thp, khugepaged: skip retracting page table if a 64KB hugepage mapping is already...
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102         bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104         spin_unlock(&spool->lock);
105
106         /* If no pages are used, and no other handles to the subpool
107          * remain, give up any reservations based on minimum size and
108          * free the subpool */
109         if (free) {
110                 if (spool->min_hpages != -1)
111                         hugetlb_acct_memory(spool->hstate,
112                                                 -spool->min_hpages);
113                 kfree(spool);
114         }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118                                                 long min_hpages)
119 {
120         struct hugepage_subpool *spool;
121
122         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123         if (!spool)
124                 return NULL;
125
126         spin_lock_init(&spool->lock);
127         spool->count = 1;
128         spool->max_hpages = max_hpages;
129         spool->hstate = h;
130         spool->min_hpages = min_hpages;
131
132         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133                 kfree(spool);
134                 return NULL;
135         }
136         spool->rsv_hpages = min_hpages;
137
138         return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143         spin_lock(&spool->lock);
144         BUG_ON(!spool->count);
145         spool->count--;
146         unlock_or_release_subpool(spool);
147 }
148
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158                                       long delta)
159 {
160         long ret = delta;
161
162         if (!spool)
163                 return ret;
164
165         spin_lock(&spool->lock);
166
167         if (spool->max_hpages != -1) {          /* maximum size accounting */
168                 if ((spool->used_hpages + delta) <= spool->max_hpages)
169                         spool->used_hpages += delta;
170                 else {
171                         ret = -ENOMEM;
172                         goto unlock_ret;
173                 }
174         }
175
176         /* minimum size accounting */
177         if (spool->min_hpages != -1 && spool->rsv_hpages) {
178                 if (delta > spool->rsv_hpages) {
179                         /*
180                          * Asking for more reserves than those already taken on
181                          * behalf of subpool.  Return difference.
182                          */
183                         ret = delta - spool->rsv_hpages;
184                         spool->rsv_hpages = 0;
185                 } else {
186                         ret = 0;        /* reserves already accounted for */
187                         spool->rsv_hpages -= delta;
188                 }
189         }
190
191 unlock_ret:
192         spin_unlock(&spool->lock);
193         return ret;
194 }
195
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203                                        long delta)
204 {
205         long ret = delta;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock(&spool->lock);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 if (!resv->pages_per_hpage)
289                         resv->pages_per_hpage = pages_per_huge_page(h);
290                 /* pages_per_hpage should be the same for all entries in
291                  * a resv_map.
292                  */
293                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
294         } else {
295                 nrg->reservation_counter = NULL;
296                 nrg->css = NULL;
297         }
298 #endif
299 }
300
301 static bool has_same_uncharge_info(struct file_region *rg,
302                                    struct file_region *org)
303 {
304 #ifdef CONFIG_CGROUP_HUGETLB
305         return rg && org &&
306                rg->reservation_counter == org->reservation_counter &&
307                rg->css == org->css;
308
309 #else
310         return true;
311 #endif
312 }
313
314 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
315 {
316         struct file_region *nrg = NULL, *prg = NULL;
317
318         prg = list_prev_entry(rg, link);
319         if (&prg->link != &resv->regions && prg->to == rg->from &&
320             has_same_uncharge_info(prg, rg)) {
321                 prg->to = rg->to;
322
323                 list_del(&rg->link);
324                 kfree(rg);
325
326                 rg = prg;
327         }
328
329         nrg = list_next_entry(rg, link);
330         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
331             has_same_uncharge_info(nrg, rg)) {
332                 nrg->from = rg->from;
333
334                 list_del(&rg->link);
335                 kfree(rg);
336         }
337 }
338
339 /*
340  * Must be called with resv->lock held.
341  *
342  * Calling this with regions_needed != NULL will count the number of pages
343  * to be added but will not modify the linked list. And regions_needed will
344  * indicate the number of file_regions needed in the cache to carry out to add
345  * the regions for this range.
346  */
347 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
348                                      struct hugetlb_cgroup *h_cg,
349                                      struct hstate *h, long *regions_needed)
350 {
351         long add = 0;
352         struct list_head *head = &resv->regions;
353         long last_accounted_offset = f;
354         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
355
356         if (regions_needed)
357                 *regions_needed = 0;
358
359         /* In this loop, we essentially handle an entry for the range
360          * [last_accounted_offset, rg->from), at every iteration, with some
361          * bounds checking.
362          */
363         list_for_each_entry_safe(rg, trg, head, link) {
364                 /* Skip irrelevant regions that start before our range. */
365                 if (rg->from < f) {
366                         /* If this region ends after the last accounted offset,
367                          * then we need to update last_accounted_offset.
368                          */
369                         if (rg->to > last_accounted_offset)
370                                 last_accounted_offset = rg->to;
371                         continue;
372                 }
373
374                 /* When we find a region that starts beyond our range, we've
375                  * finished.
376                  */
377                 if (rg->from > t)
378                         break;
379
380                 /* Add an entry for last_accounted_offset -> rg->from, and
381                  * update last_accounted_offset.
382                  */
383                 if (rg->from > last_accounted_offset) {
384                         add += rg->from - last_accounted_offset;
385                         if (!regions_needed) {
386                                 nrg = get_file_region_entry_from_cache(
387                                         resv, last_accounted_offset, rg->from);
388                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
389                                                                     resv, nrg);
390                                 list_add(&nrg->link, rg->link.prev);
391                                 coalesce_file_region(resv, nrg);
392                         } else
393                                 *regions_needed += 1;
394                 }
395
396                 last_accounted_offset = rg->to;
397         }
398
399         /* Handle the case where our range extends beyond
400          * last_accounted_offset.
401          */
402         if (last_accounted_offset < t) {
403                 add += t - last_accounted_offset;
404                 if (!regions_needed) {
405                         nrg = get_file_region_entry_from_cache(
406                                 resv, last_accounted_offset, t);
407                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
408                         list_add(&nrg->link, rg->link.prev);
409                         coalesce_file_region(resv, nrg);
410                 } else
411                         *regions_needed += 1;
412         }
413
414         VM_BUG_ON(add < 0);
415         return add;
416 }
417
418 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
419  */
420 static int allocate_file_region_entries(struct resv_map *resv,
421                                         int regions_needed)
422         __must_hold(&resv->lock)
423 {
424         struct list_head allocated_regions;
425         int to_allocate = 0, i = 0;
426         struct file_region *trg = NULL, *rg = NULL;
427
428         VM_BUG_ON(regions_needed < 0);
429
430         INIT_LIST_HEAD(&allocated_regions);
431
432         /*
433          * Check for sufficient descriptors in the cache to accommodate
434          * the number of in progress add operations plus regions_needed.
435          *
436          * This is a while loop because when we drop the lock, some other call
437          * to region_add or region_del may have consumed some region_entries,
438          * so we keep looping here until we finally have enough entries for
439          * (adds_in_progress + regions_needed).
440          */
441         while (resv->region_cache_count <
442                (resv->adds_in_progress + regions_needed)) {
443                 to_allocate = resv->adds_in_progress + regions_needed -
444                               resv->region_cache_count;
445
446                 /* At this point, we should have enough entries in the cache
447                  * for all the existings adds_in_progress. We should only be
448                  * needing to allocate for regions_needed.
449                  */
450                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
451
452                 spin_unlock(&resv->lock);
453                 for (i = 0; i < to_allocate; i++) {
454                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
455                         if (!trg)
456                                 goto out_of_memory;
457                         list_add(&trg->link, &allocated_regions);
458                 }
459
460                 spin_lock(&resv->lock);
461
462                 list_splice(&allocated_regions, &resv->region_cache);
463                 resv->region_cache_count += to_allocate;
464         }
465
466         return 0;
467
468 out_of_memory:
469         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
470                 list_del(&rg->link);
471                 kfree(rg);
472         }
473         return -ENOMEM;
474 }
475
476 /*
477  * Add the huge page range represented by [f, t) to the reserve
478  * map.  Regions will be taken from the cache to fill in this range.
479  * Sufficient regions should exist in the cache due to the previous
480  * call to region_chg with the same range, but in some cases the cache will not
481  * have sufficient entries due to races with other code doing region_add or
482  * region_del.  The extra needed entries will be allocated.
483  *
484  * regions_needed is the out value provided by a previous call to region_chg.
485  *
486  * Return the number of new huge pages added to the map.  This number is greater
487  * than or equal to zero.  If file_region entries needed to be allocated for
488  * this operation and we were not able to allocate, it returns -ENOMEM.
489  * region_add of regions of length 1 never allocate file_regions and cannot
490  * fail; region_chg will always allocate at least 1 entry and a region_add for
491  * 1 page will only require at most 1 entry.
492  */
493 static long region_add(struct resv_map *resv, long f, long t,
494                        long in_regions_needed, struct hstate *h,
495                        struct hugetlb_cgroup *h_cg)
496 {
497         long add = 0, actual_regions_needed = 0;
498
499         spin_lock(&resv->lock);
500 retry:
501
502         /* Count how many regions are actually needed to execute this add. */
503         add_reservation_in_range(resv, f, t, NULL, NULL,
504                                  &actual_regions_needed);
505
506         /*
507          * Check for sufficient descriptors in the cache to accommodate
508          * this add operation. Note that actual_regions_needed may be greater
509          * than in_regions_needed, as the resv_map may have been modified since
510          * the region_chg call. In this case, we need to make sure that we
511          * allocate extra entries, such that we have enough for all the
512          * existing adds_in_progress, plus the excess needed for this
513          * operation.
514          */
515         if (actual_regions_needed > in_regions_needed &&
516             resv->region_cache_count <
517                     resv->adds_in_progress +
518                             (actual_regions_needed - in_regions_needed)) {
519                 /* region_add operation of range 1 should never need to
520                  * allocate file_region entries.
521                  */
522                 VM_BUG_ON(t - f <= 1);
523
524                 if (allocate_file_region_entries(
525                             resv, actual_regions_needed - in_regions_needed)) {
526                         return -ENOMEM;
527                 }
528
529                 goto retry;
530         }
531
532         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
533
534         resv->adds_in_progress -= in_regions_needed;
535
536         spin_unlock(&resv->lock);
537         VM_BUG_ON(add < 0);
538         return add;
539 }
540
541 /*
542  * Examine the existing reserve map and determine how many
543  * huge pages in the specified range [f, t) are NOT currently
544  * represented.  This routine is called before a subsequent
545  * call to region_add that will actually modify the reserve
546  * map to add the specified range [f, t).  region_chg does
547  * not change the number of huge pages represented by the
548  * map.  A number of new file_region structures is added to the cache as a
549  * placeholder, for the subsequent region_add call to use. At least 1
550  * file_region structure is added.
551  *
552  * out_regions_needed is the number of regions added to the
553  * resv->adds_in_progress.  This value needs to be provided to a follow up call
554  * to region_add or region_abort for proper accounting.
555  *
556  * Returns the number of huge pages that need to be added to the existing
557  * reservation map for the range [f, t).  This number is greater or equal to
558  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
559  * is needed and can not be allocated.
560  */
561 static long region_chg(struct resv_map *resv, long f, long t,
562                        long *out_regions_needed)
563 {
564         long chg = 0;
565
566         spin_lock(&resv->lock);
567
568         /* Count how many hugepages in this range are NOT represented. */
569         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570                                        out_regions_needed);
571
572         if (*out_regions_needed == 0)
573                 *out_regions_needed = 1;
574
575         if (allocate_file_region_entries(resv, *out_regions_needed))
576                 return -ENOMEM;
577
578         resv->adds_in_progress += *out_regions_needed;
579
580         spin_unlock(&resv->lock);
581         return chg;
582 }
583
584 /*
585  * Abort the in progress add operation.  The adds_in_progress field
586  * of the resv_map keeps track of the operations in progress between
587  * calls to region_chg and region_add.  Operations are sometimes
588  * aborted after the call to region_chg.  In such cases, region_abort
589  * is called to decrement the adds_in_progress counter. regions_needed
590  * is the value returned by the region_chg call, it is used to decrement
591  * the adds_in_progress counter.
592  *
593  * NOTE: The range arguments [f, t) are not needed or used in this
594  * routine.  They are kept to make reading the calling code easier as
595  * arguments will match the associated region_chg call.
596  */
597 static void region_abort(struct resv_map *resv, long f, long t,
598                          long regions_needed)
599 {
600         spin_lock(&resv->lock);
601         VM_BUG_ON(!resv->region_cache_count);
602         resv->adds_in_progress -= regions_needed;
603         spin_unlock(&resv->lock);
604 }
605
606 /*
607  * Delete the specified range [f, t) from the reserve map.  If the
608  * t parameter is LONG_MAX, this indicates that ALL regions after f
609  * should be deleted.  Locate the regions which intersect [f, t)
610  * and either trim, delete or split the existing regions.
611  *
612  * Returns the number of huge pages deleted from the reserve map.
613  * In the normal case, the return value is zero or more.  In the
614  * case where a region must be split, a new region descriptor must
615  * be allocated.  If the allocation fails, -ENOMEM will be returned.
616  * NOTE: If the parameter t == LONG_MAX, then we will never split
617  * a region and possibly return -ENOMEM.  Callers specifying
618  * t == LONG_MAX do not need to check for -ENOMEM error.
619  */
620 static long region_del(struct resv_map *resv, long f, long t)
621 {
622         struct list_head *head = &resv->regions;
623         struct file_region *rg, *trg;
624         struct file_region *nrg = NULL;
625         long del = 0;
626
627 retry:
628         spin_lock(&resv->lock);
629         list_for_each_entry_safe(rg, trg, head, link) {
630                 /*
631                  * Skip regions before the range to be deleted.  file_region
632                  * ranges are normally of the form [from, to).  However, there
633                  * may be a "placeholder" entry in the map which is of the form
634                  * (from, to) with from == to.  Check for placeholder entries
635                  * at the beginning of the range to be deleted.
636                  */
637                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
638                         continue;
639
640                 if (rg->from >= t)
641                         break;
642
643                 if (f > rg->from && t < rg->to) { /* Must split region */
644                         /*
645                          * Check for an entry in the cache before dropping
646                          * lock and attempting allocation.
647                          */
648                         if (!nrg &&
649                             resv->region_cache_count > resv->adds_in_progress) {
650                                 nrg = list_first_entry(&resv->region_cache,
651                                                         struct file_region,
652                                                         link);
653                                 list_del(&nrg->link);
654                                 resv->region_cache_count--;
655                         }
656
657                         if (!nrg) {
658                                 spin_unlock(&resv->lock);
659                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
660                                 if (!nrg)
661                                         return -ENOMEM;
662                                 goto retry;
663                         }
664
665                         del += t - f;
666                         hugetlb_cgroup_uncharge_file_region(
667                                 resv, rg, t - f);
668
669                         /* New entry for end of split region */
670                         nrg->from = t;
671                         nrg->to = rg->to;
672
673                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
674
675                         INIT_LIST_HEAD(&nrg->link);
676
677                         /* Original entry is trimmed */
678                         rg->to = f;
679
680                         list_add(&nrg->link, &rg->link);
681                         nrg = NULL;
682                         break;
683                 }
684
685                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
686                         del += rg->to - rg->from;
687                         hugetlb_cgroup_uncharge_file_region(resv, rg,
688                                                             rg->to - rg->from);
689                         list_del(&rg->link);
690                         kfree(rg);
691                         continue;
692                 }
693
694                 if (f <= rg->from) {    /* Trim beginning of region */
695                         hugetlb_cgroup_uncharge_file_region(resv, rg,
696                                                             t - rg->from);
697
698                         del += t - rg->from;
699                         rg->from = t;
700                 } else {                /* Trim end of region */
701                         hugetlb_cgroup_uncharge_file_region(resv, rg,
702                                                             rg->to - f);
703
704                         del += rg->to - f;
705                         rg->to = f;
706                 }
707         }
708
709         spin_unlock(&resv->lock);
710         kfree(nrg);
711         return del;
712 }
713
714 /*
715  * A rare out of memory error was encountered which prevented removal of
716  * the reserve map region for a page.  The huge page itself was free'ed
717  * and removed from the page cache.  This routine will adjust the subpool
718  * usage count, and the global reserve count if needed.  By incrementing
719  * these counts, the reserve map entry which could not be deleted will
720  * appear as a "reserved" entry instead of simply dangling with incorrect
721  * counts.
722  */
723 void hugetlb_fix_reserve_counts(struct inode *inode)
724 {
725         struct hugepage_subpool *spool = subpool_inode(inode);
726         long rsv_adjust;
727
728         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
729         if (rsv_adjust) {
730                 struct hstate *h = hstate_inode(inode);
731
732                 hugetlb_acct_memory(h, 1);
733         }
734 }
735
736 /*
737  * Count and return the number of huge pages in the reserve map
738  * that intersect with the range [f, t).
739  */
740 static long region_count(struct resv_map *resv, long f, long t)
741 {
742         struct list_head *head = &resv->regions;
743         struct file_region *rg;
744         long chg = 0;
745
746         spin_lock(&resv->lock);
747         /* Locate each segment we overlap with, and count that overlap. */
748         list_for_each_entry(rg, head, link) {
749                 long seg_from;
750                 long seg_to;
751
752                 if (rg->to <= f)
753                         continue;
754                 if (rg->from >= t)
755                         break;
756
757                 seg_from = max(rg->from, f);
758                 seg_to = min(rg->to, t);
759
760                 chg += seg_to - seg_from;
761         }
762         spin_unlock(&resv->lock);
763
764         return chg;
765 }
766
767 /*
768  * Convert the address within this vma to the page offset within
769  * the mapping, in pagecache page units; huge pages here.
770  */
771 static pgoff_t vma_hugecache_offset(struct hstate *h,
772                         struct vm_area_struct *vma, unsigned long address)
773 {
774         return ((address - vma->vm_start) >> huge_page_shift(h)) +
775                         (vma->vm_pgoff >> huge_page_order(h));
776 }
777
778 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
779                                      unsigned long address)
780 {
781         return vma_hugecache_offset(hstate_vma(vma), vma, address);
782 }
783 EXPORT_SYMBOL_GPL(linear_hugepage_index);
784
785 /*
786  * Return the size of the pages allocated when backing a VMA. In the majority
787  * cases this will be same size as used by the page table entries.
788  */
789 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
790 {
791         if (vma->vm_ops && vma->vm_ops->pagesize)
792                 return vma->vm_ops->pagesize(vma);
793         return PAGE_SIZE;
794 }
795 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796
797 /*
798  * Return the page size being used by the MMU to back a VMA. In the majority
799  * of cases, the page size used by the kernel matches the MMU size. On
800  * architectures where it differs, an architecture-specific 'strong'
801  * version of this symbol is required.
802  */
803 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
804 {
805         return vma_kernel_pagesize(vma);
806 }
807
808 /*
809  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
810  * bits of the reservation map pointer, which are always clear due to
811  * alignment.
812  */
813 #define HPAGE_RESV_OWNER    (1UL << 0)
814 #define HPAGE_RESV_UNMAPPED (1UL << 1)
815 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816
817 /*
818  * These helpers are used to track how many pages are reserved for
819  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
820  * is guaranteed to have their future faults succeed.
821  *
822  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
823  * the reserve counters are updated with the hugetlb_lock held. It is safe
824  * to reset the VMA at fork() time as it is not in use yet and there is no
825  * chance of the global counters getting corrupted as a result of the values.
826  *
827  * The private mapping reservation is represented in a subtly different
828  * manner to a shared mapping.  A shared mapping has a region map associated
829  * with the underlying file, this region map represents the backing file
830  * pages which have ever had a reservation assigned which this persists even
831  * after the page is instantiated.  A private mapping has a region map
832  * associated with the original mmap which is attached to all VMAs which
833  * reference it, this region map represents those offsets which have consumed
834  * reservation ie. where pages have been instantiated.
835  */
836 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
837 {
838         return (unsigned long)vma->vm_private_data;
839 }
840
841 static void set_vma_private_data(struct vm_area_struct *vma,
842                                                         unsigned long value)
843 {
844         vma->vm_private_data = (void *)value;
845 }
846
847 static void
848 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
849                                           struct hugetlb_cgroup *h_cg,
850                                           struct hstate *h)
851 {
852 #ifdef CONFIG_CGROUP_HUGETLB
853         if (!h_cg || !h) {
854                 resv_map->reservation_counter = NULL;
855                 resv_map->pages_per_hpage = 0;
856                 resv_map->css = NULL;
857         } else {
858                 resv_map->reservation_counter =
859                         &h_cg->rsvd_hugepage[hstate_index(h)];
860                 resv_map->pages_per_hpage = pages_per_huge_page(h);
861                 resv_map->css = &h_cg->css;
862         }
863 #endif
864 }
865
866 struct resv_map *resv_map_alloc(void)
867 {
868         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
869         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
870
871         if (!resv_map || !rg) {
872                 kfree(resv_map);
873                 kfree(rg);
874                 return NULL;
875         }
876
877         kref_init(&resv_map->refs);
878         spin_lock_init(&resv_map->lock);
879         INIT_LIST_HEAD(&resv_map->regions);
880
881         resv_map->adds_in_progress = 0;
882         /*
883          * Initialize these to 0. On shared mappings, 0's here indicate these
884          * fields don't do cgroup accounting. On private mappings, these will be
885          * re-initialized to the proper values, to indicate that hugetlb cgroup
886          * reservations are to be un-charged from here.
887          */
888         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
889
890         INIT_LIST_HEAD(&resv_map->region_cache);
891         list_add(&rg->link, &resv_map->region_cache);
892         resv_map->region_cache_count = 1;
893
894         return resv_map;
895 }
896
897 void resv_map_release(struct kref *ref)
898 {
899         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
900         struct list_head *head = &resv_map->region_cache;
901         struct file_region *rg, *trg;
902
903         /* Clear out any active regions before we release the map. */
904         region_del(resv_map, 0, LONG_MAX);
905
906         /* ... and any entries left in the cache */
907         list_for_each_entry_safe(rg, trg, head, link) {
908                 list_del(&rg->link);
909                 kfree(rg);
910         }
911
912         VM_BUG_ON(resv_map->adds_in_progress);
913
914         kfree(resv_map);
915 }
916
917 static inline struct resv_map *inode_resv_map(struct inode *inode)
918 {
919         /*
920          * At inode evict time, i_mapping may not point to the original
921          * address space within the inode.  This original address space
922          * contains the pointer to the resv_map.  So, always use the
923          * address space embedded within the inode.
924          * The VERY common case is inode->mapping == &inode->i_data but,
925          * this may not be true for device special inodes.
926          */
927         return (struct resv_map *)(&inode->i_data)->private_data;
928 }
929
930 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
931 {
932         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933         if (vma->vm_flags & VM_MAYSHARE) {
934                 struct address_space *mapping = vma->vm_file->f_mapping;
935                 struct inode *inode = mapping->host;
936
937                 return inode_resv_map(inode);
938
939         } else {
940                 return (struct resv_map *)(get_vma_private_data(vma) &
941                                                         ~HPAGE_RESV_MASK);
942         }
943 }
944
945 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
946 {
947         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949
950         set_vma_private_data(vma, (get_vma_private_data(vma) &
951                                 HPAGE_RESV_MASK) | (unsigned long)map);
952 }
953
954 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
955 {
956         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
957         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
958
959         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960 }
961
962 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
963 {
964         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965
966         return (get_vma_private_data(vma) & flag) != 0;
967 }
968
969 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
970 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         if (!(vma->vm_flags & VM_MAYSHARE))
974                 vma->vm_private_data = (void *)0;
975 }
976
977 /* Returns true if the VMA has associated reserve pages */
978 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
979 {
980         if (vma->vm_flags & VM_NORESERVE) {
981                 /*
982                  * This address is already reserved by other process(chg == 0),
983                  * so, we should decrement reserved count. Without decrementing,
984                  * reserve count remains after releasing inode, because this
985                  * allocated page will go into page cache and is regarded as
986                  * coming from reserved pool in releasing step.  Currently, we
987                  * don't have any other solution to deal with this situation
988                  * properly, so add work-around here.
989                  */
990                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
991                         return true;
992                 else
993                         return false;
994         }
995
996         /* Shared mappings always use reserves */
997         if (vma->vm_flags & VM_MAYSHARE) {
998                 /*
999                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1000                  * be a region map for all pages.  The only situation where
1001                  * there is no region map is if a hole was punched via
1002                  * fallocate.  In this case, there really are no reserves to
1003                  * use.  This situation is indicated if chg != 0.
1004                  */
1005                 if (chg)
1006                         return false;
1007                 else
1008                         return true;
1009         }
1010
1011         /*
1012          * Only the process that called mmap() has reserves for
1013          * private mappings.
1014          */
1015         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1016                 /*
1017                  * Like the shared case above, a hole punch or truncate
1018                  * could have been performed on the private mapping.
1019                  * Examine the value of chg to determine if reserves
1020                  * actually exist or were previously consumed.
1021                  * Very Subtle - The value of chg comes from a previous
1022                  * call to vma_needs_reserves().  The reserve map for
1023                  * private mappings has different (opposite) semantics
1024                  * than that of shared mappings.  vma_needs_reserves()
1025                  * has already taken this difference in semantics into
1026                  * account.  Therefore, the meaning of chg is the same
1027                  * as in the shared case above.  Code could easily be
1028                  * combined, but keeping it separate draws attention to
1029                  * subtle differences.
1030                  */
1031                 if (chg)
1032                         return false;
1033                 else
1034                         return true;
1035         }
1036
1037         return false;
1038 }
1039
1040 static void enqueue_huge_page(struct hstate *h, struct page *page)
1041 {
1042         int nid = page_to_nid(page);
1043         list_move(&page->lru, &h->hugepage_freelists[nid]);
1044         h->free_huge_pages++;
1045         h->free_huge_pages_node[nid]++;
1046         SetPageHugeFreed(page);
1047 }
1048
1049 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050 {
1051         struct page *page;
1052         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1053
1054         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1055                 if (nocma && is_migrate_cma_page(page))
1056                         continue;
1057
1058                 if (PageHWPoison(page))
1059                         continue;
1060
1061                 list_move(&page->lru, &h->hugepage_activelist);
1062                 set_page_refcounted(page);
1063                 ClearPageHugeFreed(page);
1064                 h->free_huge_pages--;
1065                 h->free_huge_pages_node[nid]--;
1066                 return page;
1067         }
1068
1069         return NULL;
1070 }
1071
1072 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1073                 nodemask_t *nmask)
1074 {
1075         unsigned int cpuset_mems_cookie;
1076         struct zonelist *zonelist;
1077         struct zone *zone;
1078         struct zoneref *z;
1079         int node = NUMA_NO_NODE;
1080
1081         zonelist = node_zonelist(nid, gfp_mask);
1082
1083 retry_cpuset:
1084         cpuset_mems_cookie = read_mems_allowed_begin();
1085         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1086                 struct page *page;
1087
1088                 if (!cpuset_zone_allowed(zone, gfp_mask))
1089                         continue;
1090                 /*
1091                  * no need to ask again on the same node. Pool is node rather than
1092                  * zone aware
1093                  */
1094                 if (zone_to_nid(zone) == node)
1095                         continue;
1096                 node = zone_to_nid(zone);
1097
1098                 page = dequeue_huge_page_node_exact(h, node);
1099                 if (page)
1100                         return page;
1101         }
1102         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1103                 goto retry_cpuset;
1104
1105         return NULL;
1106 }
1107
1108 static struct page *dequeue_huge_page_vma(struct hstate *h,
1109                                 struct vm_area_struct *vma,
1110                                 unsigned long address, int avoid_reserve,
1111                                 long chg)
1112 {
1113         struct page *page;
1114         struct mempolicy *mpol;
1115         gfp_t gfp_mask;
1116         nodemask_t *nodemask;
1117         int nid;
1118
1119         /*
1120          * A child process with MAP_PRIVATE mappings created by their parent
1121          * have no page reserves. This check ensures that reservations are
1122          * not "stolen". The child may still get SIGKILLed
1123          */
1124         if (!vma_has_reserves(vma, chg) &&
1125                         h->free_huge_pages - h->resv_huge_pages == 0)
1126                 goto err;
1127
1128         /* If reserves cannot be used, ensure enough pages are in the pool */
1129         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130                 goto err;
1131
1132         gfp_mask = htlb_alloc_mask(h);
1133         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1134         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1135         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1136                 SetPagePrivate(page);
1137                 h->resv_huge_pages--;
1138         }
1139
1140         mpol_cond_put(mpol);
1141         return page;
1142
1143 err:
1144         return NULL;
1145 }
1146
1147 /*
1148  * common helper functions for hstate_next_node_to_{alloc|free}.
1149  * We may have allocated or freed a huge page based on a different
1150  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1151  * be outside of *nodes_allowed.  Ensure that we use an allowed
1152  * node for alloc or free.
1153  */
1154 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1155 {
1156         nid = next_node_in(nid, *nodes_allowed);
1157         VM_BUG_ON(nid >= MAX_NUMNODES);
1158
1159         return nid;
1160 }
1161
1162 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1163 {
1164         if (!node_isset(nid, *nodes_allowed))
1165                 nid = next_node_allowed(nid, nodes_allowed);
1166         return nid;
1167 }
1168
1169 /*
1170  * returns the previously saved node ["this node"] from which to
1171  * allocate a persistent huge page for the pool and advance the
1172  * next node from which to allocate, handling wrap at end of node
1173  * mask.
1174  */
1175 static int hstate_next_node_to_alloc(struct hstate *h,
1176                                         nodemask_t *nodes_allowed)
1177 {
1178         int nid;
1179
1180         VM_BUG_ON(!nodes_allowed);
1181
1182         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1183         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1184
1185         return nid;
1186 }
1187
1188 /*
1189  * helper for free_pool_huge_page() - return the previously saved
1190  * node ["this node"] from which to free a huge page.  Advance the
1191  * next node id whether or not we find a free huge page to free so
1192  * that the next attempt to free addresses the next node.
1193  */
1194 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1195 {
1196         int nid;
1197
1198         VM_BUG_ON(!nodes_allowed);
1199
1200         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1201         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1202
1203         return nid;
1204 }
1205
1206 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1207         for (nr_nodes = nodes_weight(*mask);                            \
1208                 nr_nodes > 0 &&                                         \
1209                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1210                 nr_nodes--)
1211
1212 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1213         for (nr_nodes = nodes_weight(*mask);                            \
1214                 nr_nodes > 0 &&                                         \
1215                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1216                 nr_nodes--)
1217
1218 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1219 static void destroy_compound_gigantic_page(struct page *page,
1220                                         unsigned int order)
1221 {
1222         int i;
1223         int nr_pages = 1 << order;
1224         struct page *p = page + 1;
1225
1226         atomic_set(compound_mapcount_ptr(page), 0);
1227         if (hpage_pincount_available(page))
1228                 atomic_set(compound_pincount_ptr(page), 0);
1229
1230         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1231                 clear_compound_head(p);
1232                 set_page_refcounted(p);
1233         }
1234
1235         set_compound_order(page, 0);
1236         page[1].compound_nr = 0;
1237         __ClearPageHead(page);
1238 }
1239
1240 static void free_gigantic_page(struct page *page, unsigned int order)
1241 {
1242         /*
1243          * If the page isn't allocated using the cma allocator,
1244          * cma_release() returns false.
1245          */
1246 #ifdef CONFIG_CMA
1247         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248                 return;
1249 #endif
1250
1251         free_contig_range(page_to_pfn(page), 1 << order);
1252 }
1253
1254 #ifdef CONFIG_CONTIG_ALLOC
1255 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1256                 int nid, nodemask_t *nodemask)
1257 {
1258         unsigned long nr_pages = 1UL << huge_page_order(h);
1259         if (nid == NUMA_NO_NODE)
1260                 nid = numa_mem_id();
1261
1262 #ifdef CONFIG_CMA
1263         {
1264                 struct page *page;
1265                 int node;
1266
1267                 if (hugetlb_cma[nid]) {
1268                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1269                                         huge_page_order(h), true);
1270                         if (page)
1271                                 return page;
1272                 }
1273
1274                 if (!(gfp_mask & __GFP_THISNODE)) {
1275                         for_each_node_mask(node, *nodemask) {
1276                                 if (node == nid || !hugetlb_cma[node])
1277                                         continue;
1278
1279                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1280                                                 huge_page_order(h), true);
1281                                 if (page)
1282                                         return page;
1283                         }
1284                 }
1285         }
1286 #endif
1287
1288         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1289 }
1290
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1293 #else /* !CONFIG_CONTIG_ALLOC */
1294 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1295                                         int nid, nodemask_t *nodemask)
1296 {
1297         return NULL;
1298 }
1299 #endif /* CONFIG_CONTIG_ALLOC */
1300
1301 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1302 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1303                                         int nid, nodemask_t *nodemask)
1304 {
1305         return NULL;
1306 }
1307 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1308 static inline void destroy_compound_gigantic_page(struct page *page,
1309                                                 unsigned int order) { }
1310 #endif
1311
1312 static void update_and_free_page(struct hstate *h, struct page *page)
1313 {
1314         int i;
1315         struct page *subpage = page;
1316
1317         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1318                 return;
1319
1320         h->nr_huge_pages--;
1321         h->nr_huge_pages_node[page_to_nid(page)]--;
1322         for (i = 0; i < pages_per_huge_page(h);
1323              i++, subpage = mem_map_next(subpage, page, i)) {
1324                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1325                                 1 << PG_referenced | 1 << PG_dirty |
1326                                 1 << PG_active | 1 << PG_private |
1327                                 1 << PG_writeback);
1328         }
1329         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1330         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1331         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1332         set_page_refcounted(page);
1333         if (hstate_is_gigantic(h)) {
1334                 /*
1335                  * Temporarily drop the hugetlb_lock, because
1336                  * we might block in free_gigantic_page().
1337                  */
1338                 spin_unlock(&hugetlb_lock);
1339                 destroy_compound_gigantic_page(page, huge_page_order(h));
1340                 free_gigantic_page(page, huge_page_order(h));
1341                 spin_lock(&hugetlb_lock);
1342         } else {
1343                 __free_pages(page, huge_page_order(h));
1344         }
1345 }
1346
1347 struct hstate *size_to_hstate(unsigned long size)
1348 {
1349         struct hstate *h;
1350
1351         for_each_hstate(h) {
1352                 if (huge_page_size(h) == size)
1353                         return h;
1354         }
1355         return NULL;
1356 }
1357
1358 /*
1359  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1360  * to hstate->hugepage_activelist.)
1361  *
1362  * This function can be called for tail pages, but never returns true for them.
1363  */
1364 bool page_huge_active(struct page *page)
1365 {
1366         return PageHeadHuge(page) && PagePrivate(&page[1]);
1367 }
1368
1369 /* never called for tail page */
1370 void set_page_huge_active(struct page *page)
1371 {
1372         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1373         SetPagePrivate(&page[1]);
1374 }
1375
1376 static void clear_page_huge_active(struct page *page)
1377 {
1378         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1379         ClearPagePrivate(&page[1]);
1380 }
1381
1382 /*
1383  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1384  * code
1385  */
1386 static inline bool PageHugeTemporary(struct page *page)
1387 {
1388         if (!PageHuge(page))
1389                 return false;
1390
1391         return (unsigned long)page[2].mapping == -1U;
1392 }
1393
1394 static inline void SetPageHugeTemporary(struct page *page)
1395 {
1396         page[2].mapping = (void *)-1U;
1397 }
1398
1399 static inline void ClearPageHugeTemporary(struct page *page)
1400 {
1401         page[2].mapping = NULL;
1402 }
1403
1404 static void __free_huge_page(struct page *page)
1405 {
1406         /*
1407          * Can't pass hstate in here because it is called from the
1408          * compound page destructor.
1409          */
1410         struct hstate *h = page_hstate(page);
1411         int nid = page_to_nid(page);
1412         struct hugepage_subpool *spool =
1413                 (struct hugepage_subpool *)page_private(page);
1414         bool restore_reserve;
1415
1416         VM_BUG_ON_PAGE(page_count(page), page);
1417         VM_BUG_ON_PAGE(page_mapcount(page), page);
1418
1419         set_page_private(page, 0);
1420         page->mapping = NULL;
1421         restore_reserve = PagePrivate(page);
1422         ClearPagePrivate(page);
1423
1424         /*
1425          * If PagePrivate() was set on page, page allocation consumed a
1426          * reservation.  If the page was associated with a subpool, there
1427          * would have been a page reserved in the subpool before allocation
1428          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1429          * reservtion, do not call hugepage_subpool_put_pages() as this will
1430          * remove the reserved page from the subpool.
1431          */
1432         if (!restore_reserve) {
1433                 /*
1434                  * A return code of zero implies that the subpool will be
1435                  * under its minimum size if the reservation is not restored
1436                  * after page is free.  Therefore, force restore_reserve
1437                  * operation.
1438                  */
1439                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1440                         restore_reserve = true;
1441         }
1442
1443         spin_lock(&hugetlb_lock);
1444         clear_page_huge_active(page);
1445         hugetlb_cgroup_uncharge_page(hstate_index(h),
1446                                      pages_per_huge_page(h), page);
1447         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1448                                           pages_per_huge_page(h), page);
1449         if (restore_reserve)
1450                 h->resv_huge_pages++;
1451
1452         if (PageHugeTemporary(page)) {
1453                 list_del(&page->lru);
1454                 ClearPageHugeTemporary(page);
1455                 update_and_free_page(h, page);
1456         } else if (h->surplus_huge_pages_node[nid]) {
1457                 /* remove the page from active list */
1458                 list_del(&page->lru);
1459                 update_and_free_page(h, page);
1460                 h->surplus_huge_pages--;
1461                 h->surplus_huge_pages_node[nid]--;
1462         } else {
1463                 arch_clear_hugepage_flags(page);
1464                 enqueue_huge_page(h, page);
1465         }
1466         spin_unlock(&hugetlb_lock);
1467 }
1468
1469 /*
1470  * As free_huge_page() can be called from a non-task context, we have
1471  * to defer the actual freeing in a workqueue to prevent potential
1472  * hugetlb_lock deadlock.
1473  *
1474  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1475  * be freed and frees them one-by-one. As the page->mapping pointer is
1476  * going to be cleared in __free_huge_page() anyway, it is reused as the
1477  * llist_node structure of a lockless linked list of huge pages to be freed.
1478  */
1479 static LLIST_HEAD(hpage_freelist);
1480
1481 static void free_hpage_workfn(struct work_struct *work)
1482 {
1483         struct llist_node *node;
1484         struct page *page;
1485
1486         node = llist_del_all(&hpage_freelist);
1487
1488         while (node) {
1489                 page = container_of((struct address_space **)node,
1490                                      struct page, mapping);
1491                 node = node->next;
1492                 __free_huge_page(page);
1493         }
1494 }
1495 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1496
1497 void free_huge_page(struct page *page)
1498 {
1499         /*
1500          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1501          */
1502         if (!in_task()) {
1503                 /*
1504                  * Only call schedule_work() if hpage_freelist is previously
1505                  * empty. Otherwise, schedule_work() had been called but the
1506                  * workfn hasn't retrieved the list yet.
1507                  */
1508                 if (llist_add((struct llist_node *)&page->mapping,
1509                               &hpage_freelist))
1510                         schedule_work(&free_hpage_work);
1511                 return;
1512         }
1513
1514         __free_huge_page(page);
1515 }
1516
1517 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1518 {
1519         INIT_LIST_HEAD(&page->lru);
1520         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1521         set_hugetlb_cgroup(page, NULL);
1522         set_hugetlb_cgroup_rsvd(page, NULL);
1523         spin_lock(&hugetlb_lock);
1524         h->nr_huge_pages++;
1525         h->nr_huge_pages_node[nid]++;
1526         ClearPageHugeFreed(page);
1527         spin_unlock(&hugetlb_lock);
1528 }
1529
1530 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1531 {
1532         int i;
1533         int nr_pages = 1 << order;
1534         struct page *p = page + 1;
1535
1536         /* we rely on prep_new_huge_page to set the destructor */
1537         set_compound_order(page, order);
1538         __ClearPageReserved(page);
1539         __SetPageHead(page);
1540         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1541                 /*
1542                  * For gigantic hugepages allocated through bootmem at
1543                  * boot, it's safer to be consistent with the not-gigantic
1544                  * hugepages and clear the PG_reserved bit from all tail pages
1545                  * too.  Otherwise drivers using get_user_pages() to access tail
1546                  * pages may get the reference counting wrong if they see
1547                  * PG_reserved set on a tail page (despite the head page not
1548                  * having PG_reserved set).  Enforcing this consistency between
1549                  * head and tail pages allows drivers to optimize away a check
1550                  * on the head page when they need know if put_page() is needed
1551                  * after get_user_pages().
1552                  */
1553                 __ClearPageReserved(p);
1554                 set_page_count(p, 0);
1555                 set_compound_head(p, page);
1556         }
1557         atomic_set(compound_mapcount_ptr(page), -1);
1558
1559         if (hpage_pincount_available(page))
1560                 atomic_set(compound_pincount_ptr(page), 0);
1561 }
1562
1563 /*
1564  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1565  * transparent huge pages.  See the PageTransHuge() documentation for more
1566  * details.
1567  */
1568 int PageHuge(struct page *page)
1569 {
1570         if (!PageCompound(page))
1571                 return 0;
1572
1573         page = compound_head(page);
1574         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1575 }
1576 EXPORT_SYMBOL_GPL(PageHuge);
1577
1578 /*
1579  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1580  * normal or transparent huge pages.
1581  */
1582 int PageHeadHuge(struct page *page_head)
1583 {
1584         if (!PageHead(page_head))
1585                 return 0;
1586
1587         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1588 }
1589
1590 /*
1591  * Find and lock address space (mapping) in write mode.
1592  *
1593  * Upon entry, the page is locked which means that page_mapping() is
1594  * stable.  Due to locking order, we can only trylock_write.  If we can
1595  * not get the lock, simply return NULL to caller.
1596  */
1597 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1598 {
1599         struct address_space *mapping = page_mapping(hpage);
1600
1601         if (!mapping)
1602                 return mapping;
1603
1604         if (i_mmap_trylock_write(mapping))
1605                 return mapping;
1606
1607         return NULL;
1608 }
1609
1610 pgoff_t __basepage_index(struct page *page)
1611 {
1612         struct page *page_head = compound_head(page);
1613         pgoff_t index = page_index(page_head);
1614         unsigned long compound_idx;
1615
1616         if (!PageHuge(page_head))
1617                 return page_index(page);
1618
1619         if (compound_order(page_head) >= MAX_ORDER)
1620                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1621         else
1622                 compound_idx = page - page_head;
1623
1624         return (index << compound_order(page_head)) + compound_idx;
1625 }
1626
1627 static struct page *alloc_buddy_huge_page(struct hstate *h,
1628                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1629                 nodemask_t *node_alloc_noretry)
1630 {
1631         int order = huge_page_order(h);
1632         struct page *page;
1633         bool alloc_try_hard = true;
1634
1635         /*
1636          * By default we always try hard to allocate the page with
1637          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1638          * a loop (to adjust global huge page counts) and previous allocation
1639          * failed, do not continue to try hard on the same node.  Use the
1640          * node_alloc_noretry bitmap to manage this state information.
1641          */
1642         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1643                 alloc_try_hard = false;
1644         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1645         if (alloc_try_hard)
1646                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1647         if (nid == NUMA_NO_NODE)
1648                 nid = numa_mem_id();
1649         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1650         if (page)
1651                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1652         else
1653                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1654
1655         /*
1656          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1657          * indicates an overall state change.  Clear bit so that we resume
1658          * normal 'try hard' allocations.
1659          */
1660         if (node_alloc_noretry && page && !alloc_try_hard)
1661                 node_clear(nid, *node_alloc_noretry);
1662
1663         /*
1664          * If we tried hard to get a page but failed, set bit so that
1665          * subsequent attempts will not try as hard until there is an
1666          * overall state change.
1667          */
1668         if (node_alloc_noretry && !page && alloc_try_hard)
1669                 node_set(nid, *node_alloc_noretry);
1670
1671         return page;
1672 }
1673
1674 /*
1675  * Common helper to allocate a fresh hugetlb page. All specific allocators
1676  * should use this function to get new hugetlb pages
1677  */
1678 static struct page *alloc_fresh_huge_page(struct hstate *h,
1679                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1680                 nodemask_t *node_alloc_noretry)
1681 {
1682         struct page *page;
1683
1684         if (hstate_is_gigantic(h))
1685                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1686         else
1687                 page = alloc_buddy_huge_page(h, gfp_mask,
1688                                 nid, nmask, node_alloc_noretry);
1689         if (!page)
1690                 return NULL;
1691
1692         if (hstate_is_gigantic(h))
1693                 prep_compound_gigantic_page(page, huge_page_order(h));
1694         prep_new_huge_page(h, page, page_to_nid(page));
1695
1696         return page;
1697 }
1698
1699 /*
1700  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1701  * manner.
1702  */
1703 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1704                                 nodemask_t *node_alloc_noretry)
1705 {
1706         struct page *page;
1707         int nr_nodes, node;
1708         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1709
1710         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1711                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1712                                                 node_alloc_noretry);
1713                 if (page)
1714                         break;
1715         }
1716
1717         if (!page)
1718                 return 0;
1719
1720         put_page(page); /* free it into the hugepage allocator */
1721
1722         return 1;
1723 }
1724
1725 /*
1726  * Free huge page from pool from next node to free.
1727  * Attempt to keep persistent huge pages more or less
1728  * balanced over allowed nodes.
1729  * Called with hugetlb_lock locked.
1730  */
1731 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1732                                                          bool acct_surplus)
1733 {
1734         int nr_nodes, node;
1735         int ret = 0;
1736
1737         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1738                 /*
1739                  * If we're returning unused surplus pages, only examine
1740                  * nodes with surplus pages.
1741                  */
1742                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1743                     !list_empty(&h->hugepage_freelists[node])) {
1744                         struct page *page =
1745                                 list_entry(h->hugepage_freelists[node].next,
1746                                           struct page, lru);
1747                         list_del(&page->lru);
1748                         h->free_huge_pages--;
1749                         h->free_huge_pages_node[node]--;
1750                         if (acct_surplus) {
1751                                 h->surplus_huge_pages--;
1752                                 h->surplus_huge_pages_node[node]--;
1753                         }
1754                         update_and_free_page(h, page);
1755                         ret = 1;
1756                         break;
1757                 }
1758         }
1759
1760         return ret;
1761 }
1762
1763 /*
1764  * Dissolve a given free hugepage into free buddy pages. This function does
1765  * nothing for in-use hugepages and non-hugepages.
1766  * This function returns values like below:
1767  *
1768  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1769  *          (allocated or reserved.)
1770  *       0: successfully dissolved free hugepages or the page is not a
1771  *          hugepage (considered as already dissolved)
1772  */
1773 int dissolve_free_huge_page(struct page *page)
1774 {
1775         int rc = -EBUSY;
1776
1777 retry:
1778         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1779         if (!PageHuge(page))
1780                 return 0;
1781
1782         spin_lock(&hugetlb_lock);
1783         if (!PageHuge(page)) {
1784                 rc = 0;
1785                 goto out;
1786         }
1787
1788         if (!page_count(page)) {
1789                 struct page *head = compound_head(page);
1790                 struct hstate *h = page_hstate(head);
1791                 int nid = page_to_nid(head);
1792                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1793                         goto out;
1794
1795                 /*
1796                  * We should make sure that the page is already on the free list
1797                  * when it is dissolved.
1798                  */
1799                 if (unlikely(!PageHugeFreed(head))) {
1800                         spin_unlock(&hugetlb_lock);
1801                         cond_resched();
1802
1803                         /*
1804                          * Theoretically, we should return -EBUSY when we
1805                          * encounter this race. In fact, we have a chance
1806                          * to successfully dissolve the page if we do a
1807                          * retry. Because the race window is quite small.
1808                          * If we seize this opportunity, it is an optimization
1809                          * for increasing the success rate of dissolving page.
1810                          */
1811                         goto retry;
1812                 }
1813
1814                 /*
1815                  * Move PageHWPoison flag from head page to the raw error page,
1816                  * which makes any subpages rather than the error page reusable.
1817                  */
1818                 if (PageHWPoison(head) && page != head) {
1819                         SetPageHWPoison(page);
1820                         ClearPageHWPoison(head);
1821                 }
1822                 list_del(&head->lru);
1823                 h->free_huge_pages--;
1824                 h->free_huge_pages_node[nid]--;
1825                 h->max_huge_pages--;
1826                 update_and_free_page(h, head);
1827                 rc = 0;
1828         }
1829 out:
1830         spin_unlock(&hugetlb_lock);
1831         return rc;
1832 }
1833
1834 /*
1835  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1836  * make specified memory blocks removable from the system.
1837  * Note that this will dissolve a free gigantic hugepage completely, if any
1838  * part of it lies within the given range.
1839  * Also note that if dissolve_free_huge_page() returns with an error, all
1840  * free hugepages that were dissolved before that error are lost.
1841  */
1842 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1843 {
1844         unsigned long pfn;
1845         struct page *page;
1846         int rc = 0;
1847
1848         if (!hugepages_supported())
1849                 return rc;
1850
1851         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1852                 page = pfn_to_page(pfn);
1853                 rc = dissolve_free_huge_page(page);
1854                 if (rc)
1855                         break;
1856         }
1857
1858         return rc;
1859 }
1860
1861 /*
1862  * Allocates a fresh surplus page from the page allocator.
1863  */
1864 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1865                 int nid, nodemask_t *nmask)
1866 {
1867         struct page *page = NULL;
1868
1869         if (hstate_is_gigantic(h))
1870                 return NULL;
1871
1872         spin_lock(&hugetlb_lock);
1873         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1874                 goto out_unlock;
1875         spin_unlock(&hugetlb_lock);
1876
1877         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1878         if (!page)
1879                 return NULL;
1880
1881         spin_lock(&hugetlb_lock);
1882         /*
1883          * We could have raced with the pool size change.
1884          * Double check that and simply deallocate the new page
1885          * if we would end up overcommiting the surpluses. Abuse
1886          * temporary page to workaround the nasty free_huge_page
1887          * codeflow
1888          */
1889         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1890                 SetPageHugeTemporary(page);
1891                 spin_unlock(&hugetlb_lock);
1892                 put_page(page);
1893                 return NULL;
1894         } else {
1895                 h->surplus_huge_pages++;
1896                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1897         }
1898
1899 out_unlock:
1900         spin_unlock(&hugetlb_lock);
1901
1902         return page;
1903 }
1904
1905 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1906                                      int nid, nodemask_t *nmask)
1907 {
1908         struct page *page;
1909
1910         if (hstate_is_gigantic(h))
1911                 return NULL;
1912
1913         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1914         if (!page)
1915                 return NULL;
1916
1917         /*
1918          * We do not account these pages as surplus because they are only
1919          * temporary and will be released properly on the last reference
1920          */
1921         SetPageHugeTemporary(page);
1922
1923         return page;
1924 }
1925
1926 /*
1927  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1928  */
1929 static
1930 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1931                 struct vm_area_struct *vma, unsigned long addr)
1932 {
1933         struct page *page;
1934         struct mempolicy *mpol;
1935         gfp_t gfp_mask = htlb_alloc_mask(h);
1936         int nid;
1937         nodemask_t *nodemask;
1938
1939         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1940         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1941         mpol_cond_put(mpol);
1942
1943         return page;
1944 }
1945
1946 /* page migration callback function */
1947 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1948                 nodemask_t *nmask, gfp_t gfp_mask)
1949 {
1950         spin_lock(&hugetlb_lock);
1951         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1952                 struct page *page;
1953
1954                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1955                 if (page) {
1956                         spin_unlock(&hugetlb_lock);
1957                         return page;
1958                 }
1959         }
1960         spin_unlock(&hugetlb_lock);
1961
1962         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1963 }
1964
1965 /* mempolicy aware migration callback */
1966 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1967                 unsigned long address)
1968 {
1969         struct mempolicy *mpol;
1970         nodemask_t *nodemask;
1971         struct page *page;
1972         gfp_t gfp_mask;
1973         int node;
1974
1975         gfp_mask = htlb_alloc_mask(h);
1976         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1977         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1978         mpol_cond_put(mpol);
1979
1980         return page;
1981 }
1982
1983 /*
1984  * Increase the hugetlb pool such that it can accommodate a reservation
1985  * of size 'delta'.
1986  */
1987 static int gather_surplus_pages(struct hstate *h, int delta)
1988         __must_hold(&hugetlb_lock)
1989 {
1990         struct list_head surplus_list;
1991         struct page *page, *tmp;
1992         int ret, i;
1993         int needed, allocated;
1994         bool alloc_ok = true;
1995
1996         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1997         if (needed <= 0) {
1998                 h->resv_huge_pages += delta;
1999                 return 0;
2000         }
2001
2002         allocated = 0;
2003         INIT_LIST_HEAD(&surplus_list);
2004
2005         ret = -ENOMEM;
2006 retry:
2007         spin_unlock(&hugetlb_lock);
2008         for (i = 0; i < needed; i++) {
2009                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2010                                 NUMA_NO_NODE, NULL);
2011                 if (!page) {
2012                         alloc_ok = false;
2013                         break;
2014                 }
2015                 list_add(&page->lru, &surplus_list);
2016                 cond_resched();
2017         }
2018         allocated += i;
2019
2020         /*
2021          * After retaking hugetlb_lock, we need to recalculate 'needed'
2022          * because either resv_huge_pages or free_huge_pages may have changed.
2023          */
2024         spin_lock(&hugetlb_lock);
2025         needed = (h->resv_huge_pages + delta) -
2026                         (h->free_huge_pages + allocated);
2027         if (needed > 0) {
2028                 if (alloc_ok)
2029                         goto retry;
2030                 /*
2031                  * We were not able to allocate enough pages to
2032                  * satisfy the entire reservation so we free what
2033                  * we've allocated so far.
2034                  */
2035                 goto free;
2036         }
2037         /*
2038          * The surplus_list now contains _at_least_ the number of extra pages
2039          * needed to accommodate the reservation.  Add the appropriate number
2040          * of pages to the hugetlb pool and free the extras back to the buddy
2041          * allocator.  Commit the entire reservation here to prevent another
2042          * process from stealing the pages as they are added to the pool but
2043          * before they are reserved.
2044          */
2045         needed += allocated;
2046         h->resv_huge_pages += delta;
2047         ret = 0;
2048
2049         /* Free the needed pages to the hugetlb pool */
2050         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2051                 if ((--needed) < 0)
2052                         break;
2053                 /*
2054                  * This page is now managed by the hugetlb allocator and has
2055                  * no users -- drop the buddy allocator's reference.
2056                  */
2057                 put_page_testzero(page);
2058                 VM_BUG_ON_PAGE(page_count(page), page);
2059                 enqueue_huge_page(h, page);
2060         }
2061 free:
2062         spin_unlock(&hugetlb_lock);
2063
2064         /* Free unnecessary surplus pages to the buddy allocator */
2065         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2066                 put_page(page);
2067         spin_lock(&hugetlb_lock);
2068
2069         return ret;
2070 }
2071
2072 /*
2073  * This routine has two main purposes:
2074  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2075  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2076  *    to the associated reservation map.
2077  * 2) Free any unused surplus pages that may have been allocated to satisfy
2078  *    the reservation.  As many as unused_resv_pages may be freed.
2079  *
2080  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2081  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2082  * we must make sure nobody else can claim pages we are in the process of
2083  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2084  * number of huge pages we plan to free when dropping the lock.
2085  */
2086 static void return_unused_surplus_pages(struct hstate *h,
2087                                         unsigned long unused_resv_pages)
2088 {
2089         unsigned long nr_pages;
2090
2091         /* Cannot return gigantic pages currently */
2092         if (hstate_is_gigantic(h))
2093                 goto out;
2094
2095         /*
2096          * Part (or even all) of the reservation could have been backed
2097          * by pre-allocated pages. Only free surplus pages.
2098          */
2099         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2100
2101         /*
2102          * We want to release as many surplus pages as possible, spread
2103          * evenly across all nodes with memory. Iterate across these nodes
2104          * until we can no longer free unreserved surplus pages. This occurs
2105          * when the nodes with surplus pages have no free pages.
2106          * free_pool_huge_page() will balance the freed pages across the
2107          * on-line nodes with memory and will handle the hstate accounting.
2108          *
2109          * Note that we decrement resv_huge_pages as we free the pages.  If
2110          * we drop the lock, resv_huge_pages will still be sufficiently large
2111          * to cover subsequent pages we may free.
2112          */
2113         while (nr_pages--) {
2114                 h->resv_huge_pages--;
2115                 unused_resv_pages--;
2116                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2117                         goto out;
2118                 cond_resched_lock(&hugetlb_lock);
2119         }
2120
2121 out:
2122         /* Fully uncommit the reservation */
2123         h->resv_huge_pages -= unused_resv_pages;
2124 }
2125
2126
2127 /*
2128  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2129  * are used by the huge page allocation routines to manage reservations.
2130  *
2131  * vma_needs_reservation is called to determine if the huge page at addr
2132  * within the vma has an associated reservation.  If a reservation is
2133  * needed, the value 1 is returned.  The caller is then responsible for
2134  * managing the global reservation and subpool usage counts.  After
2135  * the huge page has been allocated, vma_commit_reservation is called
2136  * to add the page to the reservation map.  If the page allocation fails,
2137  * the reservation must be ended instead of committed.  vma_end_reservation
2138  * is called in such cases.
2139  *
2140  * In the normal case, vma_commit_reservation returns the same value
2141  * as the preceding vma_needs_reservation call.  The only time this
2142  * is not the case is if a reserve map was changed between calls.  It
2143  * is the responsibility of the caller to notice the difference and
2144  * take appropriate action.
2145  *
2146  * vma_add_reservation is used in error paths where a reservation must
2147  * be restored when a newly allocated huge page must be freed.  It is
2148  * to be called after calling vma_needs_reservation to determine if a
2149  * reservation exists.
2150  */
2151 enum vma_resv_mode {
2152         VMA_NEEDS_RESV,
2153         VMA_COMMIT_RESV,
2154         VMA_END_RESV,
2155         VMA_ADD_RESV,
2156 };
2157 static long __vma_reservation_common(struct hstate *h,
2158                                 struct vm_area_struct *vma, unsigned long addr,
2159                                 enum vma_resv_mode mode)
2160 {
2161         struct resv_map *resv;
2162         pgoff_t idx;
2163         long ret;
2164         long dummy_out_regions_needed;
2165
2166         resv = vma_resv_map(vma);
2167         if (!resv)
2168                 return 1;
2169
2170         idx = vma_hugecache_offset(h, vma, addr);
2171         switch (mode) {
2172         case VMA_NEEDS_RESV:
2173                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2174                 /* We assume that vma_reservation_* routines always operate on
2175                  * 1 page, and that adding to resv map a 1 page entry can only
2176                  * ever require 1 region.
2177                  */
2178                 VM_BUG_ON(dummy_out_regions_needed != 1);
2179                 break;
2180         case VMA_COMMIT_RESV:
2181                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2182                 /* region_add calls of range 1 should never fail. */
2183                 VM_BUG_ON(ret < 0);
2184                 break;
2185         case VMA_END_RESV:
2186                 region_abort(resv, idx, idx + 1, 1);
2187                 ret = 0;
2188                 break;
2189         case VMA_ADD_RESV:
2190                 if (vma->vm_flags & VM_MAYSHARE) {
2191                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2192                         /* region_add calls of range 1 should never fail. */
2193                         VM_BUG_ON(ret < 0);
2194                 } else {
2195                         region_abort(resv, idx, idx + 1, 1);
2196                         ret = region_del(resv, idx, idx + 1);
2197                 }
2198                 break;
2199         default:
2200                 BUG();
2201         }
2202
2203         if (vma->vm_flags & VM_MAYSHARE)
2204                 return ret;
2205         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2206                 /*
2207                  * In most cases, reserves always exist for private mappings.
2208                  * However, a file associated with mapping could have been
2209                  * hole punched or truncated after reserves were consumed.
2210                  * As subsequent fault on such a range will not use reserves.
2211                  * Subtle - The reserve map for private mappings has the
2212                  * opposite meaning than that of shared mappings.  If NO
2213                  * entry is in the reserve map, it means a reservation exists.
2214                  * If an entry exists in the reserve map, it means the
2215                  * reservation has already been consumed.  As a result, the
2216                  * return value of this routine is the opposite of the
2217                  * value returned from reserve map manipulation routines above.
2218                  */
2219                 if (ret)
2220                         return 0;
2221                 else
2222                         return 1;
2223         }
2224         else
2225                 return ret < 0 ? ret : 0;
2226 }
2227
2228 static long vma_needs_reservation(struct hstate *h,
2229                         struct vm_area_struct *vma, unsigned long addr)
2230 {
2231         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2232 }
2233
2234 static long vma_commit_reservation(struct hstate *h,
2235                         struct vm_area_struct *vma, unsigned long addr)
2236 {
2237         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2238 }
2239
2240 static void vma_end_reservation(struct hstate *h,
2241                         struct vm_area_struct *vma, unsigned long addr)
2242 {
2243         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2244 }
2245
2246 static long vma_add_reservation(struct hstate *h,
2247                         struct vm_area_struct *vma, unsigned long addr)
2248 {
2249         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2250 }
2251
2252 /*
2253  * This routine is called to restore a reservation on error paths.  In the
2254  * specific error paths, a huge page was allocated (via alloc_huge_page)
2255  * and is about to be freed.  If a reservation for the page existed,
2256  * alloc_huge_page would have consumed the reservation and set PagePrivate
2257  * in the newly allocated page.  When the page is freed via free_huge_page,
2258  * the global reservation count will be incremented if PagePrivate is set.
2259  * However, free_huge_page can not adjust the reserve map.  Adjust the
2260  * reserve map here to be consistent with global reserve count adjustments
2261  * to be made by free_huge_page.
2262  */
2263 static void restore_reserve_on_error(struct hstate *h,
2264                         struct vm_area_struct *vma, unsigned long address,
2265                         struct page *page)
2266 {
2267         if (unlikely(PagePrivate(page))) {
2268                 long rc = vma_needs_reservation(h, vma, address);
2269
2270                 if (unlikely(rc < 0)) {
2271                         /*
2272                          * Rare out of memory condition in reserve map
2273                          * manipulation.  Clear PagePrivate so that
2274                          * global reserve count will not be incremented
2275                          * by free_huge_page.  This will make it appear
2276                          * as though the reservation for this page was
2277                          * consumed.  This may prevent the task from
2278                          * faulting in the page at a later time.  This
2279                          * is better than inconsistent global huge page
2280                          * accounting of reserve counts.
2281                          */
2282                         ClearPagePrivate(page);
2283                 } else if (rc) {
2284                         rc = vma_add_reservation(h, vma, address);
2285                         if (unlikely(rc < 0))
2286                                 /*
2287                                  * See above comment about rare out of
2288                                  * memory condition.
2289                                  */
2290                                 ClearPagePrivate(page);
2291                 } else
2292                         vma_end_reservation(h, vma, address);
2293         }
2294 }
2295
2296 struct page *alloc_huge_page(struct vm_area_struct *vma,
2297                                     unsigned long addr, int avoid_reserve)
2298 {
2299         struct hugepage_subpool *spool = subpool_vma(vma);
2300         struct hstate *h = hstate_vma(vma);
2301         struct page *page;
2302         long map_chg, map_commit;
2303         long gbl_chg;
2304         int ret, idx;
2305         struct hugetlb_cgroup *h_cg;
2306         bool deferred_reserve;
2307
2308         idx = hstate_index(h);
2309         /*
2310          * Examine the region/reserve map to determine if the process
2311          * has a reservation for the page to be allocated.  A return
2312          * code of zero indicates a reservation exists (no change).
2313          */
2314         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2315         if (map_chg < 0)
2316                 return ERR_PTR(-ENOMEM);
2317
2318         /*
2319          * Processes that did not create the mapping will have no
2320          * reserves as indicated by the region/reserve map. Check
2321          * that the allocation will not exceed the subpool limit.
2322          * Allocations for MAP_NORESERVE mappings also need to be
2323          * checked against any subpool limit.
2324          */
2325         if (map_chg || avoid_reserve) {
2326                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2327                 if (gbl_chg < 0) {
2328                         vma_end_reservation(h, vma, addr);
2329                         return ERR_PTR(-ENOSPC);
2330                 }
2331
2332                 /*
2333                  * Even though there was no reservation in the region/reserve
2334                  * map, there could be reservations associated with the
2335                  * subpool that can be used.  This would be indicated if the
2336                  * return value of hugepage_subpool_get_pages() is zero.
2337                  * However, if avoid_reserve is specified we still avoid even
2338                  * the subpool reservations.
2339                  */
2340                 if (avoid_reserve)
2341                         gbl_chg = 1;
2342         }
2343
2344         /* If this allocation is not consuming a reservation, charge it now.
2345          */
2346         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2347         if (deferred_reserve) {
2348                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2349                         idx, pages_per_huge_page(h), &h_cg);
2350                 if (ret)
2351                         goto out_subpool_put;
2352         }
2353
2354         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2355         if (ret)
2356                 goto out_uncharge_cgroup_reservation;
2357
2358         spin_lock(&hugetlb_lock);
2359         /*
2360          * glb_chg is passed to indicate whether or not a page must be taken
2361          * from the global free pool (global change).  gbl_chg == 0 indicates
2362          * a reservation exists for the allocation.
2363          */
2364         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2365         if (!page) {
2366                 spin_unlock(&hugetlb_lock);
2367                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2368                 if (!page)
2369                         goto out_uncharge_cgroup;
2370                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2371                         SetPagePrivate(page);
2372                         h->resv_huge_pages--;
2373                 }
2374                 spin_lock(&hugetlb_lock);
2375                 list_add(&page->lru, &h->hugepage_activelist);
2376                 /* Fall through */
2377         }
2378         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2379         /* If allocation is not consuming a reservation, also store the
2380          * hugetlb_cgroup pointer on the page.
2381          */
2382         if (deferred_reserve) {
2383                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2384                                                   h_cg, page);
2385         }
2386
2387         spin_unlock(&hugetlb_lock);
2388
2389         set_page_private(page, (unsigned long)spool);
2390
2391         map_commit = vma_commit_reservation(h, vma, addr);
2392         if (unlikely(map_chg > map_commit)) {
2393                 /*
2394                  * The page was added to the reservation map between
2395                  * vma_needs_reservation and vma_commit_reservation.
2396                  * This indicates a race with hugetlb_reserve_pages.
2397                  * Adjust for the subpool count incremented above AND
2398                  * in hugetlb_reserve_pages for the same page.  Also,
2399                  * the reservation count added in hugetlb_reserve_pages
2400                  * no longer applies.
2401                  */
2402                 long rsv_adjust;
2403
2404                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2405                 hugetlb_acct_memory(h, -rsv_adjust);
2406                 if (deferred_reserve)
2407                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2408                                         pages_per_huge_page(h), page);
2409         }
2410         return page;
2411
2412 out_uncharge_cgroup:
2413         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2414 out_uncharge_cgroup_reservation:
2415         if (deferred_reserve)
2416                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2417                                                     h_cg);
2418 out_subpool_put:
2419         if (map_chg || avoid_reserve)
2420                 hugepage_subpool_put_pages(spool, 1);
2421         vma_end_reservation(h, vma, addr);
2422         return ERR_PTR(-ENOSPC);
2423 }
2424
2425 int alloc_bootmem_huge_page(struct hstate *h)
2426         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2427 int __alloc_bootmem_huge_page(struct hstate *h)
2428 {
2429         struct huge_bootmem_page *m;
2430         int nr_nodes, node;
2431
2432         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2433                 void *addr;
2434
2435                 addr = memblock_alloc_try_nid_raw(
2436                                 huge_page_size(h), huge_page_size(h),
2437                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2438                 if (addr) {
2439                         /*
2440                          * Use the beginning of the huge page to store the
2441                          * huge_bootmem_page struct (until gather_bootmem
2442                          * puts them into the mem_map).
2443                          */
2444                         m = addr;
2445                         goto found;
2446                 }
2447         }
2448         return 0;
2449
2450 found:
2451         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2452         /* Put them into a private list first because mem_map is not up yet */
2453         INIT_LIST_HEAD(&m->list);
2454         list_add(&m->list, &huge_boot_pages);
2455         m->hstate = h;
2456         return 1;
2457 }
2458
2459 static void __init prep_compound_huge_page(struct page *page,
2460                 unsigned int order)
2461 {
2462         if (unlikely(order > (MAX_ORDER - 1)))
2463                 prep_compound_gigantic_page(page, order);
2464         else
2465                 prep_compound_page(page, order);
2466 }
2467
2468 /* Put bootmem huge pages into the standard lists after mem_map is up */
2469 static void __init gather_bootmem_prealloc(void)
2470 {
2471         struct huge_bootmem_page *m;
2472
2473         list_for_each_entry(m, &huge_boot_pages, list) {
2474                 struct page *page = virt_to_page(m);
2475                 struct hstate *h = m->hstate;
2476
2477                 WARN_ON(page_count(page) != 1);
2478                 prep_compound_huge_page(page, h->order);
2479                 WARN_ON(PageReserved(page));
2480                 prep_new_huge_page(h, page, page_to_nid(page));
2481                 put_page(page); /* free it into the hugepage allocator */
2482
2483                 /*
2484                  * If we had gigantic hugepages allocated at boot time, we need
2485                  * to restore the 'stolen' pages to totalram_pages in order to
2486                  * fix confusing memory reports from free(1) and another
2487                  * side-effects, like CommitLimit going negative.
2488                  */
2489                 if (hstate_is_gigantic(h))
2490                         adjust_managed_page_count(page, 1 << h->order);
2491                 cond_resched();
2492         }
2493 }
2494
2495 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2496 {
2497         unsigned long i;
2498         nodemask_t *node_alloc_noretry;
2499
2500         if (!hstate_is_gigantic(h)) {
2501                 /*
2502                  * Bit mask controlling how hard we retry per-node allocations.
2503                  * Ignore errors as lower level routines can deal with
2504                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2505                  * time, we are likely in bigger trouble.
2506                  */
2507                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2508                                                 GFP_KERNEL);
2509         } else {
2510                 /* allocations done at boot time */
2511                 node_alloc_noretry = NULL;
2512         }
2513
2514         /* bit mask controlling how hard we retry per-node allocations */
2515         if (node_alloc_noretry)
2516                 nodes_clear(*node_alloc_noretry);
2517
2518         for (i = 0; i < h->max_huge_pages; ++i) {
2519                 if (hstate_is_gigantic(h)) {
2520                         if (hugetlb_cma_size) {
2521                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2522                                 goto free;
2523                         }
2524                         if (!alloc_bootmem_huge_page(h))
2525                                 break;
2526                 } else if (!alloc_pool_huge_page(h,
2527                                          &node_states[N_MEMORY],
2528                                          node_alloc_noretry))
2529                         break;
2530                 cond_resched();
2531         }
2532         if (i < h->max_huge_pages) {
2533                 char buf[32];
2534
2535                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2536                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2537                         h->max_huge_pages, buf, i);
2538                 h->max_huge_pages = i;
2539         }
2540 free:
2541         kfree(node_alloc_noretry);
2542 }
2543
2544 static void __init hugetlb_init_hstates(void)
2545 {
2546         struct hstate *h;
2547
2548         for_each_hstate(h) {
2549                 if (minimum_order > huge_page_order(h))
2550                         minimum_order = huge_page_order(h);
2551
2552                 /* oversize hugepages were init'ed in early boot */
2553                 if (!hstate_is_gigantic(h))
2554                         hugetlb_hstate_alloc_pages(h);
2555         }
2556         VM_BUG_ON(minimum_order == UINT_MAX);
2557 }
2558
2559 static void __init report_hugepages(void)
2560 {
2561         struct hstate *h;
2562
2563         for_each_hstate(h) {
2564                 char buf[32];
2565
2566                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2567                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2568                         buf, h->free_huge_pages);
2569         }
2570 }
2571
2572 #ifdef CONFIG_HIGHMEM
2573 static void try_to_free_low(struct hstate *h, unsigned long count,
2574                                                 nodemask_t *nodes_allowed)
2575 {
2576         int i;
2577
2578         if (hstate_is_gigantic(h))
2579                 return;
2580
2581         for_each_node_mask(i, *nodes_allowed) {
2582                 struct page *page, *next;
2583                 struct list_head *freel = &h->hugepage_freelists[i];
2584                 list_for_each_entry_safe(page, next, freel, lru) {
2585                         if (count >= h->nr_huge_pages)
2586                                 return;
2587                         if (PageHighMem(page))
2588                                 continue;
2589                         list_del(&page->lru);
2590                         update_and_free_page(h, page);
2591                         h->free_huge_pages--;
2592                         h->free_huge_pages_node[page_to_nid(page)]--;
2593                 }
2594         }
2595 }
2596 #else
2597 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2598                                                 nodemask_t *nodes_allowed)
2599 {
2600 }
2601 #endif
2602
2603 /*
2604  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2605  * balanced by operating on them in a round-robin fashion.
2606  * Returns 1 if an adjustment was made.
2607  */
2608 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2609                                 int delta)
2610 {
2611         int nr_nodes, node;
2612
2613         VM_BUG_ON(delta != -1 && delta != 1);
2614
2615         if (delta < 0) {
2616                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2617                         if (h->surplus_huge_pages_node[node])
2618                                 goto found;
2619                 }
2620         } else {
2621                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2622                         if (h->surplus_huge_pages_node[node] <
2623                                         h->nr_huge_pages_node[node])
2624                                 goto found;
2625                 }
2626         }
2627         return 0;
2628
2629 found:
2630         h->surplus_huge_pages += delta;
2631         h->surplus_huge_pages_node[node] += delta;
2632         return 1;
2633 }
2634
2635 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2636 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2637                               nodemask_t *nodes_allowed)
2638 {
2639         unsigned long min_count, ret;
2640         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2641
2642         /*
2643          * Bit mask controlling how hard we retry per-node allocations.
2644          * If we can not allocate the bit mask, do not attempt to allocate
2645          * the requested huge pages.
2646          */
2647         if (node_alloc_noretry)
2648                 nodes_clear(*node_alloc_noretry);
2649         else
2650                 return -ENOMEM;
2651
2652         spin_lock(&hugetlb_lock);
2653
2654         /*
2655          * Check for a node specific request.
2656          * Changing node specific huge page count may require a corresponding
2657          * change to the global count.  In any case, the passed node mask
2658          * (nodes_allowed) will restrict alloc/free to the specified node.
2659          */
2660         if (nid != NUMA_NO_NODE) {
2661                 unsigned long old_count = count;
2662
2663                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2664                 /*
2665                  * User may have specified a large count value which caused the
2666                  * above calculation to overflow.  In this case, they wanted
2667                  * to allocate as many huge pages as possible.  Set count to
2668                  * largest possible value to align with their intention.
2669                  */
2670                 if (count < old_count)
2671                         count = ULONG_MAX;
2672         }
2673
2674         /*
2675          * Gigantic pages runtime allocation depend on the capability for large
2676          * page range allocation.
2677          * If the system does not provide this feature, return an error when
2678          * the user tries to allocate gigantic pages but let the user free the
2679          * boottime allocated gigantic pages.
2680          */
2681         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2682                 if (count > persistent_huge_pages(h)) {
2683                         spin_unlock(&hugetlb_lock);
2684                         NODEMASK_FREE(node_alloc_noretry);
2685                         return -EINVAL;
2686                 }
2687                 /* Fall through to decrease pool */
2688         }
2689
2690         /*
2691          * Increase the pool size
2692          * First take pages out of surplus state.  Then make up the
2693          * remaining difference by allocating fresh huge pages.
2694          *
2695          * We might race with alloc_surplus_huge_page() here and be unable
2696          * to convert a surplus huge page to a normal huge page. That is
2697          * not critical, though, it just means the overall size of the
2698          * pool might be one hugepage larger than it needs to be, but
2699          * within all the constraints specified by the sysctls.
2700          */
2701         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2702                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2703                         break;
2704         }
2705
2706         while (count > persistent_huge_pages(h)) {
2707                 /*
2708                  * If this allocation races such that we no longer need the
2709                  * page, free_huge_page will handle it by freeing the page
2710                  * and reducing the surplus.
2711                  */
2712                 spin_unlock(&hugetlb_lock);
2713
2714                 /* yield cpu to avoid soft lockup */
2715                 cond_resched();
2716
2717                 ret = alloc_pool_huge_page(h, nodes_allowed,
2718                                                 node_alloc_noretry);
2719                 spin_lock(&hugetlb_lock);
2720                 if (!ret)
2721                         goto out;
2722
2723                 /* Bail for signals. Probably ctrl-c from user */
2724                 if (signal_pending(current))
2725                         goto out;
2726         }
2727
2728         /*
2729          * Decrease the pool size
2730          * First return free pages to the buddy allocator (being careful
2731          * to keep enough around to satisfy reservations).  Then place
2732          * pages into surplus state as needed so the pool will shrink
2733          * to the desired size as pages become free.
2734          *
2735          * By placing pages into the surplus state independent of the
2736          * overcommit value, we are allowing the surplus pool size to
2737          * exceed overcommit. There are few sane options here. Since
2738          * alloc_surplus_huge_page() is checking the global counter,
2739          * though, we'll note that we're not allowed to exceed surplus
2740          * and won't grow the pool anywhere else. Not until one of the
2741          * sysctls are changed, or the surplus pages go out of use.
2742          */
2743         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2744         min_count = max(count, min_count);
2745         try_to_free_low(h, min_count, nodes_allowed);
2746         while (min_count < persistent_huge_pages(h)) {
2747                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2748                         break;
2749                 cond_resched_lock(&hugetlb_lock);
2750         }
2751         while (count < persistent_huge_pages(h)) {
2752                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2753                         break;
2754         }
2755 out:
2756         h->max_huge_pages = persistent_huge_pages(h);
2757         spin_unlock(&hugetlb_lock);
2758
2759         NODEMASK_FREE(node_alloc_noretry);
2760
2761         return 0;
2762 }
2763
2764 #define HSTATE_ATTR_RO(_name) \
2765         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2766
2767 #define HSTATE_ATTR(_name) \
2768         static struct kobj_attribute _name##_attr = \
2769                 __ATTR(_name, 0644, _name##_show, _name##_store)
2770
2771 static struct kobject *hugepages_kobj;
2772 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2773
2774 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2775
2776 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2777 {
2778         int i;
2779
2780         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2781                 if (hstate_kobjs[i] == kobj) {
2782                         if (nidp)
2783                                 *nidp = NUMA_NO_NODE;
2784                         return &hstates[i];
2785                 }
2786
2787         return kobj_to_node_hstate(kobj, nidp);
2788 }
2789
2790 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2791                                         struct kobj_attribute *attr, char *buf)
2792 {
2793         struct hstate *h;
2794         unsigned long nr_huge_pages;
2795         int nid;
2796
2797         h = kobj_to_hstate(kobj, &nid);
2798         if (nid == NUMA_NO_NODE)
2799                 nr_huge_pages = h->nr_huge_pages;
2800         else
2801                 nr_huge_pages = h->nr_huge_pages_node[nid];
2802
2803         return sprintf(buf, "%lu\n", nr_huge_pages);
2804 }
2805
2806 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2807                                            struct hstate *h, int nid,
2808                                            unsigned long count, size_t len)
2809 {
2810         int err;
2811         nodemask_t nodes_allowed, *n_mask;
2812
2813         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2814                 return -EINVAL;
2815
2816         if (nid == NUMA_NO_NODE) {
2817                 /*
2818                  * global hstate attribute
2819                  */
2820                 if (!(obey_mempolicy &&
2821                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2822                         n_mask = &node_states[N_MEMORY];
2823                 else
2824                         n_mask = &nodes_allowed;
2825         } else {
2826                 /*
2827                  * Node specific request.  count adjustment happens in
2828                  * set_max_huge_pages() after acquiring hugetlb_lock.
2829                  */
2830                 init_nodemask_of_node(&nodes_allowed, nid);
2831                 n_mask = &nodes_allowed;
2832         }
2833
2834         err = set_max_huge_pages(h, count, nid, n_mask);
2835
2836         return err ? err : len;
2837 }
2838
2839 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2840                                          struct kobject *kobj, const char *buf,
2841                                          size_t len)
2842 {
2843         struct hstate *h;
2844         unsigned long count;
2845         int nid;
2846         int err;
2847
2848         err = kstrtoul(buf, 10, &count);
2849         if (err)
2850                 return err;
2851
2852         h = kobj_to_hstate(kobj, &nid);
2853         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2854 }
2855
2856 static ssize_t nr_hugepages_show(struct kobject *kobj,
2857                                        struct kobj_attribute *attr, char *buf)
2858 {
2859         return nr_hugepages_show_common(kobj, attr, buf);
2860 }
2861
2862 static ssize_t nr_hugepages_store(struct kobject *kobj,
2863                struct kobj_attribute *attr, const char *buf, size_t len)
2864 {
2865         return nr_hugepages_store_common(false, kobj, buf, len);
2866 }
2867 HSTATE_ATTR(nr_hugepages);
2868
2869 #ifdef CONFIG_NUMA
2870
2871 /*
2872  * hstate attribute for optionally mempolicy-based constraint on persistent
2873  * huge page alloc/free.
2874  */
2875 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2876                                        struct kobj_attribute *attr, char *buf)
2877 {
2878         return nr_hugepages_show_common(kobj, attr, buf);
2879 }
2880
2881 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2882                struct kobj_attribute *attr, const char *buf, size_t len)
2883 {
2884         return nr_hugepages_store_common(true, kobj, buf, len);
2885 }
2886 HSTATE_ATTR(nr_hugepages_mempolicy);
2887 #endif
2888
2889
2890 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2891                                         struct kobj_attribute *attr, char *buf)
2892 {
2893         struct hstate *h = kobj_to_hstate(kobj, NULL);
2894         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2895 }
2896
2897 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2898                 struct kobj_attribute *attr, const char *buf, size_t count)
2899 {
2900         int err;
2901         unsigned long input;
2902         struct hstate *h = kobj_to_hstate(kobj, NULL);
2903
2904         if (hstate_is_gigantic(h))
2905                 return -EINVAL;
2906
2907         err = kstrtoul(buf, 10, &input);
2908         if (err)
2909                 return err;
2910
2911         spin_lock(&hugetlb_lock);
2912         h->nr_overcommit_huge_pages = input;
2913         spin_unlock(&hugetlb_lock);
2914
2915         return count;
2916 }
2917 HSTATE_ATTR(nr_overcommit_hugepages);
2918
2919 static ssize_t free_hugepages_show(struct kobject *kobj,
2920                                         struct kobj_attribute *attr, char *buf)
2921 {
2922         struct hstate *h;
2923         unsigned long free_huge_pages;
2924         int nid;
2925
2926         h = kobj_to_hstate(kobj, &nid);
2927         if (nid == NUMA_NO_NODE)
2928                 free_huge_pages = h->free_huge_pages;
2929         else
2930                 free_huge_pages = h->free_huge_pages_node[nid];
2931
2932         return sprintf(buf, "%lu\n", free_huge_pages);
2933 }
2934 HSTATE_ATTR_RO(free_hugepages);
2935
2936 static ssize_t resv_hugepages_show(struct kobject *kobj,
2937                                         struct kobj_attribute *attr, char *buf)
2938 {
2939         struct hstate *h = kobj_to_hstate(kobj, NULL);
2940         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2941 }
2942 HSTATE_ATTR_RO(resv_hugepages);
2943
2944 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2945                                         struct kobj_attribute *attr, char *buf)
2946 {
2947         struct hstate *h;
2948         unsigned long surplus_huge_pages;
2949         int nid;
2950
2951         h = kobj_to_hstate(kobj, &nid);
2952         if (nid == NUMA_NO_NODE)
2953                 surplus_huge_pages = h->surplus_huge_pages;
2954         else
2955                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2956
2957         return sprintf(buf, "%lu\n", surplus_huge_pages);
2958 }
2959 HSTATE_ATTR_RO(surplus_hugepages);
2960
2961 static struct attribute *hstate_attrs[] = {
2962         &nr_hugepages_attr.attr,
2963         &nr_overcommit_hugepages_attr.attr,
2964         &free_hugepages_attr.attr,
2965         &resv_hugepages_attr.attr,
2966         &surplus_hugepages_attr.attr,
2967 #ifdef CONFIG_NUMA
2968         &nr_hugepages_mempolicy_attr.attr,
2969 #endif
2970         NULL,
2971 };
2972
2973 static const struct attribute_group hstate_attr_group = {
2974         .attrs = hstate_attrs,
2975 };
2976
2977 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2978                                     struct kobject **hstate_kobjs,
2979                                     const struct attribute_group *hstate_attr_group)
2980 {
2981         int retval;
2982         int hi = hstate_index(h);
2983
2984         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2985         if (!hstate_kobjs[hi])
2986                 return -ENOMEM;
2987
2988         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2989         if (retval) {
2990                 kobject_put(hstate_kobjs[hi]);
2991                 hstate_kobjs[hi] = NULL;
2992         }
2993
2994         return retval;
2995 }
2996
2997 static void __init hugetlb_sysfs_init(void)
2998 {
2999         struct hstate *h;
3000         int err;
3001
3002         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3003         if (!hugepages_kobj)
3004                 return;
3005
3006         for_each_hstate(h) {
3007                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3008                                          hstate_kobjs, &hstate_attr_group);
3009                 if (err)
3010                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3011         }
3012 }
3013
3014 #ifdef CONFIG_NUMA
3015
3016 /*
3017  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3018  * with node devices in node_devices[] using a parallel array.  The array
3019  * index of a node device or _hstate == node id.
3020  * This is here to avoid any static dependency of the node device driver, in
3021  * the base kernel, on the hugetlb module.
3022  */
3023 struct node_hstate {
3024         struct kobject          *hugepages_kobj;
3025         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3026 };
3027 static struct node_hstate node_hstates[MAX_NUMNODES];
3028
3029 /*
3030  * A subset of global hstate attributes for node devices
3031  */
3032 static struct attribute *per_node_hstate_attrs[] = {
3033         &nr_hugepages_attr.attr,
3034         &free_hugepages_attr.attr,
3035         &surplus_hugepages_attr.attr,
3036         NULL,
3037 };
3038
3039 static const struct attribute_group per_node_hstate_attr_group = {
3040         .attrs = per_node_hstate_attrs,
3041 };
3042
3043 /*
3044  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3045  * Returns node id via non-NULL nidp.
3046  */
3047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3048 {
3049         int nid;
3050
3051         for (nid = 0; nid < nr_node_ids; nid++) {
3052                 struct node_hstate *nhs = &node_hstates[nid];
3053                 int i;
3054                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3055                         if (nhs->hstate_kobjs[i] == kobj) {
3056                                 if (nidp)
3057                                         *nidp = nid;
3058                                 return &hstates[i];
3059                         }
3060         }
3061
3062         BUG();
3063         return NULL;
3064 }
3065
3066 /*
3067  * Unregister hstate attributes from a single node device.
3068  * No-op if no hstate attributes attached.
3069  */
3070 static void hugetlb_unregister_node(struct node *node)
3071 {
3072         struct hstate *h;
3073         struct node_hstate *nhs = &node_hstates[node->dev.id];
3074
3075         if (!nhs->hugepages_kobj)
3076                 return;         /* no hstate attributes */
3077
3078         for_each_hstate(h) {
3079                 int idx = hstate_index(h);
3080                 if (nhs->hstate_kobjs[idx]) {
3081                         kobject_put(nhs->hstate_kobjs[idx]);
3082                         nhs->hstate_kobjs[idx] = NULL;
3083                 }
3084         }
3085
3086         kobject_put(nhs->hugepages_kobj);
3087         nhs->hugepages_kobj = NULL;
3088 }
3089
3090
3091 /*
3092  * Register hstate attributes for a single node device.
3093  * No-op if attributes already registered.
3094  */
3095 static void hugetlb_register_node(struct node *node)
3096 {
3097         struct hstate *h;
3098         struct node_hstate *nhs = &node_hstates[node->dev.id];
3099         int err;
3100
3101         if (nhs->hugepages_kobj)
3102                 return;         /* already allocated */
3103
3104         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3105                                                         &node->dev.kobj);
3106         if (!nhs->hugepages_kobj)
3107                 return;
3108
3109         for_each_hstate(h) {
3110                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3111                                                 nhs->hstate_kobjs,
3112                                                 &per_node_hstate_attr_group);
3113                 if (err) {
3114                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3115                                 h->name, node->dev.id);
3116                         hugetlb_unregister_node(node);
3117                         break;
3118                 }
3119         }
3120 }
3121
3122 /*
3123  * hugetlb init time:  register hstate attributes for all registered node
3124  * devices of nodes that have memory.  All on-line nodes should have
3125  * registered their associated device by this time.
3126  */
3127 static void __init hugetlb_register_all_nodes(void)
3128 {
3129         int nid;
3130
3131         for_each_node_state(nid, N_MEMORY) {
3132                 struct node *node = node_devices[nid];
3133                 if (node->dev.id == nid)
3134                         hugetlb_register_node(node);
3135         }
3136
3137         /*
3138          * Let the node device driver know we're here so it can
3139          * [un]register hstate attributes on node hotplug.
3140          */
3141         register_hugetlbfs_with_node(hugetlb_register_node,
3142                                      hugetlb_unregister_node);
3143 }
3144 #else   /* !CONFIG_NUMA */
3145
3146 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3147 {
3148         BUG();
3149         if (nidp)
3150                 *nidp = -1;
3151         return NULL;
3152 }
3153
3154 static void hugetlb_register_all_nodes(void) { }
3155
3156 #endif
3157
3158 static int __init hugetlb_init(void)
3159 {
3160         int i;
3161
3162         if (!hugepages_supported()) {
3163                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3164                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3165                 return 0;
3166         }
3167
3168         /*
3169          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3170          * architectures depend on setup being done here.
3171          */
3172         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3173         if (!parsed_default_hugepagesz) {
3174                 /*
3175                  * If we did not parse a default huge page size, set
3176                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3177                  * number of huge pages for this default size was implicitly
3178                  * specified, set that here as well.
3179                  * Note that the implicit setting will overwrite an explicit
3180                  * setting.  A warning will be printed in this case.
3181                  */
3182                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3183                 if (default_hstate_max_huge_pages) {
3184                         if (default_hstate.max_huge_pages) {
3185                                 char buf[32];
3186
3187                                 string_get_size(huge_page_size(&default_hstate),
3188                                         1, STRING_UNITS_2, buf, 32);
3189                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3190                                         default_hstate.max_huge_pages, buf);
3191                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3192                                         default_hstate_max_huge_pages);
3193                         }
3194                         default_hstate.max_huge_pages =
3195                                 default_hstate_max_huge_pages;
3196                 }
3197         }
3198
3199         hugetlb_cma_check();
3200         hugetlb_init_hstates();
3201         gather_bootmem_prealloc();
3202         report_hugepages();
3203
3204         hugetlb_sysfs_init();
3205         hugetlb_register_all_nodes();
3206         hugetlb_cgroup_file_init();
3207
3208 #ifdef CONFIG_SMP
3209         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3210 #else
3211         num_fault_mutexes = 1;
3212 #endif
3213         hugetlb_fault_mutex_table =
3214                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3215                               GFP_KERNEL);
3216         BUG_ON(!hugetlb_fault_mutex_table);
3217
3218         for (i = 0; i < num_fault_mutexes; i++)
3219                 mutex_init(&hugetlb_fault_mutex_table[i]);
3220         return 0;
3221 }
3222 subsys_initcall(hugetlb_init);
3223
3224 /* Overwritten by architectures with more huge page sizes */
3225 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3226 {
3227         return size == HPAGE_SIZE;
3228 }
3229
3230 void __init hugetlb_add_hstate(unsigned int order)
3231 {
3232         struct hstate *h;
3233         unsigned long i;
3234
3235         if (size_to_hstate(PAGE_SIZE << order)) {
3236                 return;
3237         }
3238         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3239         BUG_ON(order == 0);
3240         h = &hstates[hugetlb_max_hstate++];
3241         h->order = order;
3242         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3243         h->nr_huge_pages = 0;
3244         h->free_huge_pages = 0;
3245         for (i = 0; i < MAX_NUMNODES; ++i)
3246                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3247         INIT_LIST_HEAD(&h->hugepage_activelist);
3248         h->next_nid_to_alloc = first_memory_node;
3249         h->next_nid_to_free = first_memory_node;
3250         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3251                                         huge_page_size(h)/1024);
3252
3253         parsed_hstate = h;
3254 }
3255
3256 /*
3257  * hugepages command line processing
3258  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3259  * specification.  If not, ignore the hugepages value.  hugepages can also
3260  * be the first huge page command line  option in which case it implicitly
3261  * specifies the number of huge pages for the default size.
3262  */
3263 static int __init hugepages_setup(char *s)
3264 {
3265         unsigned long *mhp;
3266         static unsigned long *last_mhp;
3267
3268         if (!parsed_valid_hugepagesz) {
3269                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3270                 parsed_valid_hugepagesz = true;
3271                 return 0;
3272         }
3273
3274         /*
3275          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3276          * yet, so this hugepages= parameter goes to the "default hstate".
3277          * Otherwise, it goes with the previously parsed hugepagesz or
3278          * default_hugepagesz.
3279          */
3280         else if (!hugetlb_max_hstate)
3281                 mhp = &default_hstate_max_huge_pages;
3282         else
3283                 mhp = &parsed_hstate->max_huge_pages;
3284
3285         if (mhp == last_mhp) {
3286                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3287                 return 0;
3288         }
3289
3290         if (sscanf(s, "%lu", mhp) <= 0)
3291                 *mhp = 0;
3292
3293         /*
3294          * Global state is always initialized later in hugetlb_init.
3295          * But we need to allocate >= MAX_ORDER hstates here early to still
3296          * use the bootmem allocator.
3297          */
3298         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3299                 hugetlb_hstate_alloc_pages(parsed_hstate);
3300
3301         last_mhp = mhp;
3302
3303         return 1;
3304 }
3305 __setup("hugepages=", hugepages_setup);
3306
3307 /*
3308  * hugepagesz command line processing
3309  * A specific huge page size can only be specified once with hugepagesz.
3310  * hugepagesz is followed by hugepages on the command line.  The global
3311  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3312  * hugepagesz argument was valid.
3313  */
3314 static int __init hugepagesz_setup(char *s)
3315 {
3316         unsigned long size;
3317         struct hstate *h;
3318
3319         parsed_valid_hugepagesz = false;
3320         size = (unsigned long)memparse(s, NULL);
3321
3322         if (!arch_hugetlb_valid_size(size)) {
3323                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3324                 return 0;
3325         }
3326
3327         h = size_to_hstate(size);
3328         if (h) {
3329                 /*
3330                  * hstate for this size already exists.  This is normally
3331                  * an error, but is allowed if the existing hstate is the
3332                  * default hstate.  More specifically, it is only allowed if
3333                  * the number of huge pages for the default hstate was not
3334                  * previously specified.
3335                  */
3336                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3337                     default_hstate.max_huge_pages) {
3338                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3339                         return 0;
3340                 }
3341
3342                 /*
3343                  * No need to call hugetlb_add_hstate() as hstate already
3344                  * exists.  But, do set parsed_hstate so that a following
3345                  * hugepages= parameter will be applied to this hstate.
3346                  */
3347                 parsed_hstate = h;
3348                 parsed_valid_hugepagesz = true;
3349                 return 1;
3350         }
3351
3352         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3353         parsed_valid_hugepagesz = true;
3354         return 1;
3355 }
3356 __setup("hugepagesz=", hugepagesz_setup);
3357
3358 /*
3359  * default_hugepagesz command line input
3360  * Only one instance of default_hugepagesz allowed on command line.
3361  */
3362 static int __init default_hugepagesz_setup(char *s)
3363 {
3364         unsigned long size;
3365
3366         parsed_valid_hugepagesz = false;
3367         if (parsed_default_hugepagesz) {
3368                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3369                 return 0;
3370         }
3371
3372         size = (unsigned long)memparse(s, NULL);
3373
3374         if (!arch_hugetlb_valid_size(size)) {
3375                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3376                 return 0;
3377         }
3378
3379         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3380         parsed_valid_hugepagesz = true;
3381         parsed_default_hugepagesz = true;
3382         default_hstate_idx = hstate_index(size_to_hstate(size));
3383
3384         /*
3385          * The number of default huge pages (for this size) could have been
3386          * specified as the first hugetlb parameter: hugepages=X.  If so,
3387          * then default_hstate_max_huge_pages is set.  If the default huge
3388          * page size is gigantic (>= MAX_ORDER), then the pages must be
3389          * allocated here from bootmem allocator.
3390          */
3391         if (default_hstate_max_huge_pages) {
3392                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3393                 if (hstate_is_gigantic(&default_hstate))
3394                         hugetlb_hstate_alloc_pages(&default_hstate);
3395                 default_hstate_max_huge_pages = 0;
3396         }
3397
3398         return 1;
3399 }
3400 __setup("default_hugepagesz=", default_hugepagesz_setup);
3401
3402 static unsigned int allowed_mems_nr(struct hstate *h)
3403 {
3404         int node;
3405         unsigned int nr = 0;
3406         nodemask_t *mpol_allowed;
3407         unsigned int *array = h->free_huge_pages_node;
3408         gfp_t gfp_mask = htlb_alloc_mask(h);
3409
3410         mpol_allowed = policy_nodemask_current(gfp_mask);
3411
3412         for_each_node_mask(node, cpuset_current_mems_allowed) {
3413                 if (!mpol_allowed ||
3414                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3415                         nr += array[node];
3416         }
3417
3418         return nr;
3419 }
3420
3421 #ifdef CONFIG_SYSCTL
3422 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3423                                           void *buffer, size_t *length,
3424                                           loff_t *ppos, unsigned long *out)
3425 {
3426         struct ctl_table dup_table;
3427
3428         /*
3429          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3430          * can duplicate the @table and alter the duplicate of it.
3431          */
3432         dup_table = *table;
3433         dup_table.data = out;
3434
3435         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3436 }
3437
3438 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3439                          struct ctl_table *table, int write,
3440                          void *buffer, size_t *length, loff_t *ppos)
3441 {
3442         struct hstate *h = &default_hstate;
3443         unsigned long tmp = h->max_huge_pages;
3444         int ret;
3445
3446         if (!hugepages_supported())
3447                 return -EOPNOTSUPP;
3448
3449         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3450                                              &tmp);
3451         if (ret)
3452                 goto out;
3453
3454         if (write)
3455                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3456                                                   NUMA_NO_NODE, tmp, *length);
3457 out:
3458         return ret;
3459 }
3460
3461 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3462                           void *buffer, size_t *length, loff_t *ppos)
3463 {
3464
3465         return hugetlb_sysctl_handler_common(false, table, write,
3466                                                         buffer, length, ppos);
3467 }
3468
3469 #ifdef CONFIG_NUMA
3470 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3471                           void *buffer, size_t *length, loff_t *ppos)
3472 {
3473         return hugetlb_sysctl_handler_common(true, table, write,
3474                                                         buffer, length, ppos);
3475 }
3476 #endif /* CONFIG_NUMA */
3477
3478 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3479                 void *buffer, size_t *length, loff_t *ppos)
3480 {
3481         struct hstate *h = &default_hstate;
3482         unsigned long tmp;
3483         int ret;
3484
3485         if (!hugepages_supported())
3486                 return -EOPNOTSUPP;
3487
3488         tmp = h->nr_overcommit_huge_pages;
3489
3490         if (write && hstate_is_gigantic(h))
3491                 return -EINVAL;
3492
3493         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3494                                              &tmp);
3495         if (ret)
3496                 goto out;
3497
3498         if (write) {
3499                 spin_lock(&hugetlb_lock);
3500                 h->nr_overcommit_huge_pages = tmp;
3501                 spin_unlock(&hugetlb_lock);
3502         }
3503 out:
3504         return ret;
3505 }
3506
3507 #endif /* CONFIG_SYSCTL */
3508
3509 void hugetlb_report_meminfo(struct seq_file *m)
3510 {
3511         struct hstate *h;
3512         unsigned long total = 0;
3513
3514         if (!hugepages_supported())
3515                 return;
3516
3517         for_each_hstate(h) {
3518                 unsigned long count = h->nr_huge_pages;
3519
3520                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3521
3522                 if (h == &default_hstate)
3523                         seq_printf(m,
3524                                    "HugePages_Total:   %5lu\n"
3525                                    "HugePages_Free:    %5lu\n"
3526                                    "HugePages_Rsvd:    %5lu\n"
3527                                    "HugePages_Surp:    %5lu\n"
3528                                    "Hugepagesize:   %8lu kB\n",
3529                                    count,
3530                                    h->free_huge_pages,
3531                                    h->resv_huge_pages,
3532                                    h->surplus_huge_pages,
3533                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3534         }
3535
3536         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3537 }
3538
3539 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3540 {
3541         struct hstate *h = &default_hstate;
3542
3543         if (!hugepages_supported())
3544                 return 0;
3545
3546         return sysfs_emit_at(buf, len,
3547                              "Node %d HugePages_Total: %5u\n"
3548                              "Node %d HugePages_Free:  %5u\n"
3549                              "Node %d HugePages_Surp:  %5u\n",
3550                              nid, h->nr_huge_pages_node[nid],
3551                              nid, h->free_huge_pages_node[nid],
3552                              nid, h->surplus_huge_pages_node[nid]);
3553 }
3554
3555 void hugetlb_show_meminfo(void)
3556 {
3557         struct hstate *h;
3558         int nid;
3559
3560         if (!hugepages_supported())
3561                 return;
3562
3563         for_each_node_state(nid, N_MEMORY)
3564                 for_each_hstate(h)
3565                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3566                                 nid,
3567                                 h->nr_huge_pages_node[nid],
3568                                 h->free_huge_pages_node[nid],
3569                                 h->surplus_huge_pages_node[nid],
3570                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3571 }
3572
3573 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3574 {
3575         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3576                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3577 }
3578
3579 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3580 unsigned long hugetlb_total_pages(void)
3581 {
3582         struct hstate *h;
3583         unsigned long nr_total_pages = 0;
3584
3585         for_each_hstate(h)
3586                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3587         return nr_total_pages;
3588 }
3589
3590 static int hugetlb_acct_memory(struct hstate *h, long delta)
3591 {
3592         int ret = -ENOMEM;
3593
3594         spin_lock(&hugetlb_lock);
3595         /*
3596          * When cpuset is configured, it breaks the strict hugetlb page
3597          * reservation as the accounting is done on a global variable. Such
3598          * reservation is completely rubbish in the presence of cpuset because
3599          * the reservation is not checked against page availability for the
3600          * current cpuset. Application can still potentially OOM'ed by kernel
3601          * with lack of free htlb page in cpuset that the task is in.
3602          * Attempt to enforce strict accounting with cpuset is almost
3603          * impossible (or too ugly) because cpuset is too fluid that
3604          * task or memory node can be dynamically moved between cpusets.
3605          *
3606          * The change of semantics for shared hugetlb mapping with cpuset is
3607          * undesirable. However, in order to preserve some of the semantics,
3608          * we fall back to check against current free page availability as
3609          * a best attempt and hopefully to minimize the impact of changing
3610          * semantics that cpuset has.
3611          *
3612          * Apart from cpuset, we also have memory policy mechanism that
3613          * also determines from which node the kernel will allocate memory
3614          * in a NUMA system. So similar to cpuset, we also should consider
3615          * the memory policy of the current task. Similar to the description
3616          * above.
3617          */
3618         if (delta > 0) {
3619                 if (gather_surplus_pages(h, delta) < 0)
3620                         goto out;
3621
3622                 if (delta > allowed_mems_nr(h)) {
3623                         return_unused_surplus_pages(h, delta);
3624                         goto out;
3625                 }
3626         }
3627
3628         ret = 0;
3629         if (delta < 0)
3630                 return_unused_surplus_pages(h, (unsigned long) -delta);
3631
3632 out:
3633         spin_unlock(&hugetlb_lock);
3634         return ret;
3635 }
3636
3637 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3638 {
3639         struct resv_map *resv = vma_resv_map(vma);
3640
3641         /*
3642          * This new VMA should share its siblings reservation map if present.
3643          * The VMA will only ever have a valid reservation map pointer where
3644          * it is being copied for another still existing VMA.  As that VMA
3645          * has a reference to the reservation map it cannot disappear until
3646          * after this open call completes.  It is therefore safe to take a
3647          * new reference here without additional locking.
3648          */
3649         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3650                 kref_get(&resv->refs);
3651 }
3652
3653 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3654 {
3655         struct hstate *h = hstate_vma(vma);
3656         struct resv_map *resv = vma_resv_map(vma);
3657         struct hugepage_subpool *spool = subpool_vma(vma);
3658         unsigned long reserve, start, end;
3659         long gbl_reserve;
3660
3661         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3662                 return;
3663
3664         start = vma_hugecache_offset(h, vma, vma->vm_start);
3665         end = vma_hugecache_offset(h, vma, vma->vm_end);
3666
3667         reserve = (end - start) - region_count(resv, start, end);
3668         hugetlb_cgroup_uncharge_counter(resv, start, end);
3669         if (reserve) {
3670                 /*
3671                  * Decrement reserve counts.  The global reserve count may be
3672                  * adjusted if the subpool has a minimum size.
3673                  */
3674                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3675                 hugetlb_acct_memory(h, -gbl_reserve);
3676         }
3677
3678         kref_put(&resv->refs, resv_map_release);
3679 }
3680
3681 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3682 {
3683         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3684                 return -EINVAL;
3685         return 0;
3686 }
3687
3688 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3689 {
3690         struct hstate *hstate = hstate_vma(vma);
3691
3692         return 1UL << huge_page_shift(hstate);
3693 }
3694
3695 /*
3696  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3697  * handle_mm_fault() to try to instantiate regular-sized pages in the
3698  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3699  * this far.
3700  */
3701 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3702 {
3703         BUG();
3704         return 0;
3705 }
3706
3707 /*
3708  * When a new function is introduced to vm_operations_struct and added
3709  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3710  * This is because under System V memory model, mappings created via
3711  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3712  * their original vm_ops are overwritten with shm_vm_ops.
3713  */
3714 const struct vm_operations_struct hugetlb_vm_ops = {
3715         .fault = hugetlb_vm_op_fault,
3716         .open = hugetlb_vm_op_open,
3717         .close = hugetlb_vm_op_close,
3718         .split = hugetlb_vm_op_split,
3719         .pagesize = hugetlb_vm_op_pagesize,
3720 };
3721
3722 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3723                                 int writable)
3724 {
3725         pte_t entry;
3726
3727         if (writable) {
3728                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3729                                          vma->vm_page_prot)));
3730         } else {
3731                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3732                                            vma->vm_page_prot));
3733         }
3734         entry = pte_mkyoung(entry);
3735         entry = pte_mkhuge(entry);
3736         entry = arch_make_huge_pte(entry, vma, page, writable);
3737
3738         return entry;
3739 }
3740
3741 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3742                                    unsigned long address, pte_t *ptep)
3743 {
3744         pte_t entry;
3745
3746         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3747         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3748                 update_mmu_cache(vma, address, ptep);
3749 }
3750
3751 bool is_hugetlb_entry_migration(pte_t pte)
3752 {
3753         swp_entry_t swp;
3754
3755         if (huge_pte_none(pte) || pte_present(pte))
3756                 return false;
3757         swp = pte_to_swp_entry(pte);
3758         if (is_migration_entry(swp))
3759                 return true;
3760         else
3761                 return false;
3762 }
3763
3764 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3765 {
3766         swp_entry_t swp;
3767
3768         if (huge_pte_none(pte) || pte_present(pte))
3769                 return false;
3770         swp = pte_to_swp_entry(pte);
3771         if (is_hwpoison_entry(swp))
3772                 return true;
3773         else
3774                 return false;
3775 }
3776
3777 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3778                             struct vm_area_struct *vma)
3779 {
3780         pte_t *src_pte, *dst_pte, entry, dst_entry;
3781         struct page *ptepage;
3782         unsigned long addr;
3783         int cow;
3784         struct hstate *h = hstate_vma(vma);
3785         unsigned long sz = huge_page_size(h);
3786         struct address_space *mapping = vma->vm_file->f_mapping;
3787         struct mmu_notifier_range range;
3788         int ret = 0;
3789
3790         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3791
3792         if (cow) {
3793                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3794                                         vma->vm_start,
3795                                         vma->vm_end);
3796                 mmu_notifier_invalidate_range_start(&range);
3797         } else {
3798                 /*
3799                  * For shared mappings i_mmap_rwsem must be held to call
3800                  * huge_pte_alloc, otherwise the returned ptep could go
3801                  * away if part of a shared pmd and another thread calls
3802                  * huge_pmd_unshare.
3803                  */
3804                 i_mmap_lock_read(mapping);
3805         }
3806
3807         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3808                 spinlock_t *src_ptl, *dst_ptl;
3809                 src_pte = huge_pte_offset(src, addr, sz);
3810                 if (!src_pte)
3811                         continue;
3812                 dst_pte = huge_pte_alloc(dst, addr, sz);
3813                 if (!dst_pte) {
3814                         ret = -ENOMEM;
3815                         break;
3816                 }
3817
3818                 /*
3819                  * If the pagetables are shared don't copy or take references.
3820                  * dst_pte == src_pte is the common case of src/dest sharing.
3821                  *
3822                  * However, src could have 'unshared' and dst shares with
3823                  * another vma.  If dst_pte !none, this implies sharing.
3824                  * Check here before taking page table lock, and once again
3825                  * after taking the lock below.
3826                  */
3827                 dst_entry = huge_ptep_get(dst_pte);
3828                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3829                         continue;
3830
3831                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3832                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3833                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3834                 entry = huge_ptep_get(src_pte);
3835                 dst_entry = huge_ptep_get(dst_pte);
3836                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3837                         /*
3838                          * Skip if src entry none.  Also, skip in the
3839                          * unlikely case dst entry !none as this implies
3840                          * sharing with another vma.
3841                          */
3842                         ;
3843                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3844                                     is_hugetlb_entry_hwpoisoned(entry))) {
3845                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3846
3847                         if (is_write_migration_entry(swp_entry) && cow) {
3848                                 /*
3849                                  * COW mappings require pages in both
3850                                  * parent and child to be set to read.
3851                                  */
3852                                 make_migration_entry_read(&swp_entry);
3853                                 entry = swp_entry_to_pte(swp_entry);
3854                                 set_huge_swap_pte_at(src, addr, src_pte,
3855                                                      entry, sz);
3856                         }
3857                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3858                 } else {
3859                         if (cow) {
3860                                 /*
3861                                  * No need to notify as we are downgrading page
3862                                  * table protection not changing it to point
3863                                  * to a new page.
3864                                  *
3865                                  * See Documentation/vm/mmu_notifier.rst
3866                                  */
3867                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3868                         }
3869                         entry = huge_ptep_get(src_pte);
3870                         ptepage = pte_page(entry);
3871                         get_page(ptepage);
3872                         page_dup_rmap(ptepage, true);
3873                         set_huge_pte_at(dst, addr, dst_pte, entry);
3874                         hugetlb_count_add(pages_per_huge_page(h), dst);
3875                 }
3876                 spin_unlock(src_ptl);
3877                 spin_unlock(dst_ptl);
3878         }
3879
3880         if (cow)
3881                 mmu_notifier_invalidate_range_end(&range);
3882         else
3883                 i_mmap_unlock_read(mapping);
3884
3885         return ret;
3886 }
3887
3888 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3889                             unsigned long start, unsigned long end,
3890                             struct page *ref_page)
3891 {
3892         struct mm_struct *mm = vma->vm_mm;
3893         unsigned long address;
3894         pte_t *ptep;
3895         pte_t pte;
3896         spinlock_t *ptl;
3897         struct page *page;
3898         struct hstate *h = hstate_vma(vma);
3899         unsigned long sz = huge_page_size(h);
3900         struct mmu_notifier_range range;
3901
3902         WARN_ON(!is_vm_hugetlb_page(vma));
3903         BUG_ON(start & ~huge_page_mask(h));
3904         BUG_ON(end & ~huge_page_mask(h));
3905
3906         /*
3907          * This is a hugetlb vma, all the pte entries should point
3908          * to huge page.
3909          */
3910         tlb_change_page_size(tlb, sz);
3911         tlb_start_vma(tlb, vma);
3912
3913         /*
3914          * If sharing possible, alert mmu notifiers of worst case.
3915          */
3916         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3917                                 end);
3918         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3919         mmu_notifier_invalidate_range_start(&range);
3920         address = start;
3921         for (; address < end; address += sz) {
3922                 ptep = huge_pte_offset(mm, address, sz);
3923                 if (!ptep)
3924                         continue;
3925
3926                 ptl = huge_pte_lock(h, mm, ptep);
3927                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3928                         spin_unlock(ptl);
3929                         /*
3930                          * We just unmapped a page of PMDs by clearing a PUD.
3931                          * The caller's TLB flush range should cover this area.
3932                          */
3933                         continue;
3934                 }
3935
3936                 pte = huge_ptep_get(ptep);
3937                 if (huge_pte_none(pte)) {
3938                         spin_unlock(ptl);
3939                         continue;
3940                 }
3941
3942                 /*
3943                  * Migrating hugepage or HWPoisoned hugepage is already
3944                  * unmapped and its refcount is dropped, so just clear pte here.
3945                  */
3946                 if (unlikely(!pte_present(pte))) {
3947                         huge_pte_clear(mm, address, ptep, sz);
3948                         spin_unlock(ptl);
3949                         continue;
3950                 }
3951
3952                 page = pte_page(pte);
3953                 /*
3954                  * If a reference page is supplied, it is because a specific
3955                  * page is being unmapped, not a range. Ensure the page we
3956                  * are about to unmap is the actual page of interest.
3957                  */
3958                 if (ref_page) {
3959                         if (page != ref_page) {
3960                                 spin_unlock(ptl);
3961                                 continue;
3962                         }
3963                         /*
3964                          * Mark the VMA as having unmapped its page so that
3965                          * future faults in this VMA will fail rather than
3966                          * looking like data was lost
3967                          */
3968                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3969                 }
3970
3971                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3972                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3973                 if (huge_pte_dirty(pte))
3974                         set_page_dirty(page);
3975
3976                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3977                 page_remove_rmap(page, true);
3978
3979                 spin_unlock(ptl);
3980                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3981                 /*
3982                  * Bail out after unmapping reference page if supplied
3983                  */
3984                 if (ref_page)
3985                         break;
3986         }
3987         mmu_notifier_invalidate_range_end(&range);
3988         tlb_end_vma(tlb, vma);
3989 }
3990
3991 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3992                           struct vm_area_struct *vma, unsigned long start,
3993                           unsigned long end, struct page *ref_page)
3994 {
3995         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3996
3997         /*
3998          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3999          * test will fail on a vma being torn down, and not grab a page table
4000          * on its way out.  We're lucky that the flag has such an appropriate
4001          * name, and can in fact be safely cleared here. We could clear it
4002          * before the __unmap_hugepage_range above, but all that's necessary
4003          * is to clear it before releasing the i_mmap_rwsem. This works
4004          * because in the context this is called, the VMA is about to be
4005          * destroyed and the i_mmap_rwsem is held.
4006          */
4007         vma->vm_flags &= ~VM_MAYSHARE;
4008 }
4009
4010 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4011                           unsigned long end, struct page *ref_page)
4012 {
4013         struct mm_struct *mm;
4014         struct mmu_gather tlb;
4015         unsigned long tlb_start = start;
4016         unsigned long tlb_end = end;
4017
4018         /*
4019          * If shared PMDs were possibly used within this vma range, adjust
4020          * start/end for worst case tlb flushing.
4021          * Note that we can not be sure if PMDs are shared until we try to
4022          * unmap pages.  However, we want to make sure TLB flushing covers
4023          * the largest possible range.
4024          */
4025         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4026
4027         mm = vma->vm_mm;
4028
4029         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4030         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4031         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4032 }
4033
4034 /*
4035  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4036  * mappping it owns the reserve page for. The intention is to unmap the page
4037  * from other VMAs and let the children be SIGKILLed if they are faulting the
4038  * same region.
4039  */
4040 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4041                               struct page *page, unsigned long address)
4042 {
4043         struct hstate *h = hstate_vma(vma);
4044         struct vm_area_struct *iter_vma;
4045         struct address_space *mapping;
4046         pgoff_t pgoff;
4047
4048         /*
4049          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4050          * from page cache lookup which is in HPAGE_SIZE units.
4051          */
4052         address = address & huge_page_mask(h);
4053         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4054                         vma->vm_pgoff;
4055         mapping = vma->vm_file->f_mapping;
4056
4057         /*
4058          * Take the mapping lock for the duration of the table walk. As
4059          * this mapping should be shared between all the VMAs,
4060          * __unmap_hugepage_range() is called as the lock is already held
4061          */
4062         i_mmap_lock_write(mapping);
4063         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4064                 /* Do not unmap the current VMA */
4065                 if (iter_vma == vma)
4066                         continue;
4067
4068                 /*
4069                  * Shared VMAs have their own reserves and do not affect
4070                  * MAP_PRIVATE accounting but it is possible that a shared
4071                  * VMA is using the same page so check and skip such VMAs.
4072                  */
4073                 if (iter_vma->vm_flags & VM_MAYSHARE)
4074                         continue;
4075
4076                 /*
4077                  * Unmap the page from other VMAs without their own reserves.
4078                  * They get marked to be SIGKILLed if they fault in these
4079                  * areas. This is because a future no-page fault on this VMA
4080                  * could insert a zeroed page instead of the data existing
4081                  * from the time of fork. This would look like data corruption
4082                  */
4083                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4084                         unmap_hugepage_range(iter_vma, address,
4085                                              address + huge_page_size(h), page);
4086         }
4087         i_mmap_unlock_write(mapping);
4088 }
4089
4090 /*
4091  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4092  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4093  * cannot race with other handlers or page migration.
4094  * Keep the pte_same checks anyway to make transition from the mutex easier.
4095  */
4096 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4097                        unsigned long address, pte_t *ptep,
4098                        struct page *pagecache_page, spinlock_t *ptl)
4099 {
4100         pte_t pte;
4101         struct hstate *h = hstate_vma(vma);
4102         struct page *old_page, *new_page;
4103         int outside_reserve = 0;
4104         vm_fault_t ret = 0;
4105         unsigned long haddr = address & huge_page_mask(h);
4106         struct mmu_notifier_range range;
4107
4108         pte = huge_ptep_get(ptep);
4109         old_page = pte_page(pte);
4110
4111 retry_avoidcopy:
4112         /* If no-one else is actually using this page, avoid the copy
4113          * and just make the page writable */
4114         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4115                 page_move_anon_rmap(old_page, vma);
4116                 set_huge_ptep_writable(vma, haddr, ptep);
4117                 return 0;
4118         }
4119
4120         /*
4121          * If the process that created a MAP_PRIVATE mapping is about to
4122          * perform a COW due to a shared page count, attempt to satisfy
4123          * the allocation without using the existing reserves. The pagecache
4124          * page is used to determine if the reserve at this address was
4125          * consumed or not. If reserves were used, a partial faulted mapping
4126          * at the time of fork() could consume its reserves on COW instead
4127          * of the full address range.
4128          */
4129         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4130                         old_page != pagecache_page)
4131                 outside_reserve = 1;
4132
4133         get_page(old_page);
4134
4135         /*
4136          * Drop page table lock as buddy allocator may be called. It will
4137          * be acquired again before returning to the caller, as expected.
4138          */
4139         spin_unlock(ptl);
4140         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4141
4142         if (IS_ERR(new_page)) {
4143                 /*
4144                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4145                  * it is due to references held by a child and an insufficient
4146                  * huge page pool. To guarantee the original mappers
4147                  * reliability, unmap the page from child processes. The child
4148                  * may get SIGKILLed if it later faults.
4149                  */
4150                 if (outside_reserve) {
4151                         struct address_space *mapping = vma->vm_file->f_mapping;
4152                         pgoff_t idx;
4153                         u32 hash;
4154
4155                         put_page(old_page);
4156                         BUG_ON(huge_pte_none(pte));
4157                         /*
4158                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4159                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4160                          * in write mode.  Dropping i_mmap_rwsem in read mode
4161                          * here is OK as COW mappings do not interact with
4162                          * PMD sharing.
4163                          *
4164                          * Reacquire both after unmap operation.
4165                          */
4166                         idx = vma_hugecache_offset(h, vma, haddr);
4167                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4168                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4169                         i_mmap_unlock_read(mapping);
4170
4171                         unmap_ref_private(mm, vma, old_page, haddr);
4172
4173                         i_mmap_lock_read(mapping);
4174                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4175                         spin_lock(ptl);
4176                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4177                         if (likely(ptep &&
4178                                    pte_same(huge_ptep_get(ptep), pte)))
4179                                 goto retry_avoidcopy;
4180                         /*
4181                          * race occurs while re-acquiring page table
4182                          * lock, and our job is done.
4183                          */
4184                         return 0;
4185                 }
4186
4187                 ret = vmf_error(PTR_ERR(new_page));
4188                 goto out_release_old;
4189         }
4190
4191         /*
4192          * When the original hugepage is shared one, it does not have
4193          * anon_vma prepared.
4194          */
4195         if (unlikely(anon_vma_prepare(vma))) {
4196                 ret = VM_FAULT_OOM;
4197                 goto out_release_all;
4198         }
4199
4200         copy_user_huge_page(new_page, old_page, address, vma,
4201                             pages_per_huge_page(h));
4202         __SetPageUptodate(new_page);
4203
4204         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4205                                 haddr + huge_page_size(h));
4206         mmu_notifier_invalidate_range_start(&range);
4207
4208         /*
4209          * Retake the page table lock to check for racing updates
4210          * before the page tables are altered
4211          */
4212         spin_lock(ptl);
4213         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4214         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4215                 ClearPagePrivate(new_page);
4216
4217                 /* Break COW */
4218                 huge_ptep_clear_flush(vma, haddr, ptep);
4219                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4220                 set_huge_pte_at(mm, haddr, ptep,
4221                                 make_huge_pte(vma, new_page, 1));
4222                 page_remove_rmap(old_page, true);
4223                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4224                 set_page_huge_active(new_page);
4225                 /* Make the old page be freed below */
4226                 new_page = old_page;
4227         }
4228         spin_unlock(ptl);
4229         mmu_notifier_invalidate_range_end(&range);
4230 out_release_all:
4231         restore_reserve_on_error(h, vma, haddr, new_page);
4232         put_page(new_page);
4233 out_release_old:
4234         put_page(old_page);
4235
4236         spin_lock(ptl); /* Caller expects lock to be held */
4237         return ret;
4238 }
4239
4240 /* Return the pagecache page at a given address within a VMA */
4241 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4242                         struct vm_area_struct *vma, unsigned long address)
4243 {
4244         struct address_space *mapping;
4245         pgoff_t idx;
4246
4247         mapping = vma->vm_file->f_mapping;
4248         idx = vma_hugecache_offset(h, vma, address);
4249
4250         return find_lock_page(mapping, idx);
4251 }
4252
4253 /*
4254  * Return whether there is a pagecache page to back given address within VMA.
4255  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4256  */
4257 static bool hugetlbfs_pagecache_present(struct hstate *h,
4258                         struct vm_area_struct *vma, unsigned long address)
4259 {
4260         struct address_space *mapping;
4261         pgoff_t idx;
4262         struct page *page;
4263
4264         mapping = vma->vm_file->f_mapping;
4265         idx = vma_hugecache_offset(h, vma, address);
4266
4267         page = find_get_page(mapping, idx);
4268         if (page)
4269                 put_page(page);
4270         return page != NULL;
4271 }
4272
4273 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4274                            pgoff_t idx)
4275 {
4276         struct inode *inode = mapping->host;
4277         struct hstate *h = hstate_inode(inode);
4278         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4279
4280         if (err)
4281                 return err;
4282         ClearPagePrivate(page);
4283
4284         /*
4285          * set page dirty so that it will not be removed from cache/file
4286          * by non-hugetlbfs specific code paths.
4287          */
4288         set_page_dirty(page);
4289
4290         spin_lock(&inode->i_lock);
4291         inode->i_blocks += blocks_per_huge_page(h);
4292         spin_unlock(&inode->i_lock);
4293         return 0;
4294 }
4295
4296 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4297                         struct vm_area_struct *vma,
4298                         struct address_space *mapping, pgoff_t idx,
4299                         unsigned long address, pte_t *ptep, unsigned int flags)
4300 {
4301         struct hstate *h = hstate_vma(vma);
4302         vm_fault_t ret = VM_FAULT_SIGBUS;
4303         int anon_rmap = 0;
4304         unsigned long size;
4305         struct page *page;
4306         pte_t new_pte;
4307         spinlock_t *ptl;
4308         unsigned long haddr = address & huge_page_mask(h);
4309         bool new_page = false;
4310
4311         /*
4312          * Currently, we are forced to kill the process in the event the
4313          * original mapper has unmapped pages from the child due to a failed
4314          * COW. Warn that such a situation has occurred as it may not be obvious
4315          */
4316         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4317                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4318                            current->pid);
4319                 return ret;
4320         }
4321
4322         /*
4323          * We can not race with truncation due to holding i_mmap_rwsem.
4324          * i_size is modified when holding i_mmap_rwsem, so check here
4325          * once for faults beyond end of file.
4326          */
4327         size = i_size_read(mapping->host) >> huge_page_shift(h);
4328         if (idx >= size)
4329                 goto out;
4330
4331 retry:
4332         page = find_lock_page(mapping, idx);
4333         if (!page) {
4334                 /*
4335                  * Check for page in userfault range
4336                  */
4337                 if (userfaultfd_missing(vma)) {
4338                         u32 hash;
4339                         struct vm_fault vmf = {
4340                                 .vma = vma,
4341                                 .address = haddr,
4342                                 .flags = flags,
4343                                 /*
4344                                  * Hard to debug if it ends up being
4345                                  * used by a callee that assumes
4346                                  * something about the other
4347                                  * uninitialized fields... same as in
4348                                  * memory.c
4349                                  */
4350                         };
4351
4352                         /*
4353                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4354                          * dropped before handling userfault.  Reacquire
4355                          * after handling fault to make calling code simpler.
4356                          */
4357                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4358                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4359                         i_mmap_unlock_read(mapping);
4360                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4361                         i_mmap_lock_read(mapping);
4362                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4363                         goto out;
4364                 }
4365
4366                 page = alloc_huge_page(vma, haddr, 0);
4367                 if (IS_ERR(page)) {
4368                         /*
4369                          * Returning error will result in faulting task being
4370                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4371                          * tasks from racing to fault in the same page which
4372                          * could result in false unable to allocate errors.
4373                          * Page migration does not take the fault mutex, but
4374                          * does a clear then write of pte's under page table
4375                          * lock.  Page fault code could race with migration,
4376                          * notice the clear pte and try to allocate a page
4377                          * here.  Before returning error, get ptl and make
4378                          * sure there really is no pte entry.
4379                          */
4380                         ptl = huge_pte_lock(h, mm, ptep);
4381                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4382                                 ret = 0;
4383                                 spin_unlock(ptl);
4384                                 goto out;
4385                         }
4386                         spin_unlock(ptl);
4387                         ret = vmf_error(PTR_ERR(page));
4388                         goto out;
4389                 }
4390                 clear_huge_page(page, address, pages_per_huge_page(h));
4391                 __SetPageUptodate(page);
4392                 new_page = true;
4393
4394                 if (vma->vm_flags & VM_MAYSHARE) {
4395                         int err = huge_add_to_page_cache(page, mapping, idx);
4396                         if (err) {
4397                                 put_page(page);
4398                                 if (err == -EEXIST)
4399                                         goto retry;
4400                                 goto out;
4401                         }
4402                 } else {
4403                         lock_page(page);
4404                         if (unlikely(anon_vma_prepare(vma))) {
4405                                 ret = VM_FAULT_OOM;
4406                                 goto backout_unlocked;
4407                         }
4408                         anon_rmap = 1;
4409                 }
4410         } else {
4411                 /*
4412                  * If memory error occurs between mmap() and fault, some process
4413                  * don't have hwpoisoned swap entry for errored virtual address.
4414                  * So we need to block hugepage fault by PG_hwpoison bit check.
4415                  */
4416                 if (unlikely(PageHWPoison(page))) {
4417                         ret = VM_FAULT_HWPOISON_LARGE |
4418                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4419                         goto backout_unlocked;
4420                 }
4421         }
4422
4423         /*
4424          * If we are going to COW a private mapping later, we examine the
4425          * pending reservations for this page now. This will ensure that
4426          * any allocations necessary to record that reservation occur outside
4427          * the spinlock.
4428          */
4429         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4430                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4431                         ret = VM_FAULT_OOM;
4432                         goto backout_unlocked;
4433                 }
4434                 /* Just decrements count, does not deallocate */
4435                 vma_end_reservation(h, vma, haddr);
4436         }
4437
4438         ptl = huge_pte_lock(h, mm, ptep);
4439         ret = 0;
4440         if (!huge_pte_none(huge_ptep_get(ptep)))
4441                 goto backout;
4442
4443         if (anon_rmap) {
4444                 ClearPagePrivate(page);
4445                 hugepage_add_new_anon_rmap(page, vma, haddr);
4446         } else
4447                 page_dup_rmap(page, true);
4448         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4449                                 && (vma->vm_flags & VM_SHARED)));
4450         set_huge_pte_at(mm, haddr, ptep, new_pte);
4451
4452         hugetlb_count_add(pages_per_huge_page(h), mm);
4453         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454                 /* Optimization, do the COW without a second fault */
4455                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4456         }
4457
4458         spin_unlock(ptl);
4459
4460         /*
4461          * Only make newly allocated pages active.  Existing pages found
4462          * in the pagecache could be !page_huge_active() if they have been
4463          * isolated for migration.
4464          */
4465         if (new_page)
4466                 set_page_huge_active(page);
4467
4468         unlock_page(page);
4469 out:
4470         return ret;
4471
4472 backout:
4473         spin_unlock(ptl);
4474 backout_unlocked:
4475         unlock_page(page);
4476         restore_reserve_on_error(h, vma, haddr, page);
4477         put_page(page);
4478         goto out;
4479 }
4480
4481 #ifdef CONFIG_SMP
4482 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4483 {
4484         unsigned long key[2];
4485         u32 hash;
4486
4487         key[0] = (unsigned long) mapping;
4488         key[1] = idx;
4489
4490         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4491
4492         return hash & (num_fault_mutexes - 1);
4493 }
4494 #else
4495 /*
4496  * For uniprocesor systems we always use a single mutex, so just
4497  * return 0 and avoid the hashing overhead.
4498  */
4499 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4500 {
4501         return 0;
4502 }
4503 #endif
4504
4505 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4506                         unsigned long address, unsigned int flags)
4507 {
4508         pte_t *ptep, entry;
4509         spinlock_t *ptl;
4510         vm_fault_t ret;
4511         u32 hash;
4512         pgoff_t idx;
4513         struct page *page = NULL;
4514         struct page *pagecache_page = NULL;
4515         struct hstate *h = hstate_vma(vma);
4516         struct address_space *mapping;
4517         int need_wait_lock = 0;
4518         unsigned long haddr = address & huge_page_mask(h);
4519
4520         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4521         if (ptep) {
4522                 /*
4523                  * Since we hold no locks, ptep could be stale.  That is
4524                  * OK as we are only making decisions based on content and
4525                  * not actually modifying content here.
4526                  */
4527                 entry = huge_ptep_get(ptep);
4528                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4529                         migration_entry_wait_huge(vma, mm, ptep);
4530                         return 0;
4531                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4532                         return VM_FAULT_HWPOISON_LARGE |
4533                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4534         }
4535
4536         /*
4537          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4538          * until finished with ptep.  This serves two purposes:
4539          * 1) It prevents huge_pmd_unshare from being called elsewhere
4540          *    and making the ptep no longer valid.
4541          * 2) It synchronizes us with i_size modifications during truncation.
4542          *
4543          * ptep could have already be assigned via huge_pte_offset.  That
4544          * is OK, as huge_pte_alloc will return the same value unless
4545          * something has changed.
4546          */
4547         mapping = vma->vm_file->f_mapping;
4548         i_mmap_lock_read(mapping);
4549         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4550         if (!ptep) {
4551                 i_mmap_unlock_read(mapping);
4552                 return VM_FAULT_OOM;
4553         }
4554
4555         /*
4556          * Serialize hugepage allocation and instantiation, so that we don't
4557          * get spurious allocation failures if two CPUs race to instantiate
4558          * the same page in the page cache.
4559          */
4560         idx = vma_hugecache_offset(h, vma, haddr);
4561         hash = hugetlb_fault_mutex_hash(mapping, idx);
4562         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4563
4564         entry = huge_ptep_get(ptep);
4565         if (huge_pte_none(entry)) {
4566                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4567                 goto out_mutex;
4568         }
4569
4570         ret = 0;
4571
4572         /*
4573          * entry could be a migration/hwpoison entry at this point, so this
4574          * check prevents the kernel from going below assuming that we have
4575          * an active hugepage in pagecache. This goto expects the 2nd page
4576          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4577          * properly handle it.
4578          */
4579         if (!pte_present(entry))
4580                 goto out_mutex;
4581
4582         /*
4583          * If we are going to COW the mapping later, we examine the pending
4584          * reservations for this page now. This will ensure that any
4585          * allocations necessary to record that reservation occur outside the
4586          * spinlock. For private mappings, we also lookup the pagecache
4587          * page now as it is used to determine if a reservation has been
4588          * consumed.
4589          */
4590         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4591                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4592                         ret = VM_FAULT_OOM;
4593                         goto out_mutex;
4594                 }
4595                 /* Just decrements count, does not deallocate */
4596                 vma_end_reservation(h, vma, haddr);
4597
4598                 if (!(vma->vm_flags & VM_MAYSHARE))
4599                         pagecache_page = hugetlbfs_pagecache_page(h,
4600                                                                 vma, haddr);
4601         }
4602
4603         ptl = huge_pte_lock(h, mm, ptep);
4604
4605         /* Check for a racing update before calling hugetlb_cow */
4606         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4607                 goto out_ptl;
4608
4609         /*
4610          * hugetlb_cow() requires page locks of pte_page(entry) and
4611          * pagecache_page, so here we need take the former one
4612          * when page != pagecache_page or !pagecache_page.
4613          */
4614         page = pte_page(entry);
4615         if (page != pagecache_page)
4616                 if (!trylock_page(page)) {
4617                         need_wait_lock = 1;
4618                         goto out_ptl;
4619                 }
4620
4621         get_page(page);
4622
4623         if (flags & FAULT_FLAG_WRITE) {
4624                 if (!huge_pte_write(entry)) {
4625                         ret = hugetlb_cow(mm, vma, address, ptep,
4626                                           pagecache_page, ptl);
4627                         goto out_put_page;
4628                 }
4629                 entry = huge_pte_mkdirty(entry);
4630         }
4631         entry = pte_mkyoung(entry);
4632         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4633                                                 flags & FAULT_FLAG_WRITE))
4634                 update_mmu_cache(vma, haddr, ptep);
4635 out_put_page:
4636         if (page != pagecache_page)
4637                 unlock_page(page);
4638         put_page(page);
4639 out_ptl:
4640         spin_unlock(ptl);
4641
4642         if (pagecache_page) {
4643                 unlock_page(pagecache_page);
4644                 put_page(pagecache_page);
4645         }
4646 out_mutex:
4647         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4648         i_mmap_unlock_read(mapping);
4649         /*
4650          * Generally it's safe to hold refcount during waiting page lock. But
4651          * here we just wait to defer the next page fault to avoid busy loop and
4652          * the page is not used after unlocked before returning from the current
4653          * page fault. So we are safe from accessing freed page, even if we wait
4654          * here without taking refcount.
4655          */
4656         if (need_wait_lock)
4657                 wait_on_page_locked(page);
4658         return ret;
4659 }
4660
4661 /*
4662  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4663  * modifications for huge pages.
4664  */
4665 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4666                             pte_t *dst_pte,
4667                             struct vm_area_struct *dst_vma,
4668                             unsigned long dst_addr,
4669                             unsigned long src_addr,
4670                             struct page **pagep)
4671 {
4672         struct address_space *mapping;
4673         pgoff_t idx;
4674         unsigned long size;
4675         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4676         struct hstate *h = hstate_vma(dst_vma);
4677         pte_t _dst_pte;
4678         spinlock_t *ptl;
4679         int ret;
4680         struct page *page;
4681
4682         if (!*pagep) {
4683                 ret = -ENOMEM;
4684                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4685                 if (IS_ERR(page))
4686                         goto out;
4687
4688                 ret = copy_huge_page_from_user(page,
4689                                                 (const void __user *) src_addr,
4690                                                 pages_per_huge_page(h), false);
4691
4692                 /* fallback to copy_from_user outside mmap_lock */
4693                 if (unlikely(ret)) {
4694                         ret = -ENOENT;
4695                         *pagep = page;
4696                         /* don't free the page */
4697                         goto out;
4698                 }
4699         } else {
4700                 page = *pagep;
4701                 *pagep = NULL;
4702         }
4703
4704         /*
4705          * The memory barrier inside __SetPageUptodate makes sure that
4706          * preceding stores to the page contents become visible before
4707          * the set_pte_at() write.
4708          */
4709         __SetPageUptodate(page);
4710
4711         mapping = dst_vma->vm_file->f_mapping;
4712         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4713
4714         /*
4715          * If shared, add to page cache
4716          */
4717         if (vm_shared) {
4718                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4719                 ret = -EFAULT;
4720                 if (idx >= size)
4721                         goto out_release_nounlock;
4722
4723                 /*
4724                  * Serialization between remove_inode_hugepages() and
4725                  * huge_add_to_page_cache() below happens through the
4726                  * hugetlb_fault_mutex_table that here must be hold by
4727                  * the caller.
4728                  */
4729                 ret = huge_add_to_page_cache(page, mapping, idx);
4730                 if (ret)
4731                         goto out_release_nounlock;
4732         }
4733
4734         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4735         spin_lock(ptl);
4736
4737         /*
4738          * Recheck the i_size after holding PT lock to make sure not
4739          * to leave any page mapped (as page_mapped()) beyond the end
4740          * of the i_size (remove_inode_hugepages() is strict about
4741          * enforcing that). If we bail out here, we'll also leave a
4742          * page in the radix tree in the vm_shared case beyond the end
4743          * of the i_size, but remove_inode_hugepages() will take care
4744          * of it as soon as we drop the hugetlb_fault_mutex_table.
4745          */
4746         size = i_size_read(mapping->host) >> huge_page_shift(h);
4747         ret = -EFAULT;
4748         if (idx >= size)
4749                 goto out_release_unlock;
4750
4751         ret = -EEXIST;
4752         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4753                 goto out_release_unlock;
4754
4755         if (vm_shared) {
4756                 page_dup_rmap(page, true);
4757         } else {
4758                 ClearPagePrivate(page);
4759                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4760         }
4761
4762         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4763         if (dst_vma->vm_flags & VM_WRITE)
4764                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4765         _dst_pte = pte_mkyoung(_dst_pte);
4766
4767         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4768
4769         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4770                                         dst_vma->vm_flags & VM_WRITE);
4771         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4772
4773         /* No need to invalidate - it was non-present before */
4774         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4775
4776         spin_unlock(ptl);
4777         set_page_huge_active(page);
4778         if (vm_shared)
4779                 unlock_page(page);
4780         ret = 0;
4781 out:
4782         return ret;
4783 out_release_unlock:
4784         spin_unlock(ptl);
4785         if (vm_shared)
4786                 unlock_page(page);
4787 out_release_nounlock:
4788         put_page(page);
4789         goto out;
4790 }
4791
4792 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4793                          struct page **pages, struct vm_area_struct **vmas,
4794                          unsigned long *position, unsigned long *nr_pages,
4795                          long i, unsigned int flags, int *locked)
4796 {
4797         unsigned long pfn_offset;
4798         unsigned long vaddr = *position;
4799         unsigned long remainder = *nr_pages;
4800         struct hstate *h = hstate_vma(vma);
4801         int err = -EFAULT;
4802
4803         while (vaddr < vma->vm_end && remainder) {
4804                 pte_t *pte;
4805                 spinlock_t *ptl = NULL;
4806                 int absent;
4807                 struct page *page;
4808
4809                 /*
4810                  * If we have a pending SIGKILL, don't keep faulting pages and
4811                  * potentially allocating memory.
4812                  */
4813                 if (fatal_signal_pending(current)) {
4814                         remainder = 0;
4815                         break;
4816                 }
4817
4818                 /*
4819                  * Some archs (sparc64, sh*) have multiple pte_ts to
4820                  * each hugepage.  We have to make sure we get the
4821                  * first, for the page indexing below to work.
4822                  *
4823                  * Note that page table lock is not held when pte is null.
4824                  */
4825                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4826                                       huge_page_size(h));
4827                 if (pte)
4828                         ptl = huge_pte_lock(h, mm, pte);
4829                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4830
4831                 /*
4832                  * When coredumping, it suits get_dump_page if we just return
4833                  * an error where there's an empty slot with no huge pagecache
4834                  * to back it.  This way, we avoid allocating a hugepage, and
4835                  * the sparse dumpfile avoids allocating disk blocks, but its
4836                  * huge holes still show up with zeroes where they need to be.
4837                  */
4838                 if (absent && (flags & FOLL_DUMP) &&
4839                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4840                         if (pte)
4841                                 spin_unlock(ptl);
4842                         remainder = 0;
4843                         break;
4844                 }
4845
4846                 /*
4847                  * We need call hugetlb_fault for both hugepages under migration
4848                  * (in which case hugetlb_fault waits for the migration,) and
4849                  * hwpoisoned hugepages (in which case we need to prevent the
4850                  * caller from accessing to them.) In order to do this, we use
4851                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4852                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4853                  * both cases, and because we can't follow correct pages
4854                  * directly from any kind of swap entries.
4855                  */
4856                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4857                     ((flags & FOLL_WRITE) &&
4858                       !huge_pte_write(huge_ptep_get(pte)))) {
4859                         vm_fault_t ret;
4860                         unsigned int fault_flags = 0;
4861
4862                         if (pte)
4863                                 spin_unlock(ptl);
4864                         if (flags & FOLL_WRITE)
4865                                 fault_flags |= FAULT_FLAG_WRITE;
4866                         if (locked)
4867                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4868                                         FAULT_FLAG_KILLABLE;
4869                         if (flags & FOLL_NOWAIT)
4870                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4871                                         FAULT_FLAG_RETRY_NOWAIT;
4872                         if (flags & FOLL_TRIED) {
4873                                 /*
4874                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4875                                  * FAULT_FLAG_TRIED can co-exist
4876                                  */
4877                                 fault_flags |= FAULT_FLAG_TRIED;
4878                         }
4879                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4880                         if (ret & VM_FAULT_ERROR) {
4881                                 err = vm_fault_to_errno(ret, flags);
4882                                 remainder = 0;
4883                                 break;
4884                         }
4885                         if (ret & VM_FAULT_RETRY) {
4886                                 if (locked &&
4887                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4888                                         *locked = 0;
4889                                 *nr_pages = 0;
4890                                 /*
4891                                  * VM_FAULT_RETRY must not return an
4892                                  * error, it will return zero
4893                                  * instead.
4894                                  *
4895                                  * No need to update "position" as the
4896                                  * caller will not check it after
4897                                  * *nr_pages is set to 0.
4898                                  */
4899                                 return i;
4900                         }
4901                         continue;
4902                 }
4903
4904                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4905                 page = pte_page(huge_ptep_get(pte));
4906
4907                 /*
4908                  * If subpage information not requested, update counters
4909                  * and skip the same_page loop below.
4910                  */
4911                 if (!pages && !vmas && !pfn_offset &&
4912                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4913                     (remainder >= pages_per_huge_page(h))) {
4914                         vaddr += huge_page_size(h);
4915                         remainder -= pages_per_huge_page(h);
4916                         i += pages_per_huge_page(h);
4917                         spin_unlock(ptl);
4918                         continue;
4919                 }
4920
4921 same_page:
4922                 if (pages) {
4923                         pages[i] = mem_map_offset(page, pfn_offset);
4924                         /*
4925                          * try_grab_page() should always succeed here, because:
4926                          * a) we hold the ptl lock, and b) we've just checked
4927                          * that the huge page is present in the page tables. If
4928                          * the huge page is present, then the tail pages must
4929                          * also be present. The ptl prevents the head page and
4930                          * tail pages from being rearranged in any way. So this
4931                          * page must be available at this point, unless the page
4932                          * refcount overflowed:
4933                          */
4934                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4935                                 spin_unlock(ptl);
4936                                 remainder = 0;
4937                                 err = -ENOMEM;
4938                                 break;
4939                         }
4940                 }
4941
4942                 if (vmas)
4943                         vmas[i] = vma;
4944
4945                 vaddr += PAGE_SIZE;
4946                 ++pfn_offset;
4947                 --remainder;
4948                 ++i;
4949                 if (vaddr < vma->vm_end && remainder &&
4950                                 pfn_offset < pages_per_huge_page(h)) {
4951                         /*
4952                          * We use pfn_offset to avoid touching the pageframes
4953                          * of this compound page.
4954                          */
4955                         goto same_page;
4956                 }
4957                 spin_unlock(ptl);
4958         }
4959         *nr_pages = remainder;
4960         /*
4961          * setting position is actually required only if remainder is
4962          * not zero but it's faster not to add a "if (remainder)"
4963          * branch.
4964          */
4965         *position = vaddr;
4966
4967         return i ? i : err;
4968 }
4969
4970 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4971 /*
4972  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4973  * implement this.
4974  */
4975 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4976 #endif
4977
4978 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4979                 unsigned long address, unsigned long end, pgprot_t newprot)
4980 {
4981         struct mm_struct *mm = vma->vm_mm;
4982         unsigned long start = address;
4983         pte_t *ptep;
4984         pte_t pte;
4985         struct hstate *h = hstate_vma(vma);
4986         unsigned long pages = 0;
4987         bool shared_pmd = false;
4988         struct mmu_notifier_range range;
4989
4990         /*
4991          * In the case of shared PMDs, the area to flush could be beyond
4992          * start/end.  Set range.start/range.end to cover the maximum possible
4993          * range if PMD sharing is possible.
4994          */
4995         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4996                                 0, vma, mm, start, end);
4997         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4998
4999         BUG_ON(address >= end);
5000         flush_cache_range(vma, range.start, range.end);
5001
5002         mmu_notifier_invalidate_range_start(&range);
5003         i_mmap_lock_write(vma->vm_file->f_mapping);
5004         for (; address < end; address += huge_page_size(h)) {
5005                 spinlock_t *ptl;
5006                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5007                 if (!ptep)
5008                         continue;
5009                 ptl = huge_pte_lock(h, mm, ptep);
5010                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5011                         pages++;
5012                         spin_unlock(ptl);
5013                         shared_pmd = true;
5014                         continue;
5015                 }
5016                 pte = huge_ptep_get(ptep);
5017                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5018                         spin_unlock(ptl);
5019                         continue;
5020                 }
5021                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5022                         swp_entry_t entry = pte_to_swp_entry(pte);
5023
5024                         if (is_write_migration_entry(entry)) {
5025                                 pte_t newpte;
5026
5027                                 make_migration_entry_read(&entry);
5028                                 newpte = swp_entry_to_pte(entry);
5029                                 set_huge_swap_pte_at(mm, address, ptep,
5030                                                      newpte, huge_page_size(h));
5031                                 pages++;
5032                         }
5033                         spin_unlock(ptl);
5034                         continue;
5035                 }
5036                 if (!huge_pte_none(pte)) {
5037                         pte_t old_pte;
5038
5039                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5040                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5041                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5042                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5043                         pages++;
5044                 }
5045                 spin_unlock(ptl);
5046         }
5047         /*
5048          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5049          * may have cleared our pud entry and done put_page on the page table:
5050          * once we release i_mmap_rwsem, another task can do the final put_page
5051          * and that page table be reused and filled with junk.  If we actually
5052          * did unshare a page of pmds, flush the range corresponding to the pud.
5053          */
5054         if (shared_pmd)
5055                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5056         else
5057                 flush_hugetlb_tlb_range(vma, start, end);
5058         /*
5059          * No need to call mmu_notifier_invalidate_range() we are downgrading
5060          * page table protection not changing it to point to a new page.
5061          *
5062          * See Documentation/vm/mmu_notifier.rst
5063          */
5064         i_mmap_unlock_write(vma->vm_file->f_mapping);
5065         mmu_notifier_invalidate_range_end(&range);
5066
5067         return pages << h->order;
5068 }
5069
5070 int hugetlb_reserve_pages(struct inode *inode,
5071                                         long from, long to,
5072                                         struct vm_area_struct *vma,
5073                                         vm_flags_t vm_flags)
5074 {
5075         long ret, chg, add = -1;
5076         struct hstate *h = hstate_inode(inode);
5077         struct hugepage_subpool *spool = subpool_inode(inode);
5078         struct resv_map *resv_map;
5079         struct hugetlb_cgroup *h_cg = NULL;
5080         long gbl_reserve, regions_needed = 0;
5081
5082         /* This should never happen */
5083         if (from > to) {
5084                 VM_WARN(1, "%s called with a negative range\n", __func__);
5085                 return -EINVAL;
5086         }
5087
5088         /*
5089          * Only apply hugepage reservation if asked. At fault time, an
5090          * attempt will be made for VM_NORESERVE to allocate a page
5091          * without using reserves
5092          */
5093         if (vm_flags & VM_NORESERVE)
5094                 return 0;
5095
5096         /*
5097          * Shared mappings base their reservation on the number of pages that
5098          * are already allocated on behalf of the file. Private mappings need
5099          * to reserve the full area even if read-only as mprotect() may be
5100          * called to make the mapping read-write. Assume !vma is a shm mapping
5101          */
5102         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5103                 /*
5104                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5105                  * called for inodes for which resv_maps were created (see
5106                  * hugetlbfs_get_inode).
5107                  */
5108                 resv_map = inode_resv_map(inode);
5109
5110                 chg = region_chg(resv_map, from, to, &regions_needed);
5111
5112         } else {
5113                 /* Private mapping. */
5114                 resv_map = resv_map_alloc();
5115                 if (!resv_map)
5116                         return -ENOMEM;
5117
5118                 chg = to - from;
5119
5120                 set_vma_resv_map(vma, resv_map);
5121                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5122         }
5123
5124         if (chg < 0) {
5125                 ret = chg;
5126                 goto out_err;
5127         }
5128
5129         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5130                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5131
5132         if (ret < 0) {
5133                 ret = -ENOMEM;
5134                 goto out_err;
5135         }
5136
5137         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5138                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5139                  * of the resv_map.
5140                  */
5141                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5142         }
5143
5144         /*
5145          * There must be enough pages in the subpool for the mapping. If
5146          * the subpool has a minimum size, there may be some global
5147          * reservations already in place (gbl_reserve).
5148          */
5149         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5150         if (gbl_reserve < 0) {
5151                 ret = -ENOSPC;
5152                 goto out_uncharge_cgroup;
5153         }
5154
5155         /*
5156          * Check enough hugepages are available for the reservation.
5157          * Hand the pages back to the subpool if there are not
5158          */
5159         ret = hugetlb_acct_memory(h, gbl_reserve);
5160         if (ret < 0) {
5161                 goto out_put_pages;
5162         }
5163
5164         /*
5165          * Account for the reservations made. Shared mappings record regions
5166          * that have reservations as they are shared by multiple VMAs.
5167          * When the last VMA disappears, the region map says how much
5168          * the reservation was and the page cache tells how much of
5169          * the reservation was consumed. Private mappings are per-VMA and
5170          * only the consumed reservations are tracked. When the VMA
5171          * disappears, the original reservation is the VMA size and the
5172          * consumed reservations are stored in the map. Hence, nothing
5173          * else has to be done for private mappings here
5174          */
5175         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5176                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5177
5178                 if (unlikely(add < 0)) {
5179                         hugetlb_acct_memory(h, -gbl_reserve);
5180                         ret = add;
5181                         goto out_put_pages;
5182                 } else if (unlikely(chg > add)) {
5183                         /*
5184                          * pages in this range were added to the reserve
5185                          * map between region_chg and region_add.  This
5186                          * indicates a race with alloc_huge_page.  Adjust
5187                          * the subpool and reserve counts modified above
5188                          * based on the difference.
5189                          */
5190                         long rsv_adjust;
5191
5192                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5193                                 hstate_index(h),
5194                                 (chg - add) * pages_per_huge_page(h), h_cg);
5195
5196                         rsv_adjust = hugepage_subpool_put_pages(spool,
5197                                                                 chg - add);
5198                         hugetlb_acct_memory(h, -rsv_adjust);
5199                 }
5200         }
5201         return 0;
5202 out_put_pages:
5203         /* put back original number of pages, chg */
5204         (void)hugepage_subpool_put_pages(spool, chg);
5205 out_uncharge_cgroup:
5206         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5207                                             chg * pages_per_huge_page(h), h_cg);
5208 out_err:
5209         if (!vma || vma->vm_flags & VM_MAYSHARE)
5210                 /* Only call region_abort if the region_chg succeeded but the
5211                  * region_add failed or didn't run.
5212                  */
5213                 if (chg >= 0 && add < 0)
5214                         region_abort(resv_map, from, to, regions_needed);
5215         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5216                 kref_put(&resv_map->refs, resv_map_release);
5217         return ret;
5218 }
5219
5220 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5221                                                                 long freed)
5222 {
5223         struct hstate *h = hstate_inode(inode);
5224         struct resv_map *resv_map = inode_resv_map(inode);
5225         long chg = 0;
5226         struct hugepage_subpool *spool = subpool_inode(inode);
5227         long gbl_reserve;
5228
5229         /*
5230          * Since this routine can be called in the evict inode path for all
5231          * hugetlbfs inodes, resv_map could be NULL.
5232          */
5233         if (resv_map) {
5234                 chg = region_del(resv_map, start, end);
5235                 /*
5236                  * region_del() can fail in the rare case where a region
5237                  * must be split and another region descriptor can not be
5238                  * allocated.  If end == LONG_MAX, it will not fail.
5239                  */
5240                 if (chg < 0)
5241                         return chg;
5242         }
5243
5244         spin_lock(&inode->i_lock);
5245         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5246         spin_unlock(&inode->i_lock);
5247
5248         /*
5249          * If the subpool has a minimum size, the number of global
5250          * reservations to be released may be adjusted.
5251          */
5252         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5253         hugetlb_acct_memory(h, -gbl_reserve);
5254
5255         return 0;
5256 }
5257
5258 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5259 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5260                                 struct vm_area_struct *vma,
5261                                 unsigned long addr, pgoff_t idx)
5262 {
5263         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5264                                 svma->vm_start;
5265         unsigned long sbase = saddr & PUD_MASK;
5266         unsigned long s_end = sbase + PUD_SIZE;
5267
5268         /* Allow segments to share if only one is marked locked */
5269         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5270         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5271
5272         /*
5273          * match the virtual addresses, permission and the alignment of the
5274          * page table page.
5275          */
5276         if (pmd_index(addr) != pmd_index(saddr) ||
5277             vm_flags != svm_flags ||
5278             sbase < svma->vm_start || svma->vm_end < s_end)
5279                 return 0;
5280
5281         return saddr;
5282 }
5283
5284 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5285 {
5286         unsigned long base = addr & PUD_MASK;
5287         unsigned long end = base + PUD_SIZE;
5288
5289         /*
5290          * check on proper vm_flags and page table alignment
5291          */
5292         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5293                 return true;
5294         return false;
5295 }
5296
5297 /*
5298  * Determine if start,end range within vma could be mapped by shared pmd.
5299  * If yes, adjust start and end to cover range associated with possible
5300  * shared pmd mappings.
5301  */
5302 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5303                                 unsigned long *start, unsigned long *end)
5304 {
5305         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5306                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5307
5308         /*
5309          * vma need span at least one aligned PUD size and the start,end range
5310          * must at least partialy within it.
5311          */
5312         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5313                 (*end <= v_start) || (*start >= v_end))
5314                 return;
5315
5316         /* Extend the range to be PUD aligned for a worst case scenario */
5317         if (*start > v_start)
5318                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5319
5320         if (*end < v_end)
5321                 *end = ALIGN(*end, PUD_SIZE);
5322 }
5323
5324 /*
5325  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5326  * and returns the corresponding pte. While this is not necessary for the
5327  * !shared pmd case because we can allocate the pmd later as well, it makes the
5328  * code much cleaner.
5329  *
5330  * This routine must be called with i_mmap_rwsem held in at least read mode if
5331  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5332  * table entries associated with the address space.  This is important as we
5333  * are setting up sharing based on existing page table entries (mappings).
5334  *
5335  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5336  * huge_pte_alloc know that sharing is not possible and do not take
5337  * i_mmap_rwsem as a performance optimization.  This is handled by the
5338  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5339  * only required for subsequent processing.
5340  */
5341 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5342 {
5343         struct vm_area_struct *vma = find_vma(mm, addr);
5344         struct address_space *mapping = vma->vm_file->f_mapping;
5345         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5346                         vma->vm_pgoff;
5347         struct vm_area_struct *svma;
5348         unsigned long saddr;
5349         pte_t *spte = NULL;
5350         pte_t *pte;
5351         spinlock_t *ptl;
5352
5353         if (!vma_shareable(vma, addr))
5354                 return (pte_t *)pmd_alloc(mm, pud, addr);
5355
5356         i_mmap_assert_locked(mapping);
5357         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5358                 if (svma == vma)
5359                         continue;
5360
5361                 saddr = page_table_shareable(svma, vma, addr, idx);
5362                 if (saddr) {
5363                         spte = huge_pte_offset(svma->vm_mm, saddr,
5364                                                vma_mmu_pagesize(svma));
5365                         if (spte) {
5366                                 get_page(virt_to_page(spte));
5367                                 break;
5368                         }
5369                 }
5370         }
5371
5372         if (!spte)
5373                 goto out;
5374
5375         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5376         if (pud_none(*pud)) {
5377                 pud_populate(mm, pud,
5378                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5379                 mm_inc_nr_pmds(mm);
5380         } else {
5381                 put_page(virt_to_page(spte));
5382         }
5383         spin_unlock(ptl);
5384 out:
5385         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5386         return pte;
5387 }
5388
5389 /*
5390  * unmap huge page backed by shared pte.
5391  *
5392  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5393  * indicated by page_count > 1, unmap is achieved by clearing pud and
5394  * decrementing the ref count. If count == 1, the pte page is not shared.
5395  *
5396  * Called with page table lock held and i_mmap_rwsem held in write mode.
5397  *
5398  * returns: 1 successfully unmapped a shared pte page
5399  *          0 the underlying pte page is not shared, or it is the last user
5400  */
5401 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5402                                         unsigned long *addr, pte_t *ptep)
5403 {
5404         pgd_t *pgd = pgd_offset(mm, *addr);
5405         p4d_t *p4d = p4d_offset(pgd, *addr);
5406         pud_t *pud = pud_offset(p4d, *addr);
5407
5408         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5409         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5410         if (page_count(virt_to_page(ptep)) == 1)
5411                 return 0;
5412
5413         pud_clear(pud);
5414         put_page(virt_to_page(ptep));
5415         mm_dec_nr_pmds(mm);
5416         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5417         return 1;
5418 }
5419 #define want_pmd_share()        (1)
5420 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5421 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5422 {
5423         return NULL;
5424 }
5425
5426 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5427                                 unsigned long *addr, pte_t *ptep)
5428 {
5429         return 0;
5430 }
5431
5432 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5433                                 unsigned long *start, unsigned long *end)
5434 {
5435 }
5436 #define want_pmd_share()        (0)
5437 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5438
5439 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5440 pte_t *huge_pte_alloc(struct mm_struct *mm,
5441                         unsigned long addr, unsigned long sz)
5442 {
5443         pgd_t *pgd;
5444         p4d_t *p4d;
5445         pud_t *pud;
5446         pte_t *pte = NULL;
5447
5448         pgd = pgd_offset(mm, addr);
5449         p4d = p4d_alloc(mm, pgd, addr);
5450         if (!p4d)
5451                 return NULL;
5452         pud = pud_alloc(mm, p4d, addr);
5453         if (pud) {
5454                 if (sz == PUD_SIZE) {
5455                         pte = (pte_t *)pud;
5456                 } else {
5457                         BUG_ON(sz != PMD_SIZE);
5458                         if (want_pmd_share() && pud_none(*pud))
5459                                 pte = huge_pmd_share(mm, addr, pud);
5460                         else
5461                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5462                 }
5463         }
5464         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5465
5466         return pte;
5467 }
5468
5469 /*
5470  * huge_pte_offset() - Walk the page table to resolve the hugepage
5471  * entry at address @addr
5472  *
5473  * Return: Pointer to page table entry (PUD or PMD) for
5474  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5475  * size @sz doesn't match the hugepage size at this level of the page
5476  * table.
5477  */
5478 pte_t *huge_pte_offset(struct mm_struct *mm,
5479                        unsigned long addr, unsigned long sz)
5480 {
5481         pgd_t *pgd;
5482         p4d_t *p4d;
5483         pud_t *pud;
5484         pmd_t *pmd;
5485
5486         pgd = pgd_offset(mm, addr);
5487         if (!pgd_present(*pgd))
5488                 return NULL;
5489         p4d = p4d_offset(pgd, addr);
5490         if (!p4d_present(*p4d))
5491                 return NULL;
5492
5493         pud = pud_offset(p4d, addr);
5494         if (sz == PUD_SIZE)
5495                 /* must be pud huge, non-present or none */
5496                 return (pte_t *)pud;
5497         if (!pud_present(*pud))
5498                 return NULL;
5499         /* must have a valid entry and size to go further */
5500
5501         pmd = pmd_offset(pud, addr);
5502         /* must be pmd huge, non-present or none */
5503         return (pte_t *)pmd;
5504 }
5505
5506 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5507
5508 /*
5509  * These functions are overwritable if your architecture needs its own
5510  * behavior.
5511  */
5512 struct page * __weak
5513 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5514                               int write)
5515 {
5516         return ERR_PTR(-EINVAL);
5517 }
5518
5519 struct page * __weak
5520 follow_huge_pd(struct vm_area_struct *vma,
5521                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5522 {
5523         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5524         return NULL;
5525 }
5526
5527 struct page * __weak
5528 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5529                 pmd_t *pmd, int flags)
5530 {
5531         struct page *page = NULL;
5532         spinlock_t *ptl;
5533         pte_t pte;
5534
5535         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5536         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5537                          (FOLL_PIN | FOLL_GET)))
5538                 return NULL;
5539
5540 retry:
5541         ptl = pmd_lockptr(mm, pmd);
5542         spin_lock(ptl);
5543         /*
5544          * make sure that the address range covered by this pmd is not
5545          * unmapped from other threads.
5546          */
5547         if (!pmd_huge(*pmd))
5548                 goto out;
5549         pte = huge_ptep_get((pte_t *)pmd);
5550         if (pte_present(pte)) {
5551                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5552                 /*
5553                  * try_grab_page() should always succeed here, because: a) we
5554                  * hold the pmd (ptl) lock, and b) we've just checked that the
5555                  * huge pmd (head) page is present in the page tables. The ptl
5556                  * prevents the head page and tail pages from being rearranged
5557                  * in any way. So this page must be available at this point,
5558                  * unless the page refcount overflowed:
5559                  */
5560                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5561                         page = NULL;
5562                         goto out;
5563                 }
5564         } else {
5565                 if (is_hugetlb_entry_migration(pte)) {
5566                         spin_unlock(ptl);
5567                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5568                         goto retry;
5569                 }
5570                 /*
5571                  * hwpoisoned entry is treated as no_page_table in
5572                  * follow_page_mask().
5573                  */
5574         }
5575 out:
5576         spin_unlock(ptl);
5577         return page;
5578 }
5579
5580 struct page * __weak
5581 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5582                 pud_t *pud, int flags)
5583 {
5584         if (flags & (FOLL_GET | FOLL_PIN))
5585                 return NULL;
5586
5587         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5588 }
5589
5590 struct page * __weak
5591 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5592 {
5593         if (flags & (FOLL_GET | FOLL_PIN))
5594                 return NULL;
5595
5596         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5597 }
5598
5599 bool isolate_huge_page(struct page *page, struct list_head *list)
5600 {
5601         bool ret = true;
5602
5603         spin_lock(&hugetlb_lock);
5604         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5605             !get_page_unless_zero(page)) {
5606                 ret = false;
5607                 goto unlock;
5608         }
5609         clear_page_huge_active(page);
5610         list_move_tail(&page->lru, list);
5611 unlock:
5612         spin_unlock(&hugetlb_lock);
5613         return ret;
5614 }
5615
5616 void putback_active_hugepage(struct page *page)
5617 {
5618         VM_BUG_ON_PAGE(!PageHead(page), page);
5619         spin_lock(&hugetlb_lock);
5620         set_page_huge_active(page);
5621         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5622         spin_unlock(&hugetlb_lock);
5623         put_page(page);
5624 }
5625
5626 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5627 {
5628         struct hstate *h = page_hstate(oldpage);
5629
5630         hugetlb_cgroup_migrate(oldpage, newpage);
5631         set_page_owner_migrate_reason(newpage, reason);
5632
5633         /*
5634          * transfer temporary state of the new huge page. This is
5635          * reverse to other transitions because the newpage is going to
5636          * be final while the old one will be freed so it takes over
5637          * the temporary status.
5638          *
5639          * Also note that we have to transfer the per-node surplus state
5640          * here as well otherwise the global surplus count will not match
5641          * the per-node's.
5642          */
5643         if (PageHugeTemporary(newpage)) {
5644                 int old_nid = page_to_nid(oldpage);
5645                 int new_nid = page_to_nid(newpage);
5646
5647                 SetPageHugeTemporary(oldpage);
5648                 ClearPageHugeTemporary(newpage);
5649
5650                 spin_lock(&hugetlb_lock);
5651                 if (h->surplus_huge_pages_node[old_nid]) {
5652                         h->surplus_huge_pages_node[old_nid]--;
5653                         h->surplus_huge_pages_node[new_nid]++;
5654                 }
5655                 spin_unlock(&hugetlb_lock);
5656         }
5657 }
5658
5659 #ifdef CONFIG_CMA
5660 static bool cma_reserve_called __initdata;
5661
5662 static int __init cmdline_parse_hugetlb_cma(char *p)
5663 {
5664         hugetlb_cma_size = memparse(p, &p);
5665         return 0;
5666 }
5667
5668 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5669
5670 void __init hugetlb_cma_reserve(int order)
5671 {
5672         unsigned long size, reserved, per_node;
5673         int nid;
5674
5675         cma_reserve_called = true;
5676
5677         if (!hugetlb_cma_size)
5678                 return;
5679
5680         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5681                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5682                         (PAGE_SIZE << order) / SZ_1M);
5683                 return;
5684         }
5685
5686         /*
5687          * If 3 GB area is requested on a machine with 4 numa nodes,
5688          * let's allocate 1 GB on first three nodes and ignore the last one.
5689          */
5690         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5691         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5692                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5693
5694         reserved = 0;
5695         for_each_node_state(nid, N_ONLINE) {
5696                 int res;
5697                 char name[CMA_MAX_NAME];
5698
5699                 size = min(per_node, hugetlb_cma_size - reserved);
5700                 size = round_up(size, PAGE_SIZE << order);
5701
5702                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5703                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5704                                                  0, false, name,
5705                                                  &hugetlb_cma[nid], nid);
5706                 if (res) {
5707                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5708                                 res, nid);
5709                         continue;
5710                 }
5711
5712                 reserved += size;
5713                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5714                         size / SZ_1M, nid);
5715
5716                 if (reserved >= hugetlb_cma_size)
5717                         break;
5718         }
5719 }
5720
5721 void __init hugetlb_cma_check(void)
5722 {
5723         if (!hugetlb_cma_size || cma_reserve_called)
5724                 return;
5725
5726         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5727 }
5728
5729 #endif /* CONFIG_CMA */