Revert "mm, oom: prevent premature OOM killer invocation for high order request"
[platform/kernel/linux-exynos.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         /* minimum size accounting */
149         if (spool->min_hpages != -1 && spool->rsv_hpages) {
150                 if (delta > spool->rsv_hpages) {
151                         /*
152                          * Asking for more reserves than those already taken on
153                          * behalf of subpool.  Return difference.
154                          */
155                         ret = delta - spool->rsv_hpages;
156                         spool->rsv_hpages = 0;
157                 } else {
158                         ret = 0;        /* reserves already accounted for */
159                         spool->rsv_hpages -= delta;
160                 }
161         }
162
163 unlock_ret:
164         spin_unlock(&spool->lock);
165         return ret;
166 }
167
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175                                        long delta)
176 {
177         long ret = delta;
178
179         if (!spool)
180                 return delta;
181
182         spin_lock(&spool->lock);
183
184         if (spool->max_hpages != -1)            /* maximum size accounting */
185                 spool->used_hpages -= delta;
186
187          /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189                 if (spool->rsv_hpages + delta <= spool->min_hpages)
190                         ret = 0;
191                 else
192                         ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194                 spool->rsv_hpages += delta;
195                 if (spool->rsv_hpages > spool->min_hpages)
196                         spool->rsv_hpages = spool->min_hpages;
197         }
198
199         /*
200          * If hugetlbfs_put_super couldn't free spool due to an outstanding
201          * quota reference, free it now.
202          */
203         unlock_or_release_subpool(spool);
204
205         return ret;
206 }
207
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210         return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215         return subpool_inode(file_inode(vma->vm_file));
216 }
217
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238         struct list_head link;
239         long from;
240         long to;
241 };
242
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259         struct list_head *head = &resv->regions;
260         struct file_region *rg, *nrg, *trg;
261         long add = 0;
262
263         spin_lock(&resv->lock);
264         /* Locate the region we are either in or before. */
265         list_for_each_entry(rg, head, link)
266                 if (f <= rg->to)
267                         break;
268
269         /*
270          * If no region exists which can be expanded to include the
271          * specified range, the list must have been modified by an
272          * interleving call to region_del().  Pull a region descriptor
273          * from the cache and use it for this range.
274          */
275         if (&rg->link == head || t < rg->from) {
276                 VM_BUG_ON(resv->region_cache_count <= 0);
277
278                 resv->region_cache_count--;
279                 nrg = list_first_entry(&resv->region_cache, struct file_region,
280                                         link);
281                 list_del(&nrg->link);
282
283                 nrg->from = f;
284                 nrg->to = t;
285                 list_add(&nrg->link, rg->link.prev);
286
287                 add += t - f;
288                 goto out_locked;
289         }
290
291         /* Round our left edge to the current segment if it encloses us. */
292         if (f > rg->from)
293                 f = rg->from;
294
295         /* Check for and consume any regions we now overlap with. */
296         nrg = rg;
297         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298                 if (&rg->link == head)
299                         break;
300                 if (rg->from > t)
301                         break;
302
303                 /* If this area reaches higher then extend our area to
304                  * include it completely.  If this is not the first area
305                  * which we intend to reuse, free it. */
306                 if (rg->to > t)
307                         t = rg->to;
308                 if (rg != nrg) {
309                         /* Decrement return value by the deleted range.
310                          * Another range will span this area so that by
311                          * end of routine add will be >= zero
312                          */
313                         add -= (rg->to - rg->from);
314                         list_del(&rg->link);
315                         kfree(rg);
316                 }
317         }
318
319         add += (nrg->from - f);         /* Added to beginning of region */
320         nrg->from = f;
321         add += t - nrg->to;             /* Added to end of region */
322         nrg->to = t;
323
324 out_locked:
325         resv->adds_in_progress--;
326         spin_unlock(&resv->lock);
327         VM_BUG_ON(add < 0);
328         return add;
329 }
330
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355         struct list_head *head = &resv->regions;
356         struct file_region *rg, *nrg = NULL;
357         long chg = 0;
358
359 retry:
360         spin_lock(&resv->lock);
361 retry_locked:
362         resv->adds_in_progress++;
363
364         /*
365          * Check for sufficient descriptors in the cache to accommodate
366          * the number of in progress add operations.
367          */
368         if (resv->adds_in_progress > resv->region_cache_count) {
369                 struct file_region *trg;
370
371                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372                 /* Must drop lock to allocate a new descriptor. */
373                 resv->adds_in_progress--;
374                 spin_unlock(&resv->lock);
375
376                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377                 if (!trg) {
378                         kfree(nrg);
379                         return -ENOMEM;
380                 }
381
382                 spin_lock(&resv->lock);
383                 list_add(&trg->link, &resv->region_cache);
384                 resv->region_cache_count++;
385                 goto retry_locked;
386         }
387
388         /* Locate the region we are before or in. */
389         list_for_each_entry(rg, head, link)
390                 if (f <= rg->to)
391                         break;
392
393         /* If we are below the current region then a new region is required.
394          * Subtle, allocate a new region at the position but make it zero
395          * size such that we can guarantee to record the reservation. */
396         if (&rg->link == head || t < rg->from) {
397                 if (!nrg) {
398                         resv->adds_in_progress--;
399                         spin_unlock(&resv->lock);
400                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401                         if (!nrg)
402                                 return -ENOMEM;
403
404                         nrg->from = f;
405                         nrg->to   = f;
406                         INIT_LIST_HEAD(&nrg->link);
407                         goto retry;
408                 }
409
410                 list_add(&nrg->link, rg->link.prev);
411                 chg = t - f;
412                 goto out_nrg;
413         }
414
415         /* Round our left edge to the current segment if it encloses us. */
416         if (f > rg->from)
417                 f = rg->from;
418         chg = t - f;
419
420         /* Check for and consume any regions we now overlap with. */
421         list_for_each_entry(rg, rg->link.prev, link) {
422                 if (&rg->link == head)
423                         break;
424                 if (rg->from > t)
425                         goto out;
426
427                 /* We overlap with this area, if it extends further than
428                  * us then we must extend ourselves.  Account for its
429                  * existing reservation. */
430                 if (rg->to > t) {
431                         chg += rg->to - t;
432                         t = rg->to;
433                 }
434                 chg -= rg->to - rg->from;
435         }
436
437 out:
438         spin_unlock(&resv->lock);
439         /*  We already know we raced and no longer need the new region */
440         kfree(nrg);
441         return chg;
442 out_nrg:
443         spin_unlock(&resv->lock);
444         return chg;
445 }
446
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460         spin_lock(&resv->lock);
461         VM_BUG_ON(!resv->region_cache_count);
462         resv->adds_in_progress--;
463         spin_unlock(&resv->lock);
464 }
465
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482         struct list_head *head = &resv->regions;
483         struct file_region *rg, *trg;
484         struct file_region *nrg = NULL;
485         long del = 0;
486
487 retry:
488         spin_lock(&resv->lock);
489         list_for_each_entry_safe(rg, trg, head, link) {
490                 /*
491                  * Skip regions before the range to be deleted.  file_region
492                  * ranges are normally of the form [from, to).  However, there
493                  * may be a "placeholder" entry in the map which is of the form
494                  * (from, to) with from == to.  Check for placeholder entries
495                  * at the beginning of the range to be deleted.
496                  */
497                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498                         continue;
499
500                 if (rg->from >= t)
501                         break;
502
503                 if (f > rg->from && t < rg->to) { /* Must split region */
504                         /*
505                          * Check for an entry in the cache before dropping
506                          * lock and attempting allocation.
507                          */
508                         if (!nrg &&
509                             resv->region_cache_count > resv->adds_in_progress) {
510                                 nrg = list_first_entry(&resv->region_cache,
511                                                         struct file_region,
512                                                         link);
513                                 list_del(&nrg->link);
514                                 resv->region_cache_count--;
515                         }
516
517                         if (!nrg) {
518                                 spin_unlock(&resv->lock);
519                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520                                 if (!nrg)
521                                         return -ENOMEM;
522                                 goto retry;
523                         }
524
525                         del += t - f;
526
527                         /* New entry for end of split region */
528                         nrg->from = t;
529                         nrg->to = rg->to;
530                         INIT_LIST_HEAD(&nrg->link);
531
532                         /* Original entry is trimmed */
533                         rg->to = f;
534
535                         list_add(&nrg->link, &rg->link);
536                         nrg = NULL;
537                         break;
538                 }
539
540                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541                         del += rg->to - rg->from;
542                         list_del(&rg->link);
543                         kfree(rg);
544                         continue;
545                 }
546
547                 if (f <= rg->from) {    /* Trim beginning of region */
548                         del += t - rg->from;
549                         rg->from = t;
550                 } else {                /* Trim end of region */
551                         del += rg->to - f;
552                         rg->to = f;
553                 }
554         }
555
556         spin_unlock(&resv->lock);
557         kfree(nrg);
558         return del;
559 }
560
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572         struct hugepage_subpool *spool = subpool_inode(inode);
573         long rsv_adjust;
574
575         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576         if (restore_reserve && rsv_adjust) {
577                 struct hstate *h = hstate_inode(inode);
578
579                 hugetlb_acct_memory(h, 1);
580         }
581 }
582
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589         struct list_head *head = &resv->regions;
590         struct file_region *rg;
591         long chg = 0;
592
593         spin_lock(&resv->lock);
594         /* Locate each segment we overlap with, and count that overlap. */
595         list_for_each_entry(rg, head, link) {
596                 long seg_from;
597                 long seg_to;
598
599                 if (rg->to <= f)
600                         continue;
601                 if (rg->from >= t)
602                         break;
603
604                 seg_from = max(rg->from, f);
605                 seg_to = min(rg->to, t);
606
607                 chg += seg_to - seg_from;
608         }
609         spin_unlock(&resv->lock);
610
611         return chg;
612 }
613
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619                         struct vm_area_struct *vma, unsigned long address)
620 {
621         return ((address - vma->vm_start) >> huge_page_shift(h)) +
622                         (vma->vm_pgoff >> huge_page_order(h));
623 }
624
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626                                      unsigned long address)
627 {
628         return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638         struct hstate *hstate;
639
640         if (!is_vm_hugetlb_page(vma))
641                 return PAGE_SIZE;
642
643         hstate = hstate_vma(vma);
644
645         return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658         return vma_kernel_pagesize(vma);
659 }
660 #endif
661
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692         return (unsigned long)vma->vm_private_data;
693 }
694
695 static void set_vma_private_data(struct vm_area_struct *vma,
696                                                         unsigned long value)
697 {
698         vma->vm_private_data = (void *)value;
699 }
700
701 struct resv_map *resv_map_alloc(void)
702 {
703         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706         if (!resv_map || !rg) {
707                 kfree(resv_map);
708                 kfree(rg);
709                 return NULL;
710         }
711
712         kref_init(&resv_map->refs);
713         spin_lock_init(&resv_map->lock);
714         INIT_LIST_HEAD(&resv_map->regions);
715
716         resv_map->adds_in_progress = 0;
717
718         INIT_LIST_HEAD(&resv_map->region_cache);
719         list_add(&rg->link, &resv_map->region_cache);
720         resv_map->region_cache_count = 1;
721
722         return resv_map;
723 }
724
725 void resv_map_release(struct kref *ref)
726 {
727         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728         struct list_head *head = &resv_map->region_cache;
729         struct file_region *rg, *trg;
730
731         /* Clear out any active regions before we release the map. */
732         region_del(resv_map, 0, LONG_MAX);
733
734         /* ... and any entries left in the cache */
735         list_for_each_entry_safe(rg, trg, head, link) {
736                 list_del(&rg->link);
737                 kfree(rg);
738         }
739
740         VM_BUG_ON(resv_map->adds_in_progress);
741
742         kfree(resv_map);
743 }
744
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747         return inode->i_mapping->private_data;
748 }
749
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753         if (vma->vm_flags & VM_MAYSHARE) {
754                 struct address_space *mapping = vma->vm_file->f_mapping;
755                 struct inode *inode = mapping->host;
756
757                 return inode_resv_map(inode);
758
759         } else {
760                 return (struct resv_map *)(get_vma_private_data(vma) &
761                                                         ~HPAGE_RESV_MASK);
762         }
763 }
764
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770         set_vma_private_data(vma, (get_vma_private_data(vma) &
771                                 HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786         return (get_vma_private_data(vma) & flag) != 0;
787 }
788
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793         if (!(vma->vm_flags & VM_MAYSHARE))
794                 vma->vm_private_data = (void *)0;
795 }
796
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800         if (vma->vm_flags & VM_NORESERVE) {
801                 /*
802                  * This address is already reserved by other process(chg == 0),
803                  * so, we should decrement reserved count. Without decrementing,
804                  * reserve count remains after releasing inode, because this
805                  * allocated page will go into page cache and is regarded as
806                  * coming from reserved pool in releasing step.  Currently, we
807                  * don't have any other solution to deal with this situation
808                  * properly, so add work-around here.
809                  */
810                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811                         return true;
812                 else
813                         return false;
814         }
815
816         /* Shared mappings always use reserves */
817         if (vma->vm_flags & VM_MAYSHARE) {
818                 /*
819                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820                  * be a region map for all pages.  The only situation where
821                  * there is no region map is if a hole was punched via
822                  * fallocate.  In this case, there really are no reverves to
823                  * use.  This situation is indicated if chg != 0.
824                  */
825                 if (chg)
826                         return false;
827                 else
828                         return true;
829         }
830
831         /*
832          * Only the process that called mmap() has reserves for
833          * private mappings.
834          */
835         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836                 /*
837                  * Like the shared case above, a hole punch or truncate
838                  * could have been performed on the private mapping.
839                  * Examine the value of chg to determine if reserves
840                  * actually exist or were previously consumed.
841                  * Very Subtle - The value of chg comes from a previous
842                  * call to vma_needs_reserves().  The reserve map for
843                  * private mappings has different (opposite) semantics
844                  * than that of shared mappings.  vma_needs_reserves()
845                  * has already taken this difference in semantics into
846                  * account.  Therefore, the meaning of chg is the same
847                  * as in the shared case above.  Code could easily be
848                  * combined, but keeping it separate draws attention to
849                  * subtle differences.
850                  */
851                 if (chg)
852                         return false;
853                 else
854                         return true;
855         }
856
857         return false;
858 }
859
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862         int nid = page_to_nid(page);
863         list_move(&page->lru, &h->hugepage_freelists[nid]);
864         h->free_huge_pages++;
865         h->free_huge_pages_node[nid]++;
866 }
867
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870         struct page *page;
871
872         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873                 if (!is_migrate_isolate_page(page))
874                         break;
875         /*
876          * if 'non-isolated free hugepage' not found on the list,
877          * the allocation fails.
878          */
879         if (&h->hugepage_freelists[nid] == &page->lru)
880                 return NULL;
881         list_move(&page->lru, &h->hugepage_activelist);
882         set_page_refcounted(page);
883         h->free_huge_pages--;
884         h->free_huge_pages_node[nid]--;
885         return page;
886 }
887
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892                 return GFP_HIGHUSER_MOVABLE;
893         else
894                 return GFP_HIGHUSER;
895 }
896
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898                                 struct vm_area_struct *vma,
899                                 unsigned long address, int avoid_reserve,
900                                 long chg)
901 {
902         struct page *page = NULL;
903         struct mempolicy *mpol;
904         nodemask_t *nodemask;
905         struct zonelist *zonelist;
906         struct zone *zone;
907         struct zoneref *z;
908         unsigned int cpuset_mems_cookie;
909
910         /*
911          * A child process with MAP_PRIVATE mappings created by their parent
912          * have no page reserves. This check ensures that reservations are
913          * not "stolen". The child may still get SIGKILLed
914          */
915         if (!vma_has_reserves(vma, chg) &&
916                         h->free_huge_pages - h->resv_huge_pages == 0)
917                 goto err;
918
919         /* If reserves cannot be used, ensure enough pages are in the pool */
920         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921                 goto err;
922
923 retry_cpuset:
924         cpuset_mems_cookie = read_mems_allowed_begin();
925         zonelist = huge_zonelist(vma, address,
926                                         htlb_alloc_mask(h), &mpol, &nodemask);
927
928         for_each_zone_zonelist_nodemask(zone, z, zonelist,
929                                                 MAX_NR_ZONES - 1, nodemask) {
930                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
932                         if (page) {
933                                 if (avoid_reserve)
934                                         break;
935                                 if (!vma_has_reserves(vma, chg))
936                                         break;
937
938                                 SetPagePrivate(page);
939                                 h->resv_huge_pages--;
940                                 break;
941                         }
942                 }
943         }
944
945         mpol_cond_put(mpol);
946         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947                 goto retry_cpuset;
948         return page;
949
950 err:
951         return NULL;
952 }
953
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963         nid = next_node_in(nid, *nodes_allowed);
964         VM_BUG_ON(nid >= MAX_NUMNODES);
965
966         return nid;
967 }
968
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971         if (!node_isset(nid, *nodes_allowed))
972                 nid = next_node_allowed(nid, nodes_allowed);
973         return nid;
974 }
975
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983                                         nodemask_t *nodes_allowed)
984 {
985         int nid;
986
987         VM_BUG_ON(!nodes_allowed);
988
989         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992         return nid;
993 }
994
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003         int nid;
1004
1005         VM_BUG_ON(!nodes_allowed);
1006
1007         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010         return nid;
1011 }
1012
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1014         for (nr_nodes = nodes_weight(*mask);                            \
1015                 nr_nodes > 0 &&                                         \
1016                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1017                 nr_nodes--)
1018
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1020         for (nr_nodes = nodes_weight(*mask);                            \
1021                 nr_nodes > 0 &&                                         \
1022                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1023                 nr_nodes--)
1024
1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027         defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029                                         unsigned int order)
1030 {
1031         int i;
1032         int nr_pages = 1 << order;
1033         struct page *p = page + 1;
1034
1035         atomic_set(compound_mapcount_ptr(page), 0);
1036         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037                 clear_compound_head(p);
1038                 set_page_refcounted(p);
1039         }
1040
1041         set_compound_order(page, 0);
1042         __ClearPageHead(page);
1043 }
1044
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047         free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051                                 unsigned long nr_pages)
1052 {
1053         unsigned long end_pfn = start_pfn + nr_pages;
1054         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058                         unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060         unsigned long i, end_pfn = start_pfn + nr_pages;
1061         struct page *page;
1062
1063         for (i = start_pfn; i < end_pfn; i++) {
1064                 if (!pfn_valid(i))
1065                         return false;
1066
1067                 page = pfn_to_page(i);
1068
1069                 if (page_zone(page) != z)
1070                         return false;
1071
1072                 if (PageReserved(page))
1073                         return false;
1074
1075                 if (page_count(page) > 0)
1076                         return false;
1077
1078                 if (PageHuge(page))
1079                         return false;
1080         }
1081
1082         return true;
1083 }
1084
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086                         unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088         unsigned long last_pfn = start_pfn + nr_pages - 1;
1089         return zone_spans_pfn(zone, last_pfn);
1090 }
1091
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094         unsigned long nr_pages = 1 << order;
1095         unsigned long ret, pfn, flags;
1096         struct zone *z;
1097
1098         z = NODE_DATA(nid)->node_zones;
1099         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100                 spin_lock_irqsave(&z->lock, flags);
1101
1102                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105                                 /*
1106                                  * We release the zone lock here because
1107                                  * alloc_contig_range() will also lock the zone
1108                                  * at some point. If there's an allocation
1109                                  * spinning on this lock, it may win the race
1110                                  * and cause alloc_contig_range() to fail...
1111                                  */
1112                                 spin_unlock_irqrestore(&z->lock, flags);
1113                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1114                                 if (!ret)
1115                                         return pfn_to_page(pfn);
1116                                 spin_lock_irqsave(&z->lock, flags);
1117                         }
1118                         pfn += nr_pages;
1119                 }
1120
1121                 spin_unlock_irqrestore(&z->lock, flags);
1122         }
1123
1124         return NULL;
1125 }
1126
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132         struct page *page;
1133
1134         page = alloc_gigantic_page(nid, huge_page_order(h));
1135         if (page) {
1136                 prep_compound_gigantic_page(page, huge_page_order(h));
1137                 prep_new_huge_page(h, page, nid);
1138         }
1139
1140         return page;
1141 }
1142
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144                                 nodemask_t *nodes_allowed)
1145 {
1146         struct page *page = NULL;
1147         int nr_nodes, node;
1148
1149         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150                 page = alloc_fresh_gigantic_page_node(h, node);
1151                 if (page)
1152                         return 1;
1153         }
1154
1155         return 0;
1156 }
1157
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165                                         nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170         int i;
1171
1172         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173                 return;
1174
1175         h->nr_huge_pages--;
1176         h->nr_huge_pages_node[page_to_nid(page)]--;
1177         for (i = 0; i < pages_per_huge_page(h); i++) {
1178                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179                                 1 << PG_referenced | 1 << PG_dirty |
1180                                 1 << PG_active | 1 << PG_private |
1181                                 1 << PG_writeback);
1182         }
1183         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185         set_page_refcounted(page);
1186         if (hstate_is_gigantic(h)) {
1187                 destroy_compound_gigantic_page(page, huge_page_order(h));
1188                 free_gigantic_page(page, huge_page_order(h));
1189         } else {
1190                 __free_pages(page, huge_page_order(h));
1191         }
1192 }
1193
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196         struct hstate *h;
1197
1198         for_each_hstate(h) {
1199                 if (huge_page_size(h) == size)
1200                         return h;
1201         }
1202         return NULL;
1203 }
1204
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHuge(page), page);
1214         return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221         SetPagePrivate(&page[1]);
1222 }
1223
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227         ClearPagePrivate(&page[1]);
1228 }
1229
1230 void free_huge_page(struct page *page)
1231 {
1232         /*
1233          * Can't pass hstate in here because it is called from the
1234          * compound page destructor.
1235          */
1236         struct hstate *h = page_hstate(page);
1237         int nid = page_to_nid(page);
1238         struct hugepage_subpool *spool =
1239                 (struct hugepage_subpool *)page_private(page);
1240         bool restore_reserve;
1241
1242         set_page_private(page, 0);
1243         page->mapping = NULL;
1244         VM_BUG_ON_PAGE(page_count(page), page);
1245         VM_BUG_ON_PAGE(page_mapcount(page), page);
1246         restore_reserve = PagePrivate(page);
1247         ClearPagePrivate(page);
1248
1249         /*
1250          * A return code of zero implies that the subpool will be under its
1251          * minimum size if the reservation is not restored after page is free.
1252          * Therefore, force restore_reserve operation.
1253          */
1254         if (hugepage_subpool_put_pages(spool, 1) == 0)
1255                 restore_reserve = true;
1256
1257         spin_lock(&hugetlb_lock);
1258         clear_page_huge_active(page);
1259         hugetlb_cgroup_uncharge_page(hstate_index(h),
1260                                      pages_per_huge_page(h), page);
1261         if (restore_reserve)
1262                 h->resv_huge_pages++;
1263
1264         if (h->surplus_huge_pages_node[nid]) {
1265                 /* remove the page from active list */
1266                 list_del(&page->lru);
1267                 update_and_free_page(h, page);
1268                 h->surplus_huge_pages--;
1269                 h->surplus_huge_pages_node[nid]--;
1270         } else {
1271                 arch_clear_hugepage_flags(page);
1272                 enqueue_huge_page(h, page);
1273         }
1274         spin_unlock(&hugetlb_lock);
1275 }
1276
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279         INIT_LIST_HEAD(&page->lru);
1280         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281         spin_lock(&hugetlb_lock);
1282         set_hugetlb_cgroup(page, NULL);
1283         h->nr_huge_pages++;
1284         h->nr_huge_pages_node[nid]++;
1285         spin_unlock(&hugetlb_lock);
1286         put_page(page); /* free it into the hugepage allocator */
1287 }
1288
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291         int i;
1292         int nr_pages = 1 << order;
1293         struct page *p = page + 1;
1294
1295         /* we rely on prep_new_huge_page to set the destructor */
1296         set_compound_order(page, order);
1297         __ClearPageReserved(page);
1298         __SetPageHead(page);
1299         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300                 /*
1301                  * For gigantic hugepages allocated through bootmem at
1302                  * boot, it's safer to be consistent with the not-gigantic
1303                  * hugepages and clear the PG_reserved bit from all tail pages
1304                  * too.  Otherwse drivers using get_user_pages() to access tail
1305                  * pages may get the reference counting wrong if they see
1306                  * PG_reserved set on a tail page (despite the head page not
1307                  * having PG_reserved set).  Enforcing this consistency between
1308                  * head and tail pages allows drivers to optimize away a check
1309                  * on the head page when they need know if put_page() is needed
1310                  * after get_user_pages().
1311                  */
1312                 __ClearPageReserved(p);
1313                 set_page_count(p, 0);
1314                 set_compound_head(p, page);
1315         }
1316         atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326         if (!PageCompound(page))
1327                 return 0;
1328
1329         page = compound_head(page);
1330         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340         if (!PageHead(page_head))
1341                 return 0;
1342
1343         return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348         struct page *page_head = compound_head(page);
1349         pgoff_t index = page_index(page_head);
1350         unsigned long compound_idx;
1351
1352         if (!PageHuge(page_head))
1353                 return page_index(page);
1354
1355         if (compound_order(page_head) >= MAX_ORDER)
1356                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357         else
1358                 compound_idx = page - page_head;
1359
1360         return (index << compound_order(page_head)) + compound_idx;
1361 }
1362
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365         struct page *page;
1366
1367         page = __alloc_pages_node(nid,
1368                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369                                                 __GFP_REPEAT|__GFP_NOWARN,
1370                 huge_page_order(h));
1371         if (page) {
1372                 prep_new_huge_page(h, page, nid);
1373         }
1374
1375         return page;
1376 }
1377
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380         struct page *page;
1381         int nr_nodes, node;
1382         int ret = 0;
1383
1384         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385                 page = alloc_fresh_huge_page_node(h, node);
1386                 if (page) {
1387                         ret = 1;
1388                         break;
1389                 }
1390         }
1391
1392         if (ret)
1393                 count_vm_event(HTLB_BUDDY_PGALLOC);
1394         else
1395                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397         return ret;
1398 }
1399
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407                                                          bool acct_surplus)
1408 {
1409         int nr_nodes, node;
1410         int ret = 0;
1411
1412         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413                 /*
1414                  * If we're returning unused surplus pages, only examine
1415                  * nodes with surplus pages.
1416                  */
1417                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418                     !list_empty(&h->hugepage_freelists[node])) {
1419                         struct page *page =
1420                                 list_entry(h->hugepage_freelists[node].next,
1421                                           struct page, lru);
1422                         list_del(&page->lru);
1423                         h->free_huge_pages--;
1424                         h->free_huge_pages_node[node]--;
1425                         if (acct_surplus) {
1426                                 h->surplus_huge_pages--;
1427                                 h->surplus_huge_pages_node[node]--;
1428                         }
1429                         update_and_free_page(h, page);
1430                         ret = 1;
1431                         break;
1432                 }
1433         }
1434
1435         return ret;
1436 }
1437
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages.
1441  */
1442 static void dissolve_free_huge_page(struct page *page)
1443 {
1444         spin_lock(&hugetlb_lock);
1445         if (PageHuge(page) && !page_count(page)) {
1446                 struct hstate *h = page_hstate(page);
1447                 int nid = page_to_nid(page);
1448                 list_del(&page->lru);
1449                 h->free_huge_pages--;
1450                 h->free_huge_pages_node[nid]--;
1451                 h->max_huge_pages--;
1452                 update_and_free_page(h, page);
1453         }
1454         spin_unlock(&hugetlb_lock);
1455 }
1456
1457 /*
1458  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1459  * make specified memory blocks removable from the system.
1460  * Note that start_pfn should aligned with (minimum) hugepage size.
1461  */
1462 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1463 {
1464         unsigned long pfn;
1465
1466         if (!hugepages_supported())
1467                 return;
1468
1469         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1470         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1471                 dissolve_free_huge_page(pfn_to_page(pfn));
1472 }
1473
1474 /*
1475  * There are 3 ways this can get called:
1476  * 1. With vma+addr: we use the VMA's memory policy
1477  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1478  *    page from any node, and let the buddy allocator itself figure
1479  *    it out.
1480  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1481  *    strictly from 'nid'
1482  */
1483 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1484                 struct vm_area_struct *vma, unsigned long addr, int nid)
1485 {
1486         int order = huge_page_order(h);
1487         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1488         unsigned int cpuset_mems_cookie;
1489
1490         /*
1491          * We need a VMA to get a memory policy.  If we do not
1492          * have one, we use the 'nid' argument.
1493          *
1494          * The mempolicy stuff below has some non-inlined bits
1495          * and calls ->vm_ops.  That makes it hard to optimize at
1496          * compile-time, even when NUMA is off and it does
1497          * nothing.  This helps the compiler optimize it out.
1498          */
1499         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1500                 /*
1501                  * If a specific node is requested, make sure to
1502                  * get memory from there, but only when a node
1503                  * is explicitly specified.
1504                  */
1505                 if (nid != NUMA_NO_NODE)
1506                         gfp |= __GFP_THISNODE;
1507                 /*
1508                  * Make sure to call something that can handle
1509                  * nid=NUMA_NO_NODE
1510                  */
1511                 return alloc_pages_node(nid, gfp, order);
1512         }
1513
1514         /*
1515          * OK, so we have a VMA.  Fetch the mempolicy and try to
1516          * allocate a huge page with it.  We will only reach this
1517          * when CONFIG_NUMA=y.
1518          */
1519         do {
1520                 struct page *page;
1521                 struct mempolicy *mpol;
1522                 struct zonelist *zl;
1523                 nodemask_t *nodemask;
1524
1525                 cpuset_mems_cookie = read_mems_allowed_begin();
1526                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1527                 mpol_cond_put(mpol);
1528                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1529                 if (page)
1530                         return page;
1531         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1532
1533         return NULL;
1534 }
1535
1536 /*
1537  * There are two ways to allocate a huge page:
1538  * 1. When you have a VMA and an address (like a fault)
1539  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1540  *
1541  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1542  * this case which signifies that the allocation should be done with
1543  * respect for the VMA's memory policy.
1544  *
1545  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1546  * implies that memory policies will not be taken in to account.
1547  */
1548 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1549                 struct vm_area_struct *vma, unsigned long addr, int nid)
1550 {
1551         struct page *page;
1552         unsigned int r_nid;
1553
1554         if (hstate_is_gigantic(h))
1555                 return NULL;
1556
1557         /*
1558          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1559          * This makes sure the caller is picking _one_ of the modes with which
1560          * we can call this function, not both.
1561          */
1562         if (vma || (addr != -1)) {
1563                 VM_WARN_ON_ONCE(addr == -1);
1564                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1565         }
1566         /*
1567          * Assume we will successfully allocate the surplus page to
1568          * prevent racing processes from causing the surplus to exceed
1569          * overcommit
1570          *
1571          * This however introduces a different race, where a process B
1572          * tries to grow the static hugepage pool while alloc_pages() is
1573          * called by process A. B will only examine the per-node
1574          * counters in determining if surplus huge pages can be
1575          * converted to normal huge pages in adjust_pool_surplus(). A
1576          * won't be able to increment the per-node counter, until the
1577          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1578          * no more huge pages can be converted from surplus to normal
1579          * state (and doesn't try to convert again). Thus, we have a
1580          * case where a surplus huge page exists, the pool is grown, and
1581          * the surplus huge page still exists after, even though it
1582          * should just have been converted to a normal huge page. This
1583          * does not leak memory, though, as the hugepage will be freed
1584          * once it is out of use. It also does not allow the counters to
1585          * go out of whack in adjust_pool_surplus() as we don't modify
1586          * the node values until we've gotten the hugepage and only the
1587          * per-node value is checked there.
1588          */
1589         spin_lock(&hugetlb_lock);
1590         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1591                 spin_unlock(&hugetlb_lock);
1592                 return NULL;
1593         } else {
1594                 h->nr_huge_pages++;
1595                 h->surplus_huge_pages++;
1596         }
1597         spin_unlock(&hugetlb_lock);
1598
1599         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1600
1601         spin_lock(&hugetlb_lock);
1602         if (page) {
1603                 INIT_LIST_HEAD(&page->lru);
1604                 r_nid = page_to_nid(page);
1605                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1606                 set_hugetlb_cgroup(page, NULL);
1607                 /*
1608                  * We incremented the global counters already
1609                  */
1610                 h->nr_huge_pages_node[r_nid]++;
1611                 h->surplus_huge_pages_node[r_nid]++;
1612                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1613         } else {
1614                 h->nr_huge_pages--;
1615                 h->surplus_huge_pages--;
1616                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1617         }
1618         spin_unlock(&hugetlb_lock);
1619
1620         return page;
1621 }
1622
1623 /*
1624  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1625  * NUMA_NO_NODE, which means that it may be allocated
1626  * anywhere.
1627  */
1628 static
1629 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1630 {
1631         unsigned long addr = -1;
1632
1633         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1634 }
1635
1636 /*
1637  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1638  */
1639 static
1640 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1641                 struct vm_area_struct *vma, unsigned long addr)
1642 {
1643         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1644 }
1645
1646 /*
1647  * This allocation function is useful in the context where vma is irrelevant.
1648  * E.g. soft-offlining uses this function because it only cares physical
1649  * address of error page.
1650  */
1651 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1652 {
1653         struct page *page = NULL;
1654
1655         spin_lock(&hugetlb_lock);
1656         if (h->free_huge_pages - h->resv_huge_pages > 0)
1657                 page = dequeue_huge_page_node(h, nid);
1658         spin_unlock(&hugetlb_lock);
1659
1660         if (!page)
1661                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1662
1663         return page;
1664 }
1665
1666 /*
1667  * Increase the hugetlb pool such that it can accommodate a reservation
1668  * of size 'delta'.
1669  */
1670 static int gather_surplus_pages(struct hstate *h, int delta)
1671 {
1672         struct list_head surplus_list;
1673         struct page *page, *tmp;
1674         int ret, i;
1675         int needed, allocated;
1676         bool alloc_ok = true;
1677
1678         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1679         if (needed <= 0) {
1680                 h->resv_huge_pages += delta;
1681                 return 0;
1682         }
1683
1684         allocated = 0;
1685         INIT_LIST_HEAD(&surplus_list);
1686
1687         ret = -ENOMEM;
1688 retry:
1689         spin_unlock(&hugetlb_lock);
1690         for (i = 0; i < needed; i++) {
1691                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1692                 if (!page) {
1693                         alloc_ok = false;
1694                         break;
1695                 }
1696                 list_add(&page->lru, &surplus_list);
1697         }
1698         allocated += i;
1699
1700         /*
1701          * After retaking hugetlb_lock, we need to recalculate 'needed'
1702          * because either resv_huge_pages or free_huge_pages may have changed.
1703          */
1704         spin_lock(&hugetlb_lock);
1705         needed = (h->resv_huge_pages + delta) -
1706                         (h->free_huge_pages + allocated);
1707         if (needed > 0) {
1708                 if (alloc_ok)
1709                         goto retry;
1710                 /*
1711                  * We were not able to allocate enough pages to
1712                  * satisfy the entire reservation so we free what
1713                  * we've allocated so far.
1714                  */
1715                 goto free;
1716         }
1717         /*
1718          * The surplus_list now contains _at_least_ the number of extra pages
1719          * needed to accommodate the reservation.  Add the appropriate number
1720          * of pages to the hugetlb pool and free the extras back to the buddy
1721          * allocator.  Commit the entire reservation here to prevent another
1722          * process from stealing the pages as they are added to the pool but
1723          * before they are reserved.
1724          */
1725         needed += allocated;
1726         h->resv_huge_pages += delta;
1727         ret = 0;
1728
1729         /* Free the needed pages to the hugetlb pool */
1730         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1731                 if ((--needed) < 0)
1732                         break;
1733                 /*
1734                  * This page is now managed by the hugetlb allocator and has
1735                  * no users -- drop the buddy allocator's reference.
1736                  */
1737                 put_page_testzero(page);
1738                 VM_BUG_ON_PAGE(page_count(page), page);
1739                 enqueue_huge_page(h, page);
1740         }
1741 free:
1742         spin_unlock(&hugetlb_lock);
1743
1744         /* Free unnecessary surplus pages to the buddy allocator */
1745         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1746                 put_page(page);
1747         spin_lock(&hugetlb_lock);
1748
1749         return ret;
1750 }
1751
1752 /*
1753  * When releasing a hugetlb pool reservation, any surplus pages that were
1754  * allocated to satisfy the reservation must be explicitly freed if they were
1755  * never used.
1756  * Called with hugetlb_lock held.
1757  */
1758 static void return_unused_surplus_pages(struct hstate *h,
1759                                         unsigned long unused_resv_pages)
1760 {
1761         unsigned long nr_pages;
1762
1763         /* Uncommit the reservation */
1764         h->resv_huge_pages -= unused_resv_pages;
1765
1766         /* Cannot return gigantic pages currently */
1767         if (hstate_is_gigantic(h))
1768                 return;
1769
1770         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1771
1772         /*
1773          * We want to release as many surplus pages as possible, spread
1774          * evenly across all nodes with memory. Iterate across these nodes
1775          * until we can no longer free unreserved surplus pages. This occurs
1776          * when the nodes with surplus pages have no free pages.
1777          * free_pool_huge_page() will balance the the freed pages across the
1778          * on-line nodes with memory and will handle the hstate accounting.
1779          */
1780         while (nr_pages--) {
1781                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1782                         break;
1783                 cond_resched_lock(&hugetlb_lock);
1784         }
1785 }
1786
1787
1788 /*
1789  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1790  * are used by the huge page allocation routines to manage reservations.
1791  *
1792  * vma_needs_reservation is called to determine if the huge page at addr
1793  * within the vma has an associated reservation.  If a reservation is
1794  * needed, the value 1 is returned.  The caller is then responsible for
1795  * managing the global reservation and subpool usage counts.  After
1796  * the huge page has been allocated, vma_commit_reservation is called
1797  * to add the page to the reservation map.  If the page allocation fails,
1798  * the reservation must be ended instead of committed.  vma_end_reservation
1799  * is called in such cases.
1800  *
1801  * In the normal case, vma_commit_reservation returns the same value
1802  * as the preceding vma_needs_reservation call.  The only time this
1803  * is not the case is if a reserve map was changed between calls.  It
1804  * is the responsibility of the caller to notice the difference and
1805  * take appropriate action.
1806  */
1807 enum vma_resv_mode {
1808         VMA_NEEDS_RESV,
1809         VMA_COMMIT_RESV,
1810         VMA_END_RESV,
1811 };
1812 static long __vma_reservation_common(struct hstate *h,
1813                                 struct vm_area_struct *vma, unsigned long addr,
1814                                 enum vma_resv_mode mode)
1815 {
1816         struct resv_map *resv;
1817         pgoff_t idx;
1818         long ret;
1819
1820         resv = vma_resv_map(vma);
1821         if (!resv)
1822                 return 1;
1823
1824         idx = vma_hugecache_offset(h, vma, addr);
1825         switch (mode) {
1826         case VMA_NEEDS_RESV:
1827                 ret = region_chg(resv, idx, idx + 1);
1828                 break;
1829         case VMA_COMMIT_RESV:
1830                 ret = region_add(resv, idx, idx + 1);
1831                 break;
1832         case VMA_END_RESV:
1833                 region_abort(resv, idx, idx + 1);
1834                 ret = 0;
1835                 break;
1836         default:
1837                 BUG();
1838         }
1839
1840         if (vma->vm_flags & VM_MAYSHARE)
1841                 return ret;
1842         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1843                 /*
1844                  * In most cases, reserves always exist for private mappings.
1845                  * However, a file associated with mapping could have been
1846                  * hole punched or truncated after reserves were consumed.
1847                  * As subsequent fault on such a range will not use reserves.
1848                  * Subtle - The reserve map for private mappings has the
1849                  * opposite meaning than that of shared mappings.  If NO
1850                  * entry is in the reserve map, it means a reservation exists.
1851                  * If an entry exists in the reserve map, it means the
1852                  * reservation has already been consumed.  As a result, the
1853                  * return value of this routine is the opposite of the
1854                  * value returned from reserve map manipulation routines above.
1855                  */
1856                 if (ret)
1857                         return 0;
1858                 else
1859                         return 1;
1860         }
1861         else
1862                 return ret < 0 ? ret : 0;
1863 }
1864
1865 static long vma_needs_reservation(struct hstate *h,
1866                         struct vm_area_struct *vma, unsigned long addr)
1867 {
1868         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1869 }
1870
1871 static long vma_commit_reservation(struct hstate *h,
1872                         struct vm_area_struct *vma, unsigned long addr)
1873 {
1874         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1875 }
1876
1877 static void vma_end_reservation(struct hstate *h,
1878                         struct vm_area_struct *vma, unsigned long addr)
1879 {
1880         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1881 }
1882
1883 struct page *alloc_huge_page(struct vm_area_struct *vma,
1884                                     unsigned long addr, int avoid_reserve)
1885 {
1886         struct hugepage_subpool *spool = subpool_vma(vma);
1887         struct hstate *h = hstate_vma(vma);
1888         struct page *page;
1889         long map_chg, map_commit;
1890         long gbl_chg;
1891         int ret, idx;
1892         struct hugetlb_cgroup *h_cg;
1893
1894         idx = hstate_index(h);
1895         /*
1896          * Examine the region/reserve map to determine if the process
1897          * has a reservation for the page to be allocated.  A return
1898          * code of zero indicates a reservation exists (no change).
1899          */
1900         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1901         if (map_chg < 0)
1902                 return ERR_PTR(-ENOMEM);
1903
1904         /*
1905          * Processes that did not create the mapping will have no
1906          * reserves as indicated by the region/reserve map. Check
1907          * that the allocation will not exceed the subpool limit.
1908          * Allocations for MAP_NORESERVE mappings also need to be
1909          * checked against any subpool limit.
1910          */
1911         if (map_chg || avoid_reserve) {
1912                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1913                 if (gbl_chg < 0) {
1914                         vma_end_reservation(h, vma, addr);
1915                         return ERR_PTR(-ENOSPC);
1916                 }
1917
1918                 /*
1919                  * Even though there was no reservation in the region/reserve
1920                  * map, there could be reservations associated with the
1921                  * subpool that can be used.  This would be indicated if the
1922                  * return value of hugepage_subpool_get_pages() is zero.
1923                  * However, if avoid_reserve is specified we still avoid even
1924                  * the subpool reservations.
1925                  */
1926                 if (avoid_reserve)
1927                         gbl_chg = 1;
1928         }
1929
1930         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1931         if (ret)
1932                 goto out_subpool_put;
1933
1934         spin_lock(&hugetlb_lock);
1935         /*
1936          * glb_chg is passed to indicate whether or not a page must be taken
1937          * from the global free pool (global change).  gbl_chg == 0 indicates
1938          * a reservation exists for the allocation.
1939          */
1940         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1941         if (!page) {
1942                 spin_unlock(&hugetlb_lock);
1943                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1944                 if (!page)
1945                         goto out_uncharge_cgroup;
1946                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1947                         SetPagePrivate(page);
1948                         h->resv_huge_pages--;
1949                 }
1950                 spin_lock(&hugetlb_lock);
1951                 list_move(&page->lru, &h->hugepage_activelist);
1952                 /* Fall through */
1953         }
1954         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1955         spin_unlock(&hugetlb_lock);
1956
1957         set_page_private(page, (unsigned long)spool);
1958
1959         map_commit = vma_commit_reservation(h, vma, addr);
1960         if (unlikely(map_chg > map_commit)) {
1961                 /*
1962                  * The page was added to the reservation map between
1963                  * vma_needs_reservation and vma_commit_reservation.
1964                  * This indicates a race with hugetlb_reserve_pages.
1965                  * Adjust for the subpool count incremented above AND
1966                  * in hugetlb_reserve_pages for the same page.  Also,
1967                  * the reservation count added in hugetlb_reserve_pages
1968                  * no longer applies.
1969                  */
1970                 long rsv_adjust;
1971
1972                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1973                 hugetlb_acct_memory(h, -rsv_adjust);
1974         }
1975         return page;
1976
1977 out_uncharge_cgroup:
1978         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1979 out_subpool_put:
1980         if (map_chg || avoid_reserve)
1981                 hugepage_subpool_put_pages(spool, 1);
1982         vma_end_reservation(h, vma, addr);
1983         return ERR_PTR(-ENOSPC);
1984 }
1985
1986 /*
1987  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1988  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1989  * where no ERR_VALUE is expected to be returned.
1990  */
1991 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1992                                 unsigned long addr, int avoid_reserve)
1993 {
1994         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1995         if (IS_ERR(page))
1996                 page = NULL;
1997         return page;
1998 }
1999
2000 int __weak alloc_bootmem_huge_page(struct hstate *h)
2001 {
2002         struct huge_bootmem_page *m;
2003         int nr_nodes, node;
2004
2005         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2006                 void *addr;
2007
2008                 addr = memblock_virt_alloc_try_nid_nopanic(
2009                                 huge_page_size(h), huge_page_size(h),
2010                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2011                 if (addr) {
2012                         /*
2013                          * Use the beginning of the huge page to store the
2014                          * huge_bootmem_page struct (until gather_bootmem
2015                          * puts them into the mem_map).
2016                          */
2017                         m = addr;
2018                         goto found;
2019                 }
2020         }
2021         return 0;
2022
2023 found:
2024         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2025         /* Put them into a private list first because mem_map is not up yet */
2026         list_add(&m->list, &huge_boot_pages);
2027         m->hstate = h;
2028         return 1;
2029 }
2030
2031 static void __init prep_compound_huge_page(struct page *page,
2032                 unsigned int order)
2033 {
2034         if (unlikely(order > (MAX_ORDER - 1)))
2035                 prep_compound_gigantic_page(page, order);
2036         else
2037                 prep_compound_page(page, order);
2038 }
2039
2040 /* Put bootmem huge pages into the standard lists after mem_map is up */
2041 static void __init gather_bootmem_prealloc(void)
2042 {
2043         struct huge_bootmem_page *m;
2044
2045         list_for_each_entry(m, &huge_boot_pages, list) {
2046                 struct hstate *h = m->hstate;
2047                 struct page *page;
2048
2049 #ifdef CONFIG_HIGHMEM
2050                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2051                 memblock_free_late(__pa(m),
2052                                    sizeof(struct huge_bootmem_page));
2053 #else
2054                 page = virt_to_page(m);
2055 #endif
2056                 WARN_ON(page_count(page) != 1);
2057                 prep_compound_huge_page(page, h->order);
2058                 WARN_ON(PageReserved(page));
2059                 prep_new_huge_page(h, page, page_to_nid(page));
2060                 /*
2061                  * If we had gigantic hugepages allocated at boot time, we need
2062                  * to restore the 'stolen' pages to totalram_pages in order to
2063                  * fix confusing memory reports from free(1) and another
2064                  * side-effects, like CommitLimit going negative.
2065                  */
2066                 if (hstate_is_gigantic(h))
2067                         adjust_managed_page_count(page, 1 << h->order);
2068         }
2069 }
2070
2071 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2072 {
2073         unsigned long i;
2074
2075         for (i = 0; i < h->max_huge_pages; ++i) {
2076                 if (hstate_is_gigantic(h)) {
2077                         if (!alloc_bootmem_huge_page(h))
2078                                 break;
2079                 } else if (!alloc_fresh_huge_page(h,
2080                                          &node_states[N_MEMORY]))
2081                         break;
2082         }
2083         h->max_huge_pages = i;
2084 }
2085
2086 static void __init hugetlb_init_hstates(void)
2087 {
2088         struct hstate *h;
2089
2090         for_each_hstate(h) {
2091                 if (minimum_order > huge_page_order(h))
2092                         minimum_order = huge_page_order(h);
2093
2094                 /* oversize hugepages were init'ed in early boot */
2095                 if (!hstate_is_gigantic(h))
2096                         hugetlb_hstate_alloc_pages(h);
2097         }
2098         VM_BUG_ON(minimum_order == UINT_MAX);
2099 }
2100
2101 static char * __init memfmt(char *buf, unsigned long n)
2102 {
2103         if (n >= (1UL << 30))
2104                 sprintf(buf, "%lu GB", n >> 30);
2105         else if (n >= (1UL << 20))
2106                 sprintf(buf, "%lu MB", n >> 20);
2107         else
2108                 sprintf(buf, "%lu KB", n >> 10);
2109         return buf;
2110 }
2111
2112 static void __init report_hugepages(void)
2113 {
2114         struct hstate *h;
2115
2116         for_each_hstate(h) {
2117                 char buf[32];
2118                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2119                         memfmt(buf, huge_page_size(h)),
2120                         h->free_huge_pages);
2121         }
2122 }
2123
2124 #ifdef CONFIG_HIGHMEM
2125 static void try_to_free_low(struct hstate *h, unsigned long count,
2126                                                 nodemask_t *nodes_allowed)
2127 {
2128         int i;
2129
2130         if (hstate_is_gigantic(h))
2131                 return;
2132
2133         for_each_node_mask(i, *nodes_allowed) {
2134                 struct page *page, *next;
2135                 struct list_head *freel = &h->hugepage_freelists[i];
2136                 list_for_each_entry_safe(page, next, freel, lru) {
2137                         if (count >= h->nr_huge_pages)
2138                                 return;
2139                         if (PageHighMem(page))
2140                                 continue;
2141                         list_del(&page->lru);
2142                         update_and_free_page(h, page);
2143                         h->free_huge_pages--;
2144                         h->free_huge_pages_node[page_to_nid(page)]--;
2145                 }
2146         }
2147 }
2148 #else
2149 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2150                                                 nodemask_t *nodes_allowed)
2151 {
2152 }
2153 #endif
2154
2155 /*
2156  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2157  * balanced by operating on them in a round-robin fashion.
2158  * Returns 1 if an adjustment was made.
2159  */
2160 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2161                                 int delta)
2162 {
2163         int nr_nodes, node;
2164
2165         VM_BUG_ON(delta != -1 && delta != 1);
2166
2167         if (delta < 0) {
2168                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2169                         if (h->surplus_huge_pages_node[node])
2170                                 goto found;
2171                 }
2172         } else {
2173                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2174                         if (h->surplus_huge_pages_node[node] <
2175                                         h->nr_huge_pages_node[node])
2176                                 goto found;
2177                 }
2178         }
2179         return 0;
2180
2181 found:
2182         h->surplus_huge_pages += delta;
2183         h->surplus_huge_pages_node[node] += delta;
2184         return 1;
2185 }
2186
2187 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2188 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2189                                                 nodemask_t *nodes_allowed)
2190 {
2191         unsigned long min_count, ret;
2192
2193         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2194                 return h->max_huge_pages;
2195
2196         /*
2197          * Increase the pool size
2198          * First take pages out of surplus state.  Then make up the
2199          * remaining difference by allocating fresh huge pages.
2200          *
2201          * We might race with __alloc_buddy_huge_page() here and be unable
2202          * to convert a surplus huge page to a normal huge page. That is
2203          * not critical, though, it just means the overall size of the
2204          * pool might be one hugepage larger than it needs to be, but
2205          * within all the constraints specified by the sysctls.
2206          */
2207         spin_lock(&hugetlb_lock);
2208         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2209                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2210                         break;
2211         }
2212
2213         while (count > persistent_huge_pages(h)) {
2214                 /*
2215                  * If this allocation races such that we no longer need the
2216                  * page, free_huge_page will handle it by freeing the page
2217                  * and reducing the surplus.
2218                  */
2219                 spin_unlock(&hugetlb_lock);
2220
2221                 /* yield cpu to avoid soft lockup */
2222                 cond_resched();
2223
2224                 if (hstate_is_gigantic(h))
2225                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2226                 else
2227                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2228                 spin_lock(&hugetlb_lock);
2229                 if (!ret)
2230                         goto out;
2231
2232                 /* Bail for signals. Probably ctrl-c from user */
2233                 if (signal_pending(current))
2234                         goto out;
2235         }
2236
2237         /*
2238          * Decrease the pool size
2239          * First return free pages to the buddy allocator (being careful
2240          * to keep enough around to satisfy reservations).  Then place
2241          * pages into surplus state as needed so the pool will shrink
2242          * to the desired size as pages become free.
2243          *
2244          * By placing pages into the surplus state independent of the
2245          * overcommit value, we are allowing the surplus pool size to
2246          * exceed overcommit. There are few sane options here. Since
2247          * __alloc_buddy_huge_page() is checking the global counter,
2248          * though, we'll note that we're not allowed to exceed surplus
2249          * and won't grow the pool anywhere else. Not until one of the
2250          * sysctls are changed, or the surplus pages go out of use.
2251          */
2252         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2253         min_count = max(count, min_count);
2254         try_to_free_low(h, min_count, nodes_allowed);
2255         while (min_count < persistent_huge_pages(h)) {
2256                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2257                         break;
2258                 cond_resched_lock(&hugetlb_lock);
2259         }
2260         while (count < persistent_huge_pages(h)) {
2261                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2262                         break;
2263         }
2264 out:
2265         ret = persistent_huge_pages(h);
2266         spin_unlock(&hugetlb_lock);
2267         return ret;
2268 }
2269
2270 #define HSTATE_ATTR_RO(_name) \
2271         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2272
2273 #define HSTATE_ATTR(_name) \
2274         static struct kobj_attribute _name##_attr = \
2275                 __ATTR(_name, 0644, _name##_show, _name##_store)
2276
2277 static struct kobject *hugepages_kobj;
2278 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2279
2280 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2281
2282 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2283 {
2284         int i;
2285
2286         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2287                 if (hstate_kobjs[i] == kobj) {
2288                         if (nidp)
2289                                 *nidp = NUMA_NO_NODE;
2290                         return &hstates[i];
2291                 }
2292
2293         return kobj_to_node_hstate(kobj, nidp);
2294 }
2295
2296 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2297                                         struct kobj_attribute *attr, char *buf)
2298 {
2299         struct hstate *h;
2300         unsigned long nr_huge_pages;
2301         int nid;
2302
2303         h = kobj_to_hstate(kobj, &nid);
2304         if (nid == NUMA_NO_NODE)
2305                 nr_huge_pages = h->nr_huge_pages;
2306         else
2307                 nr_huge_pages = h->nr_huge_pages_node[nid];
2308
2309         return sprintf(buf, "%lu\n", nr_huge_pages);
2310 }
2311
2312 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2313                                            struct hstate *h, int nid,
2314                                            unsigned long count, size_t len)
2315 {
2316         int err;
2317         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2318
2319         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2320                 err = -EINVAL;
2321                 goto out;
2322         }
2323
2324         if (nid == NUMA_NO_NODE) {
2325                 /*
2326                  * global hstate attribute
2327                  */
2328                 if (!(obey_mempolicy &&
2329                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2330                         NODEMASK_FREE(nodes_allowed);
2331                         nodes_allowed = &node_states[N_MEMORY];
2332                 }
2333         } else if (nodes_allowed) {
2334                 /*
2335                  * per node hstate attribute: adjust count to global,
2336                  * but restrict alloc/free to the specified node.
2337                  */
2338                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339                 init_nodemask_of_node(nodes_allowed, nid);
2340         } else
2341                 nodes_allowed = &node_states[N_MEMORY];
2342
2343         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2344
2345         if (nodes_allowed != &node_states[N_MEMORY])
2346                 NODEMASK_FREE(nodes_allowed);
2347
2348         return len;
2349 out:
2350         NODEMASK_FREE(nodes_allowed);
2351         return err;
2352 }
2353
2354 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2355                                          struct kobject *kobj, const char *buf,
2356                                          size_t len)
2357 {
2358         struct hstate *h;
2359         unsigned long count;
2360         int nid;
2361         int err;
2362
2363         err = kstrtoul(buf, 10, &count);
2364         if (err)
2365                 return err;
2366
2367         h = kobj_to_hstate(kobj, &nid);
2368         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2369 }
2370
2371 static ssize_t nr_hugepages_show(struct kobject *kobj,
2372                                        struct kobj_attribute *attr, char *buf)
2373 {
2374         return nr_hugepages_show_common(kobj, attr, buf);
2375 }
2376
2377 static ssize_t nr_hugepages_store(struct kobject *kobj,
2378                struct kobj_attribute *attr, const char *buf, size_t len)
2379 {
2380         return nr_hugepages_store_common(false, kobj, buf, len);
2381 }
2382 HSTATE_ATTR(nr_hugepages);
2383
2384 #ifdef CONFIG_NUMA
2385
2386 /*
2387  * hstate attribute for optionally mempolicy-based constraint on persistent
2388  * huge page alloc/free.
2389  */
2390 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2391                                        struct kobj_attribute *attr, char *buf)
2392 {
2393         return nr_hugepages_show_common(kobj, attr, buf);
2394 }
2395
2396 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2397                struct kobj_attribute *attr, const char *buf, size_t len)
2398 {
2399         return nr_hugepages_store_common(true, kobj, buf, len);
2400 }
2401 HSTATE_ATTR(nr_hugepages_mempolicy);
2402 #endif
2403
2404
2405 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2406                                         struct kobj_attribute *attr, char *buf)
2407 {
2408         struct hstate *h = kobj_to_hstate(kobj, NULL);
2409         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2410 }
2411
2412 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2413                 struct kobj_attribute *attr, const char *buf, size_t count)
2414 {
2415         int err;
2416         unsigned long input;
2417         struct hstate *h = kobj_to_hstate(kobj, NULL);
2418
2419         if (hstate_is_gigantic(h))
2420                 return -EINVAL;
2421
2422         err = kstrtoul(buf, 10, &input);
2423         if (err)
2424                 return err;
2425
2426         spin_lock(&hugetlb_lock);
2427         h->nr_overcommit_huge_pages = input;
2428         spin_unlock(&hugetlb_lock);
2429
2430         return count;
2431 }
2432 HSTATE_ATTR(nr_overcommit_hugepages);
2433
2434 static ssize_t free_hugepages_show(struct kobject *kobj,
2435                                         struct kobj_attribute *attr, char *buf)
2436 {
2437         struct hstate *h;
2438         unsigned long free_huge_pages;
2439         int nid;
2440
2441         h = kobj_to_hstate(kobj, &nid);
2442         if (nid == NUMA_NO_NODE)
2443                 free_huge_pages = h->free_huge_pages;
2444         else
2445                 free_huge_pages = h->free_huge_pages_node[nid];
2446
2447         return sprintf(buf, "%lu\n", free_huge_pages);
2448 }
2449 HSTATE_ATTR_RO(free_hugepages);
2450
2451 static ssize_t resv_hugepages_show(struct kobject *kobj,
2452                                         struct kobj_attribute *attr, char *buf)
2453 {
2454         struct hstate *h = kobj_to_hstate(kobj, NULL);
2455         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2456 }
2457 HSTATE_ATTR_RO(resv_hugepages);
2458
2459 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2460                                         struct kobj_attribute *attr, char *buf)
2461 {
2462         struct hstate *h;
2463         unsigned long surplus_huge_pages;
2464         int nid;
2465
2466         h = kobj_to_hstate(kobj, &nid);
2467         if (nid == NUMA_NO_NODE)
2468                 surplus_huge_pages = h->surplus_huge_pages;
2469         else
2470                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2471
2472         return sprintf(buf, "%lu\n", surplus_huge_pages);
2473 }
2474 HSTATE_ATTR_RO(surplus_hugepages);
2475
2476 static struct attribute *hstate_attrs[] = {
2477         &nr_hugepages_attr.attr,
2478         &nr_overcommit_hugepages_attr.attr,
2479         &free_hugepages_attr.attr,
2480         &resv_hugepages_attr.attr,
2481         &surplus_hugepages_attr.attr,
2482 #ifdef CONFIG_NUMA
2483         &nr_hugepages_mempolicy_attr.attr,
2484 #endif
2485         NULL,
2486 };
2487
2488 static struct attribute_group hstate_attr_group = {
2489         .attrs = hstate_attrs,
2490 };
2491
2492 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2493                                     struct kobject **hstate_kobjs,
2494                                     struct attribute_group *hstate_attr_group)
2495 {
2496         int retval;
2497         int hi = hstate_index(h);
2498
2499         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2500         if (!hstate_kobjs[hi])
2501                 return -ENOMEM;
2502
2503         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2504         if (retval)
2505                 kobject_put(hstate_kobjs[hi]);
2506
2507         return retval;
2508 }
2509
2510 static void __init hugetlb_sysfs_init(void)
2511 {
2512         struct hstate *h;
2513         int err;
2514
2515         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2516         if (!hugepages_kobj)
2517                 return;
2518
2519         for_each_hstate(h) {
2520                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2521                                          hstate_kobjs, &hstate_attr_group);
2522                 if (err)
2523                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2524         }
2525 }
2526
2527 #ifdef CONFIG_NUMA
2528
2529 /*
2530  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2531  * with node devices in node_devices[] using a parallel array.  The array
2532  * index of a node device or _hstate == node id.
2533  * This is here to avoid any static dependency of the node device driver, in
2534  * the base kernel, on the hugetlb module.
2535  */
2536 struct node_hstate {
2537         struct kobject          *hugepages_kobj;
2538         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2539 };
2540 static struct node_hstate node_hstates[MAX_NUMNODES];
2541
2542 /*
2543  * A subset of global hstate attributes for node devices
2544  */
2545 static struct attribute *per_node_hstate_attrs[] = {
2546         &nr_hugepages_attr.attr,
2547         &free_hugepages_attr.attr,
2548         &surplus_hugepages_attr.attr,
2549         NULL,
2550 };
2551
2552 static struct attribute_group per_node_hstate_attr_group = {
2553         .attrs = per_node_hstate_attrs,
2554 };
2555
2556 /*
2557  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2558  * Returns node id via non-NULL nidp.
2559  */
2560 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2561 {
2562         int nid;
2563
2564         for (nid = 0; nid < nr_node_ids; nid++) {
2565                 struct node_hstate *nhs = &node_hstates[nid];
2566                 int i;
2567                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2568                         if (nhs->hstate_kobjs[i] == kobj) {
2569                                 if (nidp)
2570                                         *nidp = nid;
2571                                 return &hstates[i];
2572                         }
2573         }
2574
2575         BUG();
2576         return NULL;
2577 }
2578
2579 /*
2580  * Unregister hstate attributes from a single node device.
2581  * No-op if no hstate attributes attached.
2582  */
2583 static void hugetlb_unregister_node(struct node *node)
2584 {
2585         struct hstate *h;
2586         struct node_hstate *nhs = &node_hstates[node->dev.id];
2587
2588         if (!nhs->hugepages_kobj)
2589                 return;         /* no hstate attributes */
2590
2591         for_each_hstate(h) {
2592                 int idx = hstate_index(h);
2593                 if (nhs->hstate_kobjs[idx]) {
2594                         kobject_put(nhs->hstate_kobjs[idx]);
2595                         nhs->hstate_kobjs[idx] = NULL;
2596                 }
2597         }
2598
2599         kobject_put(nhs->hugepages_kobj);
2600         nhs->hugepages_kobj = NULL;
2601 }
2602
2603
2604 /*
2605  * Register hstate attributes for a single node device.
2606  * No-op if attributes already registered.
2607  */
2608 static void hugetlb_register_node(struct node *node)
2609 {
2610         struct hstate *h;
2611         struct node_hstate *nhs = &node_hstates[node->dev.id];
2612         int err;
2613
2614         if (nhs->hugepages_kobj)
2615                 return;         /* already allocated */
2616
2617         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2618                                                         &node->dev.kobj);
2619         if (!nhs->hugepages_kobj)
2620                 return;
2621
2622         for_each_hstate(h) {
2623                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2624                                                 nhs->hstate_kobjs,
2625                                                 &per_node_hstate_attr_group);
2626                 if (err) {
2627                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2628                                 h->name, node->dev.id);
2629                         hugetlb_unregister_node(node);
2630                         break;
2631                 }
2632         }
2633 }
2634
2635 /*
2636  * hugetlb init time:  register hstate attributes for all registered node
2637  * devices of nodes that have memory.  All on-line nodes should have
2638  * registered their associated device by this time.
2639  */
2640 static void __init hugetlb_register_all_nodes(void)
2641 {
2642         int nid;
2643
2644         for_each_node_state(nid, N_MEMORY) {
2645                 struct node *node = node_devices[nid];
2646                 if (node->dev.id == nid)
2647                         hugetlb_register_node(node);
2648         }
2649
2650         /*
2651          * Let the node device driver know we're here so it can
2652          * [un]register hstate attributes on node hotplug.
2653          */
2654         register_hugetlbfs_with_node(hugetlb_register_node,
2655                                      hugetlb_unregister_node);
2656 }
2657 #else   /* !CONFIG_NUMA */
2658
2659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2660 {
2661         BUG();
2662         if (nidp)
2663                 *nidp = -1;
2664         return NULL;
2665 }
2666
2667 static void hugetlb_register_all_nodes(void) { }
2668
2669 #endif
2670
2671 static int __init hugetlb_init(void)
2672 {
2673         int i;
2674
2675         if (!hugepages_supported())
2676                 return 0;
2677
2678         if (!size_to_hstate(default_hstate_size)) {
2679                 default_hstate_size = HPAGE_SIZE;
2680                 if (!size_to_hstate(default_hstate_size))
2681                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2682         }
2683         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2684         if (default_hstate_max_huge_pages) {
2685                 if (!default_hstate.max_huge_pages)
2686                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2687         }
2688
2689         hugetlb_init_hstates();
2690         gather_bootmem_prealloc();
2691         report_hugepages();
2692
2693         hugetlb_sysfs_init();
2694         hugetlb_register_all_nodes();
2695         hugetlb_cgroup_file_init();
2696
2697 #ifdef CONFIG_SMP
2698         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2699 #else
2700         num_fault_mutexes = 1;
2701 #endif
2702         hugetlb_fault_mutex_table =
2703                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2704         BUG_ON(!hugetlb_fault_mutex_table);
2705
2706         for (i = 0; i < num_fault_mutexes; i++)
2707                 mutex_init(&hugetlb_fault_mutex_table[i]);
2708         return 0;
2709 }
2710 subsys_initcall(hugetlb_init);
2711
2712 /* Should be called on processing a hugepagesz=... option */
2713 void __init hugetlb_bad_size(void)
2714 {
2715         parsed_valid_hugepagesz = false;
2716 }
2717
2718 void __init hugetlb_add_hstate(unsigned int order)
2719 {
2720         struct hstate *h;
2721         unsigned long i;
2722
2723         if (size_to_hstate(PAGE_SIZE << order)) {
2724                 pr_warn("hugepagesz= specified twice, ignoring\n");
2725                 return;
2726         }
2727         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2728         BUG_ON(order == 0);
2729         h = &hstates[hugetlb_max_hstate++];
2730         h->order = order;
2731         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2732         h->nr_huge_pages = 0;
2733         h->free_huge_pages = 0;
2734         for (i = 0; i < MAX_NUMNODES; ++i)
2735                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2736         INIT_LIST_HEAD(&h->hugepage_activelist);
2737         h->next_nid_to_alloc = first_memory_node;
2738         h->next_nid_to_free = first_memory_node;
2739         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2740                                         huge_page_size(h)/1024);
2741
2742         parsed_hstate = h;
2743 }
2744
2745 static int __init hugetlb_nrpages_setup(char *s)
2746 {
2747         unsigned long *mhp;
2748         static unsigned long *last_mhp;
2749
2750         if (!parsed_valid_hugepagesz) {
2751                 pr_warn("hugepages = %s preceded by "
2752                         "an unsupported hugepagesz, ignoring\n", s);
2753                 parsed_valid_hugepagesz = true;
2754                 return 1;
2755         }
2756         /*
2757          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2758          * so this hugepages= parameter goes to the "default hstate".
2759          */
2760         else if (!hugetlb_max_hstate)
2761                 mhp = &default_hstate_max_huge_pages;
2762         else
2763                 mhp = &parsed_hstate->max_huge_pages;
2764
2765         if (mhp == last_mhp) {
2766                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2767                 return 1;
2768         }
2769
2770         if (sscanf(s, "%lu", mhp) <= 0)
2771                 *mhp = 0;
2772
2773         /*
2774          * Global state is always initialized later in hugetlb_init.
2775          * But we need to allocate >= MAX_ORDER hstates here early to still
2776          * use the bootmem allocator.
2777          */
2778         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2779                 hugetlb_hstate_alloc_pages(parsed_hstate);
2780
2781         last_mhp = mhp;
2782
2783         return 1;
2784 }
2785 __setup("hugepages=", hugetlb_nrpages_setup);
2786
2787 static int __init hugetlb_default_setup(char *s)
2788 {
2789         default_hstate_size = memparse(s, &s);
2790         return 1;
2791 }
2792 __setup("default_hugepagesz=", hugetlb_default_setup);
2793
2794 static unsigned int cpuset_mems_nr(unsigned int *array)
2795 {
2796         int node;
2797         unsigned int nr = 0;
2798
2799         for_each_node_mask(node, cpuset_current_mems_allowed)
2800                 nr += array[node];
2801
2802         return nr;
2803 }
2804
2805 #ifdef CONFIG_SYSCTL
2806 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2807                          struct ctl_table *table, int write,
2808                          void __user *buffer, size_t *length, loff_t *ppos)
2809 {
2810         struct hstate *h = &default_hstate;
2811         unsigned long tmp = h->max_huge_pages;
2812         int ret;
2813
2814         if (!hugepages_supported())
2815                 return -EOPNOTSUPP;
2816
2817         table->data = &tmp;
2818         table->maxlen = sizeof(unsigned long);
2819         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2820         if (ret)
2821                 goto out;
2822
2823         if (write)
2824                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2825                                                   NUMA_NO_NODE, tmp, *length);
2826 out:
2827         return ret;
2828 }
2829
2830 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2831                           void __user *buffer, size_t *length, loff_t *ppos)
2832 {
2833
2834         return hugetlb_sysctl_handler_common(false, table, write,
2835                                                         buffer, length, ppos);
2836 }
2837
2838 #ifdef CONFIG_NUMA
2839 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2840                           void __user *buffer, size_t *length, loff_t *ppos)
2841 {
2842         return hugetlb_sysctl_handler_common(true, table, write,
2843                                                         buffer, length, ppos);
2844 }
2845 #endif /* CONFIG_NUMA */
2846
2847 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2848                         void __user *buffer,
2849                         size_t *length, loff_t *ppos)
2850 {
2851         struct hstate *h = &default_hstate;
2852         unsigned long tmp;
2853         int ret;
2854
2855         if (!hugepages_supported())
2856                 return -EOPNOTSUPP;
2857
2858         tmp = h->nr_overcommit_huge_pages;
2859
2860         if (write && hstate_is_gigantic(h))
2861                 return -EINVAL;
2862
2863         table->data = &tmp;
2864         table->maxlen = sizeof(unsigned long);
2865         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2866         if (ret)
2867                 goto out;
2868
2869         if (write) {
2870                 spin_lock(&hugetlb_lock);
2871                 h->nr_overcommit_huge_pages = tmp;
2872                 spin_unlock(&hugetlb_lock);
2873         }
2874 out:
2875         return ret;
2876 }
2877
2878 #endif /* CONFIG_SYSCTL */
2879
2880 void hugetlb_report_meminfo(struct seq_file *m)
2881 {
2882         struct hstate *h = &default_hstate;
2883         if (!hugepages_supported())
2884                 return;
2885         seq_printf(m,
2886                         "HugePages_Total:   %5lu\n"
2887                         "HugePages_Free:    %5lu\n"
2888                         "HugePages_Rsvd:    %5lu\n"
2889                         "HugePages_Surp:    %5lu\n"
2890                         "Hugepagesize:   %8lu kB\n",
2891                         h->nr_huge_pages,
2892                         h->free_huge_pages,
2893                         h->resv_huge_pages,
2894                         h->surplus_huge_pages,
2895                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2896 }
2897
2898 int hugetlb_report_node_meminfo(int nid, char *buf)
2899 {
2900         struct hstate *h = &default_hstate;
2901         if (!hugepages_supported())
2902                 return 0;
2903         return sprintf(buf,
2904                 "Node %d HugePages_Total: %5u\n"
2905                 "Node %d HugePages_Free:  %5u\n"
2906                 "Node %d HugePages_Surp:  %5u\n",
2907                 nid, h->nr_huge_pages_node[nid],
2908                 nid, h->free_huge_pages_node[nid],
2909                 nid, h->surplus_huge_pages_node[nid]);
2910 }
2911
2912 void hugetlb_show_meminfo(void)
2913 {
2914         struct hstate *h;
2915         int nid;
2916
2917         if (!hugepages_supported())
2918                 return;
2919
2920         for_each_node_state(nid, N_MEMORY)
2921                 for_each_hstate(h)
2922                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2923                                 nid,
2924                                 h->nr_huge_pages_node[nid],
2925                                 h->free_huge_pages_node[nid],
2926                                 h->surplus_huge_pages_node[nid],
2927                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2928 }
2929
2930 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2931 {
2932         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2933                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2934 }
2935
2936 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2937 unsigned long hugetlb_total_pages(void)
2938 {
2939         struct hstate *h;
2940         unsigned long nr_total_pages = 0;
2941
2942         for_each_hstate(h)
2943                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2944         return nr_total_pages;
2945 }
2946
2947 static int hugetlb_acct_memory(struct hstate *h, long delta)
2948 {
2949         int ret = -ENOMEM;
2950
2951         spin_lock(&hugetlb_lock);
2952         /*
2953          * When cpuset is configured, it breaks the strict hugetlb page
2954          * reservation as the accounting is done on a global variable. Such
2955          * reservation is completely rubbish in the presence of cpuset because
2956          * the reservation is not checked against page availability for the
2957          * current cpuset. Application can still potentially OOM'ed by kernel
2958          * with lack of free htlb page in cpuset that the task is in.
2959          * Attempt to enforce strict accounting with cpuset is almost
2960          * impossible (or too ugly) because cpuset is too fluid that
2961          * task or memory node can be dynamically moved between cpusets.
2962          *
2963          * The change of semantics for shared hugetlb mapping with cpuset is
2964          * undesirable. However, in order to preserve some of the semantics,
2965          * we fall back to check against current free page availability as
2966          * a best attempt and hopefully to minimize the impact of changing
2967          * semantics that cpuset has.
2968          */
2969         if (delta > 0) {
2970                 if (gather_surplus_pages(h, delta) < 0)
2971                         goto out;
2972
2973                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2974                         return_unused_surplus_pages(h, delta);
2975                         goto out;
2976                 }
2977         }
2978
2979         ret = 0;
2980         if (delta < 0)
2981                 return_unused_surplus_pages(h, (unsigned long) -delta);
2982
2983 out:
2984         spin_unlock(&hugetlb_lock);
2985         return ret;
2986 }
2987
2988 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2989 {
2990         struct resv_map *resv = vma_resv_map(vma);
2991
2992         /*
2993          * This new VMA should share its siblings reservation map if present.
2994          * The VMA will only ever have a valid reservation map pointer where
2995          * it is being copied for another still existing VMA.  As that VMA
2996          * has a reference to the reservation map it cannot disappear until
2997          * after this open call completes.  It is therefore safe to take a
2998          * new reference here without additional locking.
2999          */
3000         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3001                 kref_get(&resv->refs);
3002 }
3003
3004 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3005 {
3006         struct hstate *h = hstate_vma(vma);
3007         struct resv_map *resv = vma_resv_map(vma);
3008         struct hugepage_subpool *spool = subpool_vma(vma);
3009         unsigned long reserve, start, end;
3010         long gbl_reserve;
3011
3012         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3013                 return;
3014
3015         start = vma_hugecache_offset(h, vma, vma->vm_start);
3016         end = vma_hugecache_offset(h, vma, vma->vm_end);
3017
3018         reserve = (end - start) - region_count(resv, start, end);
3019
3020         kref_put(&resv->refs, resv_map_release);
3021
3022         if (reserve) {
3023                 /*
3024                  * Decrement reserve counts.  The global reserve count may be
3025                  * adjusted if the subpool has a minimum size.
3026                  */
3027                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3028                 hugetlb_acct_memory(h, -gbl_reserve);
3029         }
3030 }
3031
3032 /*
3033  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3034  * handle_mm_fault() to try to instantiate regular-sized pages in the
3035  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3036  * this far.
3037  */
3038 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3039 {
3040         BUG();
3041         return 0;
3042 }
3043
3044 const struct vm_operations_struct hugetlb_vm_ops = {
3045         .fault = hugetlb_vm_op_fault,
3046         .open = hugetlb_vm_op_open,
3047         .close = hugetlb_vm_op_close,
3048 };
3049
3050 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3051                                 int writable)
3052 {
3053         pte_t entry;
3054
3055         if (writable) {
3056                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3057                                          vma->vm_page_prot)));
3058         } else {
3059                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3060                                            vma->vm_page_prot));
3061         }
3062         entry = pte_mkyoung(entry);
3063         entry = pte_mkhuge(entry);
3064         entry = arch_make_huge_pte(entry, vma, page, writable);
3065
3066         return entry;
3067 }
3068
3069 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3070                                    unsigned long address, pte_t *ptep)
3071 {
3072         pte_t entry;
3073
3074         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3075         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3076                 update_mmu_cache(vma, address, ptep);
3077 }
3078
3079 static int is_hugetlb_entry_migration(pte_t pte)
3080 {
3081         swp_entry_t swp;
3082
3083         if (huge_pte_none(pte) || pte_present(pte))
3084                 return 0;
3085         swp = pte_to_swp_entry(pte);
3086         if (non_swap_entry(swp) && is_migration_entry(swp))
3087                 return 1;
3088         else
3089                 return 0;
3090 }
3091
3092 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3093 {
3094         swp_entry_t swp;
3095
3096         if (huge_pte_none(pte) || pte_present(pte))
3097                 return 0;
3098         swp = pte_to_swp_entry(pte);
3099         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3100                 return 1;
3101         else
3102                 return 0;
3103 }
3104
3105 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3106                             struct vm_area_struct *vma)
3107 {
3108         pte_t *src_pte, *dst_pte, entry;
3109         struct page *ptepage;
3110         unsigned long addr;
3111         int cow;
3112         struct hstate *h = hstate_vma(vma);
3113         unsigned long sz = huge_page_size(h);
3114         unsigned long mmun_start;       /* For mmu_notifiers */
3115         unsigned long mmun_end;         /* For mmu_notifiers */
3116         int ret = 0;
3117
3118         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3119
3120         mmun_start = vma->vm_start;
3121         mmun_end = vma->vm_end;
3122         if (cow)
3123                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3124
3125         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3126                 spinlock_t *src_ptl, *dst_ptl;
3127                 src_pte = huge_pte_offset(src, addr);
3128                 if (!src_pte)
3129                         continue;
3130                 dst_pte = huge_pte_alloc(dst, addr, sz);
3131                 if (!dst_pte) {
3132                         ret = -ENOMEM;
3133                         break;
3134                 }
3135
3136                 /* If the pagetables are shared don't copy or take references */
3137                 if (dst_pte == src_pte)
3138                         continue;
3139
3140                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3141                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3142                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3143                 entry = huge_ptep_get(src_pte);
3144                 if (huge_pte_none(entry)) { /* skip none entry */
3145                         ;
3146                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3147                                     is_hugetlb_entry_hwpoisoned(entry))) {
3148                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3149
3150                         if (is_write_migration_entry(swp_entry) && cow) {
3151                                 /*
3152                                  * COW mappings require pages in both
3153                                  * parent and child to be set to read.
3154                                  */
3155                                 make_migration_entry_read(&swp_entry);
3156                                 entry = swp_entry_to_pte(swp_entry);
3157                                 set_huge_pte_at(src, addr, src_pte, entry);
3158                         }
3159                         set_huge_pte_at(dst, addr, dst_pte, entry);
3160                 } else {
3161                         if (cow) {
3162                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3163                                 mmu_notifier_invalidate_range(src, mmun_start,
3164                                                                    mmun_end);
3165                         }
3166                         entry = huge_ptep_get(src_pte);
3167                         ptepage = pte_page(entry);
3168                         get_page(ptepage);
3169                         page_dup_rmap(ptepage, true);
3170                         set_huge_pte_at(dst, addr, dst_pte, entry);
3171                         hugetlb_count_add(pages_per_huge_page(h), dst);
3172                 }
3173                 spin_unlock(src_ptl);
3174                 spin_unlock(dst_ptl);
3175         }
3176
3177         if (cow)
3178                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3179
3180         return ret;
3181 }
3182
3183 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3184                             unsigned long start, unsigned long end,
3185                             struct page *ref_page)
3186 {
3187         struct mm_struct *mm = vma->vm_mm;
3188         unsigned long address;
3189         pte_t *ptep;
3190         pte_t pte;
3191         spinlock_t *ptl;
3192         struct page *page;
3193         struct hstate *h = hstate_vma(vma);
3194         unsigned long sz = huge_page_size(h);
3195         const unsigned long mmun_start = start; /* For mmu_notifiers */
3196         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3197
3198         WARN_ON(!is_vm_hugetlb_page(vma));
3199         BUG_ON(start & ~huge_page_mask(h));
3200         BUG_ON(end & ~huge_page_mask(h));
3201
3202         tlb_start_vma(tlb, vma);
3203         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3204         address = start;
3205         for (; address < end; address += sz) {
3206                 ptep = huge_pte_offset(mm, address);
3207                 if (!ptep)
3208                         continue;
3209
3210                 ptl = huge_pte_lock(h, mm, ptep);
3211                 if (huge_pmd_unshare(mm, &address, ptep)) {
3212                         spin_unlock(ptl);
3213                         continue;
3214                 }
3215
3216                 pte = huge_ptep_get(ptep);
3217                 if (huge_pte_none(pte)) {
3218                         spin_unlock(ptl);
3219                         continue;
3220                 }
3221
3222                 /*
3223                  * Migrating hugepage or HWPoisoned hugepage is already
3224                  * unmapped and its refcount is dropped, so just clear pte here.
3225                  */
3226                 if (unlikely(!pte_present(pte))) {
3227                         huge_pte_clear(mm, address, ptep);
3228                         spin_unlock(ptl);
3229                         continue;
3230                 }
3231
3232                 page = pte_page(pte);
3233                 /*
3234                  * If a reference page is supplied, it is because a specific
3235                  * page is being unmapped, not a range. Ensure the page we
3236                  * are about to unmap is the actual page of interest.
3237                  */
3238                 if (ref_page) {
3239                         if (page != ref_page) {
3240                                 spin_unlock(ptl);
3241                                 continue;
3242                         }
3243                         /*
3244                          * Mark the VMA as having unmapped its page so that
3245                          * future faults in this VMA will fail rather than
3246                          * looking like data was lost
3247                          */
3248                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3249                 }
3250
3251                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3252                 tlb_remove_tlb_entry(tlb, ptep, address);
3253                 if (huge_pte_dirty(pte))
3254                         set_page_dirty(page);
3255
3256                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3257                 page_remove_rmap(page, true);
3258
3259                 spin_unlock(ptl);
3260                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3261                 /*
3262                  * Bail out after unmapping reference page if supplied
3263                  */
3264                 if (ref_page)
3265                         break;
3266         }
3267         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3268         tlb_end_vma(tlb, vma);
3269 }
3270
3271 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3272                           struct vm_area_struct *vma, unsigned long start,
3273                           unsigned long end, struct page *ref_page)
3274 {
3275         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3276
3277         /*
3278          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3279          * test will fail on a vma being torn down, and not grab a page table
3280          * on its way out.  We're lucky that the flag has such an appropriate
3281          * name, and can in fact be safely cleared here. We could clear it
3282          * before the __unmap_hugepage_range above, but all that's necessary
3283          * is to clear it before releasing the i_mmap_rwsem. This works
3284          * because in the context this is called, the VMA is about to be
3285          * destroyed and the i_mmap_rwsem is held.
3286          */
3287         vma->vm_flags &= ~VM_MAYSHARE;
3288 }
3289
3290 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3291                           unsigned long end, struct page *ref_page)
3292 {
3293         struct mm_struct *mm;
3294         struct mmu_gather tlb;
3295
3296         mm = vma->vm_mm;
3297
3298         tlb_gather_mmu(&tlb, mm, start, end);
3299         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3300         tlb_finish_mmu(&tlb, start, end);
3301 }
3302
3303 /*
3304  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3305  * mappping it owns the reserve page for. The intention is to unmap the page
3306  * from other VMAs and let the children be SIGKILLed if they are faulting the
3307  * same region.
3308  */
3309 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3310                               struct page *page, unsigned long address)
3311 {
3312         struct hstate *h = hstate_vma(vma);
3313         struct vm_area_struct *iter_vma;
3314         struct address_space *mapping;
3315         pgoff_t pgoff;
3316
3317         /*
3318          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3319          * from page cache lookup which is in HPAGE_SIZE units.
3320          */
3321         address = address & huge_page_mask(h);
3322         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3323                         vma->vm_pgoff;
3324         mapping = vma->vm_file->f_mapping;
3325
3326         /*
3327          * Take the mapping lock for the duration of the table walk. As
3328          * this mapping should be shared between all the VMAs,
3329          * __unmap_hugepage_range() is called as the lock is already held
3330          */
3331         i_mmap_lock_write(mapping);
3332         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3333                 /* Do not unmap the current VMA */
3334                 if (iter_vma == vma)
3335                         continue;
3336
3337                 /*
3338                  * Shared VMAs have their own reserves and do not affect
3339                  * MAP_PRIVATE accounting but it is possible that a shared
3340                  * VMA is using the same page so check and skip such VMAs.
3341                  */
3342                 if (iter_vma->vm_flags & VM_MAYSHARE)
3343                         continue;
3344
3345                 /*
3346                  * Unmap the page from other VMAs without their own reserves.
3347                  * They get marked to be SIGKILLed if they fault in these
3348                  * areas. This is because a future no-page fault on this VMA
3349                  * could insert a zeroed page instead of the data existing
3350                  * from the time of fork. This would look like data corruption
3351                  */
3352                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3353                         unmap_hugepage_range(iter_vma, address,
3354                                              address + huge_page_size(h), page);
3355         }
3356         i_mmap_unlock_write(mapping);
3357 }
3358
3359 /*
3360  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3361  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3362  * cannot race with other handlers or page migration.
3363  * Keep the pte_same checks anyway to make transition from the mutex easier.
3364  */
3365 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3366                         unsigned long address, pte_t *ptep, pte_t pte,
3367                         struct page *pagecache_page, spinlock_t *ptl)
3368 {
3369         struct hstate *h = hstate_vma(vma);
3370         struct page *old_page, *new_page;
3371         int ret = 0, outside_reserve = 0;
3372         unsigned long mmun_start;       /* For mmu_notifiers */
3373         unsigned long mmun_end;         /* For mmu_notifiers */
3374
3375         old_page = pte_page(pte);
3376
3377 retry_avoidcopy:
3378         /* If no-one else is actually using this page, avoid the copy
3379          * and just make the page writable */
3380         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3381                 page_move_anon_rmap(old_page, vma);
3382                 set_huge_ptep_writable(vma, address, ptep);
3383                 return 0;
3384         }
3385
3386         /*
3387          * If the process that created a MAP_PRIVATE mapping is about to
3388          * perform a COW due to a shared page count, attempt to satisfy
3389          * the allocation without using the existing reserves. The pagecache
3390          * page is used to determine if the reserve at this address was
3391          * consumed or not. If reserves were used, a partial faulted mapping
3392          * at the time of fork() could consume its reserves on COW instead
3393          * of the full address range.
3394          */
3395         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3396                         old_page != pagecache_page)
3397                 outside_reserve = 1;
3398
3399         get_page(old_page);
3400
3401         /*
3402          * Drop page table lock as buddy allocator may be called. It will
3403          * be acquired again before returning to the caller, as expected.
3404          */
3405         spin_unlock(ptl);
3406         new_page = alloc_huge_page(vma, address, outside_reserve);
3407
3408         if (IS_ERR(new_page)) {
3409                 /*
3410                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3411                  * it is due to references held by a child and an insufficient
3412                  * huge page pool. To guarantee the original mappers
3413                  * reliability, unmap the page from child processes. The child
3414                  * may get SIGKILLed if it later faults.
3415                  */
3416                 if (outside_reserve) {
3417                         put_page(old_page);
3418                         BUG_ON(huge_pte_none(pte));
3419                         unmap_ref_private(mm, vma, old_page, address);
3420                         BUG_ON(huge_pte_none(pte));
3421                         spin_lock(ptl);
3422                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3423                         if (likely(ptep &&
3424                                    pte_same(huge_ptep_get(ptep), pte)))
3425                                 goto retry_avoidcopy;
3426                         /*
3427                          * race occurs while re-acquiring page table
3428                          * lock, and our job is done.
3429                          */
3430                         return 0;
3431                 }
3432
3433                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3434                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3435                 goto out_release_old;
3436         }
3437
3438         /*
3439          * When the original hugepage is shared one, it does not have
3440          * anon_vma prepared.
3441          */
3442         if (unlikely(anon_vma_prepare(vma))) {
3443                 ret = VM_FAULT_OOM;
3444                 goto out_release_all;
3445         }
3446
3447         copy_user_huge_page(new_page, old_page, address, vma,
3448                             pages_per_huge_page(h));
3449         __SetPageUptodate(new_page);
3450         set_page_huge_active(new_page);
3451
3452         mmun_start = address & huge_page_mask(h);
3453         mmun_end = mmun_start + huge_page_size(h);
3454         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3455
3456         /*
3457          * Retake the page table lock to check for racing updates
3458          * before the page tables are altered
3459          */
3460         spin_lock(ptl);
3461         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3462         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3463                 ClearPagePrivate(new_page);
3464
3465                 /* Break COW */
3466                 huge_ptep_clear_flush(vma, address, ptep);
3467                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3468                 set_huge_pte_at(mm, address, ptep,
3469                                 make_huge_pte(vma, new_page, 1));
3470                 page_remove_rmap(old_page, true);
3471                 hugepage_add_new_anon_rmap(new_page, vma, address);
3472                 /* Make the old page be freed below */
3473                 new_page = old_page;
3474         }
3475         spin_unlock(ptl);
3476         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3477 out_release_all:
3478         put_page(new_page);
3479 out_release_old:
3480         put_page(old_page);
3481
3482         spin_lock(ptl); /* Caller expects lock to be held */
3483         return ret;
3484 }
3485
3486 /* Return the pagecache page at a given address within a VMA */
3487 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3488                         struct vm_area_struct *vma, unsigned long address)
3489 {
3490         struct address_space *mapping;
3491         pgoff_t idx;
3492
3493         mapping = vma->vm_file->f_mapping;
3494         idx = vma_hugecache_offset(h, vma, address);
3495
3496         return find_lock_page(mapping, idx);
3497 }
3498
3499 /*
3500  * Return whether there is a pagecache page to back given address within VMA.
3501  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3502  */
3503 static bool hugetlbfs_pagecache_present(struct hstate *h,
3504                         struct vm_area_struct *vma, unsigned long address)
3505 {
3506         struct address_space *mapping;
3507         pgoff_t idx;
3508         struct page *page;
3509
3510         mapping = vma->vm_file->f_mapping;
3511         idx = vma_hugecache_offset(h, vma, address);
3512
3513         page = find_get_page(mapping, idx);
3514         if (page)
3515                 put_page(page);
3516         return page != NULL;
3517 }
3518
3519 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3520                            pgoff_t idx)
3521 {
3522         struct inode *inode = mapping->host;
3523         struct hstate *h = hstate_inode(inode);
3524         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3525
3526         if (err)
3527                 return err;
3528         ClearPagePrivate(page);
3529
3530         spin_lock(&inode->i_lock);
3531         inode->i_blocks += blocks_per_huge_page(h);
3532         spin_unlock(&inode->i_lock);
3533         return 0;
3534 }
3535
3536 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3537                            struct address_space *mapping, pgoff_t idx,
3538                            unsigned long address, pte_t *ptep, unsigned int flags)
3539 {
3540         struct hstate *h = hstate_vma(vma);
3541         int ret = VM_FAULT_SIGBUS;
3542         int anon_rmap = 0;
3543         unsigned long size;
3544         struct page *page;
3545         pte_t new_pte;
3546         spinlock_t *ptl;
3547
3548         /*
3549          * Currently, we are forced to kill the process in the event the
3550          * original mapper has unmapped pages from the child due to a failed
3551          * COW. Warn that such a situation has occurred as it may not be obvious
3552          */
3553         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3554                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3555                            current->pid);
3556                 return ret;
3557         }
3558
3559         /*
3560          * Use page lock to guard against racing truncation
3561          * before we get page_table_lock.
3562          */
3563 retry:
3564         page = find_lock_page(mapping, idx);
3565         if (!page) {
3566                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3567                 if (idx >= size)
3568                         goto out;
3569                 page = alloc_huge_page(vma, address, 0);
3570                 if (IS_ERR(page)) {
3571                         ret = PTR_ERR(page);
3572                         if (ret == -ENOMEM)
3573                                 ret = VM_FAULT_OOM;
3574                         else
3575                                 ret = VM_FAULT_SIGBUS;
3576                         goto out;
3577                 }
3578                 clear_huge_page(page, address, pages_per_huge_page(h));
3579                 __SetPageUptodate(page);
3580                 set_page_huge_active(page);
3581
3582                 if (vma->vm_flags & VM_MAYSHARE) {
3583                         int err = huge_add_to_page_cache(page, mapping, idx);
3584                         if (err) {
3585                                 put_page(page);
3586                                 if (err == -EEXIST)
3587                                         goto retry;
3588                                 goto out;
3589                         }
3590                 } else {
3591                         lock_page(page);
3592                         if (unlikely(anon_vma_prepare(vma))) {
3593                                 ret = VM_FAULT_OOM;
3594                                 goto backout_unlocked;
3595                         }
3596                         anon_rmap = 1;
3597                 }
3598         } else {
3599                 /*
3600                  * If memory error occurs between mmap() and fault, some process
3601                  * don't have hwpoisoned swap entry for errored virtual address.
3602                  * So we need to block hugepage fault by PG_hwpoison bit check.
3603                  */
3604                 if (unlikely(PageHWPoison(page))) {
3605                         ret = VM_FAULT_HWPOISON |
3606                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3607                         goto backout_unlocked;
3608                 }
3609         }
3610
3611         /*
3612          * If we are going to COW a private mapping later, we examine the
3613          * pending reservations for this page now. This will ensure that
3614          * any allocations necessary to record that reservation occur outside
3615          * the spinlock.
3616          */
3617         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3618                 if (vma_needs_reservation(h, vma, address) < 0) {
3619                         ret = VM_FAULT_OOM;
3620                         goto backout_unlocked;
3621                 }
3622                 /* Just decrements count, does not deallocate */
3623                 vma_end_reservation(h, vma, address);
3624         }
3625
3626         ptl = huge_pte_lockptr(h, mm, ptep);
3627         spin_lock(ptl);
3628         size = i_size_read(mapping->host) >> huge_page_shift(h);
3629         if (idx >= size)
3630                 goto backout;
3631
3632         ret = 0;
3633         if (!huge_pte_none(huge_ptep_get(ptep)))
3634                 goto backout;
3635
3636         if (anon_rmap) {
3637                 ClearPagePrivate(page);
3638                 hugepage_add_new_anon_rmap(page, vma, address);
3639         } else
3640                 page_dup_rmap(page, true);
3641         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3642                                 && (vma->vm_flags & VM_SHARED)));
3643         set_huge_pte_at(mm, address, ptep, new_pte);
3644
3645         hugetlb_count_add(pages_per_huge_page(h), mm);
3646         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3647                 /* Optimization, do the COW without a second fault */
3648                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3649         }
3650
3651         spin_unlock(ptl);
3652         unlock_page(page);
3653 out:
3654         return ret;
3655
3656 backout:
3657         spin_unlock(ptl);
3658 backout_unlocked:
3659         unlock_page(page);
3660         put_page(page);
3661         goto out;
3662 }
3663
3664 #ifdef CONFIG_SMP
3665 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3666                             struct vm_area_struct *vma,
3667                             struct address_space *mapping,
3668                             pgoff_t idx, unsigned long address)
3669 {
3670         unsigned long key[2];
3671         u32 hash;
3672
3673         if (vma->vm_flags & VM_SHARED) {
3674                 key[0] = (unsigned long) mapping;
3675                 key[1] = idx;
3676         } else {
3677                 key[0] = (unsigned long) mm;
3678                 key[1] = address >> huge_page_shift(h);
3679         }
3680
3681         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3682
3683         return hash & (num_fault_mutexes - 1);
3684 }
3685 #else
3686 /*
3687  * For uniprocesor systems we always use a single mutex, so just
3688  * return 0 and avoid the hashing overhead.
3689  */
3690 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3691                             struct vm_area_struct *vma,
3692                             struct address_space *mapping,
3693                             pgoff_t idx, unsigned long address)
3694 {
3695         return 0;
3696 }
3697 #endif
3698
3699 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3700                         unsigned long address, unsigned int flags)
3701 {
3702         pte_t *ptep, entry;
3703         spinlock_t *ptl;
3704         int ret;
3705         u32 hash;
3706         pgoff_t idx;
3707         struct page *page = NULL;
3708         struct page *pagecache_page = NULL;
3709         struct hstate *h = hstate_vma(vma);
3710         struct address_space *mapping;
3711         int need_wait_lock = 0;
3712
3713         address &= huge_page_mask(h);
3714
3715         ptep = huge_pte_offset(mm, address);
3716         if (ptep) {
3717                 entry = huge_ptep_get(ptep);
3718                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3719                         migration_entry_wait_huge(vma, mm, ptep);
3720                         return 0;
3721                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3722                         return VM_FAULT_HWPOISON_LARGE |
3723                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3724         } else {
3725                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3726                 if (!ptep)
3727                         return VM_FAULT_OOM;
3728         }
3729
3730         mapping = vma->vm_file->f_mapping;
3731         idx = vma_hugecache_offset(h, vma, address);
3732
3733         /*
3734          * Serialize hugepage allocation and instantiation, so that we don't
3735          * get spurious allocation failures if two CPUs race to instantiate
3736          * the same page in the page cache.
3737          */
3738         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3739         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3740
3741         entry = huge_ptep_get(ptep);
3742         if (huge_pte_none(entry)) {
3743                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3744                 goto out_mutex;
3745         }
3746
3747         ret = 0;
3748
3749         /*
3750          * entry could be a migration/hwpoison entry at this point, so this
3751          * check prevents the kernel from going below assuming that we have
3752          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3753          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3754          * handle it.
3755          */
3756         if (!pte_present(entry))
3757                 goto out_mutex;
3758
3759         /*
3760          * If we are going to COW the mapping later, we examine the pending
3761          * reservations for this page now. This will ensure that any
3762          * allocations necessary to record that reservation occur outside the
3763          * spinlock. For private mappings, we also lookup the pagecache
3764          * page now as it is used to determine if a reservation has been
3765          * consumed.
3766          */
3767         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3768                 if (vma_needs_reservation(h, vma, address) < 0) {
3769                         ret = VM_FAULT_OOM;
3770                         goto out_mutex;
3771                 }
3772                 /* Just decrements count, does not deallocate */
3773                 vma_end_reservation(h, vma, address);
3774
3775                 if (!(vma->vm_flags & VM_MAYSHARE))
3776                         pagecache_page = hugetlbfs_pagecache_page(h,
3777                                                                 vma, address);
3778         }
3779
3780         ptl = huge_pte_lock(h, mm, ptep);
3781
3782         /* Check for a racing update before calling hugetlb_cow */
3783         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3784                 goto out_ptl;
3785
3786         /*
3787          * hugetlb_cow() requires page locks of pte_page(entry) and
3788          * pagecache_page, so here we need take the former one
3789          * when page != pagecache_page or !pagecache_page.
3790          */
3791         page = pte_page(entry);
3792         if (page != pagecache_page)
3793                 if (!trylock_page(page)) {
3794                         need_wait_lock = 1;
3795                         goto out_ptl;
3796                 }
3797
3798         get_page(page);
3799
3800         if (flags & FAULT_FLAG_WRITE) {
3801                 if (!huge_pte_write(entry)) {
3802                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3803                                         pagecache_page, ptl);
3804                         goto out_put_page;
3805                 }
3806                 entry = huge_pte_mkdirty(entry);
3807         }
3808         entry = pte_mkyoung(entry);
3809         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3810                                                 flags & FAULT_FLAG_WRITE))
3811                 update_mmu_cache(vma, address, ptep);
3812 out_put_page:
3813         if (page != pagecache_page)
3814                 unlock_page(page);
3815         put_page(page);
3816 out_ptl:
3817         spin_unlock(ptl);
3818
3819         if (pagecache_page) {
3820                 unlock_page(pagecache_page);
3821                 put_page(pagecache_page);
3822         }
3823 out_mutex:
3824         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3825         /*
3826          * Generally it's safe to hold refcount during waiting page lock. But
3827          * here we just wait to defer the next page fault to avoid busy loop and
3828          * the page is not used after unlocked before returning from the current
3829          * page fault. So we are safe from accessing freed page, even if we wait
3830          * here without taking refcount.
3831          */
3832         if (need_wait_lock)
3833                 wait_on_page_locked(page);
3834         return ret;
3835 }
3836
3837 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3838                          struct page **pages, struct vm_area_struct **vmas,
3839                          unsigned long *position, unsigned long *nr_pages,
3840                          long i, unsigned int flags)
3841 {
3842         unsigned long pfn_offset;
3843         unsigned long vaddr = *position;
3844         unsigned long remainder = *nr_pages;
3845         struct hstate *h = hstate_vma(vma);
3846
3847         while (vaddr < vma->vm_end && remainder) {
3848                 pte_t *pte;
3849                 spinlock_t *ptl = NULL;
3850                 int absent;
3851                 struct page *page;
3852
3853                 /*
3854                  * If we have a pending SIGKILL, don't keep faulting pages and
3855                  * potentially allocating memory.
3856                  */
3857                 if (unlikely(fatal_signal_pending(current))) {
3858                         remainder = 0;
3859                         break;
3860                 }
3861
3862                 /*
3863                  * Some archs (sparc64, sh*) have multiple pte_ts to
3864                  * each hugepage.  We have to make sure we get the
3865                  * first, for the page indexing below to work.
3866                  *
3867                  * Note that page table lock is not held when pte is null.
3868                  */
3869                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3870                 if (pte)
3871                         ptl = huge_pte_lock(h, mm, pte);
3872                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3873
3874                 /*
3875                  * When coredumping, it suits get_dump_page if we just return
3876                  * an error where there's an empty slot with no huge pagecache
3877                  * to back it.  This way, we avoid allocating a hugepage, and
3878                  * the sparse dumpfile avoids allocating disk blocks, but its
3879                  * huge holes still show up with zeroes where they need to be.
3880                  */
3881                 if (absent && (flags & FOLL_DUMP) &&
3882                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3883                         if (pte)
3884                                 spin_unlock(ptl);
3885                         remainder = 0;
3886                         break;
3887                 }
3888
3889                 /*
3890                  * We need call hugetlb_fault for both hugepages under migration
3891                  * (in which case hugetlb_fault waits for the migration,) and
3892                  * hwpoisoned hugepages (in which case we need to prevent the
3893                  * caller from accessing to them.) In order to do this, we use
3894                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3895                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3896                  * both cases, and because we can't follow correct pages
3897                  * directly from any kind of swap entries.
3898                  */
3899                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3900                     ((flags & FOLL_WRITE) &&
3901                       !huge_pte_write(huge_ptep_get(pte)))) {
3902                         int ret;
3903
3904                         if (pte)
3905                                 spin_unlock(ptl);
3906                         ret = hugetlb_fault(mm, vma, vaddr,
3907                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3908                         if (!(ret & VM_FAULT_ERROR))
3909                                 continue;
3910
3911                         remainder = 0;
3912                         break;
3913                 }
3914
3915                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3916                 page = pte_page(huge_ptep_get(pte));
3917 same_page:
3918                 if (pages) {
3919                         pages[i] = mem_map_offset(page, pfn_offset);
3920                         get_page(pages[i]);
3921                 }
3922
3923                 if (vmas)
3924                         vmas[i] = vma;
3925
3926                 vaddr += PAGE_SIZE;
3927                 ++pfn_offset;
3928                 --remainder;
3929                 ++i;
3930                 if (vaddr < vma->vm_end && remainder &&
3931                                 pfn_offset < pages_per_huge_page(h)) {
3932                         /*
3933                          * We use pfn_offset to avoid touching the pageframes
3934                          * of this compound page.
3935                          */
3936                         goto same_page;
3937                 }
3938                 spin_unlock(ptl);
3939         }
3940         *nr_pages = remainder;
3941         *position = vaddr;
3942
3943         return i ? i : -EFAULT;
3944 }
3945
3946 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3947 /*
3948  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3949  * implement this.
3950  */
3951 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3952 #endif
3953
3954 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3955                 unsigned long address, unsigned long end, pgprot_t newprot)
3956 {
3957         struct mm_struct *mm = vma->vm_mm;
3958         unsigned long start = address;
3959         pte_t *ptep;
3960         pte_t pte;
3961         struct hstate *h = hstate_vma(vma);
3962         unsigned long pages = 0;
3963
3964         BUG_ON(address >= end);
3965         flush_cache_range(vma, address, end);
3966
3967         mmu_notifier_invalidate_range_start(mm, start, end);
3968         i_mmap_lock_write(vma->vm_file->f_mapping);
3969         for (; address < end; address += huge_page_size(h)) {
3970                 spinlock_t *ptl;
3971                 ptep = huge_pte_offset(mm, address);
3972                 if (!ptep)
3973                         continue;
3974                 ptl = huge_pte_lock(h, mm, ptep);
3975                 if (huge_pmd_unshare(mm, &address, ptep)) {
3976                         pages++;
3977                         spin_unlock(ptl);
3978                         continue;
3979                 }
3980                 pte = huge_ptep_get(ptep);
3981                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3982                         spin_unlock(ptl);
3983                         continue;
3984                 }
3985                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3986                         swp_entry_t entry = pte_to_swp_entry(pte);
3987
3988                         if (is_write_migration_entry(entry)) {
3989                                 pte_t newpte;
3990
3991                                 make_migration_entry_read(&entry);
3992                                 newpte = swp_entry_to_pte(entry);
3993                                 set_huge_pte_at(mm, address, ptep, newpte);
3994                                 pages++;
3995                         }
3996                         spin_unlock(ptl);
3997                         continue;
3998                 }
3999                 if (!huge_pte_none(pte)) {
4000                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4001                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4002                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4003                         set_huge_pte_at(mm, address, ptep, pte);
4004                         pages++;
4005                 }
4006                 spin_unlock(ptl);
4007         }
4008         /*
4009          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4010          * may have cleared our pud entry and done put_page on the page table:
4011          * once we release i_mmap_rwsem, another task can do the final put_page
4012          * and that page table be reused and filled with junk.
4013          */
4014         flush_hugetlb_tlb_range(vma, start, end);
4015         mmu_notifier_invalidate_range(mm, start, end);
4016         i_mmap_unlock_write(vma->vm_file->f_mapping);
4017         mmu_notifier_invalidate_range_end(mm, start, end);
4018
4019         return pages << h->order;
4020 }
4021
4022 int hugetlb_reserve_pages(struct inode *inode,
4023                                         long from, long to,
4024                                         struct vm_area_struct *vma,
4025                                         vm_flags_t vm_flags)
4026 {
4027         long ret, chg;
4028         struct hstate *h = hstate_inode(inode);
4029         struct hugepage_subpool *spool = subpool_inode(inode);
4030         struct resv_map *resv_map;
4031         long gbl_reserve;
4032
4033         /*
4034          * Only apply hugepage reservation if asked. At fault time, an
4035          * attempt will be made for VM_NORESERVE to allocate a page
4036          * without using reserves
4037          */
4038         if (vm_flags & VM_NORESERVE)
4039                 return 0;
4040
4041         /*
4042          * Shared mappings base their reservation on the number of pages that
4043          * are already allocated on behalf of the file. Private mappings need
4044          * to reserve the full area even if read-only as mprotect() may be
4045          * called to make the mapping read-write. Assume !vma is a shm mapping
4046          */
4047         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4048                 resv_map = inode_resv_map(inode);
4049
4050                 chg = region_chg(resv_map, from, to);
4051
4052         } else {
4053                 resv_map = resv_map_alloc();
4054                 if (!resv_map)
4055                         return -ENOMEM;
4056
4057                 chg = to - from;
4058
4059                 set_vma_resv_map(vma, resv_map);
4060                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4061         }
4062
4063         if (chg < 0) {
4064                 ret = chg;
4065                 goto out_err;
4066         }
4067
4068         /*
4069          * There must be enough pages in the subpool for the mapping. If
4070          * the subpool has a minimum size, there may be some global
4071          * reservations already in place (gbl_reserve).
4072          */
4073         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4074         if (gbl_reserve < 0) {
4075                 ret = -ENOSPC;
4076                 goto out_err;
4077         }
4078
4079         /*
4080          * Check enough hugepages are available for the reservation.
4081          * Hand the pages back to the subpool if there are not
4082          */
4083         ret = hugetlb_acct_memory(h, gbl_reserve);
4084         if (ret < 0) {
4085                 /* put back original number of pages, chg */
4086                 (void)hugepage_subpool_put_pages(spool, chg);
4087                 goto out_err;
4088         }
4089
4090         /*
4091          * Account for the reservations made. Shared mappings record regions
4092          * that have reservations as they are shared by multiple VMAs.
4093          * When the last VMA disappears, the region map says how much
4094          * the reservation was and the page cache tells how much of
4095          * the reservation was consumed. Private mappings are per-VMA and
4096          * only the consumed reservations are tracked. When the VMA
4097          * disappears, the original reservation is the VMA size and the
4098          * consumed reservations are stored in the map. Hence, nothing
4099          * else has to be done for private mappings here
4100          */
4101         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4102                 long add = region_add(resv_map, from, to);
4103
4104                 if (unlikely(chg > add)) {
4105                         /*
4106                          * pages in this range were added to the reserve
4107                          * map between region_chg and region_add.  This
4108                          * indicates a race with alloc_huge_page.  Adjust
4109                          * the subpool and reserve counts modified above
4110                          * based on the difference.
4111                          */
4112                         long rsv_adjust;
4113
4114                         rsv_adjust = hugepage_subpool_put_pages(spool,
4115                                                                 chg - add);
4116                         hugetlb_acct_memory(h, -rsv_adjust);
4117                 }
4118         }
4119         return 0;
4120 out_err:
4121         if (!vma || vma->vm_flags & VM_MAYSHARE)
4122                 region_abort(resv_map, from, to);
4123         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4124                 kref_put(&resv_map->refs, resv_map_release);
4125         return ret;
4126 }
4127
4128 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4129                                                                 long freed)
4130 {
4131         struct hstate *h = hstate_inode(inode);
4132         struct resv_map *resv_map = inode_resv_map(inode);
4133         long chg = 0;
4134         struct hugepage_subpool *spool = subpool_inode(inode);
4135         long gbl_reserve;
4136
4137         if (resv_map) {
4138                 chg = region_del(resv_map, start, end);
4139                 /*
4140                  * region_del() can fail in the rare case where a region
4141                  * must be split and another region descriptor can not be
4142                  * allocated.  If end == LONG_MAX, it will not fail.
4143                  */
4144                 if (chg < 0)
4145                         return chg;
4146         }
4147
4148         spin_lock(&inode->i_lock);
4149         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4150         spin_unlock(&inode->i_lock);
4151
4152         /*
4153          * If the subpool has a minimum size, the number of global
4154          * reservations to be released may be adjusted.
4155          */
4156         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4157         hugetlb_acct_memory(h, -gbl_reserve);
4158
4159         return 0;
4160 }
4161
4162 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4163 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4164                                 struct vm_area_struct *vma,
4165                                 unsigned long addr, pgoff_t idx)
4166 {
4167         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4168                                 svma->vm_start;
4169         unsigned long sbase = saddr & PUD_MASK;
4170         unsigned long s_end = sbase + PUD_SIZE;
4171
4172         /* Allow segments to share if only one is marked locked */
4173         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4174         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4175
4176         /*
4177          * match the virtual addresses, permission and the alignment of the
4178          * page table page.
4179          */
4180         if (pmd_index(addr) != pmd_index(saddr) ||
4181             vm_flags != svm_flags ||
4182             sbase < svma->vm_start || svma->vm_end < s_end)
4183                 return 0;
4184
4185         return saddr;
4186 }
4187
4188 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4189 {
4190         unsigned long base = addr & PUD_MASK;
4191         unsigned long end = base + PUD_SIZE;
4192
4193         /*
4194          * check on proper vm_flags and page table alignment
4195          */
4196         if (vma->vm_flags & VM_MAYSHARE &&
4197             vma->vm_start <= base && end <= vma->vm_end)
4198                 return true;
4199         return false;
4200 }
4201
4202 /*
4203  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4204  * and returns the corresponding pte. While this is not necessary for the
4205  * !shared pmd case because we can allocate the pmd later as well, it makes the
4206  * code much cleaner. pmd allocation is essential for the shared case because
4207  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4208  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4209  * bad pmd for sharing.
4210  */
4211 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4212 {
4213         struct vm_area_struct *vma = find_vma(mm, addr);
4214         struct address_space *mapping = vma->vm_file->f_mapping;
4215         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4216                         vma->vm_pgoff;
4217         struct vm_area_struct *svma;
4218         unsigned long saddr;
4219         pte_t *spte = NULL;
4220         pte_t *pte;
4221         spinlock_t *ptl;
4222
4223         if (!vma_shareable(vma, addr))
4224                 return (pte_t *)pmd_alloc(mm, pud, addr);
4225
4226         i_mmap_lock_write(mapping);
4227         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4228                 if (svma == vma)
4229                         continue;
4230
4231                 saddr = page_table_shareable(svma, vma, addr, idx);
4232                 if (saddr) {
4233                         spte = huge_pte_offset(svma->vm_mm, saddr);
4234                         if (spte) {
4235                                 get_page(virt_to_page(spte));
4236                                 break;
4237                         }
4238                 }
4239         }
4240
4241         if (!spte)
4242                 goto out;
4243
4244         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4245         spin_lock(ptl);
4246         if (pud_none(*pud)) {
4247                 pud_populate(mm, pud,
4248                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4249                 mm_inc_nr_pmds(mm);
4250         } else {
4251                 put_page(virt_to_page(spte));
4252         }
4253         spin_unlock(ptl);
4254 out:
4255         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4256         i_mmap_unlock_write(mapping);
4257         return pte;
4258 }
4259
4260 /*
4261  * unmap huge page backed by shared pte.
4262  *
4263  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4264  * indicated by page_count > 1, unmap is achieved by clearing pud and
4265  * decrementing the ref count. If count == 1, the pte page is not shared.
4266  *
4267  * called with page table lock held.
4268  *
4269  * returns: 1 successfully unmapped a shared pte page
4270  *          0 the underlying pte page is not shared, or it is the last user
4271  */
4272 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4273 {
4274         pgd_t *pgd = pgd_offset(mm, *addr);
4275         pud_t *pud = pud_offset(pgd, *addr);
4276
4277         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4278         if (page_count(virt_to_page(ptep)) == 1)
4279                 return 0;
4280
4281         pud_clear(pud);
4282         put_page(virt_to_page(ptep));
4283         mm_dec_nr_pmds(mm);
4284         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4285         return 1;
4286 }
4287 #define want_pmd_share()        (1)
4288 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4289 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4290 {
4291         return NULL;
4292 }
4293
4294 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4295 {
4296         return 0;
4297 }
4298 #define want_pmd_share()        (0)
4299 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4300
4301 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4302 pte_t *huge_pte_alloc(struct mm_struct *mm,
4303                         unsigned long addr, unsigned long sz)
4304 {
4305         pgd_t *pgd;
4306         pud_t *pud;
4307         pte_t *pte = NULL;
4308
4309         pgd = pgd_offset(mm, addr);
4310         pud = pud_alloc(mm, pgd, addr);
4311         if (pud) {
4312                 if (sz == PUD_SIZE) {
4313                         pte = (pte_t *)pud;
4314                 } else {
4315                         BUG_ON(sz != PMD_SIZE);
4316                         if (want_pmd_share() && pud_none(*pud))
4317                                 pte = huge_pmd_share(mm, addr, pud);
4318                         else
4319                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4320                 }
4321         }
4322         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4323
4324         return pte;
4325 }
4326
4327 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4328 {
4329         pgd_t *pgd;
4330         pud_t *pud;
4331         pmd_t *pmd = NULL;
4332
4333         pgd = pgd_offset(mm, addr);
4334         if (pgd_present(*pgd)) {
4335                 pud = pud_offset(pgd, addr);
4336                 if (pud_present(*pud)) {
4337                         if (pud_huge(*pud))
4338                                 return (pte_t *)pud;
4339                         pmd = pmd_offset(pud, addr);
4340                 }
4341         }
4342         return (pte_t *) pmd;
4343 }
4344
4345 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4346
4347 /*
4348  * These functions are overwritable if your architecture needs its own
4349  * behavior.
4350  */
4351 struct page * __weak
4352 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4353                               int write)
4354 {
4355         return ERR_PTR(-EINVAL);
4356 }
4357
4358 struct page * __weak
4359 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4360                 pmd_t *pmd, int flags)
4361 {
4362         struct page *page = NULL;
4363         spinlock_t *ptl;
4364 retry:
4365         ptl = pmd_lockptr(mm, pmd);
4366         spin_lock(ptl);
4367         /*
4368          * make sure that the address range covered by this pmd is not
4369          * unmapped from other threads.
4370          */
4371         if (!pmd_huge(*pmd))
4372                 goto out;
4373         if (pmd_present(*pmd)) {
4374                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4375                 if (flags & FOLL_GET)
4376                         get_page(page);
4377         } else {
4378                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4379                         spin_unlock(ptl);
4380                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4381                         goto retry;
4382                 }
4383                 /*
4384                  * hwpoisoned entry is treated as no_page_table in
4385                  * follow_page_mask().
4386                  */
4387         }
4388 out:
4389         spin_unlock(ptl);
4390         return page;
4391 }
4392
4393 struct page * __weak
4394 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4395                 pud_t *pud, int flags)
4396 {
4397         if (flags & FOLL_GET)
4398                 return NULL;
4399
4400         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4401 }
4402
4403 #ifdef CONFIG_MEMORY_FAILURE
4404
4405 /*
4406  * This function is called from memory failure code.
4407  */
4408 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4409 {
4410         struct hstate *h = page_hstate(hpage);
4411         int nid = page_to_nid(hpage);
4412         int ret = -EBUSY;
4413
4414         spin_lock(&hugetlb_lock);
4415         /*
4416          * Just checking !page_huge_active is not enough, because that could be
4417          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4418          */
4419         if (!page_huge_active(hpage) && !page_count(hpage)) {
4420                 /*
4421                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4422                  * but dangling hpage->lru can trigger list-debug warnings
4423                  * (this happens when we call unpoison_memory() on it),
4424                  * so let it point to itself with list_del_init().
4425                  */
4426                 list_del_init(&hpage->lru);
4427                 set_page_refcounted(hpage);
4428                 h->free_huge_pages--;
4429                 h->free_huge_pages_node[nid]--;
4430                 ret = 0;
4431         }
4432         spin_unlock(&hugetlb_lock);
4433         return ret;
4434 }
4435 #endif
4436
4437 bool isolate_huge_page(struct page *page, struct list_head *list)
4438 {
4439         bool ret = true;
4440
4441         VM_BUG_ON_PAGE(!PageHead(page), page);
4442         spin_lock(&hugetlb_lock);
4443         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4444                 ret = false;
4445                 goto unlock;
4446         }
4447         clear_page_huge_active(page);
4448         list_move_tail(&page->lru, list);
4449 unlock:
4450         spin_unlock(&hugetlb_lock);
4451         return ret;
4452 }
4453
4454 void putback_active_hugepage(struct page *page)
4455 {
4456         VM_BUG_ON_PAGE(!PageHead(page), page);
4457         spin_lock(&hugetlb_lock);
4458         set_page_huge_active(page);
4459         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4460         spin_unlock(&hugetlb_lock);
4461         put_page(page);
4462 }