1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
38 #include <asm/pgalloc.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
47 #include "hugetlb_vmemmap.h"
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
67 static unsigned long hugetlb_cma_size __initdata;
70 * Minimum page order among possible hugepage sizes, set to a proper value
73 static unsigned int minimum_order __read_mostly = UINT_MAX;
75 __initdata LIST_HEAD(huge_boot_pages);
77 /* for command line parsing */
78 static struct hstate * __initdata parsed_hstate;
79 static unsigned long __initdata default_hstate_max_huge_pages;
80 static bool __initdata parsed_valid_hugepagesz = true;
81 static bool __initdata parsed_default_hugepagesz;
82 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
85 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
86 * free_huge_pages, and surplus_huge_pages.
88 DEFINE_SPINLOCK(hugetlb_lock);
91 * Serializes faults on the same logical page. This is used to
92 * prevent spurious OOMs when the hugepage pool is fully utilized.
94 static int num_fault_mutexes;
95 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 struct hugepage_subpool *spool;
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 spin_lock_init(&spool->lock);
139 spool->max_hpages = max_hpages;
141 spool->min_hpages = min_hpages;
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 spool->rsv_hpages = min_hpages;
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
159 unlock_or_release_subpool(spool, flags);
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
178 spin_lock_irq(&spool->lock);
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
205 spin_unlock_irq(&spool->lock);
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
224 spin_lock_irqsave(&spool->lock, flags);
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
245 unlock_or_release_subpool(spool, flags);
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 return HUGETLBFS_SB(inode->i_sb)->spool;
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 return subpool_inode(file_inode(vma->vm_file));
260 /* Helper that removes a struct file_region from the resv_map cache and returns
263 static struct file_region *
264 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
266 struct file_region *nrg = NULL;
268 VM_BUG_ON(resv->region_cache_count <= 0);
270 resv->region_cache_count--;
271 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
272 list_del(&nrg->link);
280 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
281 struct file_region *rg)
283 #ifdef CONFIG_CGROUP_HUGETLB
284 nrg->reservation_counter = rg->reservation_counter;
291 /* Helper that records hugetlb_cgroup uncharge info. */
292 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
294 struct resv_map *resv,
295 struct file_region *nrg)
297 #ifdef CONFIG_CGROUP_HUGETLB
299 nrg->reservation_counter =
300 &h_cg->rsvd_hugepage[hstate_index(h)];
301 nrg->css = &h_cg->css;
303 * The caller will hold exactly one h_cg->css reference for the
304 * whole contiguous reservation region. But this area might be
305 * scattered when there are already some file_regions reside in
306 * it. As a result, many file_regions may share only one css
307 * reference. In order to ensure that one file_region must hold
308 * exactly one h_cg->css reference, we should do css_get for
309 * each file_region and leave the reference held by caller
313 if (!resv->pages_per_hpage)
314 resv->pages_per_hpage = pages_per_huge_page(h);
315 /* pages_per_hpage should be the same for all entries in
318 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
320 nrg->reservation_counter = NULL;
326 static void put_uncharge_info(struct file_region *rg)
328 #ifdef CONFIG_CGROUP_HUGETLB
334 static bool has_same_uncharge_info(struct file_region *rg,
335 struct file_region *org)
337 #ifdef CONFIG_CGROUP_HUGETLB
338 return rg->reservation_counter == org->reservation_counter &&
346 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
348 struct file_region *nrg = NULL, *prg = NULL;
350 prg = list_prev_entry(rg, link);
351 if (&prg->link != &resv->regions && prg->to == rg->from &&
352 has_same_uncharge_info(prg, rg)) {
356 put_uncharge_info(rg);
362 nrg = list_next_entry(rg, link);
363 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
364 has_same_uncharge_info(nrg, rg)) {
365 nrg->from = rg->from;
368 put_uncharge_info(rg);
374 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
375 long to, struct hstate *h, struct hugetlb_cgroup *cg,
376 long *regions_needed)
378 struct file_region *nrg;
380 if (!regions_needed) {
381 nrg = get_file_region_entry_from_cache(map, from, to);
382 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
383 list_add(&nrg->link, rg);
384 coalesce_file_region(map, nrg);
386 *regions_needed += 1;
392 * Must be called with resv->lock held.
394 * Calling this with regions_needed != NULL will count the number of pages
395 * to be added but will not modify the linked list. And regions_needed will
396 * indicate the number of file_regions needed in the cache to carry out to add
397 * the regions for this range.
399 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
400 struct hugetlb_cgroup *h_cg,
401 struct hstate *h, long *regions_needed)
404 struct list_head *head = &resv->regions;
405 long last_accounted_offset = f;
406 struct file_region *iter, *trg = NULL;
407 struct list_head *rg = NULL;
412 /* In this loop, we essentially handle an entry for the range
413 * [last_accounted_offset, iter->from), at every iteration, with some
416 list_for_each_entry_safe(iter, trg, head, link) {
417 /* Skip irrelevant regions that start before our range. */
418 if (iter->from < f) {
419 /* If this region ends after the last accounted offset,
420 * then we need to update last_accounted_offset.
422 if (iter->to > last_accounted_offset)
423 last_accounted_offset = iter->to;
427 /* When we find a region that starts beyond our range, we've
430 if (iter->from >= t) {
431 rg = iter->link.prev;
435 /* Add an entry for last_accounted_offset -> iter->from, and
436 * update last_accounted_offset.
438 if (iter->from > last_accounted_offset)
439 add += hugetlb_resv_map_add(resv, iter->link.prev,
440 last_accounted_offset,
444 last_accounted_offset = iter->to;
447 /* Handle the case where our range extends beyond
448 * last_accounted_offset.
452 if (last_accounted_offset < t)
453 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
454 t, h, h_cg, regions_needed);
459 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
461 static int allocate_file_region_entries(struct resv_map *resv,
463 __must_hold(&resv->lock)
465 struct list_head allocated_regions;
466 int to_allocate = 0, i = 0;
467 struct file_region *trg = NULL, *rg = NULL;
469 VM_BUG_ON(regions_needed < 0);
471 INIT_LIST_HEAD(&allocated_regions);
474 * Check for sufficient descriptors in the cache to accommodate
475 * the number of in progress add operations plus regions_needed.
477 * This is a while loop because when we drop the lock, some other call
478 * to region_add or region_del may have consumed some region_entries,
479 * so we keep looping here until we finally have enough entries for
480 * (adds_in_progress + regions_needed).
482 while (resv->region_cache_count <
483 (resv->adds_in_progress + regions_needed)) {
484 to_allocate = resv->adds_in_progress + regions_needed -
485 resv->region_cache_count;
487 /* At this point, we should have enough entries in the cache
488 * for all the existing adds_in_progress. We should only be
489 * needing to allocate for regions_needed.
491 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
493 spin_unlock(&resv->lock);
494 for (i = 0; i < to_allocate; i++) {
495 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
498 list_add(&trg->link, &allocated_regions);
501 spin_lock(&resv->lock);
503 list_splice(&allocated_regions, &resv->region_cache);
504 resv->region_cache_count += to_allocate;
510 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
518 * Add the huge page range represented by [f, t) to the reserve
519 * map. Regions will be taken from the cache to fill in this range.
520 * Sufficient regions should exist in the cache due to the previous
521 * call to region_chg with the same range, but in some cases the cache will not
522 * have sufficient entries due to races with other code doing region_add or
523 * region_del. The extra needed entries will be allocated.
525 * regions_needed is the out value provided by a previous call to region_chg.
527 * Return the number of new huge pages added to the map. This number is greater
528 * than or equal to zero. If file_region entries needed to be allocated for
529 * this operation and we were not able to allocate, it returns -ENOMEM.
530 * region_add of regions of length 1 never allocate file_regions and cannot
531 * fail; region_chg will always allocate at least 1 entry and a region_add for
532 * 1 page will only require at most 1 entry.
534 static long region_add(struct resv_map *resv, long f, long t,
535 long in_regions_needed, struct hstate *h,
536 struct hugetlb_cgroup *h_cg)
538 long add = 0, actual_regions_needed = 0;
540 spin_lock(&resv->lock);
543 /* Count how many regions are actually needed to execute this add. */
544 add_reservation_in_range(resv, f, t, NULL, NULL,
545 &actual_regions_needed);
548 * Check for sufficient descriptors in the cache to accommodate
549 * this add operation. Note that actual_regions_needed may be greater
550 * than in_regions_needed, as the resv_map may have been modified since
551 * the region_chg call. In this case, we need to make sure that we
552 * allocate extra entries, such that we have enough for all the
553 * existing adds_in_progress, plus the excess needed for this
556 if (actual_regions_needed > in_regions_needed &&
557 resv->region_cache_count <
558 resv->adds_in_progress +
559 (actual_regions_needed - in_regions_needed)) {
560 /* region_add operation of range 1 should never need to
561 * allocate file_region entries.
563 VM_BUG_ON(t - f <= 1);
565 if (allocate_file_region_entries(
566 resv, actual_regions_needed - in_regions_needed)) {
573 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
575 resv->adds_in_progress -= in_regions_needed;
577 spin_unlock(&resv->lock);
582 * Examine the existing reserve map and determine how many
583 * huge pages in the specified range [f, t) are NOT currently
584 * represented. This routine is called before a subsequent
585 * call to region_add that will actually modify the reserve
586 * map to add the specified range [f, t). region_chg does
587 * not change the number of huge pages represented by the
588 * map. A number of new file_region structures is added to the cache as a
589 * placeholder, for the subsequent region_add call to use. At least 1
590 * file_region structure is added.
592 * out_regions_needed is the number of regions added to the
593 * resv->adds_in_progress. This value needs to be provided to a follow up call
594 * to region_add or region_abort for proper accounting.
596 * Returns the number of huge pages that need to be added to the existing
597 * reservation map for the range [f, t). This number is greater or equal to
598 * zero. -ENOMEM is returned if a new file_region structure or cache entry
599 * is needed and can not be allocated.
601 static long region_chg(struct resv_map *resv, long f, long t,
602 long *out_regions_needed)
606 spin_lock(&resv->lock);
608 /* Count how many hugepages in this range are NOT represented. */
609 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
612 if (*out_regions_needed == 0)
613 *out_regions_needed = 1;
615 if (allocate_file_region_entries(resv, *out_regions_needed))
618 resv->adds_in_progress += *out_regions_needed;
620 spin_unlock(&resv->lock);
625 * Abort the in progress add operation. The adds_in_progress field
626 * of the resv_map keeps track of the operations in progress between
627 * calls to region_chg and region_add. Operations are sometimes
628 * aborted after the call to region_chg. In such cases, region_abort
629 * is called to decrement the adds_in_progress counter. regions_needed
630 * is the value returned by the region_chg call, it is used to decrement
631 * the adds_in_progress counter.
633 * NOTE: The range arguments [f, t) are not needed or used in this
634 * routine. They are kept to make reading the calling code easier as
635 * arguments will match the associated region_chg call.
637 static void region_abort(struct resv_map *resv, long f, long t,
640 spin_lock(&resv->lock);
641 VM_BUG_ON(!resv->region_cache_count);
642 resv->adds_in_progress -= regions_needed;
643 spin_unlock(&resv->lock);
647 * Delete the specified range [f, t) from the reserve map. If the
648 * t parameter is LONG_MAX, this indicates that ALL regions after f
649 * should be deleted. Locate the regions which intersect [f, t)
650 * and either trim, delete or split the existing regions.
652 * Returns the number of huge pages deleted from the reserve map.
653 * In the normal case, the return value is zero or more. In the
654 * case where a region must be split, a new region descriptor must
655 * be allocated. If the allocation fails, -ENOMEM will be returned.
656 * NOTE: If the parameter t == LONG_MAX, then we will never split
657 * a region and possibly return -ENOMEM. Callers specifying
658 * t == LONG_MAX do not need to check for -ENOMEM error.
660 static long region_del(struct resv_map *resv, long f, long t)
662 struct list_head *head = &resv->regions;
663 struct file_region *rg, *trg;
664 struct file_region *nrg = NULL;
668 spin_lock(&resv->lock);
669 list_for_each_entry_safe(rg, trg, head, link) {
671 * Skip regions before the range to be deleted. file_region
672 * ranges are normally of the form [from, to). However, there
673 * may be a "placeholder" entry in the map which is of the form
674 * (from, to) with from == to. Check for placeholder entries
675 * at the beginning of the range to be deleted.
677 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
683 if (f > rg->from && t < rg->to) { /* Must split region */
685 * Check for an entry in the cache before dropping
686 * lock and attempting allocation.
689 resv->region_cache_count > resv->adds_in_progress) {
690 nrg = list_first_entry(&resv->region_cache,
693 list_del(&nrg->link);
694 resv->region_cache_count--;
698 spin_unlock(&resv->lock);
699 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
706 hugetlb_cgroup_uncharge_file_region(
707 resv, rg, t - f, false);
709 /* New entry for end of split region */
713 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
715 INIT_LIST_HEAD(&nrg->link);
717 /* Original entry is trimmed */
720 list_add(&nrg->link, &rg->link);
725 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
726 del += rg->to - rg->from;
727 hugetlb_cgroup_uncharge_file_region(resv, rg,
728 rg->to - rg->from, true);
734 if (f <= rg->from) { /* Trim beginning of region */
735 hugetlb_cgroup_uncharge_file_region(resv, rg,
736 t - rg->from, false);
740 } else { /* Trim end of region */
741 hugetlb_cgroup_uncharge_file_region(resv, rg,
749 spin_unlock(&resv->lock);
755 * A rare out of memory error was encountered which prevented removal of
756 * the reserve map region for a page. The huge page itself was free'ed
757 * and removed from the page cache. This routine will adjust the subpool
758 * usage count, and the global reserve count if needed. By incrementing
759 * these counts, the reserve map entry which could not be deleted will
760 * appear as a "reserved" entry instead of simply dangling with incorrect
763 void hugetlb_fix_reserve_counts(struct inode *inode)
765 struct hugepage_subpool *spool = subpool_inode(inode);
767 bool reserved = false;
769 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
770 if (rsv_adjust > 0) {
771 struct hstate *h = hstate_inode(inode);
773 if (!hugetlb_acct_memory(h, 1))
775 } else if (!rsv_adjust) {
780 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
784 * Count and return the number of huge pages in the reserve map
785 * that intersect with the range [f, t).
787 static long region_count(struct resv_map *resv, long f, long t)
789 struct list_head *head = &resv->regions;
790 struct file_region *rg;
793 spin_lock(&resv->lock);
794 /* Locate each segment we overlap with, and count that overlap. */
795 list_for_each_entry(rg, head, link) {
804 seg_from = max(rg->from, f);
805 seg_to = min(rg->to, t);
807 chg += seg_to - seg_from;
809 spin_unlock(&resv->lock);
815 * Convert the address within this vma to the page offset within
816 * the mapping, in pagecache page units; huge pages here.
818 static pgoff_t vma_hugecache_offset(struct hstate *h,
819 struct vm_area_struct *vma, unsigned long address)
821 return ((address - vma->vm_start) >> huge_page_shift(h)) +
822 (vma->vm_pgoff >> huge_page_order(h));
825 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
826 unsigned long address)
828 return vma_hugecache_offset(hstate_vma(vma), vma, address);
830 EXPORT_SYMBOL_GPL(linear_hugepage_index);
833 * Return the size of the pages allocated when backing a VMA. In the majority
834 * cases this will be same size as used by the page table entries.
836 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
838 if (vma->vm_ops && vma->vm_ops->pagesize)
839 return vma->vm_ops->pagesize(vma);
842 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
845 * Return the page size being used by the MMU to back a VMA. In the majority
846 * of cases, the page size used by the kernel matches the MMU size. On
847 * architectures where it differs, an architecture-specific 'strong'
848 * version of this symbol is required.
850 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
852 return vma_kernel_pagesize(vma);
856 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
857 * bits of the reservation map pointer, which are always clear due to
860 #define HPAGE_RESV_OWNER (1UL << 0)
861 #define HPAGE_RESV_UNMAPPED (1UL << 1)
862 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
865 * These helpers are used to track how many pages are reserved for
866 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
867 * is guaranteed to have their future faults succeed.
869 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
870 * the reserve counters are updated with the hugetlb_lock held. It is safe
871 * to reset the VMA at fork() time as it is not in use yet and there is no
872 * chance of the global counters getting corrupted as a result of the values.
874 * The private mapping reservation is represented in a subtly different
875 * manner to a shared mapping. A shared mapping has a region map associated
876 * with the underlying file, this region map represents the backing file
877 * pages which have ever had a reservation assigned which this persists even
878 * after the page is instantiated. A private mapping has a region map
879 * associated with the original mmap which is attached to all VMAs which
880 * reference it, this region map represents those offsets which have consumed
881 * reservation ie. where pages have been instantiated.
883 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
885 return (unsigned long)vma->vm_private_data;
888 static void set_vma_private_data(struct vm_area_struct *vma,
891 vma->vm_private_data = (void *)value;
895 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
896 struct hugetlb_cgroup *h_cg,
899 #ifdef CONFIG_CGROUP_HUGETLB
901 resv_map->reservation_counter = NULL;
902 resv_map->pages_per_hpage = 0;
903 resv_map->css = NULL;
905 resv_map->reservation_counter =
906 &h_cg->rsvd_hugepage[hstate_index(h)];
907 resv_map->pages_per_hpage = pages_per_huge_page(h);
908 resv_map->css = &h_cg->css;
913 struct resv_map *resv_map_alloc(void)
915 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
916 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
918 if (!resv_map || !rg) {
924 kref_init(&resv_map->refs);
925 spin_lock_init(&resv_map->lock);
926 INIT_LIST_HEAD(&resv_map->regions);
928 resv_map->adds_in_progress = 0;
930 * Initialize these to 0. On shared mappings, 0's here indicate these
931 * fields don't do cgroup accounting. On private mappings, these will be
932 * re-initialized to the proper values, to indicate that hugetlb cgroup
933 * reservations are to be un-charged from here.
935 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
937 INIT_LIST_HEAD(&resv_map->region_cache);
938 list_add(&rg->link, &resv_map->region_cache);
939 resv_map->region_cache_count = 1;
944 void resv_map_release(struct kref *ref)
946 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
947 struct list_head *head = &resv_map->region_cache;
948 struct file_region *rg, *trg;
950 /* Clear out any active regions before we release the map. */
951 region_del(resv_map, 0, LONG_MAX);
953 /* ... and any entries left in the cache */
954 list_for_each_entry_safe(rg, trg, head, link) {
959 VM_BUG_ON(resv_map->adds_in_progress);
964 static inline struct resv_map *inode_resv_map(struct inode *inode)
967 * At inode evict time, i_mapping may not point to the original
968 * address space within the inode. This original address space
969 * contains the pointer to the resv_map. So, always use the
970 * address space embedded within the inode.
971 * The VERY common case is inode->mapping == &inode->i_data but,
972 * this may not be true for device special inodes.
974 return (struct resv_map *)(&inode->i_data)->private_data;
977 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
979 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980 if (vma->vm_flags & VM_MAYSHARE) {
981 struct address_space *mapping = vma->vm_file->f_mapping;
982 struct inode *inode = mapping->host;
984 return inode_resv_map(inode);
987 return (struct resv_map *)(get_vma_private_data(vma) &
992 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
997 set_vma_private_data(vma, (get_vma_private_data(vma) &
998 HPAGE_RESV_MASK) | (unsigned long)map);
1001 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1003 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1006 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1009 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1011 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013 return (get_vma_private_data(vma) & flag) != 0;
1016 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1017 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1019 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1020 if (!(vma->vm_flags & VM_MAYSHARE))
1021 vma->vm_private_data = (void *)0;
1025 * Reset and decrement one ref on hugepage private reservation.
1026 * Called with mm->mmap_sem writer semaphore held.
1027 * This function should be only used by move_vma() and operate on
1028 * same sized vma. It should never come here with last ref on the
1031 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1034 * Clear the old hugetlb private page reservation.
1035 * It has already been transferred to new_vma.
1037 * During a mremap() operation of a hugetlb vma we call move_vma()
1038 * which copies vma into new_vma and unmaps vma. After the copy
1039 * operation both new_vma and vma share a reference to the resv_map
1040 * struct, and at that point vma is about to be unmapped. We don't
1041 * want to return the reservation to the pool at unmap of vma because
1042 * the reservation still lives on in new_vma, so simply decrement the
1043 * ref here and remove the resv_map reference from this vma.
1045 struct resv_map *reservations = vma_resv_map(vma);
1047 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1049 kref_put(&reservations->refs, resv_map_release);
1052 reset_vma_resv_huge_pages(vma);
1055 /* Returns true if the VMA has associated reserve pages */
1056 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1058 if (vma->vm_flags & VM_NORESERVE) {
1060 * This address is already reserved by other process(chg == 0),
1061 * so, we should decrement reserved count. Without decrementing,
1062 * reserve count remains after releasing inode, because this
1063 * allocated page will go into page cache and is regarded as
1064 * coming from reserved pool in releasing step. Currently, we
1065 * don't have any other solution to deal with this situation
1066 * properly, so add work-around here.
1068 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1074 /* Shared mappings always use reserves */
1075 if (vma->vm_flags & VM_MAYSHARE) {
1077 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1078 * be a region map for all pages. The only situation where
1079 * there is no region map is if a hole was punched via
1080 * fallocate. In this case, there really are no reserves to
1081 * use. This situation is indicated if chg != 0.
1090 * Only the process that called mmap() has reserves for
1093 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1095 * Like the shared case above, a hole punch or truncate
1096 * could have been performed on the private mapping.
1097 * Examine the value of chg to determine if reserves
1098 * actually exist or were previously consumed.
1099 * Very Subtle - The value of chg comes from a previous
1100 * call to vma_needs_reserves(). The reserve map for
1101 * private mappings has different (opposite) semantics
1102 * than that of shared mappings. vma_needs_reserves()
1103 * has already taken this difference in semantics into
1104 * account. Therefore, the meaning of chg is the same
1105 * as in the shared case above. Code could easily be
1106 * combined, but keeping it separate draws attention to
1107 * subtle differences.
1118 static void enqueue_huge_page(struct hstate *h, struct page *page)
1120 int nid = page_to_nid(page);
1122 lockdep_assert_held(&hugetlb_lock);
1123 VM_BUG_ON_PAGE(page_count(page), page);
1125 list_move(&page->lru, &h->hugepage_freelists[nid]);
1126 h->free_huge_pages++;
1127 h->free_huge_pages_node[nid]++;
1128 SetHPageFreed(page);
1131 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1134 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1136 lockdep_assert_held(&hugetlb_lock);
1137 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1138 if (pin && !is_pinnable_page(page))
1141 if (PageHWPoison(page))
1144 list_move(&page->lru, &h->hugepage_activelist);
1145 set_page_refcounted(page);
1146 ClearHPageFreed(page);
1147 h->free_huge_pages--;
1148 h->free_huge_pages_node[nid]--;
1155 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1158 unsigned int cpuset_mems_cookie;
1159 struct zonelist *zonelist;
1162 int node = NUMA_NO_NODE;
1164 zonelist = node_zonelist(nid, gfp_mask);
1167 cpuset_mems_cookie = read_mems_allowed_begin();
1168 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1171 if (!cpuset_zone_allowed(zone, gfp_mask))
1174 * no need to ask again on the same node. Pool is node rather than
1177 if (zone_to_nid(zone) == node)
1179 node = zone_to_nid(zone);
1181 page = dequeue_huge_page_node_exact(h, node);
1185 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1191 static struct page *dequeue_huge_page_vma(struct hstate *h,
1192 struct vm_area_struct *vma,
1193 unsigned long address, int avoid_reserve,
1196 struct page *page = NULL;
1197 struct mempolicy *mpol;
1199 nodemask_t *nodemask;
1203 * A child process with MAP_PRIVATE mappings created by their parent
1204 * have no page reserves. This check ensures that reservations are
1205 * not "stolen". The child may still get SIGKILLed
1207 if (!vma_has_reserves(vma, chg) &&
1208 h->free_huge_pages - h->resv_huge_pages == 0)
1211 /* If reserves cannot be used, ensure enough pages are in the pool */
1212 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1215 gfp_mask = htlb_alloc_mask(h);
1216 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1218 if (mpol_is_preferred_many(mpol)) {
1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 /* Fallback to all nodes if page==NULL */
1226 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1228 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1229 SetHPageRestoreReserve(page);
1230 h->resv_huge_pages--;
1233 mpol_cond_put(mpol);
1241 * common helper functions for hstate_next_node_to_{alloc|free}.
1242 * We may have allocated or freed a huge page based on a different
1243 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1244 * be outside of *nodes_allowed. Ensure that we use an allowed
1245 * node for alloc or free.
1247 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1249 nid = next_node_in(nid, *nodes_allowed);
1250 VM_BUG_ON(nid >= MAX_NUMNODES);
1255 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1257 if (!node_isset(nid, *nodes_allowed))
1258 nid = next_node_allowed(nid, nodes_allowed);
1263 * returns the previously saved node ["this node"] from which to
1264 * allocate a persistent huge page for the pool and advance the
1265 * next node from which to allocate, handling wrap at end of node
1268 static int hstate_next_node_to_alloc(struct hstate *h,
1269 nodemask_t *nodes_allowed)
1273 VM_BUG_ON(!nodes_allowed);
1275 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1276 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1282 * helper for remove_pool_huge_page() - return the previously saved
1283 * node ["this node"] from which to free a huge page. Advance the
1284 * next node id whether or not we find a free huge page to free so
1285 * that the next attempt to free addresses the next node.
1287 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1291 VM_BUG_ON(!nodes_allowed);
1293 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1294 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1299 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1300 for (nr_nodes = nodes_weight(*mask); \
1302 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1305 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1306 for (nr_nodes = nodes_weight(*mask); \
1308 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1311 /* used to demote non-gigantic_huge pages as well */
1312 static void __destroy_compound_gigantic_page(struct page *page,
1313 unsigned int order, bool demote)
1316 int nr_pages = 1 << order;
1317 struct page *p = page + 1;
1319 atomic_set(compound_mapcount_ptr(page), 0);
1320 atomic_set(compound_pincount_ptr(page), 0);
1322 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1324 clear_compound_head(p);
1326 set_page_refcounted(p);
1329 set_compound_order(page, 0);
1331 page[1].compound_nr = 0;
1333 __ClearPageHead(page);
1336 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1339 __destroy_compound_gigantic_page(page, order, true);
1342 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1343 static void destroy_compound_gigantic_page(struct page *page,
1346 __destroy_compound_gigantic_page(page, order, false);
1349 static void free_gigantic_page(struct page *page, unsigned int order)
1352 * If the page isn't allocated using the cma allocator,
1353 * cma_release() returns false.
1356 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1360 free_contig_range(page_to_pfn(page), 1 << order);
1363 #ifdef CONFIG_CONTIG_ALLOC
1364 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1365 int nid, nodemask_t *nodemask)
1367 unsigned long nr_pages = pages_per_huge_page(h);
1368 if (nid == NUMA_NO_NODE)
1369 nid = numa_mem_id();
1376 if (hugetlb_cma[nid]) {
1377 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1378 huge_page_order(h), true);
1383 if (!(gfp_mask & __GFP_THISNODE)) {
1384 for_each_node_mask(node, *nodemask) {
1385 if (node == nid || !hugetlb_cma[node])
1388 page = cma_alloc(hugetlb_cma[node], nr_pages,
1389 huge_page_order(h), true);
1397 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1400 #else /* !CONFIG_CONTIG_ALLOC */
1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402 int nid, nodemask_t *nodemask)
1406 #endif /* CONFIG_CONTIG_ALLOC */
1408 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1409 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1410 int nid, nodemask_t *nodemask)
1414 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1415 static inline void destroy_compound_gigantic_page(struct page *page,
1416 unsigned int order) { }
1420 * Remove hugetlb page from lists, and update dtor so that page appears
1421 * as just a compound page.
1423 * A reference is held on the page, except in the case of demote.
1425 * Must be called with hugetlb lock held.
1427 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1428 bool adjust_surplus,
1431 int nid = page_to_nid(page);
1433 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1434 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1436 lockdep_assert_held(&hugetlb_lock);
1437 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1440 list_del(&page->lru);
1442 if (HPageFreed(page)) {
1443 h->free_huge_pages--;
1444 h->free_huge_pages_node[nid]--;
1446 if (adjust_surplus) {
1447 h->surplus_huge_pages--;
1448 h->surplus_huge_pages_node[nid]--;
1454 * For non-gigantic pages set the destructor to the normal compound
1455 * page dtor. This is needed in case someone takes an additional
1456 * temporary ref to the page, and freeing is delayed until they drop
1459 * For gigantic pages set the destructor to the null dtor. This
1460 * destructor will never be called. Before freeing the gigantic
1461 * page destroy_compound_gigantic_page will turn the compound page
1462 * into a simple group of pages. After this the destructor does not
1465 * This handles the case where more than one ref is held when and
1466 * after update_and_free_page is called.
1468 * In the case of demote we do not ref count the page as it will soon
1469 * be turned into a page of smaller size.
1472 set_page_refcounted(page);
1473 if (hstate_is_gigantic(h))
1474 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1476 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1479 h->nr_huge_pages_node[nid]--;
1482 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1483 bool adjust_surplus)
1485 __remove_hugetlb_page(h, page, adjust_surplus, false);
1488 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1489 bool adjust_surplus)
1491 __remove_hugetlb_page(h, page, adjust_surplus, true);
1494 static void add_hugetlb_page(struct hstate *h, struct page *page,
1495 bool adjust_surplus)
1498 int nid = page_to_nid(page);
1500 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1502 lockdep_assert_held(&hugetlb_lock);
1504 INIT_LIST_HEAD(&page->lru);
1506 h->nr_huge_pages_node[nid]++;
1508 if (adjust_surplus) {
1509 h->surplus_huge_pages++;
1510 h->surplus_huge_pages_node[nid]++;
1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 set_page_private(page, 0);
1515 SetHPageVmemmapOptimized(page);
1518 * This page is about to be managed by the hugetlb allocator and
1519 * should have no users. Drop our reference, and check for others
1522 zeroed = put_page_testzero(page);
1525 * It is VERY unlikely soneone else has taken a ref on
1526 * the page. In this case, we simply return as the
1527 * hugetlb destructor (free_huge_page) will be called
1528 * when this other ref is dropped.
1532 arch_clear_hugepage_flags(page);
1533 enqueue_huge_page(h, page);
1536 static void __update_and_free_page(struct hstate *h, struct page *page)
1539 struct page *subpage = page;
1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1544 if (hugetlb_vmemmap_alloc(h, page)) {
1545 spin_lock_irq(&hugetlb_lock);
1547 * If we cannot allocate vmemmap pages, just refuse to free the
1548 * page and put the page back on the hugetlb free list and treat
1549 * as a surplus page.
1551 add_hugetlb_page(h, page, true);
1552 spin_unlock_irq(&hugetlb_lock);
1556 for (i = 0; i < pages_per_huge_page(h);
1557 i++, subpage = mem_map_next(subpage, page, i)) {
1558 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1559 1 << PG_referenced | 1 << PG_dirty |
1560 1 << PG_active | 1 << PG_private |
1565 * Non-gigantic pages demoted from CMA allocated gigantic pages
1566 * need to be given back to CMA in free_gigantic_page.
1568 if (hstate_is_gigantic(h) ||
1569 hugetlb_cma_page(page, huge_page_order(h))) {
1570 destroy_compound_gigantic_page(page, huge_page_order(h));
1571 free_gigantic_page(page, huge_page_order(h));
1573 __free_pages(page, huge_page_order(h));
1578 * As update_and_free_page() can be called under any context, so we cannot
1579 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1580 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1581 * the vmemmap pages.
1583 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1584 * freed and frees them one-by-one. As the page->mapping pointer is going
1585 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1586 * structure of a lockless linked list of huge pages to be freed.
1588 static LLIST_HEAD(hpage_freelist);
1590 static void free_hpage_workfn(struct work_struct *work)
1592 struct llist_node *node;
1594 node = llist_del_all(&hpage_freelist);
1600 page = container_of((struct address_space **)node,
1601 struct page, mapping);
1603 page->mapping = NULL;
1605 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1606 * is going to trigger because a previous call to
1607 * remove_hugetlb_page() will set_compound_page_dtor(page,
1608 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1610 h = size_to_hstate(page_size(page));
1612 __update_and_free_page(h, page);
1617 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1619 static inline void flush_free_hpage_work(struct hstate *h)
1621 if (hugetlb_optimize_vmemmap_pages(h))
1622 flush_work(&free_hpage_work);
1625 static void update_and_free_page(struct hstate *h, struct page *page,
1628 if (!HPageVmemmapOptimized(page) || !atomic) {
1629 __update_and_free_page(h, page);
1634 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1636 * Only call schedule_work() if hpage_freelist is previously
1637 * empty. Otherwise, schedule_work() had been called but the workfn
1638 * hasn't retrieved the list yet.
1640 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1641 schedule_work(&free_hpage_work);
1644 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1646 struct page *page, *t_page;
1648 list_for_each_entry_safe(page, t_page, list, lru) {
1649 update_and_free_page(h, page, false);
1654 struct hstate *size_to_hstate(unsigned long size)
1658 for_each_hstate(h) {
1659 if (huge_page_size(h) == size)
1665 void free_huge_page(struct page *page)
1668 * Can't pass hstate in here because it is called from the
1669 * compound page destructor.
1671 struct hstate *h = page_hstate(page);
1672 int nid = page_to_nid(page);
1673 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1674 bool restore_reserve;
1675 unsigned long flags;
1677 VM_BUG_ON_PAGE(page_count(page), page);
1678 VM_BUG_ON_PAGE(page_mapcount(page), page);
1680 hugetlb_set_page_subpool(page, NULL);
1682 __ClearPageAnonExclusive(page);
1683 page->mapping = NULL;
1684 restore_reserve = HPageRestoreReserve(page);
1685 ClearHPageRestoreReserve(page);
1688 * If HPageRestoreReserve was set on page, page allocation consumed a
1689 * reservation. If the page was associated with a subpool, there
1690 * would have been a page reserved in the subpool before allocation
1691 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1692 * reservation, do not call hugepage_subpool_put_pages() as this will
1693 * remove the reserved page from the subpool.
1695 if (!restore_reserve) {
1697 * A return code of zero implies that the subpool will be
1698 * under its minimum size if the reservation is not restored
1699 * after page is free. Therefore, force restore_reserve
1702 if (hugepage_subpool_put_pages(spool, 1) == 0)
1703 restore_reserve = true;
1706 spin_lock_irqsave(&hugetlb_lock, flags);
1707 ClearHPageMigratable(page);
1708 hugetlb_cgroup_uncharge_page(hstate_index(h),
1709 pages_per_huge_page(h), page);
1710 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1711 pages_per_huge_page(h), page);
1712 if (restore_reserve)
1713 h->resv_huge_pages++;
1715 if (HPageTemporary(page)) {
1716 remove_hugetlb_page(h, page, false);
1717 spin_unlock_irqrestore(&hugetlb_lock, flags);
1718 update_and_free_page(h, page, true);
1719 } else if (h->surplus_huge_pages_node[nid]) {
1720 /* remove the page from active list */
1721 remove_hugetlb_page(h, page, true);
1722 spin_unlock_irqrestore(&hugetlb_lock, flags);
1723 update_and_free_page(h, page, true);
1725 arch_clear_hugepage_flags(page);
1726 enqueue_huge_page(h, page);
1727 spin_unlock_irqrestore(&hugetlb_lock, flags);
1732 * Must be called with the hugetlb lock held
1734 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1736 lockdep_assert_held(&hugetlb_lock);
1738 h->nr_huge_pages_node[nid]++;
1741 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1743 hugetlb_vmemmap_free(h, page);
1744 INIT_LIST_HEAD(&page->lru);
1745 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1746 hugetlb_set_page_subpool(page, NULL);
1747 set_hugetlb_cgroup(page, NULL);
1748 set_hugetlb_cgroup_rsvd(page, NULL);
1751 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1753 __prep_new_huge_page(h, page);
1754 spin_lock_irq(&hugetlb_lock);
1755 __prep_account_new_huge_page(h, nid);
1756 spin_unlock_irq(&hugetlb_lock);
1759 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1763 int nr_pages = 1 << order;
1764 struct page *p = page + 1;
1766 /* we rely on prep_new_huge_page to set the destructor */
1767 set_compound_order(page, order);
1768 __ClearPageReserved(page);
1769 __SetPageHead(page);
1770 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1772 * For gigantic hugepages allocated through bootmem at
1773 * boot, it's safer to be consistent with the not-gigantic
1774 * hugepages and clear the PG_reserved bit from all tail pages
1775 * too. Otherwise drivers using get_user_pages() to access tail
1776 * pages may get the reference counting wrong if they see
1777 * PG_reserved set on a tail page (despite the head page not
1778 * having PG_reserved set). Enforcing this consistency between
1779 * head and tail pages allows drivers to optimize away a check
1780 * on the head page when they need know if put_page() is needed
1781 * after get_user_pages().
1783 __ClearPageReserved(p);
1785 * Subtle and very unlikely
1787 * Gigantic 'page allocators' such as memblock or cma will
1788 * return a set of pages with each page ref counted. We need
1789 * to turn this set of pages into a compound page with tail
1790 * page ref counts set to zero. Code such as speculative page
1791 * cache adding could take a ref on a 'to be' tail page.
1792 * We need to respect any increased ref count, and only set
1793 * the ref count to zero if count is currently 1. If count
1794 * is not 1, we return an error. An error return indicates
1795 * the set of pages can not be converted to a gigantic page.
1796 * The caller who allocated the pages should then discard the
1797 * pages using the appropriate free interface.
1799 * In the case of demote, the ref count will be zero.
1802 if (!page_ref_freeze(p, 1)) {
1803 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1807 VM_BUG_ON_PAGE(page_count(p), p);
1809 set_compound_head(p, page);
1811 atomic_set(compound_mapcount_ptr(page), -1);
1812 atomic_set(compound_pincount_ptr(page), 0);
1816 /* undo tail page modifications made above */
1818 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1819 clear_compound_head(p);
1820 set_page_refcounted(p);
1822 /* need to clear PG_reserved on remaining tail pages */
1823 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1824 __ClearPageReserved(p);
1825 set_compound_order(page, 0);
1827 page[1].compound_nr = 0;
1829 __ClearPageHead(page);
1833 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1835 return __prep_compound_gigantic_page(page, order, false);
1838 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1841 return __prep_compound_gigantic_page(page, order, true);
1845 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1846 * transparent huge pages. See the PageTransHuge() documentation for more
1849 int PageHuge(struct page *page)
1851 if (!PageCompound(page))
1854 page = compound_head(page);
1855 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1857 EXPORT_SYMBOL_GPL(PageHuge);
1860 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1861 * normal or transparent huge pages.
1863 int PageHeadHuge(struct page *page_head)
1865 if (!PageHead(page_head))
1868 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1870 EXPORT_SYMBOL_GPL(PageHeadHuge);
1873 * Find and lock address space (mapping) in write mode.
1875 * Upon entry, the page is locked which means that page_mapping() is
1876 * stable. Due to locking order, we can only trylock_write. If we can
1877 * not get the lock, simply return NULL to caller.
1879 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1881 struct address_space *mapping = page_mapping(hpage);
1886 if (i_mmap_trylock_write(mapping))
1892 pgoff_t hugetlb_basepage_index(struct page *page)
1894 struct page *page_head = compound_head(page);
1895 pgoff_t index = page_index(page_head);
1896 unsigned long compound_idx;
1898 if (compound_order(page_head) >= MAX_ORDER)
1899 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1901 compound_idx = page - page_head;
1903 return (index << compound_order(page_head)) + compound_idx;
1906 static struct page *alloc_buddy_huge_page(struct hstate *h,
1907 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1908 nodemask_t *node_alloc_noretry)
1910 int order = huge_page_order(h);
1912 bool alloc_try_hard = true;
1915 * By default we always try hard to allocate the page with
1916 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1917 * a loop (to adjust global huge page counts) and previous allocation
1918 * failed, do not continue to try hard on the same node. Use the
1919 * node_alloc_noretry bitmap to manage this state information.
1921 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1922 alloc_try_hard = false;
1923 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1925 gfp_mask |= __GFP_RETRY_MAYFAIL;
1926 if (nid == NUMA_NO_NODE)
1927 nid = numa_mem_id();
1928 page = __alloc_pages(gfp_mask, order, nid, nmask);
1930 __count_vm_event(HTLB_BUDDY_PGALLOC);
1932 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1935 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1936 * indicates an overall state change. Clear bit so that we resume
1937 * normal 'try hard' allocations.
1939 if (node_alloc_noretry && page && !alloc_try_hard)
1940 node_clear(nid, *node_alloc_noretry);
1943 * If we tried hard to get a page but failed, set bit so that
1944 * subsequent attempts will not try as hard until there is an
1945 * overall state change.
1947 if (node_alloc_noretry && !page && alloc_try_hard)
1948 node_set(nid, *node_alloc_noretry);
1954 * Common helper to allocate a fresh hugetlb page. All specific allocators
1955 * should use this function to get new hugetlb pages
1957 static struct page *alloc_fresh_huge_page(struct hstate *h,
1958 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1959 nodemask_t *node_alloc_noretry)
1965 if (hstate_is_gigantic(h))
1966 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1968 page = alloc_buddy_huge_page(h, gfp_mask,
1969 nid, nmask, node_alloc_noretry);
1973 if (hstate_is_gigantic(h)) {
1974 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1976 * Rare failure to convert pages to compound page.
1977 * Free pages and try again - ONCE!
1979 free_gigantic_page(page, huge_page_order(h));
1987 prep_new_huge_page(h, page, page_to_nid(page));
1993 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1996 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1997 nodemask_t *node_alloc_noretry)
2001 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2003 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2004 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2005 node_alloc_noretry);
2013 put_page(page); /* free it into the hugepage allocator */
2019 * Remove huge page from pool from next node to free. Attempt to keep
2020 * persistent huge pages more or less balanced over allowed nodes.
2021 * This routine only 'removes' the hugetlb page. The caller must make
2022 * an additional call to free the page to low level allocators.
2023 * Called with hugetlb_lock locked.
2025 static struct page *remove_pool_huge_page(struct hstate *h,
2026 nodemask_t *nodes_allowed,
2030 struct page *page = NULL;
2032 lockdep_assert_held(&hugetlb_lock);
2033 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2035 * If we're returning unused surplus pages, only examine
2036 * nodes with surplus pages.
2038 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2039 !list_empty(&h->hugepage_freelists[node])) {
2040 page = list_entry(h->hugepage_freelists[node].next,
2042 remove_hugetlb_page(h, page, acct_surplus);
2051 * Dissolve a given free hugepage into free buddy pages. This function does
2052 * nothing for in-use hugepages and non-hugepages.
2053 * This function returns values like below:
2055 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2056 * when the system is under memory pressure and the feature of
2057 * freeing unused vmemmap pages associated with each hugetlb page
2059 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2060 * (allocated or reserved.)
2061 * 0: successfully dissolved free hugepages or the page is not a
2062 * hugepage (considered as already dissolved)
2064 int dissolve_free_huge_page(struct page *page)
2069 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2070 if (!PageHuge(page))
2073 spin_lock_irq(&hugetlb_lock);
2074 if (!PageHuge(page)) {
2079 if (!page_count(page)) {
2080 struct page *head = compound_head(page);
2081 struct hstate *h = page_hstate(head);
2082 if (h->free_huge_pages - h->resv_huge_pages == 0)
2086 * We should make sure that the page is already on the free list
2087 * when it is dissolved.
2089 if (unlikely(!HPageFreed(head))) {
2090 spin_unlock_irq(&hugetlb_lock);
2094 * Theoretically, we should return -EBUSY when we
2095 * encounter this race. In fact, we have a chance
2096 * to successfully dissolve the page if we do a
2097 * retry. Because the race window is quite small.
2098 * If we seize this opportunity, it is an optimization
2099 * for increasing the success rate of dissolving page.
2104 remove_hugetlb_page(h, head, false);
2105 h->max_huge_pages--;
2106 spin_unlock_irq(&hugetlb_lock);
2109 * Normally update_and_free_page will allocate required vmemmmap
2110 * before freeing the page. update_and_free_page will fail to
2111 * free the page if it can not allocate required vmemmap. We
2112 * need to adjust max_huge_pages if the page is not freed.
2113 * Attempt to allocate vmemmmap here so that we can take
2114 * appropriate action on failure.
2116 rc = hugetlb_vmemmap_alloc(h, head);
2119 * Move PageHWPoison flag from head page to the raw
2120 * error page, which makes any subpages rather than
2121 * the error page reusable.
2123 if (PageHWPoison(head) && page != head) {
2124 SetPageHWPoison(page);
2125 ClearPageHWPoison(head);
2127 update_and_free_page(h, head, false);
2129 spin_lock_irq(&hugetlb_lock);
2130 add_hugetlb_page(h, head, false);
2131 h->max_huge_pages++;
2132 spin_unlock_irq(&hugetlb_lock);
2138 spin_unlock_irq(&hugetlb_lock);
2143 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2144 * make specified memory blocks removable from the system.
2145 * Note that this will dissolve a free gigantic hugepage completely, if any
2146 * part of it lies within the given range.
2147 * Also note that if dissolve_free_huge_page() returns with an error, all
2148 * free hugepages that were dissolved before that error are lost.
2150 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2156 if (!hugepages_supported())
2159 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2160 page = pfn_to_page(pfn);
2161 rc = dissolve_free_huge_page(page);
2170 * Allocates a fresh surplus page from the page allocator.
2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173 int nid, nodemask_t *nmask, bool zero_ref)
2175 struct page *page = NULL;
2178 if (hstate_is_gigantic(h))
2181 spin_lock_irq(&hugetlb_lock);
2182 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2184 spin_unlock_irq(&hugetlb_lock);
2187 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2191 spin_lock_irq(&hugetlb_lock);
2193 * We could have raced with the pool size change.
2194 * Double check that and simply deallocate the new page
2195 * if we would end up overcommiting the surpluses. Abuse
2196 * temporary page to workaround the nasty free_huge_page
2199 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200 SetHPageTemporary(page);
2201 spin_unlock_irq(&hugetlb_lock);
2208 * Caller requires a page with zero ref count.
2209 * We will drop ref count here. If someone else is holding
2210 * a ref, the page will be freed when they drop it. Abuse
2211 * temporary page flag to accomplish this.
2213 SetHPageTemporary(page);
2214 if (!put_page_testzero(page)) {
2216 * Unexpected inflated ref count on freshly allocated
2219 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220 spin_unlock_irq(&hugetlb_lock);
2227 ClearHPageTemporary(page);
2230 h->surplus_huge_pages++;
2231 h->surplus_huge_pages_node[page_to_nid(page)]++;
2234 spin_unlock_irq(&hugetlb_lock);
2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240 int nid, nodemask_t *nmask)
2244 if (hstate_is_gigantic(h))
2247 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2252 * We do not account these pages as surplus because they are only
2253 * temporary and will be released properly on the last reference
2255 SetHPageTemporary(page);
2261 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265 struct vm_area_struct *vma, unsigned long addr)
2267 struct page *page = NULL;
2268 struct mempolicy *mpol;
2269 gfp_t gfp_mask = htlb_alloc_mask(h);
2271 nodemask_t *nodemask;
2273 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274 if (mpol_is_preferred_many(mpol)) {
2275 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2277 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2280 /* Fallback to all nodes if page==NULL */
2285 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286 mpol_cond_put(mpol);
2290 /* page migration callback function */
2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292 nodemask_t *nmask, gfp_t gfp_mask)
2294 spin_lock_irq(&hugetlb_lock);
2295 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2298 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2300 spin_unlock_irq(&hugetlb_lock);
2304 spin_unlock_irq(&hugetlb_lock);
2306 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2309 /* mempolicy aware migration callback */
2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311 unsigned long address)
2313 struct mempolicy *mpol;
2314 nodemask_t *nodemask;
2319 gfp_mask = htlb_alloc_mask(h);
2320 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322 mpol_cond_put(mpol);
2328 * Increase the hugetlb pool such that it can accommodate a reservation
2331 static int gather_surplus_pages(struct hstate *h, long delta)
2332 __must_hold(&hugetlb_lock)
2334 struct list_head surplus_list;
2335 struct page *page, *tmp;
2338 long needed, allocated;
2339 bool alloc_ok = true;
2341 lockdep_assert_held(&hugetlb_lock);
2342 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2344 h->resv_huge_pages += delta;
2349 INIT_LIST_HEAD(&surplus_list);
2353 spin_unlock_irq(&hugetlb_lock);
2354 for (i = 0; i < needed; i++) {
2355 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356 NUMA_NO_NODE, NULL, true);
2361 list_add(&page->lru, &surplus_list);
2367 * After retaking hugetlb_lock, we need to recalculate 'needed'
2368 * because either resv_huge_pages or free_huge_pages may have changed.
2370 spin_lock_irq(&hugetlb_lock);
2371 needed = (h->resv_huge_pages + delta) -
2372 (h->free_huge_pages + allocated);
2377 * We were not able to allocate enough pages to
2378 * satisfy the entire reservation so we free what
2379 * we've allocated so far.
2384 * The surplus_list now contains _at_least_ the number of extra pages
2385 * needed to accommodate the reservation. Add the appropriate number
2386 * of pages to the hugetlb pool and free the extras back to the buddy
2387 * allocator. Commit the entire reservation here to prevent another
2388 * process from stealing the pages as they are added to the pool but
2389 * before they are reserved.
2391 needed += allocated;
2392 h->resv_huge_pages += delta;
2395 /* Free the needed pages to the hugetlb pool */
2396 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2399 /* Add the page to the hugetlb allocator */
2400 enqueue_huge_page(h, page);
2403 spin_unlock_irq(&hugetlb_lock);
2406 * Free unnecessary surplus pages to the buddy allocator.
2407 * Pages have no ref count, call free_huge_page directly.
2409 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410 free_huge_page(page);
2411 spin_lock_irq(&hugetlb_lock);
2417 * This routine has two main purposes:
2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419 * in unused_resv_pages. This corresponds to the prior adjustments made
2420 * to the associated reservation map.
2421 * 2) Free any unused surplus pages that may have been allocated to satisfy
2422 * the reservation. As many as unused_resv_pages may be freed.
2424 static void return_unused_surplus_pages(struct hstate *h,
2425 unsigned long unused_resv_pages)
2427 unsigned long nr_pages;
2429 LIST_HEAD(page_list);
2431 lockdep_assert_held(&hugetlb_lock);
2432 /* Uncommit the reservation */
2433 h->resv_huge_pages -= unused_resv_pages;
2435 /* Cannot return gigantic pages currently */
2436 if (hstate_is_gigantic(h))
2440 * Part (or even all) of the reservation could have been backed
2441 * by pre-allocated pages. Only free surplus pages.
2443 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2446 * We want to release as many surplus pages as possible, spread
2447 * evenly across all nodes with memory. Iterate across these nodes
2448 * until we can no longer free unreserved surplus pages. This occurs
2449 * when the nodes with surplus pages have no free pages.
2450 * remove_pool_huge_page() will balance the freed pages across the
2451 * on-line nodes with memory and will handle the hstate accounting.
2453 while (nr_pages--) {
2454 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2458 list_add(&page->lru, &page_list);
2462 spin_unlock_irq(&hugetlb_lock);
2463 update_and_free_pages_bulk(h, &page_list);
2464 spin_lock_irq(&hugetlb_lock);
2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470 * are used by the huge page allocation routines to manage reservations.
2472 * vma_needs_reservation is called to determine if the huge page at addr
2473 * within the vma has an associated reservation. If a reservation is
2474 * needed, the value 1 is returned. The caller is then responsible for
2475 * managing the global reservation and subpool usage counts. After
2476 * the huge page has been allocated, vma_commit_reservation is called
2477 * to add the page to the reservation map. If the page allocation fails,
2478 * the reservation must be ended instead of committed. vma_end_reservation
2479 * is called in such cases.
2481 * In the normal case, vma_commit_reservation returns the same value
2482 * as the preceding vma_needs_reservation call. The only time this
2483 * is not the case is if a reserve map was changed between calls. It
2484 * is the responsibility of the caller to notice the difference and
2485 * take appropriate action.
2487 * vma_add_reservation is used in error paths where a reservation must
2488 * be restored when a newly allocated huge page must be freed. It is
2489 * to be called after calling vma_needs_reservation to determine if a
2490 * reservation exists.
2492 * vma_del_reservation is used in error paths where an entry in the reserve
2493 * map was created during huge page allocation and must be removed. It is to
2494 * be called after calling vma_needs_reservation to determine if a reservation
2497 enum vma_resv_mode {
2504 static long __vma_reservation_common(struct hstate *h,
2505 struct vm_area_struct *vma, unsigned long addr,
2506 enum vma_resv_mode mode)
2508 struct resv_map *resv;
2511 long dummy_out_regions_needed;
2513 resv = vma_resv_map(vma);
2517 idx = vma_hugecache_offset(h, vma, addr);
2519 case VMA_NEEDS_RESV:
2520 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521 /* We assume that vma_reservation_* routines always operate on
2522 * 1 page, and that adding to resv map a 1 page entry can only
2523 * ever require 1 region.
2525 VM_BUG_ON(dummy_out_regions_needed != 1);
2527 case VMA_COMMIT_RESV:
2528 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529 /* region_add calls of range 1 should never fail. */
2533 region_abort(resv, idx, idx + 1, 1);
2537 if (vma->vm_flags & VM_MAYSHARE) {
2538 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539 /* region_add calls of range 1 should never fail. */
2542 region_abort(resv, idx, idx + 1, 1);
2543 ret = region_del(resv, idx, idx + 1);
2547 if (vma->vm_flags & VM_MAYSHARE) {
2548 region_abort(resv, idx, idx + 1, 1);
2549 ret = region_del(resv, idx, idx + 1);
2551 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552 /* region_add calls of range 1 should never fail. */
2560 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2563 * We know private mapping must have HPAGE_RESV_OWNER set.
2565 * In most cases, reserves always exist for private mappings.
2566 * However, a file associated with mapping could have been
2567 * hole punched or truncated after reserves were consumed.
2568 * As subsequent fault on such a range will not use reserves.
2569 * Subtle - The reserve map for private mappings has the
2570 * opposite meaning than that of shared mappings. If NO
2571 * entry is in the reserve map, it means a reservation exists.
2572 * If an entry exists in the reserve map, it means the
2573 * reservation has already been consumed. As a result, the
2574 * return value of this routine is the opposite of the
2575 * value returned from reserve map manipulation routines above.
2584 static long vma_needs_reservation(struct hstate *h,
2585 struct vm_area_struct *vma, unsigned long addr)
2587 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2590 static long vma_commit_reservation(struct hstate *h,
2591 struct vm_area_struct *vma, unsigned long addr)
2593 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2596 static void vma_end_reservation(struct hstate *h,
2597 struct vm_area_struct *vma, unsigned long addr)
2599 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2602 static long vma_add_reservation(struct hstate *h,
2603 struct vm_area_struct *vma, unsigned long addr)
2605 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2608 static long vma_del_reservation(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long addr)
2611 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2615 * This routine is called to restore reservation information on error paths.
2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617 * the hugetlb mutex should remain held when calling this routine.
2619 * It handles two specific cases:
2620 * 1) A reservation was in place and the page consumed the reservation.
2621 * HPageRestoreReserve is set in the page.
2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623 * not set. However, alloc_huge_page always updates the reserve map.
2625 * In case 1, free_huge_page later in the error path will increment the
2626 * global reserve count. But, free_huge_page does not have enough context
2627 * to adjust the reservation map. This case deals primarily with private
2628 * mappings. Adjust the reserve map here to be consistent with global
2629 * reserve count adjustments to be made by free_huge_page. Make sure the
2630 * reserve map indicates there is a reservation present.
2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635 unsigned long address, struct page *page)
2637 long rc = vma_needs_reservation(h, vma, address);
2639 if (HPageRestoreReserve(page)) {
2640 if (unlikely(rc < 0))
2642 * Rare out of memory condition in reserve map
2643 * manipulation. Clear HPageRestoreReserve so that
2644 * global reserve count will not be incremented
2645 * by free_huge_page. This will make it appear
2646 * as though the reservation for this page was
2647 * consumed. This may prevent the task from
2648 * faulting in the page at a later time. This
2649 * is better than inconsistent global huge page
2650 * accounting of reserve counts.
2652 ClearHPageRestoreReserve(page);
2654 (void)vma_add_reservation(h, vma, address);
2656 vma_end_reservation(h, vma, address);
2660 * This indicates there is an entry in the reserve map
2661 * not added by alloc_huge_page. We know it was added
2662 * before the alloc_huge_page call, otherwise
2663 * HPageRestoreReserve would be set on the page.
2664 * Remove the entry so that a subsequent allocation
2665 * does not consume a reservation.
2667 rc = vma_del_reservation(h, vma, address);
2670 * VERY rare out of memory condition. Since
2671 * we can not delete the entry, set
2672 * HPageRestoreReserve so that the reserve
2673 * count will be incremented when the page
2674 * is freed. This reserve will be consumed
2675 * on a subsequent allocation.
2677 SetHPageRestoreReserve(page);
2678 } else if (rc < 0) {
2680 * Rare out of memory condition from
2681 * vma_needs_reservation call. Memory allocation is
2682 * only attempted if a new entry is needed. Therefore,
2683 * this implies there is not an entry in the
2686 * For shared mappings, no entry in the map indicates
2687 * no reservation. We are done.
2689 if (!(vma->vm_flags & VM_MAYSHARE))
2691 * For private mappings, no entry indicates
2692 * a reservation is present. Since we can
2693 * not add an entry, set SetHPageRestoreReserve
2694 * on the page so reserve count will be
2695 * incremented when freed. This reserve will
2696 * be consumed on a subsequent allocation.
2698 SetHPageRestoreReserve(page);
2701 * No reservation present, do nothing
2703 vma_end_reservation(h, vma, address);
2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709 * @h: struct hstate old page belongs to
2710 * @old_page: Old page to dissolve
2711 * @list: List to isolate the page in case we need to
2712 * Returns 0 on success, otherwise negated error.
2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715 struct list_head *list)
2717 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718 int nid = page_to_nid(old_page);
2719 bool alloc_retry = false;
2720 struct page *new_page;
2724 * Before dissolving the page, we need to allocate a new one for the
2725 * pool to remain stable. Here, we allocate the page and 'prep' it
2726 * by doing everything but actually updating counters and adding to
2727 * the pool. This simplifies and let us do most of the processing
2731 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2735 * If all goes well, this page will be directly added to the free
2736 * list in the pool. For this the ref count needs to be zero.
2737 * Attempt to drop now, and retry once if needed. It is VERY
2738 * unlikely there is another ref on the page.
2740 * If someone else has a reference to the page, it will be freed
2741 * when they drop their ref. Abuse temporary page flag to accomplish
2742 * this. Retry once if there is an inflated ref count.
2744 SetHPageTemporary(new_page);
2745 if (!put_page_testzero(new_page)) {
2752 ClearHPageTemporary(new_page);
2754 __prep_new_huge_page(h, new_page);
2757 spin_lock_irq(&hugetlb_lock);
2758 if (!PageHuge(old_page)) {
2760 * Freed from under us. Drop new_page too.
2763 } else if (page_count(old_page)) {
2765 * Someone has grabbed the page, try to isolate it here.
2766 * Fail with -EBUSY if not possible.
2768 spin_unlock_irq(&hugetlb_lock);
2769 if (!isolate_huge_page(old_page, list))
2771 spin_lock_irq(&hugetlb_lock);
2773 } else if (!HPageFreed(old_page)) {
2775 * Page's refcount is 0 but it has not been enqueued in the
2776 * freelist yet. Race window is small, so we can succeed here if
2779 spin_unlock_irq(&hugetlb_lock);
2784 * Ok, old_page is still a genuine free hugepage. Remove it from
2785 * the freelist and decrease the counters. These will be
2786 * incremented again when calling __prep_account_new_huge_page()
2787 * and enqueue_huge_page() for new_page. The counters will remain
2788 * stable since this happens under the lock.
2790 remove_hugetlb_page(h, old_page, false);
2793 * Ref count on new page is already zero as it was dropped
2794 * earlier. It can be directly added to the pool free list.
2796 __prep_account_new_huge_page(h, nid);
2797 enqueue_huge_page(h, new_page);
2800 * Pages have been replaced, we can safely free the old one.
2802 spin_unlock_irq(&hugetlb_lock);
2803 update_and_free_page(h, old_page, false);
2809 spin_unlock_irq(&hugetlb_lock);
2810 /* Page has a zero ref count, but needs a ref to be freed */
2811 set_page_refcounted(new_page);
2812 update_and_free_page(h, new_page, false);
2817 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2824 * The page might have been dissolved from under our feet, so make sure
2825 * to carefully check the state under the lock.
2826 * Return success when racing as if we dissolved the page ourselves.
2828 spin_lock_irq(&hugetlb_lock);
2829 if (PageHuge(page)) {
2830 head = compound_head(page);
2831 h = page_hstate(head);
2833 spin_unlock_irq(&hugetlb_lock);
2836 spin_unlock_irq(&hugetlb_lock);
2839 * Fence off gigantic pages as there is a cyclic dependency between
2840 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2841 * of bailing out right away without further retrying.
2843 if (hstate_is_gigantic(h))
2846 if (page_count(head) && isolate_huge_page(head, list))
2848 else if (!page_count(head))
2849 ret = alloc_and_dissolve_huge_page(h, head, list);
2854 struct page *alloc_huge_page(struct vm_area_struct *vma,
2855 unsigned long addr, int avoid_reserve)
2857 struct hugepage_subpool *spool = subpool_vma(vma);
2858 struct hstate *h = hstate_vma(vma);
2860 long map_chg, map_commit;
2863 struct hugetlb_cgroup *h_cg;
2864 bool deferred_reserve;
2866 idx = hstate_index(h);
2868 * Examine the region/reserve map to determine if the process
2869 * has a reservation for the page to be allocated. A return
2870 * code of zero indicates a reservation exists (no change).
2872 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2874 return ERR_PTR(-ENOMEM);
2877 * Processes that did not create the mapping will have no
2878 * reserves as indicated by the region/reserve map. Check
2879 * that the allocation will not exceed the subpool limit.
2880 * Allocations for MAP_NORESERVE mappings also need to be
2881 * checked against any subpool limit.
2883 if (map_chg || avoid_reserve) {
2884 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2886 vma_end_reservation(h, vma, addr);
2887 return ERR_PTR(-ENOSPC);
2891 * Even though there was no reservation in the region/reserve
2892 * map, there could be reservations associated with the
2893 * subpool that can be used. This would be indicated if the
2894 * return value of hugepage_subpool_get_pages() is zero.
2895 * However, if avoid_reserve is specified we still avoid even
2896 * the subpool reservations.
2902 /* If this allocation is not consuming a reservation, charge it now.
2904 deferred_reserve = map_chg || avoid_reserve;
2905 if (deferred_reserve) {
2906 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2907 idx, pages_per_huge_page(h), &h_cg);
2909 goto out_subpool_put;
2912 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2914 goto out_uncharge_cgroup_reservation;
2916 spin_lock_irq(&hugetlb_lock);
2918 * glb_chg is passed to indicate whether or not a page must be taken
2919 * from the global free pool (global change). gbl_chg == 0 indicates
2920 * a reservation exists for the allocation.
2922 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2924 spin_unlock_irq(&hugetlb_lock);
2925 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2927 goto out_uncharge_cgroup;
2928 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2929 SetHPageRestoreReserve(page);
2930 h->resv_huge_pages--;
2932 spin_lock_irq(&hugetlb_lock);
2933 list_add(&page->lru, &h->hugepage_activelist);
2936 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937 /* If allocation is not consuming a reservation, also store the
2938 * hugetlb_cgroup pointer on the page.
2940 if (deferred_reserve) {
2941 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2945 spin_unlock_irq(&hugetlb_lock);
2947 hugetlb_set_page_subpool(page, spool);
2949 map_commit = vma_commit_reservation(h, vma, addr);
2950 if (unlikely(map_chg > map_commit)) {
2952 * The page was added to the reservation map between
2953 * vma_needs_reservation and vma_commit_reservation.
2954 * This indicates a race with hugetlb_reserve_pages.
2955 * Adjust for the subpool count incremented above AND
2956 * in hugetlb_reserve_pages for the same page. Also,
2957 * the reservation count added in hugetlb_reserve_pages
2958 * no longer applies.
2962 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963 hugetlb_acct_memory(h, -rsv_adjust);
2964 if (deferred_reserve)
2965 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966 pages_per_huge_page(h), page);
2970 out_uncharge_cgroup:
2971 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972 out_uncharge_cgroup_reservation:
2973 if (deferred_reserve)
2974 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2977 if (map_chg || avoid_reserve)
2978 hugepage_subpool_put_pages(spool, 1);
2979 vma_end_reservation(h, vma, addr);
2980 return ERR_PTR(-ENOSPC);
2983 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2987 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2990 /* do node specific alloc */
2991 if (nid != NUMA_NO_NODE) {
2992 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2998 /* allocate from next node when distributing huge pages */
2999 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000 m = memblock_alloc_try_nid_raw(
3001 huge_page_size(h), huge_page_size(h),
3002 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3004 * Use the beginning of the huge page to store the
3005 * huge_bootmem_page struct (until gather_bootmem
3006 * puts them into the mem_map).
3014 /* Put them into a private list first because mem_map is not up yet */
3015 INIT_LIST_HEAD(&m->list);
3016 list_add(&m->list, &huge_boot_pages);
3022 * Put bootmem huge pages into the standard lists after mem_map is up.
3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3025 static void __init gather_bootmem_prealloc(void)
3027 struct huge_bootmem_page *m;
3029 list_for_each_entry(m, &huge_boot_pages, list) {
3030 struct page *page = virt_to_page(m);
3031 struct hstate *h = m->hstate;
3033 VM_BUG_ON(!hstate_is_gigantic(h));
3034 WARN_ON(page_count(page) != 1);
3035 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036 WARN_ON(PageReserved(page));
3037 prep_new_huge_page(h, page, page_to_nid(page));
3038 put_page(page); /* add to the hugepage allocator */
3040 /* VERY unlikely inflated ref count on a tail page */
3041 free_gigantic_page(page, huge_page_order(h));
3045 * We need to restore the 'stolen' pages to totalram_pages
3046 * in order to fix confusing memory reports from free(1) and
3047 * other side-effects, like CommitLimit going negative.
3049 adjust_managed_page_count(page, pages_per_huge_page(h));
3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3058 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059 if (hstate_is_gigantic(h)) {
3060 if (!alloc_bootmem_huge_page(h, nid))
3064 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3066 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067 &node_states[N_MEMORY], NULL);
3070 put_page(page); /* free it into the hugepage allocator */
3074 if (i == h->max_huge_pages_node[nid])
3077 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3079 h->max_huge_pages_node[nid], buf, nid, i);
3080 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081 h->max_huge_pages_node[nid] = i;
3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3087 nodemask_t *node_alloc_noretry;
3088 bool node_specific_alloc = false;
3090 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3096 /* do node specific alloc */
3097 for_each_online_node(i) {
3098 if (h->max_huge_pages_node[i] > 0) {
3099 hugetlb_hstate_alloc_pages_onenode(h, i);
3100 node_specific_alloc = true;
3104 if (node_specific_alloc)
3107 /* below will do all node balanced alloc */
3108 if (!hstate_is_gigantic(h)) {
3110 * Bit mask controlling how hard we retry per-node allocations.
3111 * Ignore errors as lower level routines can deal with
3112 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3113 * time, we are likely in bigger trouble.
3115 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3118 /* allocations done at boot time */
3119 node_alloc_noretry = NULL;
3122 /* bit mask controlling how hard we retry per-node allocations */
3123 if (node_alloc_noretry)
3124 nodes_clear(*node_alloc_noretry);
3126 for (i = 0; i < h->max_huge_pages; ++i) {
3127 if (hstate_is_gigantic(h)) {
3128 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3130 } else if (!alloc_pool_huge_page(h,
3131 &node_states[N_MEMORY],
3132 node_alloc_noretry))
3136 if (i < h->max_huge_pages) {
3139 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3141 h->max_huge_pages, buf, i);
3142 h->max_huge_pages = i;
3144 kfree(node_alloc_noretry);
3147 static void __init hugetlb_init_hstates(void)
3149 struct hstate *h, *h2;
3151 for_each_hstate(h) {
3152 if (minimum_order > huge_page_order(h))
3153 minimum_order = huge_page_order(h);
3155 /* oversize hugepages were init'ed in early boot */
3156 if (!hstate_is_gigantic(h))
3157 hugetlb_hstate_alloc_pages(h);
3160 * Set demote order for each hstate. Note that
3161 * h->demote_order is initially 0.
3162 * - We can not demote gigantic pages if runtime freeing
3163 * is not supported, so skip this.
3164 * - If CMA allocation is possible, we can not demote
3165 * HUGETLB_PAGE_ORDER or smaller size pages.
3167 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3169 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3171 for_each_hstate(h2) {
3174 if (h2->order < h->order &&
3175 h2->order > h->demote_order)
3176 h->demote_order = h2->order;
3179 VM_BUG_ON(minimum_order == UINT_MAX);
3182 static void __init report_hugepages(void)
3186 for_each_hstate(h) {
3189 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3190 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3191 buf, h->free_huge_pages);
3195 #ifdef CONFIG_HIGHMEM
3196 static void try_to_free_low(struct hstate *h, unsigned long count,
3197 nodemask_t *nodes_allowed)
3200 LIST_HEAD(page_list);
3202 lockdep_assert_held(&hugetlb_lock);
3203 if (hstate_is_gigantic(h))
3207 * Collect pages to be freed on a list, and free after dropping lock
3209 for_each_node_mask(i, *nodes_allowed) {
3210 struct page *page, *next;
3211 struct list_head *freel = &h->hugepage_freelists[i];
3212 list_for_each_entry_safe(page, next, freel, lru) {
3213 if (count >= h->nr_huge_pages)
3215 if (PageHighMem(page))
3217 remove_hugetlb_page(h, page, false);
3218 list_add(&page->lru, &page_list);
3223 spin_unlock_irq(&hugetlb_lock);
3224 update_and_free_pages_bulk(h, &page_list);
3225 spin_lock_irq(&hugetlb_lock);
3228 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3229 nodemask_t *nodes_allowed)
3235 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3236 * balanced by operating on them in a round-robin fashion.
3237 * Returns 1 if an adjustment was made.
3239 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3244 lockdep_assert_held(&hugetlb_lock);
3245 VM_BUG_ON(delta != -1 && delta != 1);
3248 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3249 if (h->surplus_huge_pages_node[node])
3253 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3254 if (h->surplus_huge_pages_node[node] <
3255 h->nr_huge_pages_node[node])
3262 h->surplus_huge_pages += delta;
3263 h->surplus_huge_pages_node[node] += delta;
3267 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3268 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3269 nodemask_t *nodes_allowed)
3271 unsigned long min_count, ret;
3273 LIST_HEAD(page_list);
3274 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3277 * Bit mask controlling how hard we retry per-node allocations.
3278 * If we can not allocate the bit mask, do not attempt to allocate
3279 * the requested huge pages.
3281 if (node_alloc_noretry)
3282 nodes_clear(*node_alloc_noretry);
3287 * resize_lock mutex prevents concurrent adjustments to number of
3288 * pages in hstate via the proc/sysfs interfaces.
3290 mutex_lock(&h->resize_lock);
3291 flush_free_hpage_work(h);
3292 spin_lock_irq(&hugetlb_lock);
3295 * Check for a node specific request.
3296 * Changing node specific huge page count may require a corresponding
3297 * change to the global count. In any case, the passed node mask
3298 * (nodes_allowed) will restrict alloc/free to the specified node.
3300 if (nid != NUMA_NO_NODE) {
3301 unsigned long old_count = count;
3303 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3305 * User may have specified a large count value which caused the
3306 * above calculation to overflow. In this case, they wanted
3307 * to allocate as many huge pages as possible. Set count to
3308 * largest possible value to align with their intention.
3310 if (count < old_count)
3315 * Gigantic pages runtime allocation depend on the capability for large
3316 * page range allocation.
3317 * If the system does not provide this feature, return an error when
3318 * the user tries to allocate gigantic pages but let the user free the
3319 * boottime allocated gigantic pages.
3321 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3322 if (count > persistent_huge_pages(h)) {
3323 spin_unlock_irq(&hugetlb_lock);
3324 mutex_unlock(&h->resize_lock);
3325 NODEMASK_FREE(node_alloc_noretry);
3328 /* Fall through to decrease pool */
3332 * Increase the pool size
3333 * First take pages out of surplus state. Then make up the
3334 * remaining difference by allocating fresh huge pages.
3336 * We might race with alloc_surplus_huge_page() here and be unable
3337 * to convert a surplus huge page to a normal huge page. That is
3338 * not critical, though, it just means the overall size of the
3339 * pool might be one hugepage larger than it needs to be, but
3340 * within all the constraints specified by the sysctls.
3342 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3343 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3347 while (count > persistent_huge_pages(h)) {
3349 * If this allocation races such that we no longer need the
3350 * page, free_huge_page will handle it by freeing the page
3351 * and reducing the surplus.
3353 spin_unlock_irq(&hugetlb_lock);
3355 /* yield cpu to avoid soft lockup */
3358 ret = alloc_pool_huge_page(h, nodes_allowed,
3359 node_alloc_noretry);
3360 spin_lock_irq(&hugetlb_lock);
3364 /* Bail for signals. Probably ctrl-c from user */
3365 if (signal_pending(current))
3370 * Decrease the pool size
3371 * First return free pages to the buddy allocator (being careful
3372 * to keep enough around to satisfy reservations). Then place
3373 * pages into surplus state as needed so the pool will shrink
3374 * to the desired size as pages become free.
3376 * By placing pages into the surplus state independent of the
3377 * overcommit value, we are allowing the surplus pool size to
3378 * exceed overcommit. There are few sane options here. Since
3379 * alloc_surplus_huge_page() is checking the global counter,
3380 * though, we'll note that we're not allowed to exceed surplus
3381 * and won't grow the pool anywhere else. Not until one of the
3382 * sysctls are changed, or the surplus pages go out of use.
3384 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3385 min_count = max(count, min_count);
3386 try_to_free_low(h, min_count, nodes_allowed);
3389 * Collect pages to be removed on list without dropping lock
3391 while (min_count < persistent_huge_pages(h)) {
3392 page = remove_pool_huge_page(h, nodes_allowed, 0);
3396 list_add(&page->lru, &page_list);
3398 /* free the pages after dropping lock */
3399 spin_unlock_irq(&hugetlb_lock);
3400 update_and_free_pages_bulk(h, &page_list);
3401 flush_free_hpage_work(h);
3402 spin_lock_irq(&hugetlb_lock);
3404 while (count < persistent_huge_pages(h)) {
3405 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3409 h->max_huge_pages = persistent_huge_pages(h);
3410 spin_unlock_irq(&hugetlb_lock);
3411 mutex_unlock(&h->resize_lock);
3413 NODEMASK_FREE(node_alloc_noretry);
3418 static int demote_free_huge_page(struct hstate *h, struct page *page)
3420 int i, nid = page_to_nid(page);
3421 struct hstate *target_hstate;
3424 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3426 remove_hugetlb_page_for_demote(h, page, false);
3427 spin_unlock_irq(&hugetlb_lock);
3429 rc = hugetlb_vmemmap_alloc(h, page);
3431 /* Allocation of vmemmmap failed, we can not demote page */
3432 spin_lock_irq(&hugetlb_lock);
3433 set_page_refcounted(page);
3434 add_hugetlb_page(h, page, false);
3439 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3440 * sizes as it will not ref count pages.
3442 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3445 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3446 * Without the mutex, pages added to target hstate could be marked
3449 * Note that we already hold h->resize_lock. To prevent deadlock,
3450 * use the convention of always taking larger size hstate mutex first.
3452 mutex_lock(&target_hstate->resize_lock);
3453 for (i = 0; i < pages_per_huge_page(h);
3454 i += pages_per_huge_page(target_hstate)) {
3455 if (hstate_is_gigantic(target_hstate))
3456 prep_compound_gigantic_page_for_demote(page + i,
3457 target_hstate->order);
3459 prep_compound_page(page + i, target_hstate->order);
3460 set_page_private(page + i, 0);
3461 set_page_refcounted(page + i);
3462 prep_new_huge_page(target_hstate, page + i, nid);
3465 mutex_unlock(&target_hstate->resize_lock);
3467 spin_lock_irq(&hugetlb_lock);
3470 * Not absolutely necessary, but for consistency update max_huge_pages
3471 * based on pool changes for the demoted page.
3473 h->max_huge_pages--;
3474 target_hstate->max_huge_pages += pages_per_huge_page(h);
3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480 __must_hold(&hugetlb_lock)
3485 lockdep_assert_held(&hugetlb_lock);
3487 /* We should never get here if no demote order */
3488 if (!h->demote_order) {
3489 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490 return -EINVAL; /* internal error */
3493 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495 if (PageHWPoison(page))
3498 return demote_free_huge_page(h, page);
3503 * Only way to get here is if all pages on free lists are poisoned.
3504 * Return -EBUSY so that caller will not retry.
3509 #define HSTATE_ATTR_RO(_name) \
3510 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3512 #define HSTATE_ATTR_WO(_name) \
3513 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3515 #define HSTATE_ATTR(_name) \
3516 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3518 static struct kobject *hugepages_kobj;
3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3527 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528 if (hstate_kobjs[i] == kobj) {
3530 *nidp = NUMA_NO_NODE;
3534 return kobj_to_node_hstate(kobj, nidp);
3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538 struct kobj_attribute *attr, char *buf)
3541 unsigned long nr_huge_pages;
3544 h = kobj_to_hstate(kobj, &nid);
3545 if (nid == NUMA_NO_NODE)
3546 nr_huge_pages = h->nr_huge_pages;
3548 nr_huge_pages = h->nr_huge_pages_node[nid];
3550 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554 struct hstate *h, int nid,
3555 unsigned long count, size_t len)
3558 nodemask_t nodes_allowed, *n_mask;
3560 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3563 if (nid == NUMA_NO_NODE) {
3565 * global hstate attribute
3567 if (!(obey_mempolicy &&
3568 init_nodemask_of_mempolicy(&nodes_allowed)))
3569 n_mask = &node_states[N_MEMORY];
3571 n_mask = &nodes_allowed;
3574 * Node specific request. count adjustment happens in
3575 * set_max_huge_pages() after acquiring hugetlb_lock.
3577 init_nodemask_of_node(&nodes_allowed, nid);
3578 n_mask = &nodes_allowed;
3581 err = set_max_huge_pages(h, count, nid, n_mask);
3583 return err ? err : len;
3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587 struct kobject *kobj, const char *buf,
3591 unsigned long count;
3595 err = kstrtoul(buf, 10, &count);
3599 h = kobj_to_hstate(kobj, &nid);
3600 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3603 static ssize_t nr_hugepages_show(struct kobject *kobj,
3604 struct kobj_attribute *attr, char *buf)
3606 return nr_hugepages_show_common(kobj, attr, buf);
3609 static ssize_t nr_hugepages_store(struct kobject *kobj,
3610 struct kobj_attribute *attr, const char *buf, size_t len)
3612 return nr_hugepages_store_common(false, kobj, buf, len);
3614 HSTATE_ATTR(nr_hugepages);
3619 * hstate attribute for optionally mempolicy-based constraint on persistent
3620 * huge page alloc/free.
3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623 struct kobj_attribute *attr,
3626 return nr_hugepages_show_common(kobj, attr, buf);
3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630 struct kobj_attribute *attr, const char *buf, size_t len)
3632 return nr_hugepages_store_common(true, kobj, buf, len);
3634 HSTATE_ATTR(nr_hugepages_mempolicy);
3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639 struct kobj_attribute *attr, char *buf)
3641 struct hstate *h = kobj_to_hstate(kobj, NULL);
3642 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646 struct kobj_attribute *attr, const char *buf, size_t count)
3649 unsigned long input;
3650 struct hstate *h = kobj_to_hstate(kobj, NULL);
3652 if (hstate_is_gigantic(h))
3655 err = kstrtoul(buf, 10, &input);
3659 spin_lock_irq(&hugetlb_lock);
3660 h->nr_overcommit_huge_pages = input;
3661 spin_unlock_irq(&hugetlb_lock);
3665 HSTATE_ATTR(nr_overcommit_hugepages);
3667 static ssize_t free_hugepages_show(struct kobject *kobj,
3668 struct kobj_attribute *attr, char *buf)
3671 unsigned long free_huge_pages;
3674 h = kobj_to_hstate(kobj, &nid);
3675 if (nid == NUMA_NO_NODE)
3676 free_huge_pages = h->free_huge_pages;
3678 free_huge_pages = h->free_huge_pages_node[nid];
3680 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3682 HSTATE_ATTR_RO(free_hugepages);
3684 static ssize_t resv_hugepages_show(struct kobject *kobj,
3685 struct kobj_attribute *attr, char *buf)
3687 struct hstate *h = kobj_to_hstate(kobj, NULL);
3688 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3690 HSTATE_ATTR_RO(resv_hugepages);
3692 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3696 unsigned long surplus_huge_pages;
3699 h = kobj_to_hstate(kobj, &nid);
3700 if (nid == NUMA_NO_NODE)
3701 surplus_huge_pages = h->surplus_huge_pages;
3703 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3705 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3707 HSTATE_ATTR_RO(surplus_hugepages);
3709 static ssize_t demote_store(struct kobject *kobj,
3710 struct kobj_attribute *attr, const char *buf, size_t len)
3712 unsigned long nr_demote;
3713 unsigned long nr_available;
3714 nodemask_t nodes_allowed, *n_mask;
3719 err = kstrtoul(buf, 10, &nr_demote);
3722 h = kobj_to_hstate(kobj, &nid);
3724 if (nid != NUMA_NO_NODE) {
3725 init_nodemask_of_node(&nodes_allowed, nid);
3726 n_mask = &nodes_allowed;
3728 n_mask = &node_states[N_MEMORY];
3731 /* Synchronize with other sysfs operations modifying huge pages */
3732 mutex_lock(&h->resize_lock);
3733 spin_lock_irq(&hugetlb_lock);
3737 * Check for available pages to demote each time thorough the
3738 * loop as demote_pool_huge_page will drop hugetlb_lock.
3740 if (nid != NUMA_NO_NODE)
3741 nr_available = h->free_huge_pages_node[nid];
3743 nr_available = h->free_huge_pages;
3744 nr_available -= h->resv_huge_pages;
3748 err = demote_pool_huge_page(h, n_mask);
3755 spin_unlock_irq(&hugetlb_lock);
3756 mutex_unlock(&h->resize_lock);
3762 HSTATE_ATTR_WO(demote);
3764 static ssize_t demote_size_show(struct kobject *kobj,
3765 struct kobj_attribute *attr, char *buf)
3768 struct hstate *h = kobj_to_hstate(kobj, &nid);
3769 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3771 return sysfs_emit(buf, "%lukB\n", demote_size);
3774 static ssize_t demote_size_store(struct kobject *kobj,
3775 struct kobj_attribute *attr,
3776 const char *buf, size_t count)
3778 struct hstate *h, *demote_hstate;
3779 unsigned long demote_size;
3780 unsigned int demote_order;
3783 demote_size = (unsigned long)memparse(buf, NULL);
3785 demote_hstate = size_to_hstate(demote_size);
3788 demote_order = demote_hstate->order;
3789 if (demote_order < HUGETLB_PAGE_ORDER)
3792 /* demote order must be smaller than hstate order */
3793 h = kobj_to_hstate(kobj, &nid);
3794 if (demote_order >= h->order)
3797 /* resize_lock synchronizes access to demote size and writes */
3798 mutex_lock(&h->resize_lock);
3799 h->demote_order = demote_order;
3800 mutex_unlock(&h->resize_lock);
3804 HSTATE_ATTR(demote_size);
3806 static struct attribute *hstate_attrs[] = {
3807 &nr_hugepages_attr.attr,
3808 &nr_overcommit_hugepages_attr.attr,
3809 &free_hugepages_attr.attr,
3810 &resv_hugepages_attr.attr,
3811 &surplus_hugepages_attr.attr,
3813 &nr_hugepages_mempolicy_attr.attr,
3818 static const struct attribute_group hstate_attr_group = {
3819 .attrs = hstate_attrs,
3822 static struct attribute *hstate_demote_attrs[] = {
3823 &demote_size_attr.attr,
3828 static const struct attribute_group hstate_demote_attr_group = {
3829 .attrs = hstate_demote_attrs,
3832 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3833 struct kobject **hstate_kobjs,
3834 const struct attribute_group *hstate_attr_group)
3837 int hi = hstate_index(h);
3839 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3840 if (!hstate_kobjs[hi])
3843 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3845 kobject_put(hstate_kobjs[hi]);
3846 hstate_kobjs[hi] = NULL;
3849 if (h->demote_order) {
3850 if (sysfs_create_group(hstate_kobjs[hi],
3851 &hstate_demote_attr_group))
3852 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3858 static void __init hugetlb_sysfs_init(void)
3863 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3864 if (!hugepages_kobj)
3867 for_each_hstate(h) {
3868 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3869 hstate_kobjs, &hstate_attr_group);
3871 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3878 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3879 * with node devices in node_devices[] using a parallel array. The array
3880 * index of a node device or _hstate == node id.
3881 * This is here to avoid any static dependency of the node device driver, in
3882 * the base kernel, on the hugetlb module.
3884 struct node_hstate {
3885 struct kobject *hugepages_kobj;
3886 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3888 static struct node_hstate node_hstates[MAX_NUMNODES];
3891 * A subset of global hstate attributes for node devices
3893 static struct attribute *per_node_hstate_attrs[] = {
3894 &nr_hugepages_attr.attr,
3895 &free_hugepages_attr.attr,
3896 &surplus_hugepages_attr.attr,
3900 static const struct attribute_group per_node_hstate_attr_group = {
3901 .attrs = per_node_hstate_attrs,
3905 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3906 * Returns node id via non-NULL nidp.
3908 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3912 for (nid = 0; nid < nr_node_ids; nid++) {
3913 struct node_hstate *nhs = &node_hstates[nid];
3915 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3916 if (nhs->hstate_kobjs[i] == kobj) {
3928 * Unregister hstate attributes from a single node device.
3929 * No-op if no hstate attributes attached.
3931 static void hugetlb_unregister_node(struct node *node)
3934 struct node_hstate *nhs = &node_hstates[node->dev.id];
3936 if (!nhs->hugepages_kobj)
3937 return; /* no hstate attributes */
3939 for_each_hstate(h) {
3940 int idx = hstate_index(h);
3941 if (nhs->hstate_kobjs[idx]) {
3942 kobject_put(nhs->hstate_kobjs[idx]);
3943 nhs->hstate_kobjs[idx] = NULL;
3947 kobject_put(nhs->hugepages_kobj);
3948 nhs->hugepages_kobj = NULL;
3953 * Register hstate attributes for a single node device.
3954 * No-op if attributes already registered.
3956 static void hugetlb_register_node(struct node *node)
3959 struct node_hstate *nhs = &node_hstates[node->dev.id];
3962 if (nhs->hugepages_kobj)
3963 return; /* already allocated */
3965 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3967 if (!nhs->hugepages_kobj)
3970 for_each_hstate(h) {
3971 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3973 &per_node_hstate_attr_group);
3975 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3976 h->name, node->dev.id);
3977 hugetlb_unregister_node(node);
3984 * hugetlb init time: register hstate attributes for all registered node
3985 * devices of nodes that have memory. All on-line nodes should have
3986 * registered their associated device by this time.
3988 static void __init hugetlb_register_all_nodes(void)
3992 for_each_node_state(nid, N_MEMORY) {
3993 struct node *node = node_devices[nid];
3994 if (node->dev.id == nid)
3995 hugetlb_register_node(node);
3999 * Let the node device driver know we're here so it can
4000 * [un]register hstate attributes on node hotplug.
4002 register_hugetlbfs_with_node(hugetlb_register_node,
4003 hugetlb_unregister_node);
4005 #else /* !CONFIG_NUMA */
4007 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4015 static void hugetlb_register_all_nodes(void) { }
4019 static int __init hugetlb_init(void)
4023 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4026 if (!hugepages_supported()) {
4027 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4028 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4033 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4034 * architectures depend on setup being done here.
4036 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4037 if (!parsed_default_hugepagesz) {
4039 * If we did not parse a default huge page size, set
4040 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4041 * number of huge pages for this default size was implicitly
4042 * specified, set that here as well.
4043 * Note that the implicit setting will overwrite an explicit
4044 * setting. A warning will be printed in this case.
4046 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4047 if (default_hstate_max_huge_pages) {
4048 if (default_hstate.max_huge_pages) {
4051 string_get_size(huge_page_size(&default_hstate),
4052 1, STRING_UNITS_2, buf, 32);
4053 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4054 default_hstate.max_huge_pages, buf);
4055 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4056 default_hstate_max_huge_pages);
4058 default_hstate.max_huge_pages =
4059 default_hstate_max_huge_pages;
4061 for_each_online_node(i)
4062 default_hstate.max_huge_pages_node[i] =
4063 default_hugepages_in_node[i];
4067 hugetlb_cma_check();
4068 hugetlb_init_hstates();
4069 gather_bootmem_prealloc();
4072 hugetlb_sysfs_init();
4073 hugetlb_register_all_nodes();
4074 hugetlb_cgroup_file_init();
4077 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4079 num_fault_mutexes = 1;
4081 hugetlb_fault_mutex_table =
4082 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4084 BUG_ON(!hugetlb_fault_mutex_table);
4086 for (i = 0; i < num_fault_mutexes; i++)
4087 mutex_init(&hugetlb_fault_mutex_table[i]);
4090 subsys_initcall(hugetlb_init);
4092 /* Overwritten by architectures with more huge page sizes */
4093 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4095 return size == HPAGE_SIZE;
4098 void __init hugetlb_add_hstate(unsigned int order)
4103 if (size_to_hstate(PAGE_SIZE << order)) {
4106 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4108 h = &hstates[hugetlb_max_hstate++];
4109 mutex_init(&h->resize_lock);
4111 h->mask = ~(huge_page_size(h) - 1);
4112 for (i = 0; i < MAX_NUMNODES; ++i)
4113 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4114 INIT_LIST_HEAD(&h->hugepage_activelist);
4115 h->next_nid_to_alloc = first_memory_node;
4116 h->next_nid_to_free = first_memory_node;
4117 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4118 huge_page_size(h)/1024);
4119 hugetlb_vmemmap_init(h);
4124 bool __init __weak hugetlb_node_alloc_supported(void)
4129 static void __init hugepages_clear_pages_in_node(void)
4131 if (!hugetlb_max_hstate) {
4132 default_hstate_max_huge_pages = 0;
4133 memset(default_hugepages_in_node, 0,
4134 MAX_NUMNODES * sizeof(unsigned int));
4136 parsed_hstate->max_huge_pages = 0;
4137 memset(parsed_hstate->max_huge_pages_node, 0,
4138 MAX_NUMNODES * sizeof(unsigned int));
4143 * hugepages command line processing
4144 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4145 * specification. If not, ignore the hugepages value. hugepages can also
4146 * be the first huge page command line option in which case it implicitly
4147 * specifies the number of huge pages for the default size.
4149 static int __init hugepages_setup(char *s)
4152 static unsigned long *last_mhp;
4153 int node = NUMA_NO_NODE;
4158 if (!parsed_valid_hugepagesz) {
4159 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4160 parsed_valid_hugepagesz = true;
4165 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4166 * yet, so this hugepages= parameter goes to the "default hstate".
4167 * Otherwise, it goes with the previously parsed hugepagesz or
4168 * default_hugepagesz.
4170 else if (!hugetlb_max_hstate)
4171 mhp = &default_hstate_max_huge_pages;
4173 mhp = &parsed_hstate->max_huge_pages;
4175 if (mhp == last_mhp) {
4176 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4182 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4184 /* Parameter is node format */
4185 if (p[count] == ':') {
4186 if (!hugetlb_node_alloc_supported()) {
4187 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4190 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4192 node = array_index_nospec(tmp, MAX_NUMNODES);
4194 /* Parse hugepages */
4195 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4197 if (!hugetlb_max_hstate)
4198 default_hugepages_in_node[node] = tmp;
4200 parsed_hstate->max_huge_pages_node[node] = tmp;
4202 /* Go to parse next node*/
4203 if (p[count] == ',')
4216 * Global state is always initialized later in hugetlb_init.
4217 * But we need to allocate gigantic hstates here early to still
4218 * use the bootmem allocator.
4220 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4221 hugetlb_hstate_alloc_pages(parsed_hstate);
4228 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4229 hugepages_clear_pages_in_node();
4232 __setup("hugepages=", hugepages_setup);
4235 * hugepagesz command line processing
4236 * A specific huge page size can only be specified once with hugepagesz.
4237 * hugepagesz is followed by hugepages on the command line. The global
4238 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4239 * hugepagesz argument was valid.
4241 static int __init hugepagesz_setup(char *s)
4246 parsed_valid_hugepagesz = false;
4247 size = (unsigned long)memparse(s, NULL);
4249 if (!arch_hugetlb_valid_size(size)) {
4250 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4254 h = size_to_hstate(size);
4257 * hstate for this size already exists. This is normally
4258 * an error, but is allowed if the existing hstate is the
4259 * default hstate. More specifically, it is only allowed if
4260 * the number of huge pages for the default hstate was not
4261 * previously specified.
4263 if (!parsed_default_hugepagesz || h != &default_hstate ||
4264 default_hstate.max_huge_pages) {
4265 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4270 * No need to call hugetlb_add_hstate() as hstate already
4271 * exists. But, do set parsed_hstate so that a following
4272 * hugepages= parameter will be applied to this hstate.
4275 parsed_valid_hugepagesz = true;
4279 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4280 parsed_valid_hugepagesz = true;
4283 __setup("hugepagesz=", hugepagesz_setup);
4286 * default_hugepagesz command line input
4287 * Only one instance of default_hugepagesz allowed on command line.
4289 static int __init default_hugepagesz_setup(char *s)
4294 parsed_valid_hugepagesz = false;
4295 if (parsed_default_hugepagesz) {
4296 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4300 size = (unsigned long)memparse(s, NULL);
4302 if (!arch_hugetlb_valid_size(size)) {
4303 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4307 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4308 parsed_valid_hugepagesz = true;
4309 parsed_default_hugepagesz = true;
4310 default_hstate_idx = hstate_index(size_to_hstate(size));
4313 * The number of default huge pages (for this size) could have been
4314 * specified as the first hugetlb parameter: hugepages=X. If so,
4315 * then default_hstate_max_huge_pages is set. If the default huge
4316 * page size is gigantic (>= MAX_ORDER), then the pages must be
4317 * allocated here from bootmem allocator.
4319 if (default_hstate_max_huge_pages) {
4320 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4321 for_each_online_node(i)
4322 default_hstate.max_huge_pages_node[i] =
4323 default_hugepages_in_node[i];
4324 if (hstate_is_gigantic(&default_hstate))
4325 hugetlb_hstate_alloc_pages(&default_hstate);
4326 default_hstate_max_huge_pages = 0;
4331 __setup("default_hugepagesz=", default_hugepagesz_setup);
4333 static unsigned int allowed_mems_nr(struct hstate *h)
4336 unsigned int nr = 0;
4337 nodemask_t *mpol_allowed;
4338 unsigned int *array = h->free_huge_pages_node;
4339 gfp_t gfp_mask = htlb_alloc_mask(h);
4341 mpol_allowed = policy_nodemask_current(gfp_mask);
4343 for_each_node_mask(node, cpuset_current_mems_allowed) {
4344 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4351 #ifdef CONFIG_SYSCTL
4352 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4353 void *buffer, size_t *length,
4354 loff_t *ppos, unsigned long *out)
4356 struct ctl_table dup_table;
4359 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4360 * can duplicate the @table and alter the duplicate of it.
4363 dup_table.data = out;
4365 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4368 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4369 struct ctl_table *table, int write,
4370 void *buffer, size_t *length, loff_t *ppos)
4372 struct hstate *h = &default_hstate;
4373 unsigned long tmp = h->max_huge_pages;
4376 if (!hugepages_supported())
4379 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4385 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4386 NUMA_NO_NODE, tmp, *length);
4391 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4392 void *buffer, size_t *length, loff_t *ppos)
4395 return hugetlb_sysctl_handler_common(false, table, write,
4396 buffer, length, ppos);
4400 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4401 void *buffer, size_t *length, loff_t *ppos)
4403 return hugetlb_sysctl_handler_common(true, table, write,
4404 buffer, length, ppos);
4406 #endif /* CONFIG_NUMA */
4408 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4409 void *buffer, size_t *length, loff_t *ppos)
4411 struct hstate *h = &default_hstate;
4415 if (!hugepages_supported())
4418 tmp = h->nr_overcommit_huge_pages;
4420 if (write && hstate_is_gigantic(h))
4423 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4429 spin_lock_irq(&hugetlb_lock);
4430 h->nr_overcommit_huge_pages = tmp;
4431 spin_unlock_irq(&hugetlb_lock);
4437 #endif /* CONFIG_SYSCTL */
4439 void hugetlb_report_meminfo(struct seq_file *m)
4442 unsigned long total = 0;
4444 if (!hugepages_supported())
4447 for_each_hstate(h) {
4448 unsigned long count = h->nr_huge_pages;
4450 total += huge_page_size(h) * count;
4452 if (h == &default_hstate)
4454 "HugePages_Total: %5lu\n"
4455 "HugePages_Free: %5lu\n"
4456 "HugePages_Rsvd: %5lu\n"
4457 "HugePages_Surp: %5lu\n"
4458 "Hugepagesize: %8lu kB\n",
4462 h->surplus_huge_pages,
4463 huge_page_size(h) / SZ_1K);
4466 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4469 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4471 struct hstate *h = &default_hstate;
4473 if (!hugepages_supported())
4476 return sysfs_emit_at(buf, len,
4477 "Node %d HugePages_Total: %5u\n"
4478 "Node %d HugePages_Free: %5u\n"
4479 "Node %d HugePages_Surp: %5u\n",
4480 nid, h->nr_huge_pages_node[nid],
4481 nid, h->free_huge_pages_node[nid],
4482 nid, h->surplus_huge_pages_node[nid]);
4485 void hugetlb_show_meminfo(void)
4490 if (!hugepages_supported())
4493 for_each_node_state(nid, N_MEMORY)
4495 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4497 h->nr_huge_pages_node[nid],
4498 h->free_huge_pages_node[nid],
4499 h->surplus_huge_pages_node[nid],
4500 huge_page_size(h) / SZ_1K);
4503 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4505 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4506 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4509 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4510 unsigned long hugetlb_total_pages(void)
4513 unsigned long nr_total_pages = 0;
4516 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4517 return nr_total_pages;
4520 static int hugetlb_acct_memory(struct hstate *h, long delta)
4527 spin_lock_irq(&hugetlb_lock);
4529 * When cpuset is configured, it breaks the strict hugetlb page
4530 * reservation as the accounting is done on a global variable. Such
4531 * reservation is completely rubbish in the presence of cpuset because
4532 * the reservation is not checked against page availability for the
4533 * current cpuset. Application can still potentially OOM'ed by kernel
4534 * with lack of free htlb page in cpuset that the task is in.
4535 * Attempt to enforce strict accounting with cpuset is almost
4536 * impossible (or too ugly) because cpuset is too fluid that
4537 * task or memory node can be dynamically moved between cpusets.
4539 * The change of semantics for shared hugetlb mapping with cpuset is
4540 * undesirable. However, in order to preserve some of the semantics,
4541 * we fall back to check against current free page availability as
4542 * a best attempt and hopefully to minimize the impact of changing
4543 * semantics that cpuset has.
4545 * Apart from cpuset, we also have memory policy mechanism that
4546 * also determines from which node the kernel will allocate memory
4547 * in a NUMA system. So similar to cpuset, we also should consider
4548 * the memory policy of the current task. Similar to the description
4552 if (gather_surplus_pages(h, delta) < 0)
4555 if (delta > allowed_mems_nr(h)) {
4556 return_unused_surplus_pages(h, delta);
4563 return_unused_surplus_pages(h, (unsigned long) -delta);
4566 spin_unlock_irq(&hugetlb_lock);
4570 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4572 struct resv_map *resv = vma_resv_map(vma);
4575 * This new VMA should share its siblings reservation map if present.
4576 * The VMA will only ever have a valid reservation map pointer where
4577 * it is being copied for another still existing VMA. As that VMA
4578 * has a reference to the reservation map it cannot disappear until
4579 * after this open call completes. It is therefore safe to take a
4580 * new reference here without additional locking.
4582 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4583 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4584 kref_get(&resv->refs);
4588 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4590 struct hstate *h = hstate_vma(vma);
4591 struct resv_map *resv = vma_resv_map(vma);
4592 struct hugepage_subpool *spool = subpool_vma(vma);
4593 unsigned long reserve, start, end;
4596 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4599 start = vma_hugecache_offset(h, vma, vma->vm_start);
4600 end = vma_hugecache_offset(h, vma, vma->vm_end);
4602 reserve = (end - start) - region_count(resv, start, end);
4603 hugetlb_cgroup_uncharge_counter(resv, start, end);
4606 * Decrement reserve counts. The global reserve count may be
4607 * adjusted if the subpool has a minimum size.
4609 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4610 hugetlb_acct_memory(h, -gbl_reserve);
4613 kref_put(&resv->refs, resv_map_release);
4616 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4618 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4623 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4625 return huge_page_size(hstate_vma(vma));
4629 * We cannot handle pagefaults against hugetlb pages at all. They cause
4630 * handle_mm_fault() to try to instantiate regular-sized pages in the
4631 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4634 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4641 * When a new function is introduced to vm_operations_struct and added
4642 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4643 * This is because under System V memory model, mappings created via
4644 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4645 * their original vm_ops are overwritten with shm_vm_ops.
4647 const struct vm_operations_struct hugetlb_vm_ops = {
4648 .fault = hugetlb_vm_op_fault,
4649 .open = hugetlb_vm_op_open,
4650 .close = hugetlb_vm_op_close,
4651 .may_split = hugetlb_vm_op_split,
4652 .pagesize = hugetlb_vm_op_pagesize,
4655 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4659 unsigned int shift = huge_page_shift(hstate_vma(vma));
4662 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4663 vma->vm_page_prot)));
4665 entry = huge_pte_wrprotect(mk_huge_pte(page,
4666 vma->vm_page_prot));
4668 entry = pte_mkyoung(entry);
4669 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4674 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4675 unsigned long address, pte_t *ptep)
4679 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4680 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4681 update_mmu_cache(vma, address, ptep);
4684 bool is_hugetlb_entry_migration(pte_t pte)
4688 if (huge_pte_none(pte) || pte_present(pte))
4690 swp = pte_to_swp_entry(pte);
4691 if (is_migration_entry(swp))
4697 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4701 if (huge_pte_none(pte) || pte_present(pte))
4703 swp = pte_to_swp_entry(pte);
4704 if (is_hwpoison_entry(swp))
4711 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4712 struct page *new_page)
4714 __SetPageUptodate(new_page);
4715 hugepage_add_new_anon_rmap(new_page, vma, addr);
4716 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4717 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4718 ClearHPageRestoreReserve(new_page);
4719 SetHPageMigratable(new_page);
4722 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4723 struct vm_area_struct *dst_vma,
4724 struct vm_area_struct *src_vma)
4726 pte_t *src_pte, *dst_pte, entry, dst_entry;
4727 struct page *ptepage;
4729 bool cow = is_cow_mapping(src_vma->vm_flags);
4730 struct hstate *h = hstate_vma(src_vma);
4731 unsigned long sz = huge_page_size(h);
4732 unsigned long npages = pages_per_huge_page(h);
4733 struct address_space *mapping = src_vma->vm_file->f_mapping;
4734 struct mmu_notifier_range range;
4738 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4741 mmu_notifier_invalidate_range_start(&range);
4742 mmap_assert_write_locked(src);
4743 raw_write_seqcount_begin(&src->write_protect_seq);
4746 * For shared mappings i_mmap_rwsem must be held to call
4747 * huge_pte_alloc, otherwise the returned ptep could go
4748 * away if part of a shared pmd and another thread calls
4751 i_mmap_lock_read(mapping);
4754 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4755 spinlock_t *src_ptl, *dst_ptl;
4756 src_pte = huge_pte_offset(src, addr, sz);
4759 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4766 * If the pagetables are shared don't copy or take references.
4767 * dst_pte == src_pte is the common case of src/dest sharing.
4769 * However, src could have 'unshared' and dst shares with
4770 * another vma. If dst_pte !none, this implies sharing.
4771 * Check here before taking page table lock, and once again
4772 * after taking the lock below.
4774 dst_entry = huge_ptep_get(dst_pte);
4775 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4778 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4779 src_ptl = huge_pte_lockptr(h, src, src_pte);
4780 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4781 entry = huge_ptep_get(src_pte);
4782 dst_entry = huge_ptep_get(dst_pte);
4784 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4786 * Skip if src entry none. Also, skip in the
4787 * unlikely case dst entry !none as this implies
4788 * sharing with another vma.
4791 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4792 is_hugetlb_entry_hwpoisoned(entry))) {
4793 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4794 bool uffd_wp = huge_pte_uffd_wp(entry);
4796 if (!is_readable_migration_entry(swp_entry) && cow) {
4798 * COW mappings require pages in both
4799 * parent and child to be set to read.
4801 swp_entry = make_readable_migration_entry(
4802 swp_offset(swp_entry));
4803 entry = swp_entry_to_pte(swp_entry);
4804 if (userfaultfd_wp(src_vma) && uffd_wp)
4805 entry = huge_pte_mkuffd_wp(entry);
4806 set_huge_swap_pte_at(src, addr, src_pte,
4809 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4810 entry = huge_pte_clear_uffd_wp(entry);
4811 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4812 } else if (unlikely(is_pte_marker(entry))) {
4814 * We copy the pte marker only if the dst vma has
4817 if (userfaultfd_wp(dst_vma))
4818 set_huge_pte_at(dst, addr, dst_pte, entry);
4820 entry = huge_ptep_get(src_pte);
4821 ptepage = pte_page(entry);
4825 * Failing to duplicate the anon rmap is a rare case
4826 * where we see pinned hugetlb pages while they're
4827 * prone to COW. We need to do the COW earlier during
4830 * When pre-allocating the page or copying data, we
4831 * need to be without the pgtable locks since we could
4832 * sleep during the process.
4834 if (!PageAnon(ptepage)) {
4835 page_dup_file_rmap(ptepage, true);
4836 } else if (page_try_dup_anon_rmap(ptepage, true,
4838 pte_t src_pte_old = entry;
4841 spin_unlock(src_ptl);
4842 spin_unlock(dst_ptl);
4843 /* Do not use reserve as it's private owned */
4844 new = alloc_huge_page(dst_vma, addr, 1);
4850 copy_user_huge_page(new, ptepage, addr, dst_vma,
4854 /* Install the new huge page if src pte stable */
4855 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4856 src_ptl = huge_pte_lockptr(h, src, src_pte);
4857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4858 entry = huge_ptep_get(src_pte);
4859 if (!pte_same(src_pte_old, entry)) {
4860 restore_reserve_on_error(h, dst_vma, addr,
4863 /* dst_entry won't change as in child */
4866 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4867 spin_unlock(src_ptl);
4868 spin_unlock(dst_ptl);
4874 * No need to notify as we are downgrading page
4875 * table protection not changing it to point
4878 * See Documentation/vm/mmu_notifier.rst
4880 huge_ptep_set_wrprotect(src, addr, src_pte);
4881 entry = huge_pte_wrprotect(entry);
4884 set_huge_pte_at(dst, addr, dst_pte, entry);
4885 hugetlb_count_add(npages, dst);
4887 spin_unlock(src_ptl);
4888 spin_unlock(dst_ptl);
4892 raw_write_seqcount_end(&src->write_protect_seq);
4893 mmu_notifier_invalidate_range_end(&range);
4895 i_mmap_unlock_read(mapping);
4901 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4902 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4904 struct hstate *h = hstate_vma(vma);
4905 struct mm_struct *mm = vma->vm_mm;
4906 spinlock_t *src_ptl, *dst_ptl;
4909 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4910 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4913 * We don't have to worry about the ordering of src and dst ptlocks
4914 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4916 if (src_ptl != dst_ptl)
4917 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4919 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4920 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4922 if (src_ptl != dst_ptl)
4923 spin_unlock(src_ptl);
4924 spin_unlock(dst_ptl);
4927 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4928 struct vm_area_struct *new_vma,
4929 unsigned long old_addr, unsigned long new_addr,
4932 struct hstate *h = hstate_vma(vma);
4933 struct address_space *mapping = vma->vm_file->f_mapping;
4934 unsigned long sz = huge_page_size(h);
4935 struct mm_struct *mm = vma->vm_mm;
4936 unsigned long old_end = old_addr + len;
4937 unsigned long old_addr_copy;
4938 pte_t *src_pte, *dst_pte;
4939 struct mmu_notifier_range range;
4940 bool shared_pmd = false;
4942 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4944 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4946 * In case of shared PMDs, we should cover the maximum possible
4949 flush_cache_range(vma, range.start, range.end);
4951 mmu_notifier_invalidate_range_start(&range);
4952 /* Prevent race with file truncation */
4953 i_mmap_lock_write(mapping);
4954 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4955 src_pte = huge_pte_offset(mm, old_addr, sz);
4958 if (huge_pte_none(huge_ptep_get(src_pte)))
4961 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4962 * arg may be modified. Pass a copy instead to preserve the
4963 * value in old_addr.
4965 old_addr_copy = old_addr;
4967 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4972 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4976 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4980 flush_tlb_range(vma, range.start, range.end);
4982 flush_tlb_range(vma, old_end - len, old_end);
4983 mmu_notifier_invalidate_range_end(&range);
4984 i_mmap_unlock_write(mapping);
4986 return len + old_addr - old_end;
4989 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4990 unsigned long start, unsigned long end,
4991 struct page *ref_page, zap_flags_t zap_flags)
4993 struct mm_struct *mm = vma->vm_mm;
4994 unsigned long address;
4999 struct hstate *h = hstate_vma(vma);
5000 unsigned long sz = huge_page_size(h);
5001 struct mmu_notifier_range range;
5002 bool force_flush = false;
5004 WARN_ON(!is_vm_hugetlb_page(vma));
5005 BUG_ON(start & ~huge_page_mask(h));
5006 BUG_ON(end & ~huge_page_mask(h));
5009 * This is a hugetlb vma, all the pte entries should point
5012 tlb_change_page_size(tlb, sz);
5013 tlb_start_vma(tlb, vma);
5016 * If sharing possible, alert mmu notifiers of worst case.
5018 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021 mmu_notifier_invalidate_range_start(&range);
5023 for (; address < end; address += sz) {
5024 ptep = huge_pte_offset(mm, address, sz);
5028 ptl = huge_pte_lock(h, mm, ptep);
5029 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5031 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5036 pte = huge_ptep_get(ptep);
5037 if (huge_pte_none(pte)) {
5043 * Migrating hugepage or HWPoisoned hugepage is already
5044 * unmapped and its refcount is dropped, so just clear pte here.
5046 if (unlikely(!pte_present(pte))) {
5048 * If the pte was wr-protected by uffd-wp in any of the
5049 * swap forms, meanwhile the caller does not want to
5050 * drop the uffd-wp bit in this zap, then replace the
5051 * pte with a marker.
5053 if (pte_swp_uffd_wp_any(pte) &&
5054 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5055 set_huge_pte_at(mm, address, ptep,
5056 make_pte_marker(PTE_MARKER_UFFD_WP));
5058 huge_pte_clear(mm, address, ptep, sz);
5063 page = pte_page(pte);
5065 * If a reference page is supplied, it is because a specific
5066 * page is being unmapped, not a range. Ensure the page we
5067 * are about to unmap is the actual page of interest.
5070 if (page != ref_page) {
5075 * Mark the VMA as having unmapped its page so that
5076 * future faults in this VMA will fail rather than
5077 * looking like data was lost
5079 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5082 pte = huge_ptep_get_and_clear(mm, address, ptep);
5083 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5084 if (huge_pte_dirty(pte))
5085 set_page_dirty(page);
5086 /* Leave a uffd-wp pte marker if needed */
5087 if (huge_pte_uffd_wp(pte) &&
5088 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5089 set_huge_pte_at(mm, address, ptep,
5090 make_pte_marker(PTE_MARKER_UFFD_WP));
5091 hugetlb_count_sub(pages_per_huge_page(h), mm);
5092 page_remove_rmap(page, vma, true);
5095 tlb_remove_page_size(tlb, page, huge_page_size(h));
5097 * Bail out after unmapping reference page if supplied
5102 mmu_notifier_invalidate_range_end(&range);
5103 tlb_end_vma(tlb, vma);
5106 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5107 * could defer the flush until now, since by holding i_mmap_rwsem we
5108 * guaranteed that the last refernece would not be dropped. But we must
5109 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5110 * dropped and the last reference to the shared PMDs page might be
5113 * In theory we could defer the freeing of the PMD pages as well, but
5114 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5115 * detect sharing, so we cannot defer the release of the page either.
5116 * Instead, do flush now.
5119 tlb_flush_mmu_tlbonly(tlb);
5122 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5123 struct vm_area_struct *vma, unsigned long start,
5124 unsigned long end, struct page *ref_page,
5125 zap_flags_t zap_flags)
5127 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5130 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5131 * test will fail on a vma being torn down, and not grab a page table
5132 * on its way out. We're lucky that the flag has such an appropriate
5133 * name, and can in fact be safely cleared here. We could clear it
5134 * before the __unmap_hugepage_range above, but all that's necessary
5135 * is to clear it before releasing the i_mmap_rwsem. This works
5136 * because in the context this is called, the VMA is about to be
5137 * destroyed and the i_mmap_rwsem is held.
5139 vma->vm_flags &= ~VM_MAYSHARE;
5142 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5143 unsigned long end, struct page *ref_page,
5144 zap_flags_t zap_flags)
5146 struct mmu_gather tlb;
5148 tlb_gather_mmu(&tlb, vma->vm_mm);
5149 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5150 tlb_finish_mmu(&tlb);
5154 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5155 * mapping it owns the reserve page for. The intention is to unmap the page
5156 * from other VMAs and let the children be SIGKILLed if they are faulting the
5159 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5160 struct page *page, unsigned long address)
5162 struct hstate *h = hstate_vma(vma);
5163 struct vm_area_struct *iter_vma;
5164 struct address_space *mapping;
5168 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5169 * from page cache lookup which is in HPAGE_SIZE units.
5171 address = address & huge_page_mask(h);
5172 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5174 mapping = vma->vm_file->f_mapping;
5177 * Take the mapping lock for the duration of the table walk. As
5178 * this mapping should be shared between all the VMAs,
5179 * __unmap_hugepage_range() is called as the lock is already held
5181 i_mmap_lock_write(mapping);
5182 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5183 /* Do not unmap the current VMA */
5184 if (iter_vma == vma)
5188 * Shared VMAs have their own reserves and do not affect
5189 * MAP_PRIVATE accounting but it is possible that a shared
5190 * VMA is using the same page so check and skip such VMAs.
5192 if (iter_vma->vm_flags & VM_MAYSHARE)
5196 * Unmap the page from other VMAs without their own reserves.
5197 * They get marked to be SIGKILLed if they fault in these
5198 * areas. This is because a future no-page fault on this VMA
5199 * could insert a zeroed page instead of the data existing
5200 * from the time of fork. This would look like data corruption
5202 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5203 unmap_hugepage_range(iter_vma, address,
5204 address + huge_page_size(h), page, 0);
5206 i_mmap_unlock_write(mapping);
5210 * hugetlb_wp() should be called with page lock of the original hugepage held.
5211 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5212 * cannot race with other handlers or page migration.
5213 * Keep the pte_same checks anyway to make transition from the mutex easier.
5215 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5216 unsigned long address, pte_t *ptep, unsigned int flags,
5217 struct page *pagecache_page, spinlock_t *ptl)
5219 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5221 struct hstate *h = hstate_vma(vma);
5222 struct page *old_page, *new_page;
5223 int outside_reserve = 0;
5225 unsigned long haddr = address & huge_page_mask(h);
5226 struct mmu_notifier_range range;
5228 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5229 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5231 pte = huge_ptep_get(ptep);
5232 old_page = pte_page(pte);
5234 delayacct_wpcopy_start();
5238 * If no-one else is actually using this page, we're the exclusive
5239 * owner and can reuse this page.
5241 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5242 if (!PageAnonExclusive(old_page))
5243 page_move_anon_rmap(old_page, vma);
5244 if (likely(!unshare))
5245 set_huge_ptep_writable(vma, haddr, ptep);
5247 delayacct_wpcopy_end();
5250 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5254 * If the process that created a MAP_PRIVATE mapping is about to
5255 * perform a COW due to a shared page count, attempt to satisfy
5256 * the allocation without using the existing reserves. The pagecache
5257 * page is used to determine if the reserve at this address was
5258 * consumed or not. If reserves were used, a partial faulted mapping
5259 * at the time of fork() could consume its reserves on COW instead
5260 * of the full address range.
5262 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5263 old_page != pagecache_page)
5264 outside_reserve = 1;
5269 * Drop page table lock as buddy allocator may be called. It will
5270 * be acquired again before returning to the caller, as expected.
5273 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5275 if (IS_ERR(new_page)) {
5277 * If a process owning a MAP_PRIVATE mapping fails to COW,
5278 * it is due to references held by a child and an insufficient
5279 * huge page pool. To guarantee the original mappers
5280 * reliability, unmap the page from child processes. The child
5281 * may get SIGKILLed if it later faults.
5283 if (outside_reserve) {
5284 struct address_space *mapping = vma->vm_file->f_mapping;
5289 BUG_ON(huge_pte_none(pte));
5291 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5292 * unmapping. unmapping needs to hold i_mmap_rwsem
5293 * in write mode. Dropping i_mmap_rwsem in read mode
5294 * here is OK as COW mappings do not interact with
5297 * Reacquire both after unmap operation.
5299 idx = vma_hugecache_offset(h, vma, haddr);
5300 hash = hugetlb_fault_mutex_hash(mapping, idx);
5301 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5302 i_mmap_unlock_read(mapping);
5304 unmap_ref_private(mm, vma, old_page, haddr);
5306 i_mmap_lock_read(mapping);
5307 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5309 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5311 pte_same(huge_ptep_get(ptep), pte)))
5312 goto retry_avoidcopy;
5314 * race occurs while re-acquiring page table
5315 * lock, and our job is done.
5317 delayacct_wpcopy_end();
5321 ret = vmf_error(PTR_ERR(new_page));
5322 goto out_release_old;
5326 * When the original hugepage is shared one, it does not have
5327 * anon_vma prepared.
5329 if (unlikely(anon_vma_prepare(vma))) {
5331 goto out_release_all;
5334 copy_user_huge_page(new_page, old_page, address, vma,
5335 pages_per_huge_page(h));
5336 __SetPageUptodate(new_page);
5338 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5339 haddr + huge_page_size(h));
5340 mmu_notifier_invalidate_range_start(&range);
5343 * Retake the page table lock to check for racing updates
5344 * before the page tables are altered
5347 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5348 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5349 ClearHPageRestoreReserve(new_page);
5351 /* Break COW or unshare */
5352 huge_ptep_clear_flush(vma, haddr, ptep);
5353 mmu_notifier_invalidate_range(mm, range.start, range.end);
5354 page_remove_rmap(old_page, vma, true);
5355 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5356 set_huge_pte_at(mm, haddr, ptep,
5357 make_huge_pte(vma, new_page, !unshare));
5358 SetHPageMigratable(new_page);
5359 /* Make the old page be freed below */
5360 new_page = old_page;
5363 mmu_notifier_invalidate_range_end(&range);
5366 * No restore in case of successful pagetable update (Break COW or
5369 if (new_page != old_page)
5370 restore_reserve_on_error(h, vma, haddr, new_page);
5375 spin_lock(ptl); /* Caller expects lock to be held */
5377 delayacct_wpcopy_end();
5381 /* Return the pagecache page at a given address within a VMA */
5382 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5383 struct vm_area_struct *vma, unsigned long address)
5385 struct address_space *mapping;
5388 mapping = vma->vm_file->f_mapping;
5389 idx = vma_hugecache_offset(h, vma, address);
5391 return find_lock_page(mapping, idx);
5395 * Return whether there is a pagecache page to back given address within VMA.
5396 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5398 static bool hugetlbfs_pagecache_present(struct hstate *h,
5399 struct vm_area_struct *vma, unsigned long address)
5401 struct address_space *mapping;
5405 mapping = vma->vm_file->f_mapping;
5406 idx = vma_hugecache_offset(h, vma, address);
5408 page = find_get_page(mapping, idx);
5411 return page != NULL;
5414 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5417 struct inode *inode = mapping->host;
5418 struct hstate *h = hstate_inode(inode);
5419 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5423 ClearHPageRestoreReserve(page);
5426 * set page dirty so that it will not be removed from cache/file
5427 * by non-hugetlbfs specific code paths.
5429 set_page_dirty(page);
5431 spin_lock(&inode->i_lock);
5432 inode->i_blocks += blocks_per_huge_page(h);
5433 spin_unlock(&inode->i_lock);
5437 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5438 struct address_space *mapping,
5441 unsigned long haddr,
5443 unsigned long reason)
5447 struct vm_fault vmf = {
5450 .real_address = addr,
5454 * Hard to debug if it ends up being
5455 * used by a callee that assumes
5456 * something about the other
5457 * uninitialized fields... same as in
5463 * hugetlb_fault_mutex and i_mmap_rwsem must be
5464 * dropped before handling userfault. Reacquire
5465 * after handling fault to make calling code simpler.
5467 hash = hugetlb_fault_mutex_hash(mapping, idx);
5468 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5469 i_mmap_unlock_read(mapping);
5470 ret = handle_userfault(&vmf, reason);
5471 i_mmap_lock_read(mapping);
5472 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5477 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5478 struct vm_area_struct *vma,
5479 struct address_space *mapping, pgoff_t idx,
5480 unsigned long address, pte_t *ptep,
5481 pte_t old_pte, unsigned int flags)
5483 struct hstate *h = hstate_vma(vma);
5484 vm_fault_t ret = VM_FAULT_SIGBUS;
5490 unsigned long haddr = address & huge_page_mask(h);
5491 bool new_page, new_pagecache_page = false;
5494 * Currently, we are forced to kill the process in the event the
5495 * original mapper has unmapped pages from the child due to a failed
5496 * COW/unsharing. Warn that such a situation has occurred as it may not
5499 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5500 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5506 * We can not race with truncation due to holding i_mmap_rwsem.
5507 * i_size is modified when holding i_mmap_rwsem, so check here
5508 * once for faults beyond end of file.
5510 size = i_size_read(mapping->host) >> huge_page_shift(h);
5516 page = find_lock_page(mapping, idx);
5518 /* Check for page in userfault range */
5519 if (userfaultfd_missing(vma)) {
5520 ret = hugetlb_handle_userfault(vma, mapping, idx,
5521 flags, haddr, address,
5526 page = alloc_huge_page(vma, haddr, 0);
5529 * Returning error will result in faulting task being
5530 * sent SIGBUS. The hugetlb fault mutex prevents two
5531 * tasks from racing to fault in the same page which
5532 * could result in false unable to allocate errors.
5533 * Page migration does not take the fault mutex, but
5534 * does a clear then write of pte's under page table
5535 * lock. Page fault code could race with migration,
5536 * notice the clear pte and try to allocate a page
5537 * here. Before returning error, get ptl and make
5538 * sure there really is no pte entry.
5540 ptl = huge_pte_lock(h, mm, ptep);
5542 if (huge_pte_none(huge_ptep_get(ptep)))
5543 ret = vmf_error(PTR_ERR(page));
5547 clear_huge_page(page, address, pages_per_huge_page(h));
5548 __SetPageUptodate(page);
5551 if (vma->vm_flags & VM_MAYSHARE) {
5552 int err = huge_add_to_page_cache(page, mapping, idx);
5559 new_pagecache_page = true;
5562 if (unlikely(anon_vma_prepare(vma))) {
5564 goto backout_unlocked;
5570 * If memory error occurs between mmap() and fault, some process
5571 * don't have hwpoisoned swap entry for errored virtual address.
5572 * So we need to block hugepage fault by PG_hwpoison bit check.
5574 if (unlikely(PageHWPoison(page))) {
5575 ret = VM_FAULT_HWPOISON_LARGE |
5576 VM_FAULT_SET_HINDEX(hstate_index(h));
5577 goto backout_unlocked;
5580 /* Check for page in userfault range. */
5581 if (userfaultfd_minor(vma)) {
5584 ret = hugetlb_handle_userfault(vma, mapping, idx,
5585 flags, haddr, address,
5592 * If we are going to COW a private mapping later, we examine the
5593 * pending reservations for this page now. This will ensure that
5594 * any allocations necessary to record that reservation occur outside
5597 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5598 if (vma_needs_reservation(h, vma, haddr) < 0) {
5600 goto backout_unlocked;
5602 /* Just decrements count, does not deallocate */
5603 vma_end_reservation(h, vma, haddr);
5606 ptl = huge_pte_lock(h, mm, ptep);
5608 /* If pte changed from under us, retry */
5609 if (!pte_same(huge_ptep_get(ptep), old_pte))
5613 ClearHPageRestoreReserve(page);
5614 hugepage_add_new_anon_rmap(page, vma, haddr);
5616 page_dup_file_rmap(page, true);
5617 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5618 && (vma->vm_flags & VM_SHARED)));
5620 * If this pte was previously wr-protected, keep it wr-protected even
5623 if (unlikely(pte_marker_uffd_wp(old_pte)))
5624 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5625 set_huge_pte_at(mm, haddr, ptep, new_pte);
5627 hugetlb_count_add(pages_per_huge_page(h), mm);
5628 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5629 /* Optimization, do the COW without a second fault */
5630 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5636 * Only set HPageMigratable in newly allocated pages. Existing pages
5637 * found in the pagecache may not have HPageMigratableset if they have
5638 * been isolated for migration.
5641 SetHPageMigratable(page);
5651 /* restore reserve for newly allocated pages not in page cache */
5652 if (new_page && !new_pagecache_page)
5653 restore_reserve_on_error(h, vma, haddr, page);
5659 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5661 unsigned long key[2];
5664 key[0] = (unsigned long) mapping;
5667 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5669 return hash & (num_fault_mutexes - 1);
5673 * For uniprocessor systems we always use a single mutex, so just
5674 * return 0 and avoid the hashing overhead.
5676 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5682 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5683 unsigned long address, unsigned int flags)
5690 struct page *page = NULL;
5691 struct page *pagecache_page = NULL;
5692 struct hstate *h = hstate_vma(vma);
5693 struct address_space *mapping;
5694 int need_wait_lock = 0;
5695 unsigned long haddr = address & huge_page_mask(h);
5697 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5700 * Since we hold no locks, ptep could be stale. That is
5701 * OK as we are only making decisions based on content and
5702 * not actually modifying content here.
5704 entry = huge_ptep_get(ptep);
5705 if (unlikely(is_hugetlb_entry_migration(entry))) {
5706 migration_entry_wait_huge(vma, mm, ptep);
5708 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5709 return VM_FAULT_HWPOISON_LARGE |
5710 VM_FAULT_SET_HINDEX(hstate_index(h));
5714 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5715 * until finished with ptep. This serves two purposes:
5716 * 1) It prevents huge_pmd_unshare from being called elsewhere
5717 * and making the ptep no longer valid.
5718 * 2) It synchronizes us with i_size modifications during truncation.
5720 * ptep could have already be assigned via huge_pte_offset. That
5721 * is OK, as huge_pte_alloc will return the same value unless
5722 * something has changed.
5724 mapping = vma->vm_file->f_mapping;
5725 i_mmap_lock_read(mapping);
5726 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5728 i_mmap_unlock_read(mapping);
5729 return VM_FAULT_OOM;
5733 * Serialize hugepage allocation and instantiation, so that we don't
5734 * get spurious allocation failures if two CPUs race to instantiate
5735 * the same page in the page cache.
5737 idx = vma_hugecache_offset(h, vma, haddr);
5738 hash = hugetlb_fault_mutex_hash(mapping, idx);
5739 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5741 entry = huge_ptep_get(ptep);
5742 /* PTE markers should be handled the same way as none pte */
5743 if (huge_pte_none_mostly(entry)) {
5744 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5752 * entry could be a migration/hwpoison entry at this point, so this
5753 * check prevents the kernel from going below assuming that we have
5754 * an active hugepage in pagecache. This goto expects the 2nd page
5755 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5756 * properly handle it.
5758 if (!pte_present(entry))
5762 * If we are going to COW/unshare the mapping later, we examine the
5763 * pending reservations for this page now. This will ensure that any
5764 * allocations necessary to record that reservation occur outside the
5765 * spinlock. For private mappings, we also lookup the pagecache
5766 * page now as it is used to determine if a reservation has been
5769 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5770 !huge_pte_write(entry)) {
5771 if (vma_needs_reservation(h, vma, haddr) < 0) {
5775 /* Just decrements count, does not deallocate */
5776 vma_end_reservation(h, vma, haddr);
5778 if (!(vma->vm_flags & VM_MAYSHARE))
5779 pagecache_page = hugetlbfs_pagecache_page(h,
5783 ptl = huge_pte_lock(h, mm, ptep);
5785 /* Check for a racing update before calling hugetlb_wp() */
5786 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5789 /* Handle userfault-wp first, before trying to lock more pages */
5790 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5791 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5792 struct vm_fault vmf = {
5795 .real_address = address,
5800 if (pagecache_page) {
5801 unlock_page(pagecache_page);
5802 put_page(pagecache_page);
5804 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5805 i_mmap_unlock_read(mapping);
5806 return handle_userfault(&vmf, VM_UFFD_WP);
5810 * hugetlb_wp() requires page locks of pte_page(entry) and
5811 * pagecache_page, so here we need take the former one
5812 * when page != pagecache_page or !pagecache_page.
5814 page = pte_page(entry);
5815 if (page != pagecache_page)
5816 if (!trylock_page(page)) {
5823 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5824 if (!huge_pte_write(entry)) {
5825 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5826 pagecache_page, ptl);
5828 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5829 entry = huge_pte_mkdirty(entry);
5832 entry = pte_mkyoung(entry);
5833 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5834 flags & FAULT_FLAG_WRITE))
5835 update_mmu_cache(vma, haddr, ptep);
5837 if (page != pagecache_page)
5843 if (pagecache_page) {
5844 unlock_page(pagecache_page);
5845 put_page(pagecache_page);
5848 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5849 i_mmap_unlock_read(mapping);
5851 * Generally it's safe to hold refcount during waiting page lock. But
5852 * here we just wait to defer the next page fault to avoid busy loop and
5853 * the page is not used after unlocked before returning from the current
5854 * page fault. So we are safe from accessing freed page, even if we wait
5855 * here without taking refcount.
5858 wait_on_page_locked(page);
5862 #ifdef CONFIG_USERFAULTFD
5864 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5865 * modifications for huge pages.
5867 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5869 struct vm_area_struct *dst_vma,
5870 unsigned long dst_addr,
5871 unsigned long src_addr,
5872 enum mcopy_atomic_mode mode,
5873 struct page **pagep,
5876 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5877 struct hstate *h = hstate_vma(dst_vma);
5878 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5879 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5881 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5887 bool page_in_pagecache = false;
5891 page = find_lock_page(mapping, idx);
5894 page_in_pagecache = true;
5895 } else if (!*pagep) {
5896 /* If a page already exists, then it's UFFDIO_COPY for
5897 * a non-missing case. Return -EEXIST.
5900 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5905 page = alloc_huge_page(dst_vma, dst_addr, 0);
5911 ret = copy_huge_page_from_user(page,
5912 (const void __user *) src_addr,
5913 pages_per_huge_page(h), false);
5915 /* fallback to copy_from_user outside mmap_lock */
5916 if (unlikely(ret)) {
5918 /* Free the allocated page which may have
5919 * consumed a reservation.
5921 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5924 /* Allocate a temporary page to hold the copied
5927 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5933 /* Set the outparam pagep and return to the caller to
5934 * copy the contents outside the lock. Don't free the
5941 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5948 page = alloc_huge_page(dst_vma, dst_addr, 0);
5954 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5955 pages_per_huge_page(h));
5961 * The memory barrier inside __SetPageUptodate makes sure that
5962 * preceding stores to the page contents become visible before
5963 * the set_pte_at() write.
5965 __SetPageUptodate(page);
5967 /* Add shared, newly allocated pages to the page cache. */
5968 if (vm_shared && !is_continue) {
5969 size = i_size_read(mapping->host) >> huge_page_shift(h);
5972 goto out_release_nounlock;
5975 * Serialization between remove_inode_hugepages() and
5976 * huge_add_to_page_cache() below happens through the
5977 * hugetlb_fault_mutex_table that here must be hold by
5980 ret = huge_add_to_page_cache(page, mapping, idx);
5982 goto out_release_nounlock;
5983 page_in_pagecache = true;
5986 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5990 * Recheck the i_size after holding PT lock to make sure not
5991 * to leave any page mapped (as page_mapped()) beyond the end
5992 * of the i_size (remove_inode_hugepages() is strict about
5993 * enforcing that). If we bail out here, we'll also leave a
5994 * page in the radix tree in the vm_shared case beyond the end
5995 * of the i_size, but remove_inode_hugepages() will take care
5996 * of it as soon as we drop the hugetlb_fault_mutex_table.
5998 size = i_size_read(mapping->host) >> huge_page_shift(h);
6001 goto out_release_unlock;
6005 * We allow to overwrite a pte marker: consider when both MISSING|WP
6006 * registered, we firstly wr-protect a none pte which has no page cache
6007 * page backing it, then access the page.
6009 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6010 goto out_release_unlock;
6013 page_dup_file_rmap(page, true);
6015 ClearHPageRestoreReserve(page);
6016 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6020 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6021 * with wp flag set, don't set pte write bit.
6023 if (wp_copy || (is_continue && !vm_shared))
6026 writable = dst_vma->vm_flags & VM_WRITE;
6028 _dst_pte = make_huge_pte(dst_vma, page, writable);
6030 * Always mark UFFDIO_COPY page dirty; note that this may not be
6031 * extremely important for hugetlbfs for now since swapping is not
6032 * supported, but we should still be clear in that this page cannot be
6033 * thrown away at will, even if write bit not set.
6035 _dst_pte = huge_pte_mkdirty(_dst_pte);
6036 _dst_pte = pte_mkyoung(_dst_pte);
6039 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6041 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6043 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
6044 dst_vma->vm_flags & VM_WRITE);
6045 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6047 /* No need to invalidate - it was non-present before */
6048 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6052 SetHPageMigratable(page);
6053 if (vm_shared || is_continue)
6060 if (vm_shared || is_continue)
6062 out_release_nounlock:
6063 if (!page_in_pagecache)
6064 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6068 #endif /* CONFIG_USERFAULTFD */
6070 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6071 int refs, struct page **pages,
6072 struct vm_area_struct **vmas)
6076 for (nr = 0; nr < refs; nr++) {
6078 pages[nr] = mem_map_offset(page, nr);
6084 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6087 pte_t pteval = huge_ptep_get(pte);
6090 if (is_swap_pte(pteval))
6092 if (huge_pte_write(pteval))
6094 if (flags & FOLL_WRITE)
6096 if (gup_must_unshare(flags, pte_page(pteval))) {
6103 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6104 struct page **pages, struct vm_area_struct **vmas,
6105 unsigned long *position, unsigned long *nr_pages,
6106 long i, unsigned int flags, int *locked)
6108 unsigned long pfn_offset;
6109 unsigned long vaddr = *position;
6110 unsigned long remainder = *nr_pages;
6111 struct hstate *h = hstate_vma(vma);
6112 int err = -EFAULT, refs;
6114 while (vaddr < vma->vm_end && remainder) {
6116 spinlock_t *ptl = NULL;
6117 bool unshare = false;
6122 * If we have a pending SIGKILL, don't keep faulting pages and
6123 * potentially allocating memory.
6125 if (fatal_signal_pending(current)) {
6131 * Some archs (sparc64, sh*) have multiple pte_ts to
6132 * each hugepage. We have to make sure we get the
6133 * first, for the page indexing below to work.
6135 * Note that page table lock is not held when pte is null.
6137 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6140 ptl = huge_pte_lock(h, mm, pte);
6141 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6144 * When coredumping, it suits get_dump_page if we just return
6145 * an error where there's an empty slot with no huge pagecache
6146 * to back it. This way, we avoid allocating a hugepage, and
6147 * the sparse dumpfile avoids allocating disk blocks, but its
6148 * huge holes still show up with zeroes where they need to be.
6150 if (absent && (flags & FOLL_DUMP) &&
6151 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6159 * We need call hugetlb_fault for both hugepages under migration
6160 * (in which case hugetlb_fault waits for the migration,) and
6161 * hwpoisoned hugepages (in which case we need to prevent the
6162 * caller from accessing to them.) In order to do this, we use
6163 * here is_swap_pte instead of is_hugetlb_entry_migration and
6164 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6165 * both cases, and because we can't follow correct pages
6166 * directly from any kind of swap entries.
6169 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6171 unsigned int fault_flags = 0;
6175 if (flags & FOLL_WRITE)
6176 fault_flags |= FAULT_FLAG_WRITE;
6178 fault_flags |= FAULT_FLAG_UNSHARE;
6180 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6181 FAULT_FLAG_KILLABLE;
6182 if (flags & FOLL_NOWAIT)
6183 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6184 FAULT_FLAG_RETRY_NOWAIT;
6185 if (flags & FOLL_TRIED) {
6187 * Note: FAULT_FLAG_ALLOW_RETRY and
6188 * FAULT_FLAG_TRIED can co-exist
6190 fault_flags |= FAULT_FLAG_TRIED;
6192 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6193 if (ret & VM_FAULT_ERROR) {
6194 err = vm_fault_to_errno(ret, flags);
6198 if (ret & VM_FAULT_RETRY) {
6200 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6204 * VM_FAULT_RETRY must not return an
6205 * error, it will return zero
6208 * No need to update "position" as the
6209 * caller will not check it after
6210 * *nr_pages is set to 0.
6217 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6218 page = pte_page(huge_ptep_get(pte));
6220 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6221 !PageAnonExclusive(page), page);
6224 * If subpage information not requested, update counters
6225 * and skip the same_page loop below.
6227 if (!pages && !vmas && !pfn_offset &&
6228 (vaddr + huge_page_size(h) < vma->vm_end) &&
6229 (remainder >= pages_per_huge_page(h))) {
6230 vaddr += huge_page_size(h);
6231 remainder -= pages_per_huge_page(h);
6232 i += pages_per_huge_page(h);
6237 /* vaddr may not be aligned to PAGE_SIZE */
6238 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6239 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6242 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6244 likely(pages) ? pages + i : NULL,
6245 vmas ? vmas + i : NULL);
6249 * try_grab_folio() should always succeed here,
6250 * because: a) we hold the ptl lock, and b) we've just
6251 * checked that the huge page is present in the page
6252 * tables. If the huge page is present, then the tail
6253 * pages must also be present. The ptl prevents the
6254 * head page and tail pages from being rearranged in
6255 * any way. So this page must be available at this
6256 * point, unless the page refcount overflowed:
6258 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6267 vaddr += (refs << PAGE_SHIFT);
6273 *nr_pages = remainder;
6275 * setting position is actually required only if remainder is
6276 * not zero but it's faster not to add a "if (remainder)"
6284 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6285 unsigned long address, unsigned long end,
6286 pgprot_t newprot, unsigned long cp_flags)
6288 struct mm_struct *mm = vma->vm_mm;
6289 unsigned long start = address;
6292 struct hstate *h = hstate_vma(vma);
6293 unsigned long pages = 0, psize = huge_page_size(h);
6294 bool shared_pmd = false;
6295 struct mmu_notifier_range range;
6296 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6297 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6300 * In the case of shared PMDs, the area to flush could be beyond
6301 * start/end. Set range.start/range.end to cover the maximum possible
6302 * range if PMD sharing is possible.
6304 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6305 0, vma, mm, start, end);
6306 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6308 BUG_ON(address >= end);
6309 flush_cache_range(vma, range.start, range.end);
6311 mmu_notifier_invalidate_range_start(&range);
6312 i_mmap_lock_write(vma->vm_file->f_mapping);
6313 for (; address < end; address += psize) {
6315 ptep = huge_pte_offset(mm, address, psize);
6318 ptl = huge_pte_lock(h, mm, ptep);
6319 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6321 * When uffd-wp is enabled on the vma, unshare
6322 * shouldn't happen at all. Warn about it if it
6323 * happened due to some reason.
6325 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6331 pte = huge_ptep_get(ptep);
6332 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6336 if (unlikely(is_hugetlb_entry_migration(pte))) {
6337 swp_entry_t entry = pte_to_swp_entry(pte);
6338 struct page *page = pfn_swap_entry_to_page(entry);
6340 if (!is_readable_migration_entry(entry)) {
6344 entry = make_readable_exclusive_migration_entry(
6347 entry = make_readable_migration_entry(
6349 newpte = swp_entry_to_pte(entry);
6351 newpte = pte_swp_mkuffd_wp(newpte);
6352 else if (uffd_wp_resolve)
6353 newpte = pte_swp_clear_uffd_wp(newpte);
6354 set_huge_swap_pte_at(mm, address, ptep,
6361 if (unlikely(pte_marker_uffd_wp(pte))) {
6363 * This is changing a non-present pte into a none pte,
6364 * no need for huge_ptep_modify_prot_start/commit().
6366 if (uffd_wp_resolve)
6367 huge_pte_clear(mm, address, ptep, psize);
6369 if (!huge_pte_none(pte)) {
6371 unsigned int shift = huge_page_shift(hstate_vma(vma));
6373 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6374 pte = huge_pte_modify(old_pte, newprot);
6375 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6377 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6378 else if (uffd_wp_resolve)
6379 pte = huge_pte_clear_uffd_wp(pte);
6380 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6384 if (unlikely(uffd_wp))
6385 /* Safe to modify directly (none->non-present). */
6386 set_huge_pte_at(mm, address, ptep,
6387 make_pte_marker(PTE_MARKER_UFFD_WP));
6392 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6393 * may have cleared our pud entry and done put_page on the page table:
6394 * once we release i_mmap_rwsem, another task can do the final put_page
6395 * and that page table be reused and filled with junk. If we actually
6396 * did unshare a page of pmds, flush the range corresponding to the pud.
6399 flush_hugetlb_tlb_range(vma, range.start, range.end);
6401 flush_hugetlb_tlb_range(vma, start, end);
6403 * No need to call mmu_notifier_invalidate_range() we are downgrading
6404 * page table protection not changing it to point to a new page.
6406 * See Documentation/vm/mmu_notifier.rst
6408 i_mmap_unlock_write(vma->vm_file->f_mapping);
6409 mmu_notifier_invalidate_range_end(&range);
6411 return pages << h->order;
6414 /* Return true if reservation was successful, false otherwise. */
6415 bool hugetlb_reserve_pages(struct inode *inode,
6417 struct vm_area_struct *vma,
6418 vm_flags_t vm_flags)
6421 struct hstate *h = hstate_inode(inode);
6422 struct hugepage_subpool *spool = subpool_inode(inode);
6423 struct resv_map *resv_map;
6424 struct hugetlb_cgroup *h_cg = NULL;
6425 long gbl_reserve, regions_needed = 0;
6427 /* This should never happen */
6429 VM_WARN(1, "%s called with a negative range\n", __func__);
6434 * Only apply hugepage reservation if asked. At fault time, an
6435 * attempt will be made for VM_NORESERVE to allocate a page
6436 * without using reserves
6438 if (vm_flags & VM_NORESERVE)
6442 * Shared mappings base their reservation on the number of pages that
6443 * are already allocated on behalf of the file. Private mappings need
6444 * to reserve the full area even if read-only as mprotect() may be
6445 * called to make the mapping read-write. Assume !vma is a shm mapping
6447 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6449 * resv_map can not be NULL as hugetlb_reserve_pages is only
6450 * called for inodes for which resv_maps were created (see
6451 * hugetlbfs_get_inode).
6453 resv_map = inode_resv_map(inode);
6455 chg = region_chg(resv_map, from, to, ®ions_needed);
6458 /* Private mapping. */
6459 resv_map = resv_map_alloc();
6465 set_vma_resv_map(vma, resv_map);
6466 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6472 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6473 chg * pages_per_huge_page(h), &h_cg) < 0)
6476 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6477 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6480 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6484 * There must be enough pages in the subpool for the mapping. If
6485 * the subpool has a minimum size, there may be some global
6486 * reservations already in place (gbl_reserve).
6488 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6489 if (gbl_reserve < 0)
6490 goto out_uncharge_cgroup;
6493 * Check enough hugepages are available for the reservation.
6494 * Hand the pages back to the subpool if there are not
6496 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6500 * Account for the reservations made. Shared mappings record regions
6501 * that have reservations as they are shared by multiple VMAs.
6502 * When the last VMA disappears, the region map says how much
6503 * the reservation was and the page cache tells how much of
6504 * the reservation was consumed. Private mappings are per-VMA and
6505 * only the consumed reservations are tracked. When the VMA
6506 * disappears, the original reservation is the VMA size and the
6507 * consumed reservations are stored in the map. Hence, nothing
6508 * else has to be done for private mappings here
6510 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6511 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6513 if (unlikely(add < 0)) {
6514 hugetlb_acct_memory(h, -gbl_reserve);
6516 } else if (unlikely(chg > add)) {
6518 * pages in this range were added to the reserve
6519 * map between region_chg and region_add. This
6520 * indicates a race with alloc_huge_page. Adjust
6521 * the subpool and reserve counts modified above
6522 * based on the difference.
6527 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6528 * reference to h_cg->css. See comment below for detail.
6530 hugetlb_cgroup_uncharge_cgroup_rsvd(
6532 (chg - add) * pages_per_huge_page(h), h_cg);
6534 rsv_adjust = hugepage_subpool_put_pages(spool,
6536 hugetlb_acct_memory(h, -rsv_adjust);
6539 * The file_regions will hold their own reference to
6540 * h_cg->css. So we should release the reference held
6541 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6544 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6550 /* put back original number of pages, chg */
6551 (void)hugepage_subpool_put_pages(spool, chg);
6552 out_uncharge_cgroup:
6553 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6554 chg * pages_per_huge_page(h), h_cg);
6556 if (!vma || vma->vm_flags & VM_MAYSHARE)
6557 /* Only call region_abort if the region_chg succeeded but the
6558 * region_add failed or didn't run.
6560 if (chg >= 0 && add < 0)
6561 region_abort(resv_map, from, to, regions_needed);
6562 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6563 kref_put(&resv_map->refs, resv_map_release);
6567 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6570 struct hstate *h = hstate_inode(inode);
6571 struct resv_map *resv_map = inode_resv_map(inode);
6573 struct hugepage_subpool *spool = subpool_inode(inode);
6577 * Since this routine can be called in the evict inode path for all
6578 * hugetlbfs inodes, resv_map could be NULL.
6581 chg = region_del(resv_map, start, end);
6583 * region_del() can fail in the rare case where a region
6584 * must be split and another region descriptor can not be
6585 * allocated. If end == LONG_MAX, it will not fail.
6591 spin_lock(&inode->i_lock);
6592 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6593 spin_unlock(&inode->i_lock);
6596 * If the subpool has a minimum size, the number of global
6597 * reservations to be released may be adjusted.
6599 * Note that !resv_map implies freed == 0. So (chg - freed)
6600 * won't go negative.
6602 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6603 hugetlb_acct_memory(h, -gbl_reserve);
6608 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6609 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6610 struct vm_area_struct *vma,
6611 unsigned long addr, pgoff_t idx)
6613 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6615 unsigned long sbase = saddr & PUD_MASK;
6616 unsigned long s_end = sbase + PUD_SIZE;
6618 /* Allow segments to share if only one is marked locked */
6619 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6620 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6623 * match the virtual addresses, permission and the alignment of the
6626 if (pmd_index(addr) != pmd_index(saddr) ||
6627 vm_flags != svm_flags ||
6628 !range_in_vma(svma, sbase, s_end))
6634 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6636 unsigned long base = addr & PUD_MASK;
6637 unsigned long end = base + PUD_SIZE;
6640 * check on proper vm_flags and page table alignment
6642 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6647 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6649 #ifdef CONFIG_USERFAULTFD
6650 if (uffd_disable_huge_pmd_share(vma))
6653 return vma_shareable(vma, addr);
6657 * Determine if start,end range within vma could be mapped by shared pmd.
6658 * If yes, adjust start and end to cover range associated with possible
6659 * shared pmd mappings.
6661 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6662 unsigned long *start, unsigned long *end)
6664 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6665 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6668 * vma needs to span at least one aligned PUD size, and the range
6669 * must be at least partially within in.
6671 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6672 (*end <= v_start) || (*start >= v_end))
6675 /* Extend the range to be PUD aligned for a worst case scenario */
6676 if (*start > v_start)
6677 *start = ALIGN_DOWN(*start, PUD_SIZE);
6680 *end = ALIGN(*end, PUD_SIZE);
6684 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6685 * and returns the corresponding pte. While this is not necessary for the
6686 * !shared pmd case because we can allocate the pmd later as well, it makes the
6687 * code much cleaner.
6689 * This routine must be called with i_mmap_rwsem held in at least read mode if
6690 * sharing is possible. For hugetlbfs, this prevents removal of any page
6691 * table entries associated with the address space. This is important as we
6692 * are setting up sharing based on existing page table entries (mappings).
6694 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6695 unsigned long addr, pud_t *pud)
6697 struct address_space *mapping = vma->vm_file->f_mapping;
6698 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6700 struct vm_area_struct *svma;
6701 unsigned long saddr;
6706 i_mmap_assert_locked(mapping);
6707 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6711 saddr = page_table_shareable(svma, vma, addr, idx);
6713 spte = huge_pte_offset(svma->vm_mm, saddr,
6714 vma_mmu_pagesize(svma));
6716 get_page(virt_to_page(spte));
6725 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6726 if (pud_none(*pud)) {
6727 pud_populate(mm, pud,
6728 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6731 put_page(virt_to_page(spte));
6735 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6740 * unmap huge page backed by shared pte.
6742 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6743 * indicated by page_count > 1, unmap is achieved by clearing pud and
6744 * decrementing the ref count. If count == 1, the pte page is not shared.
6746 * Called with page table lock held and i_mmap_rwsem held in write mode.
6748 * returns: 1 successfully unmapped a shared pte page
6749 * 0 the underlying pte page is not shared, or it is the last user
6751 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6752 unsigned long *addr, pte_t *ptep)
6754 pgd_t *pgd = pgd_offset(mm, *addr);
6755 p4d_t *p4d = p4d_offset(pgd, *addr);
6756 pud_t *pud = pud_offset(p4d, *addr);
6758 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6759 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6760 if (page_count(virt_to_page(ptep)) == 1)
6764 put_page(virt_to_page(ptep));
6767 * This update of passed address optimizes loops sequentially
6768 * processing addresses in increments of huge page size (PMD_SIZE
6769 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
6770 * Update address to the 'last page' in the cleared area so that
6771 * calling loop can move to first page past this area.
6773 *addr |= PUD_SIZE - PMD_SIZE;
6777 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6778 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6779 unsigned long addr, pud_t *pud)
6784 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6785 unsigned long *addr, pte_t *ptep)
6790 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6791 unsigned long *start, unsigned long *end)
6795 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6799 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6801 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6802 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6803 unsigned long addr, unsigned long sz)
6810 pgd = pgd_offset(mm, addr);
6811 p4d = p4d_alloc(mm, pgd, addr);
6814 pud = pud_alloc(mm, p4d, addr);
6816 if (sz == PUD_SIZE) {
6819 BUG_ON(sz != PMD_SIZE);
6820 if (want_pmd_share(vma, addr) && pud_none(*pud))
6821 pte = huge_pmd_share(mm, vma, addr, pud);
6823 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6826 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6832 * huge_pte_offset() - Walk the page table to resolve the hugepage
6833 * entry at address @addr
6835 * Return: Pointer to page table entry (PUD or PMD) for
6836 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6837 * size @sz doesn't match the hugepage size at this level of the page
6840 pte_t *huge_pte_offset(struct mm_struct *mm,
6841 unsigned long addr, unsigned long sz)
6848 pgd = pgd_offset(mm, addr);
6849 if (!pgd_present(*pgd))
6851 p4d = p4d_offset(pgd, addr);
6852 if (!p4d_present(*p4d))
6855 pud = pud_offset(p4d, addr);
6857 /* must be pud huge, non-present or none */
6858 return (pte_t *)pud;
6859 if (!pud_present(*pud))
6861 /* must have a valid entry and size to go further */
6863 pmd = pmd_offset(pud, addr);
6864 /* must be pmd huge, non-present or none */
6865 return (pte_t *)pmd;
6868 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6871 * These functions are overwritable if your architecture needs its own
6874 struct page * __weak
6875 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6878 return ERR_PTR(-EINVAL);
6881 struct page * __weak
6882 follow_huge_pd(struct vm_area_struct *vma,
6883 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6885 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6889 struct page * __weak
6890 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6891 pmd_t *pmd, int flags)
6893 struct page *page = NULL;
6898 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6899 * follow_hugetlb_page().
6901 if (WARN_ON_ONCE(flags & FOLL_PIN))
6905 ptl = pmd_lockptr(mm, pmd);
6908 * make sure that the address range covered by this pmd is not
6909 * unmapped from other threads.
6911 if (!pmd_huge(*pmd))
6913 pte = huge_ptep_get((pte_t *)pmd);
6914 if (pte_present(pte)) {
6915 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6917 * try_grab_page() should always succeed here, because: a) we
6918 * hold the pmd (ptl) lock, and b) we've just checked that the
6919 * huge pmd (head) page is present in the page tables. The ptl
6920 * prevents the head page and tail pages from being rearranged
6921 * in any way. So this page must be available at this point,
6922 * unless the page refcount overflowed:
6924 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6929 if (is_hugetlb_entry_migration(pte)) {
6931 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6935 * hwpoisoned entry is treated as no_page_table in
6936 * follow_page_mask().
6944 struct page * __weak
6945 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6946 pud_t *pud, int flags)
6948 if (flags & (FOLL_GET | FOLL_PIN))
6951 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6954 struct page * __weak
6955 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6957 if (flags & (FOLL_GET | FOLL_PIN))
6960 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6963 bool isolate_huge_page(struct page *page, struct list_head *list)
6967 spin_lock_irq(&hugetlb_lock);
6968 if (!PageHeadHuge(page) ||
6969 !HPageMigratable(page) ||
6970 !get_page_unless_zero(page)) {
6974 ClearHPageMigratable(page);
6975 list_move_tail(&page->lru, list);
6977 spin_unlock_irq(&hugetlb_lock);
6981 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6986 spin_lock_irq(&hugetlb_lock);
6987 if (PageHeadHuge(page)) {
6989 if (HPageFreed(page))
6991 else if (HPageMigratable(page))
6992 ret = get_page_unless_zero(page);
6996 spin_unlock_irq(&hugetlb_lock);
7000 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7004 spin_lock_irq(&hugetlb_lock);
7005 ret = __get_huge_page_for_hwpoison(pfn, flags);
7006 spin_unlock_irq(&hugetlb_lock);
7010 void putback_active_hugepage(struct page *page)
7012 spin_lock_irq(&hugetlb_lock);
7013 SetHPageMigratable(page);
7014 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7015 spin_unlock_irq(&hugetlb_lock);
7019 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7021 struct hstate *h = page_hstate(oldpage);
7023 hugetlb_cgroup_migrate(oldpage, newpage);
7024 set_page_owner_migrate_reason(newpage, reason);
7027 * transfer temporary state of the new huge page. This is
7028 * reverse to other transitions because the newpage is going to
7029 * be final while the old one will be freed so it takes over
7030 * the temporary status.
7032 * Also note that we have to transfer the per-node surplus state
7033 * here as well otherwise the global surplus count will not match
7036 if (HPageTemporary(newpage)) {
7037 int old_nid = page_to_nid(oldpage);
7038 int new_nid = page_to_nid(newpage);
7040 SetHPageTemporary(oldpage);
7041 ClearHPageTemporary(newpage);
7044 * There is no need to transfer the per-node surplus state
7045 * when we do not cross the node.
7047 if (new_nid == old_nid)
7049 spin_lock_irq(&hugetlb_lock);
7050 if (h->surplus_huge_pages_node[old_nid]) {
7051 h->surplus_huge_pages_node[old_nid]--;
7052 h->surplus_huge_pages_node[new_nid]++;
7054 spin_unlock_irq(&hugetlb_lock);
7059 * This function will unconditionally remove all the shared pmd pgtable entries
7060 * within the specific vma for a hugetlbfs memory range.
7062 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7064 struct hstate *h = hstate_vma(vma);
7065 unsigned long sz = huge_page_size(h);
7066 struct mm_struct *mm = vma->vm_mm;
7067 struct mmu_notifier_range range;
7068 unsigned long address, start, end;
7072 if (!(vma->vm_flags & VM_MAYSHARE))
7075 start = ALIGN(vma->vm_start, PUD_SIZE);
7076 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7081 flush_cache_range(vma, start, end);
7083 * No need to call adjust_range_if_pmd_sharing_possible(), because
7084 * we have already done the PUD_SIZE alignment.
7086 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7088 mmu_notifier_invalidate_range_start(&range);
7089 i_mmap_lock_write(vma->vm_file->f_mapping);
7090 for (address = start; address < end; address += PUD_SIZE) {
7091 unsigned long tmp = address;
7093 ptep = huge_pte_offset(mm, address, sz);
7096 ptl = huge_pte_lock(h, mm, ptep);
7097 /* We don't want 'address' to be changed */
7098 huge_pmd_unshare(mm, vma, &tmp, ptep);
7101 flush_hugetlb_tlb_range(vma, start, end);
7102 i_mmap_unlock_write(vma->vm_file->f_mapping);
7104 * No need to call mmu_notifier_invalidate_range(), see
7105 * Documentation/vm/mmu_notifier.rst.
7107 mmu_notifier_invalidate_range_end(&range);
7111 static bool cma_reserve_called __initdata;
7113 static int __init cmdline_parse_hugetlb_cma(char *p)
7120 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7123 if (s[count] == ':') {
7124 if (tmp >= MAX_NUMNODES)
7126 nid = array_index_nospec(tmp, MAX_NUMNODES);
7129 tmp = memparse(s, &s);
7130 hugetlb_cma_size_in_node[nid] = tmp;
7131 hugetlb_cma_size += tmp;
7134 * Skip the separator if have one, otherwise
7135 * break the parsing.
7142 hugetlb_cma_size = memparse(p, &p);
7150 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7152 void __init hugetlb_cma_reserve(int order)
7154 unsigned long size, reserved, per_node;
7155 bool node_specific_cma_alloc = false;
7158 cma_reserve_called = true;
7160 if (!hugetlb_cma_size)
7163 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7164 if (hugetlb_cma_size_in_node[nid] == 0)
7167 if (!node_online(nid)) {
7168 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7169 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7170 hugetlb_cma_size_in_node[nid] = 0;
7174 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7175 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7176 nid, (PAGE_SIZE << order) / SZ_1M);
7177 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7178 hugetlb_cma_size_in_node[nid] = 0;
7180 node_specific_cma_alloc = true;
7184 /* Validate the CMA size again in case some invalid nodes specified. */
7185 if (!hugetlb_cma_size)
7188 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7189 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7190 (PAGE_SIZE << order) / SZ_1M);
7191 hugetlb_cma_size = 0;
7195 if (!node_specific_cma_alloc) {
7197 * If 3 GB area is requested on a machine with 4 numa nodes,
7198 * let's allocate 1 GB on first three nodes and ignore the last one.
7200 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7201 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7202 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7206 for_each_online_node(nid) {
7208 char name[CMA_MAX_NAME];
7210 if (node_specific_cma_alloc) {
7211 if (hugetlb_cma_size_in_node[nid] == 0)
7214 size = hugetlb_cma_size_in_node[nid];
7216 size = min(per_node, hugetlb_cma_size - reserved);
7219 size = round_up(size, PAGE_SIZE << order);
7221 snprintf(name, sizeof(name), "hugetlb%d", nid);
7223 * Note that 'order per bit' is based on smallest size that
7224 * may be returned to CMA allocator in the case of
7225 * huge page demotion.
7227 res = cma_declare_contiguous_nid(0, size, 0,
7228 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7230 &hugetlb_cma[nid], nid);
7232 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7238 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7241 if (reserved >= hugetlb_cma_size)
7247 * hugetlb_cma_size is used to determine if allocations from
7248 * cma are possible. Set to zero if no cma regions are set up.
7250 hugetlb_cma_size = 0;
7253 void __init hugetlb_cma_check(void)
7255 if (!hugetlb_cma_size || cma_reserve_called)
7258 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7261 #endif /* CONFIG_CMA */