2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
18 #include <asm/pgtable.h>
20 #include <linux/hugetlb.h>
22 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
23 static unsigned long nr_huge_pages, free_huge_pages;
24 unsigned long max_huge_pages;
25 static struct list_head hugepage_freelists[MAX_NUMNODES];
26 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
27 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 static DEFINE_SPINLOCK(hugetlb_lock);
34 static void enqueue_huge_page(struct page *page)
36 int nid = page_to_nid(page);
37 list_add(&page->lru, &hugepage_freelists[nid]);
39 free_huge_pages_node[nid]++;
42 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
43 unsigned long address)
45 int nid = numa_node_id();
46 struct page *page = NULL;
47 struct zonelist *zonelist = huge_zonelist(vma, address);
50 for (z = zonelist->zones; *z; z++) {
51 nid = (*z)->zone_pgdat->node_id;
52 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
53 !list_empty(&hugepage_freelists[nid]))
58 page = list_entry(hugepage_freelists[nid].next,
62 free_huge_pages_node[nid]--;
67 static struct page *alloc_fresh_huge_page(void)
71 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
73 nid = (nid + 1) % num_online_nodes();
75 spin_lock(&hugetlb_lock);
77 nr_huge_pages_node[page_to_nid(page)]++;
78 spin_unlock(&hugetlb_lock);
83 void free_huge_page(struct page *page)
85 BUG_ON(page_count(page));
87 INIT_LIST_HEAD(&page->lru);
88 page[1].mapping = NULL;
90 spin_lock(&hugetlb_lock);
91 enqueue_huge_page(page);
92 spin_unlock(&hugetlb_lock);
95 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
100 spin_lock(&hugetlb_lock);
101 page = dequeue_huge_page(vma, addr);
103 spin_unlock(&hugetlb_lock);
106 spin_unlock(&hugetlb_lock);
107 set_page_count(page, 1);
108 page[1].mapping = (void *)free_huge_page;
109 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
110 clear_highpage(&page[i]);
114 static int __init hugetlb_init(void)
119 if (HPAGE_SHIFT == 0)
122 for (i = 0; i < MAX_NUMNODES; ++i)
123 INIT_LIST_HEAD(&hugepage_freelists[i]);
125 for (i = 0; i < max_huge_pages; ++i) {
126 page = alloc_fresh_huge_page();
129 spin_lock(&hugetlb_lock);
130 enqueue_huge_page(page);
131 spin_unlock(&hugetlb_lock);
133 max_huge_pages = free_huge_pages = nr_huge_pages = i;
134 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
137 module_init(hugetlb_init);
139 static int __init hugetlb_setup(char *s)
141 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
145 __setup("hugepages=", hugetlb_setup);
148 static void update_and_free_page(struct page *page)
152 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
153 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
154 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
155 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
156 1 << PG_private | 1<< PG_writeback);
157 set_page_count(&page[i], 0);
159 set_page_count(page, 1);
160 __free_pages(page, HUGETLB_PAGE_ORDER);
163 #ifdef CONFIG_HIGHMEM
164 static void try_to_free_low(unsigned long count)
167 for (i = 0; i < MAX_NUMNODES; ++i) {
168 struct page *page, *next;
169 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
170 if (PageHighMem(page))
172 list_del(&page->lru);
173 update_and_free_page(page);
174 nid = page_zone(page)->zone_pgdat->node_id;
176 free_huge_pages_node[nid]--;
177 if (count >= nr_huge_pages)
183 static inline void try_to_free_low(unsigned long count)
188 static unsigned long set_max_huge_pages(unsigned long count)
190 while (count > nr_huge_pages) {
191 struct page *page = alloc_fresh_huge_page();
193 return nr_huge_pages;
194 spin_lock(&hugetlb_lock);
195 enqueue_huge_page(page);
196 spin_unlock(&hugetlb_lock);
198 if (count >= nr_huge_pages)
199 return nr_huge_pages;
201 spin_lock(&hugetlb_lock);
202 try_to_free_low(count);
203 while (count < nr_huge_pages) {
204 struct page *page = dequeue_huge_page(NULL, 0);
207 update_and_free_page(page);
209 spin_unlock(&hugetlb_lock);
210 return nr_huge_pages;
213 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
214 struct file *file, void __user *buffer,
215 size_t *length, loff_t *ppos)
217 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
218 max_huge_pages = set_max_huge_pages(max_huge_pages);
221 #endif /* CONFIG_SYSCTL */
223 int hugetlb_report_meminfo(char *buf)
226 "HugePages_Total: %5lu\n"
227 "HugePages_Free: %5lu\n"
228 "Hugepagesize: %5lu kB\n",
234 int hugetlb_report_node_meminfo(int nid, char *buf)
237 "Node %d HugePages_Total: %5u\n"
238 "Node %d HugePages_Free: %5u\n",
239 nid, nr_huge_pages_node[nid],
240 nid, free_huge_pages_node[nid]);
243 int is_hugepage_mem_enough(size_t size)
245 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
248 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
249 unsigned long hugetlb_total_pages(void)
251 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
255 * We cannot handle pagefaults against hugetlb pages at all. They cause
256 * handle_mm_fault() to try to instantiate regular-sized pages in the
257 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
260 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
261 unsigned long address, int *unused)
267 struct vm_operations_struct hugetlb_vm_ops = {
268 .nopage = hugetlb_nopage,
271 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
278 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
280 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
282 entry = pte_mkyoung(entry);
283 entry = pte_mkhuge(entry);
288 static void set_huge_ptep_writable(struct vm_area_struct *vma,
289 unsigned long address, pte_t *ptep)
293 entry = pte_mkwrite(pte_mkdirty(*ptep));
294 ptep_set_access_flags(vma, address, ptep, entry, 1);
295 update_mmu_cache(vma, address, entry);
296 lazy_mmu_prot_update(entry);
300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
301 struct vm_area_struct *vma)
303 pte_t *src_pte, *dst_pte, entry;
304 struct page *ptepage;
308 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
310 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
311 src_pte = huge_pte_offset(src, addr);
314 dst_pte = huge_pte_alloc(dst, addr);
317 spin_lock(&dst->page_table_lock);
318 spin_lock(&src->page_table_lock);
319 if (!pte_none(*src_pte)) {
321 ptep_set_wrprotect(src, addr, src_pte);
323 ptepage = pte_page(entry);
325 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
326 set_huge_pte_at(dst, addr, dst_pte, entry);
328 spin_unlock(&src->page_table_lock);
329 spin_unlock(&dst->page_table_lock);
337 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
346 WARN_ON(!is_vm_hugetlb_page(vma));
347 BUG_ON(start & ~HPAGE_MASK);
348 BUG_ON(end & ~HPAGE_MASK);
350 spin_lock(&mm->page_table_lock);
352 /* Update high watermark before we lower rss */
353 update_hiwater_rss(mm);
355 for (address = start; address < end; address += HPAGE_SIZE) {
356 ptep = huge_pte_offset(mm, address);
360 pte = huge_ptep_get_and_clear(mm, address, ptep);
364 page = pte_page(pte);
366 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
369 spin_unlock(&mm->page_table_lock);
370 flush_tlb_range(vma, start, end);
373 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
374 unsigned long address, pte_t *ptep, pte_t pte)
376 struct page *old_page, *new_page;
379 old_page = pte_page(pte);
381 /* If no-one else is actually using this page, avoid the copy
382 * and just make the page writable */
383 avoidcopy = (page_count(old_page) == 1);
385 set_huge_ptep_writable(vma, address, ptep);
386 return VM_FAULT_MINOR;
389 page_cache_get(old_page);
390 new_page = alloc_huge_page(vma, address);
393 page_cache_release(old_page);
395 /* Logically this is OOM, not a SIGBUS, but an OOM
396 * could cause the kernel to go killing other
397 * processes which won't help the hugepage situation
399 return VM_FAULT_SIGBUS;
402 spin_unlock(&mm->page_table_lock);
403 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
404 copy_user_highpage(new_page + i, old_page + i,
405 address + i*PAGE_SIZE);
406 spin_lock(&mm->page_table_lock);
408 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
409 if (likely(pte_same(*ptep, pte))) {
411 set_huge_pte_at(mm, address, ptep,
412 make_huge_pte(vma, new_page, 1));
413 /* Make the old page be freed below */
416 page_cache_release(new_page);
417 page_cache_release(old_page);
418 return VM_FAULT_MINOR;
421 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
422 unsigned long address, pte_t *ptep, int write_access)
424 int ret = VM_FAULT_SIGBUS;
428 struct address_space *mapping;
431 mapping = vma->vm_file->f_mapping;
432 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
433 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
436 * Use page lock to guard against racing truncation
437 * before we get page_table_lock.
440 page = find_lock_page(mapping, idx);
442 if (hugetlb_get_quota(mapping))
444 page = alloc_huge_page(vma, address);
446 hugetlb_put_quota(mapping);
450 if (vma->vm_flags & VM_SHARED) {
453 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
456 hugetlb_put_quota(mapping);
465 spin_lock(&mm->page_table_lock);
466 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
470 ret = VM_FAULT_MINOR;
471 if (!pte_none(*ptep))
474 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
475 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
476 && (vma->vm_flags & VM_SHARED)));
477 set_huge_pte_at(mm, address, ptep, new_pte);
479 if (write_access && !(vma->vm_flags & VM_SHARED)) {
480 /* Optimization, do the COW without a second fault */
481 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
484 spin_unlock(&mm->page_table_lock);
490 spin_unlock(&mm->page_table_lock);
491 hugetlb_put_quota(mapping);
497 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
498 unsigned long address, int write_access)
504 ptep = huge_pte_alloc(mm, address);
510 return hugetlb_no_page(mm, vma, address, ptep, write_access);
512 ret = VM_FAULT_MINOR;
514 spin_lock(&mm->page_table_lock);
515 /* Check for a racing update before calling hugetlb_cow */
516 if (likely(pte_same(entry, *ptep)))
517 if (write_access && !pte_write(entry))
518 ret = hugetlb_cow(mm, vma, address, ptep, entry);
519 spin_unlock(&mm->page_table_lock);
524 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
525 struct page **pages, struct vm_area_struct **vmas,
526 unsigned long *position, int *length, int i)
528 unsigned long vpfn, vaddr = *position;
529 int remainder = *length;
531 vpfn = vaddr/PAGE_SIZE;
532 spin_lock(&mm->page_table_lock);
533 while (vaddr < vma->vm_end && remainder) {
538 * Some archs (sparc64, sh*) have multiple pte_ts to
539 * each hugepage. We have to make * sure we get the
540 * first, for the page indexing below to work.
542 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
544 if (!pte || pte_none(*pte)) {
547 spin_unlock(&mm->page_table_lock);
548 ret = hugetlb_fault(mm, vma, vaddr, 0);
549 spin_lock(&mm->page_table_lock);
550 if (ret == VM_FAULT_MINOR)
560 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
573 spin_unlock(&mm->page_table_lock);