huge_pages_node[nid];
3927                 else
3928                         nr_available = h->free_huge_pages;
3929                 nr_available -= h->resv_huge_pages;
3930                 if (!nr_available)
3931                         break;
3932
3933                 err = demote_pool_huge_page(h, n_mask);
3934                 if (err)
3935                         break;
3936
3937                 nr_demote--;
3938         }
3939
3940         spin_unlock_irq(&hugetlb_lock);
3941         mutex_unlock(&h->resize_lock);
3942
3943         if (err)
3944                 return err;
3945         return len;
3946 }
3947 HSTATE_ATTR_WO(demote);
3948
3949 static ssize_t demote_size_show(struct kobject *kobj,
3950                                         struct kobj_attribute *attr, char *buf)
3951 {
3952         struct hstate *h = kobj_to_hstate(kobj, NULL);
3953         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3954
3955         return sysfs_emit(buf, "%lukB\n", demote_size);
3956 }
3957
3958 static ssize_t demote_size_store(struct kobject *kobj,
3959                                         struct kobj_attribute *attr,
3960                                         const char *buf, size_t count)
3961 {
3962         struct hstate *h, *demote_hstate;
3963         unsigned long demote_size;
3964         unsigned int demote_order;
3965
3966         demote_size = (unsigned long)memparse(buf, NULL);
3967
3968         demote_hstate = size_to_hstate(demote_size);
3969         if (!demote_hstate)
3970                 return -EINVAL;
3971         demote_order = demote_hstate->order;
3972         if (demote_order < HUGETLB_PAGE_ORDER)
3973                 return -EINVAL;
3974
3975         /* demote order must be smaller than hstate order */
3976         h = kobj_to_hstate(kobj, NULL);
3977         if (demote_order >= h->order)
3978                 return -EINVAL;
3979
3980         /* resize_lock synchronizes access to demote size and writes */
3981         mutex_lock(&h->resize_lock);
3982         h->demote_order = demote_order;
3983         mutex_unlock(&h->resize_lock);
3984
3985         return count;
3986 }
3987 HSTATE_ATTR(demote_size);
3988
3989 static struct attribute *hstate_attrs[] = {
3990         &nr_hugepages_attr.attr,
3991         &nr_overcommit_hugepages_attr.attr,
3992         &free_hugepages_attr.attr,
3993         &resv_hugepages_attr.attr,
3994         &surplus_hugepages_attr.attr,
3995 #ifdef CONFIG_NUMA
3996         &nr_hugepages_mempolicy_attr.attr,
3997 #endif
3998         NULL,
3999 };
4000
4001 static const struct attribute_group hstate_attr_group = {
4002         .attrs = hstate_attrs,
4003 };
4004
4005 static struct attribute *hstate_demote_attrs[] = {
4006         &demote_size_attr.attr,
4007         &demote_attr.attr,
4008         NULL,
4009 };
4010
4011 static const struct attribute_group hstate_demote_attr_group = {
4012         .attrs = hstate_demote_attrs,
4013 };
4014
4015 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4016                                     struct kobject **hstate_kobjs,
4017                                     const struct attribute_group *hstate_attr_group)
4018 {
4019         int retval;
4020         int hi = hstate_index(h);
4021
4022         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4023         if (!hstate_kobjs[hi])
4024                 return -ENOMEM;
4025
4026         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4027         if (retval) {
4028                 kobject_put(hstate_kobjs[hi]);
4029                 hstate_kobjs[hi] = NULL;
4030                 return retval;
4031         }
4032
4033         if (h->demote_order) {
4034                 retval = sysfs_create_group(hstate_kobjs[hi],
4035                                             &hstate_demote_attr_group);
4036                 if (retval) {
4037                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4038                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4039                         kobject_put(hstate_kobjs[hi]);
4040                         hstate_kobjs[hi] = NULL;
4041                         return retval;
4042                 }
4043         }
4044
4045         return 0;
4046 }
4047
4048 #ifdef CONFIG_NUMA
4049 static bool hugetlb_sysfs_initialized __ro_after_init;
4050
4051 /*
4052  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4053  * with node devices in node_devices[] using a parallel array.  The array
4054  * index of a node device or _hstate == node id.
4055  * This is here to avoid any static dependency of the node device driver, in
4056  * the base kernel, on the hugetlb module.
4057  */
4058 struct node_hstate {
4059         struct kobject          *hugepages_kobj;
4060         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4061 };
4062 static struct node_hstate node_hstates[MAX_NUMNODES];
4063
4064 /*
4065  * A subset of global hstate attributes for node devices
4066  */
4067 static struct attribute *per_node_hstate_attrs[] = {
4068         &nr_hugepages_attr.attr,
4069         &free_hugepages_attr.attr,
4070         &surplus_hugepages_attr.attr,
4071         NULL,
4072 };
4073
4074 static const struct attribute_group per_node_hstate_attr_group = {
4075         .attrs = per_node_hstate_attrs,
4076 };
4077
4078 /*
4079  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4080  * Returns node id via non-NULL nidp.
4081  */
4082 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4083 {
4084         int nid;
4085
4086         for (nid = 0; nid < nr_node_ids; nid++) {
4087                 struct node_hstate *nhs = &node_hstates[nid];
4088                 int i;
4089                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4090                         if (nhs->hstate_kobjs[i] == kobj) {
4091                                 if (nidp)
4092                                         *nidp = nid;
4093                                 return &hstates[i];
4094                         }
4095         }
4096
4097         BUG();
4098         return NULL;
4099 }
4100
4101 /*
4102  * Unregister hstate attributes from a single node device.
4103  * No-op if no hstate attributes attached.
4104  */
4105 void hugetlb_unregister_node(struct node *node)
4106 {
4107         struct hstate *h;
4108         struct node_hstate *nhs = &node_hstates[node->dev.id];
4109
4110         if (!nhs->hugepages_kobj)
4111                 return;         /* no hstate attributes */
4112
4113         for_each_hstate(h) {
4114                 int idx = hstate_index(h);
4115                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4116
4117                 if (!hstate_kobj)
4118                         continue;
4119                 if (h->demote_order)
4120                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4121                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4122                 kobject_put(hstate_kobj);
4123                 nhs->hstate_kobjs[idx] = NULL;
4124         }
4125
4126         kobject_put(nhs->hugepages_kobj);
4127         nhs->hugepages_kobj = NULL;
4128 }
4129
4130
4131 /*
4132  * Register hstate attributes for a single node device.
4133  * No-op if attributes already registered.
4134  */
4135 void hugetlb_register_node(struct node *node)
4136 {
4137         struct hstate *h;
4138         struct node_hstate *nhs = &node_hstates[node->dev.id];
4139         int err;
4140
4141         if (!hugetlb_sysfs_initialized)
4142                 return;
4143
4144         if (nhs->hugepages_kobj)
4145                 return;         /* already allocated */
4146
4147         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4148                                                         &node->dev.kobj);
4149         if (!nhs->hugepages_kobj)
4150                 return;
4151
4152         for_each_hstate(h) {
4153                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4154                                                 nhs->hstate_kobjs,
4155                                                 &per_node_hstate_attr_group);
4156                 if (err) {
4157                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4158                                 h->name, node->dev.id);
4159                         hugetlb_unregister_node(node);
4160                         break;
4161                 }
4162         }
4163 }
4164
4165 /*
4166  * hugetlb init time:  register hstate attributes for all registered node
4167  * devices of nodes that have memory.  All on-line nodes should have
4168  * registered their associated device by this time.
4169  */
4170 static void __init hugetlb_register_all_nodes(void)
4171 {
4172         int nid;
4173
4174         for_each_online_node(nid)
4175                 hugetlb_register_node(node_devices[nid]);
4176 }
4177 #else   /* !CONFIG_NUMA */
4178
4179 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4180 {
4181         BUG();
4182         if (nidp)
4183                 *nidp = -1;
4184         return NULL;
4185 }
4186
4187 static void hugetlb_register_all_nodes(void) { }
4188
4189 #endif
4190
4191 #ifdef CONFIG_CMA
4192 static void __init hugetlb_cma_check(void);
4193 #else
4194 static inline __init void hugetlb_cma_check(void)
4195 {
4196 }
4197 #endif
4198
4199 static void __init hugetlb_sysfs_init(void)
4200 {
4201         struct hstate *h;
4202         int err;
4203
4204         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4205         if (!hugepages_kobj)
4206                 return;
4207
4208         for_each_hstate(h) {
4209                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4210                                          hstate_kobjs, &hstate_attr_group);
4211                 if (err)
4212                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4213         }
4214
4215 #ifdef CONFIG_NUMA
4216         hugetlb_sysfs_initialized = true;
4217 #endif
4218         hugetlb_register_all_nodes();
4219 }
4220
4221 static int __init hugetlb_init(void)
4222 {
4223         int i;
4224
4225         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4226                         __NR_HPAGEFLAGS);
4227
4228         if (!hugepages_supported()) {
4229                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4230                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4231                 return 0;
4232         }
4233
4234         /*
4235          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4236          * architectures depend on setup being done here.
4237          */
4238         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4239         if (!parsed_default_hugepagesz) {
4240                 /*
4241                  * If we did not parse a default huge page size, set
4242                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4243                  * number of huge pages for this default size was implicitly
4244                  * specified, set that here as well.
4245                  * Note that the implicit setting will overwrite an explicit
4246                  * setting.  A warning will be printed in this case.
4247                  */
4248                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4249                 if (default_hstate_max_huge_pages) {
4250                         if (default_hstate.max_huge_pages) {
4251                                 char buf[32];
4252
4253                                 string_get_size(huge_page_size(&default_hstate),
4254                                         1, STRING_UNITS_2, buf, 32);
4255                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4256                                         default_hstate.max_huge_pages, buf);
4257                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4258                                         default_hstate_max_huge_pages);
4259                         }
4260                         default_hstate.max_huge_pages =
4261                                 default_hstate_max_huge_pages;
4262
4263                         for_each_online_node(i)
4264                                 default_hstate.max_huge_pages_node[i] =
4265                                         default_hugepages_in_node[i];
4266                 }
4267         }
4268
4269         hugetlb_cma_check();
4270         hugetlb_init_hstates();
4271         gather_bootmem_prealloc();
4272         report_hugepages();
4273
4274         hugetlb_sysfs_init();
4275         hugetlb_cgroup_file_init();
4276
4277 #ifdef CONFIG_SMP
4278         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4279 #else
4280         num_fault_mutexes = 1;
4281 #endif
4282         hugetlb_fault_mutex_table =
4283                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4284                               GFP_KERNEL);
4285         BUG_ON(!hugetlb_fault_mutex_table);
4286
4287         for (i = 0; i < num_fault_mutexes; i++)
4288                 mutex_init(&hugetlb_fault_mutex_table[i]);
4289         return 0;
4290 }
4291 subsys_initcall(hugetlb_init);
4292
4293 /* Overwritten by architectures with more huge page sizes */
4294 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4295 {
4296         return size == HPAGE_SIZE;
4297 }
4298
4299 void __init hugetlb_add_hstate(unsigned int order)
4300 {
4301         struct hstate *h;
4302         unsigned long i;
4303
4304         if (size_to_hstate(PAGE_SIZE << order)) {
4305                 return;
4306         }
4307         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4308         BUG_ON(order == 0);
4309         h = &hstates[hugetlb_max_hstate++];
4310         mutex_init(&h->resize_lock);
4311         h->order = order;
4312         h->mask = ~(huge_page_size(h) - 1);
4313         for (i = 0; i < MAX_NUMNODES; ++i)
4314                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4315         INIT_LIST_HEAD(&h->hugepage_activelist);
4316         h->next_nid_to_alloc = first_memory_node;
4317         h->next_nid_to_free = first_memory_node;
4318         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4319                                         huge_page_size(h)/SZ_1K);
4320
4321         parsed_hstate = h;
4322 }
4323
4324 bool __init __weak hugetlb_node_alloc_supported(void)
4325 {
4326         return true;
4327 }
4328
4329 static void __init hugepages_clear_pages_in_node(void)
4330 {
4331         if (!hugetlb_max_hstate) {
4332                 default_hstate_max_huge_pages = 0;
4333                 memset(default_hugepages_in_node, 0,
4334                         sizeof(default_hugepages_in_node));
4335         } else {
4336                 parsed_hstate->max_huge_pages = 0;
4337                 memset(parsed_hstate->max_huge_pages_node, 0,
4338                         sizeof(parsed_hstate->max_huge_pages_node));
4339         }
4340 }
4341
4342 /*
4343  * hugepages command line processing
4344  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4345  * specification.  If not, ignore the hugepages value.  hugepages can also
4346  * be the first huge page command line  option in which case it implicitly
4347  * specifies the number of huge pages for the default size.
4348  */
4349 static int __init hugepages_setup(char *s)
4350 {
4351         unsigned long *mhp;
4352         static unsigned long *last_mhp;
4353         int node = NUMA_NO_NODE;
4354         int count;
4355         unsigned long tmp;
4356         char *p = s;
4357
4358         if (!parsed_valid_hugepagesz) {
4359                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4360                 parsed_valid_hugepagesz = true;
4361                 return 1;
4362         }
4363
4364         /*
4365          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4366          * yet, so this hugepages= parameter goes to the "default hstate".
4367          * Otherwise, it goes with the previously parsed hugepagesz or
4368          * default_hugepagesz.
4369          */
4370         else if (!hugetlb_max_hstate)
4371                 mhp = &default_hstate_max_huge_pages;
4372         else
4373                 mhp = &parsed_hstate->max_huge_pages;
4374
4375         if (mhp == last_mhp) {
4376                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4377                 return 1;
4378         }
4379
4380         while (*p) {
4381                 count = 0;
4382                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4383                         goto invalid;
4384                 /* Parameter is node format */
4385                 if (p[count] == ':') {
4386                         if (!hugetlb_node_alloc_supported()) {
4387                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4388                                 return 1;
4389                         }
4390                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4391                                 goto invalid;
4392                         node = array_index_nospec(tmp, MAX_NUMNODES);
4393                         p += count + 1;
4394                         /* Parse hugepages */
4395                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4396                                 goto invalid;
4397                         if (!hugetlb_max_hstate)
4398                                 default_hugepages_in_node[node] = tmp;
4399                         else
4400                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4401                         *mhp += tmp;
4402                         /* Go to parse next node*/
4403                         if (p[count] == ',')
4404                                 p += count + 1;
4405                         else
4406                                 break;
4407                 } else {
4408                         if (p != s)
4409                                 goto invalid;
4410                         *mhp = tmp;
4411                         break;
4412                 }
4413         }
4414
4415         /*
4416          * Global state is always initialized later in hugetlb_init.
4417          * But we need to allocate gigantic hstates here early to still
4418          * use the bootmem allocator.
4419          */
4420         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4421                 hugetlb_hstate_alloc_pages(parsed_hstate);
4422
4423         last_mhp = mhp;
4424
4425         return 1;
4426
4427 invalid:
4428         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4429         hugepages_clear_pages_in_node();
4430         return 1;
4431 }
4432 __setup("hugepages=", hugepages_setup);
4433
4434 /*
4435  * hugepagesz command line processing
4436  * A specific huge page size can only be specified once with hugepagesz.
4437  * hugepagesz is followed by hugepages on the command line.  The global
4438  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4439  * hugepagesz argument was valid.
4440  */
4441 static int __init hugepagesz_setup(char *s)
4442 {
4443         unsigned long size;
4444         struct hstate *h;
4445
4446         parsed_valid_hugepagesz = false;
4447         size = (unsigned long)memparse(s, NULL);
4448
4449         if (!arch_hugetlb_valid_size(size)) {
4450                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4451                 return 1;
4452         }
4453
4454         h = size_to_hstate(size);
4455         if (h) {
4456                 /*
4457                  * hstate for this size already exists.  This is normally
4458                  * an error, but is allowed if the existing hstate is the
4459                  * default hstate.  More specifically, it is only allowed if
4460                  * the number of huge pages for the default hstate was not
4461                  * previously specified.
4462                  */
4463                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4464                     default_hstate.max_huge_pages) {
4465                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4466                         return 1;
4467                 }
4468
4469                 /*
4470                  * No need to call hugetlb_add_hstate() as hstate already
4471                  * exists.  But, do set parsed_hstate so that a following
4472                  * hugepages= parameter will be applied to this hstate.
4473                  */
4474                 parsed_hstate = h;
4475                 parsed_valid_hugepagesz = true;
4476                 return 1;
4477         }
4478
4479         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4480         parsed_valid_hugepagesz = true;
4481         return 1;
4482 }
4483 __setup("hugepagesz=", hugepagesz_setup);
4484
4485 /*
4486  * default_hugepagesz command line input
4487  * Only one instance of default_hugepagesz allowed on command line.
4488  */
4489 static int __init default_hugepagesz_setup(char *s)
4490 {
4491         unsigned long size;
4492         int i;
4493
4494         parsed_valid_hugepagesz = false;
4495         if (parsed_default_hugepagesz) {
4496                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4497                 return 1;
4498         }
4499
4500         size = (unsigned long)memparse(s, NULL);
4501
4502         if (!arch_hugetlb_valid_size(size)) {
4503                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4504                 return 1;
4505         }
4506
4507         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4508         parsed_valid_hugepagesz = true;
4509         parsed_default_hugepagesz = true;
4510         default_hstate_idx = hstate_index(size_to_hstate(size));
4511
4512         /*
4513          * The number of default huge pages (for this size) could have been
4514          * specified as the first hugetlb parameter: hugepages=X.  If so,
4515          * then default_hstate_max_huge_pages is set.  If the default huge
4516          * page size is gigantic (>= MAX_ORDER), then the pages must be
4517          * allocated here from bootmem allocator.
4518          */
4519         if (default_hstate_max_huge_pages) {
4520                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4521                 for_each_online_node(i)
4522                         default_hstate.max_huge_pages_node[i] =
4523                                 default_hugepages_in_node[i];
4524                 if (hstate_is_gigantic(&default_hstate))
4525                         hugetlb_hstate_alloc_pages(&default_hstate);
4526                 default_hstate_max_huge_pages = 0;
4527         }
4528
4529         return 1;
4530 }
4531 __setup("default_hugepagesz=", default_hugepagesz_setup);
4532
4533 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4534 {
4535 #ifdef CONFIG_NUMA
4536         struct mempolicy *mpol = get_task_policy(current);
4537
4538         /*
4539          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4540          * (from policy_nodemask) specifically for hugetlb case
4541          */
4542         if (mpol->mode == MPOL_BIND &&
4543                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4544                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4545                 return &mpol->nodes;
4546 #endif
4547         return NULL;
4548 }
4549
4550 static unsigned int allowed_mems_nr(struct hstate *h)
4551 {
4552         int node;
4553         unsigned int nr = 0;
4554         nodemask_t *mbind_nodemask;
4555         unsigned int *array = h->free_huge_pages_node;
4556         gfp_t gfp_mask = htlb_alloc_mask(h);
4557
4558         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4559         for_each_node_mask(node, cpuset_current_mems_allowed) {
4560                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4561                         nr += array[node];
4562         }
4563
4564         return nr;
4565 }
4566
4567 #ifdef CONFIG_SYSCTL
4568 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4569                                           void *buffer, size_t *length,
4570                                           loff_t *ppos, unsigned long *out)
4571 {
4572         struct ctl_table dup_table;
4573
4574         /*
4575          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4576          * can duplicate the @table and alter the duplicate of it.
4577          */
4578         dup_table = *table;
4579         dup_table.data = out;
4580
4581         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4582 }
4583
4584 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4585                          struct ctl_table *table, int write,
4586                          void *buffer, size_t *length, loff_t *ppos)
4587 {
4588         struct hstate *h = &default_hstate;
4589         unsigned long tmp = h->max_huge_pages;
4590         int ret;
4591
4592         if (!hugepages_supported())
4593                 return -EOPNOTSUPP;
4594
4595         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4596                                              &tmp);
4597         if (ret)
4598                 goto out;
4599
4600         if (write)
4601                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4602                                                   NUMA_NO_NODE, tmp, *length);
4603 out:
4604         return ret;
4605 }
4606
4607 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4608                           void *buffer, size_t *length, loff_t *ppos)
4609 {
4610
4611         return hugetlb_sysctl_handler_common(false, table, write,
4612                                                         buffer, length, ppos);
4613 }
4614
4615 #ifdef CONFIG_NUMA
4616 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4617                           void *buffer, size_t *length, loff_t *ppos)
4618 {
4619         return hugetlb_sysctl_handler_common(true, table, write,
4620                                                         buffer, length, ppos);
4621 }
4622 #endif /* CONFIG_NUMA */
4623
4624 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4625                 void *buffer, size_t *length, loff_t *ppos)
4626 {
4627         struct hstate *h = &default_hstate;
4628         unsigned long tmp;
4629         int ret;
4630
4631         if (!hugepages_supported())
4632                 return -EOPNOTSUPP;
4633
4634         tmp = h->nr_overcommit_huge_pages;
4635
4636         if (write && hstate_is_gigantic(h))
4637                 return -EINVAL;
4638
4639         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4640                                              &tmp);
4641         if (ret)
4642                 goto out;
4643
4644         if (write) {
4645                 spin_lock_irq(&hugetlb_lock);
4646                 h->nr_overcommit_huge_pages = tmp;
4647                 spin_unlock_irq(&hugetlb_lock);
4648         }
4649 out:
4650         return ret;
4651 }
4652
4653 #endif /* CONFIG_SYSCTL */
4654
4655 void hugetlb_report_meminfo(struct seq_file *m)
4656 {
4657         struct hstate *h;
4658         unsigned long total = 0;
4659
4660         if (!hugepages_supported())
4661                 return;
4662
4663         for_each_hstate(h) {
4664                 unsigned long count = h->nr_huge_pages;
4665
4666                 total += huge_page_size(h) * count;
4667
4668                 if (h == &default_hstate)
4669                         seq_printf(m,
4670                                    "HugePages_Total:   %5lu\n"
4671                                    "HugePages_Free:    %5lu\n"
4672                                    "HugePages_Rsvd:    %5lu\n"
4673                                    "HugePages_Surp:    %5lu\n"
4674                                    "Hugepagesize:   %8lu kB\n",
4675                                    count,
4676                                    h->free_huge_pages,
4677                                    h->resv_huge_pages,
4678                                    h->surplus_huge_pages,
4679                                    huge_page_size(h) / SZ_1K);
4680         }
4681
4682         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4683 }
4684
4685 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4686 {
4687         struct hstate *h = &default_hstate;
4688
4689         if (!hugepages_supported())
4690                 return 0;
4691
4692         return sysfs_emit_at(buf, len,
4693                              "Node %d HugePages_Total: %5u\n"
4694                              "Node %d HugePages_Free:  %5u\n"
4695                              "Node %d HugePages_Surp:  %5u\n",
4696                              nid, h->nr_huge_pages_node[nid],
4697                              nid, h->free_huge_pages_node[nid],
4698                              nid, h->surplus_huge_pages_node[nid]);
4699 }
4700
4701 void hugetlb_show_meminfo_node(int nid)
4702 {
4703         struct hstate *h;
4704
4705         if (!hugepages_supported())
4706                 return;
4707
4708         for_each_hstate(h)
4709                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4710                         nid,
4711                         h->nr_huge_pages_node[nid],
4712                         h->free_huge_pages_node[nid],
4713                         h->surplus_huge_pages_node[nid],
4714                         huge_page_size(h) / SZ_1K);
4715 }
4716
4717 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4718 {
4719         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4720                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4721 }
4722
4723 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4724 unsigned long hugetlb_total_pages(void)
4725 {
4726         struct hstate *h;
4727         unsigned long nr_total_pages = 0;
4728
4729         for_each_hstate(h)
4730                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4731         return nr_total_pages;
4732 }
4733
4734 static int hugetlb_acct_memory(struct hstate *h, long delta)
4735 {
4736         int ret = -ENOMEM;
4737
4738         if (!delta)
4739                 return 0;
4740
4741         spin_lock_irq(&hugetlb_lock);
4742         /*
4743          * When cpuset is configured, it breaks the strict hugetlb page
4744          * reservation as the accounting is done on a global variable. Such
4745          * reservation is completely rubbish in the presence of cpuset because
4746          * the reservation is not checked against page availability for the
4747          * current cpuset. Application can still potentially OOM'ed by kernel
4748          * with lack of free htlb page in cpuset that the task is in.
4749          * Attempt to enforce strict accounting with cpuset is almost
4750          * impossible (or too ugly) because cpuset is too fluid that
4751          * task or memory node can be dynamically moved between cpusets.
4752          *
4753          * The change of semantics for shared hugetlb mapping with cpuset is
4754          * undesirable. However, in order to preserve some of the semantics,
4755          * we fall back to check against current free page availability as
4756          * a best attempt and hopefully to minimize the impact of changing
4757          * semantics that cpuset has.
4758          *
4759          * Apart from cpuset, we also have memory policy mechanism that
4760          * also determines from which node the kernel will allocate memory
4761          * in a NUMA system. So similar to cpuset, we also should consider
4762          * the memory policy of the current task. Similar to the description
4763          * above.
4764          */
4765         if (delta > 0) {
4766                 if (gather_surplus_pages(h, delta) < 0)
4767                         goto out;
4768
4769                 if (delta > allowed_mems_nr(h)) {
4770                         return_unused_surplus_pages(h, delta);
4771                         goto out;
4772                 }
4773         }
4774
4775         ret = 0;
4776         if (delta < 0)
4777                 return_unused_surplus_pages(h, (unsigned long) -delta);
4778
4779 out:
4780         spin_unlock_irq(&hugetlb_lock);
4781         return ret;
4782 }
4783
4784 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4785 {
4786         struct resv_map *resv = vma_resv_map(vma);
4787
4788         /*
4789          * HPAGE_RESV_OWNER indicates a private mapping.
4790          * This new VMA should share its siblings reservation map if present.
4791          * The VMA will only ever have a valid reservation map pointer where
4792          * it is being copied for another still existing VMA.  As that VMA
4793          * has a reference to the reservation map it cannot disappear until
4794          * after this open call completes.  It is therefore safe to take a
4795          * new reference here without additional locking.
4796          */
4797         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4798                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4799                 kref_get(&resv->refs);
4800         }
4801
4802         /*
4803          * vma_lock structure for sharable mappings is vma specific.
4804          * Clear old pointer (if copied via vm_area_dup) and allocate
4805          * new structure.  Before clearing, make sure vma_lock is not
4806          * for this vma.
4807          */
4808         if (vma->vm_flags & VM_MAYSHARE) {
4809                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4810
4811                 if (vma_lock) {
4812                         if (vma_lock->vma != vma) {
4813                                 vma->vm_private_data = NULL;
4814                                 hugetlb_vma_lock_alloc(vma);
4815                         } else
4816                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4817                 } else
4818                         hugetlb_vma_lock_alloc(vma);
4819         }
4820 }
4821
4822 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4823 {
4824         struct hstate *h = hstate_vma(vma);
4825         struct resv_map *resv;
4826         struct hugepage_subpool *spool = subpool_vma(vma);
4827         unsigned long reserve, start, end;
4828         long gbl_reserve;
4829
4830         hugetlb_vma_lock_free(vma);
4831
4832         resv = vma_resv_map(vma);
4833         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4834                 return;
4835
4836         start = vma_hugecache_offset(h, vma, vma->vm_start);
4837         end = vma_hugecache_offset(h, vma, vma->vm_end);
4838
4839         reserve = (end - start) - region_count(resv, start, end);
4840         hugetlb_cgroup_uncharge_counter(resv, start, end);
4841         if (reserve) {
4842                 /*
4843                  * Decrement reserve counts.  The global reserve count may be
4844                  * adjusted if the subpool has a minimum size.
4845                  */
4846                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4847                 hugetlb_acct_memory(h, -gbl_reserve);
4848         }
4849
4850         kref_put(&resv->refs, resv_map_release);
4851 }
4852
4853 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4854 {
4855         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4856                 return -EINVAL;
4857
4858         /*
4859          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4860          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4861          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4862          */
4863         if (addr & ~PUD_MASK) {
4864                 /*
4865                  * hugetlb_vm_op_split is called right before we attempt to
4866                  * split the VMA. We will need to unshare PMDs in the old and
4867                  * new VMAs, so let's unshare before we split.
4868                  */
4869                 unsigned long floor = addr & PUD_MASK;
4870                 unsigned long ceil = floor + PUD_SIZE;
4871
4872                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4873                         hugetlb_unshare_pmds(vma, floor, ceil);
4874         }
4875
4876         return 0;
4877 }
4878
4879 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4880 {
4881         return huge_page_size(hstate_vma(vma));
4882 }
4883
4884 /*
4885  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4886  * handle_mm_fault() to try to instantiate regular-sized pages in the
4887  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4888  * this far.
4889  */
4890 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4891 {
4892         BUG();
4893         return 0;
4894 }
4895
4896 /*
4897  * When a new function is introduced to vm_operations_struct and added
4898  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4899  * This is because under System V memory model, mappings created via
4900  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4901  * their original vm_ops are overwritten with shm_vm_ops.
4902  */
4903 const struct vm_operations_struct hugetlb_vm_ops = {
4904         .fault = hugetlb_vm_op_fault,
4905         .open = hugetlb_vm_op_open,
4906         .close = hugetlb_vm_op_close,
4907         .may_split = hugetlb_vm_op_split,
4908         .pagesize = hugetlb_vm_op_pagesize,
4909 };
4910
4911 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4912                                 int writable)
4913 {
4914         pte_t entry;
4915         unsigned int shift = huge_page_shift(hstate_vma(vma));
4916
4917         if (writable) {
4918                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4919                                          vma->vm_page_prot)));
4920         } else {
4921                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4922                                            vma->vm_page_prot));
4923         }
4924         entry = pte_mkyoung(entry);
4925         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4926
4927         return entry;
4928 }
4929
4930 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4931                                    unsigned long address, pte_t *ptep)
4932 {
4933         pte_t entry;
4934
4935         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4936         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4937                 update_mmu_cache(vma, address, ptep);
4938 }
4939
4940 bool is_hugetlb_entry_migration(pte_t pte)
4941 {
4942         swp_entry_t swp;
4943
4944         if (huge_pte_none(pte) || pte_present(pte))
4945                 return false;
4946         swp = pte_to_swp_entry(pte);
4947         if (is_migration_entry(swp))
4948                 return true;
4949         else
4950                 return false;
4951 }
4952
4953 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4954 {
4955         swp_entry_t swp;
4956
4957         if (huge_pte_none(pte) || pte_present(pte))
4958                 return false;
4959         swp = pte_to_swp_entry(pte);
4960         if (is_hwpoison_entry(swp))
4961                 return true;
4962         else
4963                 return false;
4964 }
4965
4966 static void
4967 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4968                      struct page *new_page)
4969 {
4970         __SetPageUptodate(new_page);
4971         hugepage_add_new_anon_rmap(new_page, vma, addr);
4972         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4973         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4974         ClearHPageRestoreReserve(new_page);
4975         SetHPageMigratable(new_page);
4976 }
4977
4978 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4979                             struct vm_area_struct *dst_vma,
4980                             struct vm_area_struct *src_vma)
4981 {
4982         pte_t *src_pte, *dst_pte, entry;
4983         struct page *ptepage;
4984         unsigned long addr;
4985         bool cow = is_cow_mapping(src_vma->vm_flags);
4986         struct hstate *h = hstate_vma(src_vma);
4987         unsigned long sz = huge_page_size(h);
4988         unsigned long npages = pages_per_huge_page(h);
4989         struct mmu_notifier_range range;
4990         unsigned long last_addr_mask;
4991         int ret = 0;
4992
4993         if (cow) {
4994                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4995                                         src_vma->vm_start,
4996                                         src_vma->vm_end);
4997                 mmu_notifier_invalidate_range_start(&range);
4998                 mmap_assert_write_locked(src);
4999                 raw_write_seqcount_begin(&src->write_protect_seq);
5000         } else {
5001                 /*
5002                  * For shared mappings the vma lock must be held before
5003                  * calling huge_pte_offset in the src vma. Otherwise, the
5004                  * returned ptep could go away if part of a shared pmd and
5005                  * another thread calls huge_pmd_unshare.
5006                  */
5007                 hugetlb_vma_lock_read(src_vma);
5008         }
5009
5010         last_addr_mask = hugetlb_mask_last_page(h);
5011         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5012                 spinlock_t *src_ptl, *dst_ptl;
5013                 src_pte = huge_pte_offset(src, addr, sz);
5014                 if (!src_pte) {
5015                         addr |= last_addr_mask;
5016                         continue;
5017                 }
5018                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5019                 if (!dst_pte) {
5020                         ret = -ENOMEM;
5021                         break;
5022                 }
5023
5024                 /*
5025                  * If the pagetables are shared don't copy or take references.
5026                  *
5027                  * dst_pte == src_pte is the common case of src/dest sharing.
5028                  * However, src could have 'unshared' and dst shares with
5029                  * another vma. So page_count of ptep page is checked instead
5030                  * to reliably determine whether pte is shared.
5031                  */
5032                 if (page_count(virt_to_page(dst_pte)) > 1) {
5033                         addr |= last_addr_mask;
5034                         continue;
5035                 }
5036
5037                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5038                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5039                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5040                 entry = huge_ptep_get(src_pte);
5041 again:
5042                 if (huge_pte_none(entry)) {
5043                         /*
5044                          * Skip if src entry none.
5045                          */
5046                         ;
5047                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5048                         bool uffd_wp = huge_pte_uffd_wp(entry);
5049
5050                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5051                                 entry = huge_pte_clear_uffd_wp(entry);
5052                         set_huge_pte_at(dst, addr, dst_pte, entry);
5053                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5054                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5055                         bool uffd_wp = huge_pte_uffd_wp(entry);
5056
5057                         if (!is_readable_migration_entry(swp_entry) && cow) {
5058                                 /*
5059                                  * COW mappings require pages in both
5060                                  * parent and child to be set to read.
5061                                  */
5062                                 swp_entry = make_readable_migration_entry(
5063                                                         swp_offset(swp_entry));
5064                                 entry = swp_entry_to_pte(swp_entry);
5065                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5066                                         entry = huge_pte_mkuffd_wp(entry);
5067                                 set_huge_pte_at(src, addr, src_pte, entry);
5068                         }
5069                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5070                                 entry = huge_pte_clear_uffd_wp(entry);
5071                         set_huge_pte_at(dst, addr, dst_pte, entry);
5072                 } else if (unlikely(is_pte_marker(entry))) {
5073                         /*
5074                          * We copy the pte marker only if the dst vma has
5075                          * uffd-wp enabled.
5076                          */
5077                         if (userfaultfd_wp(dst_vma))
5078                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5079                 } else {
5080                         entry = huge_ptep_get(src_pte);
5081                         ptepage = pte_page(entry);
5082                         get_page(ptepage);
5083
5084                         /*
5085                          * Failing to duplicate the anon rmap is a rare case
5086                          * where we see pinned hugetlb pages while they're
5087                          * prone to COW. We need to do the COW earlier during
5088                          * fork.
5089                          *
5090                          * When pre-allocating the page or copying data, we
5091                          * need to be without the pgtable locks since we could
5092                          * sleep during the process.
5093                          */
5094                         if (!PageAnon(ptepage)) {
5095                                 page_dup_file_rmap(ptepage, true);
5096                         } else if (page_try_dup_anon_rmap(ptepage, true,
5097                                                           src_vma)) {
5098                                 pte_t src_pte_old = entry;
5099                                 struct page *new;
5100
5101                                 spin_unlock(src_ptl);
5102                                 spin_unlock(dst_ptl);
5103                                 /* Do not use reserve as it's private owned */
5104                                 new = alloc_huge_page(dst_vma, addr, 1);
5105                                 if (IS_ERR(new)) {
5106                                         put_page(ptepage);
5107                                         ret = PTR_ERR(new);
5108                                         break;
5109                                 }
5110                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5111                                                     npages);
5112                                 put_page(ptepage);
5113
5114                                 /* Install the new huge page if src pte stable */
5115                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5116                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5117                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5118                                 entry = huge_ptep_get(src_pte);
5119                                 if (!pte_same(src_pte_old, entry)) {
5120                                         restore_reserve_on_error(h, dst_vma, addr,
5121                                                                 new);
5122                                         put_page(new);
5123                                         /* huge_ptep of dst_pte won't change as in child */
5124                                         goto again;
5125                                 }
5126                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5127                                 spin_unlock(src_ptl);
5128                                 spin_unlock(dst_ptl);
5129                                 continue;
5130                         }
5131
5132                         if (cow) {
5133                                 /*
5134                                  * No need to notify as we are downgrading page
5135                                  * table protection not changing it to point
5136                                  * to a new page.
5137                                  *
5138                                  * See Documentation/mm/mmu_notifier.rst
5139                                  */
5140                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5141                                 entry = huge_pte_wrprotect(entry);
5142                         }
5143
5144                         set_huge_pte_at(dst, addr, dst_pte, entry);
5145                         hugetlb_count_add(npages, dst);
5146                 }
5147                 spin_unlock(src_ptl);
5148                 spin_unlock(dst_ptl);
5149         }
5150
5151         if (cow) {
5152                 raw_write_seqcount_end(&src->write_protect_seq);
5153                 mmu_notifier_invalidate_range_end(&range);
5154         } else {
5155                 hugetlb_vma_unlock_read(src_vma);
5156         }
5157
5158         return ret;
5159 }
5160
5161 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5162                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5163 {
5164         struct hstate *h = hstate_vma(vma);
5165         struct mm_struct *mm = vma->vm_mm;
5166         spinlock_t *src_ptl, *dst_ptl;
5167         pte_t pte;
5168
5169         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5170         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5171
5172         /*
5173          * We don't have to worry about the ordering of src and dst ptlocks
5174          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5175          */
5176         if (src_ptl != dst_ptl)
5177                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5178
5179         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5180         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5181
5182         if (src_ptl != dst_ptl)
5183                 spin_unlock(src_ptl);
5184         spin_unlock(dst_ptl);
5185 }
5186
5187 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5188                              struct vm_area_struct *new_vma,
5189                              unsigned long old_addr, unsigned long new_addr,
5190                              unsigned long len)
5191 {
5192         struct hstate *h = hstate_vma(vma);
5193         struct address_space *mapping = vma->vm_file->f_mapping;
5194         unsigned long sz = huge_page_size(h);
5195         struct mm_struct *mm = vma->vm_mm;
5196         unsigned long old_end = old_addr + len;
5197         unsigned long last_addr_mask;
5198         pte_t *src_pte, *dst_pte;
5199         struct mmu_notifier_range range;
5200         bool shared_pmd = false;
5201
5202         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5203                                 old_end);
5204         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5205         /*
5206          * In case of shared PMDs, we should cover the maximum possible
5207          * range.
5208          */
5209         flush_cache_range(vma, range.start, range.end);
5210
5211         mmu_notifier_invalidate_range_start(&range);
5212         last_addr_mask = hugetlb_mask_last_page(h);
5213         /* Prevent race with file truncation */
5214         hugetlb_vma_lock_write(vma);
5215         i_mmap_lock_write(mapping);
5216         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5217                 src_pte = huge_pte_offset(mm, old_addr, sz);
5218                 if (!src_pte) {
5219                         old_addr |= last_addr_mask;
5220                         new_addr |= last_addr_mask;
5221                         continue;
5222                 }
5223                 if (huge_pte_none(huge_ptep_get(src_pte)))
5224                         continue;
5225
5226                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5227                         shared_pmd = true;
5228                         old_addr |= last_addr_mask;
5229                         new_addr |= last_addr_mask;
5230                         continue;
5231                 }
5232
5233                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5234                 if (!dst_pte)
5235                         break;
5236
5237                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5238         }
5239
5240         if (shared_pmd)
5241                 flush_tlb_range(vma, range.start, range.end);
5242         else
5243                 flush_tlb_range(vma, old_end - len, old_end);
5244         mmu_notifier_invalidate_range_end(&range);
5245         i_mmap_unlock_write(mapping);
5246         hugetlb_vma_unlock_write(vma);
5247
5248         return len + old_addr - old_end;
5249 }
5250
5251 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5252                                    unsigned long start, unsigned long end,
5253                                    struct page *ref_page, zap_flags_t zap_flags)
5254 {
5255         struct mm_struct *mm = vma->vm_mm;
5256         unsigned long address;
5257         pte_t *ptep;
5258         pte_t pte;
5259         spinlock_t *ptl;
5260         struct page *page;
5261         struct hstate *h = hstate_vma(vma);
5262         unsigned long sz = huge_page_size(h);
5263         struct mmu_notifier_range range;
5264         unsigned long last_addr_mask;
5265         bool force_flush = false;
5266
5267         WARN_ON(!is_vm_hugetlb_page(vma));
5268         BUG_ON(start & ~huge_page_mask(h));
5269         BUG_ON(end & ~huge_page_mask(h));
5270
5271         /*
5272          * This is a hugetlb vma, all the pte entries should point
5273          * to huge page.
5274          */
5275         tlb_change_page_size(tlb, sz);
5276         tlb_start_vma(tlb, vma);
5277
5278         /*
5279          * If sharing possible, alert mmu notifiers of worst case.
5280          */
5281         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5282                                 end);
5283         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5284         mmu_notifier_invalidate_range_start(&range);
5285         last_addr_mask = hugetlb_mask_last_page(h);
5286         address = start;
5287         for (; address < end; address += sz) {
5288                 ptep = huge_pte_offset(mm, address, sz);
5289                 if (!ptep) {
5290                         address |= last_addr_mask;
5291                         continue;
5292                 }
5293
5294                 ptl = huge_pte_lock(h, mm, ptep);
5295                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5296                         spin_unlock(ptl);
5297                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5298                         force_flush = true;
5299                         address |= last_addr_mask;
5300                         continue;
5301                 }
5302
5303                 pte = huge_ptep_get(ptep);
5304                 if (huge_pte_none(pte)) {
5305                         spin_unlock(ptl);
5306                         continue;
5307                 }
5308
5309                 /*
5310                  * Migrating hugepage or HWPoisoned hugepage is already
5311                  * unmapped and its refcount is dropped, so just clear pte here.
5312                  */
5313                 if (unlikely(!pte_present(pte))) {
5314 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5315                         /*
5316                          * If the pte was wr-protected by uffd-wp in any of the
5317                          * swap forms, meanwhile the caller does not want to
5318                          * drop the uffd-wp bit in this zap, then replace the
5319                          * pte with a marker.
5320                          */
5321                         if (pte_swp_uffd_wp_any(pte) &&
5322                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5323                                 set_huge_pte_at(mm, address, ptep,
5324                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5325                         else
5326 #endif
5327                                 huge_pte_clear(mm, address, ptep, sz);
5328                         spin_unlock(ptl);
5329                         continue;
5330                 }
5331
5332                 page = pte_page(pte);
5333                 /*
5334                  * If a reference page is supplied, it is because a specific
5335                  * page is being unmapped, not a range. Ensure the page we
5336                  * are about to unmap is the actual page of interest.
5337                  */
5338                 if (ref_page) {
5339                         if (page != ref_page) {
5340                                 spin_unlock(ptl);
5341                                 continue;
5342                         }
5343                         /*
5344                          * Mark the VMA as having unmapped its page so that
5345                          * future faults in this VMA will fail rather than
5346                          * looking like data was lost
5347                          */
5348                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5349                 }
5350
5351                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5352                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5353                 if (huge_pte_dirty(pte))
5354                         set_page_dirty(page);
5355 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5356                 /* Leave a uffd-wp pte marker if needed */
5357                 if (huge_pte_uffd_wp(pte) &&
5358                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5359                         set_huge_pte_at(mm, address, ptep,
5360                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5361 #endif
5362                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5363                 page_remove_rmap(page, vma, true);
5364
5365                 spin_unlock(ptl);
5366                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5367                 /*
5368                  * Bail out after unmapping reference page if supplied
5369                  */
5370                 if (ref_page)
5371                         break;
5372         }
5373         mmu_notifier_invalidate_range_end(&range);
5374         tlb_end_vma(tlb, vma);
5375
5376         /*
5377          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5378          * could defer the flush until now, since by holding i_mmap_rwsem we
5379          * guaranteed that the last refernece would not be dropped. But we must
5380          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5381          * dropped and the last reference to the shared PMDs page might be
5382          * dropped as well.
5383          *
5384          * In theory we could defer the freeing of the PMD pages as well, but
5385          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5386          * detect sharing, so we cannot defer the release of the page either.
5387          * Instead, do flush now.
5388          */
5389         if (force_flush)
5390                 tlb_flush_mmu_tlbonly(tlb);
5391 }
5392
5393 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5394                           struct vm_area_struct *vma, unsigned long start,
5395                           unsigned long end, struct page *ref_page,
5396                           zap_flags_t zap_flags)
5397 {
5398         hugetlb_vma_lock_write(vma);
5399         i_mmap_lock_write(vma->vm_file->f_mapping);
5400
5401         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5402
5403         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5404                 /*
5405                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5406                  * When the vma_lock is freed, this makes the vma ineligible
5407                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5408                  * pmd sharing.  This is important as page tables for this
5409                  * unmapped range will be asynchrously deleted.  If the page
5410                  * tables are shared, there will be issues when accessed by
5411                  * someone else.
5412                  */
5413                 __hugetlb_vma_unlock_write_free(vma);
5414                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5415         } else {
5416                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5417                 hugetlb_vma_unlock_write(vma);
5418         }
5419 }
5420
5421 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5422                           unsigned long end, struct page *ref_page,
5423                           zap_flags_t zap_flags)
5424 {
5425         struct mmu_gather tlb;
5426
5427         tlb_gather_mmu(&tlb, vma->vm_mm);
5428         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5429         tlb_finish_mmu(&tlb);
5430 }
5431
5432 /*
5433  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5434  * mapping it owns the reserve page for. The intention is to unmap the page
5435  * from other VMAs and let the children be SIGKILLed if they are faulting the
5436  * same region.
5437  */
5438 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5439                               struct page *page, unsigned long address)
5440 {
5441         struct hstate *h = hstate_vma(vma);
5442         struct vm_area_struct *iter_vma;
5443         struct address_space *mapping;
5444         pgoff_t pgoff;
5445
5446         /*
5447          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5448          * from page cache lookup which is in HPAGE_SIZE units.
5449          */
5450         address = address & huge_page_mask(h);
5451         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5452                         vma->vm_pgoff;
5453         mapping = vma->vm_file->f_mapping;
5454
5455         /*
5456          * Take the mapping lock for the duration of the table walk. As
5457          * this mapping should be shared between all the VMAs,
5458          * __unmap_hugepage_range() is called as the lock is already held
5459          */
5460         i_mmap_lock_write(mapping);
5461         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5462                 /* Do not unmap the current VMA */
5463                 if (iter_vma == vma)
5464                         continue;
5465
5466                 /*
5467                  * Shared VMAs have their own reserves and do not affect
5468                  * MAP_PRIVATE accounting but it is possible that a shared
5469                  * VMA is using the same page so check and skip such VMAs.
5470                  */
5471                 if (iter_vma->vm_flags & VM_MAYSHARE)
5472                         continue;
5473
5474                 /*
5475                  * Unmap the page from other VMAs without their own reserves.
5476                  * They get marked to be SIGKILLed if they fault in these
5477                  * areas. This is because a future no-page fault on this VMA
5478                  * could insert a zeroed page instead of the data existing
5479                  * from the time of fork. This would look like data corruption
5480                  */
5481                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5482                         unmap_hugepage_range(iter_vma, address,
5483                                              address + huge_page_size(h), page, 0);
5484         }
5485         i_mmap_unlock_write(mapping);
5486 }
5487
5488 /*
5489  * hugetlb_wp() should be called with page lock of the original hugepage held.
5490  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5491  * cannot race with other handlers or page migration.
5492  * Keep the pte_same checks anyway to make transition from the mutex easier.
5493  */
5494 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5495                        unsigned long address, pte_t *ptep, unsigned int flags,
5496                        struct page *pagecache_page, spinlock_t *ptl)
5497 {
5498         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5499         pte_t pte = huge_ptep_get(ptep);
5500         struct hstate *h = hstate_vma(vma);
5501         struct page *old_page, *new_page;
5502         int outside_reserve = 0;
5503         vm_fault_t ret = 0;
5504         unsigned long haddr = address & huge_page_mask(h);
5505         struct mmu_notifier_range range;
5506
5507         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5508         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5509
5510         /*
5511          * Never handle CoW for uffd-wp protected pages.  It should be only
5512          * handled when the uffd-wp protection is removed.
5513          *
5514          * Note that only the CoW optimization path (in hugetlb_no_page())
5515          * can trigger this, because hugetlb_fault() will always resolve
5516          * uffd-wp bit first.
5517          */
5518         if (!unshare && huge_pte_uffd_wp(pte))
5519                 return 0;
5520
5521         /*
5522          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5523          * PTE mapped R/O such as maybe_mkwrite() would do.
5524          */
5525         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5526                 return VM_FAULT_SIGSEGV;
5527
5528         /* Let's take out MAP_SHARED mappings first. */
5529         if (vma->vm_flags & VM_MAYSHARE) {
5530                 if (unlikely(unshare))
5531                         return 0;
5532                 set_huge_ptep_writable(vma, haddr, ptep);
5533                 return 0;
5534         }
5535
5536         old_page = pte_page(pte);
5537
5538         delayacct_wpcopy_start();
5539
5540 retry_avoidcopy:
5541         /*
5542          * If no-one else is actually using this page, we're the exclusive
5543          * owner and can reuse this page.
5544          */
5545         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5546                 if (!PageAnonExclusive(old_page))
5547                         page_move_anon_rmap(old_page, vma);
5548                 if (likely(!unshare))
5549                         set_huge_ptep_writable(vma, haddr, ptep);
5550
5551                 delayacct_wpcopy_end();
5552                 return 0;
5553         }
5554         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5555                        old_page);
5556
5557         /*
5558          * If the process that created a MAP_PRIVATE mapping is about to
5559          * perform a COW due to a shared page count, attempt to satisfy
5560          * the allocation without using the existing reserves. The pagecache
5561          * page is used to determine if the reserve at this address was
5562          * consumed or not. If reserves were used, a partial faulted mapping
5563          * at the time of fork() could consume its reserves on COW instead
5564          * of the full address range.
5565          */
5566         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5567                         old_page != pagecache_page)
5568                 outside_reserve = 1;
5569
5570         get_page(old_page);
5571
5572         /*
5573          * Drop page table lock as buddy allocator may be called. It will
5574          * be acquired again before returning to the caller, as expected.
5575          */
5576         spin_unlock(ptl);
5577         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5578
5579         if (IS_ERR(new_page)) {
5580                 /*
5581                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5582                  * it is due to references held by a child and an insufficient
5583                  * huge page pool. To guarantee the original mappers
5584                  * reliability, unmap the page from child processes. The child
5585                  * may get SIGKILLed if it later faults.
5586                  */
5587                 if (outside_reserve) {
5588                         struct address_space *mapping = vma->vm_file->f_mapping;
5589                         pgoff_t idx;
5590                         u32 hash;
5591
5592                         put_page(old_page);
5593                         /*
5594                          * Drop hugetlb_fault_mutex and vma_lock before
5595                          * unmapping.  unmapping needs to hold vma_lock
5596                          * in write mode.  Dropping vma_lock in read mode
5597                          * here is OK as COW mappings do not interact with
5598                          * PMD sharing.
5599                          *
5600                          * Reacquire both after unmap operation.
5601                          */
5602                         idx = vma_hugecache_offset(h, vma, haddr);
5603                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5604                         hugetlb_vma_unlock_read(vma);
5605                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5606
5607                         unmap_ref_private(mm, vma, old_page, haddr);
5608
5609                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5610                         hugetlb_vma_lock_read(vma);
5611                         spin_lock(ptl);
5612                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5613                         if (likely(ptep &&
5614                                    pte_same(huge_ptep_get(ptep), pte)))
5615                                 goto retry_avoidcopy;
5616                         /*
5617                          * race occurs while re-acquiring page table
5618                          * lock, and our job is done.
5619                          */
5620                         delayacct_wpcopy_end();
5621                         return 0;
5622                 }
5623
5624                 ret = vmf_error(PTR_ERR(new_page));
5625                 goto out_release_old;
5626         }
5627
5628         /*
5629          * When the original hugepage is shared one, it does not have
5630          * anon_vma prepared.
5631          */
5632         if (unlikely(anon_vma_prepare(vma))) {
5633                 ret = VM_FAULT_OOM;
5634                 goto out_release_all;
5635         }
5636
5637         copy_user_huge_page(new_page, old_page, address, vma,
5638                             pages_per_huge_page(h));
5639         __SetPageUptodate(new_page);
5640
5641         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5642                                 haddr + huge_page_size(h));
5643         mmu_notifier_invalidate_range_start(&range);
5644
5645         /*
5646          * Retake the page table lock to check for racing updates
5647          * before the page tables are altered
5648          */
5649         spin_lock(ptl);
5650         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5651         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5652                 ClearHPageRestoreReserve(new_page);
5653
5654                 /* Break COW or unshare */
5655                 huge_ptep_clear_flush(vma, haddr, ptep);
5656                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5657                 page_remove_rmap(old_page, vma, true);
5658                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5659                 set_huge_pte_at(mm, haddr, ptep,
5660                                 make_huge_pte(vma, new_page, !unshare));
5661                 SetHPageMigratable(new_page);
5662                 /* Make the old page be freed below */
5663                 new_page = old_page;
5664         }
5665         spin_unlock(ptl);
5666         mmu_notifier_invalidate_range_end(&range);
5667 out_release_all:
5668         /*
5669          * No restore in case of successful pagetable update (Break COW or
5670          * unshare)
5671          */
5672         if (new_page != old_page)
5673                 restore_reserve_on_error(h, vma, haddr, new_page);
5674         put_page(new_page);
5675 out_release_old:
5676         put_page(old_page);
5677
5678         spin_lock(ptl); /* Caller expects lock to be held */
5679
5680         delayacct_wpcopy_end();
5681         return ret;
5682 }
5683
5684 /*
5685  * Return whether there is a pagecache page to back given address within VMA.
5686  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5687  */
5688 static bool hugetlbfs_pagecache_present(struct hstate *h,
5689                         struct vm_area_struct *vma, unsigned long address)
5690 {
5691         struct address_space *mapping;
5692         pgoff_t idx;
5693         struct page *page;
5694
5695         mapping = vma->vm_file->f_mapping;
5696         idx = vma_hugecache_offset(h, vma, address);
5697
5698         page = find_get_page(mapping, idx);
5699         if (page)
5700                 put_page(page);
5701         return page != NULL;
5702 }
5703
5704 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5705                            pgoff_t idx)
5706 {
5707         struct folio *folio = page_folio(page);
5708         struct inode *inode = mapping->host;
5709         struct hstate *h = hstate_inode(inode);
5710         int err;
5711
5712         __folio_set_locked(folio);
5713         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5714
5715         if (unlikely(err)) {
5716                 __folio_clear_locked(folio);
5717                 return err;
5718         }
5719         ClearHPageRestoreReserve(page);
5720
5721         /*
5722          * mark folio dirty so that it will not be removed from cache/file
5723          * by non-hugetlbfs specific code paths.
5724          */
5725         folio_mark_dirty(folio);
5726
5727         spin_lock(&inode->i_lock);
5728         inode->i_blocks += blocks_per_huge_page(h);
5729         spin_unlock(&inode->i_lock);
5730         return 0;
5731 }
5732
5733 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5734                                                   struct address_space *mapping,
5735                                                   pgoff_t idx,
5736                                                   unsigned int flags,
5737                                                   unsigned long haddr,
5738                                                   unsigned long addr,
5739                                                   unsigned long reason)
5740 {
5741         u32 hash;
5742         struct vm_fault vmf = {
5743                 .vma = vma,
5744                 .address = haddr,
5745                 .real_address = addr,
5746                 .flags = flags,
5747
5748                 /*
5749                  * Hard to debug if it ends up being
5750                  * used by a callee that assumes
5751                  * something about the other
5752                  * uninitialized fields... same as in
5753                  * memory.c
5754                  */
5755         };
5756
5757         /*
5758          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5759          * userfault. Also mmap_lock could be dropped due to handling
5760          * userfault, any vma operation should be careful from here.
5761          */
5762         hugetlb_vma_unlock_read(vma);
5763         hash = hugetlb_fault_mutex_hash(mapping, idx);
5764         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5765         return handle_userfault(&vmf, reason);
5766 }
5767
5768 /*
5769  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5770  * false if pte changed or is changing.
5771  */
5772 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5773                                pte_t *ptep, pte_t old_pte)
5774 {
5775         spinlock_t *ptl;
5776         bool same;
5777
5778         ptl = huge_pte_lock(h, mm, ptep);
5779         same = pte_same(huge_ptep_get(ptep), old_pte);
5780         spin_unlock(ptl);
5781
5782         return same;
5783 }
5784
5785 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5786                         struct vm_area_struct *vma,
5787                         struct address_space *mapping, pgoff_t idx,
5788                         unsigned long address, pte_t *ptep,
5789                         pte_t old_pte, unsigned int flags)
5790 {
5791         struct hstate *h = hstate_vma(vma);
5792         vm_fault_t ret = VM_FAULT_SIGBUS;
5793         int anon_rmap = 0;
5794         unsigned long size;
5795         struct page *page;
5796         pte_t new_pte;
5797         spinlock_t *ptl;
5798         unsigned long haddr = address & huge_page_mask(h);
5799         bool new_page, new_pagecache_page = false;
5800         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5801
5802         /*
5803          * Currently, we are forced to kill the process in the event the
5804          * original mapper has unmapped pages from the child due to a failed
5805          * COW/unsharing. Warn that such a situation has occurred as it may not
5806          * be obvious.
5807          */
5808         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5809                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5810                            current->pid);
5811                 goto out;
5812         }
5813
5814         /*
5815          * Use page lock to guard against racing truncation
5816          * before we get page_table_lock.
5817          */
5818         new_page = false;
5819         page = find_lock_page(mapping, idx);
5820         if (!page) {
5821                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5822                 if (idx >= size)
5823                         goto out;
5824                 /* Check for page in userfault range */
5825                 if (userfaultfd_missing(vma)) {
5826                         /*
5827                          * Since hugetlb_no_page() was examining pte
5828                          * without pgtable lock, we need to re-test under
5829                          * lock because the pte may not be stable and could
5830                          * have changed from under us.  Try to detect
5831                          * either changed or during-changing ptes and retry
5832                          * properly when needed.
5833                          *
5834                          * Note that userfaultfd is actually fine with
5835                          * false positives (e.g. caused by pte changed),
5836                          * but not wrong logical events (e.g. caused by
5837                          * reading a pte during changing).  The latter can
5838                          * confuse the userspace, so the strictness is very
5839                          * much preferred.  E.g., MISSING event should
5840                          * never happen on the page after UFFDIO_COPY has
5841                          * correctly installed the page and returned.
5842                          */
5843                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5844                                 ret = 0;
5845                                 goto out;
5846                         }
5847
5848                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5849                                                         haddr, address,
5850                                                         VM_UFFD_MISSING);
5851                 }
5852
5853                 page = alloc_huge_page(vma, haddr, 0);
5854                 if (IS_ERR(page)) {
5855                         /*
5856                          * Returning error will result in faulting task being
5857                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5858                          * tasks from racing to fault in the same page which
5859                          * could result in false unable to allocate errors.
5860                          * Page migration does not take the fault mutex, but
5861                          * does a clear then write of pte's under page table
5862                          * lock.  Page fault code could race with migration,
5863                          * notice the clear pte and try to allocate a page
5864                          * here.  Before returning error, get ptl and make
5865                          * sure there really is no pte entry.
5866                          */
5867                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5868                                 ret = vmf_error(PTR_ERR(page));
5869                         else
5870                                 ret = 0;
5871                         goto out;
5872                 }
5873                 clear_huge_page(page, address, pages_per_huge_page(h));
5874                 __SetPageUptodate(page);
5875                 new_page = true;
5876
5877                 if (vma->vm_flags & VM_MAYSHARE) {
5878                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5879                         if (err) {
5880                                 /*
5881                                  * err can't be -EEXIST which implies someone
5882                                  * else consumed the reservation since hugetlb
5883                                  * fault mutex is held when add a hugetlb page
5884                                  * to the page cache. So it's safe to call
5885                                  * restore_reserve_on_error() here.
5886                                  */
5887                                 restore_reserve_on_error(h, vma, haddr, page);
5888                                 put_page(page);
5889                                 goto out;
5890                         }
5891                         new_pagecache_page = true;
5892                 } else {
5893                         lock_page(page);
5894                         if (unlikely(anon_vma_prepare(vma))) {
5895                                 ret = VM_FAULT_OOM;
5896                                 goto backout_unlocked;
5897                         }
5898                         anon_rmap = 1;
5899                 }
5900         } else {
5901                 /*
5902                  * If memory error occurs between mmap() and fault, some process
5903                  * don't have hwpoisoned swap entry for errored virtual address.
5904                  * So we need to block hugepage fault by PG_hwpoison bit check.
5905                  */
5906                 if (unlikely(PageHWPoison(page))) {
5907                         ret = VM_FAULT_HWPOISON_LARGE |
5908                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5909                         goto backout_unlocked;
5910                 }
5911
5912                 /* Check for page in userfault range. */
5913                 if (userfaultfd_minor(vma)) {
5914                         unlock_page(page);
5915                         put_page(page);
5916                         /* See comment in userfaultfd_missing() block above */
5917                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5918                                 ret = 0;
5919                                 goto out;
5920                         }
5921                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5922                                                         haddr, address,
5923                                                         VM_UFFD_MINOR);
5924                 }
5925         }
5926
5927         /*
5928          * If we are going to COW a private mapping later, we examine the
5929          * pending reservations for this page now. This will ensure that
5930          * any allocations necessary to record that reservation occur outside
5931          * the spinlock.
5932          */
5933         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5934                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5935                         ret = VM_FAULT_OOM;
5936                         goto backout_unlocked;
5937                 }
5938                 /* Just decrements count, does not deallocate */
5939                 vma_end_reservation(h, vma, haddr);
5940         }
5941
5942         ptl = huge_pte_lock(h, mm, ptep);
5943         ret = 0;
5944         /* If pte changed from under us, retry */
5945         if (!pte_same(huge_ptep_get(ptep), old_pte))
5946                 goto backout;
5947
5948         if (anon_rmap) {
5949                 ClearHPageRestoreReserve(page);
5950                 hugepage_add_new_anon_rmap(page, vma, haddr);
5951         } else
5952                 page_dup_file_rmap(page, true);
5953         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5954                                 && (vma->vm_flags & VM_SHARED)));
5955         /*
5956          * If this pte was previously wr-protected, keep it wr-protected even
5957          * if populated.
5958          */
5959         if (unlikely(pte_marker_uffd_wp(old_pte)))
5960                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5961         set_huge_pte_at(mm, haddr, ptep, new_pte);
5962
5963         hugetlb_count_add(pages_per_huge_page(h), mm);
5964         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5965                 /* Optimization, do the COW without a second fault */
5966                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5967         }
5968
5969         spin_unlock(ptl);
5970
5971         /*
5972          * Only set HPageMigratable in newly allocated pages.  Existing pages
5973          * found in the pagecache may not have HPageMigratableset if they have
5974          * been isolated for migration.
5975          */
5976         if (new_page)
5977                 SetHPageMigratable(page);
5978
5979         unlock_page(page);
5980 out:
5981         hugetlb_vma_unlock_read(vma);
5982         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5983         return ret;
5984
5985 backout:
5986         spin_unlock(ptl);
5987 backout_unlocked:
5988         if (new_page && !new_pagecache_page)
5989                 restore_reserve_on_error(h, vma, haddr, page);
5990
5991         unlock_page(page);
5992         put_page(page);
5993         goto out;
5994 }
5995
5996 #ifdef CONFIG_SMP
5997 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5998 {
5999         unsigned long key[2];
6000         u32 hash;
6001
6002         key[0] = (unsigned long) mapping;
6003         key[1] = idx;
6004
6005         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6006
6007         return hash & (num_fault_mutexes - 1);
6008 }
6009 #else
6010 /*
6011  * For uniprocessor systems we always use a single mutex, so just
6012  * return 0 and avoid the hashing overhead.
6013  */
6014 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6015 {
6016         return 0;
6017 }
6018 #endif
6019
6020 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6021                         unsigned long address, unsigned int flags)
6022 {
6023         pte_t *ptep, entry;
6024         spinlock_t *ptl;
6025         vm_fault_t ret;
6026         u32 hash;
6027         pgoff_t idx;
6028         struct page *page = NULL;
6029         struct page *pagecache_page = NULL;
6030         struct hstate *h = hstate_vma(vma);
6031         struct address_space *mapping;
6032         int need_wait_lock = 0;
6033         unsigned long haddr = address & huge_page_mask(h);
6034
6035         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
6036         if (ptep) {
6037                 /*
6038                  * Since we hold no locks, ptep could be stale.  That is
6039                  * OK as we are only making decisions based on content and
6040                  * not actually modifying content here.
6041                  */
6042                 entry = huge_ptep_get(ptep);
6043                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6044                         migration_entry_wait_huge(vma, ptep);
6045                         return 0;
6046                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6047                         return VM_FAULT_HWPOISON_LARGE |
6048                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6049         }
6050
6051         /*
6052          * Serialize hugepage allocation and instantiation, so that we don't
6053          * get spurious allocation failures if two CPUs race to instantiate
6054          * the same page in the page cache.
6055          */
6056         mapping = vma->vm_file->f_mapping;
6057         idx = vma_hugecache_offset(h, vma, haddr);
6058         hash = hugetlb_fault_mutex_hash(mapping, idx);
6059         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6060
6061         /*
6062          * Acquire vma lock before calling huge_pte_alloc and hold
6063          * until finished with ptep.  This prevents huge_pmd_unshare from
6064          * being called elsewhere and making the ptep no longer valid.
6065          *
6066          * ptep could have already be assigned via huge_pte_offset.  That
6067          * is OK, as huge_pte_alloc will return the same value unless
6068          * something has changed.
6069          */
6070         hugetlb_vma_lock_read(vma);
6071         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6072         if (!ptep) {
6073                 hugetlb_vma_unlock_read(vma);
6074                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6075                 return VM_FAULT_OOM;
6076         }
6077
6078         entry = huge_ptep_get(ptep);
6079         /* PTE markers should be handled the same way as none pte */
6080         if (huge_pte_none_mostly(entry))
6081                 /*
6082                  * hugetlb_no_page will drop vma lock and hugetlb fault
6083                  * mutex internally, which make us return immediately.
6084                  */
6085                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6086                                       entry, flags);
6087
6088         ret = 0;
6089
6090         /*
6091          * entry could be a migration/hwpoison entry at this point, so this
6092          * check prevents the kernel from going below assuming that we have
6093          * an active hugepage in pagecache. This goto expects the 2nd page
6094          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6095          * properly handle it.
6096          */
6097         if (!pte_present(entry))
6098                 goto out_mutex;
6099
6100         /*
6101          * If we are going to COW/unshare the mapping later, we examine the
6102          * pending reservations for this page now. This will ensure that any
6103          * allocations necessary to record that reservation occur outside the
6104          * spinlock. Also lookup the pagecache page now as it is used to
6105          * determine if a reservation has been consumed.
6106          */
6107         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6108             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6109                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6110                         ret = VM_FAULT_OOM;
6111                         goto out_mutex;
6112                 }
6113                 /* Just decrements count, does not deallocate */
6114                 vma_end_reservation(h, vma, haddr);
6115
6116                 pagecache_page = find_lock_page(mapping, idx);
6117         }
6118
6119         ptl = huge_pte_lock(h, mm, ptep);
6120
6121         /* Check for a racing update before calling hugetlb_wp() */
6122         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6123                 goto out_ptl;
6124
6125         /* Handle userfault-wp first, before trying to lock more pages */
6126         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6127             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6128                 struct vm_fault vmf = {
6129                         .vma = vma,
6130                         .address = haddr,
6131                         .real_address = address,
6132                         .flags = flags,
6133                 };
6134
6135                 spin_unlock(ptl);
6136                 if (pagecache_page) {
6137                         unlock_page(pagecache_page);
6138                         put_page(pagecache_page);
6139                 }
6140                 hugetlb_vma_unlock_read(vma);
6141                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6142                 return handle_userfault(&vmf, VM_UFFD_WP);
6143         }
6144
6145         /*
6146          * hugetlb_wp() requires page locks of pte_page(entry) and
6147          * pagecache_page, so here we need take the former one
6148          * when page != pagecache_page or !pagecache_page.
6149          */
6150         page = pte_page(entry);
6151         if (page != pagecache_page)
6152                 if (!trylock_page(page)) {
6153                         need_wait_lock = 1;
6154                         goto out_ptl;
6155                 }
6156
6157         get_page(page);
6158
6159         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6160                 if (!huge_pte_write(entry)) {
6161                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6162                                          pagecache_page, ptl);
6163                         goto out_put_page;
6164                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6165                         entry = huge_pte_mkdirty(entry);
6166                 }
6167         }
6168         entry = pte_mkyoung(entry);
6169         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6170                                                 flags & FAULT_FLAG_WRITE))
6171                 update_mmu_cache(vma, haddr, ptep);
6172 out_put_page:
6173         if (page != pagecache_page)
6174                 unlock_page(page);
6175         put_page(page);
6176 out_ptl:
6177         spin_unlock(ptl);
6178
6179         if (pagecache_page) {
6180                 unlock_page(pagecache_page);
6181                 put_page(pagecache_page);
6182         }
6183 out_mutex:
6184         hugetlb_vma_unlock_read(vma);
6185         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6186         /*
6187          * Generally it's safe to hold refcount during waiting page lock. But
6188          * here we just wait to defer the next page fault to avoid busy loop and
6189          * the page is not used after unlocked before returning from the current
6190          * page fault. So we are safe from accessing freed page, even if we wait
6191          * here without taking refcount.
6192          */
6193         if (need_wait_lock)
6194                 wait_on_page_locked(page);
6195         return ret;
6196 }
6197
6198 #ifdef CONFIG_USERFAULTFD
6199 /*
6200  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6201  * modifications for huge pages.
6202  */
6203 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6204                             pte_t *dst_pte,
6205                             struct vm_area_struct *dst_vma,
6206                             unsigned long dst_addr,
6207                             unsigned long src_addr,
6208                             enum mcopy_atomic_mode mode,
6209                             struct page **pagep,
6210                             bool wp_copy)
6211 {
6212         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6213         struct hstate *h = hstate_vma(dst_vma);
6214         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6215         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6216         unsigned long size;
6217         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6218         pte_t _dst_pte;
6219         spinlock_t *ptl;
6220         int ret = -ENOMEM;
6221         struct page *page;
6222         int writable;
6223         bool page_in_pagecache = false;
6224
6225         if (is_continue) {
6226                 ret = -EFAULT;
6227                 page = find_lock_page(mapping, idx);
6228                 if (!page)
6229                         goto out;
6230                 page_in_pagecache = true;
6231         } else if (!*pagep) {
6232                 /* If a page already exists, then it's UFFDIO_COPY for
6233                  * a non-missing case. Return -EEXIST.
6234                  */
6235                 if (vm_shared &&
6236                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6237                         ret = -EEXIST;
6238                         goto out;
6239                 }
6240
6241                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6242                 if (IS_ERR(page)) {
6243                         ret = -ENOMEM;
6244                         goto out;
6245                 }
6246
6247                 ret = copy_huge_page_from_user(page,
6248                                                 (const void __user *) src_addr,
6249                                                 pages_per_huge_page(h), false);
6250
6251                 /* fallback to copy_from_user outside mmap_lock */
6252                 if (unlikely(ret)) {
6253                         ret = -ENOENT;
6254                         /* Free the allocated page which may have
6255                          * consumed a reservation.
6256                          */
6257                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6258                         put_page(page);
6259
6260                         /* Allocate a temporary page to hold the copied
6261                          * contents.
6262                          */
6263                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6264                         if (!page) {
6265                                 ret = -ENOMEM;
6266                                 goto out;
6267                         }
6268                         *pagep = page;
6269                         /* Set the outparam pagep and return to the caller to
6270                          * copy the contents outside the lock. Don't free the
6271                          * page.
6272                          */
6273                         goto out;
6274                 }
6275         } else {
6276                 if (vm_shared &&
6277                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6278                         put_page(*pagep);
6279                         ret = -EEXIST;
6280                         *pagep = NULL;
6281                         goto out;
6282                 }
6283
6284                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6285                 if (IS_ERR(page)) {
6286                         put_page(*pagep);
6287                         ret = -ENOMEM;
6288                         *pagep = NULL;
6289                         goto out;
6290                 }
6291                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6292                                     pages_per_huge_page(h));
6293                 put_page(*pagep);
6294                 *pagep = NULL;
6295         }
6296
6297         /*
6298          * The memory barrier inside __SetPageUptodate makes sure that
6299          * preceding stores to the page contents become visible before
6300          * the set_pte_at() write.
6301          */
6302         __SetPageUptodate(page);
6303
6304         /* Add shared, newly allocated pages to the page cache. */
6305         if (vm_shared && !is_continue) {
6306                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6307                 ret = -EFAULT;
6308                 if (idx >= size)
6309                         goto out_release_nounlock;
6310
6311                 /*
6312                  * Serialization between remove_inode_hugepages() and
6313                  * hugetlb_add_to_page_cache() below happens through the
6314                  * hugetlb_fault_mutex_table that here must be hold by
6315                  * the caller.
6316                  */
6317                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6318                 if (ret)
6319                         goto out_release_nounlock;
6320                 page_in_pagecache = true;
6321         }
6322
6323         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6324
6325         ret = -EIO;
6326         if (PageHWPoison(page))
6327                 goto out_release_unlock;
6328
6329         /*
6330          * We allow to overwrite a pte marker: consider when both MISSING|WP
6331          * registered, we firstly wr-protect a none pte which has no page cache
6332          * page backing it, then access the page.
6333          */
6334         ret = -EEXIST;
6335         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6336                 goto out_release_unlock;
6337
6338         if (page_in_pagecache) {
6339                 page_dup_file_rmap(page, true);
6340         } else {
6341                 ClearHPageRestoreReserve(page);
6342                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6343         }
6344
6345         /*
6346          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6347          * with wp flag set, don't set pte write bit.
6348          */
6349         if (wp_copy || (is_continue && !vm_shared))
6350                 writable = 0;
6351         else
6352                 writable = dst_vma->vm_flags & VM_WRITE;
6353
6354         _dst_pte = make_huge_pte(dst_vma, page, writable);
6355         /*
6356          * Always mark UFFDIO_COPY page dirty; note that this may not be
6357          * extremely important for hugetlbfs for now since swapping is not
6358          * supported, but we should still be clear in that this page cannot be
6359          * thrown away at will, even if write bit not set.
6360          */
6361         _dst_pte = huge_pte_mkdirty(_dst_pte);
6362         _dst_pte = pte_mkyoung(_dst_pte);
6363
6364         if (wp_copy)
6365                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6366
6367         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6368
6369         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6370
6371         /* No need to invalidate - it was non-present before */
6372         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6373
6374         spin_unlock(ptl);
6375         if (!is_continue)
6376                 SetHPageMigratable(page);
6377         if (vm_shared || is_continue)
6378                 unlock_page(page);
6379         ret = 0;
6380 out:
6381         return ret;
6382 out_release_unlock:
6383         spin_unlock(ptl);
6384         if (vm_shared || is_continue)
6385                 unlock_page(page);
6386 out_release_nounlock:
6387         if (!page_in_pagecache)
6388                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6389         put_page(page);
6390         goto out;
6391 }
6392 #endif /* CONFIG_USERFAULTFD */
6393
6394 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6395                                  int refs, struct page **pages,
6396                                  struct vm_area_struct **vmas)
6397 {
6398         int nr;
6399
6400         for (nr = 0; nr < refs; nr++) {
6401                 if (likely(pages))
6402                         pages[nr] = nth_page(page, nr);
6403                 if (vmas)
6404                         vmas[nr] = vma;
6405         }
6406 }
6407
6408 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6409                                                bool *unshare)
6410 {
6411         pte_t pteval = huge_ptep_get(pte);
6412
6413         *unshare = false;
6414         if (is_swap_pte(pteval))
6415                 return true;
6416         if (huge_pte_write(pteval))
6417                 return false;
6418         if (flags & FOLL_WRITE)
6419                 return true;
6420         if (gup_must_unshare(flags, pte_page(pteval))) {
6421                 *unshare = true;
6422                 return true;
6423         }
6424         return false;
6425 }
6426
6427 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6428                          struct page **pages, struct vm_area_struct **vmas,
6429                          unsigned long *position, unsigned long *nr_pages,
6430                          long i, unsigned int flags, int *locked)
6431 {
6432         unsigned long pfn_offset;
6433         unsigned long vaddr = *position;
6434         unsigned long remainder = *nr_pages;
6435         struct hstate *h = hstate_vma(vma);
6436         int err = -EFAULT, refs;
6437
6438         while (vaddr < vma->vm_end && remainder) {
6439                 pte_t *pte;
6440                 spinlock_t *ptl = NULL;
6441                 bool unshare = false;
6442                 int absent;
6443                 struct page *page;
6444
6445                 /*
6446                  * If we have a pending SIGKILL, don't keep faulting pages and
6447                  * potentially allocating memory.
6448                  */
6449                 if (fatal_signal_pending(current)) {
6450                         remainder = 0;
6451                         break;
6452                 }
6453
6454                 /*
6455                  * Some archs (sparc64, sh*) have multiple pte_ts to
6456                  * each hugepage.  We have to make sure we get the
6457                  * first, for the page indexing below to work.
6458                  *
6459                  * Note that page table lock is not held when pte is null.
6460                  */
6461                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6462                                       huge_page_size(h));
6463                 if (pte)
6464                         ptl = huge_pte_lock(h, mm, pte);
6465                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6466
6467                 /*
6468                  * When coredumping, it suits get_dump_page if we just return
6469                  * an error where there's an empty slot with no huge pagecache
6470                  * to back it.  This way, we avoid allocating a hugepage, and
6471                  * the sparse dumpfile avoids allocating disk blocks, but its
6472                  * huge holes still show up with zeroes where they need to be.
6473                  */
6474                 if (absent && (flags & FOLL_DUMP) &&
6475                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6476                         if (pte)
6477                                 spin_unlock(ptl);
6478                         remainder = 0;
6479                         break;
6480                 }
6481
6482                 /*
6483                  * We need call hugetlb_fault for both hugepages under migration
6484                  * (in which case hugetlb_fault waits for the migration,) and
6485                  * hwpoisoned hugepages (in which case we need to prevent the
6486                  * caller from accessing to them.) In order to do this, we use
6487                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6488                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6489                  * both cases, and because we can't follow correct pages
6490                  * directly from any kind of swap entries.
6491                  */
6492                 if (absent ||
6493                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6494                         vm_fault_t ret;
6495                         unsigned int fault_flags = 0;
6496
6497                         if (pte)
6498                                 spin_unlock(ptl);
6499                         if (flags & FOLL_WRITE)
6500                                 fault_flags |= FAULT_FLAG_WRITE;
6501                         else if (unshare)
6502                                 fault_flags |= FAULT_FLAG_UNSHARE;
6503                         if (locked)
6504                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6505                                         FAULT_FLAG_KILLABLE;
6506                         if (flags & FOLL_NOWAIT)
6507                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6508                                         FAULT_FLAG_RETRY_NOWAIT;
6509                         if (flags & FOLL_TRIED) {
6510                                 /*
6511                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6512                                  * FAULT_FLAG_TRIED can co-exist
6513                                  */
6514                                 fault_flags |= FAULT_FLAG_TRIED;
6515                         }
6516                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6517                         if (ret & VM_FAULT_ERROR) {
6518                                 err = vm_fault_to_errno(ret, flags);
6519                                 remainder = 0;
6520                                 break;
6521                         }
6522                         if (ret & VM_FAULT_RETRY) {
6523                                 if (locked &&
6524                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6525                                         *locked = 0;
6526                                 *nr_pages = 0;
6527                                 /*
6528                                  * VM_FAULT_RETRY must not return an
6529                                  * error, it will return zero
6530                                  * instead.
6531                                  *
6532                                  * No need to update "position" as the
6533                                  * caller will not check it after
6534                                  * *nr_pages is set to 0.
6535                                  */
6536                                 return i;
6537                         }
6538                         continue;
6539                 }
6540
6541                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6542                 page = pte_page(huge_ptep_get(pte));
6543
6544                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6545                                !PageAnonExclusive(page), page);
6546
6547                 /*
6548                  * If subpage information not requested, update counters
6549                  * and skip the same_page loop below.
6550                  */
6551                 if (!pages && !vmas && !pfn_offset &&
6552                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6553                     (remainder >= pages_per_huge_page(h))) {
6554                         vaddr += huge_page_size(h);
6555                         remainder -= pages_per_huge_page(h);
6556                         i += pages_per_huge_page(h);
6557                         spin_unlock(ptl);
6558                         continue;
6559                 }
6560
6561                 /* vaddr may not be aligned to PAGE_SIZE */
6562                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6563                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6564
6565                 if (pages || vmas)
6566                         record_subpages_vmas(nth_page(page, pfn_offset),
6567                                              vma, refs,
6568                                              likely(pages) ? pages + i : NULL,
6569                                              vmas ? vmas + i : NULL);
6570
6571                 if (pages) {
6572                         /*
6573                          * try_grab_folio() should always succeed here,
6574                          * because: a) we hold the ptl lock, and b) we've just
6575                          * checked that the huge page is present in the page
6576                          * tables. If the huge page is present, then the tail
6577                          * pages must also be present. The ptl prevents the
6578                          * head page and tail pages from being rearranged in
6579                          * any way. So this page must be available at this
6580                          * point, unless the page refcount overflowed:
6581                          */
6582                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6583                                                          flags))) {
6584                                 spin_unlock(ptl);
6585                                 remainder = 0;
6586                                 err = -ENOMEM;
6587                                 break;
6588                         }
6589                 }
6590
6591                 vaddr += (refs << PAGE_SHIFT);
6592                 remainder -= refs;
6593                 i += refs;
6594
6595                 spin_unlock(ptl);
6596         }
6597         *nr_pages = remainder;
6598         /*
6599          * setting position is actually required only if remainder is
6600          * not zero but it's faster not to add a "if (remainder)"
6601          * branch.
6602          */
6603         *position = vaddr;
6604
6605         return i ? i : err;
6606 }
6607
6608 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6609                 unsigned long address, unsigned long end,
6610                 pgprot_t newprot, unsigned long cp_flags)
6611 {
6612         struct mm_struct *mm = vma->vm_mm;
6613         unsigned long start = address;
6614         pte_t *ptep;
6615         pte_t pte;
6616         struct hstate *h = hstate_vma(vma);
6617         unsigned long pages = 0, psize = huge_page_size(h);
6618         bool shared_pmd = false;
6619         struct mmu_notifier_range range;
6620         unsigned long last_addr_mask;
6621         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6622         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6623
6624         /*
6625          * In the case of shared PMDs, the area to flush could be beyond
6626          * start/end.  Set range.start/range.end to cover the maximum possible
6627          * range if PMD sharing is possible.
6628          */
6629         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6630                                 0, vma, mm, start, end);
6631         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6632
6633         BUG_ON(address >= end);
6634         flush_cache_range(vma, range.start, range.end);
6635
6636         mmu_notifier_invalidate_range_start(&range);
6637         hugetlb_vma_lock_write(vma);
6638         i_mmap_lock_write(vma->vm_file->f_mapping);
6639         last_addr_mask = hugetlb_mask_last_page(h);
6640         for (; address < end; address += psize) {
6641                 spinlock_t *ptl;
6642                 ptep = huge_pte_offset(mm, address, psize);
6643                 if (!ptep) {
6644                         if (!uffd_wp) {
6645                                 address |= last_addr_mask;
6646                                 continue;
6647                         }
6648                         /*
6649                          * Userfaultfd wr-protect requires pgtable
6650                          * pre-allocations to install pte markers.
6651                          */
6652                         ptep = huge_pte_alloc(mm, vma, address, psize);
6653                         if (!ptep)
6654                                 break;
6655                 }
6656                 ptl = huge_pte_lock(h, mm, ptep);
6657                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6658                         /*
6659                          * When uffd-wp is enabled on the vma, unshare
6660                          * shouldn't happen at all.  Warn about it if it
6661                          * happened due to some reason.
6662                          */
6663                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6664                         pages++;
6665                         spin_unlock(ptl);
6666                         shared_pmd = true;
6667                         address |= last_addr_mask;
6668                         continue;
6669                 }
6670                 pte = huge_ptep_get(ptep);
6671                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6672                         /* Nothing to do. */
6673                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6674                         swp_entry_t entry = pte_to_swp_entry(pte);
6675                         struct page *page = pfn_swap_entry_to_page(entry);
6676                         pte_t newpte = pte;
6677
6678                         if (is_writable_migration_entry(entry)) {
6679                                 if (PageAnon(page))
6680                                         entry = make_readable_exclusive_migration_entry(
6681                                                                 swp_offset(entry));
6682                                 else
6683                                         entry = make_readable_migration_entry(
6684                                                                 swp_offset(entry));
6685                                 newpte = swp_entry_to_pte(entry);
6686                                 pages++;
6687                         }
6688
6689                         if (uffd_wp)
6690                                 newpte = pte_swp_mkuffd_wp(newpte);
6691                         else if (uffd_wp_resolve)
6692                                 newpte = pte_swp_clear_uffd_wp(newpte);
6693                         if (!pte_same(pte, newpte))
6694                                 set_huge_pte_at(mm, address, ptep, newpte);
6695                 } else if (unlikely(is_pte_marker(pte))) {
6696                         /* No other markers apply for now. */
6697                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6698                         if (uffd_wp_resolve)
6699                                 /* Safe to modify directly (non-present->none). */
6700                                 huge_pte_clear(mm, address, ptep, psize);
6701                 } else if (!huge_pte_none(pte)) {
6702                         pte_t old_pte;
6703                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6704
6705                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6706                         pte = huge_pte_modify(old_pte, newprot);
6707                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6708                         if (uffd_wp)
6709                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6710                         else if (uffd_wp_resolve)
6711                                 pte = huge_pte_clear_uffd_wp(pte);
6712                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6713                         pages++;
6714                 } else {
6715                         /* None pte */
6716                         if (unlikely(uffd_wp))
6717                                 /* Safe to modify directly (none->non-present). */
6718                                 set_huge_pte_at(mm, address, ptep,
6719                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6720                 }
6721                 spin_unlock(ptl);
6722         }
6723         /*
6724          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6725          * may have cleared our pud entry and done put_page on the page table:
6726          * once we release i_mmap_rwsem, another task can do the final put_page
6727          * and that page table be reused and filled with junk.  If we actually
6728          * did unshare a page of pmds, flush the range corresponding to the pud.
6729          */
6730         if (shared_pmd)
6731                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6732         else
6733                 flush_hugetlb_tlb_range(vma, start, end);
6734         /*
6735          * No need to call mmu_notifier_invalidate_range() we are downgrading
6736          * page table protection not changing it to point to a new page.
6737          *
6738          * See Documentation/mm/mmu_notifier.rst
6739          */
6740         i_mmap_unlock_write(vma->vm_file->f_mapping);
6741         hugetlb_vma_unlock_write(vma);
6742         mmu_notifier_invalidate_range_end(&range);
6743
6744         return pages << h->order;
6745 }
6746
6747 /* Return true if reservation was successful, false otherwise.  */
6748 bool hugetlb_reserve_pages(struct inode *inode,
6749                                         long from, long to,
6750                                         struct vm_area_struct *vma,
6751                                         vm_flags_t vm_flags)
6752 {
6753         long chg, add = -1;
6754         struct hstate *h = hstate_inode(inode);
6755         struct hugepage_subpool *spool = subpool_inode(inode);
6756         struct resv_map *resv_map;
6757         struct hugetlb_cgroup *h_cg = NULL;
6758         long gbl_reserve, regions_needed = 0;
6759
6760         /* This should never happen */
6761         if (from > to) {
6762                 VM_WARN(1, "%s called with a negative range\n", __func__);
6763                 return false;
6764         }
6765
6766         /*
6767          * vma specific semaphore used for pmd sharing and fault/truncation
6768          * synchronization
6769          */
6770         hugetlb_vma_lock_alloc(vma);
6771
6772         /*
6773          * Only apply hugepage reservation if asked. At fault time, an
6774          * attempt will be made for VM_NORESERVE to allocate a page
6775          * without using reserves
6776          */
6777         if (vm_flags & VM_NORESERVE)
6778                 return true;
6779
6780         /*
6781          * Shared mappings base their reservation on the number of pages that
6782          * are already allocated on behalf of the file. Private mappings need
6783          * to reserve the full area even if read-only as mprotect() may be
6784          * called to make the mapping read-write. Assume !vma is a shm mapping
6785          */
6786         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6787                 /*
6788                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6789                  * called for inodes for which resv_maps were created (see
6790                  * hugetlbfs_get_inode).
6791                  */
6792                 resv_map = inode_resv_map(inode);
6793
6794                 chg = region_chg(resv_map, from, to, &regions_needed);
6795         } else {
6796                 /* Private mapping. */
6797                 resv_map = resv_map_alloc();
6798                 if (!resv_map)
6799                         goto out_err;
6800
6801                 chg = to - from;
6802
6803                 set_vma_resv_map(vma, resv_map);
6804                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6805         }
6806
6807         if (chg < 0)
6808                 goto out_err;
6809
6810         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6811                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6812                 goto out_err;
6813
6814         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6815                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6816                  * of the resv_map.
6817                  */
6818                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6819         }
6820
6821         /*
6822          * There must be enough pages in the subpool for the mapping. If
6823          * the subpool has a minimum size, there may be some global
6824          * reservations already in place (gbl_reserve).
6825          */
6826         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6827         if (gbl_reserve < 0)
6828                 goto out_uncharge_cgroup;
6829
6830         /*
6831          * Check enough hugepages are available for the reservation.
6832          * Hand the pages back to the subpool if there are not
6833          */
6834         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6835                 goto out_put_pages;
6836
6837         /*
6838          * Account for the reservations made. Shared mappings record regions
6839          * that have reservations as they are shared by multiple VMAs.
6840          * When the last VMA disappears, the region map says how much
6841          * the reservation was and the page cache tells how much of
6842          * the reservation was consumed. Private mappings are per-VMA and
6843          * only the consumed reservations are tracked. When the VMA
6844          * disappears, the original reservation is the VMA size and the
6845          * consumed reservations are stored in the map. Hence, nothing
6846          * else has to be done for private mappings here
6847          */
6848         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6849                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6850
6851                 if (unlikely(add < 0)) {
6852                         hugetlb_acct_memory(h, -gbl_reserve);
6853                         goto out_put_pages;
6854                 } else if (unlikely(chg > add)) {
6855                         /*
6856                          * pages in this range were added to the reserve
6857                          * map between region_chg and region_add.  This
6858                          * indicates a race with alloc_huge_page.  Adjust
6859                          * the subpool and reserve counts modified above
6860                          * based on the difference.
6861                          */
6862                         long rsv_adjust;
6863
6864                         /*
6865                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6866                          * reference to h_cg->css. See comment below for detail.
6867                          */
6868                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6869                                 hstate_index(h),
6870                                 (chg - add) * pages_per_huge_page(h), h_cg);
6871
6872                         rsv_adjust = hugepage_subpool_put_pages(spool,
6873                                                                 chg - add);
6874                         hugetlb_acct_memory(h, -rsv_adjust);
6875                 } else if (h_cg) {
6876                         /*
6877                          * The file_regions will hold their own reference to
6878                          * h_cg->css. So we should release the reference held
6879                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6880                          * done.
6881                          */
6882                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6883                 }
6884         }
6885         return true;
6886
6887 out_put_pages:
6888         /* put back original number of pages, chg */
6889         (void)hugepage_subpool_put_pages(spool, chg);
6890 out_uncharge_cgroup:
6891         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6892                                             chg * pages_per_huge_page(h), h_cg);
6893 out_err:
6894         hugetlb_vma_lock_free(vma);
6895         if (!vma || vma->vm_flags & VM_MAYSHARE)
6896                 /* Only call region_abort if the region_chg succeeded but the
6897                  * region_add failed or didn't run.
6898                  */
6899                 if (chg >= 0 && add < 0)
6900                         region_abort(resv_map, from, to, regions_needed);
6901         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6902                 kref_put(&resv_map->refs, resv_map_release);
6903         return false;
6904 }
6905
6906 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6907                                                                 long freed)
6908 {
6909         struct hstate *h = hstate_inode(inode);
6910         struct resv_map *resv_map = inode_resv_map(inode);
6911         long chg = 0;
6912         struct hugepage_subpool *spool = subpool_inode(inode);
6913         long gbl_reserve;
6914
6915         /*
6916          * Since this routine can be called in the evict inode path for all
6917          * hugetlbfs inodes, resv_map could be NULL.
6918          */
6919         if (resv_map) {
6920                 chg = region_del(resv_map, start, end);
6921                 /*
6922                  * region_del() can fail in the rare case where a region
6923                  * must be split and another region descriptor can not be
6924                  * allocated.  If end == LONG_MAX, it will not fail.
6925                  */
6926                 if (chg < 0)
6927                         return chg;
6928         }
6929
6930         spin_lock(&inode->i_lock);
6931         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6932         spin_unlock(&inode->i_lock);
6933
6934         /*
6935          * If the subpool has a minimum size, the number of global
6936          * reservations to be released may be adjusted.
6937          *
6938          * Note that !resv_map implies freed == 0. So (chg - freed)
6939          * won't go negative.
6940          */
6941         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6942         hugetlb_acct_memory(h, -gbl_reserve);
6943
6944         return 0;
6945 }
6946
6947 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6948 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6949                                 struct vm_area_struct *vma,
6950                                 unsigned long addr, pgoff_t idx)
6951 {
6952         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6953                                 svma->vm_start;
6954         unsigned long sbase = saddr & PUD_MASK;
6955         unsigned long s_end = sbase + PUD_SIZE;
6956
6957         /* Allow segments to share if only one is marked locked */
6958         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6959         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6960
6961         /*
6962          * match the virtual addresses, permission and the alignment of the
6963          * page table page.
6964          *
6965          * Also, vma_lock (vm_private_data) is required for sharing.
6966          */
6967         if (pmd_index(addr) != pmd_index(saddr) ||
6968             vm_flags != svm_flags ||
6969             !range_in_vma(svma, sbase, s_end) ||
6970             !svma->vm_private_data)
6971                 return 0;
6972
6973         return saddr;
6974 }
6975
6976 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6977 {
6978         unsigned long start = addr & PUD_MASK;
6979         unsigned long end = start + PUD_SIZE;
6980
6981 #ifdef CONFIG_USERFAULTFD
6982         if (uffd_disable_huge_pmd_share(vma))
6983                 return false;
6984 #endif
6985         /*
6986          * check on proper vm_flags and page table alignment
6987          */
6988         if (!(vma->vm_flags & VM_MAYSHARE))
6989                 return false;
6990         if (!vma->vm_private_data)      /* vma lock required for sharing */
6991                 return false;
6992         if (!range_in_vma(vma, start, end))
6993                 return false;
6994         return true;
6995 }
6996
6997 /*
6998  * Determine if start,end range within vma could be mapped by shared pmd.
6999  * If yes, adjust start and end to cover range associated with possible
7000  * shared pmd mappings.
7001  */
7002 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7003                                 unsigned long *start, unsigned long *end)
7004 {
7005         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7006                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7007
7008         /*
7009          * vma needs to span at least one aligned PUD size, and the range
7010          * must be at least partially within in.
7011          */
7012         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7013                 (*end <= v_start) || (*start >= v_end))
7014                 return;
7015
7016         /* Extend the range to be PUD aligned for a worst case scenario */
7017         if (*start > v_start)
7018                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7019
7020         if (*end < v_end)
7021                 *end = ALIGN(*end, PUD_SIZE);
7022 }
7023
7024 /*
7025  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7026  * and returns the corresponding pte. While this is not necessary for the
7027  * !shared pmd case because we can allocate the pmd later as well, it makes the
7028  * code much cleaner. pmd allocation is essential for the shared case because
7029  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7030  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7031  * bad pmd for sharing.
7032  */
7033 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7034                       unsigned long addr, pud_t *pud)
7035 {
7036         struct address_space *mapping = vma->vm_file->f_mapping;
7037         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7038                         vma->vm_pgoff;
7039         struct vm_area_struct *svma;
7040         unsigned long saddr;
7041         pte_t *spte = NULL;
7042         pte_t *pte;
7043         spinlock_t *ptl;
7044
7045         i_mmap_lock_read(mapping);
7046         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7047                 if (svma == vma)
7048                         continue;
7049
7050                 saddr = page_table_shareable(svma, vma, addr, idx);
7051                 if (saddr) {
7052                         spte = huge_pte_offset(svma->vm_mm, saddr,
7053                                                vma_mmu_pagesize(svma));
7054                         if (spte) {
7055                                 get_page(virt_to_page(spte));
7056                                 break;
7057                         }
7058                 }
7059         }
7060
7061         if (!spte)
7062                 goto out;
7063
7064         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7065         if (pud_none(*pud)) {
7066                 pud_populate(mm, pud,
7067                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7068                 mm_inc_nr_pmds(mm);
7069         } else {
7070                 put_page(virt_to_page(spte));
7071         }
7072         spin_unlock(ptl);
7073 out:
7074         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7075         i_mmap_unlock_read(mapping);
7076         return pte;
7077 }
7078
7079 /*
7080  * unmap huge page backed by shared pte.
7081  *
7082  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7083  * indicated by page_count > 1, unmap is achieved by clearing pud and
7084  * decrementing the ref count. If count == 1, the pte page is not shared.
7085  *
7086  * Called with page table lock held.
7087  *
7088  * returns: 1 successfully unmapped a shared pte page
7089  *          0 the underlying pte page is not shared, or it is the last user
7090  */
7091 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7092                                         unsigned long addr, pte_t *ptep)
7093 {
7094         pgd_t *pgd = pgd_offset(mm, addr);
7095         p4d_t *p4d = p4d_offset(pgd, addr);
7096         pud_t *pud = pud_offset(p4d, addr);
7097
7098         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7099         hugetlb_vma_assert_locked(vma);
7100         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7101         if (page_count(virt_to_page(ptep)) == 1)
7102                 return 0;
7103
7104         pud_clear(pud);
7105         put_page(virt_to_page(ptep));
7106         mm_dec_nr_pmds(mm);
7107         return 1;
7108 }
7109
7110 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7111
7112 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7113                       unsigned long addr, pud_t *pud)
7114 {
7115         return NULL;
7116 }
7117
7118 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7119                                 unsigned long addr, pte_t *ptep)
7120 {
7121         return 0;
7122 }
7123
7124 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7125                                 unsigned long *start, unsigned long *end)
7126 {
7127 }
7128
7129 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7130 {
7131         return false;
7132 }
7133 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7134
7135 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7136 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7137                         unsigned long addr, unsigned long sz)
7138 {
7139         pgd_t *pgd;
7140         p4d_t *p4d;
7141         pud_t *pud;
7142         pte_t *pte = NULL;
7143
7144         pgd = pgd_offset(mm, addr);
7145         p4d = p4d_alloc(mm, pgd, addr);
7146         if (!p4d)
7147                 return NULL;
7148         pud = pud_alloc(mm, p4d, addr);
7149         if (pud) {
7150                 if (sz == PUD_SIZE) {
7151                         pte = (pte_t *)pud;
7152                 } else {
7153                         BUG_ON(sz != PMD_SIZE);
7154                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7155                                 pte = huge_pmd_share(mm, vma, addr, pud);
7156                         else
7157                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7158                 }
7159         }
7160         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7161
7162         return pte;
7163 }
7164
7165 /*
7166  * huge_pte_offset() - Walk the page table to resolve the hugepage
7167  * entry at address @addr
7168  *
7169  * Return: Pointer to page table entry (PUD or PMD) for
7170  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7171  * size @sz doesn't match the hugepage size at this level of the page
7172  * table.
7173  */
7174 pte_t *huge_pte_offset(struct mm_struct *mm,
7175                        unsigned long addr, unsigned long sz)
7176 {
7177         pgd_t *pgd;
7178         p4d_t *p4d;
7179         pud_t *pud;
7180         pmd_t *pmd;
7181
7182         pgd = pgd_offset(mm, addr);
7183         if (!pgd_present(*pgd))
7184                 return NULL;
7185         p4d = p4d_offset(pgd, addr);
7186         if (!p4d_present(*p4d))
7187                 return NULL;
7188
7189         pud = pud_offset(p4d, addr);
7190         if (sz == PUD_SIZE)
7191                 /* must be pud huge, non-present or none */
7192                 return (pte_t *)pud;
7193         if (!pud_present(*pud))
7194                 return NULL;
7195         /* must have a valid entry and size to go further */
7196
7197         pmd = pmd_offset(pud, addr);
7198         /* must be pmd huge, non-present or none */
7199         return (pte_t *)pmd;
7200 }
7201
7202 /*
7203  * Return a mask that can be used to update an address to the last huge
7204  * page in a page table page mapping size.  Used to skip non-present
7205  * page table entries when linearly scanning address ranges.  Architectures
7206  * with unique huge page to page table relationships can define their own
7207  * version of this routine.
7208  */
7209 unsigned long hugetlb_mask_last_page(struct hstate *h)
7210 {
7211         unsigned long hp_size = huge_page_size(h);
7212
7213         if (hp_size == PUD_SIZE)
7214                 return P4D_SIZE - PUD_SIZE;
7215         else if (hp_size == PMD_SIZE)
7216                 return PUD_SIZE - PMD_SIZE;
7217         else
7218                 return 0UL;
7219 }
7220
7221 #else
7222
7223 /* See description above.  Architectures can provide their own version. */
7224 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7225 {
7226 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7227         if (huge_page_size(h) == PMD_SIZE)
7228                 return PUD_SIZE - PMD_SIZE;
7229 #endif
7230         return 0UL;
7231 }
7232
7233 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7234
7235 /*
7236  * These functions are overwritable if your architecture needs its own
7237  * behavior.
7238  */
7239 struct page * __weak
7240 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7241                               int write)
7242 {
7243         return ERR_PTR(-EINVAL);
7244 }
7245
7246 struct page * __weak
7247 follow_huge_pd(struct vm_area_struct *vma,
7248                unsigned long address, hugepd_t hpd, int flags, int pdshift)
7249 {
7250         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7251         return NULL;
7252 }
7253
7254 struct page * __weak
7255 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7256 {
7257         struct hstate *h = hstate_vma(vma);
7258         struct mm_struct *mm = vma->vm_mm;
7259         struct page *page = NULL;
7260         spinlock_t *ptl;
7261         pte_t *ptep, pte;
7262
7263         /*
7264          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7265          * follow_hugetlb_page().
7266          */
7267         if (WARN_ON_ONCE(flags & FOLL_PIN))
7268                 return NULL;
7269
7270 retry:
7271         ptep = huge_pte_offset(mm, address, huge_page_size(h));
7272         if (!ptep)
7273                 return NULL;
7274
7275         ptl = huge_pte_lock(h, mm, ptep);
7276         pte = huge_ptep_get(ptep);
7277         if (pte_present(pte)) {
7278                 page = pte_page(pte) +
7279                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7280                 /*
7281                  * try_grab_page() should always succeed here, because: a) we
7282                  * hold the pmd (ptl) lock, and b) we've just checked that the
7283                  * huge pmd (head) page is present in the page tables. The ptl
7284                  * prevents the head page and tail pages from being rearranged
7285                  * in any way. So this page must be available at this point,
7286                  * unless the page refcount overflowed:
7287                  */
7288                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7289                         page = NULL;
7290                         goto out;
7291                 }
7292         } else {
7293                 if (is_hugetlb_entry_migration(pte)) {
7294                         spin_unlock(ptl);
7295                         __migration_entry_wait_huge(ptep, ptl);
7296                         goto retry;
7297                 }
7298                 /*
7299                  * hwpoisoned entry is treated as no_page_table in
7300                  * follow_page_mask().
7301                  */
7302         }
7303 out:
7304         spin_unlock(ptl);
7305         return page;
7306 }
7307
7308 struct page * __weak
7309 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7310                 pud_t *pud, int flags)
7311 {
7312         struct page *page = NULL;
7313         spinlock_t *ptl;
7314         pte_t pte;
7315
7316         if (WARN_ON_ONCE(flags & FOLL_PIN))
7317                 return NULL;
7318
7319 retry:
7320         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7321         if (!pud_huge(*pud))
7322                 goto out;
7323         pte = huge_ptep_get((pte_t *)pud);
7324         if (pte_present(pte)) {
7325                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7326                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7327                         page = NULL;
7328                         goto out;
7329                 }
7330         } else {
7331                 if (is_hugetlb_entry_migration(pte)) {
7332                         spin_unlock(ptl);
7333                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7334                         goto retry;
7335                 }
7336                 /*
7337                  * hwpoisoned entry is treated as no_page_table in
7338                  * follow_page_mask().
7339                  */
7340         }
7341 out:
7342         spin_unlock(ptl);
7343         return page;
7344 }
7345
7346 struct page * __weak
7347 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7348 {
7349         if (flags & (FOLL_GET | FOLL_PIN))
7350                 return NULL;
7351
7352         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7353 }
7354
7355 int isolate_hugetlb(struct page *page, struct list_head *list)
7356 {
7357         int ret = 0;
7358
7359         spin_lock_irq(&hugetlb_lock);
7360         if (!PageHeadHuge(page) ||
7361             !HPageMigratable(page) ||
7362             !get_page_unless_zero(page)) {
7363                 ret = -EBUSY;
7364                 goto unlock;
7365         }
7366         ClearHPageMigratable(page);
7367         list_move_tail(&page->lru, list);
7368 unlock:
7369         spin_unlock_irq(&hugetlb_lock);
7370         return ret;
7371 }
7372
7373 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7374 {
7375         int ret = 0;
7376
7377         *hugetlb = false;
7378         spin_lock_irq(&hugetlb_lock);
7379         if (PageHeadHuge(page)) {
7380                 *hugetlb = true;
7381                 if (HPageFreed(page))
7382                         ret = 0;
7383                 else if (HPageMigratable(page))
7384                         ret = get_page_unless_zero(page);
7385                 else
7386                         ret = -EBUSY;
7387         }
7388         spin_unlock_irq(&hugetlb_lock);
7389         return ret;
7390 }
7391
7392 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7393 {
7394         int ret;
7395
7396         spin_lock_irq(&hugetlb_lock);
7397         ret = __get_huge_page_for_hwpoison(pfn, flags);
7398         spin_unlock_irq(&hugetlb_lock);
7399         return ret;
7400 }
7401
7402 void putback_active_hugepage(struct page *page)
7403 {
7404         spin_lock_irq(&hugetlb_lock);
7405         SetHPageMigratable(page);
7406         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7407         spin_unlock_irq(&hugetlb_lock);
7408         put_page(page);
7409 }
7410
7411 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7412 {
7413         struct hstate *h = page_hstate(oldpage);
7414
7415         hugetlb_cgroup_migrate(oldpage, newpage);
7416         set_page_owner_migrate_reason(newpage, reason);
7417
7418         /*
7419          * transfer temporary state of the new huge page. This is
7420          * reverse to other transitions because the newpage is going to
7421          * be final while the old one will be freed so it takes over
7422          * the temporary status.
7423          *
7424          * Also note that we have to transfer the per-node surplus state
7425          * here as well otherwise the global surplus count will not match
7426          * the per-node's.
7427          */
7428         if (HPageTemporary(newpage)) {
7429                 int old_nid = page_to_nid(oldpage);
7430                 int new_nid = page_to_nid(newpage);
7431
7432                 SetHPageTemporary(oldpage);
7433                 ClearHPageTemporary(newpage);
7434
7435                 /*
7436                  * There is no need to transfer the per-node surplus state
7437                  * when we do not cross the node.
7438                  */
7439                 if (new_nid == old_nid)
7440                         return;
7441                 spin_lock_irq(&hugetlb_lock);
7442                 if (h->surplus_huge_pages_node[old_nid]) {
7443                         h->surplus_huge_pages_node[old_nid]--;
7444                         h->surplus_huge_pages_node[new_nid]++;
7445                 }
7446                 spin_unlock_irq(&hugetlb_lock);
7447         }
7448 }
7449
7450 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7451                                    unsigned long start,
7452                                    unsigned long end)
7453 {
7454         struct hstate *h = hstate_vma(vma);
7455         unsigned long sz = huge_page_size(h);
7456         struct mm_struct *mm = vma->vm_mm;
7457         struct mmu_notifier_range range;
7458         unsigned long address;
7459         spinlock_t *ptl;
7460         pte_t *ptep;
7461
7462         if (!(vma->vm_flags & VM_MAYSHARE))
7463                 return;
7464
7465         if (start >= end)
7466                 return;
7467
7468         flush_cache_range(vma, start, end);
7469         /*
7470          * No need to call adjust_range_if_pmd_sharing_possible(), because
7471          * we have already done the PUD_SIZE alignment.
7472          */
7473         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7474                                 start, end);
7475         mmu_notifier_invalidate_range_start(&range);
7476         hugetlb_vma_lock_write(vma);
7477         i_mmap_lock_write(vma->vm_file->f_mapping);
7478         for (address = start; address < end; address += PUD_SIZE) {
7479                 ptep = huge_pte_offset(mm, address, sz);
7480                 if (!ptep)
7481                         continue;
7482                 ptl = huge_pte_lock(h, mm, ptep);
7483                 huge_pmd_unshare(mm, vma, address, ptep);
7484                 spin_unlock(ptl);
7485         }
7486         flush_hugetlb_tlb_range(vma, start, end);
7487         i_mmap_unlock_write(vma->vm_file->f_mapping);
7488         hugetlb_vma_unlock_write(vma);
7489         /*
7490          * No need to call mmu_notifier_invalidate_range(), see
7491          * Documentation/mm/mmu_notifier.rst.
7492          */
7493         mmu_notifier_invalidate_range_end(&range);
7494 }
7495
7496 /*
7497  * This function will unconditionally remove all the shared pmd pgtable entries
7498  * within the specific vma for a hugetlbfs memory range.
7499  */
7500 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7501 {
7502         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7503                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7504 }
7505
7506 #ifdef CONFIG_CMA
7507 static bool cma_reserve_called __initdata;
7508
7509 static int __init cmdline_parse_hugetlb_cma(char *p)
7510 {
7511         int nid, count = 0;
7512         unsigned long tmp;
7513         char *s = p;
7514
7515         while (*s) {
7516                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7517                         break;
7518
7519                 if (s[count] == ':') {
7520                         if (tmp >= MAX_NUMNODES)
7521                                 break;
7522                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7523
7524                         s += count + 1;
7525                         tmp = memparse(s, &s);
7526                         hugetlb_cma_size_in_node[nid] = tmp;
7527                         hugetlb_cma_size += tmp;
7528
7529                         /*
7530                          * Skip the separator if have one, otherwise
7531                          * break the parsing.
7532                          */
7533                         if (*s == ',')
7534                                 s++;
7535                         else
7536                                 break;
7537                 } else {
7538                         hugetlb_cma_size = memparse(p, &p);
7539                         break;
7540                 }
7541         }
7542
7543         return 0;
7544 }
7545
7546 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7547
7548 void __init hugetlb_cma_reserve(int order)
7549 {
7550         unsigned long size, reserved, per_node;
7551         bool node_specific_cma_alloc = false;
7552         int nid;
7553
7554         cma_reserve_called = true;
7555
7556         if (!hugetlb_cma_size)
7557                 return;
7558
7559         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7560                 if (hugetlb_cma_size_in_node[nid] == 0)
7561                         continue;
7562
7563                 if (!node_online(nid)) {
7564                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7565                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7566                         hugetlb_cma_size_in_node[nid] = 0;
7567                         continue;
7568                 }
7569
7570                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7571                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7572                                 nid, (PAGE_SIZE << order) / SZ_1M);
7573                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7574                         hugetlb_cma_size_in_node[nid] = 0;
7575                 } else {
7576                         node_specific_cma_alloc = true;
7577                 }
7578         }
7579
7580         /* Validate the CMA size again in case some invalid nodes specified. */
7581         if (!hugetlb_cma_size)
7582                 return;
7583
7584         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7585                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7586                         (PAGE_SIZE << order) / SZ_1M);
7587                 hugetlb_cma_size = 0;
7588                 return;
7589         }
7590
7591         if (!node_specific_cma_alloc) {
7592                 /*
7593                  * If 3 GB area is requested on a machine with 4 numa nodes,
7594                  * let's allocate 1 GB on first three nodes and ignore the last one.
7595                  */
7596                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7597                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7598                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7599         }
7600
7601         reserved = 0;
7602         for_each_online_node(nid) {
7603                 int res;
7604                 char name[CMA_MAX_NAME];
7605
7606                 if (node_specific_cma_alloc) {
7607                         if (hugetlb_cma_size_in_node[nid] == 0)
7608                                 continue;
7609
7610                         size = hugetlb_cma_size_in_node[nid];
7611                 } else {
7612                         size = min(per_node, hugetlb_cma_size - reserved);
7613                 }
7614
7615                 size = round_up(size, PAGE_SIZE << order);
7616
7617                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7618                 /*
7619                  * Note that 'order per bit' is based on smallest size that
7620                  * may be returned to CMA allocator in the case of
7621                  * huge page demotion.
7622                  */
7623                 res = cma_declare_contiguous_nid(0, size, 0,
7624                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7625                                                  0, false, name,
7626                                                  &hugetlb_cma[nid], nid);
7627                 if (res) {
7628                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7629                                 res, nid);
7630                         continue;
7631                 }
7632
7633                 reserved += size;
7634                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7635                         size / SZ_1M, nid);
7636
7637                 if (reserved >= hugetlb_cma_size)
7638                         break;
7639         }
7640
7641         if (!reserved)
7642                 /*
7643                  * hugetlb_cma_size is used to determine if allocations from
7644                  * cma are possible.  Set to zero if no cma regions are set up.
7645                  */
7646                 hugetlb_cma_size = 0;
7647 }
7648
7649 static void __init hugetlb_cma_check(void)
7650 {
7651         if (!hugetlb_cma_size || cma_reserve_called)
7652                 return;
7653
7654         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7655 }
7656
7657 #endif /* CONFIG_CMA */