2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 static DEFINE_SPINLOCK(hugetlb_lock);
42 static void clear_huge_page(struct page *page, unsigned long addr)
47 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
53 static void copy_huge_page(struct page *dst, struct page *src,
54 unsigned long addr, struct vm_area_struct *vma)
59 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
65 static void enqueue_huge_page(struct page *page)
67 int nid = page_to_nid(page);
68 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages_node[nid]++;
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 unsigned long address)
77 struct page *page = NULL;
78 struct mempolicy *mpol;
79 struct zonelist *zonelist = huge_zonelist(vma, address,
80 htlb_alloc_mask, &mpol);
83 for (z = zonelist->zones; *z; z++) {
84 nid = zone_to_nid(*z);
85 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86 !list_empty(&hugepage_freelists[nid])) {
87 page = list_entry(hugepage_freelists[nid].next,
91 free_huge_pages_node[nid]--;
92 if (vma && vma->vm_flags & VM_MAYSHARE)
97 mpol_free(mpol); /* unref if mpol !NULL */
101 static void update_and_free_page(struct page *page)
105 nr_huge_pages_node[page_to_nid(page)]--;
106 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 1 << PG_private | 1<< PG_writeback);
111 set_compound_page_dtor(page, NULL);
112 set_page_refcounted(page);
113 __free_pages(page, HUGETLB_PAGE_ORDER);
116 static void free_huge_page(struct page *page)
118 int nid = page_to_nid(page);
120 BUG_ON(page_count(page));
121 INIT_LIST_HEAD(&page->lru);
123 spin_lock(&hugetlb_lock);
124 if (surplus_huge_pages_node[nid]) {
125 update_and_free_page(page);
126 surplus_huge_pages--;
127 surplus_huge_pages_node[nid]--;
129 enqueue_huge_page(page);
131 spin_unlock(&hugetlb_lock);
135 * Increment or decrement surplus_huge_pages. Keep node-specific counters
136 * balanced by operating on them in a round-robin fashion.
137 * Returns 1 if an adjustment was made.
139 static int adjust_pool_surplus(int delta)
145 VM_BUG_ON(delta != -1 && delta != 1);
147 nid = next_node(nid, node_online_map);
148 if (nid == MAX_NUMNODES)
149 nid = first_node(node_online_map);
151 /* To shrink on this node, there must be a surplus page */
152 if (delta < 0 && !surplus_huge_pages_node[nid])
154 /* Surplus cannot exceed the total number of pages */
155 if (delta > 0 && surplus_huge_pages_node[nid] >=
156 nr_huge_pages_node[nid])
159 surplus_huge_pages += delta;
160 surplus_huge_pages_node[nid] += delta;
163 } while (nid != prev_nid);
169 static struct page *alloc_fresh_huge_page_node(int nid)
173 page = alloc_pages_node(nid,
174 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
177 set_compound_page_dtor(page, free_huge_page);
178 spin_lock(&hugetlb_lock);
180 nr_huge_pages_node[nid]++;
181 spin_unlock(&hugetlb_lock);
182 put_page(page); /* free it into the hugepage allocator */
188 static int alloc_fresh_huge_page(void)
195 start_nid = hugetlb_next_nid;
198 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
202 * Use a helper variable to find the next node and then
203 * copy it back to hugetlb_next_nid afterwards:
204 * otherwise there's a window in which a racer might
205 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
206 * But we don't need to use a spin_lock here: it really
207 * doesn't matter if occasionally a racer chooses the
208 * same nid as we do. Move nid forward in the mask even
209 * if we just successfully allocated a hugepage so that
210 * the next caller gets hugepages on the next node.
212 next_nid = next_node(hugetlb_next_nid, node_online_map);
213 if (next_nid == MAX_NUMNODES)
214 next_nid = first_node(node_online_map);
215 hugetlb_next_nid = next_nid;
216 } while (!page && hugetlb_next_nid != start_nid);
221 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
222 unsigned long address)
226 /* Check if the dynamic pool is enabled */
227 if (!hugetlb_dynamic_pool)
230 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
233 set_compound_page_dtor(page, free_huge_page);
234 spin_lock(&hugetlb_lock);
236 nr_huge_pages_node[page_to_nid(page)]++;
237 surplus_huge_pages++;
238 surplus_huge_pages_node[page_to_nid(page)]++;
239 spin_unlock(&hugetlb_lock);
246 * Increase the hugetlb pool such that it can accomodate a reservation
249 static int gather_surplus_pages(int delta)
251 struct list_head surplus_list;
252 struct page *page, *tmp;
254 int needed, allocated;
256 needed = (resv_huge_pages + delta) - free_huge_pages;
261 INIT_LIST_HEAD(&surplus_list);
265 spin_unlock(&hugetlb_lock);
266 for (i = 0; i < needed; i++) {
267 page = alloc_buddy_huge_page(NULL, 0);
270 * We were not able to allocate enough pages to
271 * satisfy the entire reservation so we free what
272 * we've allocated so far.
274 spin_lock(&hugetlb_lock);
279 list_add(&page->lru, &surplus_list);
284 * After retaking hugetlb_lock, we need to recalculate 'needed'
285 * because either resv_huge_pages or free_huge_pages may have changed.
287 spin_lock(&hugetlb_lock);
288 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
293 * The surplus_list now contains _at_least_ the number of extra pages
294 * needed to accomodate the reservation. Add the appropriate number
295 * of pages to the hugetlb pool and free the extras back to the buddy
301 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
302 list_del(&page->lru);
304 enqueue_huge_page(page);
307 * Decrement the refcount and free the page using its
308 * destructor. This must be done with hugetlb_lock
309 * unlocked which is safe because free_huge_page takes
310 * hugetlb_lock before deciding how to free the page.
312 spin_unlock(&hugetlb_lock);
314 spin_lock(&hugetlb_lock);
322 * When releasing a hugetlb pool reservation, any surplus pages that were
323 * allocated to satisfy the reservation must be explicitly freed if they were
326 void return_unused_surplus_pages(unsigned long unused_resv_pages)
330 unsigned long nr_pages;
332 nr_pages = min(unused_resv_pages, surplus_huge_pages);
335 nid = next_node(nid, node_online_map);
336 if (nid == MAX_NUMNODES)
337 nid = first_node(node_online_map);
339 if (!surplus_huge_pages_node[nid])
342 if (!list_empty(&hugepage_freelists[nid])) {
343 page = list_entry(hugepage_freelists[nid].next,
345 list_del(&page->lru);
346 update_and_free_page(page);
348 free_huge_pages_node[nid]--;
349 surplus_huge_pages--;
350 surplus_huge_pages_node[nid]--;
356 static struct page *alloc_huge_page(struct vm_area_struct *vma,
359 struct page *page = NULL;
360 int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
362 spin_lock(&hugetlb_lock);
363 if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
366 page = dequeue_huge_page(vma, addr);
370 spin_unlock(&hugetlb_lock);
371 set_page_refcounted(page);
375 spin_unlock(&hugetlb_lock);
378 * Private mappings do not use reserved huge pages so the allocation
379 * may have failed due to an undersized hugetlb pool. Try to grab a
380 * surplus huge page from the buddy allocator.
382 if (!use_reserved_page)
383 page = alloc_buddy_huge_page(vma, addr);
388 static int __init hugetlb_init(void)
392 if (HPAGE_SHIFT == 0)
395 for (i = 0; i < MAX_NUMNODES; ++i)
396 INIT_LIST_HEAD(&hugepage_freelists[i]);
398 hugetlb_next_nid = first_node(node_online_map);
400 for (i = 0; i < max_huge_pages; ++i) {
401 if (!alloc_fresh_huge_page())
404 max_huge_pages = free_huge_pages = nr_huge_pages = i;
405 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
408 module_init(hugetlb_init);
410 static int __init hugetlb_setup(char *s)
412 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
416 __setup("hugepages=", hugetlb_setup);
418 static unsigned int cpuset_mems_nr(unsigned int *array)
423 for_each_node_mask(node, cpuset_current_mems_allowed)
430 #ifdef CONFIG_HIGHMEM
431 static void try_to_free_low(unsigned long count)
435 for (i = 0; i < MAX_NUMNODES; ++i) {
436 struct page *page, *next;
437 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
438 if (count >= nr_huge_pages)
440 if (PageHighMem(page))
442 list_del(&page->lru);
443 update_and_free_page(page);
445 free_huge_pages_node[page_to_nid(page)]--;
450 static inline void try_to_free_low(unsigned long count)
455 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
456 static unsigned long set_max_huge_pages(unsigned long count)
458 unsigned long min_count, ret;
461 * Increase the pool size
462 * First take pages out of surplus state. Then make up the
463 * remaining difference by allocating fresh huge pages.
465 spin_lock(&hugetlb_lock);
466 while (surplus_huge_pages && count > persistent_huge_pages) {
467 if (!adjust_pool_surplus(-1))
471 while (count > persistent_huge_pages) {
474 * If this allocation races such that we no longer need the
475 * page, free_huge_page will handle it by freeing the page
476 * and reducing the surplus.
478 spin_unlock(&hugetlb_lock);
479 ret = alloc_fresh_huge_page();
480 spin_lock(&hugetlb_lock);
487 * Decrease the pool size
488 * First return free pages to the buddy allocator (being careful
489 * to keep enough around to satisfy reservations). Then place
490 * pages into surplus state as needed so the pool will shrink
491 * to the desired size as pages become free.
493 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
494 min_count = max(count, min_count);
495 try_to_free_low(min_count);
496 while (min_count < persistent_huge_pages) {
497 struct page *page = dequeue_huge_page(NULL, 0);
500 update_and_free_page(page);
502 while (count < persistent_huge_pages) {
503 if (!adjust_pool_surplus(1))
507 ret = persistent_huge_pages;
508 spin_unlock(&hugetlb_lock);
512 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
513 struct file *file, void __user *buffer,
514 size_t *length, loff_t *ppos)
516 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
517 max_huge_pages = set_max_huge_pages(max_huge_pages);
521 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
522 struct file *file, void __user *buffer,
523 size_t *length, loff_t *ppos)
525 proc_dointvec(table, write, file, buffer, length, ppos);
526 if (hugepages_treat_as_movable)
527 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
529 htlb_alloc_mask = GFP_HIGHUSER;
533 #endif /* CONFIG_SYSCTL */
535 int hugetlb_report_meminfo(char *buf)
538 "HugePages_Total: %5lu\n"
539 "HugePages_Free: %5lu\n"
540 "HugePages_Rsvd: %5lu\n"
541 "HugePages_Surp: %5lu\n"
542 "Hugepagesize: %5lu kB\n",
550 int hugetlb_report_node_meminfo(int nid, char *buf)
553 "Node %d HugePages_Total: %5u\n"
554 "Node %d HugePages_Free: %5u\n",
555 nid, nr_huge_pages_node[nid],
556 nid, free_huge_pages_node[nid]);
559 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
560 unsigned long hugetlb_total_pages(void)
562 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
566 * We cannot handle pagefaults against hugetlb pages at all. They cause
567 * handle_mm_fault() to try to instantiate regular-sized pages in the
568 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
571 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
577 struct vm_operations_struct hugetlb_vm_ops = {
578 .fault = hugetlb_vm_op_fault,
581 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
588 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
590 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
592 entry = pte_mkyoung(entry);
593 entry = pte_mkhuge(entry);
598 static void set_huge_ptep_writable(struct vm_area_struct *vma,
599 unsigned long address, pte_t *ptep)
603 entry = pte_mkwrite(pte_mkdirty(*ptep));
604 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
605 update_mmu_cache(vma, address, entry);
610 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
611 struct vm_area_struct *vma)
613 pte_t *src_pte, *dst_pte, entry;
614 struct page *ptepage;
618 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
620 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
621 src_pte = huge_pte_offset(src, addr);
624 dst_pte = huge_pte_alloc(dst, addr);
627 spin_lock(&dst->page_table_lock);
628 spin_lock(&src->page_table_lock);
629 if (!pte_none(*src_pte)) {
631 ptep_set_wrprotect(src, addr, src_pte);
633 ptepage = pte_page(entry);
635 set_huge_pte_at(dst, addr, dst_pte, entry);
637 spin_unlock(&src->page_table_lock);
638 spin_unlock(&dst->page_table_lock);
646 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
649 struct mm_struct *mm = vma->vm_mm;
650 unsigned long address;
656 * A page gathering list, protected by per file i_mmap_lock. The
657 * lock is used to avoid list corruption from multiple unmapping
658 * of the same page since we are using page->lru.
660 LIST_HEAD(page_list);
662 WARN_ON(!is_vm_hugetlb_page(vma));
663 BUG_ON(start & ~HPAGE_MASK);
664 BUG_ON(end & ~HPAGE_MASK);
666 spin_lock(&mm->page_table_lock);
667 for (address = start; address < end; address += HPAGE_SIZE) {
668 ptep = huge_pte_offset(mm, address);
672 if (huge_pmd_unshare(mm, &address, ptep))
675 pte = huge_ptep_get_and_clear(mm, address, ptep);
679 page = pte_page(pte);
681 set_page_dirty(page);
682 list_add(&page->lru, &page_list);
684 spin_unlock(&mm->page_table_lock);
685 flush_tlb_range(vma, start, end);
686 list_for_each_entry_safe(page, tmp, &page_list, lru) {
687 list_del(&page->lru);
692 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
696 * It is undesirable to test vma->vm_file as it should be non-null
697 * for valid hugetlb area. However, vm_file will be NULL in the error
698 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
699 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
700 * to clean up. Since no pte has actually been setup, it is safe to
701 * do nothing in this case.
704 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
705 __unmap_hugepage_range(vma, start, end);
706 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
710 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
711 unsigned long address, pte_t *ptep, pte_t pte)
713 struct page *old_page, *new_page;
716 old_page = pte_page(pte);
718 /* If no-one else is actually using this page, avoid the copy
719 * and just make the page writable */
720 avoidcopy = (page_count(old_page) == 1);
722 set_huge_ptep_writable(vma, address, ptep);
726 page_cache_get(old_page);
727 new_page = alloc_huge_page(vma, address);
730 page_cache_release(old_page);
734 spin_unlock(&mm->page_table_lock);
735 copy_huge_page(new_page, old_page, address, vma);
736 spin_lock(&mm->page_table_lock);
738 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
739 if (likely(pte_same(*ptep, pte))) {
741 set_huge_pte_at(mm, address, ptep,
742 make_huge_pte(vma, new_page, 1));
743 /* Make the old page be freed below */
746 page_cache_release(new_page);
747 page_cache_release(old_page);
751 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
752 unsigned long address, pte_t *ptep, int write_access)
754 int ret = VM_FAULT_SIGBUS;
758 struct address_space *mapping;
761 mapping = vma->vm_file->f_mapping;
762 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
763 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
766 * Use page lock to guard against racing truncation
767 * before we get page_table_lock.
770 page = find_lock_page(mapping, idx);
772 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
775 if (hugetlb_get_quota(mapping))
777 page = alloc_huge_page(vma, address);
779 hugetlb_put_quota(mapping);
783 clear_huge_page(page, address);
785 if (vma->vm_flags & VM_SHARED) {
788 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
791 hugetlb_put_quota(mapping);
800 spin_lock(&mm->page_table_lock);
801 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
806 if (!pte_none(*ptep))
809 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
810 && (vma->vm_flags & VM_SHARED)));
811 set_huge_pte_at(mm, address, ptep, new_pte);
813 if (write_access && !(vma->vm_flags & VM_SHARED)) {
814 /* Optimization, do the COW without a second fault */
815 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
818 spin_unlock(&mm->page_table_lock);
824 spin_unlock(&mm->page_table_lock);
825 hugetlb_put_quota(mapping);
831 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
832 unsigned long address, int write_access)
837 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
839 ptep = huge_pte_alloc(mm, address);
844 * Serialize hugepage allocation and instantiation, so that we don't
845 * get spurious allocation failures if two CPUs race to instantiate
846 * the same page in the page cache.
848 mutex_lock(&hugetlb_instantiation_mutex);
850 if (pte_none(entry)) {
851 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
852 mutex_unlock(&hugetlb_instantiation_mutex);
858 spin_lock(&mm->page_table_lock);
859 /* Check for a racing update before calling hugetlb_cow */
860 if (likely(pte_same(entry, *ptep)))
861 if (write_access && !pte_write(entry))
862 ret = hugetlb_cow(mm, vma, address, ptep, entry);
863 spin_unlock(&mm->page_table_lock);
864 mutex_unlock(&hugetlb_instantiation_mutex);
869 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
870 struct page **pages, struct vm_area_struct **vmas,
871 unsigned long *position, int *length, int i)
873 unsigned long pfn_offset;
874 unsigned long vaddr = *position;
875 int remainder = *length;
877 spin_lock(&mm->page_table_lock);
878 while (vaddr < vma->vm_end && remainder) {
883 * Some archs (sparc64, sh*) have multiple pte_ts to
884 * each hugepage. We have to make * sure we get the
885 * first, for the page indexing below to work.
887 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
889 if (!pte || pte_none(*pte)) {
892 spin_unlock(&mm->page_table_lock);
893 ret = hugetlb_fault(mm, vma, vaddr, 0);
894 spin_lock(&mm->page_table_lock);
895 if (!(ret & VM_FAULT_ERROR))
904 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
905 page = pte_page(*pte);
909 pages[i] = page + pfn_offset;
919 if (vaddr < vma->vm_end && remainder &&
920 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
922 * We use pfn_offset to avoid touching the pageframes
923 * of this compound page.
928 spin_unlock(&mm->page_table_lock);
935 void hugetlb_change_protection(struct vm_area_struct *vma,
936 unsigned long address, unsigned long end, pgprot_t newprot)
938 struct mm_struct *mm = vma->vm_mm;
939 unsigned long start = address;
943 BUG_ON(address >= end);
944 flush_cache_range(vma, address, end);
946 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
947 spin_lock(&mm->page_table_lock);
948 for (; address < end; address += HPAGE_SIZE) {
949 ptep = huge_pte_offset(mm, address);
952 if (huge_pmd_unshare(mm, &address, ptep))
954 if (!pte_none(*ptep)) {
955 pte = huge_ptep_get_and_clear(mm, address, ptep);
956 pte = pte_mkhuge(pte_modify(pte, newprot));
957 set_huge_pte_at(mm, address, ptep, pte);
960 spin_unlock(&mm->page_table_lock);
961 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
963 flush_tlb_range(vma, start, end);
967 struct list_head link;
972 static long region_add(struct list_head *head, long f, long t)
974 struct file_region *rg, *nrg, *trg;
976 /* Locate the region we are either in or before. */
977 list_for_each_entry(rg, head, link)
981 /* Round our left edge to the current segment if it encloses us. */
985 /* Check for and consume any regions we now overlap with. */
987 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
988 if (&rg->link == head)
993 /* If this area reaches higher then extend our area to
994 * include it completely. If this is not the first area
995 * which we intend to reuse, free it. */
1008 static long region_chg(struct list_head *head, long f, long t)
1010 struct file_region *rg, *nrg;
1013 /* Locate the region we are before or in. */
1014 list_for_each_entry(rg, head, link)
1018 /* If we are below the current region then a new region is required.
1019 * Subtle, allocate a new region at the position but make it zero
1020 * size such that we can guarentee to record the reservation. */
1021 if (&rg->link == head || t < rg->from) {
1022 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1027 INIT_LIST_HEAD(&nrg->link);
1028 list_add(&nrg->link, rg->link.prev);
1033 /* Round our left edge to the current segment if it encloses us. */
1038 /* Check for and consume any regions we now overlap with. */
1039 list_for_each_entry(rg, rg->link.prev, link) {
1040 if (&rg->link == head)
1045 /* We overlap with this area, if it extends futher than
1046 * us then we must extend ourselves. Account for its
1047 * existing reservation. */
1052 chg -= rg->to - rg->from;
1057 static long region_truncate(struct list_head *head, long end)
1059 struct file_region *rg, *trg;
1062 /* Locate the region we are either in or before. */
1063 list_for_each_entry(rg, head, link)
1066 if (&rg->link == head)
1069 /* If we are in the middle of a region then adjust it. */
1070 if (end > rg->from) {
1073 rg = list_entry(rg->link.next, typeof(*rg), link);
1076 /* Drop any remaining regions. */
1077 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1078 if (&rg->link == head)
1080 chg += rg->to - rg->from;
1081 list_del(&rg->link);
1087 static int hugetlb_acct_memory(long delta)
1091 spin_lock(&hugetlb_lock);
1093 * When cpuset is configured, it breaks the strict hugetlb page
1094 * reservation as the accounting is done on a global variable. Such
1095 * reservation is completely rubbish in the presence of cpuset because
1096 * the reservation is not checked against page availability for the
1097 * current cpuset. Application can still potentially OOM'ed by kernel
1098 * with lack of free htlb page in cpuset that the task is in.
1099 * Attempt to enforce strict accounting with cpuset is almost
1100 * impossible (or too ugly) because cpuset is too fluid that
1101 * task or memory node can be dynamically moved between cpusets.
1103 * The change of semantics for shared hugetlb mapping with cpuset is
1104 * undesirable. However, in order to preserve some of the semantics,
1105 * we fall back to check against current free page availability as
1106 * a best attempt and hopefully to minimize the impact of changing
1107 * semantics that cpuset has.
1110 if (gather_surplus_pages(delta) < 0)
1113 if (delta > cpuset_mems_nr(free_huge_pages_node))
1118 resv_huge_pages += delta;
1120 return_unused_surplus_pages((unsigned long) -delta);
1123 spin_unlock(&hugetlb_lock);
1127 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1131 chg = region_chg(&inode->i_mapping->private_list, from, to);
1135 ret = hugetlb_acct_memory(chg);
1138 region_add(&inode->i_mapping->private_list, from, to);
1142 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1144 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1145 hugetlb_acct_memory(freed - chg);