Merge tag 'sound-5.19-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59                                 1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64         return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68
69 /*
70  * Minimum page order among possible hugepage sizes, set to a proper value
71  * at boot time.
72  */
73 static unsigned int minimum_order __read_mostly = UINT_MAX;
74
75 __initdata LIST_HEAD(huge_boot_pages);
76
77 /* for command line parsing */
78 static struct hstate * __initdata parsed_hstate;
79 static unsigned long __initdata default_hstate_max_huge_pages;
80 static bool __initdata parsed_valid_hugepagesz = true;
81 static bool __initdata parsed_default_hugepagesz;
82 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
83
84 /*
85  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
86  * free_huge_pages, and surplus_huge_pages.
87  */
88 DEFINE_SPINLOCK(hugetlb_lock);
89
90 /*
91  * Serializes faults on the same logical page.  This is used to
92  * prevent spurious OOMs when the hugepage pool is fully utilized.
93  */
94 static int num_fault_mutexes;
95 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /* Helper that removes a struct file_region from the resv_map cache and returns
261  * it for use.
262  */
263 static struct file_region *
264 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
265 {
266         struct file_region *nrg = NULL;
267
268         VM_BUG_ON(resv->region_cache_count <= 0);
269
270         resv->region_cache_count--;
271         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
272         list_del(&nrg->link);
273
274         nrg->from = from;
275         nrg->to = to;
276
277         return nrg;
278 }
279
280 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
281                                               struct file_region *rg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         nrg->reservation_counter = rg->reservation_counter;
285         nrg->css = rg->css;
286         if (rg->css)
287                 css_get(rg->css);
288 #endif
289 }
290
291 /* Helper that records hugetlb_cgroup uncharge info. */
292 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
293                                                 struct hstate *h,
294                                                 struct resv_map *resv,
295                                                 struct file_region *nrg)
296 {
297 #ifdef CONFIG_CGROUP_HUGETLB
298         if (h_cg) {
299                 nrg->reservation_counter =
300                         &h_cg->rsvd_hugepage[hstate_index(h)];
301                 nrg->css = &h_cg->css;
302                 /*
303                  * The caller will hold exactly one h_cg->css reference for the
304                  * whole contiguous reservation region. But this area might be
305                  * scattered when there are already some file_regions reside in
306                  * it. As a result, many file_regions may share only one css
307                  * reference. In order to ensure that one file_region must hold
308                  * exactly one h_cg->css reference, we should do css_get for
309                  * each file_region and leave the reference held by caller
310                  * untouched.
311                  */
312                 css_get(&h_cg->css);
313                 if (!resv->pages_per_hpage)
314                         resv->pages_per_hpage = pages_per_huge_page(h);
315                 /* pages_per_hpage should be the same for all entries in
316                  * a resv_map.
317                  */
318                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
319         } else {
320                 nrg->reservation_counter = NULL;
321                 nrg->css = NULL;
322         }
323 #endif
324 }
325
326 static void put_uncharge_info(struct file_region *rg)
327 {
328 #ifdef CONFIG_CGROUP_HUGETLB
329         if (rg->css)
330                 css_put(rg->css);
331 #endif
332 }
333
334 static bool has_same_uncharge_info(struct file_region *rg,
335                                    struct file_region *org)
336 {
337 #ifdef CONFIG_CGROUP_HUGETLB
338         return rg->reservation_counter == org->reservation_counter &&
339                rg->css == org->css;
340
341 #else
342         return true;
343 #endif
344 }
345
346 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
347 {
348         struct file_region *nrg = NULL, *prg = NULL;
349
350         prg = list_prev_entry(rg, link);
351         if (&prg->link != &resv->regions && prg->to == rg->from &&
352             has_same_uncharge_info(prg, rg)) {
353                 prg->to = rg->to;
354
355                 list_del(&rg->link);
356                 put_uncharge_info(rg);
357                 kfree(rg);
358
359                 rg = prg;
360         }
361
362         nrg = list_next_entry(rg, link);
363         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
364             has_same_uncharge_info(nrg, rg)) {
365                 nrg->from = rg->from;
366
367                 list_del(&rg->link);
368                 put_uncharge_info(rg);
369                 kfree(rg);
370         }
371 }
372
373 static inline long
374 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
375                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
376                      long *regions_needed)
377 {
378         struct file_region *nrg;
379
380         if (!regions_needed) {
381                 nrg = get_file_region_entry_from_cache(map, from, to);
382                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
383                 list_add(&nrg->link, rg);
384                 coalesce_file_region(map, nrg);
385         } else
386                 *regions_needed += 1;
387
388         return to - from;
389 }
390
391 /*
392  * Must be called with resv->lock held.
393  *
394  * Calling this with regions_needed != NULL will count the number of pages
395  * to be added but will not modify the linked list. And regions_needed will
396  * indicate the number of file_regions needed in the cache to carry out to add
397  * the regions for this range.
398  */
399 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
400                                      struct hugetlb_cgroup *h_cg,
401                                      struct hstate *h, long *regions_needed)
402 {
403         long add = 0;
404         struct list_head *head = &resv->regions;
405         long last_accounted_offset = f;
406         struct file_region *iter, *trg = NULL;
407         struct list_head *rg = NULL;
408
409         if (regions_needed)
410                 *regions_needed = 0;
411
412         /* In this loop, we essentially handle an entry for the range
413          * [last_accounted_offset, iter->from), at every iteration, with some
414          * bounds checking.
415          */
416         list_for_each_entry_safe(iter, trg, head, link) {
417                 /* Skip irrelevant regions that start before our range. */
418                 if (iter->from < f) {
419                         /* If this region ends after the last accounted offset,
420                          * then we need to update last_accounted_offset.
421                          */
422                         if (iter->to > last_accounted_offset)
423                                 last_accounted_offset = iter->to;
424                         continue;
425                 }
426
427                 /* When we find a region that starts beyond our range, we've
428                  * finished.
429                  */
430                 if (iter->from >= t) {
431                         rg = iter->link.prev;
432                         break;
433                 }
434
435                 /* Add an entry for last_accounted_offset -> iter->from, and
436                  * update last_accounted_offset.
437                  */
438                 if (iter->from > last_accounted_offset)
439                         add += hugetlb_resv_map_add(resv, iter->link.prev,
440                                                     last_accounted_offset,
441                                                     iter->from, h, h_cg,
442                                                     regions_needed);
443
444                 last_accounted_offset = iter->to;
445         }
446
447         /* Handle the case where our range extends beyond
448          * last_accounted_offset.
449          */
450         if (!rg)
451                 rg = head->prev;
452         if (last_accounted_offset < t)
453                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
454                                             t, h, h_cg, regions_needed);
455
456         return add;
457 }
458
459 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
460  */
461 static int allocate_file_region_entries(struct resv_map *resv,
462                                         int regions_needed)
463         __must_hold(&resv->lock)
464 {
465         struct list_head allocated_regions;
466         int to_allocate = 0, i = 0;
467         struct file_region *trg = NULL, *rg = NULL;
468
469         VM_BUG_ON(regions_needed < 0);
470
471         INIT_LIST_HEAD(&allocated_regions);
472
473         /*
474          * Check for sufficient descriptors in the cache to accommodate
475          * the number of in progress add operations plus regions_needed.
476          *
477          * This is a while loop because when we drop the lock, some other call
478          * to region_add or region_del may have consumed some region_entries,
479          * so we keep looping here until we finally have enough entries for
480          * (adds_in_progress + regions_needed).
481          */
482         while (resv->region_cache_count <
483                (resv->adds_in_progress + regions_needed)) {
484                 to_allocate = resv->adds_in_progress + regions_needed -
485                               resv->region_cache_count;
486
487                 /* At this point, we should have enough entries in the cache
488                  * for all the existing adds_in_progress. We should only be
489                  * needing to allocate for regions_needed.
490                  */
491                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
492
493                 spin_unlock(&resv->lock);
494                 for (i = 0; i < to_allocate; i++) {
495                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
496                         if (!trg)
497                                 goto out_of_memory;
498                         list_add(&trg->link, &allocated_regions);
499                 }
500
501                 spin_lock(&resv->lock);
502
503                 list_splice(&allocated_regions, &resv->region_cache);
504                 resv->region_cache_count += to_allocate;
505         }
506
507         return 0;
508
509 out_of_memory:
510         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
511                 list_del(&rg->link);
512                 kfree(rg);
513         }
514         return -ENOMEM;
515 }
516
517 /*
518  * Add the huge page range represented by [f, t) to the reserve
519  * map.  Regions will be taken from the cache to fill in this range.
520  * Sufficient regions should exist in the cache due to the previous
521  * call to region_chg with the same range, but in some cases the cache will not
522  * have sufficient entries due to races with other code doing region_add or
523  * region_del.  The extra needed entries will be allocated.
524  *
525  * regions_needed is the out value provided by a previous call to region_chg.
526  *
527  * Return the number of new huge pages added to the map.  This number is greater
528  * than or equal to zero.  If file_region entries needed to be allocated for
529  * this operation and we were not able to allocate, it returns -ENOMEM.
530  * region_add of regions of length 1 never allocate file_regions and cannot
531  * fail; region_chg will always allocate at least 1 entry and a region_add for
532  * 1 page will only require at most 1 entry.
533  */
534 static long region_add(struct resv_map *resv, long f, long t,
535                        long in_regions_needed, struct hstate *h,
536                        struct hugetlb_cgroup *h_cg)
537 {
538         long add = 0, actual_regions_needed = 0;
539
540         spin_lock(&resv->lock);
541 retry:
542
543         /* Count how many regions are actually needed to execute this add. */
544         add_reservation_in_range(resv, f, t, NULL, NULL,
545                                  &actual_regions_needed);
546
547         /*
548          * Check for sufficient descriptors in the cache to accommodate
549          * this add operation. Note that actual_regions_needed may be greater
550          * than in_regions_needed, as the resv_map may have been modified since
551          * the region_chg call. In this case, we need to make sure that we
552          * allocate extra entries, such that we have enough for all the
553          * existing adds_in_progress, plus the excess needed for this
554          * operation.
555          */
556         if (actual_regions_needed > in_regions_needed &&
557             resv->region_cache_count <
558                     resv->adds_in_progress +
559                             (actual_regions_needed - in_regions_needed)) {
560                 /* region_add operation of range 1 should never need to
561                  * allocate file_region entries.
562                  */
563                 VM_BUG_ON(t - f <= 1);
564
565                 if (allocate_file_region_entries(
566                             resv, actual_regions_needed - in_regions_needed)) {
567                         return -ENOMEM;
568                 }
569
570                 goto retry;
571         }
572
573         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
574
575         resv->adds_in_progress -= in_regions_needed;
576
577         spin_unlock(&resv->lock);
578         return add;
579 }
580
581 /*
582  * Examine the existing reserve map and determine how many
583  * huge pages in the specified range [f, t) are NOT currently
584  * represented.  This routine is called before a subsequent
585  * call to region_add that will actually modify the reserve
586  * map to add the specified range [f, t).  region_chg does
587  * not change the number of huge pages represented by the
588  * map.  A number of new file_region structures is added to the cache as a
589  * placeholder, for the subsequent region_add call to use. At least 1
590  * file_region structure is added.
591  *
592  * out_regions_needed is the number of regions added to the
593  * resv->adds_in_progress.  This value needs to be provided to a follow up call
594  * to region_add or region_abort for proper accounting.
595  *
596  * Returns the number of huge pages that need to be added to the existing
597  * reservation map for the range [f, t).  This number is greater or equal to
598  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
599  * is needed and can not be allocated.
600  */
601 static long region_chg(struct resv_map *resv, long f, long t,
602                        long *out_regions_needed)
603 {
604         long chg = 0;
605
606         spin_lock(&resv->lock);
607
608         /* Count how many hugepages in this range are NOT represented. */
609         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
610                                        out_regions_needed);
611
612         if (*out_regions_needed == 0)
613                 *out_regions_needed = 1;
614
615         if (allocate_file_region_entries(resv, *out_regions_needed))
616                 return -ENOMEM;
617
618         resv->adds_in_progress += *out_regions_needed;
619
620         spin_unlock(&resv->lock);
621         return chg;
622 }
623
624 /*
625  * Abort the in progress add operation.  The adds_in_progress field
626  * of the resv_map keeps track of the operations in progress between
627  * calls to region_chg and region_add.  Operations are sometimes
628  * aborted after the call to region_chg.  In such cases, region_abort
629  * is called to decrement the adds_in_progress counter. regions_needed
630  * is the value returned by the region_chg call, it is used to decrement
631  * the adds_in_progress counter.
632  *
633  * NOTE: The range arguments [f, t) are not needed or used in this
634  * routine.  They are kept to make reading the calling code easier as
635  * arguments will match the associated region_chg call.
636  */
637 static void region_abort(struct resv_map *resv, long f, long t,
638                          long regions_needed)
639 {
640         spin_lock(&resv->lock);
641         VM_BUG_ON(!resv->region_cache_count);
642         resv->adds_in_progress -= regions_needed;
643         spin_unlock(&resv->lock);
644 }
645
646 /*
647  * Delete the specified range [f, t) from the reserve map.  If the
648  * t parameter is LONG_MAX, this indicates that ALL regions after f
649  * should be deleted.  Locate the regions which intersect [f, t)
650  * and either trim, delete or split the existing regions.
651  *
652  * Returns the number of huge pages deleted from the reserve map.
653  * In the normal case, the return value is zero or more.  In the
654  * case where a region must be split, a new region descriptor must
655  * be allocated.  If the allocation fails, -ENOMEM will be returned.
656  * NOTE: If the parameter t == LONG_MAX, then we will never split
657  * a region and possibly return -ENOMEM.  Callers specifying
658  * t == LONG_MAX do not need to check for -ENOMEM error.
659  */
660 static long region_del(struct resv_map *resv, long f, long t)
661 {
662         struct list_head *head = &resv->regions;
663         struct file_region *rg, *trg;
664         struct file_region *nrg = NULL;
665         long del = 0;
666
667 retry:
668         spin_lock(&resv->lock);
669         list_for_each_entry_safe(rg, trg, head, link) {
670                 /*
671                  * Skip regions before the range to be deleted.  file_region
672                  * ranges are normally of the form [from, to).  However, there
673                  * may be a "placeholder" entry in the map which is of the form
674                  * (from, to) with from == to.  Check for placeholder entries
675                  * at the beginning of the range to be deleted.
676                  */
677                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
678                         continue;
679
680                 if (rg->from >= t)
681                         break;
682
683                 if (f > rg->from && t < rg->to) { /* Must split region */
684                         /*
685                          * Check for an entry in the cache before dropping
686                          * lock and attempting allocation.
687                          */
688                         if (!nrg &&
689                             resv->region_cache_count > resv->adds_in_progress) {
690                                 nrg = list_first_entry(&resv->region_cache,
691                                                         struct file_region,
692                                                         link);
693                                 list_del(&nrg->link);
694                                 resv->region_cache_count--;
695                         }
696
697                         if (!nrg) {
698                                 spin_unlock(&resv->lock);
699                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
700                                 if (!nrg)
701                                         return -ENOMEM;
702                                 goto retry;
703                         }
704
705                         del += t - f;
706                         hugetlb_cgroup_uncharge_file_region(
707                                 resv, rg, t - f, false);
708
709                         /* New entry for end of split region */
710                         nrg->from = t;
711                         nrg->to = rg->to;
712
713                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
714
715                         INIT_LIST_HEAD(&nrg->link);
716
717                         /* Original entry is trimmed */
718                         rg->to = f;
719
720                         list_add(&nrg->link, &rg->link);
721                         nrg = NULL;
722                         break;
723                 }
724
725                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
726                         del += rg->to - rg->from;
727                         hugetlb_cgroup_uncharge_file_region(resv, rg,
728                                                             rg->to - rg->from, true);
729                         list_del(&rg->link);
730                         kfree(rg);
731                         continue;
732                 }
733
734                 if (f <= rg->from) {    /* Trim beginning of region */
735                         hugetlb_cgroup_uncharge_file_region(resv, rg,
736                                                             t - rg->from, false);
737
738                         del += t - rg->from;
739                         rg->from = t;
740                 } else {                /* Trim end of region */
741                         hugetlb_cgroup_uncharge_file_region(resv, rg,
742                                                             rg->to - f, false);
743
744                         del += rg->to - f;
745                         rg->to = f;
746                 }
747         }
748
749         spin_unlock(&resv->lock);
750         kfree(nrg);
751         return del;
752 }
753
754 /*
755  * A rare out of memory error was encountered which prevented removal of
756  * the reserve map region for a page.  The huge page itself was free'ed
757  * and removed from the page cache.  This routine will adjust the subpool
758  * usage count, and the global reserve count if needed.  By incrementing
759  * these counts, the reserve map entry which could not be deleted will
760  * appear as a "reserved" entry instead of simply dangling with incorrect
761  * counts.
762  */
763 void hugetlb_fix_reserve_counts(struct inode *inode)
764 {
765         struct hugepage_subpool *spool = subpool_inode(inode);
766         long rsv_adjust;
767         bool reserved = false;
768
769         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
770         if (rsv_adjust > 0) {
771                 struct hstate *h = hstate_inode(inode);
772
773                 if (!hugetlb_acct_memory(h, 1))
774                         reserved = true;
775         } else if (!rsv_adjust) {
776                 reserved = true;
777         }
778
779         if (!reserved)
780                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
781 }
782
783 /*
784  * Count and return the number of huge pages in the reserve map
785  * that intersect with the range [f, t).
786  */
787 static long region_count(struct resv_map *resv, long f, long t)
788 {
789         struct list_head *head = &resv->regions;
790         struct file_region *rg;
791         long chg = 0;
792
793         spin_lock(&resv->lock);
794         /* Locate each segment we overlap with, and count that overlap. */
795         list_for_each_entry(rg, head, link) {
796                 long seg_from;
797                 long seg_to;
798
799                 if (rg->to <= f)
800                         continue;
801                 if (rg->from >= t)
802                         break;
803
804                 seg_from = max(rg->from, f);
805                 seg_to = min(rg->to, t);
806
807                 chg += seg_to - seg_from;
808         }
809         spin_unlock(&resv->lock);
810
811         return chg;
812 }
813
814 /*
815  * Convert the address within this vma to the page offset within
816  * the mapping, in pagecache page units; huge pages here.
817  */
818 static pgoff_t vma_hugecache_offset(struct hstate *h,
819                         struct vm_area_struct *vma, unsigned long address)
820 {
821         return ((address - vma->vm_start) >> huge_page_shift(h)) +
822                         (vma->vm_pgoff >> huge_page_order(h));
823 }
824
825 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
826                                      unsigned long address)
827 {
828         return vma_hugecache_offset(hstate_vma(vma), vma, address);
829 }
830 EXPORT_SYMBOL_GPL(linear_hugepage_index);
831
832 /*
833  * Return the size of the pages allocated when backing a VMA. In the majority
834  * cases this will be same size as used by the page table entries.
835  */
836 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
837 {
838         if (vma->vm_ops && vma->vm_ops->pagesize)
839                 return vma->vm_ops->pagesize(vma);
840         return PAGE_SIZE;
841 }
842 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
843
844 /*
845  * Return the page size being used by the MMU to back a VMA. In the majority
846  * of cases, the page size used by the kernel matches the MMU size. On
847  * architectures where it differs, an architecture-specific 'strong'
848  * version of this symbol is required.
849  */
850 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
851 {
852         return vma_kernel_pagesize(vma);
853 }
854
855 /*
856  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
857  * bits of the reservation map pointer, which are always clear due to
858  * alignment.
859  */
860 #define HPAGE_RESV_OWNER    (1UL << 0)
861 #define HPAGE_RESV_UNMAPPED (1UL << 1)
862 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
863
864 /*
865  * These helpers are used to track how many pages are reserved for
866  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
867  * is guaranteed to have their future faults succeed.
868  *
869  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
870  * the reserve counters are updated with the hugetlb_lock held. It is safe
871  * to reset the VMA at fork() time as it is not in use yet and there is no
872  * chance of the global counters getting corrupted as a result of the values.
873  *
874  * The private mapping reservation is represented in a subtly different
875  * manner to a shared mapping.  A shared mapping has a region map associated
876  * with the underlying file, this region map represents the backing file
877  * pages which have ever had a reservation assigned which this persists even
878  * after the page is instantiated.  A private mapping has a region map
879  * associated with the original mmap which is attached to all VMAs which
880  * reference it, this region map represents those offsets which have consumed
881  * reservation ie. where pages have been instantiated.
882  */
883 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
884 {
885         return (unsigned long)vma->vm_private_data;
886 }
887
888 static void set_vma_private_data(struct vm_area_struct *vma,
889                                                         unsigned long value)
890 {
891         vma->vm_private_data = (void *)value;
892 }
893
894 static void
895 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
896                                           struct hugetlb_cgroup *h_cg,
897                                           struct hstate *h)
898 {
899 #ifdef CONFIG_CGROUP_HUGETLB
900         if (!h_cg || !h) {
901                 resv_map->reservation_counter = NULL;
902                 resv_map->pages_per_hpage = 0;
903                 resv_map->css = NULL;
904         } else {
905                 resv_map->reservation_counter =
906                         &h_cg->rsvd_hugepage[hstate_index(h)];
907                 resv_map->pages_per_hpage = pages_per_huge_page(h);
908                 resv_map->css = &h_cg->css;
909         }
910 #endif
911 }
912
913 struct resv_map *resv_map_alloc(void)
914 {
915         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
916         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
917
918         if (!resv_map || !rg) {
919                 kfree(resv_map);
920                 kfree(rg);
921                 return NULL;
922         }
923
924         kref_init(&resv_map->refs);
925         spin_lock_init(&resv_map->lock);
926         INIT_LIST_HEAD(&resv_map->regions);
927
928         resv_map->adds_in_progress = 0;
929         /*
930          * Initialize these to 0. On shared mappings, 0's here indicate these
931          * fields don't do cgroup accounting. On private mappings, these will be
932          * re-initialized to the proper values, to indicate that hugetlb cgroup
933          * reservations are to be un-charged from here.
934          */
935         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
936
937         INIT_LIST_HEAD(&resv_map->region_cache);
938         list_add(&rg->link, &resv_map->region_cache);
939         resv_map->region_cache_count = 1;
940
941         return resv_map;
942 }
943
944 void resv_map_release(struct kref *ref)
945 {
946         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
947         struct list_head *head = &resv_map->region_cache;
948         struct file_region *rg, *trg;
949
950         /* Clear out any active regions before we release the map. */
951         region_del(resv_map, 0, LONG_MAX);
952
953         /* ... and any entries left in the cache */
954         list_for_each_entry_safe(rg, trg, head, link) {
955                 list_del(&rg->link);
956                 kfree(rg);
957         }
958
959         VM_BUG_ON(resv_map->adds_in_progress);
960
961         kfree(resv_map);
962 }
963
964 static inline struct resv_map *inode_resv_map(struct inode *inode)
965 {
966         /*
967          * At inode evict time, i_mapping may not point to the original
968          * address space within the inode.  This original address space
969          * contains the pointer to the resv_map.  So, always use the
970          * address space embedded within the inode.
971          * The VERY common case is inode->mapping == &inode->i_data but,
972          * this may not be true for device special inodes.
973          */
974         return (struct resv_map *)(&inode->i_data)->private_data;
975 }
976
977 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
978 {
979         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980         if (vma->vm_flags & VM_MAYSHARE) {
981                 struct address_space *mapping = vma->vm_file->f_mapping;
982                 struct inode *inode = mapping->host;
983
984                 return inode_resv_map(inode);
985
986         } else {
987                 return (struct resv_map *)(get_vma_private_data(vma) &
988                                                         ~HPAGE_RESV_MASK);
989         }
990 }
991
992 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
996
997         set_vma_private_data(vma, (get_vma_private_data(vma) &
998                                 HPAGE_RESV_MASK) | (unsigned long)map);
999 }
1000
1001 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1002 {
1003         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1005
1006         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1007 }
1008
1009 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1010 {
1011         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012
1013         return (get_vma_private_data(vma) & flag) != 0;
1014 }
1015
1016 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1017 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1018 {
1019         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1020         if (!(vma->vm_flags & VM_MAYSHARE))
1021                 vma->vm_private_data = (void *)0;
1022 }
1023
1024 /*
1025  * Reset and decrement one ref on hugepage private reservation.
1026  * Called with mm->mmap_sem writer semaphore held.
1027  * This function should be only used by move_vma() and operate on
1028  * same sized vma. It should never come here with last ref on the
1029  * reservation.
1030  */
1031 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1032 {
1033         /*
1034          * Clear the old hugetlb private page reservation.
1035          * It has already been transferred to new_vma.
1036          *
1037          * During a mremap() operation of a hugetlb vma we call move_vma()
1038          * which copies vma into new_vma and unmaps vma. After the copy
1039          * operation both new_vma and vma share a reference to the resv_map
1040          * struct, and at that point vma is about to be unmapped. We don't
1041          * want to return the reservation to the pool at unmap of vma because
1042          * the reservation still lives on in new_vma, so simply decrement the
1043          * ref here and remove the resv_map reference from this vma.
1044          */
1045         struct resv_map *reservations = vma_resv_map(vma);
1046
1047         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1049                 kref_put(&reservations->refs, resv_map_release);
1050         }
1051
1052         reset_vma_resv_huge_pages(vma);
1053 }
1054
1055 /* Returns true if the VMA has associated reserve pages */
1056 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1057 {
1058         if (vma->vm_flags & VM_NORESERVE) {
1059                 /*
1060                  * This address is already reserved by other process(chg == 0),
1061                  * so, we should decrement reserved count. Without decrementing,
1062                  * reserve count remains after releasing inode, because this
1063                  * allocated page will go into page cache and is regarded as
1064                  * coming from reserved pool in releasing step.  Currently, we
1065                  * don't have any other solution to deal with this situation
1066                  * properly, so add work-around here.
1067                  */
1068                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1069                         return true;
1070                 else
1071                         return false;
1072         }
1073
1074         /* Shared mappings always use reserves */
1075         if (vma->vm_flags & VM_MAYSHARE) {
1076                 /*
1077                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1078                  * be a region map for all pages.  The only situation where
1079                  * there is no region map is if a hole was punched via
1080                  * fallocate.  In this case, there really are no reserves to
1081                  * use.  This situation is indicated if chg != 0.
1082                  */
1083                 if (chg)
1084                         return false;
1085                 else
1086                         return true;
1087         }
1088
1089         /*
1090          * Only the process that called mmap() has reserves for
1091          * private mappings.
1092          */
1093         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094                 /*
1095                  * Like the shared case above, a hole punch or truncate
1096                  * could have been performed on the private mapping.
1097                  * Examine the value of chg to determine if reserves
1098                  * actually exist or were previously consumed.
1099                  * Very Subtle - The value of chg comes from a previous
1100                  * call to vma_needs_reserves().  The reserve map for
1101                  * private mappings has different (opposite) semantics
1102                  * than that of shared mappings.  vma_needs_reserves()
1103                  * has already taken this difference in semantics into
1104                  * account.  Therefore, the meaning of chg is the same
1105                  * as in the shared case above.  Code could easily be
1106                  * combined, but keeping it separate draws attention to
1107                  * subtle differences.
1108                  */
1109                 if (chg)
1110                         return false;
1111                 else
1112                         return true;
1113         }
1114
1115         return false;
1116 }
1117
1118 static void enqueue_huge_page(struct hstate *h, struct page *page)
1119 {
1120         int nid = page_to_nid(page);
1121
1122         lockdep_assert_held(&hugetlb_lock);
1123         VM_BUG_ON_PAGE(page_count(page), page);
1124
1125         list_move(&page->lru, &h->hugepage_freelists[nid]);
1126         h->free_huge_pages++;
1127         h->free_huge_pages_node[nid]++;
1128         SetHPageFreed(page);
1129 }
1130
1131 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1132 {
1133         struct page *page;
1134         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1135
1136         lockdep_assert_held(&hugetlb_lock);
1137         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1138                 if (pin && !is_pinnable_page(page))
1139                         continue;
1140
1141                 if (PageHWPoison(page))
1142                         continue;
1143
1144                 list_move(&page->lru, &h->hugepage_activelist);
1145                 set_page_refcounted(page);
1146                 ClearHPageFreed(page);
1147                 h->free_huge_pages--;
1148                 h->free_huge_pages_node[nid]--;
1149                 return page;
1150         }
1151
1152         return NULL;
1153 }
1154
1155 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1156                 nodemask_t *nmask)
1157 {
1158         unsigned int cpuset_mems_cookie;
1159         struct zonelist *zonelist;
1160         struct zone *zone;
1161         struct zoneref *z;
1162         int node = NUMA_NO_NODE;
1163
1164         zonelist = node_zonelist(nid, gfp_mask);
1165
1166 retry_cpuset:
1167         cpuset_mems_cookie = read_mems_allowed_begin();
1168         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1169                 struct page *page;
1170
1171                 if (!cpuset_zone_allowed(zone, gfp_mask))
1172                         continue;
1173                 /*
1174                  * no need to ask again on the same node. Pool is node rather than
1175                  * zone aware
1176                  */
1177                 if (zone_to_nid(zone) == node)
1178                         continue;
1179                 node = zone_to_nid(zone);
1180
1181                 page = dequeue_huge_page_node_exact(h, node);
1182                 if (page)
1183                         return page;
1184         }
1185         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1186                 goto retry_cpuset;
1187
1188         return NULL;
1189 }
1190
1191 static struct page *dequeue_huge_page_vma(struct hstate *h,
1192                                 struct vm_area_struct *vma,
1193                                 unsigned long address, int avoid_reserve,
1194                                 long chg)
1195 {
1196         struct page *page = NULL;
1197         struct mempolicy *mpol;
1198         gfp_t gfp_mask;
1199         nodemask_t *nodemask;
1200         int nid;
1201
1202         /*
1203          * A child process with MAP_PRIVATE mappings created by their parent
1204          * have no page reserves. This check ensures that reservations are
1205          * not "stolen". The child may still get SIGKILLed
1206          */
1207         if (!vma_has_reserves(vma, chg) &&
1208                         h->free_huge_pages - h->resv_huge_pages == 0)
1209                 goto err;
1210
1211         /* If reserves cannot be used, ensure enough pages are in the pool */
1212         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1213                 goto err;
1214
1215         gfp_mask = htlb_alloc_mask(h);
1216         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1217
1218         if (mpol_is_preferred_many(mpol)) {
1219                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221                 /* Fallback to all nodes if page==NULL */
1222                 nodemask = NULL;
1223         }
1224
1225         if (!page)
1226                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1227
1228         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1229                 SetHPageRestoreReserve(page);
1230                 h->resv_huge_pages--;
1231         }
1232
1233         mpol_cond_put(mpol);
1234         return page;
1235
1236 err:
1237         return NULL;
1238 }
1239
1240 /*
1241  * common helper functions for hstate_next_node_to_{alloc|free}.
1242  * We may have allocated or freed a huge page based on a different
1243  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1244  * be outside of *nodes_allowed.  Ensure that we use an allowed
1245  * node for alloc or free.
1246  */
1247 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1248 {
1249         nid = next_node_in(nid, *nodes_allowed);
1250         VM_BUG_ON(nid >= MAX_NUMNODES);
1251
1252         return nid;
1253 }
1254
1255 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1256 {
1257         if (!node_isset(nid, *nodes_allowed))
1258                 nid = next_node_allowed(nid, nodes_allowed);
1259         return nid;
1260 }
1261
1262 /*
1263  * returns the previously saved node ["this node"] from which to
1264  * allocate a persistent huge page for the pool and advance the
1265  * next node from which to allocate, handling wrap at end of node
1266  * mask.
1267  */
1268 static int hstate_next_node_to_alloc(struct hstate *h,
1269                                         nodemask_t *nodes_allowed)
1270 {
1271         int nid;
1272
1273         VM_BUG_ON(!nodes_allowed);
1274
1275         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1276         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1277
1278         return nid;
1279 }
1280
1281 /*
1282  * helper for remove_pool_huge_page() - return the previously saved
1283  * node ["this node"] from which to free a huge page.  Advance the
1284  * next node id whether or not we find a free huge page to free so
1285  * that the next attempt to free addresses the next node.
1286  */
1287 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1288 {
1289         int nid;
1290
1291         VM_BUG_ON(!nodes_allowed);
1292
1293         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1294         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1295
1296         return nid;
1297 }
1298
1299 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1300         for (nr_nodes = nodes_weight(*mask);                            \
1301                 nr_nodes > 0 &&                                         \
1302                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1303                 nr_nodes--)
1304
1305 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1306         for (nr_nodes = nodes_weight(*mask);                            \
1307                 nr_nodes > 0 &&                                         \
1308                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1309                 nr_nodes--)
1310
1311 /* used to demote non-gigantic_huge pages as well */
1312 static void __destroy_compound_gigantic_page(struct page *page,
1313                                         unsigned int order, bool demote)
1314 {
1315         int i;
1316         int nr_pages = 1 << order;
1317         struct page *p = page + 1;
1318
1319         atomic_set(compound_mapcount_ptr(page), 0);
1320         atomic_set(compound_pincount_ptr(page), 0);
1321
1322         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323                 p->mapping = NULL;
1324                 clear_compound_head(p);
1325                 if (!demote)
1326                         set_page_refcounted(p);
1327         }
1328
1329         set_compound_order(page, 0);
1330 #ifdef CONFIG_64BIT
1331         page[1].compound_nr = 0;
1332 #endif
1333         __ClearPageHead(page);
1334 }
1335
1336 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1337                                         unsigned int order)
1338 {
1339         __destroy_compound_gigantic_page(page, order, true);
1340 }
1341
1342 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1343 static void destroy_compound_gigantic_page(struct page *page,
1344                                         unsigned int order)
1345 {
1346         __destroy_compound_gigantic_page(page, order, false);
1347 }
1348
1349 static void free_gigantic_page(struct page *page, unsigned int order)
1350 {
1351         /*
1352          * If the page isn't allocated using the cma allocator,
1353          * cma_release() returns false.
1354          */
1355 #ifdef CONFIG_CMA
1356         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1357                 return;
1358 #endif
1359
1360         free_contig_range(page_to_pfn(page), 1 << order);
1361 }
1362
1363 #ifdef CONFIG_CONTIG_ALLOC
1364 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1365                 int nid, nodemask_t *nodemask)
1366 {
1367         unsigned long nr_pages = pages_per_huge_page(h);
1368         if (nid == NUMA_NO_NODE)
1369                 nid = numa_mem_id();
1370
1371 #ifdef CONFIG_CMA
1372         {
1373                 struct page *page;
1374                 int node;
1375
1376                 if (hugetlb_cma[nid]) {
1377                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1378                                         huge_page_order(h), true);
1379                         if (page)
1380                                 return page;
1381                 }
1382
1383                 if (!(gfp_mask & __GFP_THISNODE)) {
1384                         for_each_node_mask(node, *nodemask) {
1385                                 if (node == nid || !hugetlb_cma[node])
1386                                         continue;
1387
1388                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1389                                                 huge_page_order(h), true);
1390                                 if (page)
1391                                         return page;
1392                         }
1393                 }
1394         }
1395 #endif
1396
1397         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1398 }
1399
1400 #else /* !CONFIG_CONTIG_ALLOC */
1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402                                         int nid, nodemask_t *nodemask)
1403 {
1404         return NULL;
1405 }
1406 #endif /* CONFIG_CONTIG_ALLOC */
1407
1408 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1409 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1410                                         int nid, nodemask_t *nodemask)
1411 {
1412         return NULL;
1413 }
1414 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1415 static inline void destroy_compound_gigantic_page(struct page *page,
1416                                                 unsigned int order) { }
1417 #endif
1418
1419 /*
1420  * Remove hugetlb page from lists, and update dtor so that page appears
1421  * as just a compound page.
1422  *
1423  * A reference is held on the page, except in the case of demote.
1424  *
1425  * Must be called with hugetlb lock held.
1426  */
1427 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1428                                                         bool adjust_surplus,
1429                                                         bool demote)
1430 {
1431         int nid = page_to_nid(page);
1432
1433         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1434         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1435
1436         lockdep_assert_held(&hugetlb_lock);
1437         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1438                 return;
1439
1440         list_del(&page->lru);
1441
1442         if (HPageFreed(page)) {
1443                 h->free_huge_pages--;
1444                 h->free_huge_pages_node[nid]--;
1445         }
1446         if (adjust_surplus) {
1447                 h->surplus_huge_pages--;
1448                 h->surplus_huge_pages_node[nid]--;
1449         }
1450
1451         /*
1452          * Very subtle
1453          *
1454          * For non-gigantic pages set the destructor to the normal compound
1455          * page dtor.  This is needed in case someone takes an additional
1456          * temporary ref to the page, and freeing is delayed until they drop
1457          * their reference.
1458          *
1459          * For gigantic pages set the destructor to the null dtor.  This
1460          * destructor will never be called.  Before freeing the gigantic
1461          * page destroy_compound_gigantic_page will turn the compound page
1462          * into a simple group of pages.  After this the destructor does not
1463          * apply.
1464          *
1465          * This handles the case where more than one ref is held when and
1466          * after update_and_free_page is called.
1467          *
1468          * In the case of demote we do not ref count the page as it will soon
1469          * be turned into a page of smaller size.
1470          */
1471         if (!demote)
1472                 set_page_refcounted(page);
1473         if (hstate_is_gigantic(h))
1474                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1475         else
1476                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1477
1478         h->nr_huge_pages--;
1479         h->nr_huge_pages_node[nid]--;
1480 }
1481
1482 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1483                                                         bool adjust_surplus)
1484 {
1485         __remove_hugetlb_page(h, page, adjust_surplus, false);
1486 }
1487
1488 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1489                                                         bool adjust_surplus)
1490 {
1491         __remove_hugetlb_page(h, page, adjust_surplus, true);
1492 }
1493
1494 static void add_hugetlb_page(struct hstate *h, struct page *page,
1495                              bool adjust_surplus)
1496 {
1497         int zeroed;
1498         int nid = page_to_nid(page);
1499
1500         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1501
1502         lockdep_assert_held(&hugetlb_lock);
1503
1504         INIT_LIST_HEAD(&page->lru);
1505         h->nr_huge_pages++;
1506         h->nr_huge_pages_node[nid]++;
1507
1508         if (adjust_surplus) {
1509                 h->surplus_huge_pages++;
1510                 h->surplus_huge_pages_node[nid]++;
1511         }
1512
1513         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514         set_page_private(page, 0);
1515         SetHPageVmemmapOptimized(page);
1516
1517         /*
1518          * This page is about to be managed by the hugetlb allocator and
1519          * should have no users.  Drop our reference, and check for others
1520          * just in case.
1521          */
1522         zeroed = put_page_testzero(page);
1523         if (!zeroed)
1524                 /*
1525                  * It is VERY unlikely soneone else has taken a ref on
1526                  * the page.  In this case, we simply return as the
1527                  * hugetlb destructor (free_huge_page) will be called
1528                  * when this other ref is dropped.
1529                  */
1530                 return;
1531
1532         arch_clear_hugepage_flags(page);
1533         enqueue_huge_page(h, page);
1534 }
1535
1536 static void __update_and_free_page(struct hstate *h, struct page *page)
1537 {
1538         int i;
1539         struct page *subpage = page;
1540
1541         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1542                 return;
1543
1544         if (hugetlb_vmemmap_alloc(h, page)) {
1545                 spin_lock_irq(&hugetlb_lock);
1546                 /*
1547                  * If we cannot allocate vmemmap pages, just refuse to free the
1548                  * page and put the page back on the hugetlb free list and treat
1549                  * as a surplus page.
1550                  */
1551                 add_hugetlb_page(h, page, true);
1552                 spin_unlock_irq(&hugetlb_lock);
1553                 return;
1554         }
1555
1556         for (i = 0; i < pages_per_huge_page(h);
1557              i++, subpage = mem_map_next(subpage, page, i)) {
1558                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1559                                 1 << PG_referenced | 1 << PG_dirty |
1560                                 1 << PG_active | 1 << PG_private |
1561                                 1 << PG_writeback);
1562         }
1563
1564         /*
1565          * Non-gigantic pages demoted from CMA allocated gigantic pages
1566          * need to be given back to CMA in free_gigantic_page.
1567          */
1568         if (hstate_is_gigantic(h) ||
1569             hugetlb_cma_page(page, huge_page_order(h))) {
1570                 destroy_compound_gigantic_page(page, huge_page_order(h));
1571                 free_gigantic_page(page, huge_page_order(h));
1572         } else {
1573                 __free_pages(page, huge_page_order(h));
1574         }
1575 }
1576
1577 /*
1578  * As update_and_free_page() can be called under any context, so we cannot
1579  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1580  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1581  * the vmemmap pages.
1582  *
1583  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1584  * freed and frees them one-by-one. As the page->mapping pointer is going
1585  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1586  * structure of a lockless linked list of huge pages to be freed.
1587  */
1588 static LLIST_HEAD(hpage_freelist);
1589
1590 static void free_hpage_workfn(struct work_struct *work)
1591 {
1592         struct llist_node *node;
1593
1594         node = llist_del_all(&hpage_freelist);
1595
1596         while (node) {
1597                 struct page *page;
1598                 struct hstate *h;
1599
1600                 page = container_of((struct address_space **)node,
1601                                      struct page, mapping);
1602                 node = node->next;
1603                 page->mapping = NULL;
1604                 /*
1605                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1606                  * is going to trigger because a previous call to
1607                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1608                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1609                  */
1610                 h = size_to_hstate(page_size(page));
1611
1612                 __update_and_free_page(h, page);
1613
1614                 cond_resched();
1615         }
1616 }
1617 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1618
1619 static inline void flush_free_hpage_work(struct hstate *h)
1620 {
1621         if (hugetlb_optimize_vmemmap_pages(h))
1622                 flush_work(&free_hpage_work);
1623 }
1624
1625 static void update_and_free_page(struct hstate *h, struct page *page,
1626                                  bool atomic)
1627 {
1628         if (!HPageVmemmapOptimized(page) || !atomic) {
1629                 __update_and_free_page(h, page);
1630                 return;
1631         }
1632
1633         /*
1634          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1635          *
1636          * Only call schedule_work() if hpage_freelist is previously
1637          * empty. Otherwise, schedule_work() had been called but the workfn
1638          * hasn't retrieved the list yet.
1639          */
1640         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1641                 schedule_work(&free_hpage_work);
1642 }
1643
1644 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1645 {
1646         struct page *page, *t_page;
1647
1648         list_for_each_entry_safe(page, t_page, list, lru) {
1649                 update_and_free_page(h, page, false);
1650                 cond_resched();
1651         }
1652 }
1653
1654 struct hstate *size_to_hstate(unsigned long size)
1655 {
1656         struct hstate *h;
1657
1658         for_each_hstate(h) {
1659                 if (huge_page_size(h) == size)
1660                         return h;
1661         }
1662         return NULL;
1663 }
1664
1665 void free_huge_page(struct page *page)
1666 {
1667         /*
1668          * Can't pass hstate in here because it is called from the
1669          * compound page destructor.
1670          */
1671         struct hstate *h = page_hstate(page);
1672         int nid = page_to_nid(page);
1673         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1674         bool restore_reserve;
1675         unsigned long flags;
1676
1677         VM_BUG_ON_PAGE(page_count(page), page);
1678         VM_BUG_ON_PAGE(page_mapcount(page), page);
1679
1680         hugetlb_set_page_subpool(page, NULL);
1681         if (PageAnon(page))
1682                 __ClearPageAnonExclusive(page);
1683         page->mapping = NULL;
1684         restore_reserve = HPageRestoreReserve(page);
1685         ClearHPageRestoreReserve(page);
1686
1687         /*
1688          * If HPageRestoreReserve was set on page, page allocation consumed a
1689          * reservation.  If the page was associated with a subpool, there
1690          * would have been a page reserved in the subpool before allocation
1691          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1692          * reservation, do not call hugepage_subpool_put_pages() as this will
1693          * remove the reserved page from the subpool.
1694          */
1695         if (!restore_reserve) {
1696                 /*
1697                  * A return code of zero implies that the subpool will be
1698                  * under its minimum size if the reservation is not restored
1699                  * after page is free.  Therefore, force restore_reserve
1700                  * operation.
1701                  */
1702                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1703                         restore_reserve = true;
1704         }
1705
1706         spin_lock_irqsave(&hugetlb_lock, flags);
1707         ClearHPageMigratable(page);
1708         hugetlb_cgroup_uncharge_page(hstate_index(h),
1709                                      pages_per_huge_page(h), page);
1710         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1711                                           pages_per_huge_page(h), page);
1712         if (restore_reserve)
1713                 h->resv_huge_pages++;
1714
1715         if (HPageTemporary(page)) {
1716                 remove_hugetlb_page(h, page, false);
1717                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1718                 update_and_free_page(h, page, true);
1719         } else if (h->surplus_huge_pages_node[nid]) {
1720                 /* remove the page from active list */
1721                 remove_hugetlb_page(h, page, true);
1722                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1723                 update_and_free_page(h, page, true);
1724         } else {
1725                 arch_clear_hugepage_flags(page);
1726                 enqueue_huge_page(h, page);
1727                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1728         }
1729 }
1730
1731 /*
1732  * Must be called with the hugetlb lock held
1733  */
1734 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1735 {
1736         lockdep_assert_held(&hugetlb_lock);
1737         h->nr_huge_pages++;
1738         h->nr_huge_pages_node[nid]++;
1739 }
1740
1741 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1742 {
1743         hugetlb_vmemmap_free(h, page);
1744         INIT_LIST_HEAD(&page->lru);
1745         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1746         hugetlb_set_page_subpool(page, NULL);
1747         set_hugetlb_cgroup(page, NULL);
1748         set_hugetlb_cgroup_rsvd(page, NULL);
1749 }
1750
1751 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1752 {
1753         __prep_new_huge_page(h, page);
1754         spin_lock_irq(&hugetlb_lock);
1755         __prep_account_new_huge_page(h, nid);
1756         spin_unlock_irq(&hugetlb_lock);
1757 }
1758
1759 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1760                                                                 bool demote)
1761 {
1762         int i, j;
1763         int nr_pages = 1 << order;
1764         struct page *p = page + 1;
1765
1766         /* we rely on prep_new_huge_page to set the destructor */
1767         set_compound_order(page, order);
1768         __ClearPageReserved(page);
1769         __SetPageHead(page);
1770         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1771                 /*
1772                  * For gigantic hugepages allocated through bootmem at
1773                  * boot, it's safer to be consistent with the not-gigantic
1774                  * hugepages and clear the PG_reserved bit from all tail pages
1775                  * too.  Otherwise drivers using get_user_pages() to access tail
1776                  * pages may get the reference counting wrong if they see
1777                  * PG_reserved set on a tail page (despite the head page not
1778                  * having PG_reserved set).  Enforcing this consistency between
1779                  * head and tail pages allows drivers to optimize away a check
1780                  * on the head page when they need know if put_page() is needed
1781                  * after get_user_pages().
1782                  */
1783                 __ClearPageReserved(p);
1784                 /*
1785                  * Subtle and very unlikely
1786                  *
1787                  * Gigantic 'page allocators' such as memblock or cma will
1788                  * return a set of pages with each page ref counted.  We need
1789                  * to turn this set of pages into a compound page with tail
1790                  * page ref counts set to zero.  Code such as speculative page
1791                  * cache adding could take a ref on a 'to be' tail page.
1792                  * We need to respect any increased ref count, and only set
1793                  * the ref count to zero if count is currently 1.  If count
1794                  * is not 1, we return an error.  An error return indicates
1795                  * the set of pages can not be converted to a gigantic page.
1796                  * The caller who allocated the pages should then discard the
1797                  * pages using the appropriate free interface.
1798                  *
1799                  * In the case of demote, the ref count will be zero.
1800                  */
1801                 if (!demote) {
1802                         if (!page_ref_freeze(p, 1)) {
1803                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1804                                 goto out_error;
1805                         }
1806                 } else {
1807                         VM_BUG_ON_PAGE(page_count(p), p);
1808                 }
1809                 set_compound_head(p, page);
1810         }
1811         atomic_set(compound_mapcount_ptr(page), -1);
1812         atomic_set(compound_pincount_ptr(page), 0);
1813         return true;
1814
1815 out_error:
1816         /* undo tail page modifications made above */
1817         p = page + 1;
1818         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1819                 clear_compound_head(p);
1820                 set_page_refcounted(p);
1821         }
1822         /* need to clear PG_reserved on remaining tail pages  */
1823         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1824                 __ClearPageReserved(p);
1825         set_compound_order(page, 0);
1826 #ifdef CONFIG_64BIT
1827         page[1].compound_nr = 0;
1828 #endif
1829         __ClearPageHead(page);
1830         return false;
1831 }
1832
1833 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1834 {
1835         return __prep_compound_gigantic_page(page, order, false);
1836 }
1837
1838 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1839                                                         unsigned int order)
1840 {
1841         return __prep_compound_gigantic_page(page, order, true);
1842 }
1843
1844 /*
1845  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1846  * transparent huge pages.  See the PageTransHuge() documentation for more
1847  * details.
1848  */
1849 int PageHuge(struct page *page)
1850 {
1851         if (!PageCompound(page))
1852                 return 0;
1853
1854         page = compound_head(page);
1855         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856 }
1857 EXPORT_SYMBOL_GPL(PageHuge);
1858
1859 /*
1860  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1861  * normal or transparent huge pages.
1862  */
1863 int PageHeadHuge(struct page *page_head)
1864 {
1865         if (!PageHead(page_head))
1866                 return 0;
1867
1868         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1869 }
1870 EXPORT_SYMBOL_GPL(PageHeadHuge);
1871
1872 /*
1873  * Find and lock address space (mapping) in write mode.
1874  *
1875  * Upon entry, the page is locked which means that page_mapping() is
1876  * stable.  Due to locking order, we can only trylock_write.  If we can
1877  * not get the lock, simply return NULL to caller.
1878  */
1879 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1880 {
1881         struct address_space *mapping = page_mapping(hpage);
1882
1883         if (!mapping)
1884                 return mapping;
1885
1886         if (i_mmap_trylock_write(mapping))
1887                 return mapping;
1888
1889         return NULL;
1890 }
1891
1892 pgoff_t hugetlb_basepage_index(struct page *page)
1893 {
1894         struct page *page_head = compound_head(page);
1895         pgoff_t index = page_index(page_head);
1896         unsigned long compound_idx;
1897
1898         if (compound_order(page_head) >= MAX_ORDER)
1899                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1900         else
1901                 compound_idx = page - page_head;
1902
1903         return (index << compound_order(page_head)) + compound_idx;
1904 }
1905
1906 static struct page *alloc_buddy_huge_page(struct hstate *h,
1907                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1908                 nodemask_t *node_alloc_noretry)
1909 {
1910         int order = huge_page_order(h);
1911         struct page *page;
1912         bool alloc_try_hard = true;
1913
1914         /*
1915          * By default we always try hard to allocate the page with
1916          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1917          * a loop (to adjust global huge page counts) and previous allocation
1918          * failed, do not continue to try hard on the same node.  Use the
1919          * node_alloc_noretry bitmap to manage this state information.
1920          */
1921         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1922                 alloc_try_hard = false;
1923         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1924         if (alloc_try_hard)
1925                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1926         if (nid == NUMA_NO_NODE)
1927                 nid = numa_mem_id();
1928         page = __alloc_pages(gfp_mask, order, nid, nmask);
1929         if (page)
1930                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1931         else
1932                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1933
1934         /*
1935          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1936          * indicates an overall state change.  Clear bit so that we resume
1937          * normal 'try hard' allocations.
1938          */
1939         if (node_alloc_noretry && page && !alloc_try_hard)
1940                 node_clear(nid, *node_alloc_noretry);
1941
1942         /*
1943          * If we tried hard to get a page but failed, set bit so that
1944          * subsequent attempts will not try as hard until there is an
1945          * overall state change.
1946          */
1947         if (node_alloc_noretry && !page && alloc_try_hard)
1948                 node_set(nid, *node_alloc_noretry);
1949
1950         return page;
1951 }
1952
1953 /*
1954  * Common helper to allocate a fresh hugetlb page. All specific allocators
1955  * should use this function to get new hugetlb pages
1956  */
1957 static struct page *alloc_fresh_huge_page(struct hstate *h,
1958                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1959                 nodemask_t *node_alloc_noretry)
1960 {
1961         struct page *page;
1962         bool retry = false;
1963
1964 retry:
1965         if (hstate_is_gigantic(h))
1966                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1967         else
1968                 page = alloc_buddy_huge_page(h, gfp_mask,
1969                                 nid, nmask, node_alloc_noretry);
1970         if (!page)
1971                 return NULL;
1972
1973         if (hstate_is_gigantic(h)) {
1974                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1975                         /*
1976                          * Rare failure to convert pages to compound page.
1977                          * Free pages and try again - ONCE!
1978                          */
1979                         free_gigantic_page(page, huge_page_order(h));
1980                         if (!retry) {
1981                                 retry = true;
1982                                 goto retry;
1983                         }
1984                         return NULL;
1985                 }
1986         }
1987         prep_new_huge_page(h, page, page_to_nid(page));
1988
1989         return page;
1990 }
1991
1992 /*
1993  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1994  * manner.
1995  */
1996 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1997                                 nodemask_t *node_alloc_noretry)
1998 {
1999         struct page *page;
2000         int nr_nodes, node;
2001         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2002
2003         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2004                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2005                                                 node_alloc_noretry);
2006                 if (page)
2007                         break;
2008         }
2009
2010         if (!page)
2011                 return 0;
2012
2013         put_page(page); /* free it into the hugepage allocator */
2014
2015         return 1;
2016 }
2017
2018 /*
2019  * Remove huge page from pool from next node to free.  Attempt to keep
2020  * persistent huge pages more or less balanced over allowed nodes.
2021  * This routine only 'removes' the hugetlb page.  The caller must make
2022  * an additional call to free the page to low level allocators.
2023  * Called with hugetlb_lock locked.
2024  */
2025 static struct page *remove_pool_huge_page(struct hstate *h,
2026                                                 nodemask_t *nodes_allowed,
2027                                                  bool acct_surplus)
2028 {
2029         int nr_nodes, node;
2030         struct page *page = NULL;
2031
2032         lockdep_assert_held(&hugetlb_lock);
2033         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2034                 /*
2035                  * If we're returning unused surplus pages, only examine
2036                  * nodes with surplus pages.
2037                  */
2038                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2039                     !list_empty(&h->hugepage_freelists[node])) {
2040                         page = list_entry(h->hugepage_freelists[node].next,
2041                                           struct page, lru);
2042                         remove_hugetlb_page(h, page, acct_surplus);
2043                         break;
2044                 }
2045         }
2046
2047         return page;
2048 }
2049
2050 /*
2051  * Dissolve a given free hugepage into free buddy pages. This function does
2052  * nothing for in-use hugepages and non-hugepages.
2053  * This function returns values like below:
2054  *
2055  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2056  *           when the system is under memory pressure and the feature of
2057  *           freeing unused vmemmap pages associated with each hugetlb page
2058  *           is enabled.
2059  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2060  *           (allocated or reserved.)
2061  *       0:  successfully dissolved free hugepages or the page is not a
2062  *           hugepage (considered as already dissolved)
2063  */
2064 int dissolve_free_huge_page(struct page *page)
2065 {
2066         int rc = -EBUSY;
2067
2068 retry:
2069         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2070         if (!PageHuge(page))
2071                 return 0;
2072
2073         spin_lock_irq(&hugetlb_lock);
2074         if (!PageHuge(page)) {
2075                 rc = 0;
2076                 goto out;
2077         }
2078
2079         if (!page_count(page)) {
2080                 struct page *head = compound_head(page);
2081                 struct hstate *h = page_hstate(head);
2082                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2083                         goto out;
2084
2085                 /*
2086                  * We should make sure that the page is already on the free list
2087                  * when it is dissolved.
2088                  */
2089                 if (unlikely(!HPageFreed(head))) {
2090                         spin_unlock_irq(&hugetlb_lock);
2091                         cond_resched();
2092
2093                         /*
2094                          * Theoretically, we should return -EBUSY when we
2095                          * encounter this race. In fact, we have a chance
2096                          * to successfully dissolve the page if we do a
2097                          * retry. Because the race window is quite small.
2098                          * If we seize this opportunity, it is an optimization
2099                          * for increasing the success rate of dissolving page.
2100                          */
2101                         goto retry;
2102                 }
2103
2104                 remove_hugetlb_page(h, head, false);
2105                 h->max_huge_pages--;
2106                 spin_unlock_irq(&hugetlb_lock);
2107
2108                 /*
2109                  * Normally update_and_free_page will allocate required vmemmmap
2110                  * before freeing the page.  update_and_free_page will fail to
2111                  * free the page if it can not allocate required vmemmap.  We
2112                  * need to adjust max_huge_pages if the page is not freed.
2113                  * Attempt to allocate vmemmmap here so that we can take
2114                  * appropriate action on failure.
2115                  */
2116                 rc = hugetlb_vmemmap_alloc(h, head);
2117                 if (!rc) {
2118                         /*
2119                          * Move PageHWPoison flag from head page to the raw
2120                          * error page, which makes any subpages rather than
2121                          * the error page reusable.
2122                          */
2123                         if (PageHWPoison(head) && page != head) {
2124                                 SetPageHWPoison(page);
2125                                 ClearPageHWPoison(head);
2126                         }
2127                         update_and_free_page(h, head, false);
2128                 } else {
2129                         spin_lock_irq(&hugetlb_lock);
2130                         add_hugetlb_page(h, head, false);
2131                         h->max_huge_pages++;
2132                         spin_unlock_irq(&hugetlb_lock);
2133                 }
2134
2135                 return rc;
2136         }
2137 out:
2138         spin_unlock_irq(&hugetlb_lock);
2139         return rc;
2140 }
2141
2142 /*
2143  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2144  * make specified memory blocks removable from the system.
2145  * Note that this will dissolve a free gigantic hugepage completely, if any
2146  * part of it lies within the given range.
2147  * Also note that if dissolve_free_huge_page() returns with an error, all
2148  * free hugepages that were dissolved before that error are lost.
2149  */
2150 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2151 {
2152         unsigned long pfn;
2153         struct page *page;
2154         int rc = 0;
2155
2156         if (!hugepages_supported())
2157                 return rc;
2158
2159         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2160                 page = pfn_to_page(pfn);
2161                 rc = dissolve_free_huge_page(page);
2162                 if (rc)
2163                         break;
2164         }
2165
2166         return rc;
2167 }
2168
2169 /*
2170  * Allocates a fresh surplus page from the page allocator.
2171  */
2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173                 int nid, nodemask_t *nmask, bool zero_ref)
2174 {
2175         struct page *page = NULL;
2176         bool retry = false;
2177
2178         if (hstate_is_gigantic(h))
2179                 return NULL;
2180
2181         spin_lock_irq(&hugetlb_lock);
2182         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183                 goto out_unlock;
2184         spin_unlock_irq(&hugetlb_lock);
2185
2186 retry:
2187         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2188         if (!page)
2189                 return NULL;
2190
2191         spin_lock_irq(&hugetlb_lock);
2192         /*
2193          * We could have raced with the pool size change.
2194          * Double check that and simply deallocate the new page
2195          * if we would end up overcommiting the surpluses. Abuse
2196          * temporary page to workaround the nasty free_huge_page
2197          * codeflow
2198          */
2199         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200                 SetHPageTemporary(page);
2201                 spin_unlock_irq(&hugetlb_lock);
2202                 put_page(page);
2203                 return NULL;
2204         }
2205
2206         if (zero_ref) {
2207                 /*
2208                  * Caller requires a page with zero ref count.
2209                  * We will drop ref count here.  If someone else is holding
2210                  * a ref, the page will be freed when they drop it.  Abuse
2211                  * temporary page flag to accomplish this.
2212                  */
2213                 SetHPageTemporary(page);
2214                 if (!put_page_testzero(page)) {
2215                         /*
2216                          * Unexpected inflated ref count on freshly allocated
2217                          * huge.  Retry once.
2218                          */
2219                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220                         spin_unlock_irq(&hugetlb_lock);
2221                         if (retry)
2222                                 return NULL;
2223
2224                         retry = true;
2225                         goto retry;
2226                 }
2227                 ClearHPageTemporary(page);
2228         }
2229
2230         h->surplus_huge_pages++;
2231         h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
2233 out_unlock:
2234         spin_unlock_irq(&hugetlb_lock);
2235
2236         return page;
2237 }
2238
2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240                                      int nid, nodemask_t *nmask)
2241 {
2242         struct page *page;
2243
2244         if (hstate_is_gigantic(h))
2245                 return NULL;
2246
2247         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2248         if (!page)
2249                 return NULL;
2250
2251         /*
2252          * We do not account these pages as surplus because they are only
2253          * temporary and will be released properly on the last reference
2254          */
2255         SetHPageTemporary(page);
2256
2257         return page;
2258 }
2259
2260 /*
2261  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262  */
2263 static
2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265                 struct vm_area_struct *vma, unsigned long addr)
2266 {
2267         struct page *page = NULL;
2268         struct mempolicy *mpol;
2269         gfp_t gfp_mask = htlb_alloc_mask(h);
2270         int nid;
2271         nodemask_t *nodemask;
2272
2273         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274         if (mpol_is_preferred_many(mpol)) {
2275                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279
2280                 /* Fallback to all nodes if page==NULL */
2281                 nodemask = NULL;
2282         }
2283
2284         if (!page)
2285                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286         mpol_cond_put(mpol);
2287         return page;
2288 }
2289
2290 /* page migration callback function */
2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292                 nodemask_t *nmask, gfp_t gfp_mask)
2293 {
2294         spin_lock_irq(&hugetlb_lock);
2295         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2296                 struct page *page;
2297
2298                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299                 if (page) {
2300                         spin_unlock_irq(&hugetlb_lock);
2301                         return page;
2302                 }
2303         }
2304         spin_unlock_irq(&hugetlb_lock);
2305
2306         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2307 }
2308
2309 /* mempolicy aware migration callback */
2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311                 unsigned long address)
2312 {
2313         struct mempolicy *mpol;
2314         nodemask_t *nodemask;
2315         struct page *page;
2316         gfp_t gfp_mask;
2317         int node;
2318
2319         gfp_mask = htlb_alloc_mask(h);
2320         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322         mpol_cond_put(mpol);
2323
2324         return page;
2325 }
2326
2327 /*
2328  * Increase the hugetlb pool such that it can accommodate a reservation
2329  * of size 'delta'.
2330  */
2331 static int gather_surplus_pages(struct hstate *h, long delta)
2332         __must_hold(&hugetlb_lock)
2333 {
2334         struct list_head surplus_list;
2335         struct page *page, *tmp;
2336         int ret;
2337         long i;
2338         long needed, allocated;
2339         bool alloc_ok = true;
2340
2341         lockdep_assert_held(&hugetlb_lock);
2342         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343         if (needed <= 0) {
2344                 h->resv_huge_pages += delta;
2345                 return 0;
2346         }
2347
2348         allocated = 0;
2349         INIT_LIST_HEAD(&surplus_list);
2350
2351         ret = -ENOMEM;
2352 retry:
2353         spin_unlock_irq(&hugetlb_lock);
2354         for (i = 0; i < needed; i++) {
2355                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356                                 NUMA_NO_NODE, NULL, true);
2357                 if (!page) {
2358                         alloc_ok = false;
2359                         break;
2360                 }
2361                 list_add(&page->lru, &surplus_list);
2362                 cond_resched();
2363         }
2364         allocated += i;
2365
2366         /*
2367          * After retaking hugetlb_lock, we need to recalculate 'needed'
2368          * because either resv_huge_pages or free_huge_pages may have changed.
2369          */
2370         spin_lock_irq(&hugetlb_lock);
2371         needed = (h->resv_huge_pages + delta) -
2372                         (h->free_huge_pages + allocated);
2373         if (needed > 0) {
2374                 if (alloc_ok)
2375                         goto retry;
2376                 /*
2377                  * We were not able to allocate enough pages to
2378                  * satisfy the entire reservation so we free what
2379                  * we've allocated so far.
2380                  */
2381                 goto free;
2382         }
2383         /*
2384          * The surplus_list now contains _at_least_ the number of extra pages
2385          * needed to accommodate the reservation.  Add the appropriate number
2386          * of pages to the hugetlb pool and free the extras back to the buddy
2387          * allocator.  Commit the entire reservation here to prevent another
2388          * process from stealing the pages as they are added to the pool but
2389          * before they are reserved.
2390          */
2391         needed += allocated;
2392         h->resv_huge_pages += delta;
2393         ret = 0;
2394
2395         /* Free the needed pages to the hugetlb pool */
2396         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2397                 if ((--needed) < 0)
2398                         break;
2399                 /* Add the page to the hugetlb allocator */
2400                 enqueue_huge_page(h, page);
2401         }
2402 free:
2403         spin_unlock_irq(&hugetlb_lock);
2404
2405         /*
2406          * Free unnecessary surplus pages to the buddy allocator.
2407          * Pages have no ref count, call free_huge_page directly.
2408          */
2409         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410                 free_huge_page(page);
2411         spin_lock_irq(&hugetlb_lock);
2412
2413         return ret;
2414 }
2415
2416 /*
2417  * This routine has two main purposes:
2418  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2420  *    to the associated reservation map.
2421  * 2) Free any unused surplus pages that may have been allocated to satisfy
2422  *    the reservation.  As many as unused_resv_pages may be freed.
2423  */
2424 static void return_unused_surplus_pages(struct hstate *h,
2425                                         unsigned long unused_resv_pages)
2426 {
2427         unsigned long nr_pages;
2428         struct page *page;
2429         LIST_HEAD(page_list);
2430
2431         lockdep_assert_held(&hugetlb_lock);
2432         /* Uncommit the reservation */
2433         h->resv_huge_pages -= unused_resv_pages;
2434
2435         /* Cannot return gigantic pages currently */
2436         if (hstate_is_gigantic(h))
2437                 goto out;
2438
2439         /*
2440          * Part (or even all) of the reservation could have been backed
2441          * by pre-allocated pages. Only free surplus pages.
2442          */
2443         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2444
2445         /*
2446          * We want to release as many surplus pages as possible, spread
2447          * evenly across all nodes with memory. Iterate across these nodes
2448          * until we can no longer free unreserved surplus pages. This occurs
2449          * when the nodes with surplus pages have no free pages.
2450          * remove_pool_huge_page() will balance the freed pages across the
2451          * on-line nodes with memory and will handle the hstate accounting.
2452          */
2453         while (nr_pages--) {
2454                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455                 if (!page)
2456                         goto out;
2457
2458                 list_add(&page->lru, &page_list);
2459         }
2460
2461 out:
2462         spin_unlock_irq(&hugetlb_lock);
2463         update_and_free_pages_bulk(h, &page_list);
2464         spin_lock_irq(&hugetlb_lock);
2465 }
2466
2467
2468 /*
2469  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470  * are used by the huge page allocation routines to manage reservations.
2471  *
2472  * vma_needs_reservation is called to determine if the huge page at addr
2473  * within the vma has an associated reservation.  If a reservation is
2474  * needed, the value 1 is returned.  The caller is then responsible for
2475  * managing the global reservation and subpool usage counts.  After
2476  * the huge page has been allocated, vma_commit_reservation is called
2477  * to add the page to the reservation map.  If the page allocation fails,
2478  * the reservation must be ended instead of committed.  vma_end_reservation
2479  * is called in such cases.
2480  *
2481  * In the normal case, vma_commit_reservation returns the same value
2482  * as the preceding vma_needs_reservation call.  The only time this
2483  * is not the case is if a reserve map was changed between calls.  It
2484  * is the responsibility of the caller to notice the difference and
2485  * take appropriate action.
2486  *
2487  * vma_add_reservation is used in error paths where a reservation must
2488  * be restored when a newly allocated huge page must be freed.  It is
2489  * to be called after calling vma_needs_reservation to determine if a
2490  * reservation exists.
2491  *
2492  * vma_del_reservation is used in error paths where an entry in the reserve
2493  * map was created during huge page allocation and must be removed.  It is to
2494  * be called after calling vma_needs_reservation to determine if a reservation
2495  * exists.
2496  */
2497 enum vma_resv_mode {
2498         VMA_NEEDS_RESV,
2499         VMA_COMMIT_RESV,
2500         VMA_END_RESV,
2501         VMA_ADD_RESV,
2502         VMA_DEL_RESV,
2503 };
2504 static long __vma_reservation_common(struct hstate *h,
2505                                 struct vm_area_struct *vma, unsigned long addr,
2506                                 enum vma_resv_mode mode)
2507 {
2508         struct resv_map *resv;
2509         pgoff_t idx;
2510         long ret;
2511         long dummy_out_regions_needed;
2512
2513         resv = vma_resv_map(vma);
2514         if (!resv)
2515                 return 1;
2516
2517         idx = vma_hugecache_offset(h, vma, addr);
2518         switch (mode) {
2519         case VMA_NEEDS_RESV:
2520                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521                 /* We assume that vma_reservation_* routines always operate on
2522                  * 1 page, and that adding to resv map a 1 page entry can only
2523                  * ever require 1 region.
2524                  */
2525                 VM_BUG_ON(dummy_out_regions_needed != 1);
2526                 break;
2527         case VMA_COMMIT_RESV:
2528                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529                 /* region_add calls of range 1 should never fail. */
2530                 VM_BUG_ON(ret < 0);
2531                 break;
2532         case VMA_END_RESV:
2533                 region_abort(resv, idx, idx + 1, 1);
2534                 ret = 0;
2535                 break;
2536         case VMA_ADD_RESV:
2537                 if (vma->vm_flags & VM_MAYSHARE) {
2538                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539                         /* region_add calls of range 1 should never fail. */
2540                         VM_BUG_ON(ret < 0);
2541                 } else {
2542                         region_abort(resv, idx, idx + 1, 1);
2543                         ret = region_del(resv, idx, idx + 1);
2544                 }
2545                 break;
2546         case VMA_DEL_RESV:
2547                 if (vma->vm_flags & VM_MAYSHARE) {
2548                         region_abort(resv, idx, idx + 1, 1);
2549                         ret = region_del(resv, idx, idx + 1);
2550                 } else {
2551                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552                         /* region_add calls of range 1 should never fail. */
2553                         VM_BUG_ON(ret < 0);
2554                 }
2555                 break;
2556         default:
2557                 BUG();
2558         }
2559
2560         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2561                 return ret;
2562         /*
2563          * We know private mapping must have HPAGE_RESV_OWNER set.
2564          *
2565          * In most cases, reserves always exist for private mappings.
2566          * However, a file associated with mapping could have been
2567          * hole punched or truncated after reserves were consumed.
2568          * As subsequent fault on such a range will not use reserves.
2569          * Subtle - The reserve map for private mappings has the
2570          * opposite meaning than that of shared mappings.  If NO
2571          * entry is in the reserve map, it means a reservation exists.
2572          * If an entry exists in the reserve map, it means the
2573          * reservation has already been consumed.  As a result, the
2574          * return value of this routine is the opposite of the
2575          * value returned from reserve map manipulation routines above.
2576          */
2577         if (ret > 0)
2578                 return 0;
2579         if (ret == 0)
2580                 return 1;
2581         return ret;
2582 }
2583
2584 static long vma_needs_reservation(struct hstate *h,
2585                         struct vm_area_struct *vma, unsigned long addr)
2586 {
2587         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2588 }
2589
2590 static long vma_commit_reservation(struct hstate *h,
2591                         struct vm_area_struct *vma, unsigned long addr)
2592 {
2593         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594 }
2595
2596 static void vma_end_reservation(struct hstate *h,
2597                         struct vm_area_struct *vma, unsigned long addr)
2598 {
2599         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2600 }
2601
2602 static long vma_add_reservation(struct hstate *h,
2603                         struct vm_area_struct *vma, unsigned long addr)
2604 {
2605         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606 }
2607
2608 static long vma_del_reservation(struct hstate *h,
2609                         struct vm_area_struct *vma, unsigned long addr)
2610 {
2611         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612 }
2613
2614 /*
2615  * This routine is called to restore reservation information on error paths.
2616  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617  * the hugetlb mutex should remain held when calling this routine.
2618  *
2619  * It handles two specific cases:
2620  * 1) A reservation was in place and the page consumed the reservation.
2621  *    HPageRestoreReserve is set in the page.
2622  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623  *    not set.  However, alloc_huge_page always updates the reserve map.
2624  *
2625  * In case 1, free_huge_page later in the error path will increment the
2626  * global reserve count.  But, free_huge_page does not have enough context
2627  * to adjust the reservation map.  This case deals primarily with private
2628  * mappings.  Adjust the reserve map here to be consistent with global
2629  * reserve count adjustments to be made by free_huge_page.  Make sure the
2630  * reserve map indicates there is a reservation present.
2631  *
2632  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633  */
2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635                         unsigned long address, struct page *page)
2636 {
2637         long rc = vma_needs_reservation(h, vma, address);
2638
2639         if (HPageRestoreReserve(page)) {
2640                 if (unlikely(rc < 0))
2641                         /*
2642                          * Rare out of memory condition in reserve map
2643                          * manipulation.  Clear HPageRestoreReserve so that
2644                          * global reserve count will not be incremented
2645                          * by free_huge_page.  This will make it appear
2646                          * as though the reservation for this page was
2647                          * consumed.  This may prevent the task from
2648                          * faulting in the page at a later time.  This
2649                          * is better than inconsistent global huge page
2650                          * accounting of reserve counts.
2651                          */
2652                         ClearHPageRestoreReserve(page);
2653                 else if (rc)
2654                         (void)vma_add_reservation(h, vma, address);
2655                 else
2656                         vma_end_reservation(h, vma, address);
2657         } else {
2658                 if (!rc) {
2659                         /*
2660                          * This indicates there is an entry in the reserve map
2661                          * not added by alloc_huge_page.  We know it was added
2662                          * before the alloc_huge_page call, otherwise
2663                          * HPageRestoreReserve would be set on the page.
2664                          * Remove the entry so that a subsequent allocation
2665                          * does not consume a reservation.
2666                          */
2667                         rc = vma_del_reservation(h, vma, address);
2668                         if (rc < 0)
2669                                 /*
2670                                  * VERY rare out of memory condition.  Since
2671                                  * we can not delete the entry, set
2672                                  * HPageRestoreReserve so that the reserve
2673                                  * count will be incremented when the page
2674                                  * is freed.  This reserve will be consumed
2675                                  * on a subsequent allocation.
2676                                  */
2677                                 SetHPageRestoreReserve(page);
2678                 } else if (rc < 0) {
2679                         /*
2680                          * Rare out of memory condition from
2681                          * vma_needs_reservation call.  Memory allocation is
2682                          * only attempted if a new entry is needed.  Therefore,
2683                          * this implies there is not an entry in the
2684                          * reserve map.
2685                          *
2686                          * For shared mappings, no entry in the map indicates
2687                          * no reservation.  We are done.
2688                          */
2689                         if (!(vma->vm_flags & VM_MAYSHARE))
2690                                 /*
2691                                  * For private mappings, no entry indicates
2692                                  * a reservation is present.  Since we can
2693                                  * not add an entry, set SetHPageRestoreReserve
2694                                  * on the page so reserve count will be
2695                                  * incremented when freed.  This reserve will
2696                                  * be consumed on a subsequent allocation.
2697                                  */
2698                                 SetHPageRestoreReserve(page);
2699                 } else
2700                         /*
2701                          * No reservation present, do nothing
2702                          */
2703                          vma_end_reservation(h, vma, address);
2704         }
2705 }
2706
2707 /*
2708  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709  * @h: struct hstate old page belongs to
2710  * @old_page: Old page to dissolve
2711  * @list: List to isolate the page in case we need to
2712  * Returns 0 on success, otherwise negated error.
2713  */
2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715                                         struct list_head *list)
2716 {
2717         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718         int nid = page_to_nid(old_page);
2719         bool alloc_retry = false;
2720         struct page *new_page;
2721         int ret = 0;
2722
2723         /*
2724          * Before dissolving the page, we need to allocate a new one for the
2725          * pool to remain stable.  Here, we allocate the page and 'prep' it
2726          * by doing everything but actually updating counters and adding to
2727          * the pool.  This simplifies and let us do most of the processing
2728          * under the lock.
2729          */
2730 alloc_retry:
2731         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732         if (!new_page)
2733                 return -ENOMEM;
2734         /*
2735          * If all goes well, this page will be directly added to the free
2736          * list in the pool.  For this the ref count needs to be zero.
2737          * Attempt to drop now, and retry once if needed.  It is VERY
2738          * unlikely there is another ref on the page.
2739          *
2740          * If someone else has a reference to the page, it will be freed
2741          * when they drop their ref.  Abuse temporary page flag to accomplish
2742          * this.  Retry once if there is an inflated ref count.
2743          */
2744         SetHPageTemporary(new_page);
2745         if (!put_page_testzero(new_page)) {
2746                 if (alloc_retry)
2747                         return -EBUSY;
2748
2749                 alloc_retry = true;
2750                 goto alloc_retry;
2751         }
2752         ClearHPageTemporary(new_page);
2753
2754         __prep_new_huge_page(h, new_page);
2755
2756 retry:
2757         spin_lock_irq(&hugetlb_lock);
2758         if (!PageHuge(old_page)) {
2759                 /*
2760                  * Freed from under us. Drop new_page too.
2761                  */
2762                 goto free_new;
2763         } else if (page_count(old_page)) {
2764                 /*
2765                  * Someone has grabbed the page, try to isolate it here.
2766                  * Fail with -EBUSY if not possible.
2767                  */
2768                 spin_unlock_irq(&hugetlb_lock);
2769                 if (!isolate_huge_page(old_page, list))
2770                         ret = -EBUSY;
2771                 spin_lock_irq(&hugetlb_lock);
2772                 goto free_new;
2773         } else if (!HPageFreed(old_page)) {
2774                 /*
2775                  * Page's refcount is 0 but it has not been enqueued in the
2776                  * freelist yet. Race window is small, so we can succeed here if
2777                  * we retry.
2778                  */
2779                 spin_unlock_irq(&hugetlb_lock);
2780                 cond_resched();
2781                 goto retry;
2782         } else {
2783                 /*
2784                  * Ok, old_page is still a genuine free hugepage. Remove it from
2785                  * the freelist and decrease the counters. These will be
2786                  * incremented again when calling __prep_account_new_huge_page()
2787                  * and enqueue_huge_page() for new_page. The counters will remain
2788                  * stable since this happens under the lock.
2789                  */
2790                 remove_hugetlb_page(h, old_page, false);
2791
2792                 /*
2793                  * Ref count on new page is already zero as it was dropped
2794                  * earlier.  It can be directly added to the pool free list.
2795                  */
2796                 __prep_account_new_huge_page(h, nid);
2797                 enqueue_huge_page(h, new_page);
2798
2799                 /*
2800                  * Pages have been replaced, we can safely free the old one.
2801                  */
2802                 spin_unlock_irq(&hugetlb_lock);
2803                 update_and_free_page(h, old_page, false);
2804         }
2805
2806         return ret;
2807
2808 free_new:
2809         spin_unlock_irq(&hugetlb_lock);
2810         /* Page has a zero ref count, but needs a ref to be freed */
2811         set_page_refcounted(new_page);
2812         update_and_free_page(h, new_page, false);
2813
2814         return ret;
2815 }
2816
2817 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2818 {
2819         struct hstate *h;
2820         struct page *head;
2821         int ret = -EBUSY;
2822
2823         /*
2824          * The page might have been dissolved from under our feet, so make sure
2825          * to carefully check the state under the lock.
2826          * Return success when racing as if we dissolved the page ourselves.
2827          */
2828         spin_lock_irq(&hugetlb_lock);
2829         if (PageHuge(page)) {
2830                 head = compound_head(page);
2831                 h = page_hstate(head);
2832         } else {
2833                 spin_unlock_irq(&hugetlb_lock);
2834                 return 0;
2835         }
2836         spin_unlock_irq(&hugetlb_lock);
2837
2838         /*
2839          * Fence off gigantic pages as there is a cyclic dependency between
2840          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2841          * of bailing out right away without further retrying.
2842          */
2843         if (hstate_is_gigantic(h))
2844                 return -ENOMEM;
2845
2846         if (page_count(head) && isolate_huge_page(head, list))
2847                 ret = 0;
2848         else if (!page_count(head))
2849                 ret = alloc_and_dissolve_huge_page(h, head, list);
2850
2851         return ret;
2852 }
2853
2854 struct page *alloc_huge_page(struct vm_area_struct *vma,
2855                                     unsigned long addr, int avoid_reserve)
2856 {
2857         struct hugepage_subpool *spool = subpool_vma(vma);
2858         struct hstate *h = hstate_vma(vma);
2859         struct page *page;
2860         long map_chg, map_commit;
2861         long gbl_chg;
2862         int ret, idx;
2863         struct hugetlb_cgroup *h_cg;
2864         bool deferred_reserve;
2865
2866         idx = hstate_index(h);
2867         /*
2868          * Examine the region/reserve map to determine if the process
2869          * has a reservation for the page to be allocated.  A return
2870          * code of zero indicates a reservation exists (no change).
2871          */
2872         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2873         if (map_chg < 0)
2874                 return ERR_PTR(-ENOMEM);
2875
2876         /*
2877          * Processes that did not create the mapping will have no
2878          * reserves as indicated by the region/reserve map. Check
2879          * that the allocation will not exceed the subpool limit.
2880          * Allocations for MAP_NORESERVE mappings also need to be
2881          * checked against any subpool limit.
2882          */
2883         if (map_chg || avoid_reserve) {
2884                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2885                 if (gbl_chg < 0) {
2886                         vma_end_reservation(h, vma, addr);
2887                         return ERR_PTR(-ENOSPC);
2888                 }
2889
2890                 /*
2891                  * Even though there was no reservation in the region/reserve
2892                  * map, there could be reservations associated with the
2893                  * subpool that can be used.  This would be indicated if the
2894                  * return value of hugepage_subpool_get_pages() is zero.
2895                  * However, if avoid_reserve is specified we still avoid even
2896                  * the subpool reservations.
2897                  */
2898                 if (avoid_reserve)
2899                         gbl_chg = 1;
2900         }
2901
2902         /* If this allocation is not consuming a reservation, charge it now.
2903          */
2904         deferred_reserve = map_chg || avoid_reserve;
2905         if (deferred_reserve) {
2906                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2907                         idx, pages_per_huge_page(h), &h_cg);
2908                 if (ret)
2909                         goto out_subpool_put;
2910         }
2911
2912         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2913         if (ret)
2914                 goto out_uncharge_cgroup_reservation;
2915
2916         spin_lock_irq(&hugetlb_lock);
2917         /*
2918          * glb_chg is passed to indicate whether or not a page must be taken
2919          * from the global free pool (global change).  gbl_chg == 0 indicates
2920          * a reservation exists for the allocation.
2921          */
2922         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2923         if (!page) {
2924                 spin_unlock_irq(&hugetlb_lock);
2925                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2926                 if (!page)
2927                         goto out_uncharge_cgroup;
2928                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2929                         SetHPageRestoreReserve(page);
2930                         h->resv_huge_pages--;
2931                 }
2932                 spin_lock_irq(&hugetlb_lock);
2933                 list_add(&page->lru, &h->hugepage_activelist);
2934                 /* Fall through */
2935         }
2936         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937         /* If allocation is not consuming a reservation, also store the
2938          * hugetlb_cgroup pointer on the page.
2939          */
2940         if (deferred_reserve) {
2941                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2942                                                   h_cg, page);
2943         }
2944
2945         spin_unlock_irq(&hugetlb_lock);
2946
2947         hugetlb_set_page_subpool(page, spool);
2948
2949         map_commit = vma_commit_reservation(h, vma, addr);
2950         if (unlikely(map_chg > map_commit)) {
2951                 /*
2952                  * The page was added to the reservation map between
2953                  * vma_needs_reservation and vma_commit_reservation.
2954                  * This indicates a race with hugetlb_reserve_pages.
2955                  * Adjust for the subpool count incremented above AND
2956                  * in hugetlb_reserve_pages for the same page.  Also,
2957                  * the reservation count added in hugetlb_reserve_pages
2958                  * no longer applies.
2959                  */
2960                 long rsv_adjust;
2961
2962                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963                 hugetlb_acct_memory(h, -rsv_adjust);
2964                 if (deferred_reserve)
2965                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966                                         pages_per_huge_page(h), page);
2967         }
2968         return page;
2969
2970 out_uncharge_cgroup:
2971         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972 out_uncharge_cgroup_reservation:
2973         if (deferred_reserve)
2974                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2975                                                     h_cg);
2976 out_subpool_put:
2977         if (map_chg || avoid_reserve)
2978                 hugepage_subpool_put_pages(spool, 1);
2979         vma_end_reservation(h, vma, addr);
2980         return ERR_PTR(-ENOSPC);
2981 }
2982
2983 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2986 {
2987         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2988         int nr_nodes, node;
2989
2990         /* do node specific alloc */
2991         if (nid != NUMA_NO_NODE) {
2992                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2994                 if (!m)
2995                         return 0;
2996                 goto found;
2997         }
2998         /* allocate from next node when distributing huge pages */
2999         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000                 m = memblock_alloc_try_nid_raw(
3001                                 huge_page_size(h), huge_page_size(h),
3002                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3003                 /*
3004                  * Use the beginning of the huge page to store the
3005                  * huge_bootmem_page struct (until gather_bootmem
3006                  * puts them into the mem_map).
3007                  */
3008                 if (!m)
3009                         return 0;
3010                 goto found;
3011         }
3012
3013 found:
3014         /* Put them into a private list first because mem_map is not up yet */
3015         INIT_LIST_HEAD(&m->list);
3016         list_add(&m->list, &huge_boot_pages);
3017         m->hstate = h;
3018         return 1;
3019 }
3020
3021 /*
3022  * Put bootmem huge pages into the standard lists after mem_map is up.
3023  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024  */
3025 static void __init gather_bootmem_prealloc(void)
3026 {
3027         struct huge_bootmem_page *m;
3028
3029         list_for_each_entry(m, &huge_boot_pages, list) {
3030                 struct page *page = virt_to_page(m);
3031                 struct hstate *h = m->hstate;
3032
3033                 VM_BUG_ON(!hstate_is_gigantic(h));
3034                 WARN_ON(page_count(page) != 1);
3035                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036                         WARN_ON(PageReserved(page));
3037                         prep_new_huge_page(h, page, page_to_nid(page));
3038                         put_page(page); /* add to the hugepage allocator */
3039                 } else {
3040                         /* VERY unlikely inflated ref count on a tail page */
3041                         free_gigantic_page(page, huge_page_order(h));
3042                 }
3043
3044                 /*
3045                  * We need to restore the 'stolen' pages to totalram_pages
3046                  * in order to fix confusing memory reports from free(1) and
3047                  * other side-effects, like CommitLimit going negative.
3048                  */
3049                 adjust_managed_page_count(page, pages_per_huge_page(h));
3050                 cond_resched();
3051         }
3052 }
3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3054 {
3055         unsigned long i;
3056         char buf[32];
3057
3058         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059                 if (hstate_is_gigantic(h)) {
3060                         if (!alloc_bootmem_huge_page(h, nid))
3061                                 break;
3062                 } else {
3063                         struct page *page;
3064                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065
3066                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067                                         &node_states[N_MEMORY], NULL);
3068                         if (!page)
3069                                 break;
3070                         put_page(page); /* free it into the hugepage allocator */
3071                 }
3072                 cond_resched();
3073         }
3074         if (i == h->max_huge_pages_node[nid])
3075                 return;
3076
3077         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3079                 h->max_huge_pages_node[nid], buf, nid, i);
3080         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081         h->max_huge_pages_node[nid] = i;
3082 }
3083
3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3085 {
3086         unsigned long i;
3087         nodemask_t *node_alloc_noretry;
3088         bool node_specific_alloc = false;
3089
3090         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3093                 return;
3094         }
3095
3096         /* do node specific alloc */
3097         for_each_online_node(i) {
3098                 if (h->max_huge_pages_node[i] > 0) {
3099                         hugetlb_hstate_alloc_pages_onenode(h, i);
3100                         node_specific_alloc = true;
3101                 }
3102         }
3103
3104         if (node_specific_alloc)
3105                 return;
3106
3107         /* below will do all node balanced alloc */
3108         if (!hstate_is_gigantic(h)) {
3109                 /*
3110                  * Bit mask controlling how hard we retry per-node allocations.
3111                  * Ignore errors as lower level routines can deal with
3112                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3113                  * time, we are likely in bigger trouble.
3114                  */
3115                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3116                                                 GFP_KERNEL);
3117         } else {
3118                 /* allocations done at boot time */
3119                 node_alloc_noretry = NULL;
3120         }
3121
3122         /* bit mask controlling how hard we retry per-node allocations */
3123         if (node_alloc_noretry)
3124                 nodes_clear(*node_alloc_noretry);
3125
3126         for (i = 0; i < h->max_huge_pages; ++i) {
3127                 if (hstate_is_gigantic(h)) {
3128                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3129                                 break;
3130                 } else if (!alloc_pool_huge_page(h,
3131                                          &node_states[N_MEMORY],
3132                                          node_alloc_noretry))
3133                         break;
3134                 cond_resched();
3135         }
3136         if (i < h->max_huge_pages) {
3137                 char buf[32];
3138
3139                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3141                         h->max_huge_pages, buf, i);
3142                 h->max_huge_pages = i;
3143         }
3144         kfree(node_alloc_noretry);
3145 }
3146
3147 static void __init hugetlb_init_hstates(void)
3148 {
3149         struct hstate *h, *h2;
3150
3151         for_each_hstate(h) {
3152                 if (minimum_order > huge_page_order(h))
3153                         minimum_order = huge_page_order(h);
3154
3155                 /* oversize hugepages were init'ed in early boot */
3156                 if (!hstate_is_gigantic(h))
3157                         hugetlb_hstate_alloc_pages(h);
3158
3159                 /*
3160                  * Set demote order for each hstate.  Note that
3161                  * h->demote_order is initially 0.
3162                  * - We can not demote gigantic pages if runtime freeing
3163                  *   is not supported, so skip this.
3164                  * - If CMA allocation is possible, we can not demote
3165                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3166                  */
3167                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168                         continue;
3169                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170                         continue;
3171                 for_each_hstate(h2) {
3172                         if (h2 == h)
3173                                 continue;
3174                         if (h2->order < h->order &&
3175                             h2->order > h->demote_order)
3176                                 h->demote_order = h2->order;
3177                 }
3178         }
3179         VM_BUG_ON(minimum_order == UINT_MAX);
3180 }
3181
3182 static void __init report_hugepages(void)
3183 {
3184         struct hstate *h;
3185
3186         for_each_hstate(h) {
3187                 char buf[32];
3188
3189                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3190                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3191                         buf, h->free_huge_pages);
3192         }
3193 }
3194
3195 #ifdef CONFIG_HIGHMEM
3196 static void try_to_free_low(struct hstate *h, unsigned long count,
3197                                                 nodemask_t *nodes_allowed)
3198 {
3199         int i;
3200         LIST_HEAD(page_list);
3201
3202         lockdep_assert_held(&hugetlb_lock);
3203         if (hstate_is_gigantic(h))
3204                 return;
3205
3206         /*
3207          * Collect pages to be freed on a list, and free after dropping lock
3208          */
3209         for_each_node_mask(i, *nodes_allowed) {
3210                 struct page *page, *next;
3211                 struct list_head *freel = &h->hugepage_freelists[i];
3212                 list_for_each_entry_safe(page, next, freel, lru) {
3213                         if (count >= h->nr_huge_pages)
3214                                 goto out;
3215                         if (PageHighMem(page))
3216                                 continue;
3217                         remove_hugetlb_page(h, page, false);
3218                         list_add(&page->lru, &page_list);
3219                 }
3220         }
3221
3222 out:
3223         spin_unlock_irq(&hugetlb_lock);
3224         update_and_free_pages_bulk(h, &page_list);
3225         spin_lock_irq(&hugetlb_lock);
3226 }
3227 #else
3228 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3229                                                 nodemask_t *nodes_allowed)
3230 {
3231 }
3232 #endif
3233
3234 /*
3235  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3236  * balanced by operating on them in a round-robin fashion.
3237  * Returns 1 if an adjustment was made.
3238  */
3239 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3240                                 int delta)
3241 {
3242         int nr_nodes, node;
3243
3244         lockdep_assert_held(&hugetlb_lock);
3245         VM_BUG_ON(delta != -1 && delta != 1);
3246
3247         if (delta < 0) {
3248                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3249                         if (h->surplus_huge_pages_node[node])
3250                                 goto found;
3251                 }
3252         } else {
3253                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3254                         if (h->surplus_huge_pages_node[node] <
3255                                         h->nr_huge_pages_node[node])
3256                                 goto found;
3257                 }
3258         }
3259         return 0;
3260
3261 found:
3262         h->surplus_huge_pages += delta;
3263         h->surplus_huge_pages_node[node] += delta;
3264         return 1;
3265 }
3266
3267 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3268 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3269                               nodemask_t *nodes_allowed)
3270 {
3271         unsigned long min_count, ret;
3272         struct page *page;
3273         LIST_HEAD(page_list);
3274         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3275
3276         /*
3277          * Bit mask controlling how hard we retry per-node allocations.
3278          * If we can not allocate the bit mask, do not attempt to allocate
3279          * the requested huge pages.
3280          */
3281         if (node_alloc_noretry)
3282                 nodes_clear(*node_alloc_noretry);
3283         else
3284                 return -ENOMEM;
3285
3286         /*
3287          * resize_lock mutex prevents concurrent adjustments to number of
3288          * pages in hstate via the proc/sysfs interfaces.
3289          */
3290         mutex_lock(&h->resize_lock);
3291         flush_free_hpage_work(h);
3292         spin_lock_irq(&hugetlb_lock);
3293
3294         /*
3295          * Check for a node specific request.
3296          * Changing node specific huge page count may require a corresponding
3297          * change to the global count.  In any case, the passed node mask
3298          * (nodes_allowed) will restrict alloc/free to the specified node.
3299          */
3300         if (nid != NUMA_NO_NODE) {
3301                 unsigned long old_count = count;
3302
3303                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3304                 /*
3305                  * User may have specified a large count value which caused the
3306                  * above calculation to overflow.  In this case, they wanted
3307                  * to allocate as many huge pages as possible.  Set count to
3308                  * largest possible value to align with their intention.
3309                  */
3310                 if (count < old_count)
3311                         count = ULONG_MAX;
3312         }
3313
3314         /*
3315          * Gigantic pages runtime allocation depend on the capability for large
3316          * page range allocation.
3317          * If the system does not provide this feature, return an error when
3318          * the user tries to allocate gigantic pages but let the user free the
3319          * boottime allocated gigantic pages.
3320          */
3321         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3322                 if (count > persistent_huge_pages(h)) {
3323                         spin_unlock_irq(&hugetlb_lock);
3324                         mutex_unlock(&h->resize_lock);
3325                         NODEMASK_FREE(node_alloc_noretry);
3326                         return -EINVAL;
3327                 }
3328                 /* Fall through to decrease pool */
3329         }
3330
3331         /*
3332          * Increase the pool size
3333          * First take pages out of surplus state.  Then make up the
3334          * remaining difference by allocating fresh huge pages.
3335          *
3336          * We might race with alloc_surplus_huge_page() here and be unable
3337          * to convert a surplus huge page to a normal huge page. That is
3338          * not critical, though, it just means the overall size of the
3339          * pool might be one hugepage larger than it needs to be, but
3340          * within all the constraints specified by the sysctls.
3341          */
3342         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3343                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3344                         break;
3345         }
3346
3347         while (count > persistent_huge_pages(h)) {
3348                 /*
3349                  * If this allocation races such that we no longer need the
3350                  * page, free_huge_page will handle it by freeing the page
3351                  * and reducing the surplus.
3352                  */
3353                 spin_unlock_irq(&hugetlb_lock);
3354
3355                 /* yield cpu to avoid soft lockup */
3356                 cond_resched();
3357
3358                 ret = alloc_pool_huge_page(h, nodes_allowed,
3359                                                 node_alloc_noretry);
3360                 spin_lock_irq(&hugetlb_lock);
3361                 if (!ret)
3362                         goto out;
3363
3364                 /* Bail for signals. Probably ctrl-c from user */
3365                 if (signal_pending(current))
3366                         goto out;
3367         }
3368
3369         /*
3370          * Decrease the pool size
3371          * First return free pages to the buddy allocator (being careful
3372          * to keep enough around to satisfy reservations).  Then place
3373          * pages into surplus state as needed so the pool will shrink
3374          * to the desired size as pages become free.
3375          *
3376          * By placing pages into the surplus state independent of the
3377          * overcommit value, we are allowing the surplus pool size to
3378          * exceed overcommit. There are few sane options here. Since
3379          * alloc_surplus_huge_page() is checking the global counter,
3380          * though, we'll note that we're not allowed to exceed surplus
3381          * and won't grow the pool anywhere else. Not until one of the
3382          * sysctls are changed, or the surplus pages go out of use.
3383          */
3384         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3385         min_count = max(count, min_count);
3386         try_to_free_low(h, min_count, nodes_allowed);
3387
3388         /*
3389          * Collect pages to be removed on list without dropping lock
3390          */
3391         while (min_count < persistent_huge_pages(h)) {
3392                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3393                 if (!page)
3394                         break;
3395
3396                 list_add(&page->lru, &page_list);
3397         }
3398         /* free the pages after dropping lock */
3399         spin_unlock_irq(&hugetlb_lock);
3400         update_and_free_pages_bulk(h, &page_list);
3401         flush_free_hpage_work(h);
3402         spin_lock_irq(&hugetlb_lock);
3403
3404         while (count < persistent_huge_pages(h)) {
3405                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3406                         break;
3407         }
3408 out:
3409         h->max_huge_pages = persistent_huge_pages(h);
3410         spin_unlock_irq(&hugetlb_lock);
3411         mutex_unlock(&h->resize_lock);
3412
3413         NODEMASK_FREE(node_alloc_noretry);
3414
3415         return 0;
3416 }
3417
3418 static int demote_free_huge_page(struct hstate *h, struct page *page)
3419 {
3420         int i, nid = page_to_nid(page);
3421         struct hstate *target_hstate;
3422         int rc = 0;
3423
3424         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3425
3426         remove_hugetlb_page_for_demote(h, page, false);
3427         spin_unlock_irq(&hugetlb_lock);
3428
3429         rc = hugetlb_vmemmap_alloc(h, page);
3430         if (rc) {
3431                 /* Allocation of vmemmmap failed, we can not demote page */
3432                 spin_lock_irq(&hugetlb_lock);
3433                 set_page_refcounted(page);
3434                 add_hugetlb_page(h, page, false);
3435                 return rc;
3436         }
3437
3438         /*
3439          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3440          * sizes as it will not ref count pages.
3441          */
3442         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3443
3444         /*
3445          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3446          * Without the mutex, pages added to target hstate could be marked
3447          * as surplus.
3448          *
3449          * Note that we already hold h->resize_lock.  To prevent deadlock,
3450          * use the convention of always taking larger size hstate mutex first.
3451          */
3452         mutex_lock(&target_hstate->resize_lock);
3453         for (i = 0; i < pages_per_huge_page(h);
3454                                 i += pages_per_huge_page(target_hstate)) {
3455                 if (hstate_is_gigantic(target_hstate))
3456                         prep_compound_gigantic_page_for_demote(page + i,
3457                                                         target_hstate->order);
3458                 else
3459                         prep_compound_page(page + i, target_hstate->order);
3460                 set_page_private(page + i, 0);
3461                 set_page_refcounted(page + i);
3462                 prep_new_huge_page(target_hstate, page + i, nid);
3463                 put_page(page + i);
3464         }
3465         mutex_unlock(&target_hstate->resize_lock);
3466
3467         spin_lock_irq(&hugetlb_lock);
3468
3469         /*
3470          * Not absolutely necessary, but for consistency update max_huge_pages
3471          * based on pool changes for the demoted page.
3472          */
3473         h->max_huge_pages--;
3474         target_hstate->max_huge_pages += pages_per_huge_page(h);
3475
3476         return rc;
3477 }
3478
3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480         __must_hold(&hugetlb_lock)
3481 {
3482         int nr_nodes, node;
3483         struct page *page;
3484
3485         lockdep_assert_held(&hugetlb_lock);
3486
3487         /* We should never get here if no demote order */
3488         if (!h->demote_order) {
3489                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490                 return -EINVAL;         /* internal error */
3491         }
3492
3493         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495                         if (PageHWPoison(page))
3496                                 continue;
3497
3498                         return demote_free_huge_page(h, page);
3499                 }
3500         }
3501
3502         /*
3503          * Only way to get here is if all pages on free lists are poisoned.
3504          * Return -EBUSY so that caller will not retry.
3505          */
3506         return -EBUSY;
3507 }
3508
3509 #define HSTATE_ATTR_RO(_name) \
3510         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511
3512 #define HSTATE_ATTR_WO(_name) \
3513         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514
3515 #define HSTATE_ATTR(_name) \
3516         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3517
3518 static struct kobject *hugepages_kobj;
3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520
3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522
3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3524 {
3525         int i;
3526
3527         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528                 if (hstate_kobjs[i] == kobj) {
3529                         if (nidp)
3530                                 *nidp = NUMA_NO_NODE;
3531                         return &hstates[i];
3532                 }
3533
3534         return kobj_to_node_hstate(kobj, nidp);
3535 }
3536
3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538                                         struct kobj_attribute *attr, char *buf)
3539 {
3540         struct hstate *h;
3541         unsigned long nr_huge_pages;
3542         int nid;
3543
3544         h = kobj_to_hstate(kobj, &nid);
3545         if (nid == NUMA_NO_NODE)
3546                 nr_huge_pages = h->nr_huge_pages;
3547         else
3548                 nr_huge_pages = h->nr_huge_pages_node[nid];
3549
3550         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3551 }
3552
3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554                                            struct hstate *h, int nid,
3555                                            unsigned long count, size_t len)
3556 {
3557         int err;
3558         nodemask_t nodes_allowed, *n_mask;
3559
3560         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3561                 return -EINVAL;
3562
3563         if (nid == NUMA_NO_NODE) {
3564                 /*
3565                  * global hstate attribute
3566                  */
3567                 if (!(obey_mempolicy &&
3568                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3569                         n_mask = &node_states[N_MEMORY];
3570                 else
3571                         n_mask = &nodes_allowed;
3572         } else {
3573                 /*
3574                  * Node specific request.  count adjustment happens in
3575                  * set_max_huge_pages() after acquiring hugetlb_lock.
3576                  */
3577                 init_nodemask_of_node(&nodes_allowed, nid);
3578                 n_mask = &nodes_allowed;
3579         }
3580
3581         err = set_max_huge_pages(h, count, nid, n_mask);
3582
3583         return err ? err : len;
3584 }
3585
3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587                                          struct kobject *kobj, const char *buf,
3588                                          size_t len)
3589 {
3590         struct hstate *h;
3591         unsigned long count;
3592         int nid;
3593         int err;
3594
3595         err = kstrtoul(buf, 10, &count);
3596         if (err)
3597                 return err;
3598
3599         h = kobj_to_hstate(kobj, &nid);
3600         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3601 }
3602
3603 static ssize_t nr_hugepages_show(struct kobject *kobj,
3604                                        struct kobj_attribute *attr, char *buf)
3605 {
3606         return nr_hugepages_show_common(kobj, attr, buf);
3607 }
3608
3609 static ssize_t nr_hugepages_store(struct kobject *kobj,
3610                struct kobj_attribute *attr, const char *buf, size_t len)
3611 {
3612         return nr_hugepages_store_common(false, kobj, buf, len);
3613 }
3614 HSTATE_ATTR(nr_hugepages);
3615
3616 #ifdef CONFIG_NUMA
3617
3618 /*
3619  * hstate attribute for optionally mempolicy-based constraint on persistent
3620  * huge page alloc/free.
3621  */
3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623                                            struct kobj_attribute *attr,
3624                                            char *buf)
3625 {
3626         return nr_hugepages_show_common(kobj, attr, buf);
3627 }
3628
3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630                struct kobj_attribute *attr, const char *buf, size_t len)
3631 {
3632         return nr_hugepages_store_common(true, kobj, buf, len);
3633 }
3634 HSTATE_ATTR(nr_hugepages_mempolicy);
3635 #endif
3636
3637
3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639                                         struct kobj_attribute *attr, char *buf)
3640 {
3641         struct hstate *h = kobj_to_hstate(kobj, NULL);
3642         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3643 }
3644
3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646                 struct kobj_attribute *attr, const char *buf, size_t count)
3647 {
3648         int err;
3649         unsigned long input;
3650         struct hstate *h = kobj_to_hstate(kobj, NULL);
3651
3652         if (hstate_is_gigantic(h))
3653                 return -EINVAL;
3654
3655         err = kstrtoul(buf, 10, &input);
3656         if (err)
3657                 return err;
3658
3659         spin_lock_irq(&hugetlb_lock);
3660         h->nr_overcommit_huge_pages = input;
3661         spin_unlock_irq(&hugetlb_lock);
3662
3663         return count;
3664 }
3665 HSTATE_ATTR(nr_overcommit_hugepages);
3666
3667 static ssize_t free_hugepages_show(struct kobject *kobj,
3668                                         struct kobj_attribute *attr, char *buf)
3669 {
3670         struct hstate *h;
3671         unsigned long free_huge_pages;
3672         int nid;
3673
3674         h = kobj_to_hstate(kobj, &nid);
3675         if (nid == NUMA_NO_NODE)
3676                 free_huge_pages = h->free_huge_pages;
3677         else
3678                 free_huge_pages = h->free_huge_pages_node[nid];
3679
3680         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3681 }
3682 HSTATE_ATTR_RO(free_hugepages);
3683
3684 static ssize_t resv_hugepages_show(struct kobject *kobj,
3685                                         struct kobj_attribute *attr, char *buf)
3686 {
3687         struct hstate *h = kobj_to_hstate(kobj, NULL);
3688         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3689 }
3690 HSTATE_ATTR_RO(resv_hugepages);
3691
3692 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693                                         struct kobj_attribute *attr, char *buf)
3694 {
3695         struct hstate *h;
3696         unsigned long surplus_huge_pages;
3697         int nid;
3698
3699         h = kobj_to_hstate(kobj, &nid);
3700         if (nid == NUMA_NO_NODE)
3701                 surplus_huge_pages = h->surplus_huge_pages;
3702         else
3703                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704
3705         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3706 }
3707 HSTATE_ATTR_RO(surplus_hugepages);
3708
3709 static ssize_t demote_store(struct kobject *kobj,
3710                struct kobj_attribute *attr, const char *buf, size_t len)
3711 {
3712         unsigned long nr_demote;
3713         unsigned long nr_available;
3714         nodemask_t nodes_allowed, *n_mask;
3715         struct hstate *h;
3716         int err = 0;
3717         int nid;
3718
3719         err = kstrtoul(buf, 10, &nr_demote);
3720         if (err)
3721                 return err;
3722         h = kobj_to_hstate(kobj, &nid);
3723
3724         if (nid != NUMA_NO_NODE) {
3725                 init_nodemask_of_node(&nodes_allowed, nid);
3726                 n_mask = &nodes_allowed;
3727         } else {
3728                 n_mask = &node_states[N_MEMORY];
3729         }
3730
3731         /* Synchronize with other sysfs operations modifying huge pages */
3732         mutex_lock(&h->resize_lock);
3733         spin_lock_irq(&hugetlb_lock);
3734
3735         while (nr_demote) {
3736                 /*
3737                  * Check for available pages to demote each time thorough the
3738                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3739                  */
3740                 if (nid != NUMA_NO_NODE)
3741                         nr_available = h->free_huge_pages_node[nid];
3742                 else
3743                         nr_available = h->free_huge_pages;
3744                 nr_available -= h->resv_huge_pages;
3745                 if (!nr_available)
3746                         break;
3747
3748                 err = demote_pool_huge_page(h, n_mask);
3749                 if (err)
3750                         break;
3751
3752                 nr_demote--;
3753         }
3754
3755         spin_unlock_irq(&hugetlb_lock);
3756         mutex_unlock(&h->resize_lock);
3757
3758         if (err)
3759                 return err;
3760         return len;
3761 }
3762 HSTATE_ATTR_WO(demote);
3763
3764 static ssize_t demote_size_show(struct kobject *kobj,
3765                                         struct kobj_attribute *attr, char *buf)
3766 {
3767         int nid;
3768         struct hstate *h = kobj_to_hstate(kobj, &nid);
3769         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3770
3771         return sysfs_emit(buf, "%lukB\n", demote_size);
3772 }
3773
3774 static ssize_t demote_size_store(struct kobject *kobj,
3775                                         struct kobj_attribute *attr,
3776                                         const char *buf, size_t count)
3777 {
3778         struct hstate *h, *demote_hstate;
3779         unsigned long demote_size;
3780         unsigned int demote_order;
3781         int nid;
3782
3783         demote_size = (unsigned long)memparse(buf, NULL);
3784
3785         demote_hstate = size_to_hstate(demote_size);
3786         if (!demote_hstate)
3787                 return -EINVAL;
3788         demote_order = demote_hstate->order;
3789         if (demote_order < HUGETLB_PAGE_ORDER)
3790                 return -EINVAL;
3791
3792         /* demote order must be smaller than hstate order */
3793         h = kobj_to_hstate(kobj, &nid);
3794         if (demote_order >= h->order)
3795                 return -EINVAL;
3796
3797         /* resize_lock synchronizes access to demote size and writes */
3798         mutex_lock(&h->resize_lock);
3799         h->demote_order = demote_order;
3800         mutex_unlock(&h->resize_lock);
3801
3802         return count;
3803 }
3804 HSTATE_ATTR(demote_size);
3805
3806 static struct attribute *hstate_attrs[] = {
3807         &nr_hugepages_attr.attr,
3808         &nr_overcommit_hugepages_attr.attr,
3809         &free_hugepages_attr.attr,
3810         &resv_hugepages_attr.attr,
3811         &surplus_hugepages_attr.attr,
3812 #ifdef CONFIG_NUMA
3813         &nr_hugepages_mempolicy_attr.attr,
3814 #endif
3815         NULL,
3816 };
3817
3818 static const struct attribute_group hstate_attr_group = {
3819         .attrs = hstate_attrs,
3820 };
3821
3822 static struct attribute *hstate_demote_attrs[] = {
3823         &demote_size_attr.attr,
3824         &demote_attr.attr,
3825         NULL,
3826 };
3827
3828 static const struct attribute_group hstate_demote_attr_group = {
3829         .attrs = hstate_demote_attrs,
3830 };
3831
3832 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3833                                     struct kobject **hstate_kobjs,
3834                                     const struct attribute_group *hstate_attr_group)
3835 {
3836         int retval;
3837         int hi = hstate_index(h);
3838
3839         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3840         if (!hstate_kobjs[hi])
3841                 return -ENOMEM;
3842
3843         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3844         if (retval) {
3845                 kobject_put(hstate_kobjs[hi]);
3846                 hstate_kobjs[hi] = NULL;
3847         }
3848
3849         if (h->demote_order) {
3850                 if (sysfs_create_group(hstate_kobjs[hi],
3851                                         &hstate_demote_attr_group))
3852                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853         }
3854
3855         return retval;
3856 }
3857
3858 static void __init hugetlb_sysfs_init(void)
3859 {
3860         struct hstate *h;
3861         int err;
3862
3863         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3864         if (!hugepages_kobj)
3865                 return;
3866
3867         for_each_hstate(h) {
3868                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3869                                          hstate_kobjs, &hstate_attr_group);
3870                 if (err)
3871                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3872         }
3873 }
3874
3875 #ifdef CONFIG_NUMA
3876
3877 /*
3878  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3879  * with node devices in node_devices[] using a parallel array.  The array
3880  * index of a node device or _hstate == node id.
3881  * This is here to avoid any static dependency of the node device driver, in
3882  * the base kernel, on the hugetlb module.
3883  */
3884 struct node_hstate {
3885         struct kobject          *hugepages_kobj;
3886         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3887 };
3888 static struct node_hstate node_hstates[MAX_NUMNODES];
3889
3890 /*
3891  * A subset of global hstate attributes for node devices
3892  */
3893 static struct attribute *per_node_hstate_attrs[] = {
3894         &nr_hugepages_attr.attr,
3895         &free_hugepages_attr.attr,
3896         &surplus_hugepages_attr.attr,
3897         NULL,
3898 };
3899
3900 static const struct attribute_group per_node_hstate_attr_group = {
3901         .attrs = per_node_hstate_attrs,
3902 };
3903
3904 /*
3905  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3906  * Returns node id via non-NULL nidp.
3907  */
3908 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3909 {
3910         int nid;
3911
3912         for (nid = 0; nid < nr_node_ids; nid++) {
3913                 struct node_hstate *nhs = &node_hstates[nid];
3914                 int i;
3915                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3916                         if (nhs->hstate_kobjs[i] == kobj) {
3917                                 if (nidp)
3918                                         *nidp = nid;
3919                                 return &hstates[i];
3920                         }
3921         }
3922
3923         BUG();
3924         return NULL;
3925 }
3926
3927 /*
3928  * Unregister hstate attributes from a single node device.
3929  * No-op if no hstate attributes attached.
3930  */
3931 static void hugetlb_unregister_node(struct node *node)
3932 {
3933         struct hstate *h;
3934         struct node_hstate *nhs = &node_hstates[node->dev.id];
3935
3936         if (!nhs->hugepages_kobj)
3937                 return;         /* no hstate attributes */
3938
3939         for_each_hstate(h) {
3940                 int idx = hstate_index(h);
3941                 if (nhs->hstate_kobjs[idx]) {
3942                         kobject_put(nhs->hstate_kobjs[idx]);
3943                         nhs->hstate_kobjs[idx] = NULL;
3944                 }
3945         }
3946
3947         kobject_put(nhs->hugepages_kobj);
3948         nhs->hugepages_kobj = NULL;
3949 }
3950
3951
3952 /*
3953  * Register hstate attributes for a single node device.
3954  * No-op if attributes already registered.
3955  */
3956 static void hugetlb_register_node(struct node *node)
3957 {
3958         struct hstate *h;
3959         struct node_hstate *nhs = &node_hstates[node->dev.id];
3960         int err;
3961
3962         if (nhs->hugepages_kobj)
3963                 return;         /* already allocated */
3964
3965         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3966                                                         &node->dev.kobj);
3967         if (!nhs->hugepages_kobj)
3968                 return;
3969
3970         for_each_hstate(h) {
3971                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3972                                                 nhs->hstate_kobjs,
3973                                                 &per_node_hstate_attr_group);
3974                 if (err) {
3975                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3976                                 h->name, node->dev.id);
3977                         hugetlb_unregister_node(node);
3978                         break;
3979                 }
3980         }
3981 }
3982
3983 /*
3984  * hugetlb init time:  register hstate attributes for all registered node
3985  * devices of nodes that have memory.  All on-line nodes should have
3986  * registered their associated device by this time.
3987  */
3988 static void __init hugetlb_register_all_nodes(void)
3989 {
3990         int nid;
3991
3992         for_each_node_state(nid, N_MEMORY) {
3993                 struct node *node = node_devices[nid];
3994                 if (node->dev.id == nid)
3995                         hugetlb_register_node(node);
3996         }
3997
3998         /*
3999          * Let the node device driver know we're here so it can
4000          * [un]register hstate attributes on node hotplug.
4001          */
4002         register_hugetlbfs_with_node(hugetlb_register_node,
4003                                      hugetlb_unregister_node);
4004 }
4005 #else   /* !CONFIG_NUMA */
4006
4007 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4008 {
4009         BUG();
4010         if (nidp)
4011                 *nidp = -1;
4012         return NULL;
4013 }
4014
4015 static void hugetlb_register_all_nodes(void) { }
4016
4017 #endif
4018
4019 static int __init hugetlb_init(void)
4020 {
4021         int i;
4022
4023         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4024                         __NR_HPAGEFLAGS);
4025
4026         if (!hugepages_supported()) {
4027                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4028                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4029                 return 0;
4030         }
4031
4032         /*
4033          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4034          * architectures depend on setup being done here.
4035          */
4036         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4037         if (!parsed_default_hugepagesz) {
4038                 /*
4039                  * If we did not parse a default huge page size, set
4040                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4041                  * number of huge pages for this default size was implicitly
4042                  * specified, set that here as well.
4043                  * Note that the implicit setting will overwrite an explicit
4044                  * setting.  A warning will be printed in this case.
4045                  */
4046                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4047                 if (default_hstate_max_huge_pages) {
4048                         if (default_hstate.max_huge_pages) {
4049                                 char buf[32];
4050
4051                                 string_get_size(huge_page_size(&default_hstate),
4052                                         1, STRING_UNITS_2, buf, 32);
4053                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4054                                         default_hstate.max_huge_pages, buf);
4055                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4056                                         default_hstate_max_huge_pages);
4057                         }
4058                         default_hstate.max_huge_pages =
4059                                 default_hstate_max_huge_pages;
4060
4061                         for_each_online_node(i)
4062                                 default_hstate.max_huge_pages_node[i] =
4063                                         default_hugepages_in_node[i];
4064                 }
4065         }
4066
4067         hugetlb_cma_check();
4068         hugetlb_init_hstates();
4069         gather_bootmem_prealloc();
4070         report_hugepages();
4071
4072         hugetlb_sysfs_init();
4073         hugetlb_register_all_nodes();
4074         hugetlb_cgroup_file_init();
4075
4076 #ifdef CONFIG_SMP
4077         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4078 #else
4079         num_fault_mutexes = 1;
4080 #endif
4081         hugetlb_fault_mutex_table =
4082                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4083                               GFP_KERNEL);
4084         BUG_ON(!hugetlb_fault_mutex_table);
4085
4086         for (i = 0; i < num_fault_mutexes; i++)
4087                 mutex_init(&hugetlb_fault_mutex_table[i]);
4088         return 0;
4089 }
4090 subsys_initcall(hugetlb_init);
4091
4092 /* Overwritten by architectures with more huge page sizes */
4093 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4094 {
4095         return size == HPAGE_SIZE;
4096 }
4097
4098 void __init hugetlb_add_hstate(unsigned int order)
4099 {
4100         struct hstate *h;
4101         unsigned long i;
4102
4103         if (size_to_hstate(PAGE_SIZE << order)) {
4104                 return;
4105         }
4106         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4107         BUG_ON(order == 0);
4108         h = &hstates[hugetlb_max_hstate++];
4109         mutex_init(&h->resize_lock);
4110         h->order = order;
4111         h->mask = ~(huge_page_size(h) - 1);
4112         for (i = 0; i < MAX_NUMNODES; ++i)
4113                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4114         INIT_LIST_HEAD(&h->hugepage_activelist);
4115         h->next_nid_to_alloc = first_memory_node;
4116         h->next_nid_to_free = first_memory_node;
4117         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4118                                         huge_page_size(h)/1024);
4119         hugetlb_vmemmap_init(h);
4120
4121         parsed_hstate = h;
4122 }
4123
4124 bool __init __weak hugetlb_node_alloc_supported(void)
4125 {
4126         return true;
4127 }
4128
4129 static void __init hugepages_clear_pages_in_node(void)
4130 {
4131         if (!hugetlb_max_hstate) {
4132                 default_hstate_max_huge_pages = 0;
4133                 memset(default_hugepages_in_node, 0,
4134                         MAX_NUMNODES * sizeof(unsigned int));
4135         } else {
4136                 parsed_hstate->max_huge_pages = 0;
4137                 memset(parsed_hstate->max_huge_pages_node, 0,
4138                         MAX_NUMNODES * sizeof(unsigned int));
4139         }
4140 }
4141
4142 /*
4143  * hugepages command line processing
4144  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4145  * specification.  If not, ignore the hugepages value.  hugepages can also
4146  * be the first huge page command line  option in which case it implicitly
4147  * specifies the number of huge pages for the default size.
4148  */
4149 static int __init hugepages_setup(char *s)
4150 {
4151         unsigned long *mhp;
4152         static unsigned long *last_mhp;
4153         int node = NUMA_NO_NODE;
4154         int count;
4155         unsigned long tmp;
4156         char *p = s;
4157
4158         if (!parsed_valid_hugepagesz) {
4159                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4160                 parsed_valid_hugepagesz = true;
4161                 return 1;
4162         }
4163
4164         /*
4165          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4166          * yet, so this hugepages= parameter goes to the "default hstate".
4167          * Otherwise, it goes with the previously parsed hugepagesz or
4168          * default_hugepagesz.
4169          */
4170         else if (!hugetlb_max_hstate)
4171                 mhp = &default_hstate_max_huge_pages;
4172         else
4173                 mhp = &parsed_hstate->max_huge_pages;
4174
4175         if (mhp == last_mhp) {
4176                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4177                 return 1;
4178         }
4179
4180         while (*p) {
4181                 count = 0;
4182                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4183                         goto invalid;
4184                 /* Parameter is node format */
4185                 if (p[count] == ':') {
4186                         if (!hugetlb_node_alloc_supported()) {
4187                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4188                                 return 1;
4189                         }
4190                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4191                                 goto invalid;
4192                         node = array_index_nospec(tmp, MAX_NUMNODES);
4193                         p += count + 1;
4194                         /* Parse hugepages */
4195                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4196                                 goto invalid;
4197                         if (!hugetlb_max_hstate)
4198                                 default_hugepages_in_node[node] = tmp;
4199                         else
4200                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4201                         *mhp += tmp;
4202                         /* Go to parse next node*/
4203                         if (p[count] == ',')
4204                                 p += count + 1;
4205                         else
4206                                 break;
4207                 } else {
4208                         if (p != s)
4209                                 goto invalid;
4210                         *mhp = tmp;
4211                         break;
4212                 }
4213         }
4214
4215         /*
4216          * Global state is always initialized later in hugetlb_init.
4217          * But we need to allocate gigantic hstates here early to still
4218          * use the bootmem allocator.
4219          */
4220         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4221                 hugetlb_hstate_alloc_pages(parsed_hstate);
4222
4223         last_mhp = mhp;
4224
4225         return 1;
4226
4227 invalid:
4228         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4229         hugepages_clear_pages_in_node();
4230         return 1;
4231 }
4232 __setup("hugepages=", hugepages_setup);
4233
4234 /*
4235  * hugepagesz command line processing
4236  * A specific huge page size can only be specified once with hugepagesz.
4237  * hugepagesz is followed by hugepages on the command line.  The global
4238  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4239  * hugepagesz argument was valid.
4240  */
4241 static int __init hugepagesz_setup(char *s)
4242 {
4243         unsigned long size;
4244         struct hstate *h;
4245
4246         parsed_valid_hugepagesz = false;
4247         size = (unsigned long)memparse(s, NULL);
4248
4249         if (!arch_hugetlb_valid_size(size)) {
4250                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4251                 return 1;
4252         }
4253
4254         h = size_to_hstate(size);
4255         if (h) {
4256                 /*
4257                  * hstate for this size already exists.  This is normally
4258                  * an error, but is allowed if the existing hstate is the
4259                  * default hstate.  More specifically, it is only allowed if
4260                  * the number of huge pages for the default hstate was not
4261                  * previously specified.
4262                  */
4263                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4264                     default_hstate.max_huge_pages) {
4265                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4266                         return 1;
4267                 }
4268
4269                 /*
4270                  * No need to call hugetlb_add_hstate() as hstate already
4271                  * exists.  But, do set parsed_hstate so that a following
4272                  * hugepages= parameter will be applied to this hstate.
4273                  */
4274                 parsed_hstate = h;
4275                 parsed_valid_hugepagesz = true;
4276                 return 1;
4277         }
4278
4279         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4280         parsed_valid_hugepagesz = true;
4281         return 1;
4282 }
4283 __setup("hugepagesz=", hugepagesz_setup);
4284
4285 /*
4286  * default_hugepagesz command line input
4287  * Only one instance of default_hugepagesz allowed on command line.
4288  */
4289 static int __init default_hugepagesz_setup(char *s)
4290 {
4291         unsigned long size;
4292         int i;
4293
4294         parsed_valid_hugepagesz = false;
4295         if (parsed_default_hugepagesz) {
4296                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4297                 return 1;
4298         }
4299
4300         size = (unsigned long)memparse(s, NULL);
4301
4302         if (!arch_hugetlb_valid_size(size)) {
4303                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4304                 return 1;
4305         }
4306
4307         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4308         parsed_valid_hugepagesz = true;
4309         parsed_default_hugepagesz = true;
4310         default_hstate_idx = hstate_index(size_to_hstate(size));
4311
4312         /*
4313          * The number of default huge pages (for this size) could have been
4314          * specified as the first hugetlb parameter: hugepages=X.  If so,
4315          * then default_hstate_max_huge_pages is set.  If the default huge
4316          * page size is gigantic (>= MAX_ORDER), then the pages must be
4317          * allocated here from bootmem allocator.
4318          */
4319         if (default_hstate_max_huge_pages) {
4320                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4321                 for_each_online_node(i)
4322                         default_hstate.max_huge_pages_node[i] =
4323                                 default_hugepages_in_node[i];
4324                 if (hstate_is_gigantic(&default_hstate))
4325                         hugetlb_hstate_alloc_pages(&default_hstate);
4326                 default_hstate_max_huge_pages = 0;
4327         }
4328
4329         return 1;
4330 }
4331 __setup("default_hugepagesz=", default_hugepagesz_setup);
4332
4333 static unsigned int allowed_mems_nr(struct hstate *h)
4334 {
4335         int node;
4336         unsigned int nr = 0;
4337         nodemask_t *mpol_allowed;
4338         unsigned int *array = h->free_huge_pages_node;
4339         gfp_t gfp_mask = htlb_alloc_mask(h);
4340
4341         mpol_allowed = policy_nodemask_current(gfp_mask);
4342
4343         for_each_node_mask(node, cpuset_current_mems_allowed) {
4344                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4345                         nr += array[node];
4346         }
4347
4348         return nr;
4349 }
4350
4351 #ifdef CONFIG_SYSCTL
4352 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4353                                           void *buffer, size_t *length,
4354                                           loff_t *ppos, unsigned long *out)
4355 {
4356         struct ctl_table dup_table;
4357
4358         /*
4359          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4360          * can duplicate the @table and alter the duplicate of it.
4361          */
4362         dup_table = *table;
4363         dup_table.data = out;
4364
4365         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4366 }
4367
4368 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4369                          struct ctl_table *table, int write,
4370                          void *buffer, size_t *length, loff_t *ppos)
4371 {
4372         struct hstate *h = &default_hstate;
4373         unsigned long tmp = h->max_huge_pages;
4374         int ret;
4375
4376         if (!hugepages_supported())
4377                 return -EOPNOTSUPP;
4378
4379         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4380                                              &tmp);
4381         if (ret)
4382                 goto out;
4383
4384         if (write)
4385                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4386                                                   NUMA_NO_NODE, tmp, *length);
4387 out:
4388         return ret;
4389 }
4390
4391 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4392                           void *buffer, size_t *length, loff_t *ppos)
4393 {
4394
4395         return hugetlb_sysctl_handler_common(false, table, write,
4396                                                         buffer, length, ppos);
4397 }
4398
4399 #ifdef CONFIG_NUMA
4400 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4401                           void *buffer, size_t *length, loff_t *ppos)
4402 {
4403         return hugetlb_sysctl_handler_common(true, table, write,
4404                                                         buffer, length, ppos);
4405 }
4406 #endif /* CONFIG_NUMA */
4407
4408 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4409                 void *buffer, size_t *length, loff_t *ppos)
4410 {
4411         struct hstate *h = &default_hstate;
4412         unsigned long tmp;
4413         int ret;
4414
4415         if (!hugepages_supported())
4416                 return -EOPNOTSUPP;
4417
4418         tmp = h->nr_overcommit_huge_pages;
4419
4420         if (write && hstate_is_gigantic(h))
4421                 return -EINVAL;
4422
4423         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4424                                              &tmp);
4425         if (ret)
4426                 goto out;
4427
4428         if (write) {
4429                 spin_lock_irq(&hugetlb_lock);
4430                 h->nr_overcommit_huge_pages = tmp;
4431                 spin_unlock_irq(&hugetlb_lock);
4432         }
4433 out:
4434         return ret;
4435 }
4436
4437 #endif /* CONFIG_SYSCTL */
4438
4439 void hugetlb_report_meminfo(struct seq_file *m)
4440 {
4441         struct hstate *h;
4442         unsigned long total = 0;
4443
4444         if (!hugepages_supported())
4445                 return;
4446
4447         for_each_hstate(h) {
4448                 unsigned long count = h->nr_huge_pages;
4449
4450                 total += huge_page_size(h) * count;
4451
4452                 if (h == &default_hstate)
4453                         seq_printf(m,
4454                                    "HugePages_Total:   %5lu\n"
4455                                    "HugePages_Free:    %5lu\n"
4456                                    "HugePages_Rsvd:    %5lu\n"
4457                                    "HugePages_Surp:    %5lu\n"
4458                                    "Hugepagesize:   %8lu kB\n",
4459                                    count,
4460                                    h->free_huge_pages,
4461                                    h->resv_huge_pages,
4462                                    h->surplus_huge_pages,
4463                                    huge_page_size(h) / SZ_1K);
4464         }
4465
4466         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4467 }
4468
4469 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4470 {
4471         struct hstate *h = &default_hstate;
4472
4473         if (!hugepages_supported())
4474                 return 0;
4475
4476         return sysfs_emit_at(buf, len,
4477                              "Node %d HugePages_Total: %5u\n"
4478                              "Node %d HugePages_Free:  %5u\n"
4479                              "Node %d HugePages_Surp:  %5u\n",
4480                              nid, h->nr_huge_pages_node[nid],
4481                              nid, h->free_huge_pages_node[nid],
4482                              nid, h->surplus_huge_pages_node[nid]);
4483 }
4484
4485 void hugetlb_show_meminfo(void)
4486 {
4487         struct hstate *h;
4488         int nid;
4489
4490         if (!hugepages_supported())
4491                 return;
4492
4493         for_each_node_state(nid, N_MEMORY)
4494                 for_each_hstate(h)
4495                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4496                                 nid,
4497                                 h->nr_huge_pages_node[nid],
4498                                 h->free_huge_pages_node[nid],
4499                                 h->surplus_huge_pages_node[nid],
4500                                 huge_page_size(h) / SZ_1K);
4501 }
4502
4503 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4504 {
4505         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4506                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4507 }
4508
4509 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4510 unsigned long hugetlb_total_pages(void)
4511 {
4512         struct hstate *h;
4513         unsigned long nr_total_pages = 0;
4514
4515         for_each_hstate(h)
4516                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4517         return nr_total_pages;
4518 }
4519
4520 static int hugetlb_acct_memory(struct hstate *h, long delta)
4521 {
4522         int ret = -ENOMEM;
4523
4524         if (!delta)
4525                 return 0;
4526
4527         spin_lock_irq(&hugetlb_lock);
4528         /*
4529          * When cpuset is configured, it breaks the strict hugetlb page
4530          * reservation as the accounting is done on a global variable. Such
4531          * reservation is completely rubbish in the presence of cpuset because
4532          * the reservation is not checked against page availability for the
4533          * current cpuset. Application can still potentially OOM'ed by kernel
4534          * with lack of free htlb page in cpuset that the task is in.
4535          * Attempt to enforce strict accounting with cpuset is almost
4536          * impossible (or too ugly) because cpuset is too fluid that
4537          * task or memory node can be dynamically moved between cpusets.
4538          *
4539          * The change of semantics for shared hugetlb mapping with cpuset is
4540          * undesirable. However, in order to preserve some of the semantics,
4541          * we fall back to check against current free page availability as
4542          * a best attempt and hopefully to minimize the impact of changing
4543          * semantics that cpuset has.
4544          *
4545          * Apart from cpuset, we also have memory policy mechanism that
4546          * also determines from which node the kernel will allocate memory
4547          * in a NUMA system. So similar to cpuset, we also should consider
4548          * the memory policy of the current task. Similar to the description
4549          * above.
4550          */
4551         if (delta > 0) {
4552                 if (gather_surplus_pages(h, delta) < 0)
4553                         goto out;
4554
4555                 if (delta > allowed_mems_nr(h)) {
4556                         return_unused_surplus_pages(h, delta);
4557                         goto out;
4558                 }
4559         }
4560
4561         ret = 0;
4562         if (delta < 0)
4563                 return_unused_surplus_pages(h, (unsigned long) -delta);
4564
4565 out:
4566         spin_unlock_irq(&hugetlb_lock);
4567         return ret;
4568 }
4569
4570 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4571 {
4572         struct resv_map *resv = vma_resv_map(vma);
4573
4574         /*
4575          * This new VMA should share its siblings reservation map if present.
4576          * The VMA will only ever have a valid reservation map pointer where
4577          * it is being copied for another still existing VMA.  As that VMA
4578          * has a reference to the reservation map it cannot disappear until
4579          * after this open call completes.  It is therefore safe to take a
4580          * new reference here without additional locking.
4581          */
4582         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4583                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4584                 kref_get(&resv->refs);
4585         }
4586 }
4587
4588 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4589 {
4590         struct hstate *h = hstate_vma(vma);
4591         struct resv_map *resv = vma_resv_map(vma);
4592         struct hugepage_subpool *spool = subpool_vma(vma);
4593         unsigned long reserve, start, end;
4594         long gbl_reserve;
4595
4596         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4597                 return;
4598
4599         start = vma_hugecache_offset(h, vma, vma->vm_start);
4600         end = vma_hugecache_offset(h, vma, vma->vm_end);
4601
4602         reserve = (end - start) - region_count(resv, start, end);
4603         hugetlb_cgroup_uncharge_counter(resv, start, end);
4604         if (reserve) {
4605                 /*
4606                  * Decrement reserve counts.  The global reserve count may be
4607                  * adjusted if the subpool has a minimum size.
4608                  */
4609                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4610                 hugetlb_acct_memory(h, -gbl_reserve);
4611         }
4612
4613         kref_put(&resv->refs, resv_map_release);
4614 }
4615
4616 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4617 {
4618         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4619                 return -EINVAL;
4620         return 0;
4621 }
4622
4623 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4624 {
4625         return huge_page_size(hstate_vma(vma));
4626 }
4627
4628 /*
4629  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4630  * handle_mm_fault() to try to instantiate regular-sized pages in the
4631  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4632  * this far.
4633  */
4634 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4635 {
4636         BUG();
4637         return 0;
4638 }
4639
4640 /*
4641  * When a new function is introduced to vm_operations_struct and added
4642  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4643  * This is because under System V memory model, mappings created via
4644  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4645  * their original vm_ops are overwritten with shm_vm_ops.
4646  */
4647 const struct vm_operations_struct hugetlb_vm_ops = {
4648         .fault = hugetlb_vm_op_fault,
4649         .open = hugetlb_vm_op_open,
4650         .close = hugetlb_vm_op_close,
4651         .may_split = hugetlb_vm_op_split,
4652         .pagesize = hugetlb_vm_op_pagesize,
4653 };
4654
4655 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4656                                 int writable)
4657 {
4658         pte_t entry;
4659         unsigned int shift = huge_page_shift(hstate_vma(vma));
4660
4661         if (writable) {
4662                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4663                                          vma->vm_page_prot)));
4664         } else {
4665                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4666                                            vma->vm_page_prot));
4667         }
4668         entry = pte_mkyoung(entry);
4669         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4670
4671         return entry;
4672 }
4673
4674 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4675                                    unsigned long address, pte_t *ptep)
4676 {
4677         pte_t entry;
4678
4679         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4680         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4681                 update_mmu_cache(vma, address, ptep);
4682 }
4683
4684 bool is_hugetlb_entry_migration(pte_t pte)
4685 {
4686         swp_entry_t swp;
4687
4688         if (huge_pte_none(pte) || pte_present(pte))
4689                 return false;
4690         swp = pte_to_swp_entry(pte);
4691         if (is_migration_entry(swp))
4692                 return true;
4693         else
4694                 return false;
4695 }
4696
4697 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4698 {
4699         swp_entry_t swp;
4700
4701         if (huge_pte_none(pte) || pte_present(pte))
4702                 return false;
4703         swp = pte_to_swp_entry(pte);
4704         if (is_hwpoison_entry(swp))
4705                 return true;
4706         else
4707                 return false;
4708 }
4709
4710 static void
4711 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4712                      struct page *new_page)
4713 {
4714         __SetPageUptodate(new_page);
4715         hugepage_add_new_anon_rmap(new_page, vma, addr);
4716         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4717         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4718         ClearHPageRestoreReserve(new_page);
4719         SetHPageMigratable(new_page);
4720 }
4721
4722 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4723                             struct vm_area_struct *dst_vma,
4724                             struct vm_area_struct *src_vma)
4725 {
4726         pte_t *src_pte, *dst_pte, entry, dst_entry;
4727         struct page *ptepage;
4728         unsigned long addr;
4729         bool cow = is_cow_mapping(src_vma->vm_flags);
4730         struct hstate *h = hstate_vma(src_vma);
4731         unsigned long sz = huge_page_size(h);
4732         unsigned long npages = pages_per_huge_page(h);
4733         struct address_space *mapping = src_vma->vm_file->f_mapping;
4734         struct mmu_notifier_range range;
4735         int ret = 0;
4736
4737         if (cow) {
4738                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4739                                         src_vma->vm_start,
4740                                         src_vma->vm_end);
4741                 mmu_notifier_invalidate_range_start(&range);
4742                 mmap_assert_write_locked(src);
4743                 raw_write_seqcount_begin(&src->write_protect_seq);
4744         } else {
4745                 /*
4746                  * For shared mappings i_mmap_rwsem must be held to call
4747                  * huge_pte_alloc, otherwise the returned ptep could go
4748                  * away if part of a shared pmd and another thread calls
4749                  * huge_pmd_unshare.
4750                  */
4751                 i_mmap_lock_read(mapping);
4752         }
4753
4754         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4755                 spinlock_t *src_ptl, *dst_ptl;
4756                 src_pte = huge_pte_offset(src, addr, sz);
4757                 if (!src_pte)
4758                         continue;
4759                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4760                 if (!dst_pte) {
4761                         ret = -ENOMEM;
4762                         break;
4763                 }
4764
4765                 /*
4766                  * If the pagetables are shared don't copy or take references.
4767                  * dst_pte == src_pte is the common case of src/dest sharing.
4768                  *
4769                  * However, src could have 'unshared' and dst shares with
4770                  * another vma.  If dst_pte !none, this implies sharing.
4771                  * Check here before taking page table lock, and once again
4772                  * after taking the lock below.
4773                  */
4774                 dst_entry = huge_ptep_get(dst_pte);
4775                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4776                         continue;
4777
4778                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4779                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4780                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4781                 entry = huge_ptep_get(src_pte);
4782                 dst_entry = huge_ptep_get(dst_pte);
4783 again:
4784                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4785                         /*
4786                          * Skip if src entry none.  Also, skip in the
4787                          * unlikely case dst entry !none as this implies
4788                          * sharing with another vma.
4789                          */
4790                         ;
4791                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4792                                     is_hugetlb_entry_hwpoisoned(entry))) {
4793                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4794                         bool uffd_wp = huge_pte_uffd_wp(entry);
4795
4796                         if (!is_readable_migration_entry(swp_entry) && cow) {
4797                                 /*
4798                                  * COW mappings require pages in both
4799                                  * parent and child to be set to read.
4800                                  */
4801                                 swp_entry = make_readable_migration_entry(
4802                                                         swp_offset(swp_entry));
4803                                 entry = swp_entry_to_pte(swp_entry);
4804                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4805                                         entry = huge_pte_mkuffd_wp(entry);
4806                                 set_huge_swap_pte_at(src, addr, src_pte,
4807                                                      entry, sz);
4808                         }
4809                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4810                                 entry = huge_pte_clear_uffd_wp(entry);
4811                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4812                 } else if (unlikely(is_pte_marker(entry))) {
4813                         /*
4814                          * We copy the pte marker only if the dst vma has
4815                          * uffd-wp enabled.
4816                          */
4817                         if (userfaultfd_wp(dst_vma))
4818                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4819                 } else {
4820                         entry = huge_ptep_get(src_pte);
4821                         ptepage = pte_page(entry);
4822                         get_page(ptepage);
4823
4824                         /*
4825                          * Failing to duplicate the anon rmap is a rare case
4826                          * where we see pinned hugetlb pages while they're
4827                          * prone to COW. We need to do the COW earlier during
4828                          * fork.
4829                          *
4830                          * When pre-allocating the page or copying data, we
4831                          * need to be without the pgtable locks since we could
4832                          * sleep during the process.
4833                          */
4834                         if (!PageAnon(ptepage)) {
4835                                 page_dup_file_rmap(ptepage, true);
4836                         } else if (page_try_dup_anon_rmap(ptepage, true,
4837                                                           src_vma)) {
4838                                 pte_t src_pte_old = entry;
4839                                 struct page *new;
4840
4841                                 spin_unlock(src_ptl);
4842                                 spin_unlock(dst_ptl);
4843                                 /* Do not use reserve as it's private owned */
4844                                 new = alloc_huge_page(dst_vma, addr, 1);
4845                                 if (IS_ERR(new)) {
4846                                         put_page(ptepage);
4847                                         ret = PTR_ERR(new);
4848                                         break;
4849                                 }
4850                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4851                                                     npages);
4852                                 put_page(ptepage);
4853
4854                                 /* Install the new huge page if src pte stable */
4855                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4856                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4857                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4858                                 entry = huge_ptep_get(src_pte);
4859                                 if (!pte_same(src_pte_old, entry)) {
4860                                         restore_reserve_on_error(h, dst_vma, addr,
4861                                                                 new);
4862                                         put_page(new);
4863                                         /* dst_entry won't change as in child */
4864                                         goto again;
4865                                 }
4866                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4867                                 spin_unlock(src_ptl);
4868                                 spin_unlock(dst_ptl);
4869                                 continue;
4870                         }
4871
4872                         if (cow) {
4873                                 /*
4874                                  * No need to notify as we are downgrading page
4875                                  * table protection not changing it to point
4876                                  * to a new page.
4877                                  *
4878                                  * See Documentation/vm/mmu_notifier.rst
4879                                  */
4880                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4881                                 entry = huge_pte_wrprotect(entry);
4882                         }
4883
4884                         set_huge_pte_at(dst, addr, dst_pte, entry);
4885                         hugetlb_count_add(npages, dst);
4886                 }
4887                 spin_unlock(src_ptl);
4888                 spin_unlock(dst_ptl);
4889         }
4890
4891         if (cow) {
4892                 raw_write_seqcount_end(&src->write_protect_seq);
4893                 mmu_notifier_invalidate_range_end(&range);
4894         } else {
4895                 i_mmap_unlock_read(mapping);
4896         }
4897
4898         return ret;
4899 }
4900
4901 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4902                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4903 {
4904         struct hstate *h = hstate_vma(vma);
4905         struct mm_struct *mm = vma->vm_mm;
4906         spinlock_t *src_ptl, *dst_ptl;
4907         pte_t pte;
4908
4909         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4910         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4911
4912         /*
4913          * We don't have to worry about the ordering of src and dst ptlocks
4914          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4915          */
4916         if (src_ptl != dst_ptl)
4917                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4918
4919         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4920         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4921
4922         if (src_ptl != dst_ptl)
4923                 spin_unlock(src_ptl);
4924         spin_unlock(dst_ptl);
4925 }
4926
4927 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4928                              struct vm_area_struct *new_vma,
4929                              unsigned long old_addr, unsigned long new_addr,
4930                              unsigned long len)
4931 {
4932         struct hstate *h = hstate_vma(vma);
4933         struct address_space *mapping = vma->vm_file->f_mapping;
4934         unsigned long sz = huge_page_size(h);
4935         struct mm_struct *mm = vma->vm_mm;
4936         unsigned long old_end = old_addr + len;
4937         unsigned long old_addr_copy;
4938         pte_t *src_pte, *dst_pte;
4939         struct mmu_notifier_range range;
4940         bool shared_pmd = false;
4941
4942         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4943                                 old_end);
4944         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4945         /*
4946          * In case of shared PMDs, we should cover the maximum possible
4947          * range.
4948          */
4949         flush_cache_range(vma, range.start, range.end);
4950
4951         mmu_notifier_invalidate_range_start(&range);
4952         /* Prevent race with file truncation */
4953         i_mmap_lock_write(mapping);
4954         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4955                 src_pte = huge_pte_offset(mm, old_addr, sz);
4956                 if (!src_pte)
4957                         continue;
4958                 if (huge_pte_none(huge_ptep_get(src_pte)))
4959                         continue;
4960
4961                 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4962                  * arg may be modified. Pass a copy instead to preserve the
4963                  * value in old_addr.
4964                  */
4965                 old_addr_copy = old_addr;
4966
4967                 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4968                         shared_pmd = true;
4969                         continue;
4970                 }
4971
4972                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4973                 if (!dst_pte)
4974                         break;
4975
4976                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4977         }
4978
4979         if (shared_pmd)
4980                 flush_tlb_range(vma, range.start, range.end);
4981         else
4982                 flush_tlb_range(vma, old_end - len, old_end);
4983         mmu_notifier_invalidate_range_end(&range);
4984         i_mmap_unlock_write(mapping);
4985
4986         return len + old_addr - old_end;
4987 }
4988
4989 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4990                                    unsigned long start, unsigned long end,
4991                                    struct page *ref_page, zap_flags_t zap_flags)
4992 {
4993         struct mm_struct *mm = vma->vm_mm;
4994         unsigned long address;
4995         pte_t *ptep;
4996         pte_t pte;
4997         spinlock_t *ptl;
4998         struct page *page;
4999         struct hstate *h = hstate_vma(vma);
5000         unsigned long sz = huge_page_size(h);
5001         struct mmu_notifier_range range;
5002         bool force_flush = false;
5003
5004         WARN_ON(!is_vm_hugetlb_page(vma));
5005         BUG_ON(start & ~huge_page_mask(h));
5006         BUG_ON(end & ~huge_page_mask(h));
5007
5008         /*
5009          * This is a hugetlb vma, all the pte entries should point
5010          * to huge page.
5011          */
5012         tlb_change_page_size(tlb, sz);
5013         tlb_start_vma(tlb, vma);
5014
5015         /*
5016          * If sharing possible, alert mmu notifiers of worst case.
5017          */
5018         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5019                                 end);
5020         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021         mmu_notifier_invalidate_range_start(&range);
5022         address = start;
5023         for (; address < end; address += sz) {
5024                 ptep = huge_pte_offset(mm, address, sz);
5025                 if (!ptep)
5026                         continue;
5027
5028                 ptl = huge_pte_lock(h, mm, ptep);
5029                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5030                         spin_unlock(ptl);
5031                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5032                         force_flush = true;
5033                         continue;
5034                 }
5035
5036                 pte = huge_ptep_get(ptep);
5037                 if (huge_pte_none(pte)) {
5038                         spin_unlock(ptl);
5039                         continue;
5040                 }
5041
5042                 /*
5043                  * Migrating hugepage or HWPoisoned hugepage is already
5044                  * unmapped and its refcount is dropped, so just clear pte here.
5045                  */
5046                 if (unlikely(!pte_present(pte))) {
5047                         /*
5048                          * If the pte was wr-protected by uffd-wp in any of the
5049                          * swap forms, meanwhile the caller does not want to
5050                          * drop the uffd-wp bit in this zap, then replace the
5051                          * pte with a marker.
5052                          */
5053                         if (pte_swp_uffd_wp_any(pte) &&
5054                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5055                                 set_huge_pte_at(mm, address, ptep,
5056                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5057                         else
5058                                 huge_pte_clear(mm, address, ptep, sz);
5059                         spin_unlock(ptl);
5060                         continue;
5061                 }
5062
5063                 page = pte_page(pte);
5064                 /*
5065                  * If a reference page is supplied, it is because a specific
5066                  * page is being unmapped, not a range. Ensure the page we
5067                  * are about to unmap is the actual page of interest.
5068                  */
5069                 if (ref_page) {
5070                         if (page != ref_page) {
5071                                 spin_unlock(ptl);
5072                                 continue;
5073                         }
5074                         /*
5075                          * Mark the VMA as having unmapped its page so that
5076                          * future faults in this VMA will fail rather than
5077                          * looking like data was lost
5078                          */
5079                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5080                 }
5081
5082                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5083                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5084                 if (huge_pte_dirty(pte))
5085                         set_page_dirty(page);
5086                 /* Leave a uffd-wp pte marker if needed */
5087                 if (huge_pte_uffd_wp(pte) &&
5088                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5089                         set_huge_pte_at(mm, address, ptep,
5090                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5091                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5092                 page_remove_rmap(page, vma, true);
5093
5094                 spin_unlock(ptl);
5095                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5096                 /*
5097                  * Bail out after unmapping reference page if supplied
5098                  */
5099                 if (ref_page)
5100                         break;
5101         }
5102         mmu_notifier_invalidate_range_end(&range);
5103         tlb_end_vma(tlb, vma);
5104
5105         /*
5106          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5107          * could defer the flush until now, since by holding i_mmap_rwsem we
5108          * guaranteed that the last refernece would not be dropped. But we must
5109          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5110          * dropped and the last reference to the shared PMDs page might be
5111          * dropped as well.
5112          *
5113          * In theory we could defer the freeing of the PMD pages as well, but
5114          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5115          * detect sharing, so we cannot defer the release of the page either.
5116          * Instead, do flush now.
5117          */
5118         if (force_flush)
5119                 tlb_flush_mmu_tlbonly(tlb);
5120 }
5121
5122 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5123                           struct vm_area_struct *vma, unsigned long start,
5124                           unsigned long end, struct page *ref_page,
5125                           zap_flags_t zap_flags)
5126 {
5127         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5128
5129         /*
5130          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5131          * test will fail on a vma being torn down, and not grab a page table
5132          * on its way out.  We're lucky that the flag has such an appropriate
5133          * name, and can in fact be safely cleared here. We could clear it
5134          * before the __unmap_hugepage_range above, but all that's necessary
5135          * is to clear it before releasing the i_mmap_rwsem. This works
5136          * because in the context this is called, the VMA is about to be
5137          * destroyed and the i_mmap_rwsem is held.
5138          */
5139         vma->vm_flags &= ~VM_MAYSHARE;
5140 }
5141
5142 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5143                           unsigned long end, struct page *ref_page,
5144                           zap_flags_t zap_flags)
5145 {
5146         struct mmu_gather tlb;
5147
5148         tlb_gather_mmu(&tlb, vma->vm_mm);
5149         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5150         tlb_finish_mmu(&tlb);
5151 }
5152
5153 /*
5154  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5155  * mapping it owns the reserve page for. The intention is to unmap the page
5156  * from other VMAs and let the children be SIGKILLed if they are faulting the
5157  * same region.
5158  */
5159 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5160                               struct page *page, unsigned long address)
5161 {
5162         struct hstate *h = hstate_vma(vma);
5163         struct vm_area_struct *iter_vma;
5164         struct address_space *mapping;
5165         pgoff_t pgoff;
5166
5167         /*
5168          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5169          * from page cache lookup which is in HPAGE_SIZE units.
5170          */
5171         address = address & huge_page_mask(h);
5172         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5173                         vma->vm_pgoff;
5174         mapping = vma->vm_file->f_mapping;
5175
5176         /*
5177          * Take the mapping lock for the duration of the table walk. As
5178          * this mapping should be shared between all the VMAs,
5179          * __unmap_hugepage_range() is called as the lock is already held
5180          */
5181         i_mmap_lock_write(mapping);
5182         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5183                 /* Do not unmap the current VMA */
5184                 if (iter_vma == vma)
5185                         continue;
5186
5187                 /*
5188                  * Shared VMAs have their own reserves and do not affect
5189                  * MAP_PRIVATE accounting but it is possible that a shared
5190                  * VMA is using the same page so check and skip such VMAs.
5191                  */
5192                 if (iter_vma->vm_flags & VM_MAYSHARE)
5193                         continue;
5194
5195                 /*
5196                  * Unmap the page from other VMAs without their own reserves.
5197                  * They get marked to be SIGKILLed if they fault in these
5198                  * areas. This is because a future no-page fault on this VMA
5199                  * could insert a zeroed page instead of the data existing
5200                  * from the time of fork. This would look like data corruption
5201                  */
5202                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5203                         unmap_hugepage_range(iter_vma, address,
5204                                              address + huge_page_size(h), page, 0);
5205         }
5206         i_mmap_unlock_write(mapping);
5207 }
5208
5209 /*
5210  * hugetlb_wp() should be called with page lock of the original hugepage held.
5211  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5212  * cannot race with other handlers or page migration.
5213  * Keep the pte_same checks anyway to make transition from the mutex easier.
5214  */
5215 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5216                        unsigned long address, pte_t *ptep, unsigned int flags,
5217                        struct page *pagecache_page, spinlock_t *ptl)
5218 {
5219         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5220         pte_t pte;
5221         struct hstate *h = hstate_vma(vma);
5222         struct page *old_page, *new_page;
5223         int outside_reserve = 0;
5224         vm_fault_t ret = 0;
5225         unsigned long haddr = address & huge_page_mask(h);
5226         struct mmu_notifier_range range;
5227
5228         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5229         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5230
5231         pte = huge_ptep_get(ptep);
5232         old_page = pte_page(pte);
5233
5234         delayacct_wpcopy_start();
5235
5236 retry_avoidcopy:
5237         /*
5238          * If no-one else is actually using this page, we're the exclusive
5239          * owner and can reuse this page.
5240          */
5241         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5242                 if (!PageAnonExclusive(old_page))
5243                         page_move_anon_rmap(old_page, vma);
5244                 if (likely(!unshare))
5245                         set_huge_ptep_writable(vma, haddr, ptep);
5246
5247                 delayacct_wpcopy_end();
5248                 return 0;
5249         }
5250         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5251                        old_page);
5252
5253         /*
5254          * If the process that created a MAP_PRIVATE mapping is about to
5255          * perform a COW due to a shared page count, attempt to satisfy
5256          * the allocation without using the existing reserves. The pagecache
5257          * page is used to determine if the reserve at this address was
5258          * consumed or not. If reserves were used, a partial faulted mapping
5259          * at the time of fork() could consume its reserves on COW instead
5260          * of the full address range.
5261          */
5262         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5263                         old_page != pagecache_page)
5264                 outside_reserve = 1;
5265
5266         get_page(old_page);
5267
5268         /*
5269          * Drop page table lock as buddy allocator may be called. It will
5270          * be acquired again before returning to the caller, as expected.
5271          */
5272         spin_unlock(ptl);
5273         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5274
5275         if (IS_ERR(new_page)) {
5276                 /*
5277                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5278                  * it is due to references held by a child and an insufficient
5279                  * huge page pool. To guarantee the original mappers
5280                  * reliability, unmap the page from child processes. The child
5281                  * may get SIGKILLed if it later faults.
5282                  */
5283                 if (outside_reserve) {
5284                         struct address_space *mapping = vma->vm_file->f_mapping;
5285                         pgoff_t idx;
5286                         u32 hash;
5287
5288                         put_page(old_page);
5289                         BUG_ON(huge_pte_none(pte));
5290                         /*
5291                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5292                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5293                          * in write mode.  Dropping i_mmap_rwsem in read mode
5294                          * here is OK as COW mappings do not interact with
5295                          * PMD sharing.
5296                          *
5297                          * Reacquire both after unmap operation.
5298                          */
5299                         idx = vma_hugecache_offset(h, vma, haddr);
5300                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5301                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5302                         i_mmap_unlock_read(mapping);
5303
5304                         unmap_ref_private(mm, vma, old_page, haddr);
5305
5306                         i_mmap_lock_read(mapping);
5307                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5308                         spin_lock(ptl);
5309                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5310                         if (likely(ptep &&
5311                                    pte_same(huge_ptep_get(ptep), pte)))
5312                                 goto retry_avoidcopy;
5313                         /*
5314                          * race occurs while re-acquiring page table
5315                          * lock, and our job is done.
5316                          */
5317                         delayacct_wpcopy_end();
5318                         return 0;
5319                 }
5320
5321                 ret = vmf_error(PTR_ERR(new_page));
5322                 goto out_release_old;
5323         }
5324
5325         /*
5326          * When the original hugepage is shared one, it does not have
5327          * anon_vma prepared.
5328          */
5329         if (unlikely(anon_vma_prepare(vma))) {
5330                 ret = VM_FAULT_OOM;
5331                 goto out_release_all;
5332         }
5333
5334         copy_user_huge_page(new_page, old_page, address, vma,
5335                             pages_per_huge_page(h));
5336         __SetPageUptodate(new_page);
5337
5338         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5339                                 haddr + huge_page_size(h));
5340         mmu_notifier_invalidate_range_start(&range);
5341
5342         /*
5343          * Retake the page table lock to check for racing updates
5344          * before the page tables are altered
5345          */
5346         spin_lock(ptl);
5347         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5348         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5349                 ClearHPageRestoreReserve(new_page);
5350
5351                 /* Break COW or unshare */
5352                 huge_ptep_clear_flush(vma, haddr, ptep);
5353                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5354                 page_remove_rmap(old_page, vma, true);
5355                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5356                 set_huge_pte_at(mm, haddr, ptep,
5357                                 make_huge_pte(vma, new_page, !unshare));
5358                 SetHPageMigratable(new_page);
5359                 /* Make the old page be freed below */
5360                 new_page = old_page;
5361         }
5362         spin_unlock(ptl);
5363         mmu_notifier_invalidate_range_end(&range);
5364 out_release_all:
5365         /*
5366          * No restore in case of successful pagetable update (Break COW or
5367          * unshare)
5368          */
5369         if (new_page != old_page)
5370                 restore_reserve_on_error(h, vma, haddr, new_page);
5371         put_page(new_page);
5372 out_release_old:
5373         put_page(old_page);
5374
5375         spin_lock(ptl); /* Caller expects lock to be held */
5376
5377         delayacct_wpcopy_end();
5378         return ret;
5379 }
5380
5381 /* Return the pagecache page at a given address within a VMA */
5382 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5383                         struct vm_area_struct *vma, unsigned long address)
5384 {
5385         struct address_space *mapping;
5386         pgoff_t idx;
5387
5388         mapping = vma->vm_file->f_mapping;
5389         idx = vma_hugecache_offset(h, vma, address);
5390
5391         return find_lock_page(mapping, idx);
5392 }
5393
5394 /*
5395  * Return whether there is a pagecache page to back given address within VMA.
5396  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5397  */
5398 static bool hugetlbfs_pagecache_present(struct hstate *h,
5399                         struct vm_area_struct *vma, unsigned long address)
5400 {
5401         struct address_space *mapping;
5402         pgoff_t idx;
5403         struct page *page;
5404
5405         mapping = vma->vm_file->f_mapping;
5406         idx = vma_hugecache_offset(h, vma, address);
5407
5408         page = find_get_page(mapping, idx);
5409         if (page)
5410                 put_page(page);
5411         return page != NULL;
5412 }
5413
5414 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5415                            pgoff_t idx)
5416 {
5417         struct inode *inode = mapping->host;
5418         struct hstate *h = hstate_inode(inode);
5419         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5420
5421         if (err)
5422                 return err;
5423         ClearHPageRestoreReserve(page);
5424
5425         /*
5426          * set page dirty so that it will not be removed from cache/file
5427          * by non-hugetlbfs specific code paths.
5428          */
5429         set_page_dirty(page);
5430
5431         spin_lock(&inode->i_lock);
5432         inode->i_blocks += blocks_per_huge_page(h);
5433         spin_unlock(&inode->i_lock);
5434         return 0;
5435 }
5436
5437 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5438                                                   struct address_space *mapping,
5439                                                   pgoff_t idx,
5440                                                   unsigned int flags,
5441                                                   unsigned long haddr,
5442                                                   unsigned long addr,
5443                                                   unsigned long reason)
5444 {
5445         vm_fault_t ret;
5446         u32 hash;
5447         struct vm_fault vmf = {
5448                 .vma = vma,
5449                 .address = haddr,
5450                 .real_address = addr,
5451                 .flags = flags,
5452
5453                 /*
5454                  * Hard to debug if it ends up being
5455                  * used by a callee that assumes
5456                  * something about the other
5457                  * uninitialized fields... same as in
5458                  * memory.c
5459                  */
5460         };
5461
5462         /*
5463          * hugetlb_fault_mutex and i_mmap_rwsem must be
5464          * dropped before handling userfault.  Reacquire
5465          * after handling fault to make calling code simpler.
5466          */
5467         hash = hugetlb_fault_mutex_hash(mapping, idx);
5468         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5469         i_mmap_unlock_read(mapping);
5470         ret = handle_userfault(&vmf, reason);
5471         i_mmap_lock_read(mapping);
5472         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5473
5474         return ret;
5475 }
5476
5477 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5478                         struct vm_area_struct *vma,
5479                         struct address_space *mapping, pgoff_t idx,
5480                         unsigned long address, pte_t *ptep,
5481                         pte_t old_pte, unsigned int flags)
5482 {
5483         struct hstate *h = hstate_vma(vma);
5484         vm_fault_t ret = VM_FAULT_SIGBUS;
5485         int anon_rmap = 0;
5486         unsigned long size;
5487         struct page *page;
5488         pte_t new_pte;
5489         spinlock_t *ptl;
5490         unsigned long haddr = address & huge_page_mask(h);
5491         bool new_page, new_pagecache_page = false;
5492
5493         /*
5494          * Currently, we are forced to kill the process in the event the
5495          * original mapper has unmapped pages from the child due to a failed
5496          * COW/unsharing. Warn that such a situation has occurred as it may not
5497          * be obvious.
5498          */
5499         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5500                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5501                            current->pid);
5502                 return ret;
5503         }
5504
5505         /*
5506          * We can not race with truncation due to holding i_mmap_rwsem.
5507          * i_size is modified when holding i_mmap_rwsem, so check here
5508          * once for faults beyond end of file.
5509          */
5510         size = i_size_read(mapping->host) >> huge_page_shift(h);
5511         if (idx >= size)
5512                 goto out;
5513
5514 retry:
5515         new_page = false;
5516         page = find_lock_page(mapping, idx);
5517         if (!page) {
5518                 /* Check for page in userfault range */
5519                 if (userfaultfd_missing(vma)) {
5520                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5521                                                        flags, haddr, address,
5522                                                        VM_UFFD_MISSING);
5523                         goto out;
5524                 }
5525
5526                 page = alloc_huge_page(vma, haddr, 0);
5527                 if (IS_ERR(page)) {
5528                         /*
5529                          * Returning error will result in faulting task being
5530                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5531                          * tasks from racing to fault in the same page which
5532                          * could result in false unable to allocate errors.
5533                          * Page migration does not take the fault mutex, but
5534                          * does a clear then write of pte's under page table
5535                          * lock.  Page fault code could race with migration,
5536                          * notice the clear pte and try to allocate a page
5537                          * here.  Before returning error, get ptl and make
5538                          * sure there really is no pte entry.
5539                          */
5540                         ptl = huge_pte_lock(h, mm, ptep);
5541                         ret = 0;
5542                         if (huge_pte_none(huge_ptep_get(ptep)))
5543                                 ret = vmf_error(PTR_ERR(page));
5544                         spin_unlock(ptl);
5545                         goto out;
5546                 }
5547                 clear_huge_page(page, address, pages_per_huge_page(h));
5548                 __SetPageUptodate(page);
5549                 new_page = true;
5550
5551                 if (vma->vm_flags & VM_MAYSHARE) {
5552                         int err = huge_add_to_page_cache(page, mapping, idx);
5553                         if (err) {
5554                                 put_page(page);
5555                                 if (err == -EEXIST)
5556                                         goto retry;
5557                                 goto out;
5558                         }
5559                         new_pagecache_page = true;
5560                 } else {
5561                         lock_page(page);
5562                         if (unlikely(anon_vma_prepare(vma))) {
5563                                 ret = VM_FAULT_OOM;
5564                                 goto backout_unlocked;
5565                         }
5566                         anon_rmap = 1;
5567                 }
5568         } else {
5569                 /*
5570                  * If memory error occurs between mmap() and fault, some process
5571                  * don't have hwpoisoned swap entry for errored virtual address.
5572                  * So we need to block hugepage fault by PG_hwpoison bit check.
5573                  */
5574                 if (unlikely(PageHWPoison(page))) {
5575                         ret = VM_FAULT_HWPOISON_LARGE |
5576                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5577                         goto backout_unlocked;
5578                 }
5579
5580                 /* Check for page in userfault range. */
5581                 if (userfaultfd_minor(vma)) {
5582                         unlock_page(page);
5583                         put_page(page);
5584                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5585                                                        flags, haddr, address,
5586                                                        VM_UFFD_MINOR);
5587                         goto out;
5588                 }
5589         }
5590
5591         /*
5592          * If we are going to COW a private mapping later, we examine the
5593          * pending reservations for this page now. This will ensure that
5594          * any allocations necessary to record that reservation occur outside
5595          * the spinlock.
5596          */
5597         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5598                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5599                         ret = VM_FAULT_OOM;
5600                         goto backout_unlocked;
5601                 }
5602                 /* Just decrements count, does not deallocate */
5603                 vma_end_reservation(h, vma, haddr);
5604         }
5605
5606         ptl = huge_pte_lock(h, mm, ptep);
5607         ret = 0;
5608         /* If pte changed from under us, retry */
5609         if (!pte_same(huge_ptep_get(ptep), old_pte))
5610                 goto backout;
5611
5612         if (anon_rmap) {
5613                 ClearHPageRestoreReserve(page);
5614                 hugepage_add_new_anon_rmap(page, vma, haddr);
5615         } else
5616                 page_dup_file_rmap(page, true);
5617         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5618                                 && (vma->vm_flags & VM_SHARED)));
5619         /*
5620          * If this pte was previously wr-protected, keep it wr-protected even
5621          * if populated.
5622          */
5623         if (unlikely(pte_marker_uffd_wp(old_pte)))
5624                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5625         set_huge_pte_at(mm, haddr, ptep, new_pte);
5626
5627         hugetlb_count_add(pages_per_huge_page(h), mm);
5628         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5629                 /* Optimization, do the COW without a second fault */
5630                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5631         }
5632
5633         spin_unlock(ptl);
5634
5635         /*
5636          * Only set HPageMigratable in newly allocated pages.  Existing pages
5637          * found in the pagecache may not have HPageMigratableset if they have
5638          * been isolated for migration.
5639          */
5640         if (new_page)
5641                 SetHPageMigratable(page);
5642
5643         unlock_page(page);
5644 out:
5645         return ret;
5646
5647 backout:
5648         spin_unlock(ptl);
5649 backout_unlocked:
5650         unlock_page(page);
5651         /* restore reserve for newly allocated pages not in page cache */
5652         if (new_page && !new_pagecache_page)
5653                 restore_reserve_on_error(h, vma, haddr, page);
5654         put_page(page);
5655         goto out;
5656 }
5657
5658 #ifdef CONFIG_SMP
5659 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5660 {
5661         unsigned long key[2];
5662         u32 hash;
5663
5664         key[0] = (unsigned long) mapping;
5665         key[1] = idx;
5666
5667         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5668
5669         return hash & (num_fault_mutexes - 1);
5670 }
5671 #else
5672 /*
5673  * For uniprocessor systems we always use a single mutex, so just
5674  * return 0 and avoid the hashing overhead.
5675  */
5676 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5677 {
5678         return 0;
5679 }
5680 #endif
5681
5682 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5683                         unsigned long address, unsigned int flags)
5684 {
5685         pte_t *ptep, entry;
5686         spinlock_t *ptl;
5687         vm_fault_t ret;
5688         u32 hash;
5689         pgoff_t idx;
5690         struct page *page = NULL;
5691         struct page *pagecache_page = NULL;
5692         struct hstate *h = hstate_vma(vma);
5693         struct address_space *mapping;
5694         int need_wait_lock = 0;
5695         unsigned long haddr = address & huge_page_mask(h);
5696
5697         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5698         if (ptep) {
5699                 /*
5700                  * Since we hold no locks, ptep could be stale.  That is
5701                  * OK as we are only making decisions based on content and
5702                  * not actually modifying content here.
5703                  */
5704                 entry = huge_ptep_get(ptep);
5705                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5706                         migration_entry_wait_huge(vma, mm, ptep);
5707                         return 0;
5708                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5709                         return VM_FAULT_HWPOISON_LARGE |
5710                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5711         }
5712
5713         /*
5714          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5715          * until finished with ptep.  This serves two purposes:
5716          * 1) It prevents huge_pmd_unshare from being called elsewhere
5717          *    and making the ptep no longer valid.
5718          * 2) It synchronizes us with i_size modifications during truncation.
5719          *
5720          * ptep could have already be assigned via huge_pte_offset.  That
5721          * is OK, as huge_pte_alloc will return the same value unless
5722          * something has changed.
5723          */
5724         mapping = vma->vm_file->f_mapping;
5725         i_mmap_lock_read(mapping);
5726         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5727         if (!ptep) {
5728                 i_mmap_unlock_read(mapping);
5729                 return VM_FAULT_OOM;
5730         }
5731
5732         /*
5733          * Serialize hugepage allocation and instantiation, so that we don't
5734          * get spurious allocation failures if two CPUs race to instantiate
5735          * the same page in the page cache.
5736          */
5737         idx = vma_hugecache_offset(h, vma, haddr);
5738         hash = hugetlb_fault_mutex_hash(mapping, idx);
5739         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5740
5741         entry = huge_ptep_get(ptep);
5742         /* PTE markers should be handled the same way as none pte */
5743         if (huge_pte_none_mostly(entry)) {
5744                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5745                                       entry, flags);
5746                 goto out_mutex;
5747         }
5748
5749         ret = 0;
5750
5751         /*
5752          * entry could be a migration/hwpoison entry at this point, so this
5753          * check prevents the kernel from going below assuming that we have
5754          * an active hugepage in pagecache. This goto expects the 2nd page
5755          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5756          * properly handle it.
5757          */
5758         if (!pte_present(entry))
5759                 goto out_mutex;
5760
5761         /*
5762          * If we are going to COW/unshare the mapping later, we examine the
5763          * pending reservations for this page now. This will ensure that any
5764          * allocations necessary to record that reservation occur outside the
5765          * spinlock. For private mappings, we also lookup the pagecache
5766          * page now as it is used to determine if a reservation has been
5767          * consumed.
5768          */
5769         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5770             !huge_pte_write(entry)) {
5771                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5772                         ret = VM_FAULT_OOM;
5773                         goto out_mutex;
5774                 }
5775                 /* Just decrements count, does not deallocate */
5776                 vma_end_reservation(h, vma, haddr);
5777
5778                 if (!(vma->vm_flags & VM_MAYSHARE))
5779                         pagecache_page = hugetlbfs_pagecache_page(h,
5780                                                                 vma, haddr);
5781         }
5782
5783         ptl = huge_pte_lock(h, mm, ptep);
5784
5785         /* Check for a racing update before calling hugetlb_wp() */
5786         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5787                 goto out_ptl;
5788
5789         /* Handle userfault-wp first, before trying to lock more pages */
5790         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5791             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5792                 struct vm_fault vmf = {
5793                         .vma = vma,
5794                         .address = haddr,
5795                         .real_address = address,
5796                         .flags = flags,
5797                 };
5798
5799                 spin_unlock(ptl);
5800                 if (pagecache_page) {
5801                         unlock_page(pagecache_page);
5802                         put_page(pagecache_page);
5803                 }
5804                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5805                 i_mmap_unlock_read(mapping);
5806                 return handle_userfault(&vmf, VM_UFFD_WP);
5807         }
5808
5809         /*
5810          * hugetlb_wp() requires page locks of pte_page(entry) and
5811          * pagecache_page, so here we need take the former one
5812          * when page != pagecache_page or !pagecache_page.
5813          */
5814         page = pte_page(entry);
5815         if (page != pagecache_page)
5816                 if (!trylock_page(page)) {
5817                         need_wait_lock = 1;
5818                         goto out_ptl;
5819                 }
5820
5821         get_page(page);
5822
5823         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5824                 if (!huge_pte_write(entry)) {
5825                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5826                                          pagecache_page, ptl);
5827                         goto out_put_page;
5828                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5829                         entry = huge_pte_mkdirty(entry);
5830                 }
5831         }
5832         entry = pte_mkyoung(entry);
5833         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5834                                                 flags & FAULT_FLAG_WRITE))
5835                 update_mmu_cache(vma, haddr, ptep);
5836 out_put_page:
5837         if (page != pagecache_page)
5838                 unlock_page(page);
5839         put_page(page);
5840 out_ptl:
5841         spin_unlock(ptl);
5842
5843         if (pagecache_page) {
5844                 unlock_page(pagecache_page);
5845                 put_page(pagecache_page);
5846         }
5847 out_mutex:
5848         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5849         i_mmap_unlock_read(mapping);
5850         /*
5851          * Generally it's safe to hold refcount during waiting page lock. But
5852          * here we just wait to defer the next page fault to avoid busy loop and
5853          * the page is not used after unlocked before returning from the current
5854          * page fault. So we are safe from accessing freed page, even if we wait
5855          * here without taking refcount.
5856          */
5857         if (need_wait_lock)
5858                 wait_on_page_locked(page);
5859         return ret;
5860 }
5861
5862 #ifdef CONFIG_USERFAULTFD
5863 /*
5864  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5865  * modifications for huge pages.
5866  */
5867 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5868                             pte_t *dst_pte,
5869                             struct vm_area_struct *dst_vma,
5870                             unsigned long dst_addr,
5871                             unsigned long src_addr,
5872                             enum mcopy_atomic_mode mode,
5873                             struct page **pagep,
5874                             bool wp_copy)
5875 {
5876         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5877         struct hstate *h = hstate_vma(dst_vma);
5878         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5879         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5880         unsigned long size;
5881         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5882         pte_t _dst_pte;
5883         spinlock_t *ptl;
5884         int ret = -ENOMEM;
5885         struct page *page;
5886         int writable;
5887         bool page_in_pagecache = false;
5888
5889         if (is_continue) {
5890                 ret = -EFAULT;
5891                 page = find_lock_page(mapping, idx);
5892                 if (!page)
5893                         goto out;
5894                 page_in_pagecache = true;
5895         } else if (!*pagep) {
5896                 /* If a page already exists, then it's UFFDIO_COPY for
5897                  * a non-missing case. Return -EEXIST.
5898                  */
5899                 if (vm_shared &&
5900                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5901                         ret = -EEXIST;
5902                         goto out;
5903                 }
5904
5905                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5906                 if (IS_ERR(page)) {
5907                         ret = -ENOMEM;
5908                         goto out;
5909                 }
5910
5911                 ret = copy_huge_page_from_user(page,
5912                                                 (const void __user *) src_addr,
5913                                                 pages_per_huge_page(h), false);
5914
5915                 /* fallback to copy_from_user outside mmap_lock */
5916                 if (unlikely(ret)) {
5917                         ret = -ENOENT;
5918                         /* Free the allocated page which may have
5919                          * consumed a reservation.
5920                          */
5921                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5922                         put_page(page);
5923
5924                         /* Allocate a temporary page to hold the copied
5925                          * contents.
5926                          */
5927                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5928                         if (!page) {
5929                                 ret = -ENOMEM;
5930                                 goto out;
5931                         }
5932                         *pagep = page;
5933                         /* Set the outparam pagep and return to the caller to
5934                          * copy the contents outside the lock. Don't free the
5935                          * page.
5936                          */
5937                         goto out;
5938                 }
5939         } else {
5940                 if (vm_shared &&
5941                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5942                         put_page(*pagep);
5943                         ret = -EEXIST;
5944                         *pagep = NULL;
5945                         goto out;
5946                 }
5947
5948                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5949                 if (IS_ERR(page)) {
5950                         ret = -ENOMEM;
5951                         *pagep = NULL;
5952                         goto out;
5953                 }
5954                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5955                                     pages_per_huge_page(h));
5956                 put_page(*pagep);
5957                 *pagep = NULL;
5958         }
5959
5960         /*
5961          * The memory barrier inside __SetPageUptodate makes sure that
5962          * preceding stores to the page contents become visible before
5963          * the set_pte_at() write.
5964          */
5965         __SetPageUptodate(page);
5966
5967         /* Add shared, newly allocated pages to the page cache. */
5968         if (vm_shared && !is_continue) {
5969                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5970                 ret = -EFAULT;
5971                 if (idx >= size)
5972                         goto out_release_nounlock;
5973
5974                 /*
5975                  * Serialization between remove_inode_hugepages() and
5976                  * huge_add_to_page_cache() below happens through the
5977                  * hugetlb_fault_mutex_table that here must be hold by
5978                  * the caller.
5979                  */
5980                 ret = huge_add_to_page_cache(page, mapping, idx);
5981                 if (ret)
5982                         goto out_release_nounlock;
5983                 page_in_pagecache = true;
5984         }
5985
5986         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5987         spin_lock(ptl);
5988
5989         /*
5990          * Recheck the i_size after holding PT lock to make sure not
5991          * to leave any page mapped (as page_mapped()) beyond the end
5992          * of the i_size (remove_inode_hugepages() is strict about
5993          * enforcing that). If we bail out here, we'll also leave a
5994          * page in the radix tree in the vm_shared case beyond the end
5995          * of the i_size, but remove_inode_hugepages() will take care
5996          * of it as soon as we drop the hugetlb_fault_mutex_table.
5997          */
5998         size = i_size_read(mapping->host) >> huge_page_shift(h);
5999         ret = -EFAULT;
6000         if (idx >= size)
6001                 goto out_release_unlock;
6002
6003         ret = -EEXIST;
6004         /*
6005          * We allow to overwrite a pte marker: consider when both MISSING|WP
6006          * registered, we firstly wr-protect a none pte which has no page cache
6007          * page backing it, then access the page.
6008          */
6009         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6010                 goto out_release_unlock;
6011
6012         if (vm_shared) {
6013                 page_dup_file_rmap(page, true);
6014         } else {
6015                 ClearHPageRestoreReserve(page);
6016                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6017         }
6018
6019         /*
6020          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6021          * with wp flag set, don't set pte write bit.
6022          */
6023         if (wp_copy || (is_continue && !vm_shared))
6024                 writable = 0;
6025         else
6026                 writable = dst_vma->vm_flags & VM_WRITE;
6027
6028         _dst_pte = make_huge_pte(dst_vma, page, writable);
6029         /*
6030          * Always mark UFFDIO_COPY page dirty; note that this may not be
6031          * extremely important for hugetlbfs for now since swapping is not
6032          * supported, but we should still be clear in that this page cannot be
6033          * thrown away at will, even if write bit not set.
6034          */
6035         _dst_pte = huge_pte_mkdirty(_dst_pte);
6036         _dst_pte = pte_mkyoung(_dst_pte);
6037
6038         if (wp_copy)
6039                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6040
6041         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6042
6043         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
6044                                         dst_vma->vm_flags & VM_WRITE);
6045         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6046
6047         /* No need to invalidate - it was non-present before */
6048         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6049
6050         spin_unlock(ptl);
6051         if (!is_continue)
6052                 SetHPageMigratable(page);
6053         if (vm_shared || is_continue)
6054                 unlock_page(page);
6055         ret = 0;
6056 out:
6057         return ret;
6058 out_release_unlock:
6059         spin_unlock(ptl);
6060         if (vm_shared || is_continue)
6061                 unlock_page(page);
6062 out_release_nounlock:
6063         if (!page_in_pagecache)
6064                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6065         put_page(page);
6066         goto out;
6067 }
6068 #endif /* CONFIG_USERFAULTFD */
6069
6070 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6071                                  int refs, struct page **pages,
6072                                  struct vm_area_struct **vmas)
6073 {
6074         int nr;
6075
6076         for (nr = 0; nr < refs; nr++) {
6077                 if (likely(pages))
6078                         pages[nr] = mem_map_offset(page, nr);
6079                 if (vmas)
6080                         vmas[nr] = vma;
6081         }
6082 }
6083
6084 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6085                                                bool *unshare)
6086 {
6087         pte_t pteval = huge_ptep_get(pte);
6088
6089         *unshare = false;
6090         if (is_swap_pte(pteval))
6091                 return true;
6092         if (huge_pte_write(pteval))
6093                 return false;
6094         if (flags & FOLL_WRITE)
6095                 return true;
6096         if (gup_must_unshare(flags, pte_page(pteval))) {
6097                 *unshare = true;
6098                 return true;
6099         }
6100         return false;
6101 }
6102
6103 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6104                          struct page **pages, struct vm_area_struct **vmas,
6105                          unsigned long *position, unsigned long *nr_pages,
6106                          long i, unsigned int flags, int *locked)
6107 {
6108         unsigned long pfn_offset;
6109         unsigned long vaddr = *position;
6110         unsigned long remainder = *nr_pages;
6111         struct hstate *h = hstate_vma(vma);
6112         int err = -EFAULT, refs;
6113
6114         while (vaddr < vma->vm_end && remainder) {
6115                 pte_t *pte;
6116                 spinlock_t *ptl = NULL;
6117                 bool unshare = false;
6118                 int absent;
6119                 struct page *page;
6120
6121                 /*
6122                  * If we have a pending SIGKILL, don't keep faulting pages and
6123                  * potentially allocating memory.
6124                  */
6125                 if (fatal_signal_pending(current)) {
6126                         remainder = 0;
6127                         break;
6128                 }
6129
6130                 /*
6131                  * Some archs (sparc64, sh*) have multiple pte_ts to
6132                  * each hugepage.  We have to make sure we get the
6133                  * first, for the page indexing below to work.
6134                  *
6135                  * Note that page table lock is not held when pte is null.
6136                  */
6137                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6138                                       huge_page_size(h));
6139                 if (pte)
6140                         ptl = huge_pte_lock(h, mm, pte);
6141                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6142
6143                 /*
6144                  * When coredumping, it suits get_dump_page if we just return
6145                  * an error where there's an empty slot with no huge pagecache
6146                  * to back it.  This way, we avoid allocating a hugepage, and
6147                  * the sparse dumpfile avoids allocating disk blocks, but its
6148                  * huge holes still show up with zeroes where they need to be.
6149                  */
6150                 if (absent && (flags & FOLL_DUMP) &&
6151                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6152                         if (pte)
6153                                 spin_unlock(ptl);
6154                         remainder = 0;
6155                         break;
6156                 }
6157
6158                 /*
6159                  * We need call hugetlb_fault for both hugepages under migration
6160                  * (in which case hugetlb_fault waits for the migration,) and
6161                  * hwpoisoned hugepages (in which case we need to prevent the
6162                  * caller from accessing to them.) In order to do this, we use
6163                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6164                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6165                  * both cases, and because we can't follow correct pages
6166                  * directly from any kind of swap entries.
6167                  */
6168                 if (absent ||
6169                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6170                         vm_fault_t ret;
6171                         unsigned int fault_flags = 0;
6172
6173                         if (pte)
6174                                 spin_unlock(ptl);
6175                         if (flags & FOLL_WRITE)
6176                                 fault_flags |= FAULT_FLAG_WRITE;
6177                         else if (unshare)
6178                                 fault_flags |= FAULT_FLAG_UNSHARE;
6179                         if (locked)
6180                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6181                                         FAULT_FLAG_KILLABLE;
6182                         if (flags & FOLL_NOWAIT)
6183                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6184                                         FAULT_FLAG_RETRY_NOWAIT;
6185                         if (flags & FOLL_TRIED) {
6186                                 /*
6187                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6188                                  * FAULT_FLAG_TRIED can co-exist
6189                                  */
6190                                 fault_flags |= FAULT_FLAG_TRIED;
6191                         }
6192                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6193                         if (ret & VM_FAULT_ERROR) {
6194                                 err = vm_fault_to_errno(ret, flags);
6195                                 remainder = 0;
6196                                 break;
6197                         }
6198                         if (ret & VM_FAULT_RETRY) {
6199                                 if (locked &&
6200                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6201                                         *locked = 0;
6202                                 *nr_pages = 0;
6203                                 /*
6204                                  * VM_FAULT_RETRY must not return an
6205                                  * error, it will return zero
6206                                  * instead.
6207                                  *
6208                                  * No need to update "position" as the
6209                                  * caller will not check it after
6210                                  * *nr_pages is set to 0.
6211                                  */
6212                                 return i;
6213                         }
6214                         continue;
6215                 }
6216
6217                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6218                 page = pte_page(huge_ptep_get(pte));
6219
6220                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6221                                !PageAnonExclusive(page), page);
6222
6223                 /*
6224                  * If subpage information not requested, update counters
6225                  * and skip the same_page loop below.
6226                  */
6227                 if (!pages && !vmas && !pfn_offset &&
6228                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6229                     (remainder >= pages_per_huge_page(h))) {
6230                         vaddr += huge_page_size(h);
6231                         remainder -= pages_per_huge_page(h);
6232                         i += pages_per_huge_page(h);
6233                         spin_unlock(ptl);
6234                         continue;
6235                 }
6236
6237                 /* vaddr may not be aligned to PAGE_SIZE */
6238                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6239                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6240
6241                 if (pages || vmas)
6242                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6243                                              vma, refs,
6244                                              likely(pages) ? pages + i : NULL,
6245                                              vmas ? vmas + i : NULL);
6246
6247                 if (pages) {
6248                         /*
6249                          * try_grab_folio() should always succeed here,
6250                          * because: a) we hold the ptl lock, and b) we've just
6251                          * checked that the huge page is present in the page
6252                          * tables. If the huge page is present, then the tail
6253                          * pages must also be present. The ptl prevents the
6254                          * head page and tail pages from being rearranged in
6255                          * any way. So this page must be available at this
6256                          * point, unless the page refcount overflowed:
6257                          */
6258                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6259                                                          flags))) {
6260                                 spin_unlock(ptl);
6261                                 remainder = 0;
6262                                 err = -ENOMEM;
6263                                 break;
6264                         }
6265                 }
6266
6267                 vaddr += (refs << PAGE_SHIFT);
6268                 remainder -= refs;
6269                 i += refs;
6270
6271                 spin_unlock(ptl);
6272         }
6273         *nr_pages = remainder;
6274         /*
6275          * setting position is actually required only if remainder is
6276          * not zero but it's faster not to add a "if (remainder)"
6277          * branch.
6278          */
6279         *position = vaddr;
6280
6281         return i ? i : err;
6282 }
6283
6284 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6285                 unsigned long address, unsigned long end,
6286                 pgprot_t newprot, unsigned long cp_flags)
6287 {
6288         struct mm_struct *mm = vma->vm_mm;
6289         unsigned long start = address;
6290         pte_t *ptep;
6291         pte_t pte;
6292         struct hstate *h = hstate_vma(vma);
6293         unsigned long pages = 0, psize = huge_page_size(h);
6294         bool shared_pmd = false;
6295         struct mmu_notifier_range range;
6296         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6297         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6298
6299         /*
6300          * In the case of shared PMDs, the area to flush could be beyond
6301          * start/end.  Set range.start/range.end to cover the maximum possible
6302          * range if PMD sharing is possible.
6303          */
6304         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6305                                 0, vma, mm, start, end);
6306         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6307
6308         BUG_ON(address >= end);
6309         flush_cache_range(vma, range.start, range.end);
6310
6311         mmu_notifier_invalidate_range_start(&range);
6312         i_mmap_lock_write(vma->vm_file->f_mapping);
6313         for (; address < end; address += psize) {
6314                 spinlock_t *ptl;
6315                 ptep = huge_pte_offset(mm, address, psize);
6316                 if (!ptep)
6317                         continue;
6318                 ptl = huge_pte_lock(h, mm, ptep);
6319                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6320                         /*
6321                          * When uffd-wp is enabled on the vma, unshare
6322                          * shouldn't happen at all.  Warn about it if it
6323                          * happened due to some reason.
6324                          */
6325                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6326                         pages++;
6327                         spin_unlock(ptl);
6328                         shared_pmd = true;
6329                         continue;
6330                 }
6331                 pte = huge_ptep_get(ptep);
6332                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6333                         spin_unlock(ptl);
6334                         continue;
6335                 }
6336                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6337                         swp_entry_t entry = pte_to_swp_entry(pte);
6338                         struct page *page = pfn_swap_entry_to_page(entry);
6339
6340                         if (!is_readable_migration_entry(entry)) {
6341                                 pte_t newpte;
6342
6343                                 if (PageAnon(page))
6344                                         entry = make_readable_exclusive_migration_entry(
6345                                                                 swp_offset(entry));
6346                                 else
6347                                         entry = make_readable_migration_entry(
6348                                                                 swp_offset(entry));
6349                                 newpte = swp_entry_to_pte(entry);
6350                                 if (uffd_wp)
6351                                         newpte = pte_swp_mkuffd_wp(newpte);
6352                                 else if (uffd_wp_resolve)
6353                                         newpte = pte_swp_clear_uffd_wp(newpte);
6354                                 set_huge_swap_pte_at(mm, address, ptep,
6355                                                      newpte, psize);
6356                                 pages++;
6357                         }
6358                         spin_unlock(ptl);
6359                         continue;
6360                 }
6361                 if (unlikely(pte_marker_uffd_wp(pte))) {
6362                         /*
6363                          * This is changing a non-present pte into a none pte,
6364                          * no need for huge_ptep_modify_prot_start/commit().
6365                          */
6366                         if (uffd_wp_resolve)
6367                                 huge_pte_clear(mm, address, ptep, psize);
6368                 }
6369                 if (!huge_pte_none(pte)) {
6370                         pte_t old_pte;
6371                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6372
6373                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6374                         pte = huge_pte_modify(old_pte, newprot);
6375                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6376                         if (uffd_wp)
6377                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6378                         else if (uffd_wp_resolve)
6379                                 pte = huge_pte_clear_uffd_wp(pte);
6380                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6381                         pages++;
6382                 } else {
6383                         /* None pte */
6384                         if (unlikely(uffd_wp))
6385                                 /* Safe to modify directly (none->non-present). */
6386                                 set_huge_pte_at(mm, address, ptep,
6387                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6388                 }
6389                 spin_unlock(ptl);
6390         }
6391         /*
6392          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6393          * may have cleared our pud entry and done put_page on the page table:
6394          * once we release i_mmap_rwsem, another task can do the final put_page
6395          * and that page table be reused and filled with junk.  If we actually
6396          * did unshare a page of pmds, flush the range corresponding to the pud.
6397          */
6398         if (shared_pmd)
6399                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6400         else
6401                 flush_hugetlb_tlb_range(vma, start, end);
6402         /*
6403          * No need to call mmu_notifier_invalidate_range() we are downgrading
6404          * page table protection not changing it to point to a new page.
6405          *
6406          * See Documentation/vm/mmu_notifier.rst
6407          */
6408         i_mmap_unlock_write(vma->vm_file->f_mapping);
6409         mmu_notifier_invalidate_range_end(&range);
6410
6411         return pages << h->order;
6412 }
6413
6414 /* Return true if reservation was successful, false otherwise.  */
6415 bool hugetlb_reserve_pages(struct inode *inode,
6416                                         long from, long to,
6417                                         struct vm_area_struct *vma,
6418                                         vm_flags_t vm_flags)
6419 {
6420         long chg, add = -1;
6421         struct hstate *h = hstate_inode(inode);
6422         struct hugepage_subpool *spool = subpool_inode(inode);
6423         struct resv_map *resv_map;
6424         struct hugetlb_cgroup *h_cg = NULL;
6425         long gbl_reserve, regions_needed = 0;
6426
6427         /* This should never happen */
6428         if (from > to) {
6429                 VM_WARN(1, "%s called with a negative range\n", __func__);
6430                 return false;
6431         }
6432
6433         /*
6434          * Only apply hugepage reservation if asked. At fault time, an
6435          * attempt will be made for VM_NORESERVE to allocate a page
6436          * without using reserves
6437          */
6438         if (vm_flags & VM_NORESERVE)
6439                 return true;
6440
6441         /*
6442          * Shared mappings base their reservation on the number of pages that
6443          * are already allocated on behalf of the file. Private mappings need
6444          * to reserve the full area even if read-only as mprotect() may be
6445          * called to make the mapping read-write. Assume !vma is a shm mapping
6446          */
6447         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6448                 /*
6449                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6450                  * called for inodes for which resv_maps were created (see
6451                  * hugetlbfs_get_inode).
6452                  */
6453                 resv_map = inode_resv_map(inode);
6454
6455                 chg = region_chg(resv_map, from, to, &regions_needed);
6456
6457         } else {
6458                 /* Private mapping. */
6459                 resv_map = resv_map_alloc();
6460                 if (!resv_map)
6461                         return false;
6462
6463                 chg = to - from;
6464
6465                 set_vma_resv_map(vma, resv_map);
6466                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6467         }
6468
6469         if (chg < 0)
6470                 goto out_err;
6471
6472         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6473                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6474                 goto out_err;
6475
6476         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6477                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6478                  * of the resv_map.
6479                  */
6480                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6481         }
6482
6483         /*
6484          * There must be enough pages in the subpool for the mapping. If
6485          * the subpool has a minimum size, there may be some global
6486          * reservations already in place (gbl_reserve).
6487          */
6488         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6489         if (gbl_reserve < 0)
6490                 goto out_uncharge_cgroup;
6491
6492         /*
6493          * Check enough hugepages are available for the reservation.
6494          * Hand the pages back to the subpool if there are not
6495          */
6496         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6497                 goto out_put_pages;
6498
6499         /*
6500          * Account for the reservations made. Shared mappings record regions
6501          * that have reservations as they are shared by multiple VMAs.
6502          * When the last VMA disappears, the region map says how much
6503          * the reservation was and the page cache tells how much of
6504          * the reservation was consumed. Private mappings are per-VMA and
6505          * only the consumed reservations are tracked. When the VMA
6506          * disappears, the original reservation is the VMA size and the
6507          * consumed reservations are stored in the map. Hence, nothing
6508          * else has to be done for private mappings here
6509          */
6510         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6511                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6512
6513                 if (unlikely(add < 0)) {
6514                         hugetlb_acct_memory(h, -gbl_reserve);
6515                         goto out_put_pages;
6516                 } else if (unlikely(chg > add)) {
6517                         /*
6518                          * pages in this range were added to the reserve
6519                          * map between region_chg and region_add.  This
6520                          * indicates a race with alloc_huge_page.  Adjust
6521                          * the subpool and reserve counts modified above
6522                          * based on the difference.
6523                          */
6524                         long rsv_adjust;
6525
6526                         /*
6527                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6528                          * reference to h_cg->css. See comment below for detail.
6529                          */
6530                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6531                                 hstate_index(h),
6532                                 (chg - add) * pages_per_huge_page(h), h_cg);
6533
6534                         rsv_adjust = hugepage_subpool_put_pages(spool,
6535                                                                 chg - add);
6536                         hugetlb_acct_memory(h, -rsv_adjust);
6537                 } else if (h_cg) {
6538                         /*
6539                          * The file_regions will hold their own reference to
6540                          * h_cg->css. So we should release the reference held
6541                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6542                          * done.
6543                          */
6544                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6545                 }
6546         }
6547         return true;
6548
6549 out_put_pages:
6550         /* put back original number of pages, chg */
6551         (void)hugepage_subpool_put_pages(spool, chg);
6552 out_uncharge_cgroup:
6553         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6554                                             chg * pages_per_huge_page(h), h_cg);
6555 out_err:
6556         if (!vma || vma->vm_flags & VM_MAYSHARE)
6557                 /* Only call region_abort if the region_chg succeeded but the
6558                  * region_add failed or didn't run.
6559                  */
6560                 if (chg >= 0 && add < 0)
6561                         region_abort(resv_map, from, to, regions_needed);
6562         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6563                 kref_put(&resv_map->refs, resv_map_release);
6564         return false;
6565 }
6566
6567 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6568                                                                 long freed)
6569 {
6570         struct hstate *h = hstate_inode(inode);
6571         struct resv_map *resv_map = inode_resv_map(inode);
6572         long chg = 0;
6573         struct hugepage_subpool *spool = subpool_inode(inode);
6574         long gbl_reserve;
6575
6576         /*
6577          * Since this routine can be called in the evict inode path for all
6578          * hugetlbfs inodes, resv_map could be NULL.
6579          */
6580         if (resv_map) {
6581                 chg = region_del(resv_map, start, end);
6582                 /*
6583                  * region_del() can fail in the rare case where a region
6584                  * must be split and another region descriptor can not be
6585                  * allocated.  If end == LONG_MAX, it will not fail.
6586                  */
6587                 if (chg < 0)
6588                         return chg;
6589         }
6590
6591         spin_lock(&inode->i_lock);
6592         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6593         spin_unlock(&inode->i_lock);
6594
6595         /*
6596          * If the subpool has a minimum size, the number of global
6597          * reservations to be released may be adjusted.
6598          *
6599          * Note that !resv_map implies freed == 0. So (chg - freed)
6600          * won't go negative.
6601          */
6602         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6603         hugetlb_acct_memory(h, -gbl_reserve);
6604
6605         return 0;
6606 }
6607
6608 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6609 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6610                                 struct vm_area_struct *vma,
6611                                 unsigned long addr, pgoff_t idx)
6612 {
6613         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6614                                 svma->vm_start;
6615         unsigned long sbase = saddr & PUD_MASK;
6616         unsigned long s_end = sbase + PUD_SIZE;
6617
6618         /* Allow segments to share if only one is marked locked */
6619         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6620         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6621
6622         /*
6623          * match the virtual addresses, permission and the alignment of the
6624          * page table page.
6625          */
6626         if (pmd_index(addr) != pmd_index(saddr) ||
6627             vm_flags != svm_flags ||
6628             !range_in_vma(svma, sbase, s_end))
6629                 return 0;
6630
6631         return saddr;
6632 }
6633
6634 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6635 {
6636         unsigned long base = addr & PUD_MASK;
6637         unsigned long end = base + PUD_SIZE;
6638
6639         /*
6640          * check on proper vm_flags and page table alignment
6641          */
6642         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6643                 return true;
6644         return false;
6645 }
6646
6647 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6648 {
6649 #ifdef CONFIG_USERFAULTFD
6650         if (uffd_disable_huge_pmd_share(vma))
6651                 return false;
6652 #endif
6653         return vma_shareable(vma, addr);
6654 }
6655
6656 /*
6657  * Determine if start,end range within vma could be mapped by shared pmd.
6658  * If yes, adjust start and end to cover range associated with possible
6659  * shared pmd mappings.
6660  */
6661 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6662                                 unsigned long *start, unsigned long *end)
6663 {
6664         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6665                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6666
6667         /*
6668          * vma needs to span at least one aligned PUD size, and the range
6669          * must be at least partially within in.
6670          */
6671         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6672                 (*end <= v_start) || (*start >= v_end))
6673                 return;
6674
6675         /* Extend the range to be PUD aligned for a worst case scenario */
6676         if (*start > v_start)
6677                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6678
6679         if (*end < v_end)
6680                 *end = ALIGN(*end, PUD_SIZE);
6681 }
6682
6683 /*
6684  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6685  * and returns the corresponding pte. While this is not necessary for the
6686  * !shared pmd case because we can allocate the pmd later as well, it makes the
6687  * code much cleaner.
6688  *
6689  * This routine must be called with i_mmap_rwsem held in at least read mode if
6690  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6691  * table entries associated with the address space.  This is important as we
6692  * are setting up sharing based on existing page table entries (mappings).
6693  */
6694 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6695                       unsigned long addr, pud_t *pud)
6696 {
6697         struct address_space *mapping = vma->vm_file->f_mapping;
6698         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6699                         vma->vm_pgoff;
6700         struct vm_area_struct *svma;
6701         unsigned long saddr;
6702         pte_t *spte = NULL;
6703         pte_t *pte;
6704         spinlock_t *ptl;
6705
6706         i_mmap_assert_locked(mapping);
6707         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6708                 if (svma == vma)
6709                         continue;
6710
6711                 saddr = page_table_shareable(svma, vma, addr, idx);
6712                 if (saddr) {
6713                         spte = huge_pte_offset(svma->vm_mm, saddr,
6714                                                vma_mmu_pagesize(svma));
6715                         if (spte) {
6716                                 get_page(virt_to_page(spte));
6717                                 break;
6718                         }
6719                 }
6720         }
6721
6722         if (!spte)
6723                 goto out;
6724
6725         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6726         if (pud_none(*pud)) {
6727                 pud_populate(mm, pud,
6728                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6729                 mm_inc_nr_pmds(mm);
6730         } else {
6731                 put_page(virt_to_page(spte));
6732         }
6733         spin_unlock(ptl);
6734 out:
6735         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6736         return pte;
6737 }
6738
6739 /*
6740  * unmap huge page backed by shared pte.
6741  *
6742  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6743  * indicated by page_count > 1, unmap is achieved by clearing pud and
6744  * decrementing the ref count. If count == 1, the pte page is not shared.
6745  *
6746  * Called with page table lock held and i_mmap_rwsem held in write mode.
6747  *
6748  * returns: 1 successfully unmapped a shared pte page
6749  *          0 the underlying pte page is not shared, or it is the last user
6750  */
6751 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6752                                         unsigned long *addr, pte_t *ptep)
6753 {
6754         pgd_t *pgd = pgd_offset(mm, *addr);
6755         p4d_t *p4d = p4d_offset(pgd, *addr);
6756         pud_t *pud = pud_offset(p4d, *addr);
6757
6758         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6759         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6760         if (page_count(virt_to_page(ptep)) == 1)
6761                 return 0;
6762
6763         pud_clear(pud);
6764         put_page(virt_to_page(ptep));
6765         mm_dec_nr_pmds(mm);
6766         /*
6767          * This update of passed address optimizes loops sequentially
6768          * processing addresses in increments of huge page size (PMD_SIZE
6769          * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6770          * Update address to the 'last page' in the cleared area so that
6771          * calling loop can move to first page past this area.
6772          */
6773         *addr |= PUD_SIZE - PMD_SIZE;
6774         return 1;
6775 }
6776
6777 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6778 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6779                       unsigned long addr, pud_t *pud)
6780 {
6781         return NULL;
6782 }
6783
6784 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6785                                 unsigned long *addr, pte_t *ptep)
6786 {
6787         return 0;
6788 }
6789
6790 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6791                                 unsigned long *start, unsigned long *end)
6792 {
6793 }
6794
6795 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6796 {
6797         return false;
6798 }
6799 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6800
6801 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6802 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6803                         unsigned long addr, unsigned long sz)
6804 {
6805         pgd_t *pgd;
6806         p4d_t *p4d;
6807         pud_t *pud;
6808         pte_t *pte = NULL;
6809
6810         pgd = pgd_offset(mm, addr);
6811         p4d = p4d_alloc(mm, pgd, addr);
6812         if (!p4d)
6813                 return NULL;
6814         pud = pud_alloc(mm, p4d, addr);
6815         if (pud) {
6816                 if (sz == PUD_SIZE) {
6817                         pte = (pte_t *)pud;
6818                 } else {
6819                         BUG_ON(sz != PMD_SIZE);
6820                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6821                                 pte = huge_pmd_share(mm, vma, addr, pud);
6822                         else
6823                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6824                 }
6825         }
6826         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6827
6828         return pte;
6829 }
6830
6831 /*
6832  * huge_pte_offset() - Walk the page table to resolve the hugepage
6833  * entry at address @addr
6834  *
6835  * Return: Pointer to page table entry (PUD or PMD) for
6836  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6837  * size @sz doesn't match the hugepage size at this level of the page
6838  * table.
6839  */
6840 pte_t *huge_pte_offset(struct mm_struct *mm,
6841                        unsigned long addr, unsigned long sz)
6842 {
6843         pgd_t *pgd;
6844         p4d_t *p4d;
6845         pud_t *pud;
6846         pmd_t *pmd;
6847
6848         pgd = pgd_offset(mm, addr);
6849         if (!pgd_present(*pgd))
6850                 return NULL;
6851         p4d = p4d_offset(pgd, addr);
6852         if (!p4d_present(*p4d))
6853                 return NULL;
6854
6855         pud = pud_offset(p4d, addr);
6856         if (sz == PUD_SIZE)
6857                 /* must be pud huge, non-present or none */
6858                 return (pte_t *)pud;
6859         if (!pud_present(*pud))
6860                 return NULL;
6861         /* must have a valid entry and size to go further */
6862
6863         pmd = pmd_offset(pud, addr);
6864         /* must be pmd huge, non-present or none */
6865         return (pte_t *)pmd;
6866 }
6867
6868 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6869
6870 /*
6871  * These functions are overwritable if your architecture needs its own
6872  * behavior.
6873  */
6874 struct page * __weak
6875 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6876                               int write)
6877 {
6878         return ERR_PTR(-EINVAL);
6879 }
6880
6881 struct page * __weak
6882 follow_huge_pd(struct vm_area_struct *vma,
6883                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6884 {
6885         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6886         return NULL;
6887 }
6888
6889 struct page * __weak
6890 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6891                 pmd_t *pmd, int flags)
6892 {
6893         struct page *page = NULL;
6894         spinlock_t *ptl;
6895         pte_t pte;
6896
6897         /*
6898          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6899          * follow_hugetlb_page().
6900          */
6901         if (WARN_ON_ONCE(flags & FOLL_PIN))
6902                 return NULL;
6903
6904 retry:
6905         ptl = pmd_lockptr(mm, pmd);
6906         spin_lock(ptl);
6907         /*
6908          * make sure that the address range covered by this pmd is not
6909          * unmapped from other threads.
6910          */
6911         if (!pmd_huge(*pmd))
6912                 goto out;
6913         pte = huge_ptep_get((pte_t *)pmd);
6914         if (pte_present(pte)) {
6915                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6916                 /*
6917                  * try_grab_page() should always succeed here, because: a) we
6918                  * hold the pmd (ptl) lock, and b) we've just checked that the
6919                  * huge pmd (head) page is present in the page tables. The ptl
6920                  * prevents the head page and tail pages from being rearranged
6921                  * in any way. So this page must be available at this point,
6922                  * unless the page refcount overflowed:
6923                  */
6924                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6925                         page = NULL;
6926                         goto out;
6927                 }
6928         } else {
6929                 if (is_hugetlb_entry_migration(pte)) {
6930                         spin_unlock(ptl);
6931                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6932                         goto retry;
6933                 }
6934                 /*
6935                  * hwpoisoned entry is treated as no_page_table in
6936                  * follow_page_mask().
6937                  */
6938         }
6939 out:
6940         spin_unlock(ptl);
6941         return page;
6942 }
6943
6944 struct page * __weak
6945 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6946                 pud_t *pud, int flags)
6947 {
6948         if (flags & (FOLL_GET | FOLL_PIN))
6949                 return NULL;
6950
6951         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6952 }
6953
6954 struct page * __weak
6955 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6956 {
6957         if (flags & (FOLL_GET | FOLL_PIN))
6958                 return NULL;
6959
6960         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6961 }
6962
6963 bool isolate_huge_page(struct page *page, struct list_head *list)
6964 {
6965         bool ret = true;
6966
6967         spin_lock_irq(&hugetlb_lock);
6968         if (!PageHeadHuge(page) ||
6969             !HPageMigratable(page) ||
6970             !get_page_unless_zero(page)) {
6971                 ret = false;
6972                 goto unlock;
6973         }
6974         ClearHPageMigratable(page);
6975         list_move_tail(&page->lru, list);
6976 unlock:
6977         spin_unlock_irq(&hugetlb_lock);
6978         return ret;
6979 }
6980
6981 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6982 {
6983         int ret = 0;
6984
6985         *hugetlb = false;
6986         spin_lock_irq(&hugetlb_lock);
6987         if (PageHeadHuge(page)) {
6988                 *hugetlb = true;
6989                 if (HPageFreed(page))
6990                         ret = 0;
6991                 else if (HPageMigratable(page))
6992                         ret = get_page_unless_zero(page);
6993                 else
6994                         ret = -EBUSY;
6995         }
6996         spin_unlock_irq(&hugetlb_lock);
6997         return ret;
6998 }
6999
7000 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7001 {
7002         int ret;
7003
7004         spin_lock_irq(&hugetlb_lock);
7005         ret = __get_huge_page_for_hwpoison(pfn, flags);
7006         spin_unlock_irq(&hugetlb_lock);
7007         return ret;
7008 }
7009
7010 void putback_active_hugepage(struct page *page)
7011 {
7012         spin_lock_irq(&hugetlb_lock);
7013         SetHPageMigratable(page);
7014         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7015         spin_unlock_irq(&hugetlb_lock);
7016         put_page(page);
7017 }
7018
7019 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7020 {
7021         struct hstate *h = page_hstate(oldpage);
7022
7023         hugetlb_cgroup_migrate(oldpage, newpage);
7024         set_page_owner_migrate_reason(newpage, reason);
7025
7026         /*
7027          * transfer temporary state of the new huge page. This is
7028          * reverse to other transitions because the newpage is going to
7029          * be final while the old one will be freed so it takes over
7030          * the temporary status.
7031          *
7032          * Also note that we have to transfer the per-node surplus state
7033          * here as well otherwise the global surplus count will not match
7034          * the per-node's.
7035          */
7036         if (HPageTemporary(newpage)) {
7037                 int old_nid = page_to_nid(oldpage);
7038                 int new_nid = page_to_nid(newpage);
7039
7040                 SetHPageTemporary(oldpage);
7041                 ClearHPageTemporary(newpage);
7042
7043                 /*
7044                  * There is no need to transfer the per-node surplus state
7045                  * when we do not cross the node.
7046                  */
7047                 if (new_nid == old_nid)
7048                         return;
7049                 spin_lock_irq(&hugetlb_lock);
7050                 if (h->surplus_huge_pages_node[old_nid]) {
7051                         h->surplus_huge_pages_node[old_nid]--;
7052                         h->surplus_huge_pages_node[new_nid]++;
7053                 }
7054                 spin_unlock_irq(&hugetlb_lock);
7055         }
7056 }
7057
7058 /*
7059  * This function will unconditionally remove all the shared pmd pgtable entries
7060  * within the specific vma for a hugetlbfs memory range.
7061  */
7062 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7063 {
7064         struct hstate *h = hstate_vma(vma);
7065         unsigned long sz = huge_page_size(h);
7066         struct mm_struct *mm = vma->vm_mm;
7067         struct mmu_notifier_range range;
7068         unsigned long address, start, end;
7069         spinlock_t *ptl;
7070         pte_t *ptep;
7071
7072         if (!(vma->vm_flags & VM_MAYSHARE))
7073                 return;
7074
7075         start = ALIGN(vma->vm_start, PUD_SIZE);
7076         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7077
7078         if (start >= end)
7079                 return;
7080
7081         flush_cache_range(vma, start, end);
7082         /*
7083          * No need to call adjust_range_if_pmd_sharing_possible(), because
7084          * we have already done the PUD_SIZE alignment.
7085          */
7086         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7087                                 start, end);
7088         mmu_notifier_invalidate_range_start(&range);
7089         i_mmap_lock_write(vma->vm_file->f_mapping);
7090         for (address = start; address < end; address += PUD_SIZE) {
7091                 unsigned long tmp = address;
7092
7093                 ptep = huge_pte_offset(mm, address, sz);
7094                 if (!ptep)
7095                         continue;
7096                 ptl = huge_pte_lock(h, mm, ptep);
7097                 /* We don't want 'address' to be changed */
7098                 huge_pmd_unshare(mm, vma, &tmp, ptep);
7099                 spin_unlock(ptl);
7100         }
7101         flush_hugetlb_tlb_range(vma, start, end);
7102         i_mmap_unlock_write(vma->vm_file->f_mapping);
7103         /*
7104          * No need to call mmu_notifier_invalidate_range(), see
7105          * Documentation/vm/mmu_notifier.rst.
7106          */
7107         mmu_notifier_invalidate_range_end(&range);
7108 }
7109
7110 #ifdef CONFIG_CMA
7111 static bool cma_reserve_called __initdata;
7112
7113 static int __init cmdline_parse_hugetlb_cma(char *p)
7114 {
7115         int nid, count = 0;
7116         unsigned long tmp;
7117         char *s = p;
7118
7119         while (*s) {
7120                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7121                         break;
7122
7123                 if (s[count] == ':') {
7124                         if (tmp >= MAX_NUMNODES)
7125                                 break;
7126                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7127
7128                         s += count + 1;
7129                         tmp = memparse(s, &s);
7130                         hugetlb_cma_size_in_node[nid] = tmp;
7131                         hugetlb_cma_size += tmp;
7132
7133                         /*
7134                          * Skip the separator if have one, otherwise
7135                          * break the parsing.
7136                          */
7137                         if (*s == ',')
7138                                 s++;
7139                         else
7140                                 break;
7141                 } else {
7142                         hugetlb_cma_size = memparse(p, &p);
7143                         break;
7144                 }
7145         }
7146
7147         return 0;
7148 }
7149
7150 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7151
7152 void __init hugetlb_cma_reserve(int order)
7153 {
7154         unsigned long size, reserved, per_node;
7155         bool node_specific_cma_alloc = false;
7156         int nid;
7157
7158         cma_reserve_called = true;
7159
7160         if (!hugetlb_cma_size)
7161                 return;
7162
7163         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7164                 if (hugetlb_cma_size_in_node[nid] == 0)
7165                         continue;
7166
7167                 if (!node_online(nid)) {
7168                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7169                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7170                         hugetlb_cma_size_in_node[nid] = 0;
7171                         continue;
7172                 }
7173
7174                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7175                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7176                                 nid, (PAGE_SIZE << order) / SZ_1M);
7177                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7178                         hugetlb_cma_size_in_node[nid] = 0;
7179                 } else {
7180                         node_specific_cma_alloc = true;
7181                 }
7182         }
7183
7184         /* Validate the CMA size again in case some invalid nodes specified. */
7185         if (!hugetlb_cma_size)
7186                 return;
7187
7188         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7189                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7190                         (PAGE_SIZE << order) / SZ_1M);
7191                 hugetlb_cma_size = 0;
7192                 return;
7193         }
7194
7195         if (!node_specific_cma_alloc) {
7196                 /*
7197                  * If 3 GB area is requested on a machine with 4 numa nodes,
7198                  * let's allocate 1 GB on first three nodes and ignore the last one.
7199                  */
7200                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7201                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7202                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7203         }
7204
7205         reserved = 0;
7206         for_each_online_node(nid) {
7207                 int res;
7208                 char name[CMA_MAX_NAME];
7209
7210                 if (node_specific_cma_alloc) {
7211                         if (hugetlb_cma_size_in_node[nid] == 0)
7212                                 continue;
7213
7214                         size = hugetlb_cma_size_in_node[nid];
7215                 } else {
7216                         size = min(per_node, hugetlb_cma_size - reserved);
7217                 }
7218
7219                 size = round_up(size, PAGE_SIZE << order);
7220
7221                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7222                 /*
7223                  * Note that 'order per bit' is based on smallest size that
7224                  * may be returned to CMA allocator in the case of
7225                  * huge page demotion.
7226                  */
7227                 res = cma_declare_contiguous_nid(0, size, 0,
7228                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7229                                                  0, false, name,
7230                                                  &hugetlb_cma[nid], nid);
7231                 if (res) {
7232                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7233                                 res, nid);
7234                         continue;
7235                 }
7236
7237                 reserved += size;
7238                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7239                         size / SZ_1M, nid);
7240
7241                 if (reserved >= hugetlb_cma_size)
7242                         break;
7243         }
7244
7245         if (!reserved)
7246                 /*
7247                  * hugetlb_cma_size is used to determine if allocations from
7248                  * cma are possible.  Set to zero if no cma regions are set up.
7249                  */
7250                 hugetlb_cma_size = 0;
7251 }
7252
7253 void __init hugetlb_cma_check(void)
7254 {
7255         if (!hugetlb_cma_size || cma_reserve_called)
7256                 return;
7257
7258         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7259 }
7260
7261 #endif /* CONFIG_CMA */