m68k: Migrate exception table users off module.h and onto extable.h
[platform/kernel/linux-exynos.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         /* minimum size accounting */
149         if (spool->min_hpages != -1 && spool->rsv_hpages) {
150                 if (delta > spool->rsv_hpages) {
151                         /*
152                          * Asking for more reserves than those already taken on
153                          * behalf of subpool.  Return difference.
154                          */
155                         ret = delta - spool->rsv_hpages;
156                         spool->rsv_hpages = 0;
157                 } else {
158                         ret = 0;        /* reserves already accounted for */
159                         spool->rsv_hpages -= delta;
160                 }
161         }
162
163 unlock_ret:
164         spin_unlock(&spool->lock);
165         return ret;
166 }
167
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175                                        long delta)
176 {
177         long ret = delta;
178
179         if (!spool)
180                 return delta;
181
182         spin_lock(&spool->lock);
183
184         if (spool->max_hpages != -1)            /* maximum size accounting */
185                 spool->used_hpages -= delta;
186
187          /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189                 if (spool->rsv_hpages + delta <= spool->min_hpages)
190                         ret = 0;
191                 else
192                         ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194                 spool->rsv_hpages += delta;
195                 if (spool->rsv_hpages > spool->min_hpages)
196                         spool->rsv_hpages = spool->min_hpages;
197         }
198
199         /*
200          * If hugetlbfs_put_super couldn't free spool due to an outstanding
201          * quota reference, free it now.
202          */
203         unlock_or_release_subpool(spool);
204
205         return ret;
206 }
207
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210         return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215         return subpool_inode(file_inode(vma->vm_file));
216 }
217
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238         struct list_head link;
239         long from;
240         long to;
241 };
242
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259         struct list_head *head = &resv->regions;
260         struct file_region *rg, *nrg, *trg;
261         long add = 0;
262
263         spin_lock(&resv->lock);
264         /* Locate the region we are either in or before. */
265         list_for_each_entry(rg, head, link)
266                 if (f <= rg->to)
267                         break;
268
269         /*
270          * If no region exists which can be expanded to include the
271          * specified range, the list must have been modified by an
272          * interleving call to region_del().  Pull a region descriptor
273          * from the cache and use it for this range.
274          */
275         if (&rg->link == head || t < rg->from) {
276                 VM_BUG_ON(resv->region_cache_count <= 0);
277
278                 resv->region_cache_count--;
279                 nrg = list_first_entry(&resv->region_cache, struct file_region,
280                                         link);
281                 list_del(&nrg->link);
282
283                 nrg->from = f;
284                 nrg->to = t;
285                 list_add(&nrg->link, rg->link.prev);
286
287                 add += t - f;
288                 goto out_locked;
289         }
290
291         /* Round our left edge to the current segment if it encloses us. */
292         if (f > rg->from)
293                 f = rg->from;
294
295         /* Check for and consume any regions we now overlap with. */
296         nrg = rg;
297         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298                 if (&rg->link == head)
299                         break;
300                 if (rg->from > t)
301                         break;
302
303                 /* If this area reaches higher then extend our area to
304                  * include it completely.  If this is not the first area
305                  * which we intend to reuse, free it. */
306                 if (rg->to > t)
307                         t = rg->to;
308                 if (rg != nrg) {
309                         /* Decrement return value by the deleted range.
310                          * Another range will span this area so that by
311                          * end of routine add will be >= zero
312                          */
313                         add -= (rg->to - rg->from);
314                         list_del(&rg->link);
315                         kfree(rg);
316                 }
317         }
318
319         add += (nrg->from - f);         /* Added to beginning of region */
320         nrg->from = f;
321         add += t - nrg->to;             /* Added to end of region */
322         nrg->to = t;
323
324 out_locked:
325         resv->adds_in_progress--;
326         spin_unlock(&resv->lock);
327         VM_BUG_ON(add < 0);
328         return add;
329 }
330
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355         struct list_head *head = &resv->regions;
356         struct file_region *rg, *nrg = NULL;
357         long chg = 0;
358
359 retry:
360         spin_lock(&resv->lock);
361 retry_locked:
362         resv->adds_in_progress++;
363
364         /*
365          * Check for sufficient descriptors in the cache to accommodate
366          * the number of in progress add operations.
367          */
368         if (resv->adds_in_progress > resv->region_cache_count) {
369                 struct file_region *trg;
370
371                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372                 /* Must drop lock to allocate a new descriptor. */
373                 resv->adds_in_progress--;
374                 spin_unlock(&resv->lock);
375
376                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377                 if (!trg) {
378                         kfree(nrg);
379                         return -ENOMEM;
380                 }
381
382                 spin_lock(&resv->lock);
383                 list_add(&trg->link, &resv->region_cache);
384                 resv->region_cache_count++;
385                 goto retry_locked;
386         }
387
388         /* Locate the region we are before or in. */
389         list_for_each_entry(rg, head, link)
390                 if (f <= rg->to)
391                         break;
392
393         /* If we are below the current region then a new region is required.
394          * Subtle, allocate a new region at the position but make it zero
395          * size such that we can guarantee to record the reservation. */
396         if (&rg->link == head || t < rg->from) {
397                 if (!nrg) {
398                         resv->adds_in_progress--;
399                         spin_unlock(&resv->lock);
400                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401                         if (!nrg)
402                                 return -ENOMEM;
403
404                         nrg->from = f;
405                         nrg->to   = f;
406                         INIT_LIST_HEAD(&nrg->link);
407                         goto retry;
408                 }
409
410                 list_add(&nrg->link, rg->link.prev);
411                 chg = t - f;
412                 goto out_nrg;
413         }
414
415         /* Round our left edge to the current segment if it encloses us. */
416         if (f > rg->from)
417                 f = rg->from;
418         chg = t - f;
419
420         /* Check for and consume any regions we now overlap with. */
421         list_for_each_entry(rg, rg->link.prev, link) {
422                 if (&rg->link == head)
423                         break;
424                 if (rg->from > t)
425                         goto out;
426
427                 /* We overlap with this area, if it extends further than
428                  * us then we must extend ourselves.  Account for its
429                  * existing reservation. */
430                 if (rg->to > t) {
431                         chg += rg->to - t;
432                         t = rg->to;
433                 }
434                 chg -= rg->to - rg->from;
435         }
436
437 out:
438         spin_unlock(&resv->lock);
439         /*  We already know we raced and no longer need the new region */
440         kfree(nrg);
441         return chg;
442 out_nrg:
443         spin_unlock(&resv->lock);
444         return chg;
445 }
446
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460         spin_lock(&resv->lock);
461         VM_BUG_ON(!resv->region_cache_count);
462         resv->adds_in_progress--;
463         spin_unlock(&resv->lock);
464 }
465
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482         struct list_head *head = &resv->regions;
483         struct file_region *rg, *trg;
484         struct file_region *nrg = NULL;
485         long del = 0;
486
487 retry:
488         spin_lock(&resv->lock);
489         list_for_each_entry_safe(rg, trg, head, link) {
490                 /*
491                  * Skip regions before the range to be deleted.  file_region
492                  * ranges are normally of the form [from, to).  However, there
493                  * may be a "placeholder" entry in the map which is of the form
494                  * (from, to) with from == to.  Check for placeholder entries
495                  * at the beginning of the range to be deleted.
496                  */
497                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498                         continue;
499
500                 if (rg->from >= t)
501                         break;
502
503                 if (f > rg->from && t < rg->to) { /* Must split region */
504                         /*
505                          * Check for an entry in the cache before dropping
506                          * lock and attempting allocation.
507                          */
508                         if (!nrg &&
509                             resv->region_cache_count > resv->adds_in_progress) {
510                                 nrg = list_first_entry(&resv->region_cache,
511                                                         struct file_region,
512                                                         link);
513                                 list_del(&nrg->link);
514                                 resv->region_cache_count--;
515                         }
516
517                         if (!nrg) {
518                                 spin_unlock(&resv->lock);
519                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520                                 if (!nrg)
521                                         return -ENOMEM;
522                                 goto retry;
523                         }
524
525                         del += t - f;
526
527                         /* New entry for end of split region */
528                         nrg->from = t;
529                         nrg->to = rg->to;
530                         INIT_LIST_HEAD(&nrg->link);
531
532                         /* Original entry is trimmed */
533                         rg->to = f;
534
535                         list_add(&nrg->link, &rg->link);
536                         nrg = NULL;
537                         break;
538                 }
539
540                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541                         del += rg->to - rg->from;
542                         list_del(&rg->link);
543                         kfree(rg);
544                         continue;
545                 }
546
547                 if (f <= rg->from) {    /* Trim beginning of region */
548                         del += t - rg->from;
549                         rg->from = t;
550                 } else {                /* Trim end of region */
551                         del += rg->to - f;
552                         rg->to = f;
553                 }
554         }
555
556         spin_unlock(&resv->lock);
557         kfree(nrg);
558         return del;
559 }
560
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572         struct hugepage_subpool *spool = subpool_inode(inode);
573         long rsv_adjust;
574
575         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576         if (restore_reserve && rsv_adjust) {
577                 struct hstate *h = hstate_inode(inode);
578
579                 hugetlb_acct_memory(h, 1);
580         }
581 }
582
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589         struct list_head *head = &resv->regions;
590         struct file_region *rg;
591         long chg = 0;
592
593         spin_lock(&resv->lock);
594         /* Locate each segment we overlap with, and count that overlap. */
595         list_for_each_entry(rg, head, link) {
596                 long seg_from;
597                 long seg_to;
598
599                 if (rg->to <= f)
600                         continue;
601                 if (rg->from >= t)
602                         break;
603
604                 seg_from = max(rg->from, f);
605                 seg_to = min(rg->to, t);
606
607                 chg += seg_to - seg_from;
608         }
609         spin_unlock(&resv->lock);
610
611         return chg;
612 }
613
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619                         struct vm_area_struct *vma, unsigned long address)
620 {
621         return ((address - vma->vm_start) >> huge_page_shift(h)) +
622                         (vma->vm_pgoff >> huge_page_order(h));
623 }
624
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626                                      unsigned long address)
627 {
628         return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638         struct hstate *hstate;
639
640         if (!is_vm_hugetlb_page(vma))
641                 return PAGE_SIZE;
642
643         hstate = hstate_vma(vma);
644
645         return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658         return vma_kernel_pagesize(vma);
659 }
660 #endif
661
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692         return (unsigned long)vma->vm_private_data;
693 }
694
695 static void set_vma_private_data(struct vm_area_struct *vma,
696                                                         unsigned long value)
697 {
698         vma->vm_private_data = (void *)value;
699 }
700
701 struct resv_map *resv_map_alloc(void)
702 {
703         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706         if (!resv_map || !rg) {
707                 kfree(resv_map);
708                 kfree(rg);
709                 return NULL;
710         }
711
712         kref_init(&resv_map->refs);
713         spin_lock_init(&resv_map->lock);
714         INIT_LIST_HEAD(&resv_map->regions);
715
716         resv_map->adds_in_progress = 0;
717
718         INIT_LIST_HEAD(&resv_map->region_cache);
719         list_add(&rg->link, &resv_map->region_cache);
720         resv_map->region_cache_count = 1;
721
722         return resv_map;
723 }
724
725 void resv_map_release(struct kref *ref)
726 {
727         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728         struct list_head *head = &resv_map->region_cache;
729         struct file_region *rg, *trg;
730
731         /* Clear out any active regions before we release the map. */
732         region_del(resv_map, 0, LONG_MAX);
733
734         /* ... and any entries left in the cache */
735         list_for_each_entry_safe(rg, trg, head, link) {
736                 list_del(&rg->link);
737                 kfree(rg);
738         }
739
740         VM_BUG_ON(resv_map->adds_in_progress);
741
742         kfree(resv_map);
743 }
744
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747         return inode->i_mapping->private_data;
748 }
749
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753         if (vma->vm_flags & VM_MAYSHARE) {
754                 struct address_space *mapping = vma->vm_file->f_mapping;
755                 struct inode *inode = mapping->host;
756
757                 return inode_resv_map(inode);
758
759         } else {
760                 return (struct resv_map *)(get_vma_private_data(vma) &
761                                                         ~HPAGE_RESV_MASK);
762         }
763 }
764
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770         set_vma_private_data(vma, (get_vma_private_data(vma) &
771                                 HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786         return (get_vma_private_data(vma) & flag) != 0;
787 }
788
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793         if (!(vma->vm_flags & VM_MAYSHARE))
794                 vma->vm_private_data = (void *)0;
795 }
796
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800         if (vma->vm_flags & VM_NORESERVE) {
801                 /*
802                  * This address is already reserved by other process(chg == 0),
803                  * so, we should decrement reserved count. Without decrementing,
804                  * reserve count remains after releasing inode, because this
805                  * allocated page will go into page cache and is regarded as
806                  * coming from reserved pool in releasing step.  Currently, we
807                  * don't have any other solution to deal with this situation
808                  * properly, so add work-around here.
809                  */
810                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811                         return true;
812                 else
813                         return false;
814         }
815
816         /* Shared mappings always use reserves */
817         if (vma->vm_flags & VM_MAYSHARE) {
818                 /*
819                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820                  * be a region map for all pages.  The only situation where
821                  * there is no region map is if a hole was punched via
822                  * fallocate.  In this case, there really are no reverves to
823                  * use.  This situation is indicated if chg != 0.
824                  */
825                 if (chg)
826                         return false;
827                 else
828                         return true;
829         }
830
831         /*
832          * Only the process that called mmap() has reserves for
833          * private mappings.
834          */
835         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836                 /*
837                  * Like the shared case above, a hole punch or truncate
838                  * could have been performed on the private mapping.
839                  * Examine the value of chg to determine if reserves
840                  * actually exist or were previously consumed.
841                  * Very Subtle - The value of chg comes from a previous
842                  * call to vma_needs_reserves().  The reserve map for
843                  * private mappings has different (opposite) semantics
844                  * than that of shared mappings.  vma_needs_reserves()
845                  * has already taken this difference in semantics into
846                  * account.  Therefore, the meaning of chg is the same
847                  * as in the shared case above.  Code could easily be
848                  * combined, but keeping it separate draws attention to
849                  * subtle differences.
850                  */
851                 if (chg)
852                         return false;
853                 else
854                         return true;
855         }
856
857         return false;
858 }
859
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862         int nid = page_to_nid(page);
863         list_move(&page->lru, &h->hugepage_freelists[nid]);
864         h->free_huge_pages++;
865         h->free_huge_pages_node[nid]++;
866 }
867
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870         struct page *page;
871
872         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873                 if (!is_migrate_isolate_page(page))
874                         break;
875         /*
876          * if 'non-isolated free hugepage' not found on the list,
877          * the allocation fails.
878          */
879         if (&h->hugepage_freelists[nid] == &page->lru)
880                 return NULL;
881         list_move(&page->lru, &h->hugepage_activelist);
882         set_page_refcounted(page);
883         h->free_huge_pages--;
884         h->free_huge_pages_node[nid]--;
885         return page;
886 }
887
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892                 return GFP_HIGHUSER_MOVABLE;
893         else
894                 return GFP_HIGHUSER;
895 }
896
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898                                 struct vm_area_struct *vma,
899                                 unsigned long address, int avoid_reserve,
900                                 long chg)
901 {
902         struct page *page = NULL;
903         struct mempolicy *mpol;
904         nodemask_t *nodemask;
905         struct zonelist *zonelist;
906         struct zone *zone;
907         struct zoneref *z;
908         unsigned int cpuset_mems_cookie;
909
910         /*
911          * A child process with MAP_PRIVATE mappings created by their parent
912          * have no page reserves. This check ensures that reservations are
913          * not "stolen". The child may still get SIGKILLed
914          */
915         if (!vma_has_reserves(vma, chg) &&
916                         h->free_huge_pages - h->resv_huge_pages == 0)
917                 goto err;
918
919         /* If reserves cannot be used, ensure enough pages are in the pool */
920         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921                 goto err;
922
923 retry_cpuset:
924         cpuset_mems_cookie = read_mems_allowed_begin();
925         zonelist = huge_zonelist(vma, address,
926                                         htlb_alloc_mask(h), &mpol, &nodemask);
927
928         for_each_zone_zonelist_nodemask(zone, z, zonelist,
929                                                 MAX_NR_ZONES - 1, nodemask) {
930                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
932                         if (page) {
933                                 if (avoid_reserve)
934                                         break;
935                                 if (!vma_has_reserves(vma, chg))
936                                         break;
937
938                                 SetPagePrivate(page);
939                                 h->resv_huge_pages--;
940                                 break;
941                         }
942                 }
943         }
944
945         mpol_cond_put(mpol);
946         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947                 goto retry_cpuset;
948         return page;
949
950 err:
951         return NULL;
952 }
953
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963         nid = next_node_in(nid, *nodes_allowed);
964         VM_BUG_ON(nid >= MAX_NUMNODES);
965
966         return nid;
967 }
968
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971         if (!node_isset(nid, *nodes_allowed))
972                 nid = next_node_allowed(nid, nodes_allowed);
973         return nid;
974 }
975
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983                                         nodemask_t *nodes_allowed)
984 {
985         int nid;
986
987         VM_BUG_ON(!nodes_allowed);
988
989         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992         return nid;
993 }
994
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003         int nid;
1004
1005         VM_BUG_ON(!nodes_allowed);
1006
1007         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010         return nid;
1011 }
1012
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1014         for (nr_nodes = nodes_weight(*mask);                            \
1015                 nr_nodes > 0 &&                                         \
1016                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1017                 nr_nodes--)
1018
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1020         for (nr_nodes = nodes_weight(*mask);                            \
1021                 nr_nodes > 0 &&                                         \
1022                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1023                 nr_nodes--)
1024
1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027         defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029                                         unsigned int order)
1030 {
1031         int i;
1032         int nr_pages = 1 << order;
1033         struct page *p = page + 1;
1034
1035         atomic_set(compound_mapcount_ptr(page), 0);
1036         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037                 clear_compound_head(p);
1038                 set_page_refcounted(p);
1039         }
1040
1041         set_compound_order(page, 0);
1042         __ClearPageHead(page);
1043 }
1044
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047         free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051                                 unsigned long nr_pages)
1052 {
1053         unsigned long end_pfn = start_pfn + nr_pages;
1054         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058                         unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060         unsigned long i, end_pfn = start_pfn + nr_pages;
1061         struct page *page;
1062
1063         for (i = start_pfn; i < end_pfn; i++) {
1064                 if (!pfn_valid(i))
1065                         return false;
1066
1067                 page = pfn_to_page(i);
1068
1069                 if (page_zone(page) != z)
1070                         return false;
1071
1072                 if (PageReserved(page))
1073                         return false;
1074
1075                 if (page_count(page) > 0)
1076                         return false;
1077
1078                 if (PageHuge(page))
1079                         return false;
1080         }
1081
1082         return true;
1083 }
1084
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086                         unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088         unsigned long last_pfn = start_pfn + nr_pages - 1;
1089         return zone_spans_pfn(zone, last_pfn);
1090 }
1091
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094         unsigned long nr_pages = 1 << order;
1095         unsigned long ret, pfn, flags;
1096         struct zone *z;
1097
1098         z = NODE_DATA(nid)->node_zones;
1099         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100                 spin_lock_irqsave(&z->lock, flags);
1101
1102                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105                                 /*
1106                                  * We release the zone lock here because
1107                                  * alloc_contig_range() will also lock the zone
1108                                  * at some point. If there's an allocation
1109                                  * spinning on this lock, it may win the race
1110                                  * and cause alloc_contig_range() to fail...
1111                                  */
1112                                 spin_unlock_irqrestore(&z->lock, flags);
1113                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1114                                 if (!ret)
1115                                         return pfn_to_page(pfn);
1116                                 spin_lock_irqsave(&z->lock, flags);
1117                         }
1118                         pfn += nr_pages;
1119                 }
1120
1121                 spin_unlock_irqrestore(&z->lock, flags);
1122         }
1123
1124         return NULL;
1125 }
1126
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132         struct page *page;
1133
1134         page = alloc_gigantic_page(nid, huge_page_order(h));
1135         if (page) {
1136                 prep_compound_gigantic_page(page, huge_page_order(h));
1137                 prep_new_huge_page(h, page, nid);
1138         }
1139
1140         return page;
1141 }
1142
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144                                 nodemask_t *nodes_allowed)
1145 {
1146         struct page *page = NULL;
1147         int nr_nodes, node;
1148
1149         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150                 page = alloc_fresh_gigantic_page_node(h, node);
1151                 if (page)
1152                         return 1;
1153         }
1154
1155         return 0;
1156 }
1157
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165                                         nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170         int i;
1171
1172         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173                 return;
1174
1175         h->nr_huge_pages--;
1176         h->nr_huge_pages_node[page_to_nid(page)]--;
1177         for (i = 0; i < pages_per_huge_page(h); i++) {
1178                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179                                 1 << PG_referenced | 1 << PG_dirty |
1180                                 1 << PG_active | 1 << PG_private |
1181                                 1 << PG_writeback);
1182         }
1183         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185         set_page_refcounted(page);
1186         if (hstate_is_gigantic(h)) {
1187                 destroy_compound_gigantic_page(page, huge_page_order(h));
1188                 free_gigantic_page(page, huge_page_order(h));
1189         } else {
1190                 __free_pages(page, huge_page_order(h));
1191         }
1192 }
1193
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196         struct hstate *h;
1197
1198         for_each_hstate(h) {
1199                 if (huge_page_size(h) == size)
1200                         return h;
1201         }
1202         return NULL;
1203 }
1204
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHuge(page), page);
1214         return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221         SetPagePrivate(&page[1]);
1222 }
1223
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227         ClearPagePrivate(&page[1]);
1228 }
1229
1230 void free_huge_page(struct page *page)
1231 {
1232         /*
1233          * Can't pass hstate in here because it is called from the
1234          * compound page destructor.
1235          */
1236         struct hstate *h = page_hstate(page);
1237         int nid = page_to_nid(page);
1238         struct hugepage_subpool *spool =
1239                 (struct hugepage_subpool *)page_private(page);
1240         bool restore_reserve;
1241
1242         set_page_private(page, 0);
1243         page->mapping = NULL;
1244         VM_BUG_ON_PAGE(page_count(page), page);
1245         VM_BUG_ON_PAGE(page_mapcount(page), page);
1246         restore_reserve = PagePrivate(page);
1247         ClearPagePrivate(page);
1248
1249         /*
1250          * A return code of zero implies that the subpool will be under its
1251          * minimum size if the reservation is not restored after page is free.
1252          * Therefore, force restore_reserve operation.
1253          */
1254         if (hugepage_subpool_put_pages(spool, 1) == 0)
1255                 restore_reserve = true;
1256
1257         spin_lock(&hugetlb_lock);
1258         clear_page_huge_active(page);
1259         hugetlb_cgroup_uncharge_page(hstate_index(h),
1260                                      pages_per_huge_page(h), page);
1261         if (restore_reserve)
1262                 h->resv_huge_pages++;
1263
1264         if (h->surplus_huge_pages_node[nid]) {
1265                 /* remove the page from active list */
1266                 list_del(&page->lru);
1267                 update_and_free_page(h, page);
1268                 h->surplus_huge_pages--;
1269                 h->surplus_huge_pages_node[nid]--;
1270         } else {
1271                 arch_clear_hugepage_flags(page);
1272                 enqueue_huge_page(h, page);
1273         }
1274         spin_unlock(&hugetlb_lock);
1275 }
1276
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279         INIT_LIST_HEAD(&page->lru);
1280         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281         spin_lock(&hugetlb_lock);
1282         set_hugetlb_cgroup(page, NULL);
1283         h->nr_huge_pages++;
1284         h->nr_huge_pages_node[nid]++;
1285         spin_unlock(&hugetlb_lock);
1286         put_page(page); /* free it into the hugepage allocator */
1287 }
1288
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291         int i;
1292         int nr_pages = 1 << order;
1293         struct page *p = page + 1;
1294
1295         /* we rely on prep_new_huge_page to set the destructor */
1296         set_compound_order(page, order);
1297         __ClearPageReserved(page);
1298         __SetPageHead(page);
1299         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300                 /*
1301                  * For gigantic hugepages allocated through bootmem at
1302                  * boot, it's safer to be consistent with the not-gigantic
1303                  * hugepages and clear the PG_reserved bit from all tail pages
1304                  * too.  Otherwse drivers using get_user_pages() to access tail
1305                  * pages may get the reference counting wrong if they see
1306                  * PG_reserved set on a tail page (despite the head page not
1307                  * having PG_reserved set).  Enforcing this consistency between
1308                  * head and tail pages allows drivers to optimize away a check
1309                  * on the head page when they need know if put_page() is needed
1310                  * after get_user_pages().
1311                  */
1312                 __ClearPageReserved(p);
1313                 set_page_count(p, 0);
1314                 set_compound_head(p, page);
1315         }
1316         atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326         if (!PageCompound(page))
1327                 return 0;
1328
1329         page = compound_head(page);
1330         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340         if (!PageHead(page_head))
1341                 return 0;
1342
1343         return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348         struct page *page_head = compound_head(page);
1349         pgoff_t index = page_index(page_head);
1350         unsigned long compound_idx;
1351
1352         if (!PageHuge(page_head))
1353                 return page_index(page);
1354
1355         if (compound_order(page_head) >= MAX_ORDER)
1356                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357         else
1358                 compound_idx = page - page_head;
1359
1360         return (index << compound_order(page_head)) + compound_idx;
1361 }
1362
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365         struct page *page;
1366
1367         page = __alloc_pages_node(nid,
1368                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369                                                 __GFP_REPEAT|__GFP_NOWARN,
1370                 huge_page_order(h));
1371         if (page) {
1372                 prep_new_huge_page(h, page, nid);
1373         }
1374
1375         return page;
1376 }
1377
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380         struct page *page;
1381         int nr_nodes, node;
1382         int ret = 0;
1383
1384         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385                 page = alloc_fresh_huge_page_node(h, node);
1386                 if (page) {
1387                         ret = 1;
1388                         break;
1389                 }
1390         }
1391
1392         if (ret)
1393                 count_vm_event(HTLB_BUDDY_PGALLOC);
1394         else
1395                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397         return ret;
1398 }
1399
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407                                                          bool acct_surplus)
1408 {
1409         int nr_nodes, node;
1410         int ret = 0;
1411
1412         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413                 /*
1414                  * If we're returning unused surplus pages, only examine
1415                  * nodes with surplus pages.
1416                  */
1417                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418                     !list_empty(&h->hugepage_freelists[node])) {
1419                         struct page *page =
1420                                 list_entry(h->hugepage_freelists[node].next,
1421                                           struct page, lru);
1422                         list_del(&page->lru);
1423                         h->free_huge_pages--;
1424                         h->free_huge_pages_node[node]--;
1425                         if (acct_surplus) {
1426                                 h->surplus_huge_pages--;
1427                                 h->surplus_huge_pages_node[node]--;
1428                         }
1429                         update_and_free_page(h, page);
1430                         ret = 1;
1431                         break;
1432                 }
1433         }
1434
1435         return ret;
1436 }
1437
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages.
1441  */
1442 static void dissolve_free_huge_page(struct page *page)
1443 {
1444         spin_lock(&hugetlb_lock);
1445         if (PageHuge(page) && !page_count(page)) {
1446                 struct hstate *h = page_hstate(page);
1447                 int nid = page_to_nid(page);
1448                 list_del(&page->lru);
1449                 h->free_huge_pages--;
1450                 h->free_huge_pages_node[nid]--;
1451                 update_and_free_page(h, page);
1452         }
1453         spin_unlock(&hugetlb_lock);
1454 }
1455
1456 /*
1457  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1458  * make specified memory blocks removable from the system.
1459  * Note that start_pfn should aligned with (minimum) hugepage size.
1460  */
1461 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1462 {
1463         unsigned long pfn;
1464
1465         if (!hugepages_supported())
1466                 return;
1467
1468         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1469         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1470                 dissolve_free_huge_page(pfn_to_page(pfn));
1471 }
1472
1473 /*
1474  * There are 3 ways this can get called:
1475  * 1. With vma+addr: we use the VMA's memory policy
1476  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1477  *    page from any node, and let the buddy allocator itself figure
1478  *    it out.
1479  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1480  *    strictly from 'nid'
1481  */
1482 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1483                 struct vm_area_struct *vma, unsigned long addr, int nid)
1484 {
1485         int order = huge_page_order(h);
1486         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1487         unsigned int cpuset_mems_cookie;
1488
1489         /*
1490          * We need a VMA to get a memory policy.  If we do not
1491          * have one, we use the 'nid' argument.
1492          *
1493          * The mempolicy stuff below has some non-inlined bits
1494          * and calls ->vm_ops.  That makes it hard to optimize at
1495          * compile-time, even when NUMA is off and it does
1496          * nothing.  This helps the compiler optimize it out.
1497          */
1498         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1499                 /*
1500                  * If a specific node is requested, make sure to
1501                  * get memory from there, but only when a node
1502                  * is explicitly specified.
1503                  */
1504                 if (nid != NUMA_NO_NODE)
1505                         gfp |= __GFP_THISNODE;
1506                 /*
1507                  * Make sure to call something that can handle
1508                  * nid=NUMA_NO_NODE
1509                  */
1510                 return alloc_pages_node(nid, gfp, order);
1511         }
1512
1513         /*
1514          * OK, so we have a VMA.  Fetch the mempolicy and try to
1515          * allocate a huge page with it.  We will only reach this
1516          * when CONFIG_NUMA=y.
1517          */
1518         do {
1519                 struct page *page;
1520                 struct mempolicy *mpol;
1521                 struct zonelist *zl;
1522                 nodemask_t *nodemask;
1523
1524                 cpuset_mems_cookie = read_mems_allowed_begin();
1525                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1526                 mpol_cond_put(mpol);
1527                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1528                 if (page)
1529                         return page;
1530         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1531
1532         return NULL;
1533 }
1534
1535 /*
1536  * There are two ways to allocate a huge page:
1537  * 1. When you have a VMA and an address (like a fault)
1538  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1539  *
1540  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1541  * this case which signifies that the allocation should be done with
1542  * respect for the VMA's memory policy.
1543  *
1544  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1545  * implies that memory policies will not be taken in to account.
1546  */
1547 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1548                 struct vm_area_struct *vma, unsigned long addr, int nid)
1549 {
1550         struct page *page;
1551         unsigned int r_nid;
1552
1553         if (hstate_is_gigantic(h))
1554                 return NULL;
1555
1556         /*
1557          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1558          * This makes sure the caller is picking _one_ of the modes with which
1559          * we can call this function, not both.
1560          */
1561         if (vma || (addr != -1)) {
1562                 VM_WARN_ON_ONCE(addr == -1);
1563                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1564         }
1565         /*
1566          * Assume we will successfully allocate the surplus page to
1567          * prevent racing processes from causing the surplus to exceed
1568          * overcommit
1569          *
1570          * This however introduces a different race, where a process B
1571          * tries to grow the static hugepage pool while alloc_pages() is
1572          * called by process A. B will only examine the per-node
1573          * counters in determining if surplus huge pages can be
1574          * converted to normal huge pages in adjust_pool_surplus(). A
1575          * won't be able to increment the per-node counter, until the
1576          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1577          * no more huge pages can be converted from surplus to normal
1578          * state (and doesn't try to convert again). Thus, we have a
1579          * case where a surplus huge page exists, the pool is grown, and
1580          * the surplus huge page still exists after, even though it
1581          * should just have been converted to a normal huge page. This
1582          * does not leak memory, though, as the hugepage will be freed
1583          * once it is out of use. It also does not allow the counters to
1584          * go out of whack in adjust_pool_surplus() as we don't modify
1585          * the node values until we've gotten the hugepage and only the
1586          * per-node value is checked there.
1587          */
1588         spin_lock(&hugetlb_lock);
1589         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1590                 spin_unlock(&hugetlb_lock);
1591                 return NULL;
1592         } else {
1593                 h->nr_huge_pages++;
1594                 h->surplus_huge_pages++;
1595         }
1596         spin_unlock(&hugetlb_lock);
1597
1598         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1599
1600         spin_lock(&hugetlb_lock);
1601         if (page) {
1602                 INIT_LIST_HEAD(&page->lru);
1603                 r_nid = page_to_nid(page);
1604                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1605                 set_hugetlb_cgroup(page, NULL);
1606                 /*
1607                  * We incremented the global counters already
1608                  */
1609                 h->nr_huge_pages_node[r_nid]++;
1610                 h->surplus_huge_pages_node[r_nid]++;
1611                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1612         } else {
1613                 h->nr_huge_pages--;
1614                 h->surplus_huge_pages--;
1615                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1616         }
1617         spin_unlock(&hugetlb_lock);
1618
1619         return page;
1620 }
1621
1622 /*
1623  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1624  * NUMA_NO_NODE, which means that it may be allocated
1625  * anywhere.
1626  */
1627 static
1628 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1629 {
1630         unsigned long addr = -1;
1631
1632         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1633 }
1634
1635 /*
1636  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1637  */
1638 static
1639 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1640                 struct vm_area_struct *vma, unsigned long addr)
1641 {
1642         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1643 }
1644
1645 /*
1646  * This allocation function is useful in the context where vma is irrelevant.
1647  * E.g. soft-offlining uses this function because it only cares physical
1648  * address of error page.
1649  */
1650 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1651 {
1652         struct page *page = NULL;
1653
1654         spin_lock(&hugetlb_lock);
1655         if (h->free_huge_pages - h->resv_huge_pages > 0)
1656                 page = dequeue_huge_page_node(h, nid);
1657         spin_unlock(&hugetlb_lock);
1658
1659         if (!page)
1660                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1661
1662         return page;
1663 }
1664
1665 /*
1666  * Increase the hugetlb pool such that it can accommodate a reservation
1667  * of size 'delta'.
1668  */
1669 static int gather_surplus_pages(struct hstate *h, int delta)
1670 {
1671         struct list_head surplus_list;
1672         struct page *page, *tmp;
1673         int ret, i;
1674         int needed, allocated;
1675         bool alloc_ok = true;
1676
1677         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1678         if (needed <= 0) {
1679                 h->resv_huge_pages += delta;
1680                 return 0;
1681         }
1682
1683         allocated = 0;
1684         INIT_LIST_HEAD(&surplus_list);
1685
1686         ret = -ENOMEM;
1687 retry:
1688         spin_unlock(&hugetlb_lock);
1689         for (i = 0; i < needed; i++) {
1690                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1691                 if (!page) {
1692                         alloc_ok = false;
1693                         break;
1694                 }
1695                 list_add(&page->lru, &surplus_list);
1696         }
1697         allocated += i;
1698
1699         /*
1700          * After retaking hugetlb_lock, we need to recalculate 'needed'
1701          * because either resv_huge_pages or free_huge_pages may have changed.
1702          */
1703         spin_lock(&hugetlb_lock);
1704         needed = (h->resv_huge_pages + delta) -
1705                         (h->free_huge_pages + allocated);
1706         if (needed > 0) {
1707                 if (alloc_ok)
1708                         goto retry;
1709                 /*
1710                  * We were not able to allocate enough pages to
1711                  * satisfy the entire reservation so we free what
1712                  * we've allocated so far.
1713                  */
1714                 goto free;
1715         }
1716         /*
1717          * The surplus_list now contains _at_least_ the number of extra pages
1718          * needed to accommodate the reservation.  Add the appropriate number
1719          * of pages to the hugetlb pool and free the extras back to the buddy
1720          * allocator.  Commit the entire reservation here to prevent another
1721          * process from stealing the pages as they are added to the pool but
1722          * before they are reserved.
1723          */
1724         needed += allocated;
1725         h->resv_huge_pages += delta;
1726         ret = 0;
1727
1728         /* Free the needed pages to the hugetlb pool */
1729         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1730                 if ((--needed) < 0)
1731                         break;
1732                 /*
1733                  * This page is now managed by the hugetlb allocator and has
1734                  * no users -- drop the buddy allocator's reference.
1735                  */
1736                 put_page_testzero(page);
1737                 VM_BUG_ON_PAGE(page_count(page), page);
1738                 enqueue_huge_page(h, page);
1739         }
1740 free:
1741         spin_unlock(&hugetlb_lock);
1742
1743         /* Free unnecessary surplus pages to the buddy allocator */
1744         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1745                 put_page(page);
1746         spin_lock(&hugetlb_lock);
1747
1748         return ret;
1749 }
1750
1751 /*
1752  * When releasing a hugetlb pool reservation, any surplus pages that were
1753  * allocated to satisfy the reservation must be explicitly freed if they were
1754  * never used.
1755  * Called with hugetlb_lock held.
1756  */
1757 static void return_unused_surplus_pages(struct hstate *h,
1758                                         unsigned long unused_resv_pages)
1759 {
1760         unsigned long nr_pages;
1761
1762         /* Uncommit the reservation */
1763         h->resv_huge_pages -= unused_resv_pages;
1764
1765         /* Cannot return gigantic pages currently */
1766         if (hstate_is_gigantic(h))
1767                 return;
1768
1769         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1770
1771         /*
1772          * We want to release as many surplus pages as possible, spread
1773          * evenly across all nodes with memory. Iterate across these nodes
1774          * until we can no longer free unreserved surplus pages. This occurs
1775          * when the nodes with surplus pages have no free pages.
1776          * free_pool_huge_page() will balance the the freed pages across the
1777          * on-line nodes with memory and will handle the hstate accounting.
1778          */
1779         while (nr_pages--) {
1780                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1781                         break;
1782                 cond_resched_lock(&hugetlb_lock);
1783         }
1784 }
1785
1786
1787 /*
1788  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789  * are used by the huge page allocation routines to manage reservations.
1790  *
1791  * vma_needs_reservation is called to determine if the huge page at addr
1792  * within the vma has an associated reservation.  If a reservation is
1793  * needed, the value 1 is returned.  The caller is then responsible for
1794  * managing the global reservation and subpool usage counts.  After
1795  * the huge page has been allocated, vma_commit_reservation is called
1796  * to add the page to the reservation map.  If the page allocation fails,
1797  * the reservation must be ended instead of committed.  vma_end_reservation
1798  * is called in such cases.
1799  *
1800  * In the normal case, vma_commit_reservation returns the same value
1801  * as the preceding vma_needs_reservation call.  The only time this
1802  * is not the case is if a reserve map was changed between calls.  It
1803  * is the responsibility of the caller to notice the difference and
1804  * take appropriate action.
1805  */
1806 enum vma_resv_mode {
1807         VMA_NEEDS_RESV,
1808         VMA_COMMIT_RESV,
1809         VMA_END_RESV,
1810 };
1811 static long __vma_reservation_common(struct hstate *h,
1812                                 struct vm_area_struct *vma, unsigned long addr,
1813                                 enum vma_resv_mode mode)
1814 {
1815         struct resv_map *resv;
1816         pgoff_t idx;
1817         long ret;
1818
1819         resv = vma_resv_map(vma);
1820         if (!resv)
1821                 return 1;
1822
1823         idx = vma_hugecache_offset(h, vma, addr);
1824         switch (mode) {
1825         case VMA_NEEDS_RESV:
1826                 ret = region_chg(resv, idx, idx + 1);
1827                 break;
1828         case VMA_COMMIT_RESV:
1829                 ret = region_add(resv, idx, idx + 1);
1830                 break;
1831         case VMA_END_RESV:
1832                 region_abort(resv, idx, idx + 1);
1833                 ret = 0;
1834                 break;
1835         default:
1836                 BUG();
1837         }
1838
1839         if (vma->vm_flags & VM_MAYSHARE)
1840                 return ret;
1841         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1842                 /*
1843                  * In most cases, reserves always exist for private mappings.
1844                  * However, a file associated with mapping could have been
1845                  * hole punched or truncated after reserves were consumed.
1846                  * As subsequent fault on such a range will not use reserves.
1847                  * Subtle - The reserve map for private mappings has the
1848                  * opposite meaning than that of shared mappings.  If NO
1849                  * entry is in the reserve map, it means a reservation exists.
1850                  * If an entry exists in the reserve map, it means the
1851                  * reservation has already been consumed.  As a result, the
1852                  * return value of this routine is the opposite of the
1853                  * value returned from reserve map manipulation routines above.
1854                  */
1855                 if (ret)
1856                         return 0;
1857                 else
1858                         return 1;
1859         }
1860         else
1861                 return ret < 0 ? ret : 0;
1862 }
1863
1864 static long vma_needs_reservation(struct hstate *h,
1865                         struct vm_area_struct *vma, unsigned long addr)
1866 {
1867         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1868 }
1869
1870 static long vma_commit_reservation(struct hstate *h,
1871                         struct vm_area_struct *vma, unsigned long addr)
1872 {
1873         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1874 }
1875
1876 static void vma_end_reservation(struct hstate *h,
1877                         struct vm_area_struct *vma, unsigned long addr)
1878 {
1879         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1880 }
1881
1882 struct page *alloc_huge_page(struct vm_area_struct *vma,
1883                                     unsigned long addr, int avoid_reserve)
1884 {
1885         struct hugepage_subpool *spool = subpool_vma(vma);
1886         struct hstate *h = hstate_vma(vma);
1887         struct page *page;
1888         long map_chg, map_commit;
1889         long gbl_chg;
1890         int ret, idx;
1891         struct hugetlb_cgroup *h_cg;
1892
1893         idx = hstate_index(h);
1894         /*
1895          * Examine the region/reserve map to determine if the process
1896          * has a reservation for the page to be allocated.  A return
1897          * code of zero indicates a reservation exists (no change).
1898          */
1899         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1900         if (map_chg < 0)
1901                 return ERR_PTR(-ENOMEM);
1902
1903         /*
1904          * Processes that did not create the mapping will have no
1905          * reserves as indicated by the region/reserve map. Check
1906          * that the allocation will not exceed the subpool limit.
1907          * Allocations for MAP_NORESERVE mappings also need to be
1908          * checked against any subpool limit.
1909          */
1910         if (map_chg || avoid_reserve) {
1911                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1912                 if (gbl_chg < 0) {
1913                         vma_end_reservation(h, vma, addr);
1914                         return ERR_PTR(-ENOSPC);
1915                 }
1916
1917                 /*
1918                  * Even though there was no reservation in the region/reserve
1919                  * map, there could be reservations associated with the
1920                  * subpool that can be used.  This would be indicated if the
1921                  * return value of hugepage_subpool_get_pages() is zero.
1922                  * However, if avoid_reserve is specified we still avoid even
1923                  * the subpool reservations.
1924                  */
1925                 if (avoid_reserve)
1926                         gbl_chg = 1;
1927         }
1928
1929         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1930         if (ret)
1931                 goto out_subpool_put;
1932
1933         spin_lock(&hugetlb_lock);
1934         /*
1935          * glb_chg is passed to indicate whether or not a page must be taken
1936          * from the global free pool (global change).  gbl_chg == 0 indicates
1937          * a reservation exists for the allocation.
1938          */
1939         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1940         if (!page) {
1941                 spin_unlock(&hugetlb_lock);
1942                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1943                 if (!page)
1944                         goto out_uncharge_cgroup;
1945                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1946                         SetPagePrivate(page);
1947                         h->resv_huge_pages--;
1948                 }
1949                 spin_lock(&hugetlb_lock);
1950                 list_move(&page->lru, &h->hugepage_activelist);
1951                 /* Fall through */
1952         }
1953         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1954         spin_unlock(&hugetlb_lock);
1955
1956         set_page_private(page, (unsigned long)spool);
1957
1958         map_commit = vma_commit_reservation(h, vma, addr);
1959         if (unlikely(map_chg > map_commit)) {
1960                 /*
1961                  * The page was added to the reservation map between
1962                  * vma_needs_reservation and vma_commit_reservation.
1963                  * This indicates a race with hugetlb_reserve_pages.
1964                  * Adjust for the subpool count incremented above AND
1965                  * in hugetlb_reserve_pages for the same page.  Also,
1966                  * the reservation count added in hugetlb_reserve_pages
1967                  * no longer applies.
1968                  */
1969                 long rsv_adjust;
1970
1971                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1972                 hugetlb_acct_memory(h, -rsv_adjust);
1973         }
1974         return page;
1975
1976 out_uncharge_cgroup:
1977         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1978 out_subpool_put:
1979         if (map_chg || avoid_reserve)
1980                 hugepage_subpool_put_pages(spool, 1);
1981         vma_end_reservation(h, vma, addr);
1982         return ERR_PTR(-ENOSPC);
1983 }
1984
1985 /*
1986  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1987  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1988  * where no ERR_VALUE is expected to be returned.
1989  */
1990 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1991                                 unsigned long addr, int avoid_reserve)
1992 {
1993         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1994         if (IS_ERR(page))
1995                 page = NULL;
1996         return page;
1997 }
1998
1999 int __weak alloc_bootmem_huge_page(struct hstate *h)
2000 {
2001         struct huge_bootmem_page *m;
2002         int nr_nodes, node;
2003
2004         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2005                 void *addr;
2006
2007                 addr = memblock_virt_alloc_try_nid_nopanic(
2008                                 huge_page_size(h), huge_page_size(h),
2009                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2010                 if (addr) {
2011                         /*
2012                          * Use the beginning of the huge page to store the
2013                          * huge_bootmem_page struct (until gather_bootmem
2014                          * puts them into the mem_map).
2015                          */
2016                         m = addr;
2017                         goto found;
2018                 }
2019         }
2020         return 0;
2021
2022 found:
2023         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2024         /* Put them into a private list first because mem_map is not up yet */
2025         list_add(&m->list, &huge_boot_pages);
2026         m->hstate = h;
2027         return 1;
2028 }
2029
2030 static void __init prep_compound_huge_page(struct page *page,
2031                 unsigned int order)
2032 {
2033         if (unlikely(order > (MAX_ORDER - 1)))
2034                 prep_compound_gigantic_page(page, order);
2035         else
2036                 prep_compound_page(page, order);
2037 }
2038
2039 /* Put bootmem huge pages into the standard lists after mem_map is up */
2040 static void __init gather_bootmem_prealloc(void)
2041 {
2042         struct huge_bootmem_page *m;
2043
2044         list_for_each_entry(m, &huge_boot_pages, list) {
2045                 struct hstate *h = m->hstate;
2046                 struct page *page;
2047
2048 #ifdef CONFIG_HIGHMEM
2049                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2050                 memblock_free_late(__pa(m),
2051                                    sizeof(struct huge_bootmem_page));
2052 #else
2053                 page = virt_to_page(m);
2054 #endif
2055                 WARN_ON(page_count(page) != 1);
2056                 prep_compound_huge_page(page, h->order);
2057                 WARN_ON(PageReserved(page));
2058                 prep_new_huge_page(h, page, page_to_nid(page));
2059                 /*
2060                  * If we had gigantic hugepages allocated at boot time, we need
2061                  * to restore the 'stolen' pages to totalram_pages in order to
2062                  * fix confusing memory reports from free(1) and another
2063                  * side-effects, like CommitLimit going negative.
2064                  */
2065                 if (hstate_is_gigantic(h))
2066                         adjust_managed_page_count(page, 1 << h->order);
2067         }
2068 }
2069
2070 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2071 {
2072         unsigned long i;
2073
2074         for (i = 0; i < h->max_huge_pages; ++i) {
2075                 if (hstate_is_gigantic(h)) {
2076                         if (!alloc_bootmem_huge_page(h))
2077                                 break;
2078                 } else if (!alloc_fresh_huge_page(h,
2079                                          &node_states[N_MEMORY]))
2080                         break;
2081         }
2082         h->max_huge_pages = i;
2083 }
2084
2085 static void __init hugetlb_init_hstates(void)
2086 {
2087         struct hstate *h;
2088
2089         for_each_hstate(h) {
2090                 if (minimum_order > huge_page_order(h))
2091                         minimum_order = huge_page_order(h);
2092
2093                 /* oversize hugepages were init'ed in early boot */
2094                 if (!hstate_is_gigantic(h))
2095                         hugetlb_hstate_alloc_pages(h);
2096         }
2097         VM_BUG_ON(minimum_order == UINT_MAX);
2098 }
2099
2100 static char * __init memfmt(char *buf, unsigned long n)
2101 {
2102         if (n >= (1UL << 30))
2103                 sprintf(buf, "%lu GB", n >> 30);
2104         else if (n >= (1UL << 20))
2105                 sprintf(buf, "%lu MB", n >> 20);
2106         else
2107                 sprintf(buf, "%lu KB", n >> 10);
2108         return buf;
2109 }
2110
2111 static void __init report_hugepages(void)
2112 {
2113         struct hstate *h;
2114
2115         for_each_hstate(h) {
2116                 char buf[32];
2117                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2118                         memfmt(buf, huge_page_size(h)),
2119                         h->free_huge_pages);
2120         }
2121 }
2122
2123 #ifdef CONFIG_HIGHMEM
2124 static void try_to_free_low(struct hstate *h, unsigned long count,
2125                                                 nodemask_t *nodes_allowed)
2126 {
2127         int i;
2128
2129         if (hstate_is_gigantic(h))
2130                 return;
2131
2132         for_each_node_mask(i, *nodes_allowed) {
2133                 struct page *page, *next;
2134                 struct list_head *freel = &h->hugepage_freelists[i];
2135                 list_for_each_entry_safe(page, next, freel, lru) {
2136                         if (count >= h->nr_huge_pages)
2137                                 return;
2138                         if (PageHighMem(page))
2139                                 continue;
2140                         list_del(&page->lru);
2141                         update_and_free_page(h, page);
2142                         h->free_huge_pages--;
2143                         h->free_huge_pages_node[page_to_nid(page)]--;
2144                 }
2145         }
2146 }
2147 #else
2148 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2149                                                 nodemask_t *nodes_allowed)
2150 {
2151 }
2152 #endif
2153
2154 /*
2155  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2156  * balanced by operating on them in a round-robin fashion.
2157  * Returns 1 if an adjustment was made.
2158  */
2159 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2160                                 int delta)
2161 {
2162         int nr_nodes, node;
2163
2164         VM_BUG_ON(delta != -1 && delta != 1);
2165
2166         if (delta < 0) {
2167                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2168                         if (h->surplus_huge_pages_node[node])
2169                                 goto found;
2170                 }
2171         } else {
2172                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2173                         if (h->surplus_huge_pages_node[node] <
2174                                         h->nr_huge_pages_node[node])
2175                                 goto found;
2176                 }
2177         }
2178         return 0;
2179
2180 found:
2181         h->surplus_huge_pages += delta;
2182         h->surplus_huge_pages_node[node] += delta;
2183         return 1;
2184 }
2185
2186 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2187 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2188                                                 nodemask_t *nodes_allowed)
2189 {
2190         unsigned long min_count, ret;
2191
2192         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2193                 return h->max_huge_pages;
2194
2195         /*
2196          * Increase the pool size
2197          * First take pages out of surplus state.  Then make up the
2198          * remaining difference by allocating fresh huge pages.
2199          *
2200          * We might race with __alloc_buddy_huge_page() here and be unable
2201          * to convert a surplus huge page to a normal huge page. That is
2202          * not critical, though, it just means the overall size of the
2203          * pool might be one hugepage larger than it needs to be, but
2204          * within all the constraints specified by the sysctls.
2205          */
2206         spin_lock(&hugetlb_lock);
2207         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2208                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2209                         break;
2210         }
2211
2212         while (count > persistent_huge_pages(h)) {
2213                 /*
2214                  * If this allocation races such that we no longer need the
2215                  * page, free_huge_page will handle it by freeing the page
2216                  * and reducing the surplus.
2217                  */
2218                 spin_unlock(&hugetlb_lock);
2219
2220                 /* yield cpu to avoid soft lockup */
2221                 cond_resched();
2222
2223                 if (hstate_is_gigantic(h))
2224                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2225                 else
2226                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2227                 spin_lock(&hugetlb_lock);
2228                 if (!ret)
2229                         goto out;
2230
2231                 /* Bail for signals. Probably ctrl-c from user */
2232                 if (signal_pending(current))
2233                         goto out;
2234         }
2235
2236         /*
2237          * Decrease the pool size
2238          * First return free pages to the buddy allocator (being careful
2239          * to keep enough around to satisfy reservations).  Then place
2240          * pages into surplus state as needed so the pool will shrink
2241          * to the desired size as pages become free.
2242          *
2243          * By placing pages into the surplus state independent of the
2244          * overcommit value, we are allowing the surplus pool size to
2245          * exceed overcommit. There are few sane options here. Since
2246          * __alloc_buddy_huge_page() is checking the global counter,
2247          * though, we'll note that we're not allowed to exceed surplus
2248          * and won't grow the pool anywhere else. Not until one of the
2249          * sysctls are changed, or the surplus pages go out of use.
2250          */
2251         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2252         min_count = max(count, min_count);
2253         try_to_free_low(h, min_count, nodes_allowed);
2254         while (min_count < persistent_huge_pages(h)) {
2255                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2256                         break;
2257                 cond_resched_lock(&hugetlb_lock);
2258         }
2259         while (count < persistent_huge_pages(h)) {
2260                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2261                         break;
2262         }
2263 out:
2264         ret = persistent_huge_pages(h);
2265         spin_unlock(&hugetlb_lock);
2266         return ret;
2267 }
2268
2269 #define HSTATE_ATTR_RO(_name) \
2270         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2271
2272 #define HSTATE_ATTR(_name) \
2273         static struct kobj_attribute _name##_attr = \
2274                 __ATTR(_name, 0644, _name##_show, _name##_store)
2275
2276 static struct kobject *hugepages_kobj;
2277 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2278
2279 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2280
2281 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2282 {
2283         int i;
2284
2285         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2286                 if (hstate_kobjs[i] == kobj) {
2287                         if (nidp)
2288                                 *nidp = NUMA_NO_NODE;
2289                         return &hstates[i];
2290                 }
2291
2292         return kobj_to_node_hstate(kobj, nidp);
2293 }
2294
2295 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2296                                         struct kobj_attribute *attr, char *buf)
2297 {
2298         struct hstate *h;
2299         unsigned long nr_huge_pages;
2300         int nid;
2301
2302         h = kobj_to_hstate(kobj, &nid);
2303         if (nid == NUMA_NO_NODE)
2304                 nr_huge_pages = h->nr_huge_pages;
2305         else
2306                 nr_huge_pages = h->nr_huge_pages_node[nid];
2307
2308         return sprintf(buf, "%lu\n", nr_huge_pages);
2309 }
2310
2311 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2312                                            struct hstate *h, int nid,
2313                                            unsigned long count, size_t len)
2314 {
2315         int err;
2316         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2317
2318         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2319                 err = -EINVAL;
2320                 goto out;
2321         }
2322
2323         if (nid == NUMA_NO_NODE) {
2324                 /*
2325                  * global hstate attribute
2326                  */
2327                 if (!(obey_mempolicy &&
2328                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2329                         NODEMASK_FREE(nodes_allowed);
2330                         nodes_allowed = &node_states[N_MEMORY];
2331                 }
2332         } else if (nodes_allowed) {
2333                 /*
2334                  * per node hstate attribute: adjust count to global,
2335                  * but restrict alloc/free to the specified node.
2336                  */
2337                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2338                 init_nodemask_of_node(nodes_allowed, nid);
2339         } else
2340                 nodes_allowed = &node_states[N_MEMORY];
2341
2342         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2343
2344         if (nodes_allowed != &node_states[N_MEMORY])
2345                 NODEMASK_FREE(nodes_allowed);
2346
2347         return len;
2348 out:
2349         NODEMASK_FREE(nodes_allowed);
2350         return err;
2351 }
2352
2353 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2354                                          struct kobject *kobj, const char *buf,
2355                                          size_t len)
2356 {
2357         struct hstate *h;
2358         unsigned long count;
2359         int nid;
2360         int err;
2361
2362         err = kstrtoul(buf, 10, &count);
2363         if (err)
2364                 return err;
2365
2366         h = kobj_to_hstate(kobj, &nid);
2367         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2368 }
2369
2370 static ssize_t nr_hugepages_show(struct kobject *kobj,
2371                                        struct kobj_attribute *attr, char *buf)
2372 {
2373         return nr_hugepages_show_common(kobj, attr, buf);
2374 }
2375
2376 static ssize_t nr_hugepages_store(struct kobject *kobj,
2377                struct kobj_attribute *attr, const char *buf, size_t len)
2378 {
2379         return nr_hugepages_store_common(false, kobj, buf, len);
2380 }
2381 HSTATE_ATTR(nr_hugepages);
2382
2383 #ifdef CONFIG_NUMA
2384
2385 /*
2386  * hstate attribute for optionally mempolicy-based constraint on persistent
2387  * huge page alloc/free.
2388  */
2389 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2390                                        struct kobj_attribute *attr, char *buf)
2391 {
2392         return nr_hugepages_show_common(kobj, attr, buf);
2393 }
2394
2395 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2396                struct kobj_attribute *attr, const char *buf, size_t len)
2397 {
2398         return nr_hugepages_store_common(true, kobj, buf, len);
2399 }
2400 HSTATE_ATTR(nr_hugepages_mempolicy);
2401 #endif
2402
2403
2404 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2405                                         struct kobj_attribute *attr, char *buf)
2406 {
2407         struct hstate *h = kobj_to_hstate(kobj, NULL);
2408         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2409 }
2410
2411 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2412                 struct kobj_attribute *attr, const char *buf, size_t count)
2413 {
2414         int err;
2415         unsigned long input;
2416         struct hstate *h = kobj_to_hstate(kobj, NULL);
2417
2418         if (hstate_is_gigantic(h))
2419                 return -EINVAL;
2420
2421         err = kstrtoul(buf, 10, &input);
2422         if (err)
2423                 return err;
2424
2425         spin_lock(&hugetlb_lock);
2426         h->nr_overcommit_huge_pages = input;
2427         spin_unlock(&hugetlb_lock);
2428
2429         return count;
2430 }
2431 HSTATE_ATTR(nr_overcommit_hugepages);
2432
2433 static ssize_t free_hugepages_show(struct kobject *kobj,
2434                                         struct kobj_attribute *attr, char *buf)
2435 {
2436         struct hstate *h;
2437         unsigned long free_huge_pages;
2438         int nid;
2439
2440         h = kobj_to_hstate(kobj, &nid);
2441         if (nid == NUMA_NO_NODE)
2442                 free_huge_pages = h->free_huge_pages;
2443         else
2444                 free_huge_pages = h->free_huge_pages_node[nid];
2445
2446         return sprintf(buf, "%lu\n", free_huge_pages);
2447 }
2448 HSTATE_ATTR_RO(free_hugepages);
2449
2450 static ssize_t resv_hugepages_show(struct kobject *kobj,
2451                                         struct kobj_attribute *attr, char *buf)
2452 {
2453         struct hstate *h = kobj_to_hstate(kobj, NULL);
2454         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2455 }
2456 HSTATE_ATTR_RO(resv_hugepages);
2457
2458 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2459                                         struct kobj_attribute *attr, char *buf)
2460 {
2461         struct hstate *h;
2462         unsigned long surplus_huge_pages;
2463         int nid;
2464
2465         h = kobj_to_hstate(kobj, &nid);
2466         if (nid == NUMA_NO_NODE)
2467                 surplus_huge_pages = h->surplus_huge_pages;
2468         else
2469                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2470
2471         return sprintf(buf, "%lu\n", surplus_huge_pages);
2472 }
2473 HSTATE_ATTR_RO(surplus_hugepages);
2474
2475 static struct attribute *hstate_attrs[] = {
2476         &nr_hugepages_attr.attr,
2477         &nr_overcommit_hugepages_attr.attr,
2478         &free_hugepages_attr.attr,
2479         &resv_hugepages_attr.attr,
2480         &surplus_hugepages_attr.attr,
2481 #ifdef CONFIG_NUMA
2482         &nr_hugepages_mempolicy_attr.attr,
2483 #endif
2484         NULL,
2485 };
2486
2487 static struct attribute_group hstate_attr_group = {
2488         .attrs = hstate_attrs,
2489 };
2490
2491 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2492                                     struct kobject **hstate_kobjs,
2493                                     struct attribute_group *hstate_attr_group)
2494 {
2495         int retval;
2496         int hi = hstate_index(h);
2497
2498         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2499         if (!hstate_kobjs[hi])
2500                 return -ENOMEM;
2501
2502         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2503         if (retval)
2504                 kobject_put(hstate_kobjs[hi]);
2505
2506         return retval;
2507 }
2508
2509 static void __init hugetlb_sysfs_init(void)
2510 {
2511         struct hstate *h;
2512         int err;
2513
2514         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2515         if (!hugepages_kobj)
2516                 return;
2517
2518         for_each_hstate(h) {
2519                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2520                                          hstate_kobjs, &hstate_attr_group);
2521                 if (err)
2522                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2523         }
2524 }
2525
2526 #ifdef CONFIG_NUMA
2527
2528 /*
2529  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2530  * with node devices in node_devices[] using a parallel array.  The array
2531  * index of a node device or _hstate == node id.
2532  * This is here to avoid any static dependency of the node device driver, in
2533  * the base kernel, on the hugetlb module.
2534  */
2535 struct node_hstate {
2536         struct kobject          *hugepages_kobj;
2537         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2538 };
2539 static struct node_hstate node_hstates[MAX_NUMNODES];
2540
2541 /*
2542  * A subset of global hstate attributes for node devices
2543  */
2544 static struct attribute *per_node_hstate_attrs[] = {
2545         &nr_hugepages_attr.attr,
2546         &free_hugepages_attr.attr,
2547         &surplus_hugepages_attr.attr,
2548         NULL,
2549 };
2550
2551 static struct attribute_group per_node_hstate_attr_group = {
2552         .attrs = per_node_hstate_attrs,
2553 };
2554
2555 /*
2556  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2557  * Returns node id via non-NULL nidp.
2558  */
2559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2560 {
2561         int nid;
2562
2563         for (nid = 0; nid < nr_node_ids; nid++) {
2564                 struct node_hstate *nhs = &node_hstates[nid];
2565                 int i;
2566                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2567                         if (nhs->hstate_kobjs[i] == kobj) {
2568                                 if (nidp)
2569                                         *nidp = nid;
2570                                 return &hstates[i];
2571                         }
2572         }
2573
2574         BUG();
2575         return NULL;
2576 }
2577
2578 /*
2579  * Unregister hstate attributes from a single node device.
2580  * No-op if no hstate attributes attached.
2581  */
2582 static void hugetlb_unregister_node(struct node *node)
2583 {
2584         struct hstate *h;
2585         struct node_hstate *nhs = &node_hstates[node->dev.id];
2586
2587         if (!nhs->hugepages_kobj)
2588                 return;         /* no hstate attributes */
2589
2590         for_each_hstate(h) {
2591                 int idx = hstate_index(h);
2592                 if (nhs->hstate_kobjs[idx]) {
2593                         kobject_put(nhs->hstate_kobjs[idx]);
2594                         nhs->hstate_kobjs[idx] = NULL;
2595                 }
2596         }
2597
2598         kobject_put(nhs->hugepages_kobj);
2599         nhs->hugepages_kobj = NULL;
2600 }
2601
2602
2603 /*
2604  * Register hstate attributes for a single node device.
2605  * No-op if attributes already registered.
2606  */
2607 static void hugetlb_register_node(struct node *node)
2608 {
2609         struct hstate *h;
2610         struct node_hstate *nhs = &node_hstates[node->dev.id];
2611         int err;
2612
2613         if (nhs->hugepages_kobj)
2614                 return;         /* already allocated */
2615
2616         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2617                                                         &node->dev.kobj);
2618         if (!nhs->hugepages_kobj)
2619                 return;
2620
2621         for_each_hstate(h) {
2622                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2623                                                 nhs->hstate_kobjs,
2624                                                 &per_node_hstate_attr_group);
2625                 if (err) {
2626                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2627                                 h->name, node->dev.id);
2628                         hugetlb_unregister_node(node);
2629                         break;
2630                 }
2631         }
2632 }
2633
2634 /*
2635  * hugetlb init time:  register hstate attributes for all registered node
2636  * devices of nodes that have memory.  All on-line nodes should have
2637  * registered their associated device by this time.
2638  */
2639 static void __init hugetlb_register_all_nodes(void)
2640 {
2641         int nid;
2642
2643         for_each_node_state(nid, N_MEMORY) {
2644                 struct node *node = node_devices[nid];
2645                 if (node->dev.id == nid)
2646                         hugetlb_register_node(node);
2647         }
2648
2649         /*
2650          * Let the node device driver know we're here so it can
2651          * [un]register hstate attributes on node hotplug.
2652          */
2653         register_hugetlbfs_with_node(hugetlb_register_node,
2654                                      hugetlb_unregister_node);
2655 }
2656 #else   /* !CONFIG_NUMA */
2657
2658 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2659 {
2660         BUG();
2661         if (nidp)
2662                 *nidp = -1;
2663         return NULL;
2664 }
2665
2666 static void hugetlb_register_all_nodes(void) { }
2667
2668 #endif
2669
2670 static int __init hugetlb_init(void)
2671 {
2672         int i;
2673
2674         if (!hugepages_supported())
2675                 return 0;
2676
2677         if (!size_to_hstate(default_hstate_size)) {
2678                 default_hstate_size = HPAGE_SIZE;
2679                 if (!size_to_hstate(default_hstate_size))
2680                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2681         }
2682         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2683         if (default_hstate_max_huge_pages) {
2684                 if (!default_hstate.max_huge_pages)
2685                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2686         }
2687
2688         hugetlb_init_hstates();
2689         gather_bootmem_prealloc();
2690         report_hugepages();
2691
2692         hugetlb_sysfs_init();
2693         hugetlb_register_all_nodes();
2694         hugetlb_cgroup_file_init();
2695
2696 #ifdef CONFIG_SMP
2697         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2698 #else
2699         num_fault_mutexes = 1;
2700 #endif
2701         hugetlb_fault_mutex_table =
2702                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2703         BUG_ON(!hugetlb_fault_mutex_table);
2704
2705         for (i = 0; i < num_fault_mutexes; i++)
2706                 mutex_init(&hugetlb_fault_mutex_table[i]);
2707         return 0;
2708 }
2709 subsys_initcall(hugetlb_init);
2710
2711 /* Should be called on processing a hugepagesz=... option */
2712 void __init hugetlb_bad_size(void)
2713 {
2714         parsed_valid_hugepagesz = false;
2715 }
2716
2717 void __init hugetlb_add_hstate(unsigned int order)
2718 {
2719         struct hstate *h;
2720         unsigned long i;
2721
2722         if (size_to_hstate(PAGE_SIZE << order)) {
2723                 pr_warn("hugepagesz= specified twice, ignoring\n");
2724                 return;
2725         }
2726         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2727         BUG_ON(order == 0);
2728         h = &hstates[hugetlb_max_hstate++];
2729         h->order = order;
2730         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2731         h->nr_huge_pages = 0;
2732         h->free_huge_pages = 0;
2733         for (i = 0; i < MAX_NUMNODES; ++i)
2734                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2735         INIT_LIST_HEAD(&h->hugepage_activelist);
2736         h->next_nid_to_alloc = first_memory_node;
2737         h->next_nid_to_free = first_memory_node;
2738         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2739                                         huge_page_size(h)/1024);
2740
2741         parsed_hstate = h;
2742 }
2743
2744 static int __init hugetlb_nrpages_setup(char *s)
2745 {
2746         unsigned long *mhp;
2747         static unsigned long *last_mhp;
2748
2749         if (!parsed_valid_hugepagesz) {
2750                 pr_warn("hugepages = %s preceded by "
2751                         "an unsupported hugepagesz, ignoring\n", s);
2752                 parsed_valid_hugepagesz = true;
2753                 return 1;
2754         }
2755         /*
2756          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2757          * so this hugepages= parameter goes to the "default hstate".
2758          */
2759         else if (!hugetlb_max_hstate)
2760                 mhp = &default_hstate_max_huge_pages;
2761         else
2762                 mhp = &parsed_hstate->max_huge_pages;
2763
2764         if (mhp == last_mhp) {
2765                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2766                 return 1;
2767         }
2768
2769         if (sscanf(s, "%lu", mhp) <= 0)
2770                 *mhp = 0;
2771
2772         /*
2773          * Global state is always initialized later in hugetlb_init.
2774          * But we need to allocate >= MAX_ORDER hstates here early to still
2775          * use the bootmem allocator.
2776          */
2777         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2778                 hugetlb_hstate_alloc_pages(parsed_hstate);
2779
2780         last_mhp = mhp;
2781
2782         return 1;
2783 }
2784 __setup("hugepages=", hugetlb_nrpages_setup);
2785
2786 static int __init hugetlb_default_setup(char *s)
2787 {
2788         default_hstate_size = memparse(s, &s);
2789         return 1;
2790 }
2791 __setup("default_hugepagesz=", hugetlb_default_setup);
2792
2793 static unsigned int cpuset_mems_nr(unsigned int *array)
2794 {
2795         int node;
2796         unsigned int nr = 0;
2797
2798         for_each_node_mask(node, cpuset_current_mems_allowed)
2799                 nr += array[node];
2800
2801         return nr;
2802 }
2803
2804 #ifdef CONFIG_SYSCTL
2805 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2806                          struct ctl_table *table, int write,
2807                          void __user *buffer, size_t *length, loff_t *ppos)
2808 {
2809         struct hstate *h = &default_hstate;
2810         unsigned long tmp = h->max_huge_pages;
2811         int ret;
2812
2813         if (!hugepages_supported())
2814                 return -EOPNOTSUPP;
2815
2816         table->data = &tmp;
2817         table->maxlen = sizeof(unsigned long);
2818         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2819         if (ret)
2820                 goto out;
2821
2822         if (write)
2823                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2824                                                   NUMA_NO_NODE, tmp, *length);
2825 out:
2826         return ret;
2827 }
2828
2829 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2830                           void __user *buffer, size_t *length, loff_t *ppos)
2831 {
2832
2833         return hugetlb_sysctl_handler_common(false, table, write,
2834                                                         buffer, length, ppos);
2835 }
2836
2837 #ifdef CONFIG_NUMA
2838 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2839                           void __user *buffer, size_t *length, loff_t *ppos)
2840 {
2841         return hugetlb_sysctl_handler_common(true, table, write,
2842                                                         buffer, length, ppos);
2843 }
2844 #endif /* CONFIG_NUMA */
2845
2846 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2847                         void __user *buffer,
2848                         size_t *length, loff_t *ppos)
2849 {
2850         struct hstate *h = &default_hstate;
2851         unsigned long tmp;
2852         int ret;
2853
2854         if (!hugepages_supported())
2855                 return -EOPNOTSUPP;
2856
2857         tmp = h->nr_overcommit_huge_pages;
2858
2859         if (write && hstate_is_gigantic(h))
2860                 return -EINVAL;
2861
2862         table->data = &tmp;
2863         table->maxlen = sizeof(unsigned long);
2864         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2865         if (ret)
2866                 goto out;
2867
2868         if (write) {
2869                 spin_lock(&hugetlb_lock);
2870                 h->nr_overcommit_huge_pages = tmp;
2871                 spin_unlock(&hugetlb_lock);
2872         }
2873 out:
2874         return ret;
2875 }
2876
2877 #endif /* CONFIG_SYSCTL */
2878
2879 void hugetlb_report_meminfo(struct seq_file *m)
2880 {
2881         struct hstate *h = &default_hstate;
2882         if (!hugepages_supported())
2883                 return;
2884         seq_printf(m,
2885                         "HugePages_Total:   %5lu\n"
2886                         "HugePages_Free:    %5lu\n"
2887                         "HugePages_Rsvd:    %5lu\n"
2888                         "HugePages_Surp:    %5lu\n"
2889                         "Hugepagesize:   %8lu kB\n",
2890                         h->nr_huge_pages,
2891                         h->free_huge_pages,
2892                         h->resv_huge_pages,
2893                         h->surplus_huge_pages,
2894                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2895 }
2896
2897 int hugetlb_report_node_meminfo(int nid, char *buf)
2898 {
2899         struct hstate *h = &default_hstate;
2900         if (!hugepages_supported())
2901                 return 0;
2902         return sprintf(buf,
2903                 "Node %d HugePages_Total: %5u\n"
2904                 "Node %d HugePages_Free:  %5u\n"
2905                 "Node %d HugePages_Surp:  %5u\n",
2906                 nid, h->nr_huge_pages_node[nid],
2907                 nid, h->free_huge_pages_node[nid],
2908                 nid, h->surplus_huge_pages_node[nid]);
2909 }
2910
2911 void hugetlb_show_meminfo(void)
2912 {
2913         struct hstate *h;
2914         int nid;
2915
2916         if (!hugepages_supported())
2917                 return;
2918
2919         for_each_node_state(nid, N_MEMORY)
2920                 for_each_hstate(h)
2921                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2922                                 nid,
2923                                 h->nr_huge_pages_node[nid],
2924                                 h->free_huge_pages_node[nid],
2925                                 h->surplus_huge_pages_node[nid],
2926                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2927 }
2928
2929 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2930 {
2931         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2932                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2933 }
2934
2935 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2936 unsigned long hugetlb_total_pages(void)
2937 {
2938         struct hstate *h;
2939         unsigned long nr_total_pages = 0;
2940
2941         for_each_hstate(h)
2942                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2943         return nr_total_pages;
2944 }
2945
2946 static int hugetlb_acct_memory(struct hstate *h, long delta)
2947 {
2948         int ret = -ENOMEM;
2949
2950         spin_lock(&hugetlb_lock);
2951         /*
2952          * When cpuset is configured, it breaks the strict hugetlb page
2953          * reservation as the accounting is done on a global variable. Such
2954          * reservation is completely rubbish in the presence of cpuset because
2955          * the reservation is not checked against page availability for the
2956          * current cpuset. Application can still potentially OOM'ed by kernel
2957          * with lack of free htlb page in cpuset that the task is in.
2958          * Attempt to enforce strict accounting with cpuset is almost
2959          * impossible (or too ugly) because cpuset is too fluid that
2960          * task or memory node can be dynamically moved between cpusets.
2961          *
2962          * The change of semantics for shared hugetlb mapping with cpuset is
2963          * undesirable. However, in order to preserve some of the semantics,
2964          * we fall back to check against current free page availability as
2965          * a best attempt and hopefully to minimize the impact of changing
2966          * semantics that cpuset has.
2967          */
2968         if (delta > 0) {
2969                 if (gather_surplus_pages(h, delta) < 0)
2970                         goto out;
2971
2972                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2973                         return_unused_surplus_pages(h, delta);
2974                         goto out;
2975                 }
2976         }
2977
2978         ret = 0;
2979         if (delta < 0)
2980                 return_unused_surplus_pages(h, (unsigned long) -delta);
2981
2982 out:
2983         spin_unlock(&hugetlb_lock);
2984         return ret;
2985 }
2986
2987 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2988 {
2989         struct resv_map *resv = vma_resv_map(vma);
2990
2991         /*
2992          * This new VMA should share its siblings reservation map if present.
2993          * The VMA will only ever have a valid reservation map pointer where
2994          * it is being copied for another still existing VMA.  As that VMA
2995          * has a reference to the reservation map it cannot disappear until
2996          * after this open call completes.  It is therefore safe to take a
2997          * new reference here without additional locking.
2998          */
2999         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3000                 kref_get(&resv->refs);
3001 }
3002
3003 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3004 {
3005         struct hstate *h = hstate_vma(vma);
3006         struct resv_map *resv = vma_resv_map(vma);
3007         struct hugepage_subpool *spool = subpool_vma(vma);
3008         unsigned long reserve, start, end;
3009         long gbl_reserve;
3010
3011         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3012                 return;
3013
3014         start = vma_hugecache_offset(h, vma, vma->vm_start);
3015         end = vma_hugecache_offset(h, vma, vma->vm_end);
3016
3017         reserve = (end - start) - region_count(resv, start, end);
3018
3019         kref_put(&resv->refs, resv_map_release);
3020
3021         if (reserve) {
3022                 /*
3023                  * Decrement reserve counts.  The global reserve count may be
3024                  * adjusted if the subpool has a minimum size.
3025                  */
3026                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3027                 hugetlb_acct_memory(h, -gbl_reserve);
3028         }
3029 }
3030
3031 /*
3032  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3033  * handle_mm_fault() to try to instantiate regular-sized pages in the
3034  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3035  * this far.
3036  */
3037 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3038 {
3039         BUG();
3040         return 0;
3041 }
3042
3043 const struct vm_operations_struct hugetlb_vm_ops = {
3044         .fault = hugetlb_vm_op_fault,
3045         .open = hugetlb_vm_op_open,
3046         .close = hugetlb_vm_op_close,
3047 };
3048
3049 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3050                                 int writable)
3051 {
3052         pte_t entry;
3053
3054         if (writable) {
3055                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3056                                          vma->vm_page_prot)));
3057         } else {
3058                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3059                                            vma->vm_page_prot));
3060         }
3061         entry = pte_mkyoung(entry);
3062         entry = pte_mkhuge(entry);
3063         entry = arch_make_huge_pte(entry, vma, page, writable);
3064
3065         return entry;
3066 }
3067
3068 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3069                                    unsigned long address, pte_t *ptep)
3070 {
3071         pte_t entry;
3072
3073         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3074         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3075                 update_mmu_cache(vma, address, ptep);
3076 }
3077
3078 static int is_hugetlb_entry_migration(pte_t pte)
3079 {
3080         swp_entry_t swp;
3081
3082         if (huge_pte_none(pte) || pte_present(pte))
3083                 return 0;
3084         swp = pte_to_swp_entry(pte);
3085         if (non_swap_entry(swp) && is_migration_entry(swp))
3086                 return 1;
3087         else
3088                 return 0;
3089 }
3090
3091 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3092 {
3093         swp_entry_t swp;
3094
3095         if (huge_pte_none(pte) || pte_present(pte))
3096                 return 0;
3097         swp = pte_to_swp_entry(pte);
3098         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3099                 return 1;
3100         else
3101                 return 0;
3102 }
3103
3104 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3105                             struct vm_area_struct *vma)
3106 {
3107         pte_t *src_pte, *dst_pte, entry;
3108         struct page *ptepage;
3109         unsigned long addr;
3110         int cow;
3111         struct hstate *h = hstate_vma(vma);
3112         unsigned long sz = huge_page_size(h);
3113         unsigned long mmun_start;       /* For mmu_notifiers */
3114         unsigned long mmun_end;         /* For mmu_notifiers */
3115         int ret = 0;
3116
3117         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3118
3119         mmun_start = vma->vm_start;
3120         mmun_end = vma->vm_end;
3121         if (cow)
3122                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3123
3124         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3125                 spinlock_t *src_ptl, *dst_ptl;
3126                 src_pte = huge_pte_offset(src, addr);
3127                 if (!src_pte)
3128                         continue;
3129                 dst_pte = huge_pte_alloc(dst, addr, sz);
3130                 if (!dst_pte) {
3131                         ret = -ENOMEM;
3132                         break;
3133                 }
3134
3135                 /* If the pagetables are shared don't copy or take references */
3136                 if (dst_pte == src_pte)
3137                         continue;
3138
3139                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3140                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3141                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3142                 entry = huge_ptep_get(src_pte);
3143                 if (huge_pte_none(entry)) { /* skip none entry */
3144                         ;
3145                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3146                                     is_hugetlb_entry_hwpoisoned(entry))) {
3147                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3148
3149                         if (is_write_migration_entry(swp_entry) && cow) {
3150                                 /*
3151                                  * COW mappings require pages in both
3152                                  * parent and child to be set to read.
3153                                  */
3154                                 make_migration_entry_read(&swp_entry);
3155                                 entry = swp_entry_to_pte(swp_entry);
3156                                 set_huge_pte_at(src, addr, src_pte, entry);
3157                         }
3158                         set_huge_pte_at(dst, addr, dst_pte, entry);
3159                 } else {
3160                         if (cow) {
3161                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3162                                 mmu_notifier_invalidate_range(src, mmun_start,
3163                                                                    mmun_end);
3164                         }
3165                         entry = huge_ptep_get(src_pte);
3166                         ptepage = pte_page(entry);
3167                         get_page(ptepage);
3168                         page_dup_rmap(ptepage, true);
3169                         set_huge_pte_at(dst, addr, dst_pte, entry);
3170                         hugetlb_count_add(pages_per_huge_page(h), dst);
3171                 }
3172                 spin_unlock(src_ptl);
3173                 spin_unlock(dst_ptl);
3174         }
3175
3176         if (cow)
3177                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3178
3179         return ret;
3180 }
3181
3182 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3183                             unsigned long start, unsigned long end,
3184                             struct page *ref_page)
3185 {
3186         struct mm_struct *mm = vma->vm_mm;
3187         unsigned long address;
3188         pte_t *ptep;
3189         pte_t pte;
3190         spinlock_t *ptl;
3191         struct page *page;
3192         struct hstate *h = hstate_vma(vma);
3193         unsigned long sz = huge_page_size(h);
3194         const unsigned long mmun_start = start; /* For mmu_notifiers */
3195         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3196
3197         WARN_ON(!is_vm_hugetlb_page(vma));
3198         BUG_ON(start & ~huge_page_mask(h));
3199         BUG_ON(end & ~huge_page_mask(h));
3200
3201         tlb_start_vma(tlb, vma);
3202         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3203         address = start;
3204         for (; address < end; address += sz) {
3205                 ptep = huge_pte_offset(mm, address);
3206                 if (!ptep)
3207                         continue;
3208
3209                 ptl = huge_pte_lock(h, mm, ptep);
3210                 if (huge_pmd_unshare(mm, &address, ptep)) {
3211                         spin_unlock(ptl);
3212                         continue;
3213                 }
3214
3215                 pte = huge_ptep_get(ptep);
3216                 if (huge_pte_none(pte)) {
3217                         spin_unlock(ptl);
3218                         continue;
3219                 }
3220
3221                 /*
3222                  * Migrating hugepage or HWPoisoned hugepage is already
3223                  * unmapped and its refcount is dropped, so just clear pte here.
3224                  */
3225                 if (unlikely(!pte_present(pte))) {
3226                         huge_pte_clear(mm, address, ptep);
3227                         spin_unlock(ptl);
3228                         continue;
3229                 }
3230
3231                 page = pte_page(pte);
3232                 /*
3233                  * If a reference page is supplied, it is because a specific
3234                  * page is being unmapped, not a range. Ensure the page we
3235                  * are about to unmap is the actual page of interest.
3236                  */
3237                 if (ref_page) {
3238                         if (page != ref_page) {
3239                                 spin_unlock(ptl);
3240                                 continue;
3241                         }
3242                         /*
3243                          * Mark the VMA as having unmapped its page so that
3244                          * future faults in this VMA will fail rather than
3245                          * looking like data was lost
3246                          */
3247                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3248                 }
3249
3250                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3251                 tlb_remove_tlb_entry(tlb, ptep, address);
3252                 if (huge_pte_dirty(pte))
3253                         set_page_dirty(page);
3254
3255                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3256                 page_remove_rmap(page, true);
3257
3258                 spin_unlock(ptl);
3259                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3260                 /*
3261                  * Bail out after unmapping reference page if supplied
3262                  */
3263                 if (ref_page)
3264                         break;
3265         }
3266         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3267         tlb_end_vma(tlb, vma);
3268 }
3269
3270 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3271                           struct vm_area_struct *vma, unsigned long start,
3272                           unsigned long end, struct page *ref_page)
3273 {
3274         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3275
3276         /*
3277          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3278          * test will fail on a vma being torn down, and not grab a page table
3279          * on its way out.  We're lucky that the flag has such an appropriate
3280          * name, and can in fact be safely cleared here. We could clear it
3281          * before the __unmap_hugepage_range above, but all that's necessary
3282          * is to clear it before releasing the i_mmap_rwsem. This works
3283          * because in the context this is called, the VMA is about to be
3284          * destroyed and the i_mmap_rwsem is held.
3285          */
3286         vma->vm_flags &= ~VM_MAYSHARE;
3287 }
3288
3289 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3290                           unsigned long end, struct page *ref_page)
3291 {
3292         struct mm_struct *mm;
3293         struct mmu_gather tlb;
3294
3295         mm = vma->vm_mm;
3296
3297         tlb_gather_mmu(&tlb, mm, start, end);
3298         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3299         tlb_finish_mmu(&tlb, start, end);
3300 }
3301
3302 /*
3303  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3304  * mappping it owns the reserve page for. The intention is to unmap the page
3305  * from other VMAs and let the children be SIGKILLed if they are faulting the
3306  * same region.
3307  */
3308 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3309                               struct page *page, unsigned long address)
3310 {
3311         struct hstate *h = hstate_vma(vma);
3312         struct vm_area_struct *iter_vma;
3313         struct address_space *mapping;
3314         pgoff_t pgoff;
3315
3316         /*
3317          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3318          * from page cache lookup which is in HPAGE_SIZE units.
3319          */
3320         address = address & huge_page_mask(h);
3321         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3322                         vma->vm_pgoff;
3323         mapping = vma->vm_file->f_mapping;
3324
3325         /*
3326          * Take the mapping lock for the duration of the table walk. As
3327          * this mapping should be shared between all the VMAs,
3328          * __unmap_hugepage_range() is called as the lock is already held
3329          */
3330         i_mmap_lock_write(mapping);
3331         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3332                 /* Do not unmap the current VMA */
3333                 if (iter_vma == vma)
3334                         continue;
3335
3336                 /*
3337                  * Shared VMAs have their own reserves and do not affect
3338                  * MAP_PRIVATE accounting but it is possible that a shared
3339                  * VMA is using the same page so check and skip such VMAs.
3340                  */
3341                 if (iter_vma->vm_flags & VM_MAYSHARE)
3342                         continue;
3343
3344                 /*
3345                  * Unmap the page from other VMAs without their own reserves.
3346                  * They get marked to be SIGKILLed if they fault in these
3347                  * areas. This is because a future no-page fault on this VMA
3348                  * could insert a zeroed page instead of the data existing
3349                  * from the time of fork. This would look like data corruption
3350                  */
3351                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3352                         unmap_hugepage_range(iter_vma, address,
3353                                              address + huge_page_size(h), page);
3354         }
3355         i_mmap_unlock_write(mapping);
3356 }
3357
3358 /*
3359  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3360  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3361  * cannot race with other handlers or page migration.
3362  * Keep the pte_same checks anyway to make transition from the mutex easier.
3363  */
3364 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3365                         unsigned long address, pte_t *ptep, pte_t pte,
3366                         struct page *pagecache_page, spinlock_t *ptl)
3367 {
3368         struct hstate *h = hstate_vma(vma);
3369         struct page *old_page, *new_page;
3370         int ret = 0, outside_reserve = 0;
3371         unsigned long mmun_start;       /* For mmu_notifiers */
3372         unsigned long mmun_end;         /* For mmu_notifiers */
3373
3374         old_page = pte_page(pte);
3375
3376 retry_avoidcopy:
3377         /* If no-one else is actually using this page, avoid the copy
3378          * and just make the page writable */
3379         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3380                 page_move_anon_rmap(old_page, vma);
3381                 set_huge_ptep_writable(vma, address, ptep);
3382                 return 0;
3383         }
3384
3385         /*
3386          * If the process that created a MAP_PRIVATE mapping is about to
3387          * perform a COW due to a shared page count, attempt to satisfy
3388          * the allocation without using the existing reserves. The pagecache
3389          * page is used to determine if the reserve at this address was
3390          * consumed or not. If reserves were used, a partial faulted mapping
3391          * at the time of fork() could consume its reserves on COW instead
3392          * of the full address range.
3393          */
3394         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3395                         old_page != pagecache_page)
3396                 outside_reserve = 1;
3397
3398         get_page(old_page);
3399
3400         /*
3401          * Drop page table lock as buddy allocator may be called. It will
3402          * be acquired again before returning to the caller, as expected.
3403          */
3404         spin_unlock(ptl);
3405         new_page = alloc_huge_page(vma, address, outside_reserve);
3406
3407         if (IS_ERR(new_page)) {
3408                 /*
3409                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3410                  * it is due to references held by a child and an insufficient
3411                  * huge page pool. To guarantee the original mappers
3412                  * reliability, unmap the page from child processes. The child
3413                  * may get SIGKILLed if it later faults.
3414                  */
3415                 if (outside_reserve) {
3416                         put_page(old_page);
3417                         BUG_ON(huge_pte_none(pte));
3418                         unmap_ref_private(mm, vma, old_page, address);
3419                         BUG_ON(huge_pte_none(pte));
3420                         spin_lock(ptl);
3421                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3422                         if (likely(ptep &&
3423                                    pte_same(huge_ptep_get(ptep), pte)))
3424                                 goto retry_avoidcopy;
3425                         /*
3426                          * race occurs while re-acquiring page table
3427                          * lock, and our job is done.
3428                          */
3429                         return 0;
3430                 }
3431
3432                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3433                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3434                 goto out_release_old;
3435         }
3436
3437         /*
3438          * When the original hugepage is shared one, it does not have
3439          * anon_vma prepared.
3440          */
3441         if (unlikely(anon_vma_prepare(vma))) {
3442                 ret = VM_FAULT_OOM;
3443                 goto out_release_all;
3444         }
3445
3446         copy_user_huge_page(new_page, old_page, address, vma,
3447                             pages_per_huge_page(h));
3448         __SetPageUptodate(new_page);
3449         set_page_huge_active(new_page);
3450
3451         mmun_start = address & huge_page_mask(h);
3452         mmun_end = mmun_start + huge_page_size(h);
3453         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3454
3455         /*
3456          * Retake the page table lock to check for racing updates
3457          * before the page tables are altered
3458          */
3459         spin_lock(ptl);
3460         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3461         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3462                 ClearPagePrivate(new_page);
3463
3464                 /* Break COW */
3465                 huge_ptep_clear_flush(vma, address, ptep);
3466                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3467                 set_huge_pte_at(mm, address, ptep,
3468                                 make_huge_pte(vma, new_page, 1));
3469                 page_remove_rmap(old_page, true);
3470                 hugepage_add_new_anon_rmap(new_page, vma, address);
3471                 /* Make the old page be freed below */
3472                 new_page = old_page;
3473         }
3474         spin_unlock(ptl);
3475         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3476 out_release_all:
3477         put_page(new_page);
3478 out_release_old:
3479         put_page(old_page);
3480
3481         spin_lock(ptl); /* Caller expects lock to be held */
3482         return ret;
3483 }
3484
3485 /* Return the pagecache page at a given address within a VMA */
3486 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3487                         struct vm_area_struct *vma, unsigned long address)
3488 {
3489         struct address_space *mapping;
3490         pgoff_t idx;
3491
3492         mapping = vma->vm_file->f_mapping;
3493         idx = vma_hugecache_offset(h, vma, address);
3494
3495         return find_lock_page(mapping, idx);
3496 }
3497
3498 /*
3499  * Return whether there is a pagecache page to back given address within VMA.
3500  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3501  */
3502 static bool hugetlbfs_pagecache_present(struct hstate *h,
3503                         struct vm_area_struct *vma, unsigned long address)
3504 {
3505         struct address_space *mapping;
3506         pgoff_t idx;
3507         struct page *page;
3508
3509         mapping = vma->vm_file->f_mapping;
3510         idx = vma_hugecache_offset(h, vma, address);
3511
3512         page = find_get_page(mapping, idx);
3513         if (page)
3514                 put_page(page);
3515         return page != NULL;
3516 }
3517
3518 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3519                            pgoff_t idx)
3520 {
3521         struct inode *inode = mapping->host;
3522         struct hstate *h = hstate_inode(inode);
3523         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3524
3525         if (err)
3526                 return err;
3527         ClearPagePrivate(page);
3528
3529         spin_lock(&inode->i_lock);
3530         inode->i_blocks += blocks_per_huge_page(h);
3531         spin_unlock(&inode->i_lock);
3532         return 0;
3533 }
3534
3535 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3536                            struct address_space *mapping, pgoff_t idx,
3537                            unsigned long address, pte_t *ptep, unsigned int flags)
3538 {
3539         struct hstate *h = hstate_vma(vma);
3540         int ret = VM_FAULT_SIGBUS;
3541         int anon_rmap = 0;
3542         unsigned long size;
3543         struct page *page;
3544         pte_t new_pte;
3545         spinlock_t *ptl;
3546
3547         /*
3548          * Currently, we are forced to kill the process in the event the
3549          * original mapper has unmapped pages from the child due to a failed
3550          * COW. Warn that such a situation has occurred as it may not be obvious
3551          */
3552         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3553                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3554                            current->pid);
3555                 return ret;
3556         }
3557
3558         /*
3559          * Use page lock to guard against racing truncation
3560          * before we get page_table_lock.
3561          */
3562 retry:
3563         page = find_lock_page(mapping, idx);
3564         if (!page) {
3565                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3566                 if (idx >= size)
3567                         goto out;
3568                 page = alloc_huge_page(vma, address, 0);
3569                 if (IS_ERR(page)) {
3570                         ret = PTR_ERR(page);
3571                         if (ret == -ENOMEM)
3572                                 ret = VM_FAULT_OOM;
3573                         else
3574                                 ret = VM_FAULT_SIGBUS;
3575                         goto out;
3576                 }
3577                 clear_huge_page(page, address, pages_per_huge_page(h));
3578                 __SetPageUptodate(page);
3579                 set_page_huge_active(page);
3580
3581                 if (vma->vm_flags & VM_MAYSHARE) {
3582                         int err = huge_add_to_page_cache(page, mapping, idx);
3583                         if (err) {
3584                                 put_page(page);
3585                                 if (err == -EEXIST)
3586                                         goto retry;
3587                                 goto out;
3588                         }
3589                 } else {
3590                         lock_page(page);
3591                         if (unlikely(anon_vma_prepare(vma))) {
3592                                 ret = VM_FAULT_OOM;
3593                                 goto backout_unlocked;
3594                         }
3595                         anon_rmap = 1;
3596                 }
3597         } else {
3598                 /*
3599                  * If memory error occurs between mmap() and fault, some process
3600                  * don't have hwpoisoned swap entry for errored virtual address.
3601                  * So we need to block hugepage fault by PG_hwpoison bit check.
3602                  */
3603                 if (unlikely(PageHWPoison(page))) {
3604                         ret = VM_FAULT_HWPOISON |
3605                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3606                         goto backout_unlocked;
3607                 }
3608         }
3609
3610         /*
3611          * If we are going to COW a private mapping later, we examine the
3612          * pending reservations for this page now. This will ensure that
3613          * any allocations necessary to record that reservation occur outside
3614          * the spinlock.
3615          */
3616         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3617                 if (vma_needs_reservation(h, vma, address) < 0) {
3618                         ret = VM_FAULT_OOM;
3619                         goto backout_unlocked;
3620                 }
3621                 /* Just decrements count, does not deallocate */
3622                 vma_end_reservation(h, vma, address);
3623         }
3624
3625         ptl = huge_pte_lockptr(h, mm, ptep);
3626         spin_lock(ptl);
3627         size = i_size_read(mapping->host) >> huge_page_shift(h);
3628         if (idx >= size)
3629                 goto backout;
3630
3631         ret = 0;
3632         if (!huge_pte_none(huge_ptep_get(ptep)))
3633                 goto backout;
3634
3635         if (anon_rmap) {
3636                 ClearPagePrivate(page);
3637                 hugepage_add_new_anon_rmap(page, vma, address);
3638         } else
3639                 page_dup_rmap(page, true);
3640         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3641                                 && (vma->vm_flags & VM_SHARED)));
3642         set_huge_pte_at(mm, address, ptep, new_pte);
3643
3644         hugetlb_count_add(pages_per_huge_page(h), mm);
3645         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3646                 /* Optimization, do the COW without a second fault */
3647                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3648         }
3649
3650         spin_unlock(ptl);
3651         unlock_page(page);
3652 out:
3653         return ret;
3654
3655 backout:
3656         spin_unlock(ptl);
3657 backout_unlocked:
3658         unlock_page(page);
3659         put_page(page);
3660         goto out;
3661 }
3662
3663 #ifdef CONFIG_SMP
3664 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3665                             struct vm_area_struct *vma,
3666                             struct address_space *mapping,
3667                             pgoff_t idx, unsigned long address)
3668 {
3669         unsigned long key[2];
3670         u32 hash;
3671
3672         if (vma->vm_flags & VM_SHARED) {
3673                 key[0] = (unsigned long) mapping;
3674                 key[1] = idx;
3675         } else {
3676                 key[0] = (unsigned long) mm;
3677                 key[1] = address >> huge_page_shift(h);
3678         }
3679
3680         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3681
3682         return hash & (num_fault_mutexes - 1);
3683 }
3684 #else
3685 /*
3686  * For uniprocesor systems we always use a single mutex, so just
3687  * return 0 and avoid the hashing overhead.
3688  */
3689 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3690                             struct vm_area_struct *vma,
3691                             struct address_space *mapping,
3692                             pgoff_t idx, unsigned long address)
3693 {
3694         return 0;
3695 }
3696 #endif
3697
3698 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3699                         unsigned long address, unsigned int flags)
3700 {
3701         pte_t *ptep, entry;
3702         spinlock_t *ptl;
3703         int ret;
3704         u32 hash;
3705         pgoff_t idx;
3706         struct page *page = NULL;
3707         struct page *pagecache_page = NULL;
3708         struct hstate *h = hstate_vma(vma);
3709         struct address_space *mapping;
3710         int need_wait_lock = 0;
3711
3712         address &= huge_page_mask(h);
3713
3714         ptep = huge_pte_offset(mm, address);
3715         if (ptep) {
3716                 entry = huge_ptep_get(ptep);
3717                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3718                         migration_entry_wait_huge(vma, mm, ptep);
3719                         return 0;
3720                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3721                         return VM_FAULT_HWPOISON_LARGE |
3722                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3723         } else {
3724                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3725                 if (!ptep)
3726                         return VM_FAULT_OOM;
3727         }
3728
3729         mapping = vma->vm_file->f_mapping;
3730         idx = vma_hugecache_offset(h, vma, address);
3731
3732         /*
3733          * Serialize hugepage allocation and instantiation, so that we don't
3734          * get spurious allocation failures if two CPUs race to instantiate
3735          * the same page in the page cache.
3736          */
3737         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3738         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739
3740         entry = huge_ptep_get(ptep);
3741         if (huge_pte_none(entry)) {
3742                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3743                 goto out_mutex;
3744         }
3745
3746         ret = 0;
3747
3748         /*
3749          * entry could be a migration/hwpoison entry at this point, so this
3750          * check prevents the kernel from going below assuming that we have
3751          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3752          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3753          * handle it.
3754          */
3755         if (!pte_present(entry))
3756                 goto out_mutex;
3757
3758         /*
3759          * If we are going to COW the mapping later, we examine the pending
3760          * reservations for this page now. This will ensure that any
3761          * allocations necessary to record that reservation occur outside the
3762          * spinlock. For private mappings, we also lookup the pagecache
3763          * page now as it is used to determine if a reservation has been
3764          * consumed.
3765          */
3766         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3767                 if (vma_needs_reservation(h, vma, address) < 0) {
3768                         ret = VM_FAULT_OOM;
3769                         goto out_mutex;
3770                 }
3771                 /* Just decrements count, does not deallocate */
3772                 vma_end_reservation(h, vma, address);
3773
3774                 if (!(vma->vm_flags & VM_MAYSHARE))
3775                         pagecache_page = hugetlbfs_pagecache_page(h,
3776                                                                 vma, address);
3777         }
3778
3779         ptl = huge_pte_lock(h, mm, ptep);
3780
3781         /* Check for a racing update before calling hugetlb_cow */
3782         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3783                 goto out_ptl;
3784
3785         /*
3786          * hugetlb_cow() requires page locks of pte_page(entry) and
3787          * pagecache_page, so here we need take the former one
3788          * when page != pagecache_page or !pagecache_page.
3789          */
3790         page = pte_page(entry);
3791         if (page != pagecache_page)
3792                 if (!trylock_page(page)) {
3793                         need_wait_lock = 1;
3794                         goto out_ptl;
3795                 }
3796
3797         get_page(page);
3798
3799         if (flags & FAULT_FLAG_WRITE) {
3800                 if (!huge_pte_write(entry)) {
3801                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3802                                         pagecache_page, ptl);
3803                         goto out_put_page;
3804                 }
3805                 entry = huge_pte_mkdirty(entry);
3806         }
3807         entry = pte_mkyoung(entry);
3808         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3809                                                 flags & FAULT_FLAG_WRITE))
3810                 update_mmu_cache(vma, address, ptep);
3811 out_put_page:
3812         if (page != pagecache_page)
3813                 unlock_page(page);
3814         put_page(page);
3815 out_ptl:
3816         spin_unlock(ptl);
3817
3818         if (pagecache_page) {
3819                 unlock_page(pagecache_page);
3820                 put_page(pagecache_page);
3821         }
3822 out_mutex:
3823         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3824         /*
3825          * Generally it's safe to hold refcount during waiting page lock. But
3826          * here we just wait to defer the next page fault to avoid busy loop and
3827          * the page is not used after unlocked before returning from the current
3828          * page fault. So we are safe from accessing freed page, even if we wait
3829          * here without taking refcount.
3830          */
3831         if (need_wait_lock)
3832                 wait_on_page_locked(page);
3833         return ret;
3834 }
3835
3836 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3837                          struct page **pages, struct vm_area_struct **vmas,
3838                          unsigned long *position, unsigned long *nr_pages,
3839                          long i, unsigned int flags)
3840 {
3841         unsigned long pfn_offset;
3842         unsigned long vaddr = *position;
3843         unsigned long remainder = *nr_pages;
3844         struct hstate *h = hstate_vma(vma);
3845
3846         while (vaddr < vma->vm_end && remainder) {
3847                 pte_t *pte;
3848                 spinlock_t *ptl = NULL;
3849                 int absent;
3850                 struct page *page;
3851
3852                 /*
3853                  * If we have a pending SIGKILL, don't keep faulting pages and
3854                  * potentially allocating memory.
3855                  */
3856                 if (unlikely(fatal_signal_pending(current))) {
3857                         remainder = 0;
3858                         break;
3859                 }
3860
3861                 /*
3862                  * Some archs (sparc64, sh*) have multiple pte_ts to
3863                  * each hugepage.  We have to make sure we get the
3864                  * first, for the page indexing below to work.
3865                  *
3866                  * Note that page table lock is not held when pte is null.
3867                  */
3868                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3869                 if (pte)
3870                         ptl = huge_pte_lock(h, mm, pte);
3871                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3872
3873                 /*
3874                  * When coredumping, it suits get_dump_page if we just return
3875                  * an error where there's an empty slot with no huge pagecache
3876                  * to back it.  This way, we avoid allocating a hugepage, and
3877                  * the sparse dumpfile avoids allocating disk blocks, but its
3878                  * huge holes still show up with zeroes where they need to be.
3879                  */
3880                 if (absent && (flags & FOLL_DUMP) &&
3881                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3882                         if (pte)
3883                                 spin_unlock(ptl);
3884                         remainder = 0;
3885                         break;
3886                 }
3887
3888                 /*
3889                  * We need call hugetlb_fault for both hugepages under migration
3890                  * (in which case hugetlb_fault waits for the migration,) and
3891                  * hwpoisoned hugepages (in which case we need to prevent the
3892                  * caller from accessing to them.) In order to do this, we use
3893                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3894                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3895                  * both cases, and because we can't follow correct pages
3896                  * directly from any kind of swap entries.
3897                  */
3898                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3899                     ((flags & FOLL_WRITE) &&
3900                       !huge_pte_write(huge_ptep_get(pte)))) {
3901                         int ret;
3902
3903                         if (pte)
3904                                 spin_unlock(ptl);
3905                         ret = hugetlb_fault(mm, vma, vaddr,
3906                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3907                         if (!(ret & VM_FAULT_ERROR))
3908                                 continue;
3909
3910                         remainder = 0;
3911                         break;
3912                 }
3913
3914                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3915                 page = pte_page(huge_ptep_get(pte));
3916 same_page:
3917                 if (pages) {
3918                         pages[i] = mem_map_offset(page, pfn_offset);
3919                         get_page(pages[i]);
3920                 }
3921
3922                 if (vmas)
3923                         vmas[i] = vma;
3924
3925                 vaddr += PAGE_SIZE;
3926                 ++pfn_offset;
3927                 --remainder;
3928                 ++i;
3929                 if (vaddr < vma->vm_end && remainder &&
3930                                 pfn_offset < pages_per_huge_page(h)) {
3931                         /*
3932                          * We use pfn_offset to avoid touching the pageframes
3933                          * of this compound page.
3934                          */
3935                         goto same_page;
3936                 }
3937                 spin_unlock(ptl);
3938         }
3939         *nr_pages = remainder;
3940         *position = vaddr;
3941
3942         return i ? i : -EFAULT;
3943 }
3944
3945 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3946 /*
3947  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3948  * implement this.
3949  */
3950 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3951 #endif
3952
3953 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3954                 unsigned long address, unsigned long end, pgprot_t newprot)
3955 {
3956         struct mm_struct *mm = vma->vm_mm;
3957         unsigned long start = address;
3958         pte_t *ptep;
3959         pte_t pte;
3960         struct hstate *h = hstate_vma(vma);
3961         unsigned long pages = 0;
3962
3963         BUG_ON(address >= end);
3964         flush_cache_range(vma, address, end);
3965
3966         mmu_notifier_invalidate_range_start(mm, start, end);
3967         i_mmap_lock_write(vma->vm_file->f_mapping);
3968         for (; address < end; address += huge_page_size(h)) {
3969                 spinlock_t *ptl;
3970                 ptep = huge_pte_offset(mm, address);
3971                 if (!ptep)
3972                         continue;
3973                 ptl = huge_pte_lock(h, mm, ptep);
3974                 if (huge_pmd_unshare(mm, &address, ptep)) {
3975                         pages++;
3976                         spin_unlock(ptl);
3977                         continue;
3978                 }
3979                 pte = huge_ptep_get(ptep);
3980                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3981                         spin_unlock(ptl);
3982                         continue;
3983                 }
3984                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3985                         swp_entry_t entry = pte_to_swp_entry(pte);
3986
3987                         if (is_write_migration_entry(entry)) {
3988                                 pte_t newpte;
3989
3990                                 make_migration_entry_read(&entry);
3991                                 newpte = swp_entry_to_pte(entry);
3992                                 set_huge_pte_at(mm, address, ptep, newpte);
3993                                 pages++;
3994                         }
3995                         spin_unlock(ptl);
3996                         continue;
3997                 }
3998                 if (!huge_pte_none(pte)) {
3999                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4000                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4001                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4002                         set_huge_pte_at(mm, address, ptep, pte);
4003                         pages++;
4004                 }
4005                 spin_unlock(ptl);
4006         }
4007         /*
4008          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4009          * may have cleared our pud entry and done put_page on the page table:
4010          * once we release i_mmap_rwsem, another task can do the final put_page
4011          * and that page table be reused and filled with junk.
4012          */
4013         flush_hugetlb_tlb_range(vma, start, end);
4014         mmu_notifier_invalidate_range(mm, start, end);
4015         i_mmap_unlock_write(vma->vm_file->f_mapping);
4016         mmu_notifier_invalidate_range_end(mm, start, end);
4017
4018         return pages << h->order;
4019 }
4020
4021 int hugetlb_reserve_pages(struct inode *inode,
4022                                         long from, long to,
4023                                         struct vm_area_struct *vma,
4024                                         vm_flags_t vm_flags)
4025 {
4026         long ret, chg;
4027         struct hstate *h = hstate_inode(inode);
4028         struct hugepage_subpool *spool = subpool_inode(inode);
4029         struct resv_map *resv_map;
4030         long gbl_reserve;
4031
4032         /*
4033          * Only apply hugepage reservation if asked. At fault time, an
4034          * attempt will be made for VM_NORESERVE to allocate a page
4035          * without using reserves
4036          */
4037         if (vm_flags & VM_NORESERVE)
4038                 return 0;
4039
4040         /*
4041          * Shared mappings base their reservation on the number of pages that
4042          * are already allocated on behalf of the file. Private mappings need
4043          * to reserve the full area even if read-only as mprotect() may be
4044          * called to make the mapping read-write. Assume !vma is a shm mapping
4045          */
4046         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4047                 resv_map = inode_resv_map(inode);
4048
4049                 chg = region_chg(resv_map, from, to);
4050
4051         } else {
4052                 resv_map = resv_map_alloc();
4053                 if (!resv_map)
4054                         return -ENOMEM;
4055
4056                 chg = to - from;
4057
4058                 set_vma_resv_map(vma, resv_map);
4059                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4060         }
4061
4062         if (chg < 0) {
4063                 ret = chg;
4064                 goto out_err;
4065         }
4066
4067         /*
4068          * There must be enough pages in the subpool for the mapping. If
4069          * the subpool has a minimum size, there may be some global
4070          * reservations already in place (gbl_reserve).
4071          */
4072         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4073         if (gbl_reserve < 0) {
4074                 ret = -ENOSPC;
4075                 goto out_err;
4076         }
4077
4078         /*
4079          * Check enough hugepages are available for the reservation.
4080          * Hand the pages back to the subpool if there are not
4081          */
4082         ret = hugetlb_acct_memory(h, gbl_reserve);
4083         if (ret < 0) {
4084                 /* put back original number of pages, chg */
4085                 (void)hugepage_subpool_put_pages(spool, chg);
4086                 goto out_err;
4087         }
4088
4089         /*
4090          * Account for the reservations made. Shared mappings record regions
4091          * that have reservations as they are shared by multiple VMAs.
4092          * When the last VMA disappears, the region map says how much
4093          * the reservation was and the page cache tells how much of
4094          * the reservation was consumed. Private mappings are per-VMA and
4095          * only the consumed reservations are tracked. When the VMA
4096          * disappears, the original reservation is the VMA size and the
4097          * consumed reservations are stored in the map. Hence, nothing
4098          * else has to be done for private mappings here
4099          */
4100         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4101                 long add = region_add(resv_map, from, to);
4102
4103                 if (unlikely(chg > add)) {
4104                         /*
4105                          * pages in this range were added to the reserve
4106                          * map between region_chg and region_add.  This
4107                          * indicates a race with alloc_huge_page.  Adjust
4108                          * the subpool and reserve counts modified above
4109                          * based on the difference.
4110                          */
4111                         long rsv_adjust;
4112
4113                         rsv_adjust = hugepage_subpool_put_pages(spool,
4114                                                                 chg - add);
4115                         hugetlb_acct_memory(h, -rsv_adjust);
4116                 }
4117         }
4118         return 0;
4119 out_err:
4120         if (!vma || vma->vm_flags & VM_MAYSHARE)
4121                 region_abort(resv_map, from, to);
4122         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4123                 kref_put(&resv_map->refs, resv_map_release);
4124         return ret;
4125 }
4126
4127 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4128                                                                 long freed)
4129 {
4130         struct hstate *h = hstate_inode(inode);
4131         struct resv_map *resv_map = inode_resv_map(inode);
4132         long chg = 0;
4133         struct hugepage_subpool *spool = subpool_inode(inode);
4134         long gbl_reserve;
4135
4136         if (resv_map) {
4137                 chg = region_del(resv_map, start, end);
4138                 /*
4139                  * region_del() can fail in the rare case where a region
4140                  * must be split and another region descriptor can not be
4141                  * allocated.  If end == LONG_MAX, it will not fail.
4142                  */
4143                 if (chg < 0)
4144                         return chg;
4145         }
4146
4147         spin_lock(&inode->i_lock);
4148         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4149         spin_unlock(&inode->i_lock);
4150
4151         /*
4152          * If the subpool has a minimum size, the number of global
4153          * reservations to be released may be adjusted.
4154          */
4155         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4156         hugetlb_acct_memory(h, -gbl_reserve);
4157
4158         return 0;
4159 }
4160
4161 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4162 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4163                                 struct vm_area_struct *vma,
4164                                 unsigned long addr, pgoff_t idx)
4165 {
4166         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4167                                 svma->vm_start;
4168         unsigned long sbase = saddr & PUD_MASK;
4169         unsigned long s_end = sbase + PUD_SIZE;
4170
4171         /* Allow segments to share if only one is marked locked */
4172         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4173         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4174
4175         /*
4176          * match the virtual addresses, permission and the alignment of the
4177          * page table page.
4178          */
4179         if (pmd_index(addr) != pmd_index(saddr) ||
4180             vm_flags != svm_flags ||
4181             sbase < svma->vm_start || svma->vm_end < s_end)
4182                 return 0;
4183
4184         return saddr;
4185 }
4186
4187 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4188 {
4189         unsigned long base = addr & PUD_MASK;
4190         unsigned long end = base + PUD_SIZE;
4191
4192         /*
4193          * check on proper vm_flags and page table alignment
4194          */
4195         if (vma->vm_flags & VM_MAYSHARE &&
4196             vma->vm_start <= base && end <= vma->vm_end)
4197                 return true;
4198         return false;
4199 }
4200
4201 /*
4202  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4203  * and returns the corresponding pte. While this is not necessary for the
4204  * !shared pmd case because we can allocate the pmd later as well, it makes the
4205  * code much cleaner. pmd allocation is essential for the shared case because
4206  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4207  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4208  * bad pmd for sharing.
4209  */
4210 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4211 {
4212         struct vm_area_struct *vma = find_vma(mm, addr);
4213         struct address_space *mapping = vma->vm_file->f_mapping;
4214         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4215                         vma->vm_pgoff;
4216         struct vm_area_struct *svma;
4217         unsigned long saddr;
4218         pte_t *spte = NULL;
4219         pte_t *pte;
4220         spinlock_t *ptl;
4221
4222         if (!vma_shareable(vma, addr))
4223                 return (pte_t *)pmd_alloc(mm, pud, addr);
4224
4225         i_mmap_lock_write(mapping);
4226         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4227                 if (svma == vma)
4228                         continue;
4229
4230                 saddr = page_table_shareable(svma, vma, addr, idx);
4231                 if (saddr) {
4232                         spte = huge_pte_offset(svma->vm_mm, saddr);
4233                         if (spte) {
4234                                 get_page(virt_to_page(spte));
4235                                 break;
4236                         }
4237                 }
4238         }
4239
4240         if (!spte)
4241                 goto out;
4242
4243         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4244         spin_lock(ptl);
4245         if (pud_none(*pud)) {
4246                 pud_populate(mm, pud,
4247                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4248                 mm_inc_nr_pmds(mm);
4249         } else {
4250                 put_page(virt_to_page(spte));
4251         }
4252         spin_unlock(ptl);
4253 out:
4254         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4255         i_mmap_unlock_write(mapping);
4256         return pte;
4257 }
4258
4259 /*
4260  * unmap huge page backed by shared pte.
4261  *
4262  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4263  * indicated by page_count > 1, unmap is achieved by clearing pud and
4264  * decrementing the ref count. If count == 1, the pte page is not shared.
4265  *
4266  * called with page table lock held.
4267  *
4268  * returns: 1 successfully unmapped a shared pte page
4269  *          0 the underlying pte page is not shared, or it is the last user
4270  */
4271 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4272 {
4273         pgd_t *pgd = pgd_offset(mm, *addr);
4274         pud_t *pud = pud_offset(pgd, *addr);
4275
4276         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4277         if (page_count(virt_to_page(ptep)) == 1)
4278                 return 0;
4279
4280         pud_clear(pud);
4281         put_page(virt_to_page(ptep));
4282         mm_dec_nr_pmds(mm);
4283         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4284         return 1;
4285 }
4286 #define want_pmd_share()        (1)
4287 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4288 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4289 {
4290         return NULL;
4291 }
4292
4293 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4294 {
4295         return 0;
4296 }
4297 #define want_pmd_share()        (0)
4298 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4299
4300 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4301 pte_t *huge_pte_alloc(struct mm_struct *mm,
4302                         unsigned long addr, unsigned long sz)
4303 {
4304         pgd_t *pgd;
4305         pud_t *pud;
4306         pte_t *pte = NULL;
4307
4308         pgd = pgd_offset(mm, addr);
4309         pud = pud_alloc(mm, pgd, addr);
4310         if (pud) {
4311                 if (sz == PUD_SIZE) {
4312                         pte = (pte_t *)pud;
4313                 } else {
4314                         BUG_ON(sz != PMD_SIZE);
4315                         if (want_pmd_share() && pud_none(*pud))
4316                                 pte = huge_pmd_share(mm, addr, pud);
4317                         else
4318                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4319                 }
4320         }
4321         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4322
4323         return pte;
4324 }
4325
4326 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4327 {
4328         pgd_t *pgd;
4329         pud_t *pud;
4330         pmd_t *pmd = NULL;
4331
4332         pgd = pgd_offset(mm, addr);
4333         if (pgd_present(*pgd)) {
4334                 pud = pud_offset(pgd, addr);
4335                 if (pud_present(*pud)) {
4336                         if (pud_huge(*pud))
4337                                 return (pte_t *)pud;
4338                         pmd = pmd_offset(pud, addr);
4339                 }
4340         }
4341         return (pte_t *) pmd;
4342 }
4343
4344 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4345
4346 /*
4347  * These functions are overwritable if your architecture needs its own
4348  * behavior.
4349  */
4350 struct page * __weak
4351 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4352                               int write)
4353 {
4354         return ERR_PTR(-EINVAL);
4355 }
4356
4357 struct page * __weak
4358 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4359                 pmd_t *pmd, int flags)
4360 {
4361         struct page *page = NULL;
4362         spinlock_t *ptl;
4363 retry:
4364         ptl = pmd_lockptr(mm, pmd);
4365         spin_lock(ptl);
4366         /*
4367          * make sure that the address range covered by this pmd is not
4368          * unmapped from other threads.
4369          */
4370         if (!pmd_huge(*pmd))
4371                 goto out;
4372         if (pmd_present(*pmd)) {
4373                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4374                 if (flags & FOLL_GET)
4375                         get_page(page);
4376         } else {
4377                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4378                         spin_unlock(ptl);
4379                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4380                         goto retry;
4381                 }
4382                 /*
4383                  * hwpoisoned entry is treated as no_page_table in
4384                  * follow_page_mask().
4385                  */
4386         }
4387 out:
4388         spin_unlock(ptl);
4389         return page;
4390 }
4391
4392 struct page * __weak
4393 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4394                 pud_t *pud, int flags)
4395 {
4396         if (flags & FOLL_GET)
4397                 return NULL;
4398
4399         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4400 }
4401
4402 #ifdef CONFIG_MEMORY_FAILURE
4403
4404 /*
4405  * This function is called from memory failure code.
4406  */
4407 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4408 {
4409         struct hstate *h = page_hstate(hpage);
4410         int nid = page_to_nid(hpage);
4411         int ret = -EBUSY;
4412
4413         spin_lock(&hugetlb_lock);
4414         /*
4415          * Just checking !page_huge_active is not enough, because that could be
4416          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4417          */
4418         if (!page_huge_active(hpage) && !page_count(hpage)) {
4419                 /*
4420                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4421                  * but dangling hpage->lru can trigger list-debug warnings
4422                  * (this happens when we call unpoison_memory() on it),
4423                  * so let it point to itself with list_del_init().
4424                  */
4425                 list_del_init(&hpage->lru);
4426                 set_page_refcounted(hpage);
4427                 h->free_huge_pages--;
4428                 h->free_huge_pages_node[nid]--;
4429                 ret = 0;
4430         }
4431         spin_unlock(&hugetlb_lock);
4432         return ret;
4433 }
4434 #endif
4435
4436 bool isolate_huge_page(struct page *page, struct list_head *list)
4437 {
4438         bool ret = true;
4439
4440         VM_BUG_ON_PAGE(!PageHead(page), page);
4441         spin_lock(&hugetlb_lock);
4442         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4443                 ret = false;
4444                 goto unlock;
4445         }
4446         clear_page_huge_active(page);
4447         list_move_tail(&page->lru, list);
4448 unlock:
4449         spin_unlock(&hugetlb_lock);
4450         return ret;
4451 }
4452
4453 void putback_active_hugepage(struct page *page)
4454 {
4455         VM_BUG_ON_PAGE(!PageHead(page), page);
4456         spin_lock(&hugetlb_lock);
4457         set_page_huge_active(page);
4458         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4459         spin_unlock(&hugetlb_lock);
4460         put_page(page);
4461 }