mm/page_ext: move functions around for minor cleanups to page_ext
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61                                 1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66         return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99                 unsigned long start, unsigned long end);
100
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 {
103         if (spool->count)
104                 return false;
105         if (spool->max_hpages != -1)
106                 return spool->used_hpages == 0;
107         if (spool->min_hpages != -1)
108                 return spool->rsv_hpages == spool->min_hpages;
109
110         return true;
111 }
112
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114                                                 unsigned long irq_flags)
115 {
116         spin_unlock_irqrestore(&spool->lock, irq_flags);
117
118         /* If no pages are used, and no other handles to the subpool
119          * remain, give up any reservations based on minimum size and
120          * free the subpool */
121         if (subpool_is_free(spool)) {
122                 if (spool->min_hpages != -1)
123                         hugetlb_acct_memory(spool->hstate,
124                                                 -spool->min_hpages);
125                 kfree(spool);
126         }
127 }
128
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130                                                 long min_hpages)
131 {
132         struct hugepage_subpool *spool;
133
134         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135         if (!spool)
136                 return NULL;
137
138         spin_lock_init(&spool->lock);
139         spool->count = 1;
140         spool->max_hpages = max_hpages;
141         spool->hstate = h;
142         spool->min_hpages = min_hpages;
143
144         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145                 kfree(spool);
146                 return NULL;
147         }
148         spool->rsv_hpages = min_hpages;
149
150         return spool;
151 }
152
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 {
155         unsigned long flags;
156
157         spin_lock_irqsave(&spool->lock, flags);
158         BUG_ON(!spool->count);
159         spool->count--;
160         unlock_or_release_subpool(spool, flags);
161 }
162
163 /*
164  * Subpool accounting for allocating and reserving pages.
165  * Return -ENOMEM if there are not enough resources to satisfy the
166  * request.  Otherwise, return the number of pages by which the
167  * global pools must be adjusted (upward).  The returned value may
168  * only be different than the passed value (delta) in the case where
169  * a subpool minimum size must be maintained.
170  */
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
172                                       long delta)
173 {
174         long ret = delta;
175
176         if (!spool)
177                 return ret;
178
179         spin_lock_irq(&spool->lock);
180
181         if (spool->max_hpages != -1) {          /* maximum size accounting */
182                 if ((spool->used_hpages + delta) <= spool->max_hpages)
183                         spool->used_hpages += delta;
184                 else {
185                         ret = -ENOMEM;
186                         goto unlock_ret;
187                 }
188         }
189
190         /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->rsv_hpages) {
192                 if (delta > spool->rsv_hpages) {
193                         /*
194                          * Asking for more reserves than those already taken on
195                          * behalf of subpool.  Return difference.
196                          */
197                         ret = delta - spool->rsv_hpages;
198                         spool->rsv_hpages = 0;
199                 } else {
200                         ret = 0;        /* reserves already accounted for */
201                         spool->rsv_hpages -= delta;
202                 }
203         }
204
205 unlock_ret:
206         spin_unlock_irq(&spool->lock);
207         return ret;
208 }
209
210 /*
211  * Subpool accounting for freeing and unreserving pages.
212  * Return the number of global page reservations that must be dropped.
213  * The return value may only be different than the passed value (delta)
214  * in the case where a subpool minimum size must be maintained.
215  */
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
217                                        long delta)
218 {
219         long ret = delta;
220         unsigned long flags;
221
222         if (!spool)
223                 return delta;
224
225         spin_lock_irqsave(&spool->lock, flags);
226
227         if (spool->max_hpages != -1)            /* maximum size accounting */
228                 spool->used_hpages -= delta;
229
230          /* minimum size accounting */
231         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232                 if (spool->rsv_hpages + delta <= spool->min_hpages)
233                         ret = 0;
234                 else
235                         ret = spool->rsv_hpages + delta - spool->min_hpages;
236
237                 spool->rsv_hpages += delta;
238                 if (spool->rsv_hpages > spool->min_hpages)
239                         spool->rsv_hpages = spool->min_hpages;
240         }
241
242         /*
243          * If hugetlbfs_put_super couldn't free spool due to an outstanding
244          * quota reference, free it now.
245          */
246         unlock_or_release_subpool(spool, flags);
247
248         return ret;
249 }
250
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 {
253         return HUGETLBFS_SB(inode->i_sb)->spool;
254 }
255
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 {
258         return subpool_inode(file_inode(vma->vm_file));
259 }
260
261 /*
262  * hugetlb vma_lock helper routines
263  */
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 {
266         if (__vma_shareable_lock(vma)) {
267                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268
269                 down_read(&vma_lock->rw_sema);
270         }
271 }
272
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 {
275         if (__vma_shareable_lock(vma)) {
276                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277
278                 up_read(&vma_lock->rw_sema);
279         }
280 }
281
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 {
284         if (__vma_shareable_lock(vma)) {
285                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286
287                 down_write(&vma_lock->rw_sema);
288         }
289 }
290
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 {
293         if (__vma_shareable_lock(vma)) {
294                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296                 up_write(&vma_lock->rw_sema);
297         }
298 }
299
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 {
302         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303
304         if (!__vma_shareable_lock(vma))
305                 return 1;
306
307         return down_write_trylock(&vma_lock->rw_sema);
308 }
309
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 {
312         if (__vma_shareable_lock(vma)) {
313                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314
315                 lockdep_assert_held(&vma_lock->rw_sema);
316         }
317 }
318
319 void hugetlb_vma_lock_release(struct kref *kref)
320 {
321         struct hugetlb_vma_lock *vma_lock = container_of(kref,
322                         struct hugetlb_vma_lock, refs);
323
324         kfree(vma_lock);
325 }
326
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 {
329         struct vm_area_struct *vma = vma_lock->vma;
330
331         /*
332          * vma_lock structure may or not be released as a result of put,
333          * it certainly will no longer be attached to vma so clear pointer.
334          * Semaphore synchronizes access to vma_lock->vma field.
335          */
336         vma_lock->vma = NULL;
337         vma->vm_private_data = NULL;
338         up_write(&vma_lock->rw_sema);
339         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
340 }
341
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 {
344         if (__vma_shareable_lock(vma)) {
345                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346
347                 __hugetlb_vma_unlock_write_put(vma_lock);
348         }
349 }
350
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
352 {
353         /*
354          * Only present in sharable vmas.
355          */
356         if (!vma || !__vma_shareable_lock(vma))
357                 return;
358
359         if (vma->vm_private_data) {
360                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361
362                 down_write(&vma_lock->rw_sema);
363                 __hugetlb_vma_unlock_write_put(vma_lock);
364         }
365 }
366
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 {
369         struct hugetlb_vma_lock *vma_lock;
370
371         /* Only establish in (flags) sharable vmas */
372         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
373                 return;
374
375         /* Should never get here with non-NULL vm_private_data */
376         if (vma->vm_private_data)
377                 return;
378
379         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
380         if (!vma_lock) {
381                 /*
382                  * If we can not allocate structure, then vma can not
383                  * participate in pmd sharing.  This is only a possible
384                  * performance enhancement and memory saving issue.
385                  * However, the lock is also used to synchronize page
386                  * faults with truncation.  If the lock is not present,
387                  * unlikely races could leave pages in a file past i_size
388                  * until the file is removed.  Warn in the unlikely case of
389                  * allocation failure.
390                  */
391                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
392                 return;
393         }
394
395         kref_init(&vma_lock->refs);
396         init_rwsem(&vma_lock->rw_sema);
397         vma_lock->vma = vma;
398         vma->vm_private_data = vma_lock;
399 }
400
401 /* Helper that removes a struct file_region from the resv_map cache and returns
402  * it for use.
403  */
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 {
407         struct file_region *nrg;
408
409         VM_BUG_ON(resv->region_cache_count <= 0);
410
411         resv->region_cache_count--;
412         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413         list_del(&nrg->link);
414
415         nrg->from = from;
416         nrg->to = to;
417
418         return nrg;
419 }
420
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422                                               struct file_region *rg)
423 {
424 #ifdef CONFIG_CGROUP_HUGETLB
425         nrg->reservation_counter = rg->reservation_counter;
426         nrg->css = rg->css;
427         if (rg->css)
428                 css_get(rg->css);
429 #endif
430 }
431
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434                                                 struct hstate *h,
435                                                 struct resv_map *resv,
436                                                 struct file_region *nrg)
437 {
438 #ifdef CONFIG_CGROUP_HUGETLB
439         if (h_cg) {
440                 nrg->reservation_counter =
441                         &h_cg->rsvd_hugepage[hstate_index(h)];
442                 nrg->css = &h_cg->css;
443                 /*
444                  * The caller will hold exactly one h_cg->css reference for the
445                  * whole contiguous reservation region. But this area might be
446                  * scattered when there are already some file_regions reside in
447                  * it. As a result, many file_regions may share only one css
448                  * reference. In order to ensure that one file_region must hold
449                  * exactly one h_cg->css reference, we should do css_get for
450                  * each file_region and leave the reference held by caller
451                  * untouched.
452                  */
453                 css_get(&h_cg->css);
454                 if (!resv->pages_per_hpage)
455                         resv->pages_per_hpage = pages_per_huge_page(h);
456                 /* pages_per_hpage should be the same for all entries in
457                  * a resv_map.
458                  */
459                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460         } else {
461                 nrg->reservation_counter = NULL;
462                 nrg->css = NULL;
463         }
464 #endif
465 }
466
467 static void put_uncharge_info(struct file_region *rg)
468 {
469 #ifdef CONFIG_CGROUP_HUGETLB
470         if (rg->css)
471                 css_put(rg->css);
472 #endif
473 }
474
475 static bool has_same_uncharge_info(struct file_region *rg,
476                                    struct file_region *org)
477 {
478 #ifdef CONFIG_CGROUP_HUGETLB
479         return rg->reservation_counter == org->reservation_counter &&
480                rg->css == org->css;
481
482 #else
483         return true;
484 #endif
485 }
486
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 {
489         struct file_region *nrg, *prg;
490
491         prg = list_prev_entry(rg, link);
492         if (&prg->link != &resv->regions && prg->to == rg->from &&
493             has_same_uncharge_info(prg, rg)) {
494                 prg->to = rg->to;
495
496                 list_del(&rg->link);
497                 put_uncharge_info(rg);
498                 kfree(rg);
499
500                 rg = prg;
501         }
502
503         nrg = list_next_entry(rg, link);
504         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505             has_same_uncharge_info(nrg, rg)) {
506                 nrg->from = rg->from;
507
508                 list_del(&rg->link);
509                 put_uncharge_info(rg);
510                 kfree(rg);
511         }
512 }
513
514 static inline long
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
517                      long *regions_needed)
518 {
519         struct file_region *nrg;
520
521         if (!regions_needed) {
522                 nrg = get_file_region_entry_from_cache(map, from, to);
523                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524                 list_add(&nrg->link, rg);
525                 coalesce_file_region(map, nrg);
526         } else
527                 *regions_needed += 1;
528
529         return to - from;
530 }
531
532 /*
533  * Must be called with resv->lock held.
534  *
535  * Calling this with regions_needed != NULL will count the number of pages
536  * to be added but will not modify the linked list. And regions_needed will
537  * indicate the number of file_regions needed in the cache to carry out to add
538  * the regions for this range.
539  */
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541                                      struct hugetlb_cgroup *h_cg,
542                                      struct hstate *h, long *regions_needed)
543 {
544         long add = 0;
545         struct list_head *head = &resv->regions;
546         long last_accounted_offset = f;
547         struct file_region *iter, *trg = NULL;
548         struct list_head *rg = NULL;
549
550         if (regions_needed)
551                 *regions_needed = 0;
552
553         /* In this loop, we essentially handle an entry for the range
554          * [last_accounted_offset, iter->from), at every iteration, with some
555          * bounds checking.
556          */
557         list_for_each_entry_safe(iter, trg, head, link) {
558                 /* Skip irrelevant regions that start before our range. */
559                 if (iter->from < f) {
560                         /* If this region ends after the last accounted offset,
561                          * then we need to update last_accounted_offset.
562                          */
563                         if (iter->to > last_accounted_offset)
564                                 last_accounted_offset = iter->to;
565                         continue;
566                 }
567
568                 /* When we find a region that starts beyond our range, we've
569                  * finished.
570                  */
571                 if (iter->from >= t) {
572                         rg = iter->link.prev;
573                         break;
574                 }
575
576                 /* Add an entry for last_accounted_offset -> iter->from, and
577                  * update last_accounted_offset.
578                  */
579                 if (iter->from > last_accounted_offset)
580                         add += hugetlb_resv_map_add(resv, iter->link.prev,
581                                                     last_accounted_offset,
582                                                     iter->from, h, h_cg,
583                                                     regions_needed);
584
585                 last_accounted_offset = iter->to;
586         }
587
588         /* Handle the case where our range extends beyond
589          * last_accounted_offset.
590          */
591         if (!rg)
592                 rg = head->prev;
593         if (last_accounted_offset < t)
594                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595                                             t, h, h_cg, regions_needed);
596
597         return add;
598 }
599
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601  */
602 static int allocate_file_region_entries(struct resv_map *resv,
603                                         int regions_needed)
604         __must_hold(&resv->lock)
605 {
606         LIST_HEAD(allocated_regions);
607         int to_allocate = 0, i = 0;
608         struct file_region *trg = NULL, *rg = NULL;
609
610         VM_BUG_ON(regions_needed < 0);
611
612         /*
613          * Check for sufficient descriptors in the cache to accommodate
614          * the number of in progress add operations plus regions_needed.
615          *
616          * This is a while loop because when we drop the lock, some other call
617          * to region_add or region_del may have consumed some region_entries,
618          * so we keep looping here until we finally have enough entries for
619          * (adds_in_progress + regions_needed).
620          */
621         while (resv->region_cache_count <
622                (resv->adds_in_progress + regions_needed)) {
623                 to_allocate = resv->adds_in_progress + regions_needed -
624                               resv->region_cache_count;
625
626                 /* At this point, we should have enough entries in the cache
627                  * for all the existing adds_in_progress. We should only be
628                  * needing to allocate for regions_needed.
629                  */
630                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631
632                 spin_unlock(&resv->lock);
633                 for (i = 0; i < to_allocate; i++) {
634                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
635                         if (!trg)
636                                 goto out_of_memory;
637                         list_add(&trg->link, &allocated_regions);
638                 }
639
640                 spin_lock(&resv->lock);
641
642                 list_splice(&allocated_regions, &resv->region_cache);
643                 resv->region_cache_count += to_allocate;
644         }
645
646         return 0;
647
648 out_of_memory:
649         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
650                 list_del(&rg->link);
651                 kfree(rg);
652         }
653         return -ENOMEM;
654 }
655
656 /*
657  * Add the huge page range represented by [f, t) to the reserve
658  * map.  Regions will be taken from the cache to fill in this range.
659  * Sufficient regions should exist in the cache due to the previous
660  * call to region_chg with the same range, but in some cases the cache will not
661  * have sufficient entries due to races with other code doing region_add or
662  * region_del.  The extra needed entries will be allocated.
663  *
664  * regions_needed is the out value provided by a previous call to region_chg.
665  *
666  * Return the number of new huge pages added to the map.  This number is greater
667  * than or equal to zero.  If file_region entries needed to be allocated for
668  * this operation and we were not able to allocate, it returns -ENOMEM.
669  * region_add of regions of length 1 never allocate file_regions and cannot
670  * fail; region_chg will always allocate at least 1 entry and a region_add for
671  * 1 page will only require at most 1 entry.
672  */
673 static long region_add(struct resv_map *resv, long f, long t,
674                        long in_regions_needed, struct hstate *h,
675                        struct hugetlb_cgroup *h_cg)
676 {
677         long add = 0, actual_regions_needed = 0;
678
679         spin_lock(&resv->lock);
680 retry:
681
682         /* Count how many regions are actually needed to execute this add. */
683         add_reservation_in_range(resv, f, t, NULL, NULL,
684                                  &actual_regions_needed);
685
686         /*
687          * Check for sufficient descriptors in the cache to accommodate
688          * this add operation. Note that actual_regions_needed may be greater
689          * than in_regions_needed, as the resv_map may have been modified since
690          * the region_chg call. In this case, we need to make sure that we
691          * allocate extra entries, such that we have enough for all the
692          * existing adds_in_progress, plus the excess needed for this
693          * operation.
694          */
695         if (actual_regions_needed > in_regions_needed &&
696             resv->region_cache_count <
697                     resv->adds_in_progress +
698                             (actual_regions_needed - in_regions_needed)) {
699                 /* region_add operation of range 1 should never need to
700                  * allocate file_region entries.
701                  */
702                 VM_BUG_ON(t - f <= 1);
703
704                 if (allocate_file_region_entries(
705                             resv, actual_regions_needed - in_regions_needed)) {
706                         return -ENOMEM;
707                 }
708
709                 goto retry;
710         }
711
712         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713
714         resv->adds_in_progress -= in_regions_needed;
715
716         spin_unlock(&resv->lock);
717         return add;
718 }
719
720 /*
721  * Examine the existing reserve map and determine how many
722  * huge pages in the specified range [f, t) are NOT currently
723  * represented.  This routine is called before a subsequent
724  * call to region_add that will actually modify the reserve
725  * map to add the specified range [f, t).  region_chg does
726  * not change the number of huge pages represented by the
727  * map.  A number of new file_region structures is added to the cache as a
728  * placeholder, for the subsequent region_add call to use. At least 1
729  * file_region structure is added.
730  *
731  * out_regions_needed is the number of regions added to the
732  * resv->adds_in_progress.  This value needs to be provided to a follow up call
733  * to region_add or region_abort for proper accounting.
734  *
735  * Returns the number of huge pages that need to be added to the existing
736  * reservation map for the range [f, t).  This number is greater or equal to
737  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
738  * is needed and can not be allocated.
739  */
740 static long region_chg(struct resv_map *resv, long f, long t,
741                        long *out_regions_needed)
742 {
743         long chg = 0;
744
745         spin_lock(&resv->lock);
746
747         /* Count how many hugepages in this range are NOT represented. */
748         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
749                                        out_regions_needed);
750
751         if (*out_regions_needed == 0)
752                 *out_regions_needed = 1;
753
754         if (allocate_file_region_entries(resv, *out_regions_needed))
755                 return -ENOMEM;
756
757         resv->adds_in_progress += *out_regions_needed;
758
759         spin_unlock(&resv->lock);
760         return chg;
761 }
762
763 /*
764  * Abort the in progress add operation.  The adds_in_progress field
765  * of the resv_map keeps track of the operations in progress between
766  * calls to region_chg and region_add.  Operations are sometimes
767  * aborted after the call to region_chg.  In such cases, region_abort
768  * is called to decrement the adds_in_progress counter. regions_needed
769  * is the value returned by the region_chg call, it is used to decrement
770  * the adds_in_progress counter.
771  *
772  * NOTE: The range arguments [f, t) are not needed or used in this
773  * routine.  They are kept to make reading the calling code easier as
774  * arguments will match the associated region_chg call.
775  */
776 static void region_abort(struct resv_map *resv, long f, long t,
777                          long regions_needed)
778 {
779         spin_lock(&resv->lock);
780         VM_BUG_ON(!resv->region_cache_count);
781         resv->adds_in_progress -= regions_needed;
782         spin_unlock(&resv->lock);
783 }
784
785 /*
786  * Delete the specified range [f, t) from the reserve map.  If the
787  * t parameter is LONG_MAX, this indicates that ALL regions after f
788  * should be deleted.  Locate the regions which intersect [f, t)
789  * and either trim, delete or split the existing regions.
790  *
791  * Returns the number of huge pages deleted from the reserve map.
792  * In the normal case, the return value is zero or more.  In the
793  * case where a region must be split, a new region descriptor must
794  * be allocated.  If the allocation fails, -ENOMEM will be returned.
795  * NOTE: If the parameter t == LONG_MAX, then we will never split
796  * a region and possibly return -ENOMEM.  Callers specifying
797  * t == LONG_MAX do not need to check for -ENOMEM error.
798  */
799 static long region_del(struct resv_map *resv, long f, long t)
800 {
801         struct list_head *head = &resv->regions;
802         struct file_region *rg, *trg;
803         struct file_region *nrg = NULL;
804         long del = 0;
805
806 retry:
807         spin_lock(&resv->lock);
808         list_for_each_entry_safe(rg, trg, head, link) {
809                 /*
810                  * Skip regions before the range to be deleted.  file_region
811                  * ranges are normally of the form [from, to).  However, there
812                  * may be a "placeholder" entry in the map which is of the form
813                  * (from, to) with from == to.  Check for placeholder entries
814                  * at the beginning of the range to be deleted.
815                  */
816                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
817                         continue;
818
819                 if (rg->from >= t)
820                         break;
821
822                 if (f > rg->from && t < rg->to) { /* Must split region */
823                         /*
824                          * Check for an entry in the cache before dropping
825                          * lock and attempting allocation.
826                          */
827                         if (!nrg &&
828                             resv->region_cache_count > resv->adds_in_progress) {
829                                 nrg = list_first_entry(&resv->region_cache,
830                                                         struct file_region,
831                                                         link);
832                                 list_del(&nrg->link);
833                                 resv->region_cache_count--;
834                         }
835
836                         if (!nrg) {
837                                 spin_unlock(&resv->lock);
838                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
839                                 if (!nrg)
840                                         return -ENOMEM;
841                                 goto retry;
842                         }
843
844                         del += t - f;
845                         hugetlb_cgroup_uncharge_file_region(
846                                 resv, rg, t - f, false);
847
848                         /* New entry for end of split region */
849                         nrg->from = t;
850                         nrg->to = rg->to;
851
852                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853
854                         INIT_LIST_HEAD(&nrg->link);
855
856                         /* Original entry is trimmed */
857                         rg->to = f;
858
859                         list_add(&nrg->link, &rg->link);
860                         nrg = NULL;
861                         break;
862                 }
863
864                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865                         del += rg->to - rg->from;
866                         hugetlb_cgroup_uncharge_file_region(resv, rg,
867                                                             rg->to - rg->from, true);
868                         list_del(&rg->link);
869                         kfree(rg);
870                         continue;
871                 }
872
873                 if (f <= rg->from) {    /* Trim beginning of region */
874                         hugetlb_cgroup_uncharge_file_region(resv, rg,
875                                                             t - rg->from, false);
876
877                         del += t - rg->from;
878                         rg->from = t;
879                 } else {                /* Trim end of region */
880                         hugetlb_cgroup_uncharge_file_region(resv, rg,
881                                                             rg->to - f, false);
882
883                         del += rg->to - f;
884                         rg->to = f;
885                 }
886         }
887
888         spin_unlock(&resv->lock);
889         kfree(nrg);
890         return del;
891 }
892
893 /*
894  * A rare out of memory error was encountered which prevented removal of
895  * the reserve map region for a page.  The huge page itself was free'ed
896  * and removed from the page cache.  This routine will adjust the subpool
897  * usage count, and the global reserve count if needed.  By incrementing
898  * these counts, the reserve map entry which could not be deleted will
899  * appear as a "reserved" entry instead of simply dangling with incorrect
900  * counts.
901  */
902 void hugetlb_fix_reserve_counts(struct inode *inode)
903 {
904         struct hugepage_subpool *spool = subpool_inode(inode);
905         long rsv_adjust;
906         bool reserved = false;
907
908         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909         if (rsv_adjust > 0) {
910                 struct hstate *h = hstate_inode(inode);
911
912                 if (!hugetlb_acct_memory(h, 1))
913                         reserved = true;
914         } else if (!rsv_adjust) {
915                 reserved = true;
916         }
917
918         if (!reserved)
919                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
920 }
921
922 /*
923  * Count and return the number of huge pages in the reserve map
924  * that intersect with the range [f, t).
925  */
926 static long region_count(struct resv_map *resv, long f, long t)
927 {
928         struct list_head *head = &resv->regions;
929         struct file_region *rg;
930         long chg = 0;
931
932         spin_lock(&resv->lock);
933         /* Locate each segment we overlap with, and count that overlap. */
934         list_for_each_entry(rg, head, link) {
935                 long seg_from;
936                 long seg_to;
937
938                 if (rg->to <= f)
939                         continue;
940                 if (rg->from >= t)
941                         break;
942
943                 seg_from = max(rg->from, f);
944                 seg_to = min(rg->to, t);
945
946                 chg += seg_to - seg_from;
947         }
948         spin_unlock(&resv->lock);
949
950         return chg;
951 }
952
953 /*
954  * Convert the address within this vma to the page offset within
955  * the mapping, in pagecache page units; huge pages here.
956  */
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958                         struct vm_area_struct *vma, unsigned long address)
959 {
960         return ((address - vma->vm_start) >> huge_page_shift(h)) +
961                         (vma->vm_pgoff >> huge_page_order(h));
962 }
963
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965                                      unsigned long address)
966 {
967         return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 }
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
970
971 /*
972  * Return the size of the pages allocated when backing a VMA. In the majority
973  * cases this will be same size as used by the page table entries.
974  */
975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 {
977         if (vma->vm_ops && vma->vm_ops->pagesize)
978                 return vma->vm_ops->pagesize(vma);
979         return PAGE_SIZE;
980 }
981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
982
983 /*
984  * Return the page size being used by the MMU to back a VMA. In the majority
985  * of cases, the page size used by the kernel matches the MMU size. On
986  * architectures where it differs, an architecture-specific 'strong'
987  * version of this symbol is required.
988  */
989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 {
991         return vma_kernel_pagesize(vma);
992 }
993
994 /*
995  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
996  * bits of the reservation map pointer, which are always clear due to
997  * alignment.
998  */
999 #define HPAGE_RESV_OWNER    (1UL << 0)
1000 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1002
1003 /*
1004  * These helpers are used to track how many pages are reserved for
1005  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1006  * is guaranteed to have their future faults succeed.
1007  *
1008  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1009  * the reserve counters are updated with the hugetlb_lock held. It is safe
1010  * to reset the VMA at fork() time as it is not in use yet and there is no
1011  * chance of the global counters getting corrupted as a result of the values.
1012  *
1013  * The private mapping reservation is represented in a subtly different
1014  * manner to a shared mapping.  A shared mapping has a region map associated
1015  * with the underlying file, this region map represents the backing file
1016  * pages which have ever had a reservation assigned which this persists even
1017  * after the page is instantiated.  A private mapping has a region map
1018  * associated with the original mmap which is attached to all VMAs which
1019  * reference it, this region map represents those offsets which have consumed
1020  * reservation ie. where pages have been instantiated.
1021  */
1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 {
1024         return (unsigned long)vma->vm_private_data;
1025 }
1026
1027 static void set_vma_private_data(struct vm_area_struct *vma,
1028                                                         unsigned long value)
1029 {
1030         vma->vm_private_data = (void *)value;
1031 }
1032
1033 static void
1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1035                                           struct hugetlb_cgroup *h_cg,
1036                                           struct hstate *h)
1037 {
1038 #ifdef CONFIG_CGROUP_HUGETLB
1039         if (!h_cg || !h) {
1040                 resv_map->reservation_counter = NULL;
1041                 resv_map->pages_per_hpage = 0;
1042                 resv_map->css = NULL;
1043         } else {
1044                 resv_map->reservation_counter =
1045                         &h_cg->rsvd_hugepage[hstate_index(h)];
1046                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1047                 resv_map->css = &h_cg->css;
1048         }
1049 #endif
1050 }
1051
1052 struct resv_map *resv_map_alloc(void)
1053 {
1054         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1055         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056
1057         if (!resv_map || !rg) {
1058                 kfree(resv_map);
1059                 kfree(rg);
1060                 return NULL;
1061         }
1062
1063         kref_init(&resv_map->refs);
1064         spin_lock_init(&resv_map->lock);
1065         INIT_LIST_HEAD(&resv_map->regions);
1066
1067         resv_map->adds_in_progress = 0;
1068         /*
1069          * Initialize these to 0. On shared mappings, 0's here indicate these
1070          * fields don't do cgroup accounting. On private mappings, these will be
1071          * re-initialized to the proper values, to indicate that hugetlb cgroup
1072          * reservations are to be un-charged from here.
1073          */
1074         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075
1076         INIT_LIST_HEAD(&resv_map->region_cache);
1077         list_add(&rg->link, &resv_map->region_cache);
1078         resv_map->region_cache_count = 1;
1079
1080         return resv_map;
1081 }
1082
1083 void resv_map_release(struct kref *ref)
1084 {
1085         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1086         struct list_head *head = &resv_map->region_cache;
1087         struct file_region *rg, *trg;
1088
1089         /* Clear out any active regions before we release the map. */
1090         region_del(resv_map, 0, LONG_MAX);
1091
1092         /* ... and any entries left in the cache */
1093         list_for_each_entry_safe(rg, trg, head, link) {
1094                 list_del(&rg->link);
1095                 kfree(rg);
1096         }
1097
1098         VM_BUG_ON(resv_map->adds_in_progress);
1099
1100         kfree(resv_map);
1101 }
1102
1103 static inline struct resv_map *inode_resv_map(struct inode *inode)
1104 {
1105         /*
1106          * At inode evict time, i_mapping may not point to the original
1107          * address space within the inode.  This original address space
1108          * contains the pointer to the resv_map.  So, always use the
1109          * address space embedded within the inode.
1110          * The VERY common case is inode->mapping == &inode->i_data but,
1111          * this may not be true for device special inodes.
1112          */
1113         return (struct resv_map *)(&inode->i_data)->private_data;
1114 }
1115
1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 {
1118         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1119         if (vma->vm_flags & VM_MAYSHARE) {
1120                 struct address_space *mapping = vma->vm_file->f_mapping;
1121                 struct inode *inode = mapping->host;
1122
1123                 return inode_resv_map(inode);
1124
1125         } else {
1126                 return (struct resv_map *)(get_vma_private_data(vma) &
1127                                                         ~HPAGE_RESV_MASK);
1128         }
1129 }
1130
1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 {
1133         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1134         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135
1136         set_vma_private_data(vma, (get_vma_private_data(vma) &
1137                                 HPAGE_RESV_MASK) | (unsigned long)map);
1138 }
1139
1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 {
1142         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1143         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144
1145         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1146 }
1147
1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151
1152         return (get_vma_private_data(vma) & flag) != 0;
1153 }
1154
1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 {
1157         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158         /*
1159          * Clear vm_private_data
1160          * - For shared mappings this is a per-vma semaphore that may be
1161          *   allocated in a subsequent call to hugetlb_vm_op_open.
1162          *   Before clearing, make sure pointer is not associated with vma
1163          *   as this will leak the structure.  This is the case when called
1164          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1165          *   been called to allocate a new structure.
1166          * - For MAP_PRIVATE mappings, this is the reserve map which does
1167          *   not apply to children.  Faults generated by the children are
1168          *   not guaranteed to succeed, even if read-only.
1169          */
1170         if (vma->vm_flags & VM_MAYSHARE) {
1171                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172
1173                 if (vma_lock && vma_lock->vma != vma)
1174                         vma->vm_private_data = NULL;
1175         } else
1176                 vma->vm_private_data = NULL;
1177 }
1178
1179 /*
1180  * Reset and decrement one ref on hugepage private reservation.
1181  * Called with mm->mmap_lock writer semaphore held.
1182  * This function should be only used by move_vma() and operate on
1183  * same sized vma. It should never come here with last ref on the
1184  * reservation.
1185  */
1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1187 {
1188         /*
1189          * Clear the old hugetlb private page reservation.
1190          * It has already been transferred to new_vma.
1191          *
1192          * During a mremap() operation of a hugetlb vma we call move_vma()
1193          * which copies vma into new_vma and unmaps vma. After the copy
1194          * operation both new_vma and vma share a reference to the resv_map
1195          * struct, and at that point vma is about to be unmapped. We don't
1196          * want to return the reservation to the pool at unmap of vma because
1197          * the reservation still lives on in new_vma, so simply decrement the
1198          * ref here and remove the resv_map reference from this vma.
1199          */
1200         struct resv_map *reservations = vma_resv_map(vma);
1201
1202         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1203                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1204                 kref_put(&reservations->refs, resv_map_release);
1205         }
1206
1207         hugetlb_dup_vma_private(vma);
1208 }
1209
1210 /* Returns true if the VMA has associated reserve pages */
1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 {
1213         if (vma->vm_flags & VM_NORESERVE) {
1214                 /*
1215                  * This address is already reserved by other process(chg == 0),
1216                  * so, we should decrement reserved count. Without decrementing,
1217                  * reserve count remains after releasing inode, because this
1218                  * allocated page will go into page cache and is regarded as
1219                  * coming from reserved pool in releasing step.  Currently, we
1220                  * don't have any other solution to deal with this situation
1221                  * properly, so add work-around here.
1222                  */
1223                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1224                         return true;
1225                 else
1226                         return false;
1227         }
1228
1229         /* Shared mappings always use reserves */
1230         if (vma->vm_flags & VM_MAYSHARE) {
1231                 /*
1232                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1233                  * be a region map for all pages.  The only situation where
1234                  * there is no region map is if a hole was punched via
1235                  * fallocate.  In this case, there really are no reserves to
1236                  * use.  This situation is indicated if chg != 0.
1237                  */
1238                 if (chg)
1239                         return false;
1240                 else
1241                         return true;
1242         }
1243
1244         /*
1245          * Only the process that called mmap() has reserves for
1246          * private mappings.
1247          */
1248         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249                 /*
1250                  * Like the shared case above, a hole punch or truncate
1251                  * could have been performed on the private mapping.
1252                  * Examine the value of chg to determine if reserves
1253                  * actually exist or were previously consumed.
1254                  * Very Subtle - The value of chg comes from a previous
1255                  * call to vma_needs_reserves().  The reserve map for
1256                  * private mappings has different (opposite) semantics
1257                  * than that of shared mappings.  vma_needs_reserves()
1258                  * has already taken this difference in semantics into
1259                  * account.  Therefore, the meaning of chg is the same
1260                  * as in the shared case above.  Code could easily be
1261                  * combined, but keeping it separate draws attention to
1262                  * subtle differences.
1263                  */
1264                 if (chg)
1265                         return false;
1266                 else
1267                         return true;
1268         }
1269
1270         return false;
1271 }
1272
1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 {
1275         int nid = folio_nid(folio);
1276
1277         lockdep_assert_held(&hugetlb_lock);
1278         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279
1280         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1281         h->free_huge_pages++;
1282         h->free_huge_pages_node[nid]++;
1283         folio_set_hugetlb_freed(folio);
1284 }
1285
1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1287                                                                 int nid)
1288 {
1289         struct folio *folio;
1290         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291
1292         lockdep_assert_held(&hugetlb_lock);
1293         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1294                 if (pin && !folio_is_longterm_pinnable(folio))
1295                         continue;
1296
1297                 if (folio_test_hwpoison(folio))
1298                         continue;
1299
1300                 list_move(&folio->lru, &h->hugepage_activelist);
1301                 folio_ref_unfreeze(folio, 1);
1302                 folio_clear_hugetlb_freed(folio);
1303                 h->free_huge_pages--;
1304                 h->free_huge_pages_node[nid]--;
1305                 return folio;
1306         }
1307
1308         return NULL;
1309 }
1310
1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1312                                                         int nid, nodemask_t *nmask)
1313 {
1314         unsigned int cpuset_mems_cookie;
1315         struct zonelist *zonelist;
1316         struct zone *zone;
1317         struct zoneref *z;
1318         int node = NUMA_NO_NODE;
1319
1320         zonelist = node_zonelist(nid, gfp_mask);
1321
1322 retry_cpuset:
1323         cpuset_mems_cookie = read_mems_allowed_begin();
1324         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325                 struct folio *folio;
1326
1327                 if (!cpuset_zone_allowed(zone, gfp_mask))
1328                         continue;
1329                 /*
1330                  * no need to ask again on the same node. Pool is node rather than
1331                  * zone aware
1332                  */
1333                 if (zone_to_nid(zone) == node)
1334                         continue;
1335                 node = zone_to_nid(zone);
1336
1337                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1338                 if (folio)
1339                         return folio;
1340         }
1341         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1342                 goto retry_cpuset;
1343
1344         return NULL;
1345 }
1346
1347 static unsigned long available_huge_pages(struct hstate *h)
1348 {
1349         return h->free_huge_pages - h->resv_huge_pages;
1350 }
1351
1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1353                                 struct vm_area_struct *vma,
1354                                 unsigned long address, int avoid_reserve,
1355                                 long chg)
1356 {
1357         struct folio *folio = NULL;
1358         struct mempolicy *mpol;
1359         gfp_t gfp_mask;
1360         nodemask_t *nodemask;
1361         int nid;
1362
1363         /*
1364          * A child process with MAP_PRIVATE mappings created by their parent
1365          * have no page reserves. This check ensures that reservations are
1366          * not "stolen". The child may still get SIGKILLed
1367          */
1368         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1369                 goto err;
1370
1371         /* If reserves cannot be used, ensure enough pages are in the pool */
1372         if (avoid_reserve && !available_huge_pages(h))
1373                 goto err;
1374
1375         gfp_mask = htlb_alloc_mask(h);
1376         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377
1378         if (mpol_is_preferred_many(mpol)) {
1379                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1380                                                         nid, nodemask);
1381
1382                 /* Fallback to all nodes if page==NULL */
1383                 nodemask = NULL;
1384         }
1385
1386         if (!folio)
1387                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1388                                                         nid, nodemask);
1389
1390         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391                 folio_set_hugetlb_restore_reserve(folio);
1392                 h->resv_huge_pages--;
1393         }
1394
1395         mpol_cond_put(mpol);
1396         return folio;
1397
1398 err:
1399         return NULL;
1400 }
1401
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411         nid = next_node_in(nid, *nodes_allowed);
1412         VM_BUG_ON(nid >= MAX_NUMNODES);
1413
1414         return nid;
1415 }
1416
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419         if (!node_isset(nid, *nodes_allowed))
1420                 nid = next_node_allowed(nid, nodes_allowed);
1421         return nid;
1422 }
1423
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431                                         nodemask_t *nodes_allowed)
1432 {
1433         int nid;
1434
1435         VM_BUG_ON(!nodes_allowed);
1436
1437         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439
1440         return nid;
1441 }
1442
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451         int nid;
1452
1453         VM_BUG_ON(!nodes_allowed);
1454
1455         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457
1458         return nid;
1459 }
1460
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1462         for (nr_nodes = nodes_weight(*mask);                            \
1463                 nr_nodes > 0 &&                                         \
1464                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1465                 nr_nodes--)
1466
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1468         for (nr_nodes = nodes_weight(*mask);                            \
1469                 nr_nodes > 0 &&                                         \
1470                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1471                 nr_nodes--)
1472
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475                                         unsigned int order, bool demote)
1476 {
1477         int i;
1478         int nr_pages = 1 << order;
1479         struct page *p;
1480
1481         atomic_set(&folio->_entire_mapcount, 0);
1482         atomic_set(&folio->_nr_pages_mapped, 0);
1483         atomic_set(&folio->_pincount, 0);
1484
1485         for (i = 1; i < nr_pages; i++) {
1486                 p = folio_page(folio, i);
1487                 p->mapping = NULL;
1488                 clear_compound_head(p);
1489                 if (!demote)
1490                         set_page_refcounted(p);
1491         }
1492
1493         __folio_clear_head(folio);
1494 }
1495
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497                                         unsigned int order)
1498 {
1499         __destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504                                         unsigned int order)
1505 {
1506         __destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511         /*
1512          * If the page isn't allocated using the cma allocator,
1513          * cma_release() returns false.
1514          */
1515 #ifdef CONFIG_CMA
1516         int nid = folio_nid(folio);
1517
1518         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519                 return;
1520 #endif
1521
1522         free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527                 int nid, nodemask_t *nodemask)
1528 {
1529         struct page *page;
1530         unsigned long nr_pages = pages_per_huge_page(h);
1531         if (nid == NUMA_NO_NODE)
1532                 nid = numa_mem_id();
1533
1534 #ifdef CONFIG_CMA
1535         {
1536                 int node;
1537
1538                 if (hugetlb_cma[nid]) {
1539                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540                                         huge_page_order(h), true);
1541                         if (page)
1542                                 return page_folio(page);
1543                 }
1544
1545                 if (!(gfp_mask & __GFP_THISNODE)) {
1546                         for_each_node_mask(node, *nodemask) {
1547                                 if (node == nid || !hugetlb_cma[node])
1548                                         continue;
1549
1550                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551                                                 huge_page_order(h), true);
1552                                 if (page)
1553                                         return page_folio(page);
1554                         }
1555                 }
1556         }
1557 #endif
1558
1559         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560         return page ? page_folio(page) : NULL;
1561 }
1562
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565                                         int nid, nodemask_t *nodemask)
1566 {
1567         return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573                                         int nid, nodemask_t *nodemask)
1574 {
1575         return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578                                                 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580                                                 unsigned int order) { }
1581 #endif
1582
1583 /*
1584  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585  * as just a compound page.
1586  *
1587  * A reference is held on the folio, except in the case of demote.
1588  *
1589  * Must be called with hugetlb lock held.
1590  */
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592                                                         bool adjust_surplus,
1593                                                         bool demote)
1594 {
1595         int nid = folio_nid(folio);
1596
1597         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599
1600         lockdep_assert_held(&hugetlb_lock);
1601         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602                 return;
1603
1604         list_del(&folio->lru);
1605
1606         if (folio_test_hugetlb_freed(folio)) {
1607                 h->free_huge_pages--;
1608                 h->free_huge_pages_node[nid]--;
1609         }
1610         if (adjust_surplus) {
1611                 h->surplus_huge_pages--;
1612                 h->surplus_huge_pages_node[nid]--;
1613         }
1614
1615         /*
1616          * Very subtle
1617          *
1618          * For non-gigantic pages set the destructor to the normal compound
1619          * page dtor.  This is needed in case someone takes an additional
1620          * temporary ref to the page, and freeing is delayed until they drop
1621          * their reference.
1622          *
1623          * For gigantic pages set the destructor to the null dtor.  This
1624          * destructor will never be called.  Before freeing the gigantic
1625          * page destroy_compound_gigantic_folio will turn the folio into a
1626          * simple group of pages.  After this the destructor does not
1627          * apply.
1628          *
1629          * This handles the case where more than one ref is held when and
1630          * after update_and_free_hugetlb_folio is called.
1631          *
1632          * In the case of demote we do not ref count the page as it will soon
1633          * be turned into a page of smaller size.
1634          */
1635         if (!demote)
1636                 folio_ref_unfreeze(folio, 1);
1637         if (hstate_is_gigantic(h))
1638                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639         else
1640                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641
1642         h->nr_huge_pages--;
1643         h->nr_huge_pages_node[nid]--;
1644 }
1645
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647                                                         bool adjust_surplus)
1648 {
1649         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650 }
1651
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653                                                         bool adjust_surplus)
1654 {
1655         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656 }
1657
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659                              bool adjust_surplus)
1660 {
1661         int zeroed;
1662         int nid = folio_nid(folio);
1663
1664         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665
1666         lockdep_assert_held(&hugetlb_lock);
1667
1668         INIT_LIST_HEAD(&folio->lru);
1669         h->nr_huge_pages++;
1670         h->nr_huge_pages_node[nid]++;
1671
1672         if (adjust_surplus) {
1673                 h->surplus_huge_pages++;
1674                 h->surplus_huge_pages_node[nid]++;
1675         }
1676
1677         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678         folio_change_private(folio, NULL);
1679         /*
1680          * We have to set hugetlb_vmemmap_optimized again as above
1681          * folio_change_private(folio, NULL) cleared it.
1682          */
1683         folio_set_hugetlb_vmemmap_optimized(folio);
1684
1685         /*
1686          * This folio is about to be managed by the hugetlb allocator and
1687          * should have no users.  Drop our reference, and check for others
1688          * just in case.
1689          */
1690         zeroed = folio_put_testzero(folio);
1691         if (unlikely(!zeroed))
1692                 /*
1693                  * It is VERY unlikely soneone else has taken a ref on
1694                  * the page.  In this case, we simply return as the
1695                  * hugetlb destructor (free_huge_page) will be called
1696                  * when this other ref is dropped.
1697                  */
1698                 return;
1699
1700         arch_clear_hugepage_flags(&folio->page);
1701         enqueue_hugetlb_folio(h, folio);
1702 }
1703
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705                                                 struct folio *folio)
1706 {
1707         int i;
1708         struct page *subpage;
1709
1710         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711                 return;
1712
1713         /*
1714          * If we don't know which subpages are hwpoisoned, we can't free
1715          * the hugepage, so it's leaked intentionally.
1716          */
1717         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718                 return;
1719
1720         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721                 spin_lock_irq(&hugetlb_lock);
1722                 /*
1723                  * If we cannot allocate vmemmap pages, just refuse to free the
1724                  * page and put the page back on the hugetlb free list and treat
1725                  * as a surplus page.
1726                  */
1727                 add_hugetlb_folio(h, folio, true);
1728                 spin_unlock_irq(&hugetlb_lock);
1729                 return;
1730         }
1731
1732         /*
1733          * Move PageHWPoison flag from head page to the raw error pages,
1734          * which makes any healthy subpages reusable.
1735          */
1736         if (unlikely(folio_test_hwpoison(folio)))
1737                 folio_clear_hugetlb_hwpoison(folio);
1738
1739         for (i = 0; i < pages_per_huge_page(h); i++) {
1740                 subpage = folio_page(folio, i);
1741                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742                                 1 << PG_referenced | 1 << PG_dirty |
1743                                 1 << PG_active | 1 << PG_private |
1744                                 1 << PG_writeback);
1745         }
1746
1747         /*
1748          * Non-gigantic pages demoted from CMA allocated gigantic pages
1749          * need to be given back to CMA in free_gigantic_folio.
1750          */
1751         if (hstate_is_gigantic(h) ||
1752             hugetlb_cma_folio(folio, huge_page_order(h))) {
1753                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754                 free_gigantic_folio(folio, huge_page_order(h));
1755         } else {
1756                 __free_pages(&folio->page, huge_page_order(h));
1757         }
1758 }
1759
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775         struct llist_node *node;
1776
1777         node = llist_del_all(&hpage_freelist);
1778
1779         while (node) {
1780                 struct page *page;
1781                 struct hstate *h;
1782
1783                 page = container_of((struct address_space **)node,
1784                                      struct page, mapping);
1785                 node = node->next;
1786                 page->mapping = NULL;
1787                 /*
1788                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789                  * is going to trigger because a previous call to
1790                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1791                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792                  * directly.
1793                  */
1794                 h = size_to_hstate(page_size(page));
1795
1796                 __update_and_free_hugetlb_folio(h, page_folio(page));
1797
1798                 cond_resched();
1799         }
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805         if (hugetlb_vmemmap_optimizable(h))
1806                 flush_work(&free_hpage_work);
1807 }
1808
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810                                  bool atomic)
1811 {
1812         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813                 __update_and_free_hugetlb_folio(h, folio);
1814                 return;
1815         }
1816
1817         /*
1818          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819          *
1820          * Only call schedule_work() if hpage_freelist is previously
1821          * empty. Otherwise, schedule_work() had been called but the workfn
1822          * hasn't retrieved the list yet.
1823          */
1824         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825                 schedule_work(&free_hpage_work);
1826 }
1827
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 {
1830         struct page *page, *t_page;
1831         struct folio *folio;
1832
1833         list_for_each_entry_safe(page, t_page, list, lru) {
1834                 folio = page_folio(page);
1835                 update_and_free_hugetlb_folio(h, folio, false);
1836                 cond_resched();
1837         }
1838 }
1839
1840 struct hstate *size_to_hstate(unsigned long size)
1841 {
1842         struct hstate *h;
1843
1844         for_each_hstate(h) {
1845                 if (huge_page_size(h) == size)
1846                         return h;
1847         }
1848         return NULL;
1849 }
1850
1851 void free_huge_page(struct page *page)
1852 {
1853         /*
1854          * Can't pass hstate in here because it is called from the
1855          * compound page destructor.
1856          */
1857         struct folio *folio = page_folio(page);
1858         struct hstate *h = folio_hstate(folio);
1859         int nid = folio_nid(folio);
1860         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861         bool restore_reserve;
1862         unsigned long flags;
1863
1864         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866
1867         hugetlb_set_folio_subpool(folio, NULL);
1868         if (folio_test_anon(folio))
1869                 __ClearPageAnonExclusive(&folio->page);
1870         folio->mapping = NULL;
1871         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872         folio_clear_hugetlb_restore_reserve(folio);
1873
1874         /*
1875          * If HPageRestoreReserve was set on page, page allocation consumed a
1876          * reservation.  If the page was associated with a subpool, there
1877          * would have been a page reserved in the subpool before allocation
1878          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1879          * reservation, do not call hugepage_subpool_put_pages() as this will
1880          * remove the reserved page from the subpool.
1881          */
1882         if (!restore_reserve) {
1883                 /*
1884                  * A return code of zero implies that the subpool will be
1885                  * under its minimum size if the reservation is not restored
1886                  * after page is free.  Therefore, force restore_reserve
1887                  * operation.
1888                  */
1889                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890                         restore_reserve = true;
1891         }
1892
1893         spin_lock_irqsave(&hugetlb_lock, flags);
1894         folio_clear_hugetlb_migratable(folio);
1895         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896                                      pages_per_huge_page(h), folio);
1897         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898                                           pages_per_huge_page(h), folio);
1899         if (restore_reserve)
1900                 h->resv_huge_pages++;
1901
1902         if (folio_test_hugetlb_temporary(folio)) {
1903                 remove_hugetlb_folio(h, folio, false);
1904                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905                 update_and_free_hugetlb_folio(h, folio, true);
1906         } else if (h->surplus_huge_pages_node[nid]) {
1907                 /* remove the page from active list */
1908                 remove_hugetlb_folio(h, folio, true);
1909                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910                 update_and_free_hugetlb_folio(h, folio, true);
1911         } else {
1912                 arch_clear_hugepage_flags(page);
1913                 enqueue_hugetlb_folio(h, folio);
1914                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1915         }
1916 }
1917
1918 /*
1919  * Must be called with the hugetlb lock held
1920  */
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 {
1923         lockdep_assert_held(&hugetlb_lock);
1924         h->nr_huge_pages++;
1925         h->nr_huge_pages_node[nid]++;
1926 }
1927
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 {
1930         hugetlb_vmemmap_optimize(h, &folio->page);
1931         INIT_LIST_HEAD(&folio->lru);
1932         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933         hugetlb_set_folio_subpool(folio, NULL);
1934         set_hugetlb_cgroup(folio, NULL);
1935         set_hugetlb_cgroup_rsvd(folio, NULL);
1936 }
1937
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 {
1940         __prep_new_hugetlb_folio(h, folio);
1941         spin_lock_irq(&hugetlb_lock);
1942         __prep_account_new_huge_page(h, nid);
1943         spin_unlock_irq(&hugetlb_lock);
1944 }
1945
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947                                         unsigned int order, bool demote)
1948 {
1949         int i, j;
1950         int nr_pages = 1 << order;
1951         struct page *p;
1952
1953         __folio_clear_reserved(folio);
1954         for (i = 0; i < nr_pages; i++) {
1955                 p = folio_page(folio, i);
1956
1957                 /*
1958                  * For gigantic hugepages allocated through bootmem at
1959                  * boot, it's safer to be consistent with the not-gigantic
1960                  * hugepages and clear the PG_reserved bit from all tail pages
1961                  * too.  Otherwise drivers using get_user_pages() to access tail
1962                  * pages may get the reference counting wrong if they see
1963                  * PG_reserved set on a tail page (despite the head page not
1964                  * having PG_reserved set).  Enforcing this consistency between
1965                  * head and tail pages allows drivers to optimize away a check
1966                  * on the head page when they need know if put_page() is needed
1967                  * after get_user_pages().
1968                  */
1969                 if (i != 0)     /* head page cleared above */
1970                         __ClearPageReserved(p);
1971                 /*
1972                  * Subtle and very unlikely
1973                  *
1974                  * Gigantic 'page allocators' such as memblock or cma will
1975                  * return a set of pages with each page ref counted.  We need
1976                  * to turn this set of pages into a compound page with tail
1977                  * page ref counts set to zero.  Code such as speculative page
1978                  * cache adding could take a ref on a 'to be' tail page.
1979                  * We need to respect any increased ref count, and only set
1980                  * the ref count to zero if count is currently 1.  If count
1981                  * is not 1, we return an error.  An error return indicates
1982                  * the set of pages can not be converted to a gigantic page.
1983                  * The caller who allocated the pages should then discard the
1984                  * pages using the appropriate free interface.
1985                  *
1986                  * In the case of demote, the ref count will be zero.
1987                  */
1988                 if (!demote) {
1989                         if (!page_ref_freeze(p, 1)) {
1990                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991                                 goto out_error;
1992                         }
1993                 } else {
1994                         VM_BUG_ON_PAGE(page_count(p), p);
1995                 }
1996                 if (i != 0)
1997                         set_compound_head(p, &folio->page);
1998         }
1999         __folio_set_head(folio);
2000         /* we rely on prep_new_hugetlb_folio to set the destructor */
2001         folio_set_order(folio, order);
2002         atomic_set(&folio->_entire_mapcount, -1);
2003         atomic_set(&folio->_nr_pages_mapped, 0);
2004         atomic_set(&folio->_pincount, 0);
2005         return true;
2006
2007 out_error:
2008         /* undo page modifications made above */
2009         for (j = 0; j < i; j++) {
2010                 p = folio_page(folio, j);
2011                 if (j != 0)
2012                         clear_compound_head(p);
2013                 set_page_refcounted(p);
2014         }
2015         /* need to clear PG_reserved on remaining tail pages  */
2016         for (; j < nr_pages; j++) {
2017                 p = folio_page(folio, j);
2018                 __ClearPageReserved(p);
2019         }
2020         return false;
2021 }
2022
2023 static bool prep_compound_gigantic_folio(struct folio *folio,
2024                                                         unsigned int order)
2025 {
2026         return __prep_compound_gigantic_folio(folio, order, false);
2027 }
2028
2029 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2030                                                         unsigned int order)
2031 {
2032         return __prep_compound_gigantic_folio(folio, order, true);
2033 }
2034
2035 /*
2036  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2037  * transparent huge pages.  See the PageTransHuge() documentation for more
2038  * details.
2039  */
2040 int PageHuge(struct page *page)
2041 {
2042         struct folio *folio;
2043
2044         if (!PageCompound(page))
2045                 return 0;
2046         folio = page_folio(page);
2047         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2048 }
2049 EXPORT_SYMBOL_GPL(PageHuge);
2050
2051 /**
2052  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2053  * @folio: The folio to test.
2054  *
2055  * Context: Any context.  Caller should have a reference on the folio to
2056  * prevent it from being turned into a tail page.
2057  * Return: True for hugetlbfs folios, false for anon folios or folios
2058  * belonging to other filesystems.
2059  */
2060 bool folio_test_hugetlb(struct folio *folio)
2061 {
2062         if (!folio_test_large(folio))
2063                 return false;
2064
2065         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2066 }
2067 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2068
2069 /*
2070  * Find and lock address space (mapping) in write mode.
2071  *
2072  * Upon entry, the page is locked which means that page_mapping() is
2073  * stable.  Due to locking order, we can only trylock_write.  If we can
2074  * not get the lock, simply return NULL to caller.
2075  */
2076 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2077 {
2078         struct address_space *mapping = page_mapping(hpage);
2079
2080         if (!mapping)
2081                 return mapping;
2082
2083         if (i_mmap_trylock_write(mapping))
2084                 return mapping;
2085
2086         return NULL;
2087 }
2088
2089 pgoff_t hugetlb_basepage_index(struct page *page)
2090 {
2091         struct page *page_head = compound_head(page);
2092         pgoff_t index = page_index(page_head);
2093         unsigned long compound_idx;
2094
2095         if (compound_order(page_head) > MAX_ORDER)
2096                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2097         else
2098                 compound_idx = page - page_head;
2099
2100         return (index << compound_order(page_head)) + compound_idx;
2101 }
2102
2103 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2104                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2105                 nodemask_t *node_alloc_noretry)
2106 {
2107         int order = huge_page_order(h);
2108         struct page *page;
2109         bool alloc_try_hard = true;
2110         bool retry = true;
2111
2112         /*
2113          * By default we always try hard to allocate the page with
2114          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2115          * a loop (to adjust global huge page counts) and previous allocation
2116          * failed, do not continue to try hard on the same node.  Use the
2117          * node_alloc_noretry bitmap to manage this state information.
2118          */
2119         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2120                 alloc_try_hard = false;
2121         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2122         if (alloc_try_hard)
2123                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2124         if (nid == NUMA_NO_NODE)
2125                 nid = numa_mem_id();
2126 retry:
2127         page = __alloc_pages(gfp_mask, order, nid, nmask);
2128
2129         /* Freeze head page */
2130         if (page && !page_ref_freeze(page, 1)) {
2131                 __free_pages(page, order);
2132                 if (retry) {    /* retry once */
2133                         retry = false;
2134                         goto retry;
2135                 }
2136                 /* WOW!  twice in a row. */
2137                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2138                 page = NULL;
2139         }
2140
2141         /*
2142          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2143          * indicates an overall state change.  Clear bit so that we resume
2144          * normal 'try hard' allocations.
2145          */
2146         if (node_alloc_noretry && page && !alloc_try_hard)
2147                 node_clear(nid, *node_alloc_noretry);
2148
2149         /*
2150          * If we tried hard to get a page but failed, set bit so that
2151          * subsequent attempts will not try as hard until there is an
2152          * overall state change.
2153          */
2154         if (node_alloc_noretry && !page && alloc_try_hard)
2155                 node_set(nid, *node_alloc_noretry);
2156
2157         if (!page) {
2158                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2159                 return NULL;
2160         }
2161
2162         __count_vm_event(HTLB_BUDDY_PGALLOC);
2163         return page_folio(page);
2164 }
2165
2166 /*
2167  * Common helper to allocate a fresh hugetlb page. All specific allocators
2168  * should use this function to get new hugetlb pages
2169  *
2170  * Note that returned page is 'frozen':  ref count of head page and all tail
2171  * pages is zero.
2172  */
2173 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2174                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2175                 nodemask_t *node_alloc_noretry)
2176 {
2177         struct folio *folio;
2178         bool retry = false;
2179
2180 retry:
2181         if (hstate_is_gigantic(h))
2182                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2183         else
2184                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2185                                 nid, nmask, node_alloc_noretry);
2186         if (!folio)
2187                 return NULL;
2188         if (hstate_is_gigantic(h)) {
2189                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2190                         /*
2191                          * Rare failure to convert pages to compound page.
2192                          * Free pages and try again - ONCE!
2193                          */
2194                         free_gigantic_folio(folio, huge_page_order(h));
2195                         if (!retry) {
2196                                 retry = true;
2197                                 goto retry;
2198                         }
2199                         return NULL;
2200                 }
2201         }
2202         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2203
2204         return folio;
2205 }
2206
2207 /*
2208  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2209  * manner.
2210  */
2211 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2212                                 nodemask_t *node_alloc_noretry)
2213 {
2214         struct folio *folio;
2215         int nr_nodes, node;
2216         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2217
2218         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2219                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2220                                         nodes_allowed, node_alloc_noretry);
2221                 if (folio) {
2222                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2223                         return 1;
2224                 }
2225         }
2226
2227         return 0;
2228 }
2229
2230 /*
2231  * Remove huge page from pool from next node to free.  Attempt to keep
2232  * persistent huge pages more or less balanced over allowed nodes.
2233  * This routine only 'removes' the hugetlb page.  The caller must make
2234  * an additional call to free the page to low level allocators.
2235  * Called with hugetlb_lock locked.
2236  */
2237 static struct page *remove_pool_huge_page(struct hstate *h,
2238                                                 nodemask_t *nodes_allowed,
2239                                                  bool acct_surplus)
2240 {
2241         int nr_nodes, node;
2242         struct page *page = NULL;
2243         struct folio *folio;
2244
2245         lockdep_assert_held(&hugetlb_lock);
2246         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2247                 /*
2248                  * If we're returning unused surplus pages, only examine
2249                  * nodes with surplus pages.
2250                  */
2251                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2252                     !list_empty(&h->hugepage_freelists[node])) {
2253                         page = list_entry(h->hugepage_freelists[node].next,
2254                                           struct page, lru);
2255                         folio = page_folio(page);
2256                         remove_hugetlb_folio(h, folio, acct_surplus);
2257                         break;
2258                 }
2259         }
2260
2261         return page;
2262 }
2263
2264 /*
2265  * Dissolve a given free hugepage into free buddy pages. This function does
2266  * nothing for in-use hugepages and non-hugepages.
2267  * This function returns values like below:
2268  *
2269  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2270  *           when the system is under memory pressure and the feature of
2271  *           freeing unused vmemmap pages associated with each hugetlb page
2272  *           is enabled.
2273  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2274  *           (allocated or reserved.)
2275  *       0:  successfully dissolved free hugepages or the page is not a
2276  *           hugepage (considered as already dissolved)
2277  */
2278 int dissolve_free_huge_page(struct page *page)
2279 {
2280         int rc = -EBUSY;
2281         struct folio *folio = page_folio(page);
2282
2283 retry:
2284         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2285         if (!folio_test_hugetlb(folio))
2286                 return 0;
2287
2288         spin_lock_irq(&hugetlb_lock);
2289         if (!folio_test_hugetlb(folio)) {
2290                 rc = 0;
2291                 goto out;
2292         }
2293
2294         if (!folio_ref_count(folio)) {
2295                 struct hstate *h = folio_hstate(folio);
2296                 if (!available_huge_pages(h))
2297                         goto out;
2298
2299                 /*
2300                  * We should make sure that the page is already on the free list
2301                  * when it is dissolved.
2302                  */
2303                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2304                         spin_unlock_irq(&hugetlb_lock);
2305                         cond_resched();
2306
2307                         /*
2308                          * Theoretically, we should return -EBUSY when we
2309                          * encounter this race. In fact, we have a chance
2310                          * to successfully dissolve the page if we do a
2311                          * retry. Because the race window is quite small.
2312                          * If we seize this opportunity, it is an optimization
2313                          * for increasing the success rate of dissolving page.
2314                          */
2315                         goto retry;
2316                 }
2317
2318                 remove_hugetlb_folio(h, folio, false);
2319                 h->max_huge_pages--;
2320                 spin_unlock_irq(&hugetlb_lock);
2321
2322                 /*
2323                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2324                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2325                  * free the page if it can not allocate required vmemmap.  We
2326                  * need to adjust max_huge_pages if the page is not freed.
2327                  * Attempt to allocate vmemmmap here so that we can take
2328                  * appropriate action on failure.
2329                  */
2330                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2331                 if (!rc) {
2332                         update_and_free_hugetlb_folio(h, folio, false);
2333                 } else {
2334                         spin_lock_irq(&hugetlb_lock);
2335                         add_hugetlb_folio(h, folio, false);
2336                         h->max_huge_pages++;
2337                         spin_unlock_irq(&hugetlb_lock);
2338                 }
2339
2340                 return rc;
2341         }
2342 out:
2343         spin_unlock_irq(&hugetlb_lock);
2344         return rc;
2345 }
2346
2347 /*
2348  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2349  * make specified memory blocks removable from the system.
2350  * Note that this will dissolve a free gigantic hugepage completely, if any
2351  * part of it lies within the given range.
2352  * Also note that if dissolve_free_huge_page() returns with an error, all
2353  * free hugepages that were dissolved before that error are lost.
2354  */
2355 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2356 {
2357         unsigned long pfn;
2358         struct page *page;
2359         int rc = 0;
2360         unsigned int order;
2361         struct hstate *h;
2362
2363         if (!hugepages_supported())
2364                 return rc;
2365
2366         order = huge_page_order(&default_hstate);
2367         for_each_hstate(h)
2368                 order = min(order, huge_page_order(h));
2369
2370         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2371                 page = pfn_to_page(pfn);
2372                 rc = dissolve_free_huge_page(page);
2373                 if (rc)
2374                         break;
2375         }
2376
2377         return rc;
2378 }
2379
2380 /*
2381  * Allocates a fresh surplus page from the page allocator.
2382  */
2383 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2384                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2385 {
2386         struct folio *folio = NULL;
2387
2388         if (hstate_is_gigantic(h))
2389                 return NULL;
2390
2391         spin_lock_irq(&hugetlb_lock);
2392         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2393                 goto out_unlock;
2394         spin_unlock_irq(&hugetlb_lock);
2395
2396         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2397         if (!folio)
2398                 return NULL;
2399
2400         spin_lock_irq(&hugetlb_lock);
2401         /*
2402          * We could have raced with the pool size change.
2403          * Double check that and simply deallocate the new page
2404          * if we would end up overcommiting the surpluses. Abuse
2405          * temporary page to workaround the nasty free_huge_page
2406          * codeflow
2407          */
2408         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2409                 folio_set_hugetlb_temporary(folio);
2410                 spin_unlock_irq(&hugetlb_lock);
2411                 free_huge_page(&folio->page);
2412                 return NULL;
2413         }
2414
2415         h->surplus_huge_pages++;
2416         h->surplus_huge_pages_node[folio_nid(folio)]++;
2417
2418 out_unlock:
2419         spin_unlock_irq(&hugetlb_lock);
2420
2421         return folio;
2422 }
2423
2424 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2425                                      int nid, nodemask_t *nmask)
2426 {
2427         struct folio *folio;
2428
2429         if (hstate_is_gigantic(h))
2430                 return NULL;
2431
2432         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2433         if (!folio)
2434                 return NULL;
2435
2436         /* fresh huge pages are frozen */
2437         folio_ref_unfreeze(folio, 1);
2438         /*
2439          * We do not account these pages as surplus because they are only
2440          * temporary and will be released properly on the last reference
2441          */
2442         folio_set_hugetlb_temporary(folio);
2443
2444         return folio;
2445 }
2446
2447 /*
2448  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2449  */
2450 static
2451 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2452                 struct vm_area_struct *vma, unsigned long addr)
2453 {
2454         struct folio *folio = NULL;
2455         struct mempolicy *mpol;
2456         gfp_t gfp_mask = htlb_alloc_mask(h);
2457         int nid;
2458         nodemask_t *nodemask;
2459
2460         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2461         if (mpol_is_preferred_many(mpol)) {
2462                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2463
2464                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2465                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2466
2467                 /* Fallback to all nodes if page==NULL */
2468                 nodemask = NULL;
2469         }
2470
2471         if (!folio)
2472                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2473         mpol_cond_put(mpol);
2474         return folio;
2475 }
2476
2477 /* folio migration callback function */
2478 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2479                 nodemask_t *nmask, gfp_t gfp_mask)
2480 {
2481         spin_lock_irq(&hugetlb_lock);
2482         if (available_huge_pages(h)) {
2483                 struct folio *folio;
2484
2485                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2486                                                 preferred_nid, nmask);
2487                 if (folio) {
2488                         spin_unlock_irq(&hugetlb_lock);
2489                         return folio;
2490                 }
2491         }
2492         spin_unlock_irq(&hugetlb_lock);
2493
2494         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2495 }
2496
2497 /* mempolicy aware migration callback */
2498 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2499                 unsigned long address)
2500 {
2501         struct mempolicy *mpol;
2502         nodemask_t *nodemask;
2503         struct folio *folio;
2504         gfp_t gfp_mask;
2505         int node;
2506
2507         gfp_mask = htlb_alloc_mask(h);
2508         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2509         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2510         mpol_cond_put(mpol);
2511
2512         return folio;
2513 }
2514
2515 /*
2516  * Increase the hugetlb pool such that it can accommodate a reservation
2517  * of size 'delta'.
2518  */
2519 static int gather_surplus_pages(struct hstate *h, long delta)
2520         __must_hold(&hugetlb_lock)
2521 {
2522         LIST_HEAD(surplus_list);
2523         struct folio *folio;
2524         struct page *page, *tmp;
2525         int ret;
2526         long i;
2527         long needed, allocated;
2528         bool alloc_ok = true;
2529
2530         lockdep_assert_held(&hugetlb_lock);
2531         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2532         if (needed <= 0) {
2533                 h->resv_huge_pages += delta;
2534                 return 0;
2535         }
2536
2537         allocated = 0;
2538
2539         ret = -ENOMEM;
2540 retry:
2541         spin_unlock_irq(&hugetlb_lock);
2542         for (i = 0; i < needed; i++) {
2543                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2544                                 NUMA_NO_NODE, NULL);
2545                 if (!folio) {
2546                         alloc_ok = false;
2547                         break;
2548                 }
2549                 list_add(&folio->lru, &surplus_list);
2550                 cond_resched();
2551         }
2552         allocated += i;
2553
2554         /*
2555          * After retaking hugetlb_lock, we need to recalculate 'needed'
2556          * because either resv_huge_pages or free_huge_pages may have changed.
2557          */
2558         spin_lock_irq(&hugetlb_lock);
2559         needed = (h->resv_huge_pages + delta) -
2560                         (h->free_huge_pages + allocated);
2561         if (needed > 0) {
2562                 if (alloc_ok)
2563                         goto retry;
2564                 /*
2565                  * We were not able to allocate enough pages to
2566                  * satisfy the entire reservation so we free what
2567                  * we've allocated so far.
2568                  */
2569                 goto free;
2570         }
2571         /*
2572          * The surplus_list now contains _at_least_ the number of extra pages
2573          * needed to accommodate the reservation.  Add the appropriate number
2574          * of pages to the hugetlb pool and free the extras back to the buddy
2575          * allocator.  Commit the entire reservation here to prevent another
2576          * process from stealing the pages as they are added to the pool but
2577          * before they are reserved.
2578          */
2579         needed += allocated;
2580         h->resv_huge_pages += delta;
2581         ret = 0;
2582
2583         /* Free the needed pages to the hugetlb pool */
2584         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2585                 if ((--needed) < 0)
2586                         break;
2587                 /* Add the page to the hugetlb allocator */
2588                 enqueue_hugetlb_folio(h, page_folio(page));
2589         }
2590 free:
2591         spin_unlock_irq(&hugetlb_lock);
2592
2593         /*
2594          * Free unnecessary surplus pages to the buddy allocator.
2595          * Pages have no ref count, call free_huge_page directly.
2596          */
2597         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2598                 free_huge_page(page);
2599         spin_lock_irq(&hugetlb_lock);
2600
2601         return ret;
2602 }
2603
2604 /*
2605  * This routine has two main purposes:
2606  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2607  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2608  *    to the associated reservation map.
2609  * 2) Free any unused surplus pages that may have been allocated to satisfy
2610  *    the reservation.  As many as unused_resv_pages may be freed.
2611  */
2612 static void return_unused_surplus_pages(struct hstate *h,
2613                                         unsigned long unused_resv_pages)
2614 {
2615         unsigned long nr_pages;
2616         struct page *page;
2617         LIST_HEAD(page_list);
2618
2619         lockdep_assert_held(&hugetlb_lock);
2620         /* Uncommit the reservation */
2621         h->resv_huge_pages -= unused_resv_pages;
2622
2623         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2624                 goto out;
2625
2626         /*
2627          * Part (or even all) of the reservation could have been backed
2628          * by pre-allocated pages. Only free surplus pages.
2629          */
2630         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2631
2632         /*
2633          * We want to release as many surplus pages as possible, spread
2634          * evenly across all nodes with memory. Iterate across these nodes
2635          * until we can no longer free unreserved surplus pages. This occurs
2636          * when the nodes with surplus pages have no free pages.
2637          * remove_pool_huge_page() will balance the freed pages across the
2638          * on-line nodes with memory and will handle the hstate accounting.
2639          */
2640         while (nr_pages--) {
2641                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2642                 if (!page)
2643                         goto out;
2644
2645                 list_add(&page->lru, &page_list);
2646         }
2647
2648 out:
2649         spin_unlock_irq(&hugetlb_lock);
2650         update_and_free_pages_bulk(h, &page_list);
2651         spin_lock_irq(&hugetlb_lock);
2652 }
2653
2654
2655 /*
2656  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2657  * are used by the huge page allocation routines to manage reservations.
2658  *
2659  * vma_needs_reservation is called to determine if the huge page at addr
2660  * within the vma has an associated reservation.  If a reservation is
2661  * needed, the value 1 is returned.  The caller is then responsible for
2662  * managing the global reservation and subpool usage counts.  After
2663  * the huge page has been allocated, vma_commit_reservation is called
2664  * to add the page to the reservation map.  If the page allocation fails,
2665  * the reservation must be ended instead of committed.  vma_end_reservation
2666  * is called in such cases.
2667  *
2668  * In the normal case, vma_commit_reservation returns the same value
2669  * as the preceding vma_needs_reservation call.  The only time this
2670  * is not the case is if a reserve map was changed between calls.  It
2671  * is the responsibility of the caller to notice the difference and
2672  * take appropriate action.
2673  *
2674  * vma_add_reservation is used in error paths where a reservation must
2675  * be restored when a newly allocated huge page must be freed.  It is
2676  * to be called after calling vma_needs_reservation to determine if a
2677  * reservation exists.
2678  *
2679  * vma_del_reservation is used in error paths where an entry in the reserve
2680  * map was created during huge page allocation and must be removed.  It is to
2681  * be called after calling vma_needs_reservation to determine if a reservation
2682  * exists.
2683  */
2684 enum vma_resv_mode {
2685         VMA_NEEDS_RESV,
2686         VMA_COMMIT_RESV,
2687         VMA_END_RESV,
2688         VMA_ADD_RESV,
2689         VMA_DEL_RESV,
2690 };
2691 static long __vma_reservation_common(struct hstate *h,
2692                                 struct vm_area_struct *vma, unsigned long addr,
2693                                 enum vma_resv_mode mode)
2694 {
2695         struct resv_map *resv;
2696         pgoff_t idx;
2697         long ret;
2698         long dummy_out_regions_needed;
2699
2700         resv = vma_resv_map(vma);
2701         if (!resv)
2702                 return 1;
2703
2704         idx = vma_hugecache_offset(h, vma, addr);
2705         switch (mode) {
2706         case VMA_NEEDS_RESV:
2707                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2708                 /* We assume that vma_reservation_* routines always operate on
2709                  * 1 page, and that adding to resv map a 1 page entry can only
2710                  * ever require 1 region.
2711                  */
2712                 VM_BUG_ON(dummy_out_regions_needed != 1);
2713                 break;
2714         case VMA_COMMIT_RESV:
2715                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2716                 /* region_add calls of range 1 should never fail. */
2717                 VM_BUG_ON(ret < 0);
2718                 break;
2719         case VMA_END_RESV:
2720                 region_abort(resv, idx, idx + 1, 1);
2721                 ret = 0;
2722                 break;
2723         case VMA_ADD_RESV:
2724                 if (vma->vm_flags & VM_MAYSHARE) {
2725                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2726                         /* region_add calls of range 1 should never fail. */
2727                         VM_BUG_ON(ret < 0);
2728                 } else {
2729                         region_abort(resv, idx, idx + 1, 1);
2730                         ret = region_del(resv, idx, idx + 1);
2731                 }
2732                 break;
2733         case VMA_DEL_RESV:
2734                 if (vma->vm_flags & VM_MAYSHARE) {
2735                         region_abort(resv, idx, idx + 1, 1);
2736                         ret = region_del(resv, idx, idx + 1);
2737                 } else {
2738                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739                         /* region_add calls of range 1 should never fail. */
2740                         VM_BUG_ON(ret < 0);
2741                 }
2742                 break;
2743         default:
2744                 BUG();
2745         }
2746
2747         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2748                 return ret;
2749         /*
2750          * We know private mapping must have HPAGE_RESV_OWNER set.
2751          *
2752          * In most cases, reserves always exist for private mappings.
2753          * However, a file associated with mapping could have been
2754          * hole punched or truncated after reserves were consumed.
2755          * As subsequent fault on such a range will not use reserves.
2756          * Subtle - The reserve map for private mappings has the
2757          * opposite meaning than that of shared mappings.  If NO
2758          * entry is in the reserve map, it means a reservation exists.
2759          * If an entry exists in the reserve map, it means the
2760          * reservation has already been consumed.  As a result, the
2761          * return value of this routine is the opposite of the
2762          * value returned from reserve map manipulation routines above.
2763          */
2764         if (ret > 0)
2765                 return 0;
2766         if (ret == 0)
2767                 return 1;
2768         return ret;
2769 }
2770
2771 static long vma_needs_reservation(struct hstate *h,
2772                         struct vm_area_struct *vma, unsigned long addr)
2773 {
2774         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2775 }
2776
2777 static long vma_commit_reservation(struct hstate *h,
2778                         struct vm_area_struct *vma, unsigned long addr)
2779 {
2780         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2781 }
2782
2783 static void vma_end_reservation(struct hstate *h,
2784                         struct vm_area_struct *vma, unsigned long addr)
2785 {
2786         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2787 }
2788
2789 static long vma_add_reservation(struct hstate *h,
2790                         struct vm_area_struct *vma, unsigned long addr)
2791 {
2792         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2793 }
2794
2795 static long vma_del_reservation(struct hstate *h,
2796                         struct vm_area_struct *vma, unsigned long addr)
2797 {
2798         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2799 }
2800
2801 /*
2802  * This routine is called to restore reservation information on error paths.
2803  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2804  * and the hugetlb mutex should remain held when calling this routine.
2805  *
2806  * It handles two specific cases:
2807  * 1) A reservation was in place and the folio consumed the reservation.
2808  *    hugetlb_restore_reserve is set in the folio.
2809  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2810  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2811  *
2812  * In case 1, free_huge_page later in the error path will increment the
2813  * global reserve count.  But, free_huge_page does not have enough context
2814  * to adjust the reservation map.  This case deals primarily with private
2815  * mappings.  Adjust the reserve map here to be consistent with global
2816  * reserve count adjustments to be made by free_huge_page.  Make sure the
2817  * reserve map indicates there is a reservation present.
2818  *
2819  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2820  */
2821 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2822                         unsigned long address, struct folio *folio)
2823 {
2824         long rc = vma_needs_reservation(h, vma, address);
2825
2826         if (folio_test_hugetlb_restore_reserve(folio)) {
2827                 if (unlikely(rc < 0))
2828                         /*
2829                          * Rare out of memory condition in reserve map
2830                          * manipulation.  Clear hugetlb_restore_reserve so
2831                          * that global reserve count will not be incremented
2832                          * by free_huge_page.  This will make it appear
2833                          * as though the reservation for this folio was
2834                          * consumed.  This may prevent the task from
2835                          * faulting in the folio at a later time.  This
2836                          * is better than inconsistent global huge page
2837                          * accounting of reserve counts.
2838                          */
2839                         folio_clear_hugetlb_restore_reserve(folio);
2840                 else if (rc)
2841                         (void)vma_add_reservation(h, vma, address);
2842                 else
2843                         vma_end_reservation(h, vma, address);
2844         } else {
2845                 if (!rc) {
2846                         /*
2847                          * This indicates there is an entry in the reserve map
2848                          * not added by alloc_hugetlb_folio.  We know it was added
2849                          * before the alloc_hugetlb_folio call, otherwise
2850                          * hugetlb_restore_reserve would be set on the folio.
2851                          * Remove the entry so that a subsequent allocation
2852                          * does not consume a reservation.
2853                          */
2854                         rc = vma_del_reservation(h, vma, address);
2855                         if (rc < 0)
2856                                 /*
2857                                  * VERY rare out of memory condition.  Since
2858                                  * we can not delete the entry, set
2859                                  * hugetlb_restore_reserve so that the reserve
2860                                  * count will be incremented when the folio
2861                                  * is freed.  This reserve will be consumed
2862                                  * on a subsequent allocation.
2863                                  */
2864                                 folio_set_hugetlb_restore_reserve(folio);
2865                 } else if (rc < 0) {
2866                         /*
2867                          * Rare out of memory condition from
2868                          * vma_needs_reservation call.  Memory allocation is
2869                          * only attempted if a new entry is needed.  Therefore,
2870                          * this implies there is not an entry in the
2871                          * reserve map.
2872                          *
2873                          * For shared mappings, no entry in the map indicates
2874                          * no reservation.  We are done.
2875                          */
2876                         if (!(vma->vm_flags & VM_MAYSHARE))
2877                                 /*
2878                                  * For private mappings, no entry indicates
2879                                  * a reservation is present.  Since we can
2880                                  * not add an entry, set hugetlb_restore_reserve
2881                                  * on the folio so reserve count will be
2882                                  * incremented when freed.  This reserve will
2883                                  * be consumed on a subsequent allocation.
2884                                  */
2885                                 folio_set_hugetlb_restore_reserve(folio);
2886                 } else
2887                         /*
2888                          * No reservation present, do nothing
2889                          */
2890                          vma_end_reservation(h, vma, address);
2891         }
2892 }
2893
2894 /*
2895  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2896  * the old one
2897  * @h: struct hstate old page belongs to
2898  * @old_folio: Old folio to dissolve
2899  * @list: List to isolate the page in case we need to
2900  * Returns 0 on success, otherwise negated error.
2901  */
2902 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2903                         struct folio *old_folio, struct list_head *list)
2904 {
2905         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2906         int nid = folio_nid(old_folio);
2907         struct folio *new_folio;
2908         int ret = 0;
2909
2910         /*
2911          * Before dissolving the folio, we need to allocate a new one for the
2912          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2913          * by doing everything but actually updating counters and adding to
2914          * the pool.  This simplifies and let us do most of the processing
2915          * under the lock.
2916          */
2917         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2918         if (!new_folio)
2919                 return -ENOMEM;
2920         __prep_new_hugetlb_folio(h, new_folio);
2921
2922 retry:
2923         spin_lock_irq(&hugetlb_lock);
2924         if (!folio_test_hugetlb(old_folio)) {
2925                 /*
2926                  * Freed from under us. Drop new_folio too.
2927                  */
2928                 goto free_new;
2929         } else if (folio_ref_count(old_folio)) {
2930                 bool isolated;
2931
2932                 /*
2933                  * Someone has grabbed the folio, try to isolate it here.
2934                  * Fail with -EBUSY if not possible.
2935                  */
2936                 spin_unlock_irq(&hugetlb_lock);
2937                 isolated = isolate_hugetlb(old_folio, list);
2938                 ret = isolated ? 0 : -EBUSY;
2939                 spin_lock_irq(&hugetlb_lock);
2940                 goto free_new;
2941         } else if (!folio_test_hugetlb_freed(old_folio)) {
2942                 /*
2943                  * Folio's refcount is 0 but it has not been enqueued in the
2944                  * freelist yet. Race window is small, so we can succeed here if
2945                  * we retry.
2946                  */
2947                 spin_unlock_irq(&hugetlb_lock);
2948                 cond_resched();
2949                 goto retry;
2950         } else {
2951                 /*
2952                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2953                  * the freelist and decrease the counters. These will be
2954                  * incremented again when calling __prep_account_new_huge_page()
2955                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2956                  * remain stable since this happens under the lock.
2957                  */
2958                 remove_hugetlb_folio(h, old_folio, false);
2959
2960                 /*
2961                  * Ref count on new_folio is already zero as it was dropped
2962                  * earlier.  It can be directly added to the pool free list.
2963                  */
2964                 __prep_account_new_huge_page(h, nid);
2965                 enqueue_hugetlb_folio(h, new_folio);
2966
2967                 /*
2968                  * Folio has been replaced, we can safely free the old one.
2969                  */
2970                 spin_unlock_irq(&hugetlb_lock);
2971                 update_and_free_hugetlb_folio(h, old_folio, false);
2972         }
2973
2974         return ret;
2975
2976 free_new:
2977         spin_unlock_irq(&hugetlb_lock);
2978         /* Folio has a zero ref count, but needs a ref to be freed */
2979         folio_ref_unfreeze(new_folio, 1);
2980         update_and_free_hugetlb_folio(h, new_folio, false);
2981
2982         return ret;
2983 }
2984
2985 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2986 {
2987         struct hstate *h;
2988         struct folio *folio = page_folio(page);
2989         int ret = -EBUSY;
2990
2991         /*
2992          * The page might have been dissolved from under our feet, so make sure
2993          * to carefully check the state under the lock.
2994          * Return success when racing as if we dissolved the page ourselves.
2995          */
2996         spin_lock_irq(&hugetlb_lock);
2997         if (folio_test_hugetlb(folio)) {
2998                 h = folio_hstate(folio);
2999         } else {
3000                 spin_unlock_irq(&hugetlb_lock);
3001                 return 0;
3002         }
3003         spin_unlock_irq(&hugetlb_lock);
3004
3005         /*
3006          * Fence off gigantic pages as there is a cyclic dependency between
3007          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3008          * of bailing out right away without further retrying.
3009          */
3010         if (hstate_is_gigantic(h))
3011                 return -ENOMEM;
3012
3013         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3014                 ret = 0;
3015         else if (!folio_ref_count(folio))
3016                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3017
3018         return ret;
3019 }
3020
3021 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3022                                     unsigned long addr, int avoid_reserve)
3023 {
3024         struct hugepage_subpool *spool = subpool_vma(vma);
3025         struct hstate *h = hstate_vma(vma);
3026         struct folio *folio;
3027         long map_chg, map_commit;
3028         long gbl_chg;
3029         int ret, idx;
3030         struct hugetlb_cgroup *h_cg = NULL;
3031         bool deferred_reserve;
3032
3033         idx = hstate_index(h);
3034         /*
3035          * Examine the region/reserve map to determine if the process
3036          * has a reservation for the page to be allocated.  A return
3037          * code of zero indicates a reservation exists (no change).
3038          */
3039         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3040         if (map_chg < 0)
3041                 return ERR_PTR(-ENOMEM);
3042
3043         /*
3044          * Processes that did not create the mapping will have no
3045          * reserves as indicated by the region/reserve map. Check
3046          * that the allocation will not exceed the subpool limit.
3047          * Allocations for MAP_NORESERVE mappings also need to be
3048          * checked against any subpool limit.
3049          */
3050         if (map_chg || avoid_reserve) {
3051                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3052                 if (gbl_chg < 0) {
3053                         vma_end_reservation(h, vma, addr);
3054                         return ERR_PTR(-ENOSPC);
3055                 }
3056
3057                 /*
3058                  * Even though there was no reservation in the region/reserve
3059                  * map, there could be reservations associated with the
3060                  * subpool that can be used.  This would be indicated if the
3061                  * return value of hugepage_subpool_get_pages() is zero.
3062                  * However, if avoid_reserve is specified we still avoid even
3063                  * the subpool reservations.
3064                  */
3065                 if (avoid_reserve)
3066                         gbl_chg = 1;
3067         }
3068
3069         /* If this allocation is not consuming a reservation, charge it now.
3070          */
3071         deferred_reserve = map_chg || avoid_reserve;
3072         if (deferred_reserve) {
3073                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3074                         idx, pages_per_huge_page(h), &h_cg);
3075                 if (ret)
3076                         goto out_subpool_put;
3077         }
3078
3079         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3080         if (ret)
3081                 goto out_uncharge_cgroup_reservation;
3082
3083         spin_lock_irq(&hugetlb_lock);
3084         /*
3085          * glb_chg is passed to indicate whether or not a page must be taken
3086          * from the global free pool (global change).  gbl_chg == 0 indicates
3087          * a reservation exists for the allocation.
3088          */
3089         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3090         if (!folio) {
3091                 spin_unlock_irq(&hugetlb_lock);
3092                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3093                 if (!folio)
3094                         goto out_uncharge_cgroup;
3095                 spin_lock_irq(&hugetlb_lock);
3096                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3097                         folio_set_hugetlb_restore_reserve(folio);
3098                         h->resv_huge_pages--;
3099                 }
3100                 list_add(&folio->lru, &h->hugepage_activelist);
3101                 folio_ref_unfreeze(folio, 1);
3102                 /* Fall through */
3103         }
3104
3105         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3106         /* If allocation is not consuming a reservation, also store the
3107          * hugetlb_cgroup pointer on the page.
3108          */
3109         if (deferred_reserve) {
3110                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3111                                                   h_cg, folio);
3112         }
3113
3114         spin_unlock_irq(&hugetlb_lock);
3115
3116         hugetlb_set_folio_subpool(folio, spool);
3117
3118         map_commit = vma_commit_reservation(h, vma, addr);
3119         if (unlikely(map_chg > map_commit)) {
3120                 /*
3121                  * The page was added to the reservation map between
3122                  * vma_needs_reservation and vma_commit_reservation.
3123                  * This indicates a race with hugetlb_reserve_pages.
3124                  * Adjust for the subpool count incremented above AND
3125                  * in hugetlb_reserve_pages for the same page.  Also,
3126                  * the reservation count added in hugetlb_reserve_pages
3127                  * no longer applies.
3128                  */
3129                 long rsv_adjust;
3130
3131                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3132                 hugetlb_acct_memory(h, -rsv_adjust);
3133                 if (deferred_reserve)
3134                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3135                                         pages_per_huge_page(h), folio);
3136         }
3137         return folio;
3138
3139 out_uncharge_cgroup:
3140         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3141 out_uncharge_cgroup_reservation:
3142         if (deferred_reserve)
3143                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3144                                                     h_cg);
3145 out_subpool_put:
3146         if (map_chg || avoid_reserve)
3147                 hugepage_subpool_put_pages(spool, 1);
3148         vma_end_reservation(h, vma, addr);
3149         return ERR_PTR(-ENOSPC);
3150 }
3151
3152 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3153         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3154 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3155 {
3156         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3157         int nr_nodes, node;
3158
3159         /* do node specific alloc */
3160         if (nid != NUMA_NO_NODE) {
3161                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3162                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3163                 if (!m)
3164                         return 0;
3165                 goto found;
3166         }
3167         /* allocate from next node when distributing huge pages */
3168         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3169                 m = memblock_alloc_try_nid_raw(
3170                                 huge_page_size(h), huge_page_size(h),
3171                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3172                 /*
3173                  * Use the beginning of the huge page to store the
3174                  * huge_bootmem_page struct (until gather_bootmem
3175                  * puts them into the mem_map).
3176                  */
3177                 if (!m)
3178                         return 0;
3179                 goto found;
3180         }
3181
3182 found:
3183         /* Put them into a private list first because mem_map is not up yet */
3184         INIT_LIST_HEAD(&m->list);
3185         list_add(&m->list, &huge_boot_pages);
3186         m->hstate = h;
3187         return 1;
3188 }
3189
3190 /*
3191  * Put bootmem huge pages into the standard lists after mem_map is up.
3192  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3193  */
3194 static void __init gather_bootmem_prealloc(void)
3195 {
3196         struct huge_bootmem_page *m;
3197
3198         list_for_each_entry(m, &huge_boot_pages, list) {
3199                 struct page *page = virt_to_page(m);
3200                 struct folio *folio = page_folio(page);
3201                 struct hstate *h = m->hstate;
3202
3203                 VM_BUG_ON(!hstate_is_gigantic(h));
3204                 WARN_ON(folio_ref_count(folio) != 1);
3205                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3206                         WARN_ON(folio_test_reserved(folio));
3207                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3208                         free_huge_page(page); /* add to the hugepage allocator */
3209                 } else {
3210                         /* VERY unlikely inflated ref count on a tail page */
3211                         free_gigantic_folio(folio, huge_page_order(h));
3212                 }
3213
3214                 /*
3215                  * We need to restore the 'stolen' pages to totalram_pages
3216                  * in order to fix confusing memory reports from free(1) and
3217                  * other side-effects, like CommitLimit going negative.
3218                  */
3219                 adjust_managed_page_count(page, pages_per_huge_page(h));
3220                 cond_resched();
3221         }
3222 }
3223 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3224 {
3225         unsigned long i;
3226         char buf[32];
3227
3228         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3229                 if (hstate_is_gigantic(h)) {
3230                         if (!alloc_bootmem_huge_page(h, nid))
3231                                 break;
3232                 } else {
3233                         struct folio *folio;
3234                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3235
3236                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3237                                         &node_states[N_MEMORY], NULL);
3238                         if (!folio)
3239                                 break;
3240                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3241                 }
3242                 cond_resched();
3243         }
3244         if (i == h->max_huge_pages_node[nid])
3245                 return;
3246
3247         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3248         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3249                 h->max_huge_pages_node[nid], buf, nid, i);
3250         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3251         h->max_huge_pages_node[nid] = i;
3252 }
3253
3254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3255 {
3256         unsigned long i;
3257         nodemask_t *node_alloc_noretry;
3258         bool node_specific_alloc = false;
3259
3260         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3261         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3262                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3263                 return;
3264         }
3265
3266         /* do node specific alloc */
3267         for_each_online_node(i) {
3268                 if (h->max_huge_pages_node[i] > 0) {
3269                         hugetlb_hstate_alloc_pages_onenode(h, i);
3270                         node_specific_alloc = true;
3271                 }
3272         }
3273
3274         if (node_specific_alloc)
3275                 return;
3276
3277         /* below will do all node balanced alloc */
3278         if (!hstate_is_gigantic(h)) {
3279                 /*
3280                  * Bit mask controlling how hard we retry per-node allocations.
3281                  * Ignore errors as lower level routines can deal with
3282                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3283                  * time, we are likely in bigger trouble.
3284                  */
3285                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3286                                                 GFP_KERNEL);
3287         } else {
3288                 /* allocations done at boot time */
3289                 node_alloc_noretry = NULL;
3290         }
3291
3292         /* bit mask controlling how hard we retry per-node allocations */
3293         if (node_alloc_noretry)
3294                 nodes_clear(*node_alloc_noretry);
3295
3296         for (i = 0; i < h->max_huge_pages; ++i) {
3297                 if (hstate_is_gigantic(h)) {
3298                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3299                                 break;
3300                 } else if (!alloc_pool_huge_page(h,
3301                                          &node_states[N_MEMORY],
3302                                          node_alloc_noretry))
3303                         break;
3304                 cond_resched();
3305         }
3306         if (i < h->max_huge_pages) {
3307                 char buf[32];
3308
3309                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3310                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3311                         h->max_huge_pages, buf, i);
3312                 h->max_huge_pages = i;
3313         }
3314         kfree(node_alloc_noretry);
3315 }
3316
3317 static void __init hugetlb_init_hstates(void)
3318 {
3319         struct hstate *h, *h2;
3320
3321         for_each_hstate(h) {
3322                 /* oversize hugepages were init'ed in early boot */
3323                 if (!hstate_is_gigantic(h))
3324                         hugetlb_hstate_alloc_pages(h);
3325
3326                 /*
3327                  * Set demote order for each hstate.  Note that
3328                  * h->demote_order is initially 0.
3329                  * - We can not demote gigantic pages if runtime freeing
3330                  *   is not supported, so skip this.
3331                  * - If CMA allocation is possible, we can not demote
3332                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3333                  */
3334                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3335                         continue;
3336                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3337                         continue;
3338                 for_each_hstate(h2) {
3339                         if (h2 == h)
3340                                 continue;
3341                         if (h2->order < h->order &&
3342                             h2->order > h->demote_order)
3343                                 h->demote_order = h2->order;
3344                 }
3345         }
3346 }
3347
3348 static void __init report_hugepages(void)
3349 {
3350         struct hstate *h;
3351
3352         for_each_hstate(h) {
3353                 char buf[32];
3354
3355                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3356                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3357                         buf, h->free_huge_pages);
3358                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3359                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3360         }
3361 }
3362
3363 #ifdef CONFIG_HIGHMEM
3364 static void try_to_free_low(struct hstate *h, unsigned long count,
3365                                                 nodemask_t *nodes_allowed)
3366 {
3367         int i;
3368         LIST_HEAD(page_list);
3369
3370         lockdep_assert_held(&hugetlb_lock);
3371         if (hstate_is_gigantic(h))
3372                 return;
3373
3374         /*
3375          * Collect pages to be freed on a list, and free after dropping lock
3376          */
3377         for_each_node_mask(i, *nodes_allowed) {
3378                 struct page *page, *next;
3379                 struct list_head *freel = &h->hugepage_freelists[i];
3380                 list_for_each_entry_safe(page, next, freel, lru) {
3381                         if (count >= h->nr_huge_pages)
3382                                 goto out;
3383                         if (PageHighMem(page))
3384                                 continue;
3385                         remove_hugetlb_folio(h, page_folio(page), false);
3386                         list_add(&page->lru, &page_list);
3387                 }
3388         }
3389
3390 out:
3391         spin_unlock_irq(&hugetlb_lock);
3392         update_and_free_pages_bulk(h, &page_list);
3393         spin_lock_irq(&hugetlb_lock);
3394 }
3395 #else
3396 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3397                                                 nodemask_t *nodes_allowed)
3398 {
3399 }
3400 #endif
3401
3402 /*
3403  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3404  * balanced by operating on them in a round-robin fashion.
3405  * Returns 1 if an adjustment was made.
3406  */
3407 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3408                                 int delta)
3409 {
3410         int nr_nodes, node;
3411
3412         lockdep_assert_held(&hugetlb_lock);
3413         VM_BUG_ON(delta != -1 && delta != 1);
3414
3415         if (delta < 0) {
3416                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3417                         if (h->surplus_huge_pages_node[node])
3418                                 goto found;
3419                 }
3420         } else {
3421                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3422                         if (h->surplus_huge_pages_node[node] <
3423                                         h->nr_huge_pages_node[node])
3424                                 goto found;
3425                 }
3426         }
3427         return 0;
3428
3429 found:
3430         h->surplus_huge_pages += delta;
3431         h->surplus_huge_pages_node[node] += delta;
3432         return 1;
3433 }
3434
3435 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3436 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3437                               nodemask_t *nodes_allowed)
3438 {
3439         unsigned long min_count, ret;
3440         struct page *page;
3441         LIST_HEAD(page_list);
3442         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3443
3444         /*
3445          * Bit mask controlling how hard we retry per-node allocations.
3446          * If we can not allocate the bit mask, do not attempt to allocate
3447          * the requested huge pages.
3448          */
3449         if (node_alloc_noretry)
3450                 nodes_clear(*node_alloc_noretry);
3451         else
3452                 return -ENOMEM;
3453
3454         /*
3455          * resize_lock mutex prevents concurrent adjustments to number of
3456          * pages in hstate via the proc/sysfs interfaces.
3457          */
3458         mutex_lock(&h->resize_lock);
3459         flush_free_hpage_work(h);
3460         spin_lock_irq(&hugetlb_lock);
3461
3462         /*
3463          * Check for a node specific request.
3464          * Changing node specific huge page count may require a corresponding
3465          * change to the global count.  In any case, the passed node mask
3466          * (nodes_allowed) will restrict alloc/free to the specified node.
3467          */
3468         if (nid != NUMA_NO_NODE) {
3469                 unsigned long old_count = count;
3470
3471                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3472                 /*
3473                  * User may have specified a large count value which caused the
3474                  * above calculation to overflow.  In this case, they wanted
3475                  * to allocate as many huge pages as possible.  Set count to
3476                  * largest possible value to align with their intention.
3477                  */
3478                 if (count < old_count)
3479                         count = ULONG_MAX;
3480         }
3481
3482         /*
3483          * Gigantic pages runtime allocation depend on the capability for large
3484          * page range allocation.
3485          * If the system does not provide this feature, return an error when
3486          * the user tries to allocate gigantic pages but let the user free the
3487          * boottime allocated gigantic pages.
3488          */
3489         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3490                 if (count > persistent_huge_pages(h)) {
3491                         spin_unlock_irq(&hugetlb_lock);
3492                         mutex_unlock(&h->resize_lock);
3493                         NODEMASK_FREE(node_alloc_noretry);
3494                         return -EINVAL;
3495                 }
3496                 /* Fall through to decrease pool */
3497         }
3498
3499         /*
3500          * Increase the pool size
3501          * First take pages out of surplus state.  Then make up the
3502          * remaining difference by allocating fresh huge pages.
3503          *
3504          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3505          * to convert a surplus huge page to a normal huge page. That is
3506          * not critical, though, it just means the overall size of the
3507          * pool might be one hugepage larger than it needs to be, but
3508          * within all the constraints specified by the sysctls.
3509          */
3510         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3511                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3512                         break;
3513         }
3514
3515         while (count > persistent_huge_pages(h)) {
3516                 /*
3517                  * If this allocation races such that we no longer need the
3518                  * page, free_huge_page will handle it by freeing the page
3519                  * and reducing the surplus.
3520                  */
3521                 spin_unlock_irq(&hugetlb_lock);
3522
3523                 /* yield cpu to avoid soft lockup */
3524                 cond_resched();
3525
3526                 ret = alloc_pool_huge_page(h, nodes_allowed,
3527                                                 node_alloc_noretry);
3528                 spin_lock_irq(&hugetlb_lock);
3529                 if (!ret)
3530                         goto out;
3531
3532                 /* Bail for signals. Probably ctrl-c from user */
3533                 if (signal_pending(current))
3534                         goto out;
3535         }
3536
3537         /*
3538          * Decrease the pool size
3539          * First return free pages to the buddy allocator (being careful
3540          * to keep enough around to satisfy reservations).  Then place
3541          * pages into surplus state as needed so the pool will shrink
3542          * to the desired size as pages become free.
3543          *
3544          * By placing pages into the surplus state independent of the
3545          * overcommit value, we are allowing the surplus pool size to
3546          * exceed overcommit. There are few sane options here. Since
3547          * alloc_surplus_hugetlb_folio() is checking the global counter,
3548          * though, we'll note that we're not allowed to exceed surplus
3549          * and won't grow the pool anywhere else. Not until one of the
3550          * sysctls are changed, or the surplus pages go out of use.
3551          */
3552         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3553         min_count = max(count, min_count);
3554         try_to_free_low(h, min_count, nodes_allowed);
3555
3556         /*
3557          * Collect pages to be removed on list without dropping lock
3558          */
3559         while (min_count < persistent_huge_pages(h)) {
3560                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3561                 if (!page)
3562                         break;
3563
3564                 list_add(&page->lru, &page_list);
3565         }
3566         /* free the pages after dropping lock */
3567         spin_unlock_irq(&hugetlb_lock);
3568         update_and_free_pages_bulk(h, &page_list);
3569         flush_free_hpage_work(h);
3570         spin_lock_irq(&hugetlb_lock);
3571
3572         while (count < persistent_huge_pages(h)) {
3573                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3574                         break;
3575         }
3576 out:
3577         h->max_huge_pages = persistent_huge_pages(h);
3578         spin_unlock_irq(&hugetlb_lock);
3579         mutex_unlock(&h->resize_lock);
3580
3581         NODEMASK_FREE(node_alloc_noretry);
3582
3583         return 0;
3584 }
3585
3586 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3587 {
3588         int i, nid = folio_nid(folio);
3589         struct hstate *target_hstate;
3590         struct page *subpage;
3591         struct folio *inner_folio;
3592         int rc = 0;
3593
3594         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3595
3596         remove_hugetlb_folio_for_demote(h, folio, false);
3597         spin_unlock_irq(&hugetlb_lock);
3598
3599         rc = hugetlb_vmemmap_restore(h, &folio->page);
3600         if (rc) {
3601                 /* Allocation of vmemmmap failed, we can not demote folio */
3602                 spin_lock_irq(&hugetlb_lock);
3603                 folio_ref_unfreeze(folio, 1);
3604                 add_hugetlb_folio(h, folio, false);
3605                 return rc;
3606         }
3607
3608         /*
3609          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3610          * sizes as it will not ref count folios.
3611          */
3612         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3613
3614         /*
3615          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3616          * Without the mutex, pages added to target hstate could be marked
3617          * as surplus.
3618          *
3619          * Note that we already hold h->resize_lock.  To prevent deadlock,
3620          * use the convention of always taking larger size hstate mutex first.
3621          */
3622         mutex_lock(&target_hstate->resize_lock);
3623         for (i = 0; i < pages_per_huge_page(h);
3624                                 i += pages_per_huge_page(target_hstate)) {
3625                 subpage = folio_page(folio, i);
3626                 inner_folio = page_folio(subpage);
3627                 if (hstate_is_gigantic(target_hstate))
3628                         prep_compound_gigantic_folio_for_demote(inner_folio,
3629                                                         target_hstate->order);
3630                 else
3631                         prep_compound_page(subpage, target_hstate->order);
3632                 folio_change_private(inner_folio, NULL);
3633                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3634                 free_huge_page(subpage);
3635         }
3636         mutex_unlock(&target_hstate->resize_lock);
3637
3638         spin_lock_irq(&hugetlb_lock);
3639
3640         /*
3641          * Not absolutely necessary, but for consistency update max_huge_pages
3642          * based on pool changes for the demoted page.
3643          */
3644         h->max_huge_pages--;
3645         target_hstate->max_huge_pages +=
3646                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3647
3648         return rc;
3649 }
3650
3651 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3652         __must_hold(&hugetlb_lock)
3653 {
3654         int nr_nodes, node;
3655         struct folio *folio;
3656
3657         lockdep_assert_held(&hugetlb_lock);
3658
3659         /* We should never get here if no demote order */
3660         if (!h->demote_order) {
3661                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3662                 return -EINVAL;         /* internal error */
3663         }
3664
3665         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3666                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3667                         if (folio_test_hwpoison(folio))
3668                                 continue;
3669                         return demote_free_hugetlb_folio(h, folio);
3670                 }
3671         }
3672
3673         /*
3674          * Only way to get here is if all pages on free lists are poisoned.
3675          * Return -EBUSY so that caller will not retry.
3676          */
3677         return -EBUSY;
3678 }
3679
3680 #define HSTATE_ATTR_RO(_name) \
3681         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3682
3683 #define HSTATE_ATTR_WO(_name) \
3684         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3685
3686 #define HSTATE_ATTR(_name) \
3687         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3688
3689 static struct kobject *hugepages_kobj;
3690 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3691
3692 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3693
3694 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3695 {
3696         int i;
3697
3698         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3699                 if (hstate_kobjs[i] == kobj) {
3700                         if (nidp)
3701                                 *nidp = NUMA_NO_NODE;
3702                         return &hstates[i];
3703                 }
3704
3705         return kobj_to_node_hstate(kobj, nidp);
3706 }
3707
3708 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3709                                         struct kobj_attribute *attr, char *buf)
3710 {
3711         struct hstate *h;
3712         unsigned long nr_huge_pages;
3713         int nid;
3714
3715         h = kobj_to_hstate(kobj, &nid);
3716         if (nid == NUMA_NO_NODE)
3717                 nr_huge_pages = h->nr_huge_pages;
3718         else
3719                 nr_huge_pages = h->nr_huge_pages_node[nid];
3720
3721         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3722 }
3723
3724 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3725                                            struct hstate *h, int nid,
3726                                            unsigned long count, size_t len)
3727 {
3728         int err;
3729         nodemask_t nodes_allowed, *n_mask;
3730
3731         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3732                 return -EINVAL;
3733
3734         if (nid == NUMA_NO_NODE) {
3735                 /*
3736                  * global hstate attribute
3737                  */
3738                 if (!(obey_mempolicy &&
3739                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3740                         n_mask = &node_states[N_MEMORY];
3741                 else
3742                         n_mask = &nodes_allowed;
3743         } else {
3744                 /*
3745                  * Node specific request.  count adjustment happens in
3746                  * set_max_huge_pages() after acquiring hugetlb_lock.
3747                  */
3748                 init_nodemask_of_node(&nodes_allowed, nid);
3749                 n_mask = &nodes_allowed;
3750         }
3751
3752         err = set_max_huge_pages(h, count, nid, n_mask);
3753
3754         return err ? err : len;
3755 }
3756
3757 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3758                                          struct kobject *kobj, const char *buf,
3759                                          size_t len)
3760 {
3761         struct hstate *h;
3762         unsigned long count;
3763         int nid;
3764         int err;
3765
3766         err = kstrtoul(buf, 10, &count);
3767         if (err)
3768                 return err;
3769
3770         h = kobj_to_hstate(kobj, &nid);
3771         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3772 }
3773
3774 static ssize_t nr_hugepages_show(struct kobject *kobj,
3775                                        struct kobj_attribute *attr, char *buf)
3776 {
3777         return nr_hugepages_show_common(kobj, attr, buf);
3778 }
3779
3780 static ssize_t nr_hugepages_store(struct kobject *kobj,
3781                struct kobj_attribute *attr, const char *buf, size_t len)
3782 {
3783         return nr_hugepages_store_common(false, kobj, buf, len);
3784 }
3785 HSTATE_ATTR(nr_hugepages);
3786
3787 #ifdef CONFIG_NUMA
3788
3789 /*
3790  * hstate attribute for optionally mempolicy-based constraint on persistent
3791  * huge page alloc/free.
3792  */
3793 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3794                                            struct kobj_attribute *attr,
3795                                            char *buf)
3796 {
3797         return nr_hugepages_show_common(kobj, attr, buf);
3798 }
3799
3800 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3801                struct kobj_attribute *attr, const char *buf, size_t len)
3802 {
3803         return nr_hugepages_store_common(true, kobj, buf, len);
3804 }
3805 HSTATE_ATTR(nr_hugepages_mempolicy);
3806 #endif
3807
3808
3809 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3810                                         struct kobj_attribute *attr, char *buf)
3811 {
3812         struct hstate *h = kobj_to_hstate(kobj, NULL);
3813         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3814 }
3815
3816 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3817                 struct kobj_attribute *attr, const char *buf, size_t count)
3818 {
3819         int err;
3820         unsigned long input;
3821         struct hstate *h = kobj_to_hstate(kobj, NULL);
3822
3823         if (hstate_is_gigantic(h))
3824                 return -EINVAL;
3825
3826         err = kstrtoul(buf, 10, &input);
3827         if (err)
3828                 return err;
3829
3830         spin_lock_irq(&hugetlb_lock);
3831         h->nr_overcommit_huge_pages = input;
3832         spin_unlock_irq(&hugetlb_lock);
3833
3834         return count;
3835 }
3836 HSTATE_ATTR(nr_overcommit_hugepages);
3837
3838 static ssize_t free_hugepages_show(struct kobject *kobj,
3839                                         struct kobj_attribute *attr, char *buf)
3840 {
3841         struct hstate *h;
3842         unsigned long free_huge_pages;
3843         int nid;
3844
3845         h = kobj_to_hstate(kobj, &nid);
3846         if (nid == NUMA_NO_NODE)
3847                 free_huge_pages = h->free_huge_pages;
3848         else
3849                 free_huge_pages = h->free_huge_pages_node[nid];
3850
3851         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3852 }
3853 HSTATE_ATTR_RO(free_hugepages);
3854
3855 static ssize_t resv_hugepages_show(struct kobject *kobj,
3856                                         struct kobj_attribute *attr, char *buf)
3857 {
3858         struct hstate *h = kobj_to_hstate(kobj, NULL);
3859         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3860 }
3861 HSTATE_ATTR_RO(resv_hugepages);
3862
3863 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3864                                         struct kobj_attribute *attr, char *buf)
3865 {
3866         struct hstate *h;
3867         unsigned long surplus_huge_pages;
3868         int nid;
3869
3870         h = kobj_to_hstate(kobj, &nid);
3871         if (nid == NUMA_NO_NODE)
3872                 surplus_huge_pages = h->surplus_huge_pages;
3873         else
3874                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3875
3876         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3877 }
3878 HSTATE_ATTR_RO(surplus_hugepages);
3879
3880 static ssize_t demote_store(struct kobject *kobj,
3881                struct kobj_attribute *attr, const char *buf, size_t len)
3882 {
3883         unsigned long nr_demote;
3884         unsigned long nr_available;
3885         nodemask_t nodes_allowed, *n_mask;
3886         struct hstate *h;
3887         int err;
3888         int nid;
3889
3890         err = kstrtoul(buf, 10, &nr_demote);
3891         if (err)
3892                 return err;
3893         h = kobj_to_hstate(kobj, &nid);
3894
3895         if (nid != NUMA_NO_NODE) {
3896                 init_nodemask_of_node(&nodes_allowed, nid);
3897                 n_mask = &nodes_allowed;
3898         } else {
3899                 n_mask = &node_states[N_MEMORY];
3900         }
3901
3902         /* Synchronize with other sysfs operations modifying huge pages */
3903         mutex_lock(&h->resize_lock);
3904         spin_lock_irq(&hugetlb_lock);
3905
3906         while (nr_demote) {
3907                 /*
3908                  * Check for available pages to demote each time thorough the
3909                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3910                  */
3911                 if (nid != NUMA_NO_NODE)
3912                         nr_available = h->free_huge_pages_node[nid];
3913                 else
3914                         nr_available = h->free_huge_pages;
3915                 nr_available -= h->resv_huge_pages;
3916                 if (!nr_available)
3917                         break;
3918
3919                 err = demote_pool_huge_page(h, n_mask);
3920                 if (err)
3921                         break;
3922
3923                 nr_demote--;
3924         }
3925
3926         spin_unlock_irq(&hugetlb_lock);
3927         mutex_unlock(&h->resize_lock);
3928
3929         if (err)
3930                 return err;
3931         return len;
3932 }
3933 HSTATE_ATTR_WO(demote);
3934
3935 static ssize_t demote_size_show(struct kobject *kobj,
3936                                         struct kobj_attribute *attr, char *buf)
3937 {
3938         struct hstate *h = kobj_to_hstate(kobj, NULL);
3939         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3940
3941         return sysfs_emit(buf, "%lukB\n", demote_size);
3942 }
3943
3944 static ssize_t demote_size_store(struct kobject *kobj,
3945                                         struct kobj_attribute *attr,
3946                                         const char *buf, size_t count)
3947 {
3948         struct hstate *h, *demote_hstate;
3949         unsigned long demote_size;
3950         unsigned int demote_order;
3951
3952         demote_size = (unsigned long)memparse(buf, NULL);
3953
3954         demote_hstate = size_to_hstate(demote_size);
3955         if (!demote_hstate)
3956                 return -EINVAL;
3957         demote_order = demote_hstate->order;
3958         if (demote_order < HUGETLB_PAGE_ORDER)
3959                 return -EINVAL;
3960
3961         /* demote order must be smaller than hstate order */
3962         h = kobj_to_hstate(kobj, NULL);
3963         if (demote_order >= h->order)
3964                 return -EINVAL;
3965
3966         /* resize_lock synchronizes access to demote size and writes */
3967         mutex_lock(&h->resize_lock);
3968         h->demote_order = demote_order;
3969         mutex_unlock(&h->resize_lock);
3970
3971         return count;
3972 }
3973 HSTATE_ATTR(demote_size);
3974
3975 static struct attribute *hstate_attrs[] = {
3976         &nr_hugepages_attr.attr,
3977         &nr_overcommit_hugepages_attr.attr,
3978         &free_hugepages_attr.attr,
3979         &resv_hugepages_attr.attr,
3980         &surplus_hugepages_attr.attr,
3981 #ifdef CONFIG_NUMA
3982         &nr_hugepages_mempolicy_attr.attr,
3983 #endif
3984         NULL,
3985 };
3986
3987 static const struct attribute_group hstate_attr_group = {
3988         .attrs = hstate_attrs,
3989 };
3990
3991 static struct attribute *hstate_demote_attrs[] = {
3992         &demote_size_attr.attr,
3993         &demote_attr.attr,
3994         NULL,
3995 };
3996
3997 static const struct attribute_group hstate_demote_attr_group = {
3998         .attrs = hstate_demote_attrs,
3999 };
4000
4001 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4002                                     struct kobject **hstate_kobjs,
4003                                     const struct attribute_group *hstate_attr_group)
4004 {
4005         int retval;
4006         int hi = hstate_index(h);
4007
4008         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4009         if (!hstate_kobjs[hi])
4010                 return -ENOMEM;
4011
4012         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4013         if (retval) {
4014                 kobject_put(hstate_kobjs[hi]);
4015                 hstate_kobjs[hi] = NULL;
4016                 return retval;
4017         }
4018
4019         if (h->demote_order) {
4020                 retval = sysfs_create_group(hstate_kobjs[hi],
4021                                             &hstate_demote_attr_group);
4022                 if (retval) {
4023                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4024                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4025                         kobject_put(hstate_kobjs[hi]);
4026                         hstate_kobjs[hi] = NULL;
4027                         return retval;
4028                 }
4029         }
4030
4031         return 0;
4032 }
4033
4034 #ifdef CONFIG_NUMA
4035 static bool hugetlb_sysfs_initialized __ro_after_init;
4036
4037 /*
4038  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4039  * with node devices in node_devices[] using a parallel array.  The array
4040  * index of a node device or _hstate == node id.
4041  * This is here to avoid any static dependency of the node device driver, in
4042  * the base kernel, on the hugetlb module.
4043  */
4044 struct node_hstate {
4045         struct kobject          *hugepages_kobj;
4046         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4047 };
4048 static struct node_hstate node_hstates[MAX_NUMNODES];
4049
4050 /*
4051  * A subset of global hstate attributes for node devices
4052  */
4053 static struct attribute *per_node_hstate_attrs[] = {
4054         &nr_hugepages_attr.attr,
4055         &free_hugepages_attr.attr,
4056         &surplus_hugepages_attr.attr,
4057         NULL,
4058 };
4059
4060 static const struct attribute_group per_node_hstate_attr_group = {
4061         .attrs = per_node_hstate_attrs,
4062 };
4063
4064 /*
4065  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4066  * Returns node id via non-NULL nidp.
4067  */
4068 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4069 {
4070         int nid;
4071
4072         for (nid = 0; nid < nr_node_ids; nid++) {
4073                 struct node_hstate *nhs = &node_hstates[nid];
4074                 int i;
4075                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4076                         if (nhs->hstate_kobjs[i] == kobj) {
4077                                 if (nidp)
4078                                         *nidp = nid;
4079                                 return &hstates[i];
4080                         }
4081         }
4082
4083         BUG();
4084         return NULL;
4085 }
4086
4087 /*
4088  * Unregister hstate attributes from a single node device.
4089  * No-op if no hstate attributes attached.
4090  */
4091 void hugetlb_unregister_node(struct node *node)
4092 {
4093         struct hstate *h;
4094         struct node_hstate *nhs = &node_hstates[node->dev.id];
4095
4096         if (!nhs->hugepages_kobj)
4097                 return;         /* no hstate attributes */
4098
4099         for_each_hstate(h) {
4100                 int idx = hstate_index(h);
4101                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4102
4103                 if (!hstate_kobj)
4104                         continue;
4105                 if (h->demote_order)
4106                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4107                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4108                 kobject_put(hstate_kobj);
4109                 nhs->hstate_kobjs[idx] = NULL;
4110         }
4111
4112         kobject_put(nhs->hugepages_kobj);
4113         nhs->hugepages_kobj = NULL;
4114 }
4115
4116
4117 /*
4118  * Register hstate attributes for a single node device.
4119  * No-op if attributes already registered.
4120  */
4121 void hugetlb_register_node(struct node *node)
4122 {
4123         struct hstate *h;
4124         struct node_hstate *nhs = &node_hstates[node->dev.id];
4125         int err;
4126
4127         if (!hugetlb_sysfs_initialized)
4128                 return;
4129
4130         if (nhs->hugepages_kobj)
4131                 return;         /* already allocated */
4132
4133         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4134                                                         &node->dev.kobj);
4135         if (!nhs->hugepages_kobj)
4136                 return;
4137
4138         for_each_hstate(h) {
4139                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4140                                                 nhs->hstate_kobjs,
4141                                                 &per_node_hstate_attr_group);
4142                 if (err) {
4143                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4144                                 h->name, node->dev.id);
4145                         hugetlb_unregister_node(node);
4146                         break;
4147                 }
4148         }
4149 }
4150
4151 /*
4152  * hugetlb init time:  register hstate attributes for all registered node
4153  * devices of nodes that have memory.  All on-line nodes should have
4154  * registered their associated device by this time.
4155  */
4156 static void __init hugetlb_register_all_nodes(void)
4157 {
4158         int nid;
4159
4160         for_each_online_node(nid)
4161                 hugetlb_register_node(node_devices[nid]);
4162 }
4163 #else   /* !CONFIG_NUMA */
4164
4165 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4166 {
4167         BUG();
4168         if (nidp)
4169                 *nidp = -1;
4170         return NULL;
4171 }
4172
4173 static void hugetlb_register_all_nodes(void) { }
4174
4175 #endif
4176
4177 #ifdef CONFIG_CMA
4178 static void __init hugetlb_cma_check(void);
4179 #else
4180 static inline __init void hugetlb_cma_check(void)
4181 {
4182 }
4183 #endif
4184
4185 static void __init hugetlb_sysfs_init(void)
4186 {
4187         struct hstate *h;
4188         int err;
4189
4190         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4191         if (!hugepages_kobj)
4192                 return;
4193
4194         for_each_hstate(h) {
4195                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4196                                          hstate_kobjs, &hstate_attr_group);
4197                 if (err)
4198                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4199         }
4200
4201 #ifdef CONFIG_NUMA
4202         hugetlb_sysfs_initialized = true;
4203 #endif
4204         hugetlb_register_all_nodes();
4205 }
4206
4207 #ifdef CONFIG_SYSCTL
4208 static void hugetlb_sysctl_init(void);
4209 #else
4210 static inline void hugetlb_sysctl_init(void) { }
4211 #endif
4212
4213 static int __init hugetlb_init(void)
4214 {
4215         int i;
4216
4217         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4218                         __NR_HPAGEFLAGS);
4219
4220         if (!hugepages_supported()) {
4221                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4222                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4223                 return 0;
4224         }
4225
4226         /*
4227          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4228          * architectures depend on setup being done here.
4229          */
4230         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4231         if (!parsed_default_hugepagesz) {
4232                 /*
4233                  * If we did not parse a default huge page size, set
4234                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4235                  * number of huge pages for this default size was implicitly
4236                  * specified, set that here as well.
4237                  * Note that the implicit setting will overwrite an explicit
4238                  * setting.  A warning will be printed in this case.
4239                  */
4240                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4241                 if (default_hstate_max_huge_pages) {
4242                         if (default_hstate.max_huge_pages) {
4243                                 char buf[32];
4244
4245                                 string_get_size(huge_page_size(&default_hstate),
4246                                         1, STRING_UNITS_2, buf, 32);
4247                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4248                                         default_hstate.max_huge_pages, buf);
4249                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4250                                         default_hstate_max_huge_pages);
4251                         }
4252                         default_hstate.max_huge_pages =
4253                                 default_hstate_max_huge_pages;
4254
4255                         for_each_online_node(i)
4256                                 default_hstate.max_huge_pages_node[i] =
4257                                         default_hugepages_in_node[i];
4258                 }
4259         }
4260
4261         hugetlb_cma_check();
4262         hugetlb_init_hstates();
4263         gather_bootmem_prealloc();
4264         report_hugepages();
4265
4266         hugetlb_sysfs_init();
4267         hugetlb_cgroup_file_init();
4268         hugetlb_sysctl_init();
4269
4270 #ifdef CONFIG_SMP
4271         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4272 #else
4273         num_fault_mutexes = 1;
4274 #endif
4275         hugetlb_fault_mutex_table =
4276                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4277                               GFP_KERNEL);
4278         BUG_ON(!hugetlb_fault_mutex_table);
4279
4280         for (i = 0; i < num_fault_mutexes; i++)
4281                 mutex_init(&hugetlb_fault_mutex_table[i]);
4282         return 0;
4283 }
4284 subsys_initcall(hugetlb_init);
4285
4286 /* Overwritten by architectures with more huge page sizes */
4287 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4288 {
4289         return size == HPAGE_SIZE;
4290 }
4291
4292 void __init hugetlb_add_hstate(unsigned int order)
4293 {
4294         struct hstate *h;
4295         unsigned long i;
4296
4297         if (size_to_hstate(PAGE_SIZE << order)) {
4298                 return;
4299         }
4300         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4301         BUG_ON(order == 0);
4302         h = &hstates[hugetlb_max_hstate++];
4303         mutex_init(&h->resize_lock);
4304         h->order = order;
4305         h->mask = ~(huge_page_size(h) - 1);
4306         for (i = 0; i < MAX_NUMNODES; ++i)
4307                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4308         INIT_LIST_HEAD(&h->hugepage_activelist);
4309         h->next_nid_to_alloc = first_memory_node;
4310         h->next_nid_to_free = first_memory_node;
4311         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4312                                         huge_page_size(h)/SZ_1K);
4313
4314         parsed_hstate = h;
4315 }
4316
4317 bool __init __weak hugetlb_node_alloc_supported(void)
4318 {
4319         return true;
4320 }
4321
4322 static void __init hugepages_clear_pages_in_node(void)
4323 {
4324         if (!hugetlb_max_hstate) {
4325                 default_hstate_max_huge_pages = 0;
4326                 memset(default_hugepages_in_node, 0,
4327                         sizeof(default_hugepages_in_node));
4328         } else {
4329                 parsed_hstate->max_huge_pages = 0;
4330                 memset(parsed_hstate->max_huge_pages_node, 0,
4331                         sizeof(parsed_hstate->max_huge_pages_node));
4332         }
4333 }
4334
4335 /*
4336  * hugepages command line processing
4337  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4338  * specification.  If not, ignore the hugepages value.  hugepages can also
4339  * be the first huge page command line  option in which case it implicitly
4340  * specifies the number of huge pages for the default size.
4341  */
4342 static int __init hugepages_setup(char *s)
4343 {
4344         unsigned long *mhp;
4345         static unsigned long *last_mhp;
4346         int node = NUMA_NO_NODE;
4347         int count;
4348         unsigned long tmp;
4349         char *p = s;
4350
4351         if (!parsed_valid_hugepagesz) {
4352                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4353                 parsed_valid_hugepagesz = true;
4354                 return 1;
4355         }
4356
4357         /*
4358          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4359          * yet, so this hugepages= parameter goes to the "default hstate".
4360          * Otherwise, it goes with the previously parsed hugepagesz or
4361          * default_hugepagesz.
4362          */
4363         else if (!hugetlb_max_hstate)
4364                 mhp = &default_hstate_max_huge_pages;
4365         else
4366                 mhp = &parsed_hstate->max_huge_pages;
4367
4368         if (mhp == last_mhp) {
4369                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4370                 return 1;
4371         }
4372
4373         while (*p) {
4374                 count = 0;
4375                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4376                         goto invalid;
4377                 /* Parameter is node format */
4378                 if (p[count] == ':') {
4379                         if (!hugetlb_node_alloc_supported()) {
4380                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4381                                 return 1;
4382                         }
4383                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4384                                 goto invalid;
4385                         node = array_index_nospec(tmp, MAX_NUMNODES);
4386                         p += count + 1;
4387                         /* Parse hugepages */
4388                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4389                                 goto invalid;
4390                         if (!hugetlb_max_hstate)
4391                                 default_hugepages_in_node[node] = tmp;
4392                         else
4393                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4394                         *mhp += tmp;
4395                         /* Go to parse next node*/
4396                         if (p[count] == ',')
4397                                 p += count + 1;
4398                         else
4399                                 break;
4400                 } else {
4401                         if (p != s)
4402                                 goto invalid;
4403                         *mhp = tmp;
4404                         break;
4405                 }
4406         }
4407
4408         /*
4409          * Global state is always initialized later in hugetlb_init.
4410          * But we need to allocate gigantic hstates here early to still
4411          * use the bootmem allocator.
4412          */
4413         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4414                 hugetlb_hstate_alloc_pages(parsed_hstate);
4415
4416         last_mhp = mhp;
4417
4418         return 1;
4419
4420 invalid:
4421         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4422         hugepages_clear_pages_in_node();
4423         return 1;
4424 }
4425 __setup("hugepages=", hugepages_setup);
4426
4427 /*
4428  * hugepagesz command line processing
4429  * A specific huge page size can only be specified once with hugepagesz.
4430  * hugepagesz is followed by hugepages on the command line.  The global
4431  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4432  * hugepagesz argument was valid.
4433  */
4434 static int __init hugepagesz_setup(char *s)
4435 {
4436         unsigned long size;
4437         struct hstate *h;
4438
4439         parsed_valid_hugepagesz = false;
4440         size = (unsigned long)memparse(s, NULL);
4441
4442         if (!arch_hugetlb_valid_size(size)) {
4443                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4444                 return 1;
4445         }
4446
4447         h = size_to_hstate(size);
4448         if (h) {
4449                 /*
4450                  * hstate for this size already exists.  This is normally
4451                  * an error, but is allowed if the existing hstate is the
4452                  * default hstate.  More specifically, it is only allowed if
4453                  * the number of huge pages for the default hstate was not
4454                  * previously specified.
4455                  */
4456                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4457                     default_hstate.max_huge_pages) {
4458                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4459                         return 1;
4460                 }
4461
4462                 /*
4463                  * No need to call hugetlb_add_hstate() as hstate already
4464                  * exists.  But, do set parsed_hstate so that a following
4465                  * hugepages= parameter will be applied to this hstate.
4466                  */
4467                 parsed_hstate = h;
4468                 parsed_valid_hugepagesz = true;
4469                 return 1;
4470         }
4471
4472         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4473         parsed_valid_hugepagesz = true;
4474         return 1;
4475 }
4476 __setup("hugepagesz=", hugepagesz_setup);
4477
4478 /*
4479  * default_hugepagesz command line input
4480  * Only one instance of default_hugepagesz allowed on command line.
4481  */
4482 static int __init default_hugepagesz_setup(char *s)
4483 {
4484         unsigned long size;
4485         int i;
4486
4487         parsed_valid_hugepagesz = false;
4488         if (parsed_default_hugepagesz) {
4489                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4490                 return 1;
4491         }
4492
4493         size = (unsigned long)memparse(s, NULL);
4494
4495         if (!arch_hugetlb_valid_size(size)) {
4496                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4497                 return 1;
4498         }
4499
4500         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4501         parsed_valid_hugepagesz = true;
4502         parsed_default_hugepagesz = true;
4503         default_hstate_idx = hstate_index(size_to_hstate(size));
4504
4505         /*
4506          * The number of default huge pages (for this size) could have been
4507          * specified as the first hugetlb parameter: hugepages=X.  If so,
4508          * then default_hstate_max_huge_pages is set.  If the default huge
4509          * page size is gigantic (> MAX_ORDER), then the pages must be
4510          * allocated here from bootmem allocator.
4511          */
4512         if (default_hstate_max_huge_pages) {
4513                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4514                 for_each_online_node(i)
4515                         default_hstate.max_huge_pages_node[i] =
4516                                 default_hugepages_in_node[i];
4517                 if (hstate_is_gigantic(&default_hstate))
4518                         hugetlb_hstate_alloc_pages(&default_hstate);
4519                 default_hstate_max_huge_pages = 0;
4520         }
4521
4522         return 1;
4523 }
4524 __setup("default_hugepagesz=", default_hugepagesz_setup);
4525
4526 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4527 {
4528 #ifdef CONFIG_NUMA
4529         struct mempolicy *mpol = get_task_policy(current);
4530
4531         /*
4532          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4533          * (from policy_nodemask) specifically for hugetlb case
4534          */
4535         if (mpol->mode == MPOL_BIND &&
4536                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4537                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4538                 return &mpol->nodes;
4539 #endif
4540         return NULL;
4541 }
4542
4543 static unsigned int allowed_mems_nr(struct hstate *h)
4544 {
4545         int node;
4546         unsigned int nr = 0;
4547         nodemask_t *mbind_nodemask;
4548         unsigned int *array = h->free_huge_pages_node;
4549         gfp_t gfp_mask = htlb_alloc_mask(h);
4550
4551         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4552         for_each_node_mask(node, cpuset_current_mems_allowed) {
4553                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4554                         nr += array[node];
4555         }
4556
4557         return nr;
4558 }
4559
4560 #ifdef CONFIG_SYSCTL
4561 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4562                                           void *buffer, size_t *length,
4563                                           loff_t *ppos, unsigned long *out)
4564 {
4565         struct ctl_table dup_table;
4566
4567         /*
4568          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4569          * can duplicate the @table and alter the duplicate of it.
4570          */
4571         dup_table = *table;
4572         dup_table.data = out;
4573
4574         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4575 }
4576
4577 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4578                          struct ctl_table *table, int write,
4579                          void *buffer, size_t *length, loff_t *ppos)
4580 {
4581         struct hstate *h = &default_hstate;
4582         unsigned long tmp = h->max_huge_pages;
4583         int ret;
4584
4585         if (!hugepages_supported())
4586                 return -EOPNOTSUPP;
4587
4588         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4589                                              &tmp);
4590         if (ret)
4591                 goto out;
4592
4593         if (write)
4594                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4595                                                   NUMA_NO_NODE, tmp, *length);
4596 out:
4597         return ret;
4598 }
4599
4600 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4601                           void *buffer, size_t *length, loff_t *ppos)
4602 {
4603
4604         return hugetlb_sysctl_handler_common(false, table, write,
4605                                                         buffer, length, ppos);
4606 }
4607
4608 #ifdef CONFIG_NUMA
4609 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4610                           void *buffer, size_t *length, loff_t *ppos)
4611 {
4612         return hugetlb_sysctl_handler_common(true, table, write,
4613                                                         buffer, length, ppos);
4614 }
4615 #endif /* CONFIG_NUMA */
4616
4617 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4618                 void *buffer, size_t *length, loff_t *ppos)
4619 {
4620         struct hstate *h = &default_hstate;
4621         unsigned long tmp;
4622         int ret;
4623
4624         if (!hugepages_supported())
4625                 return -EOPNOTSUPP;
4626
4627         tmp = h->nr_overcommit_huge_pages;
4628
4629         if (write && hstate_is_gigantic(h))
4630                 return -EINVAL;
4631
4632         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4633                                              &tmp);
4634         if (ret)
4635                 goto out;
4636
4637         if (write) {
4638                 spin_lock_irq(&hugetlb_lock);
4639                 h->nr_overcommit_huge_pages = tmp;
4640                 spin_unlock_irq(&hugetlb_lock);
4641         }
4642 out:
4643         return ret;
4644 }
4645
4646 static struct ctl_table hugetlb_table[] = {
4647         {
4648                 .procname       = "nr_hugepages",
4649                 .data           = NULL,
4650                 .maxlen         = sizeof(unsigned long),
4651                 .mode           = 0644,
4652                 .proc_handler   = hugetlb_sysctl_handler,
4653         },
4654 #ifdef CONFIG_NUMA
4655         {
4656                 .procname       = "nr_hugepages_mempolicy",
4657                 .data           = NULL,
4658                 .maxlen         = sizeof(unsigned long),
4659                 .mode           = 0644,
4660                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4661         },
4662 #endif
4663         {
4664                 .procname       = "hugetlb_shm_group",
4665                 .data           = &sysctl_hugetlb_shm_group,
4666                 .maxlen         = sizeof(gid_t),
4667                 .mode           = 0644,
4668                 .proc_handler   = proc_dointvec,
4669         },
4670         {
4671                 .procname       = "nr_overcommit_hugepages",
4672                 .data           = NULL,
4673                 .maxlen         = sizeof(unsigned long),
4674                 .mode           = 0644,
4675                 .proc_handler   = hugetlb_overcommit_handler,
4676         },
4677         { }
4678 };
4679
4680 static void hugetlb_sysctl_init(void)
4681 {
4682         register_sysctl_init("vm", hugetlb_table);
4683 }
4684 #endif /* CONFIG_SYSCTL */
4685
4686 void hugetlb_report_meminfo(struct seq_file *m)
4687 {
4688         struct hstate *h;
4689         unsigned long total = 0;
4690
4691         if (!hugepages_supported())
4692                 return;
4693
4694         for_each_hstate(h) {
4695                 unsigned long count = h->nr_huge_pages;
4696
4697                 total += huge_page_size(h) * count;
4698
4699                 if (h == &default_hstate)
4700                         seq_printf(m,
4701                                    "HugePages_Total:   %5lu\n"
4702                                    "HugePages_Free:    %5lu\n"
4703                                    "HugePages_Rsvd:    %5lu\n"
4704                                    "HugePages_Surp:    %5lu\n"
4705                                    "Hugepagesize:   %8lu kB\n",
4706                                    count,
4707                                    h->free_huge_pages,
4708                                    h->resv_huge_pages,
4709                                    h->surplus_huge_pages,
4710                                    huge_page_size(h) / SZ_1K);
4711         }
4712
4713         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4714 }
4715
4716 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4717 {
4718         struct hstate *h = &default_hstate;
4719
4720         if (!hugepages_supported())
4721                 return 0;
4722
4723         return sysfs_emit_at(buf, len,
4724                              "Node %d HugePages_Total: %5u\n"
4725                              "Node %d HugePages_Free:  %5u\n"
4726                              "Node %d HugePages_Surp:  %5u\n",
4727                              nid, h->nr_huge_pages_node[nid],
4728                              nid, h->free_huge_pages_node[nid],
4729                              nid, h->surplus_huge_pages_node[nid]);
4730 }
4731
4732 void hugetlb_show_meminfo_node(int nid)
4733 {
4734         struct hstate *h;
4735
4736         if (!hugepages_supported())
4737                 return;
4738
4739         for_each_hstate(h)
4740                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4741                         nid,
4742                         h->nr_huge_pages_node[nid],
4743                         h->free_huge_pages_node[nid],
4744                         h->surplus_huge_pages_node[nid],
4745                         huge_page_size(h) / SZ_1K);
4746 }
4747
4748 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4749 {
4750         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4751                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4752 }
4753
4754 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4755 unsigned long hugetlb_total_pages(void)
4756 {
4757         struct hstate *h;
4758         unsigned long nr_total_pages = 0;
4759
4760         for_each_hstate(h)
4761                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4762         return nr_total_pages;
4763 }
4764
4765 static int hugetlb_acct_memory(struct hstate *h, long delta)
4766 {
4767         int ret = -ENOMEM;
4768
4769         if (!delta)
4770                 return 0;
4771
4772         spin_lock_irq(&hugetlb_lock);
4773         /*
4774          * When cpuset is configured, it breaks the strict hugetlb page
4775          * reservation as the accounting is done on a global variable. Such
4776          * reservation is completely rubbish in the presence of cpuset because
4777          * the reservation is not checked against page availability for the
4778          * current cpuset. Application can still potentially OOM'ed by kernel
4779          * with lack of free htlb page in cpuset that the task is in.
4780          * Attempt to enforce strict accounting with cpuset is almost
4781          * impossible (or too ugly) because cpuset is too fluid that
4782          * task or memory node can be dynamically moved between cpusets.
4783          *
4784          * The change of semantics for shared hugetlb mapping with cpuset is
4785          * undesirable. However, in order to preserve some of the semantics,
4786          * we fall back to check against current free page availability as
4787          * a best attempt and hopefully to minimize the impact of changing
4788          * semantics that cpuset has.
4789          *
4790          * Apart from cpuset, we also have memory policy mechanism that
4791          * also determines from which node the kernel will allocate memory
4792          * in a NUMA system. So similar to cpuset, we also should consider
4793          * the memory policy of the current task. Similar to the description
4794          * above.
4795          */
4796         if (delta > 0) {
4797                 if (gather_surplus_pages(h, delta) < 0)
4798                         goto out;
4799
4800                 if (delta > allowed_mems_nr(h)) {
4801                         return_unused_surplus_pages(h, delta);
4802                         goto out;
4803                 }
4804         }
4805
4806         ret = 0;
4807         if (delta < 0)
4808                 return_unused_surplus_pages(h, (unsigned long) -delta);
4809
4810 out:
4811         spin_unlock_irq(&hugetlb_lock);
4812         return ret;
4813 }
4814
4815 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4816 {
4817         struct resv_map *resv = vma_resv_map(vma);
4818
4819         /*
4820          * HPAGE_RESV_OWNER indicates a private mapping.
4821          * This new VMA should share its siblings reservation map if present.
4822          * The VMA will only ever have a valid reservation map pointer where
4823          * it is being copied for another still existing VMA.  As that VMA
4824          * has a reference to the reservation map it cannot disappear until
4825          * after this open call completes.  It is therefore safe to take a
4826          * new reference here without additional locking.
4827          */
4828         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4829                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4830                 kref_get(&resv->refs);
4831         }
4832
4833         /*
4834          * vma_lock structure for sharable mappings is vma specific.
4835          * Clear old pointer (if copied via vm_area_dup) and allocate
4836          * new structure.  Before clearing, make sure vma_lock is not
4837          * for this vma.
4838          */
4839         if (vma->vm_flags & VM_MAYSHARE) {
4840                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4841
4842                 if (vma_lock) {
4843                         if (vma_lock->vma != vma) {
4844                                 vma->vm_private_data = NULL;
4845                                 hugetlb_vma_lock_alloc(vma);
4846                         } else
4847                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4848                 } else
4849                         hugetlb_vma_lock_alloc(vma);
4850         }
4851 }
4852
4853 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4854 {
4855         struct hstate *h = hstate_vma(vma);
4856         struct resv_map *resv;
4857         struct hugepage_subpool *spool = subpool_vma(vma);
4858         unsigned long reserve, start, end;
4859         long gbl_reserve;
4860
4861         hugetlb_vma_lock_free(vma);
4862
4863         resv = vma_resv_map(vma);
4864         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4865                 return;
4866
4867         start = vma_hugecache_offset(h, vma, vma->vm_start);
4868         end = vma_hugecache_offset(h, vma, vma->vm_end);
4869
4870         reserve = (end - start) - region_count(resv, start, end);
4871         hugetlb_cgroup_uncharge_counter(resv, start, end);
4872         if (reserve) {
4873                 /*
4874                  * Decrement reserve counts.  The global reserve count may be
4875                  * adjusted if the subpool has a minimum size.
4876                  */
4877                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4878                 hugetlb_acct_memory(h, -gbl_reserve);
4879         }
4880
4881         kref_put(&resv->refs, resv_map_release);
4882 }
4883
4884 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4885 {
4886         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4887                 return -EINVAL;
4888
4889         /*
4890          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4891          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4892          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4893          */
4894         if (addr & ~PUD_MASK) {
4895                 /*
4896                  * hugetlb_vm_op_split is called right before we attempt to
4897                  * split the VMA. We will need to unshare PMDs in the old and
4898                  * new VMAs, so let's unshare before we split.
4899                  */
4900                 unsigned long floor = addr & PUD_MASK;
4901                 unsigned long ceil = floor + PUD_SIZE;
4902
4903                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4904                         hugetlb_unshare_pmds(vma, floor, ceil);
4905         }
4906
4907         return 0;
4908 }
4909
4910 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4911 {
4912         return huge_page_size(hstate_vma(vma));
4913 }
4914
4915 /*
4916  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4917  * handle_mm_fault() to try to instantiate regular-sized pages in the
4918  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4919  * this far.
4920  */
4921 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4922 {
4923         BUG();
4924         return 0;
4925 }
4926
4927 /*
4928  * When a new function is introduced to vm_operations_struct and added
4929  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4930  * This is because under System V memory model, mappings created via
4931  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4932  * their original vm_ops are overwritten with shm_vm_ops.
4933  */
4934 const struct vm_operations_struct hugetlb_vm_ops = {
4935         .fault = hugetlb_vm_op_fault,
4936         .open = hugetlb_vm_op_open,
4937         .close = hugetlb_vm_op_close,
4938         .may_split = hugetlb_vm_op_split,
4939         .pagesize = hugetlb_vm_op_pagesize,
4940 };
4941
4942 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4943                                 int writable)
4944 {
4945         pte_t entry;
4946         unsigned int shift = huge_page_shift(hstate_vma(vma));
4947
4948         if (writable) {
4949                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4950                                          vma->vm_page_prot)));
4951         } else {
4952                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4953                                            vma->vm_page_prot));
4954         }
4955         entry = pte_mkyoung(entry);
4956         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4957
4958         return entry;
4959 }
4960
4961 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4962                                    unsigned long address, pte_t *ptep)
4963 {
4964         pte_t entry;
4965
4966         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4967         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4968                 update_mmu_cache(vma, address, ptep);
4969 }
4970
4971 bool is_hugetlb_entry_migration(pte_t pte)
4972 {
4973         swp_entry_t swp;
4974
4975         if (huge_pte_none(pte) || pte_present(pte))
4976                 return false;
4977         swp = pte_to_swp_entry(pte);
4978         if (is_migration_entry(swp))
4979                 return true;
4980         else
4981                 return false;
4982 }
4983
4984 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4985 {
4986         swp_entry_t swp;
4987
4988         if (huge_pte_none(pte) || pte_present(pte))
4989                 return false;
4990         swp = pte_to_swp_entry(pte);
4991         if (is_hwpoison_entry(swp))
4992                 return true;
4993         else
4994                 return false;
4995 }
4996
4997 static void
4998 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4999                       struct folio *new_folio, pte_t old)
5000 {
5001         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5002
5003         __folio_mark_uptodate(new_folio);
5004         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5005         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5006                 newpte = huge_pte_mkuffd_wp(newpte);
5007         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5008         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5009         folio_set_hugetlb_migratable(new_folio);
5010 }
5011
5012 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5013                             struct vm_area_struct *dst_vma,
5014                             struct vm_area_struct *src_vma)
5015 {
5016         pte_t *src_pte, *dst_pte, entry;
5017         struct folio *pte_folio;
5018         unsigned long addr;
5019         bool cow = is_cow_mapping(src_vma->vm_flags);
5020         struct hstate *h = hstate_vma(src_vma);
5021         unsigned long sz = huge_page_size(h);
5022         unsigned long npages = pages_per_huge_page(h);
5023         struct mmu_notifier_range range;
5024         unsigned long last_addr_mask;
5025         int ret = 0;
5026
5027         if (cow) {
5028                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5029                                         src_vma->vm_start,
5030                                         src_vma->vm_end);
5031                 mmu_notifier_invalidate_range_start(&range);
5032                 mmap_assert_write_locked(src);
5033                 raw_write_seqcount_begin(&src->write_protect_seq);
5034         } else {
5035                 /*
5036                  * For shared mappings the vma lock must be held before
5037                  * calling hugetlb_walk() in the src vma. Otherwise, the
5038                  * returned ptep could go away if part of a shared pmd and
5039                  * another thread calls huge_pmd_unshare.
5040                  */
5041                 hugetlb_vma_lock_read(src_vma);
5042         }
5043
5044         last_addr_mask = hugetlb_mask_last_page(h);
5045         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5046                 spinlock_t *src_ptl, *dst_ptl;
5047                 src_pte = hugetlb_walk(src_vma, addr, sz);
5048                 if (!src_pte) {
5049                         addr |= last_addr_mask;
5050                         continue;
5051                 }
5052                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5053                 if (!dst_pte) {
5054                         ret = -ENOMEM;
5055                         break;
5056                 }
5057
5058                 /*
5059                  * If the pagetables are shared don't copy or take references.
5060                  *
5061                  * dst_pte == src_pte is the common case of src/dest sharing.
5062                  * However, src could have 'unshared' and dst shares with
5063                  * another vma. So page_count of ptep page is checked instead
5064                  * to reliably determine whether pte is shared.
5065                  */
5066                 if (page_count(virt_to_page(dst_pte)) > 1) {
5067                         addr |= last_addr_mask;
5068                         continue;
5069                 }
5070
5071                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5072                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5073                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5074                 entry = huge_ptep_get(src_pte);
5075 again:
5076                 if (huge_pte_none(entry)) {
5077                         /*
5078                          * Skip if src entry none.
5079                          */
5080                         ;
5081                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5082                         if (!userfaultfd_wp(dst_vma))
5083                                 entry = huge_pte_clear_uffd_wp(entry);
5084                         set_huge_pte_at(dst, addr, dst_pte, entry);
5085                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5086                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5087                         bool uffd_wp = pte_swp_uffd_wp(entry);
5088
5089                         if (!is_readable_migration_entry(swp_entry) && cow) {
5090                                 /*
5091                                  * COW mappings require pages in both
5092                                  * parent and child to be set to read.
5093                                  */
5094                                 swp_entry = make_readable_migration_entry(
5095                                                         swp_offset(swp_entry));
5096                                 entry = swp_entry_to_pte(swp_entry);
5097                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5098                                         entry = pte_swp_mkuffd_wp(entry);
5099                                 set_huge_pte_at(src, addr, src_pte, entry);
5100                         }
5101                         if (!userfaultfd_wp(dst_vma))
5102                                 entry = huge_pte_clear_uffd_wp(entry);
5103                         set_huge_pte_at(dst, addr, dst_pte, entry);
5104                 } else if (unlikely(is_pte_marker(entry))) {
5105                         pte_marker marker = copy_pte_marker(
5106                                 pte_to_swp_entry(entry), dst_vma);
5107
5108                         if (marker)
5109                                 set_huge_pte_at(dst, addr, dst_pte,
5110                                                 make_pte_marker(marker));
5111                 } else {
5112                         entry = huge_ptep_get(src_pte);
5113                         pte_folio = page_folio(pte_page(entry));
5114                         folio_get(pte_folio);
5115
5116                         /*
5117                          * Failing to duplicate the anon rmap is a rare case
5118                          * where we see pinned hugetlb pages while they're
5119                          * prone to COW. We need to do the COW earlier during
5120                          * fork.
5121                          *
5122                          * When pre-allocating the page or copying data, we
5123                          * need to be without the pgtable locks since we could
5124                          * sleep during the process.
5125                          */
5126                         if (!folio_test_anon(pte_folio)) {
5127                                 page_dup_file_rmap(&pte_folio->page, true);
5128                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5129                                                           true, src_vma)) {
5130                                 pte_t src_pte_old = entry;
5131                                 struct folio *new_folio;
5132
5133                                 spin_unlock(src_ptl);
5134                                 spin_unlock(dst_ptl);
5135                                 /* Do not use reserve as it's private owned */
5136                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5137                                 if (IS_ERR(new_folio)) {
5138                                         folio_put(pte_folio);
5139                                         ret = PTR_ERR(new_folio);
5140                                         break;
5141                                 }
5142                                 ret = copy_user_large_folio(new_folio,
5143                                                             pte_folio,
5144                                                             addr, dst_vma);
5145                                 folio_put(pte_folio);
5146                                 if (ret) {
5147                                         folio_put(new_folio);
5148                                         break;
5149                                 }
5150
5151                                 /* Install the new hugetlb folio if src pte stable */
5152                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5153                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5154                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5155                                 entry = huge_ptep_get(src_pte);
5156                                 if (!pte_same(src_pte_old, entry)) {
5157                                         restore_reserve_on_error(h, dst_vma, addr,
5158                                                                 new_folio);
5159                                         folio_put(new_folio);
5160                                         /* huge_ptep of dst_pte won't change as in child */
5161                                         goto again;
5162                                 }
5163                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5164                                                       new_folio, src_pte_old);
5165                                 spin_unlock(src_ptl);
5166                                 spin_unlock(dst_ptl);
5167                                 continue;
5168                         }
5169
5170                         if (cow) {
5171                                 /*
5172                                  * No need to notify as we are downgrading page
5173                                  * table protection not changing it to point
5174                                  * to a new page.
5175                                  *
5176                                  * See Documentation/mm/mmu_notifier.rst
5177                                  */
5178                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5179                                 entry = huge_pte_wrprotect(entry);
5180                         }
5181
5182                         if (!userfaultfd_wp(dst_vma))
5183                                 entry = huge_pte_clear_uffd_wp(entry);
5184
5185                         set_huge_pte_at(dst, addr, dst_pte, entry);
5186                         hugetlb_count_add(npages, dst);
5187                 }
5188                 spin_unlock(src_ptl);
5189                 spin_unlock(dst_ptl);
5190         }
5191
5192         if (cow) {
5193                 raw_write_seqcount_end(&src->write_protect_seq);
5194                 mmu_notifier_invalidate_range_end(&range);
5195         } else {
5196                 hugetlb_vma_unlock_read(src_vma);
5197         }
5198
5199         return ret;
5200 }
5201
5202 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5203                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5204 {
5205         struct hstate *h = hstate_vma(vma);
5206         struct mm_struct *mm = vma->vm_mm;
5207         spinlock_t *src_ptl, *dst_ptl;
5208         pte_t pte;
5209
5210         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5211         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5212
5213         /*
5214          * We don't have to worry about the ordering of src and dst ptlocks
5215          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5216          */
5217         if (src_ptl != dst_ptl)
5218                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5219
5220         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5221         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5222
5223         if (src_ptl != dst_ptl)
5224                 spin_unlock(src_ptl);
5225         spin_unlock(dst_ptl);
5226 }
5227
5228 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5229                              struct vm_area_struct *new_vma,
5230                              unsigned long old_addr, unsigned long new_addr,
5231                              unsigned long len)
5232 {
5233         struct hstate *h = hstate_vma(vma);
5234         struct address_space *mapping = vma->vm_file->f_mapping;
5235         unsigned long sz = huge_page_size(h);
5236         struct mm_struct *mm = vma->vm_mm;
5237         unsigned long old_end = old_addr + len;
5238         unsigned long last_addr_mask;
5239         pte_t *src_pte, *dst_pte;
5240         struct mmu_notifier_range range;
5241         bool shared_pmd = false;
5242
5243         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5244                                 old_end);
5245         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5246         /*
5247          * In case of shared PMDs, we should cover the maximum possible
5248          * range.
5249          */
5250         flush_cache_range(vma, range.start, range.end);
5251
5252         mmu_notifier_invalidate_range_start(&range);
5253         last_addr_mask = hugetlb_mask_last_page(h);
5254         /* Prevent race with file truncation */
5255         hugetlb_vma_lock_write(vma);
5256         i_mmap_lock_write(mapping);
5257         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5258                 src_pte = hugetlb_walk(vma, old_addr, sz);
5259                 if (!src_pte) {
5260                         old_addr |= last_addr_mask;
5261                         new_addr |= last_addr_mask;
5262                         continue;
5263                 }
5264                 if (huge_pte_none(huge_ptep_get(src_pte)))
5265                         continue;
5266
5267                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5268                         shared_pmd = true;
5269                         old_addr |= last_addr_mask;
5270                         new_addr |= last_addr_mask;
5271                         continue;
5272                 }
5273
5274                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5275                 if (!dst_pte)
5276                         break;
5277
5278                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5279         }
5280
5281         if (shared_pmd)
5282                 flush_tlb_range(vma, range.start, range.end);
5283         else
5284                 flush_tlb_range(vma, old_end - len, old_end);
5285         mmu_notifier_invalidate_range_end(&range);
5286         i_mmap_unlock_write(mapping);
5287         hugetlb_vma_unlock_write(vma);
5288
5289         return len + old_addr - old_end;
5290 }
5291
5292 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5293                                    unsigned long start, unsigned long end,
5294                                    struct page *ref_page, zap_flags_t zap_flags)
5295 {
5296         struct mm_struct *mm = vma->vm_mm;
5297         unsigned long address;
5298         pte_t *ptep;
5299         pte_t pte;
5300         spinlock_t *ptl;
5301         struct page *page;
5302         struct hstate *h = hstate_vma(vma);
5303         unsigned long sz = huge_page_size(h);
5304         unsigned long last_addr_mask;
5305         bool force_flush = false;
5306
5307         WARN_ON(!is_vm_hugetlb_page(vma));
5308         BUG_ON(start & ~huge_page_mask(h));
5309         BUG_ON(end & ~huge_page_mask(h));
5310
5311         /*
5312          * This is a hugetlb vma, all the pte entries should point
5313          * to huge page.
5314          */
5315         tlb_change_page_size(tlb, sz);
5316         tlb_start_vma(tlb, vma);
5317
5318         last_addr_mask = hugetlb_mask_last_page(h);
5319         address = start;
5320         for (; address < end; address += sz) {
5321                 ptep = hugetlb_walk(vma, address, sz);
5322                 if (!ptep) {
5323                         address |= last_addr_mask;
5324                         continue;
5325                 }
5326
5327                 ptl = huge_pte_lock(h, mm, ptep);
5328                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5329                         spin_unlock(ptl);
5330                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5331                         force_flush = true;
5332                         address |= last_addr_mask;
5333                         continue;
5334                 }
5335
5336                 pte = huge_ptep_get(ptep);
5337                 if (huge_pte_none(pte)) {
5338                         spin_unlock(ptl);
5339                         continue;
5340                 }
5341
5342                 /*
5343                  * Migrating hugepage or HWPoisoned hugepage is already
5344                  * unmapped and its refcount is dropped, so just clear pte here.
5345                  */
5346                 if (unlikely(!pte_present(pte))) {
5347                         /*
5348                          * If the pte was wr-protected by uffd-wp in any of the
5349                          * swap forms, meanwhile the caller does not want to
5350                          * drop the uffd-wp bit in this zap, then replace the
5351                          * pte with a marker.
5352                          */
5353                         if (pte_swp_uffd_wp_any(pte) &&
5354                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5355                                 set_huge_pte_at(mm, address, ptep,
5356                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5357                         else
5358                                 huge_pte_clear(mm, address, ptep, sz);
5359                         spin_unlock(ptl);
5360                         continue;
5361                 }
5362
5363                 page = pte_page(pte);
5364                 /*
5365                  * If a reference page is supplied, it is because a specific
5366                  * page is being unmapped, not a range. Ensure the page we
5367                  * are about to unmap is the actual page of interest.
5368                  */
5369                 if (ref_page) {
5370                         if (page != ref_page) {
5371                                 spin_unlock(ptl);
5372                                 continue;
5373                         }
5374                         /*
5375                          * Mark the VMA as having unmapped its page so that
5376                          * future faults in this VMA will fail rather than
5377                          * looking like data was lost
5378                          */
5379                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5380                 }
5381
5382                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5383                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5384                 if (huge_pte_dirty(pte))
5385                         set_page_dirty(page);
5386                 /* Leave a uffd-wp pte marker if needed */
5387                 if (huge_pte_uffd_wp(pte) &&
5388                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5389                         set_huge_pte_at(mm, address, ptep,
5390                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5391                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5392                 page_remove_rmap(page, vma, true);
5393
5394                 spin_unlock(ptl);
5395                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5396                 /*
5397                  * Bail out after unmapping reference page if supplied
5398                  */
5399                 if (ref_page)
5400                         break;
5401         }
5402         tlb_end_vma(tlb, vma);
5403
5404         /*
5405          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5406          * could defer the flush until now, since by holding i_mmap_rwsem we
5407          * guaranteed that the last refernece would not be dropped. But we must
5408          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5409          * dropped and the last reference to the shared PMDs page might be
5410          * dropped as well.
5411          *
5412          * In theory we could defer the freeing of the PMD pages as well, but
5413          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5414          * detect sharing, so we cannot defer the release of the page either.
5415          * Instead, do flush now.
5416          */
5417         if (force_flush)
5418                 tlb_flush_mmu_tlbonly(tlb);
5419 }
5420
5421 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5422                           struct vm_area_struct *vma, unsigned long start,
5423                           unsigned long end, struct page *ref_page,
5424                           zap_flags_t zap_flags)
5425 {
5426         hugetlb_vma_lock_write(vma);
5427         i_mmap_lock_write(vma->vm_file->f_mapping);
5428
5429         /* mmu notification performed in caller */
5430         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5431
5432         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5433                 /*
5434                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5435                  * When the vma_lock is freed, this makes the vma ineligible
5436                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5437                  * pmd sharing.  This is important as page tables for this
5438                  * unmapped range will be asynchrously deleted.  If the page
5439                  * tables are shared, there will be issues when accessed by
5440                  * someone else.
5441                  */
5442                 __hugetlb_vma_unlock_write_free(vma);
5443                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5444         } else {
5445                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5446                 hugetlb_vma_unlock_write(vma);
5447         }
5448 }
5449
5450 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5451                           unsigned long end, struct page *ref_page,
5452                           zap_flags_t zap_flags)
5453 {
5454         struct mmu_notifier_range range;
5455         struct mmu_gather tlb;
5456
5457         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5458                                 start, end);
5459         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5460         mmu_notifier_invalidate_range_start(&range);
5461         tlb_gather_mmu(&tlb, vma->vm_mm);
5462
5463         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5464
5465         mmu_notifier_invalidate_range_end(&range);
5466         tlb_finish_mmu(&tlb);
5467 }
5468
5469 /*
5470  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5471  * mapping it owns the reserve page for. The intention is to unmap the page
5472  * from other VMAs and let the children be SIGKILLed if they are faulting the
5473  * same region.
5474  */
5475 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5476                               struct page *page, unsigned long address)
5477 {
5478         struct hstate *h = hstate_vma(vma);
5479         struct vm_area_struct *iter_vma;
5480         struct address_space *mapping;
5481         pgoff_t pgoff;
5482
5483         /*
5484          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5485          * from page cache lookup which is in HPAGE_SIZE units.
5486          */
5487         address = address & huge_page_mask(h);
5488         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5489                         vma->vm_pgoff;
5490         mapping = vma->vm_file->f_mapping;
5491
5492         /*
5493          * Take the mapping lock for the duration of the table walk. As
5494          * this mapping should be shared between all the VMAs,
5495          * __unmap_hugepage_range() is called as the lock is already held
5496          */
5497         i_mmap_lock_write(mapping);
5498         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5499                 /* Do not unmap the current VMA */
5500                 if (iter_vma == vma)
5501                         continue;
5502
5503                 /*
5504                  * Shared VMAs have their own reserves and do not affect
5505                  * MAP_PRIVATE accounting but it is possible that a shared
5506                  * VMA is using the same page so check and skip such VMAs.
5507                  */
5508                 if (iter_vma->vm_flags & VM_MAYSHARE)
5509                         continue;
5510
5511                 /*
5512                  * Unmap the page from other VMAs without their own reserves.
5513                  * They get marked to be SIGKILLed if they fault in these
5514                  * areas. This is because a future no-page fault on this VMA
5515                  * could insert a zeroed page instead of the data existing
5516                  * from the time of fork. This would look like data corruption
5517                  */
5518                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5519                         unmap_hugepage_range(iter_vma, address,
5520                                              address + huge_page_size(h), page, 0);
5521         }
5522         i_mmap_unlock_write(mapping);
5523 }
5524
5525 /*
5526  * hugetlb_wp() should be called with page lock of the original hugepage held.
5527  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5528  * cannot race with other handlers or page migration.
5529  * Keep the pte_same checks anyway to make transition from the mutex easier.
5530  */
5531 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5532                        unsigned long address, pte_t *ptep, unsigned int flags,
5533                        struct folio *pagecache_folio, spinlock_t *ptl)
5534 {
5535         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5536         pte_t pte = huge_ptep_get(ptep);
5537         struct hstate *h = hstate_vma(vma);
5538         struct folio *old_folio;
5539         struct folio *new_folio;
5540         int outside_reserve = 0;
5541         vm_fault_t ret = 0;
5542         unsigned long haddr = address & huge_page_mask(h);
5543         struct mmu_notifier_range range;
5544
5545         /*
5546          * Never handle CoW for uffd-wp protected pages.  It should be only
5547          * handled when the uffd-wp protection is removed.
5548          *
5549          * Note that only the CoW optimization path (in hugetlb_no_page())
5550          * can trigger this, because hugetlb_fault() will always resolve
5551          * uffd-wp bit first.
5552          */
5553         if (!unshare && huge_pte_uffd_wp(pte))
5554                 return 0;
5555
5556         /*
5557          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5558          * PTE mapped R/O such as maybe_mkwrite() would do.
5559          */
5560         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5561                 return VM_FAULT_SIGSEGV;
5562
5563         /* Let's take out MAP_SHARED mappings first. */
5564         if (vma->vm_flags & VM_MAYSHARE) {
5565                 set_huge_ptep_writable(vma, haddr, ptep);
5566                 return 0;
5567         }
5568
5569         old_folio = page_folio(pte_page(pte));
5570
5571         delayacct_wpcopy_start();
5572
5573 retry_avoidcopy:
5574         /*
5575          * If no-one else is actually using this page, we're the exclusive
5576          * owner and can reuse this page.
5577          */
5578         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5579                 if (!PageAnonExclusive(&old_folio->page))
5580                         page_move_anon_rmap(&old_folio->page, vma);
5581                 if (likely(!unshare))
5582                         set_huge_ptep_writable(vma, haddr, ptep);
5583
5584                 delayacct_wpcopy_end();
5585                 return 0;
5586         }
5587         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5588                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5589
5590         /*
5591          * If the process that created a MAP_PRIVATE mapping is about to
5592          * perform a COW due to a shared page count, attempt to satisfy
5593          * the allocation without using the existing reserves. The pagecache
5594          * page is used to determine if the reserve at this address was
5595          * consumed or not. If reserves were used, a partial faulted mapping
5596          * at the time of fork() could consume its reserves on COW instead
5597          * of the full address range.
5598          */
5599         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5600                         old_folio != pagecache_folio)
5601                 outside_reserve = 1;
5602
5603         folio_get(old_folio);
5604
5605         /*
5606          * Drop page table lock as buddy allocator may be called. It will
5607          * be acquired again before returning to the caller, as expected.
5608          */
5609         spin_unlock(ptl);
5610         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5611
5612         if (IS_ERR(new_folio)) {
5613                 /*
5614                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5615                  * it is due to references held by a child and an insufficient
5616                  * huge page pool. To guarantee the original mappers
5617                  * reliability, unmap the page from child processes. The child
5618                  * may get SIGKILLed if it later faults.
5619                  */
5620                 if (outside_reserve) {
5621                         struct address_space *mapping = vma->vm_file->f_mapping;
5622                         pgoff_t idx;
5623                         u32 hash;
5624
5625                         folio_put(old_folio);
5626                         /*
5627                          * Drop hugetlb_fault_mutex and vma_lock before
5628                          * unmapping.  unmapping needs to hold vma_lock
5629                          * in write mode.  Dropping vma_lock in read mode
5630                          * here is OK as COW mappings do not interact with
5631                          * PMD sharing.
5632                          *
5633                          * Reacquire both after unmap operation.
5634                          */
5635                         idx = vma_hugecache_offset(h, vma, haddr);
5636                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5637                         hugetlb_vma_unlock_read(vma);
5638                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5639
5640                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5641
5642                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5643                         hugetlb_vma_lock_read(vma);
5644                         spin_lock(ptl);
5645                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5646                         if (likely(ptep &&
5647                                    pte_same(huge_ptep_get(ptep), pte)))
5648                                 goto retry_avoidcopy;
5649                         /*
5650                          * race occurs while re-acquiring page table
5651                          * lock, and our job is done.
5652                          */
5653                         delayacct_wpcopy_end();
5654                         return 0;
5655                 }
5656
5657                 ret = vmf_error(PTR_ERR(new_folio));
5658                 goto out_release_old;
5659         }
5660
5661         /*
5662          * When the original hugepage is shared one, it does not have
5663          * anon_vma prepared.
5664          */
5665         if (unlikely(anon_vma_prepare(vma))) {
5666                 ret = VM_FAULT_OOM;
5667                 goto out_release_all;
5668         }
5669
5670         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5671                 ret = VM_FAULT_HWPOISON_LARGE;
5672                 goto out_release_all;
5673         }
5674         __folio_mark_uptodate(new_folio);
5675
5676         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5677                                 haddr + huge_page_size(h));
5678         mmu_notifier_invalidate_range_start(&range);
5679
5680         /*
5681          * Retake the page table lock to check for racing updates
5682          * before the page tables are altered
5683          */
5684         spin_lock(ptl);
5685         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5686         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5687                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5688
5689                 /* Break COW or unshare */
5690                 huge_ptep_clear_flush(vma, haddr, ptep);
5691                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5692                 page_remove_rmap(&old_folio->page, vma, true);
5693                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5694                 if (huge_pte_uffd_wp(pte))
5695                         newpte = huge_pte_mkuffd_wp(newpte);
5696                 set_huge_pte_at(mm, haddr, ptep, newpte);
5697                 folio_set_hugetlb_migratable(new_folio);
5698                 /* Make the old page be freed below */
5699                 new_folio = old_folio;
5700         }
5701         spin_unlock(ptl);
5702         mmu_notifier_invalidate_range_end(&range);
5703 out_release_all:
5704         /*
5705          * No restore in case of successful pagetable update (Break COW or
5706          * unshare)
5707          */
5708         if (new_folio != old_folio)
5709                 restore_reserve_on_error(h, vma, haddr, new_folio);
5710         folio_put(new_folio);
5711 out_release_old:
5712         folio_put(old_folio);
5713
5714         spin_lock(ptl); /* Caller expects lock to be held */
5715
5716         delayacct_wpcopy_end();
5717         return ret;
5718 }
5719
5720 /*
5721  * Return whether there is a pagecache page to back given address within VMA.
5722  */
5723 static bool hugetlbfs_pagecache_present(struct hstate *h,
5724                         struct vm_area_struct *vma, unsigned long address)
5725 {
5726         struct address_space *mapping = vma->vm_file->f_mapping;
5727         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5728         struct folio *folio;
5729
5730         folio = filemap_get_folio(mapping, idx);
5731         if (IS_ERR(folio))
5732                 return false;
5733         folio_put(folio);
5734         return true;
5735 }
5736
5737 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5738                            pgoff_t idx)
5739 {
5740         struct inode *inode = mapping->host;
5741         struct hstate *h = hstate_inode(inode);
5742         int err;
5743
5744         __folio_set_locked(folio);
5745         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5746
5747         if (unlikely(err)) {
5748                 __folio_clear_locked(folio);
5749                 return err;
5750         }
5751         folio_clear_hugetlb_restore_reserve(folio);
5752
5753         /*
5754          * mark folio dirty so that it will not be removed from cache/file
5755          * by non-hugetlbfs specific code paths.
5756          */
5757         folio_mark_dirty(folio);
5758
5759         spin_lock(&inode->i_lock);
5760         inode->i_blocks += blocks_per_huge_page(h);
5761         spin_unlock(&inode->i_lock);
5762         return 0;
5763 }
5764
5765 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5766                                                   struct address_space *mapping,
5767                                                   pgoff_t idx,
5768                                                   unsigned int flags,
5769                                                   unsigned long haddr,
5770                                                   unsigned long addr,
5771                                                   unsigned long reason)
5772 {
5773         u32 hash;
5774         struct vm_fault vmf = {
5775                 .vma = vma,
5776                 .address = haddr,
5777                 .real_address = addr,
5778                 .flags = flags,
5779
5780                 /*
5781                  * Hard to debug if it ends up being
5782                  * used by a callee that assumes
5783                  * something about the other
5784                  * uninitialized fields... same as in
5785                  * memory.c
5786                  */
5787         };
5788
5789         /*
5790          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5791          * userfault. Also mmap_lock could be dropped due to handling
5792          * userfault, any vma operation should be careful from here.
5793          */
5794         hugetlb_vma_unlock_read(vma);
5795         hash = hugetlb_fault_mutex_hash(mapping, idx);
5796         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5797         return handle_userfault(&vmf, reason);
5798 }
5799
5800 /*
5801  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5802  * false if pte changed or is changing.
5803  */
5804 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5805                                pte_t *ptep, pte_t old_pte)
5806 {
5807         spinlock_t *ptl;
5808         bool same;
5809
5810         ptl = huge_pte_lock(h, mm, ptep);
5811         same = pte_same(huge_ptep_get(ptep), old_pte);
5812         spin_unlock(ptl);
5813
5814         return same;
5815 }
5816
5817 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5818                         struct vm_area_struct *vma,
5819                         struct address_space *mapping, pgoff_t idx,
5820                         unsigned long address, pte_t *ptep,
5821                         pte_t old_pte, unsigned int flags)
5822 {
5823         struct hstate *h = hstate_vma(vma);
5824         vm_fault_t ret = VM_FAULT_SIGBUS;
5825         int anon_rmap = 0;
5826         unsigned long size;
5827         struct folio *folio;
5828         pte_t new_pte;
5829         spinlock_t *ptl;
5830         unsigned long haddr = address & huge_page_mask(h);
5831         bool new_folio, new_pagecache_folio = false;
5832         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5833
5834         /*
5835          * Currently, we are forced to kill the process in the event the
5836          * original mapper has unmapped pages from the child due to a failed
5837          * COW/unsharing. Warn that such a situation has occurred as it may not
5838          * be obvious.
5839          */
5840         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5841                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5842                            current->pid);
5843                 goto out;
5844         }
5845
5846         /*
5847          * Use page lock to guard against racing truncation
5848          * before we get page_table_lock.
5849          */
5850         new_folio = false;
5851         folio = filemap_lock_folio(mapping, idx);
5852         if (IS_ERR(folio)) {
5853                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5854                 if (idx >= size)
5855                         goto out;
5856                 /* Check for page in userfault range */
5857                 if (userfaultfd_missing(vma)) {
5858                         /*
5859                          * Since hugetlb_no_page() was examining pte
5860                          * without pgtable lock, we need to re-test under
5861                          * lock because the pte may not be stable and could
5862                          * have changed from under us.  Try to detect
5863                          * either changed or during-changing ptes and retry
5864                          * properly when needed.
5865                          *
5866                          * Note that userfaultfd is actually fine with
5867                          * false positives (e.g. caused by pte changed),
5868                          * but not wrong logical events (e.g. caused by
5869                          * reading a pte during changing).  The latter can
5870                          * confuse the userspace, so the strictness is very
5871                          * much preferred.  E.g., MISSING event should
5872                          * never happen on the page after UFFDIO_COPY has
5873                          * correctly installed the page and returned.
5874                          */
5875                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5876                                 ret = 0;
5877                                 goto out;
5878                         }
5879
5880                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5881                                                         haddr, address,
5882                                                         VM_UFFD_MISSING);
5883                 }
5884
5885                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5886                 if (IS_ERR(folio)) {
5887                         /*
5888                          * Returning error will result in faulting task being
5889                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5890                          * tasks from racing to fault in the same page which
5891                          * could result in false unable to allocate errors.
5892                          * Page migration does not take the fault mutex, but
5893                          * does a clear then write of pte's under page table
5894                          * lock.  Page fault code could race with migration,
5895                          * notice the clear pte and try to allocate a page
5896                          * here.  Before returning error, get ptl and make
5897                          * sure there really is no pte entry.
5898                          */
5899                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5900                                 ret = vmf_error(PTR_ERR(folio));
5901                         else
5902                                 ret = 0;
5903                         goto out;
5904                 }
5905                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5906                 __folio_mark_uptodate(folio);
5907                 new_folio = true;
5908
5909                 if (vma->vm_flags & VM_MAYSHARE) {
5910                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5911                         if (err) {
5912                                 /*
5913                                  * err can't be -EEXIST which implies someone
5914                                  * else consumed the reservation since hugetlb
5915                                  * fault mutex is held when add a hugetlb page
5916                                  * to the page cache. So it's safe to call
5917                                  * restore_reserve_on_error() here.
5918                                  */
5919                                 restore_reserve_on_error(h, vma, haddr, folio);
5920                                 folio_put(folio);
5921                                 goto out;
5922                         }
5923                         new_pagecache_folio = true;
5924                 } else {
5925                         folio_lock(folio);
5926                         if (unlikely(anon_vma_prepare(vma))) {
5927                                 ret = VM_FAULT_OOM;
5928                                 goto backout_unlocked;
5929                         }
5930                         anon_rmap = 1;
5931                 }
5932         } else {
5933                 /*
5934                  * If memory error occurs between mmap() and fault, some process
5935                  * don't have hwpoisoned swap entry for errored virtual address.
5936                  * So we need to block hugepage fault by PG_hwpoison bit check.
5937                  */
5938                 if (unlikely(folio_test_hwpoison(folio))) {
5939                         ret = VM_FAULT_HWPOISON_LARGE |
5940                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5941                         goto backout_unlocked;
5942                 }
5943
5944                 /* Check for page in userfault range. */
5945                 if (userfaultfd_minor(vma)) {
5946                         folio_unlock(folio);
5947                         folio_put(folio);
5948                         /* See comment in userfaultfd_missing() block above */
5949                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5950                                 ret = 0;
5951                                 goto out;
5952                         }
5953                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5954                                                         haddr, address,
5955                                                         VM_UFFD_MINOR);
5956                 }
5957         }
5958
5959         /*
5960          * If we are going to COW a private mapping later, we examine the
5961          * pending reservations for this page now. This will ensure that
5962          * any allocations necessary to record that reservation occur outside
5963          * the spinlock.
5964          */
5965         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5966                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5967                         ret = VM_FAULT_OOM;
5968                         goto backout_unlocked;
5969                 }
5970                 /* Just decrements count, does not deallocate */
5971                 vma_end_reservation(h, vma, haddr);
5972         }
5973
5974         ptl = huge_pte_lock(h, mm, ptep);
5975         ret = 0;
5976         /* If pte changed from under us, retry */
5977         if (!pte_same(huge_ptep_get(ptep), old_pte))
5978                 goto backout;
5979
5980         if (anon_rmap)
5981                 hugepage_add_new_anon_rmap(folio, vma, haddr);
5982         else
5983                 page_dup_file_rmap(&folio->page, true);
5984         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5985                                 && (vma->vm_flags & VM_SHARED)));
5986         /*
5987          * If this pte was previously wr-protected, keep it wr-protected even
5988          * if populated.
5989          */
5990         if (unlikely(pte_marker_uffd_wp(old_pte)))
5991                 new_pte = huge_pte_mkuffd_wp(new_pte);
5992         set_huge_pte_at(mm, haddr, ptep, new_pte);
5993
5994         hugetlb_count_add(pages_per_huge_page(h), mm);
5995         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5996                 /* Optimization, do the COW without a second fault */
5997                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5998         }
5999
6000         spin_unlock(ptl);
6001
6002         /*
6003          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6004          * found in the pagecache may not have hugetlb_migratable if they have
6005          * been isolated for migration.
6006          */
6007         if (new_folio)
6008                 folio_set_hugetlb_migratable(folio);
6009
6010         folio_unlock(folio);
6011 out:
6012         hugetlb_vma_unlock_read(vma);
6013         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6014         return ret;
6015
6016 backout:
6017         spin_unlock(ptl);
6018 backout_unlocked:
6019         if (new_folio && !new_pagecache_folio)
6020                 restore_reserve_on_error(h, vma, haddr, folio);
6021
6022         folio_unlock(folio);
6023         folio_put(folio);
6024         goto out;
6025 }
6026
6027 #ifdef CONFIG_SMP
6028 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6029 {
6030         unsigned long key[2];
6031         u32 hash;
6032
6033         key[0] = (unsigned long) mapping;
6034         key[1] = idx;
6035
6036         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6037
6038         return hash & (num_fault_mutexes - 1);
6039 }
6040 #else
6041 /*
6042  * For uniprocessor systems we always use a single mutex, so just
6043  * return 0 and avoid the hashing overhead.
6044  */
6045 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6046 {
6047         return 0;
6048 }
6049 #endif
6050
6051 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6052                         unsigned long address, unsigned int flags)
6053 {
6054         pte_t *ptep, entry;
6055         spinlock_t *ptl;
6056         vm_fault_t ret;
6057         u32 hash;
6058         pgoff_t idx;
6059         struct folio *folio = NULL;
6060         struct folio *pagecache_folio = NULL;
6061         struct hstate *h = hstate_vma(vma);
6062         struct address_space *mapping;
6063         int need_wait_lock = 0;
6064         unsigned long haddr = address & huge_page_mask(h);
6065
6066         /*
6067          * Serialize hugepage allocation and instantiation, so that we don't
6068          * get spurious allocation failures if two CPUs race to instantiate
6069          * the same page in the page cache.
6070          */
6071         mapping = vma->vm_file->f_mapping;
6072         idx = vma_hugecache_offset(h, vma, haddr);
6073         hash = hugetlb_fault_mutex_hash(mapping, idx);
6074         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6075
6076         /*
6077          * Acquire vma lock before calling huge_pte_alloc and hold
6078          * until finished with ptep.  This prevents huge_pmd_unshare from
6079          * being called elsewhere and making the ptep no longer valid.
6080          */
6081         hugetlb_vma_lock_read(vma);
6082         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6083         if (!ptep) {
6084                 hugetlb_vma_unlock_read(vma);
6085                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6086                 return VM_FAULT_OOM;
6087         }
6088
6089         entry = huge_ptep_get(ptep);
6090         if (huge_pte_none_mostly(entry)) {
6091                 if (is_pte_marker(entry)) {
6092                         pte_marker marker =
6093                                 pte_marker_get(pte_to_swp_entry(entry));
6094
6095                         if (marker & PTE_MARKER_POISONED) {
6096                                 ret = VM_FAULT_HWPOISON_LARGE;
6097                                 goto out_mutex;
6098                         }
6099                 }
6100
6101                 /*
6102                  * Other PTE markers should be handled the same way as none PTE.
6103                  *
6104                  * hugetlb_no_page will drop vma lock and hugetlb fault
6105                  * mutex internally, which make us return immediately.
6106                  */
6107                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6108                                       entry, flags);
6109         }
6110
6111         ret = 0;
6112
6113         /*
6114          * entry could be a migration/hwpoison entry at this point, so this
6115          * check prevents the kernel from going below assuming that we have
6116          * an active hugepage in pagecache. This goto expects the 2nd page
6117          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6118          * properly handle it.
6119          */
6120         if (!pte_present(entry)) {
6121                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6122                         /*
6123                          * Release the hugetlb fault lock now, but retain
6124                          * the vma lock, because it is needed to guard the
6125                          * huge_pte_lockptr() later in
6126                          * migration_entry_wait_huge(). The vma lock will
6127                          * be released there.
6128                          */
6129                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6130                         migration_entry_wait_huge(vma, ptep);
6131                         return 0;
6132                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6133                         ret = VM_FAULT_HWPOISON_LARGE |
6134                             VM_FAULT_SET_HINDEX(hstate_index(h));
6135                 goto out_mutex;
6136         }
6137
6138         /*
6139          * If we are going to COW/unshare the mapping later, we examine the
6140          * pending reservations for this page now. This will ensure that any
6141          * allocations necessary to record that reservation occur outside the
6142          * spinlock. Also lookup the pagecache page now as it is used to
6143          * determine if a reservation has been consumed.
6144          */
6145         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6146             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6147                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6148                         ret = VM_FAULT_OOM;
6149                         goto out_mutex;
6150                 }
6151                 /* Just decrements count, does not deallocate */
6152                 vma_end_reservation(h, vma, haddr);
6153
6154                 pagecache_folio = filemap_lock_folio(mapping, idx);
6155                 if (IS_ERR(pagecache_folio))
6156                         pagecache_folio = NULL;
6157         }
6158
6159         ptl = huge_pte_lock(h, mm, ptep);
6160
6161         /* Check for a racing update before calling hugetlb_wp() */
6162         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6163                 goto out_ptl;
6164
6165         /* Handle userfault-wp first, before trying to lock more pages */
6166         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6167             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6168                 struct vm_fault vmf = {
6169                         .vma = vma,
6170                         .address = haddr,
6171                         .real_address = address,
6172                         .flags = flags,
6173                 };
6174
6175                 spin_unlock(ptl);
6176                 if (pagecache_folio) {
6177                         folio_unlock(pagecache_folio);
6178                         folio_put(pagecache_folio);
6179                 }
6180                 hugetlb_vma_unlock_read(vma);
6181                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6182                 return handle_userfault(&vmf, VM_UFFD_WP);
6183         }
6184
6185         /*
6186          * hugetlb_wp() requires page locks of pte_page(entry) and
6187          * pagecache_folio, so here we need take the former one
6188          * when folio != pagecache_folio or !pagecache_folio.
6189          */
6190         folio = page_folio(pte_page(entry));
6191         if (folio != pagecache_folio)
6192                 if (!folio_trylock(folio)) {
6193                         need_wait_lock = 1;
6194                         goto out_ptl;
6195                 }
6196
6197         folio_get(folio);
6198
6199         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6200                 if (!huge_pte_write(entry)) {
6201                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6202                                          pagecache_folio, ptl);
6203                         goto out_put_page;
6204                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6205                         entry = huge_pte_mkdirty(entry);
6206                 }
6207         }
6208         entry = pte_mkyoung(entry);
6209         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6210                                                 flags & FAULT_FLAG_WRITE))
6211                 update_mmu_cache(vma, haddr, ptep);
6212 out_put_page:
6213         if (folio != pagecache_folio)
6214                 folio_unlock(folio);
6215         folio_put(folio);
6216 out_ptl:
6217         spin_unlock(ptl);
6218
6219         if (pagecache_folio) {
6220                 folio_unlock(pagecache_folio);
6221                 folio_put(pagecache_folio);
6222         }
6223 out_mutex:
6224         hugetlb_vma_unlock_read(vma);
6225         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6226         /*
6227          * Generally it's safe to hold refcount during waiting page lock. But
6228          * here we just wait to defer the next page fault to avoid busy loop and
6229          * the page is not used after unlocked before returning from the current
6230          * page fault. So we are safe from accessing freed page, even if we wait
6231          * here without taking refcount.
6232          */
6233         if (need_wait_lock)
6234                 folio_wait_locked(folio);
6235         return ret;
6236 }
6237
6238 #ifdef CONFIG_USERFAULTFD
6239 /*
6240  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6241  * with modifications for hugetlb pages.
6242  */
6243 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6244                              struct vm_area_struct *dst_vma,
6245                              unsigned long dst_addr,
6246                              unsigned long src_addr,
6247                              uffd_flags_t flags,
6248                              struct folio **foliop)
6249 {
6250         struct mm_struct *dst_mm = dst_vma->vm_mm;
6251         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6252         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6253         struct hstate *h = hstate_vma(dst_vma);
6254         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6255         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6256         unsigned long size;
6257         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6258         pte_t _dst_pte;
6259         spinlock_t *ptl;
6260         int ret = -ENOMEM;
6261         struct folio *folio;
6262         int writable;
6263         bool folio_in_pagecache = false;
6264
6265         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6266                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6267
6268                 /* Don't overwrite any existing PTEs (even markers) */
6269                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6270                         spin_unlock(ptl);
6271                         return -EEXIST;
6272                 }
6273
6274                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6275                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6276
6277                 /* No need to invalidate - it was non-present before */
6278                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6279
6280                 spin_unlock(ptl);
6281                 return 0;
6282         }
6283
6284         if (is_continue) {
6285                 ret = -EFAULT;
6286                 folio = filemap_lock_folio(mapping, idx);
6287                 if (IS_ERR(folio))
6288                         goto out;
6289                 folio_in_pagecache = true;
6290         } else if (!*foliop) {
6291                 /* If a folio already exists, then it's UFFDIO_COPY for
6292                  * a non-missing case. Return -EEXIST.
6293                  */
6294                 if (vm_shared &&
6295                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6296                         ret = -EEXIST;
6297                         goto out;
6298                 }
6299
6300                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6301                 if (IS_ERR(folio)) {
6302                         ret = -ENOMEM;
6303                         goto out;
6304                 }
6305
6306                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6307                                            false);
6308
6309                 /* fallback to copy_from_user outside mmap_lock */
6310                 if (unlikely(ret)) {
6311                         ret = -ENOENT;
6312                         /* Free the allocated folio which may have
6313                          * consumed a reservation.
6314                          */
6315                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6316                         folio_put(folio);
6317
6318                         /* Allocate a temporary folio to hold the copied
6319                          * contents.
6320                          */
6321                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6322                         if (!folio) {
6323                                 ret = -ENOMEM;
6324                                 goto out;
6325                         }
6326                         *foliop = folio;
6327                         /* Set the outparam foliop and return to the caller to
6328                          * copy the contents outside the lock. Don't free the
6329                          * folio.
6330                          */
6331                         goto out;
6332                 }
6333         } else {
6334                 if (vm_shared &&
6335                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6336                         folio_put(*foliop);
6337                         ret = -EEXIST;
6338                         *foliop = NULL;
6339                         goto out;
6340                 }
6341
6342                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343                 if (IS_ERR(folio)) {
6344                         folio_put(*foliop);
6345                         ret = -ENOMEM;
6346                         *foliop = NULL;
6347                         goto out;
6348                 }
6349                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6350                 folio_put(*foliop);
6351                 *foliop = NULL;
6352                 if (ret) {
6353                         folio_put(folio);
6354                         goto out;
6355                 }
6356         }
6357
6358         /*
6359          * The memory barrier inside __folio_mark_uptodate makes sure that
6360          * preceding stores to the page contents become visible before
6361          * the set_pte_at() write.
6362          */
6363         __folio_mark_uptodate(folio);
6364
6365         /* Add shared, newly allocated pages to the page cache. */
6366         if (vm_shared && !is_continue) {
6367                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6368                 ret = -EFAULT;
6369                 if (idx >= size)
6370                         goto out_release_nounlock;
6371
6372                 /*
6373                  * Serialization between remove_inode_hugepages() and
6374                  * hugetlb_add_to_page_cache() below happens through the
6375                  * hugetlb_fault_mutex_table that here must be hold by
6376                  * the caller.
6377                  */
6378                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6379                 if (ret)
6380                         goto out_release_nounlock;
6381                 folio_in_pagecache = true;
6382         }
6383
6384         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6385
6386         ret = -EIO;
6387         if (folio_test_hwpoison(folio))
6388                 goto out_release_unlock;
6389
6390         /*
6391          * We allow to overwrite a pte marker: consider when both MISSING|WP
6392          * registered, we firstly wr-protect a none pte which has no page cache
6393          * page backing it, then access the page.
6394          */
6395         ret = -EEXIST;
6396         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6397                 goto out_release_unlock;
6398
6399         if (folio_in_pagecache)
6400                 page_dup_file_rmap(&folio->page, true);
6401         else
6402                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6403
6404         /*
6405          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6406          * with wp flag set, don't set pte write bit.
6407          */
6408         if (wp_enabled || (is_continue && !vm_shared))
6409                 writable = 0;
6410         else
6411                 writable = dst_vma->vm_flags & VM_WRITE;
6412
6413         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6414         /*
6415          * Always mark UFFDIO_COPY page dirty; note that this may not be
6416          * extremely important for hugetlbfs for now since swapping is not
6417          * supported, but we should still be clear in that this page cannot be
6418          * thrown away at will, even if write bit not set.
6419          */
6420         _dst_pte = huge_pte_mkdirty(_dst_pte);
6421         _dst_pte = pte_mkyoung(_dst_pte);
6422
6423         if (wp_enabled)
6424                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6425
6426         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6427
6428         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6429
6430         /* No need to invalidate - it was non-present before */
6431         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6432
6433         spin_unlock(ptl);
6434         if (!is_continue)
6435                 folio_set_hugetlb_migratable(folio);
6436         if (vm_shared || is_continue)
6437                 folio_unlock(folio);
6438         ret = 0;
6439 out:
6440         return ret;
6441 out_release_unlock:
6442         spin_unlock(ptl);
6443         if (vm_shared || is_continue)
6444                 folio_unlock(folio);
6445 out_release_nounlock:
6446         if (!folio_in_pagecache)
6447                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6448         folio_put(folio);
6449         goto out;
6450 }
6451 #endif /* CONFIG_USERFAULTFD */
6452
6453 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6454                                       unsigned long address, unsigned int flags,
6455                                       unsigned int *page_mask)
6456 {
6457         struct hstate *h = hstate_vma(vma);
6458         struct mm_struct *mm = vma->vm_mm;
6459         unsigned long haddr = address & huge_page_mask(h);
6460         struct page *page = NULL;
6461         spinlock_t *ptl;
6462         pte_t *pte, entry;
6463         int ret;
6464
6465         hugetlb_vma_lock_read(vma);
6466         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6467         if (!pte)
6468                 goto out_unlock;
6469
6470         ptl = huge_pte_lock(h, mm, pte);
6471         entry = huge_ptep_get(pte);
6472         if (pte_present(entry)) {
6473                 page = pte_page(entry);
6474
6475                 if (!huge_pte_write(entry)) {
6476                         if (flags & FOLL_WRITE) {
6477                                 page = NULL;
6478                                 goto out;
6479                         }
6480
6481                         if (gup_must_unshare(vma, flags, page)) {
6482                                 /* Tell the caller to do unsharing */
6483                                 page = ERR_PTR(-EMLINK);
6484                                 goto out;
6485                         }
6486                 }
6487
6488                 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6489
6490                 /*
6491                  * Note that page may be a sub-page, and with vmemmap
6492                  * optimizations the page struct may be read only.
6493                  * try_grab_page() will increase the ref count on the
6494                  * head page, so this will be OK.
6495                  *
6496                  * try_grab_page() should always be able to get the page here,
6497                  * because we hold the ptl lock and have verified pte_present().
6498                  */
6499                 ret = try_grab_page(page, flags);
6500
6501                 if (WARN_ON_ONCE(ret)) {
6502                         page = ERR_PTR(ret);
6503                         goto out;
6504                 }
6505
6506                 *page_mask = (1U << huge_page_order(h)) - 1;
6507         }
6508 out:
6509         spin_unlock(ptl);
6510 out_unlock:
6511         hugetlb_vma_unlock_read(vma);
6512
6513         /*
6514          * Fixup retval for dump requests: if pagecache doesn't exist,
6515          * don't try to allocate a new page but just skip it.
6516          */
6517         if (!page && (flags & FOLL_DUMP) &&
6518             !hugetlbfs_pagecache_present(h, vma, address))
6519                 page = ERR_PTR(-EFAULT);
6520
6521         return page;
6522 }
6523
6524 long hugetlb_change_protection(struct vm_area_struct *vma,
6525                 unsigned long address, unsigned long end,
6526                 pgprot_t newprot, unsigned long cp_flags)
6527 {
6528         struct mm_struct *mm = vma->vm_mm;
6529         unsigned long start = address;
6530         pte_t *ptep;
6531         pte_t pte;
6532         struct hstate *h = hstate_vma(vma);
6533         long pages = 0, psize = huge_page_size(h);
6534         bool shared_pmd = false;
6535         struct mmu_notifier_range range;
6536         unsigned long last_addr_mask;
6537         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6538         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6539
6540         /*
6541          * In the case of shared PMDs, the area to flush could be beyond
6542          * start/end.  Set range.start/range.end to cover the maximum possible
6543          * range if PMD sharing is possible.
6544          */
6545         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6546                                 0, mm, start, end);
6547         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6548
6549         BUG_ON(address >= end);
6550         flush_cache_range(vma, range.start, range.end);
6551
6552         mmu_notifier_invalidate_range_start(&range);
6553         hugetlb_vma_lock_write(vma);
6554         i_mmap_lock_write(vma->vm_file->f_mapping);
6555         last_addr_mask = hugetlb_mask_last_page(h);
6556         for (; address < end; address += psize) {
6557                 spinlock_t *ptl;
6558                 ptep = hugetlb_walk(vma, address, psize);
6559                 if (!ptep) {
6560                         if (!uffd_wp) {
6561                                 address |= last_addr_mask;
6562                                 continue;
6563                         }
6564                         /*
6565                          * Userfaultfd wr-protect requires pgtable
6566                          * pre-allocations to install pte markers.
6567                          */
6568                         ptep = huge_pte_alloc(mm, vma, address, psize);
6569                         if (!ptep) {
6570                                 pages = -ENOMEM;
6571                                 break;
6572                         }
6573                 }
6574                 ptl = huge_pte_lock(h, mm, ptep);
6575                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6576                         /*
6577                          * When uffd-wp is enabled on the vma, unshare
6578                          * shouldn't happen at all.  Warn about it if it
6579                          * happened due to some reason.
6580                          */
6581                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6582                         pages++;
6583                         spin_unlock(ptl);
6584                         shared_pmd = true;
6585                         address |= last_addr_mask;
6586                         continue;
6587                 }
6588                 pte = huge_ptep_get(ptep);
6589                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6590                         /* Nothing to do. */
6591                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6592                         swp_entry_t entry = pte_to_swp_entry(pte);
6593                         struct page *page = pfn_swap_entry_to_page(entry);
6594                         pte_t newpte = pte;
6595
6596                         if (is_writable_migration_entry(entry)) {
6597                                 if (PageAnon(page))
6598                                         entry = make_readable_exclusive_migration_entry(
6599                                                                 swp_offset(entry));
6600                                 else
6601                                         entry = make_readable_migration_entry(
6602                                                                 swp_offset(entry));
6603                                 newpte = swp_entry_to_pte(entry);
6604                                 pages++;
6605                         }
6606
6607                         if (uffd_wp)
6608                                 newpte = pte_swp_mkuffd_wp(newpte);
6609                         else if (uffd_wp_resolve)
6610                                 newpte = pte_swp_clear_uffd_wp(newpte);
6611                         if (!pte_same(pte, newpte))
6612                                 set_huge_pte_at(mm, address, ptep, newpte);
6613                 } else if (unlikely(is_pte_marker(pte))) {
6614                         /* No other markers apply for now. */
6615                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6616                         if (uffd_wp_resolve)
6617                                 /* Safe to modify directly (non-present->none). */
6618                                 huge_pte_clear(mm, address, ptep, psize);
6619                 } else if (!huge_pte_none(pte)) {
6620                         pte_t old_pte;
6621                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6622
6623                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6624                         pte = huge_pte_modify(old_pte, newprot);
6625                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6626                         if (uffd_wp)
6627                                 pte = huge_pte_mkuffd_wp(pte);
6628                         else if (uffd_wp_resolve)
6629                                 pte = huge_pte_clear_uffd_wp(pte);
6630                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6631                         pages++;
6632                 } else {
6633                         /* None pte */
6634                         if (unlikely(uffd_wp))
6635                                 /* Safe to modify directly (none->non-present). */
6636                                 set_huge_pte_at(mm, address, ptep,
6637                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6638                 }
6639                 spin_unlock(ptl);
6640         }
6641         /*
6642          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6643          * may have cleared our pud entry and done put_page on the page table:
6644          * once we release i_mmap_rwsem, another task can do the final put_page
6645          * and that page table be reused and filled with junk.  If we actually
6646          * did unshare a page of pmds, flush the range corresponding to the pud.
6647          */
6648         if (shared_pmd)
6649                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6650         else
6651                 flush_hugetlb_tlb_range(vma, start, end);
6652         /*
6653          * No need to call mmu_notifier_invalidate_range() we are downgrading
6654          * page table protection not changing it to point to a new page.
6655          *
6656          * See Documentation/mm/mmu_notifier.rst
6657          */
6658         i_mmap_unlock_write(vma->vm_file->f_mapping);
6659         hugetlb_vma_unlock_write(vma);
6660         mmu_notifier_invalidate_range_end(&range);
6661
6662         return pages > 0 ? (pages << h->order) : pages;
6663 }
6664
6665 /* Return true if reservation was successful, false otherwise.  */
6666 bool hugetlb_reserve_pages(struct inode *inode,
6667                                         long from, long to,
6668                                         struct vm_area_struct *vma,
6669                                         vm_flags_t vm_flags)
6670 {
6671         long chg = -1, add = -1;
6672         struct hstate *h = hstate_inode(inode);
6673         struct hugepage_subpool *spool = subpool_inode(inode);
6674         struct resv_map *resv_map;
6675         struct hugetlb_cgroup *h_cg = NULL;
6676         long gbl_reserve, regions_needed = 0;
6677
6678         /* This should never happen */
6679         if (from > to) {
6680                 VM_WARN(1, "%s called with a negative range\n", __func__);
6681                 return false;
6682         }
6683
6684         /*
6685          * vma specific semaphore used for pmd sharing and fault/truncation
6686          * synchronization
6687          */
6688         hugetlb_vma_lock_alloc(vma);
6689
6690         /*
6691          * Only apply hugepage reservation if asked. At fault time, an
6692          * attempt will be made for VM_NORESERVE to allocate a page
6693          * without using reserves
6694          */
6695         if (vm_flags & VM_NORESERVE)
6696                 return true;
6697
6698         /*
6699          * Shared mappings base their reservation on the number of pages that
6700          * are already allocated on behalf of the file. Private mappings need
6701          * to reserve the full area even if read-only as mprotect() may be
6702          * called to make the mapping read-write. Assume !vma is a shm mapping
6703          */
6704         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6705                 /*
6706                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6707                  * called for inodes for which resv_maps were created (see
6708                  * hugetlbfs_get_inode).
6709                  */
6710                 resv_map = inode_resv_map(inode);
6711
6712                 chg = region_chg(resv_map, from, to, &regions_needed);
6713         } else {
6714                 /* Private mapping. */
6715                 resv_map = resv_map_alloc();
6716                 if (!resv_map)
6717                         goto out_err;
6718
6719                 chg = to - from;
6720
6721                 set_vma_resv_map(vma, resv_map);
6722                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6723         }
6724
6725         if (chg < 0)
6726                 goto out_err;
6727
6728         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6729                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6730                 goto out_err;
6731
6732         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6733                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6734                  * of the resv_map.
6735                  */
6736                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6737         }
6738
6739         /*
6740          * There must be enough pages in the subpool for the mapping. If
6741          * the subpool has a minimum size, there may be some global
6742          * reservations already in place (gbl_reserve).
6743          */
6744         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6745         if (gbl_reserve < 0)
6746                 goto out_uncharge_cgroup;
6747
6748         /*
6749          * Check enough hugepages are available for the reservation.
6750          * Hand the pages back to the subpool if there are not
6751          */
6752         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6753                 goto out_put_pages;
6754
6755         /*
6756          * Account for the reservations made. Shared mappings record regions
6757          * that have reservations as they are shared by multiple VMAs.
6758          * When the last VMA disappears, the region map says how much
6759          * the reservation was and the page cache tells how much of
6760          * the reservation was consumed. Private mappings are per-VMA and
6761          * only the consumed reservations are tracked. When the VMA
6762          * disappears, the original reservation is the VMA size and the
6763          * consumed reservations are stored in the map. Hence, nothing
6764          * else has to be done for private mappings here
6765          */
6766         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6767                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6768
6769                 if (unlikely(add < 0)) {
6770                         hugetlb_acct_memory(h, -gbl_reserve);
6771                         goto out_put_pages;
6772                 } else if (unlikely(chg > add)) {
6773                         /*
6774                          * pages in this range were added to the reserve
6775                          * map between region_chg and region_add.  This
6776                          * indicates a race with alloc_hugetlb_folio.  Adjust
6777                          * the subpool and reserve counts modified above
6778                          * based on the difference.
6779                          */
6780                         long rsv_adjust;
6781
6782                         /*
6783                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6784                          * reference to h_cg->css. See comment below for detail.
6785                          */
6786                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6787                                 hstate_index(h),
6788                                 (chg - add) * pages_per_huge_page(h), h_cg);
6789
6790                         rsv_adjust = hugepage_subpool_put_pages(spool,
6791                                                                 chg - add);
6792                         hugetlb_acct_memory(h, -rsv_adjust);
6793                 } else if (h_cg) {
6794                         /*
6795                          * The file_regions will hold their own reference to
6796                          * h_cg->css. So we should release the reference held
6797                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6798                          * done.
6799                          */
6800                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6801                 }
6802         }
6803         return true;
6804
6805 out_put_pages:
6806         /* put back original number of pages, chg */
6807         (void)hugepage_subpool_put_pages(spool, chg);
6808 out_uncharge_cgroup:
6809         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6810                                             chg * pages_per_huge_page(h), h_cg);
6811 out_err:
6812         hugetlb_vma_lock_free(vma);
6813         if (!vma || vma->vm_flags & VM_MAYSHARE)
6814                 /* Only call region_abort if the region_chg succeeded but the
6815                  * region_add failed or didn't run.
6816                  */
6817                 if (chg >= 0 && add < 0)
6818                         region_abort(resv_map, from, to, regions_needed);
6819         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6820                 kref_put(&resv_map->refs, resv_map_release);
6821         return false;
6822 }
6823
6824 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6825                                                                 long freed)
6826 {
6827         struct hstate *h = hstate_inode(inode);
6828         struct resv_map *resv_map = inode_resv_map(inode);
6829         long chg = 0;
6830         struct hugepage_subpool *spool = subpool_inode(inode);
6831         long gbl_reserve;
6832
6833         /*
6834          * Since this routine can be called in the evict inode path for all
6835          * hugetlbfs inodes, resv_map could be NULL.
6836          */
6837         if (resv_map) {
6838                 chg = region_del(resv_map, start, end);
6839                 /*
6840                  * region_del() can fail in the rare case where a region
6841                  * must be split and another region descriptor can not be
6842                  * allocated.  If end == LONG_MAX, it will not fail.
6843                  */
6844                 if (chg < 0)
6845                         return chg;
6846         }
6847
6848         spin_lock(&inode->i_lock);
6849         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6850         spin_unlock(&inode->i_lock);
6851
6852         /*
6853          * If the subpool has a minimum size, the number of global
6854          * reservations to be released may be adjusted.
6855          *
6856          * Note that !resv_map implies freed == 0. So (chg - freed)
6857          * won't go negative.
6858          */
6859         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6860         hugetlb_acct_memory(h, -gbl_reserve);
6861
6862         return 0;
6863 }
6864
6865 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6866 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6867                                 struct vm_area_struct *vma,
6868                                 unsigned long addr, pgoff_t idx)
6869 {
6870         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6871                                 svma->vm_start;
6872         unsigned long sbase = saddr & PUD_MASK;
6873         unsigned long s_end = sbase + PUD_SIZE;
6874
6875         /* Allow segments to share if only one is marked locked */
6876         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6877         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6878
6879         /*
6880          * match the virtual addresses, permission and the alignment of the
6881          * page table page.
6882          *
6883          * Also, vma_lock (vm_private_data) is required for sharing.
6884          */
6885         if (pmd_index(addr) != pmd_index(saddr) ||
6886             vm_flags != svm_flags ||
6887             !range_in_vma(svma, sbase, s_end) ||
6888             !svma->vm_private_data)
6889                 return 0;
6890
6891         return saddr;
6892 }
6893
6894 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6895 {
6896         unsigned long start = addr & PUD_MASK;
6897         unsigned long end = start + PUD_SIZE;
6898
6899 #ifdef CONFIG_USERFAULTFD
6900         if (uffd_disable_huge_pmd_share(vma))
6901                 return false;
6902 #endif
6903         /*
6904          * check on proper vm_flags and page table alignment
6905          */
6906         if (!(vma->vm_flags & VM_MAYSHARE))
6907                 return false;
6908         if (!vma->vm_private_data)      /* vma lock required for sharing */
6909                 return false;
6910         if (!range_in_vma(vma, start, end))
6911                 return false;
6912         return true;
6913 }
6914
6915 /*
6916  * Determine if start,end range within vma could be mapped by shared pmd.
6917  * If yes, adjust start and end to cover range associated with possible
6918  * shared pmd mappings.
6919  */
6920 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6921                                 unsigned long *start, unsigned long *end)
6922 {
6923         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6924                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6925
6926         /*
6927          * vma needs to span at least one aligned PUD size, and the range
6928          * must be at least partially within in.
6929          */
6930         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6931                 (*end <= v_start) || (*start >= v_end))
6932                 return;
6933
6934         /* Extend the range to be PUD aligned for a worst case scenario */
6935         if (*start > v_start)
6936                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6937
6938         if (*end < v_end)
6939                 *end = ALIGN(*end, PUD_SIZE);
6940 }
6941
6942 /*
6943  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6944  * and returns the corresponding pte. While this is not necessary for the
6945  * !shared pmd case because we can allocate the pmd later as well, it makes the
6946  * code much cleaner. pmd allocation is essential for the shared case because
6947  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6948  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6949  * bad pmd for sharing.
6950  */
6951 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6952                       unsigned long addr, pud_t *pud)
6953 {
6954         struct address_space *mapping = vma->vm_file->f_mapping;
6955         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6956                         vma->vm_pgoff;
6957         struct vm_area_struct *svma;
6958         unsigned long saddr;
6959         pte_t *spte = NULL;
6960         pte_t *pte;
6961
6962         i_mmap_lock_read(mapping);
6963         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6964                 if (svma == vma)
6965                         continue;
6966
6967                 saddr = page_table_shareable(svma, vma, addr, idx);
6968                 if (saddr) {
6969                         spte = hugetlb_walk(svma, saddr,
6970                                             vma_mmu_pagesize(svma));
6971                         if (spte) {
6972                                 get_page(virt_to_page(spte));
6973                                 break;
6974                         }
6975                 }
6976         }
6977
6978         if (!spte)
6979                 goto out;
6980
6981         spin_lock(&mm->page_table_lock);
6982         if (pud_none(*pud)) {
6983                 pud_populate(mm, pud,
6984                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6985                 mm_inc_nr_pmds(mm);
6986         } else {
6987                 put_page(virt_to_page(spte));
6988         }
6989         spin_unlock(&mm->page_table_lock);
6990 out:
6991         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6992         i_mmap_unlock_read(mapping);
6993         return pte;
6994 }
6995
6996 /*
6997  * unmap huge page backed by shared pte.
6998  *
6999  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7000  * indicated by page_count > 1, unmap is achieved by clearing pud and
7001  * decrementing the ref count. If count == 1, the pte page is not shared.
7002  *
7003  * Called with page table lock held.
7004  *
7005  * returns: 1 successfully unmapped a shared pte page
7006  *          0 the underlying pte page is not shared, or it is the last user
7007  */
7008 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7009                                         unsigned long addr, pte_t *ptep)
7010 {
7011         pgd_t *pgd = pgd_offset(mm, addr);
7012         p4d_t *p4d = p4d_offset(pgd, addr);
7013         pud_t *pud = pud_offset(p4d, addr);
7014
7015         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7016         hugetlb_vma_assert_locked(vma);
7017         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7018         if (page_count(virt_to_page(ptep)) == 1)
7019                 return 0;
7020
7021         pud_clear(pud);
7022         put_page(virt_to_page(ptep));
7023         mm_dec_nr_pmds(mm);
7024         return 1;
7025 }
7026
7027 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7028
7029 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7030                       unsigned long addr, pud_t *pud)
7031 {
7032         return NULL;
7033 }
7034
7035 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7036                                 unsigned long addr, pte_t *ptep)
7037 {
7038         return 0;
7039 }
7040
7041 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7042                                 unsigned long *start, unsigned long *end)
7043 {
7044 }
7045
7046 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7047 {
7048         return false;
7049 }
7050 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7051
7052 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7053 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7054                         unsigned long addr, unsigned long sz)
7055 {
7056         pgd_t *pgd;
7057         p4d_t *p4d;
7058         pud_t *pud;
7059         pte_t *pte = NULL;
7060
7061         pgd = pgd_offset(mm, addr);
7062         p4d = p4d_alloc(mm, pgd, addr);
7063         if (!p4d)
7064                 return NULL;
7065         pud = pud_alloc(mm, p4d, addr);
7066         if (pud) {
7067                 if (sz == PUD_SIZE) {
7068                         pte = (pte_t *)pud;
7069                 } else {
7070                         BUG_ON(sz != PMD_SIZE);
7071                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7072                                 pte = huge_pmd_share(mm, vma, addr, pud);
7073                         else
7074                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7075                 }
7076         }
7077
7078         if (pte) {
7079                 pte_t pteval = ptep_get_lockless(pte);
7080
7081                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7082         }
7083
7084         return pte;
7085 }
7086
7087 /*
7088  * huge_pte_offset() - Walk the page table to resolve the hugepage
7089  * entry at address @addr
7090  *
7091  * Return: Pointer to page table entry (PUD or PMD) for
7092  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7093  * size @sz doesn't match the hugepage size at this level of the page
7094  * table.
7095  */
7096 pte_t *huge_pte_offset(struct mm_struct *mm,
7097                        unsigned long addr, unsigned long sz)
7098 {
7099         pgd_t *pgd;
7100         p4d_t *p4d;
7101         pud_t *pud;
7102         pmd_t *pmd;
7103
7104         pgd = pgd_offset(mm, addr);
7105         if (!pgd_present(*pgd))
7106                 return NULL;
7107         p4d = p4d_offset(pgd, addr);
7108         if (!p4d_present(*p4d))
7109                 return NULL;
7110
7111         pud = pud_offset(p4d, addr);
7112         if (sz == PUD_SIZE)
7113                 /* must be pud huge, non-present or none */
7114                 return (pte_t *)pud;
7115         if (!pud_present(*pud))
7116                 return NULL;
7117         /* must have a valid entry and size to go further */
7118
7119         pmd = pmd_offset(pud, addr);
7120         /* must be pmd huge, non-present or none */
7121         return (pte_t *)pmd;
7122 }
7123
7124 /*
7125  * Return a mask that can be used to update an address to the last huge
7126  * page in a page table page mapping size.  Used to skip non-present
7127  * page table entries when linearly scanning address ranges.  Architectures
7128  * with unique huge page to page table relationships can define their own
7129  * version of this routine.
7130  */
7131 unsigned long hugetlb_mask_last_page(struct hstate *h)
7132 {
7133         unsigned long hp_size = huge_page_size(h);
7134
7135         if (hp_size == PUD_SIZE)
7136                 return P4D_SIZE - PUD_SIZE;
7137         else if (hp_size == PMD_SIZE)
7138                 return PUD_SIZE - PMD_SIZE;
7139         else
7140                 return 0UL;
7141 }
7142
7143 #else
7144
7145 /* See description above.  Architectures can provide their own version. */
7146 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7147 {
7148 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7149         if (huge_page_size(h) == PMD_SIZE)
7150                 return PUD_SIZE - PMD_SIZE;
7151 #endif
7152         return 0UL;
7153 }
7154
7155 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7156
7157 /*
7158  * These functions are overwritable if your architecture needs its own
7159  * behavior.
7160  */
7161 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7162 {
7163         bool ret = true;
7164
7165         spin_lock_irq(&hugetlb_lock);
7166         if (!folio_test_hugetlb(folio) ||
7167             !folio_test_hugetlb_migratable(folio) ||
7168             !folio_try_get(folio)) {
7169                 ret = false;
7170                 goto unlock;
7171         }
7172         folio_clear_hugetlb_migratable(folio);
7173         list_move_tail(&folio->lru, list);
7174 unlock:
7175         spin_unlock_irq(&hugetlb_lock);
7176         return ret;
7177 }
7178
7179 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7180 {
7181         int ret = 0;
7182
7183         *hugetlb = false;
7184         spin_lock_irq(&hugetlb_lock);
7185         if (folio_test_hugetlb(folio)) {
7186                 *hugetlb = true;
7187                 if (folio_test_hugetlb_freed(folio))
7188                         ret = 0;
7189                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7190                         ret = folio_try_get(folio);
7191                 else
7192                         ret = -EBUSY;
7193         }
7194         spin_unlock_irq(&hugetlb_lock);
7195         return ret;
7196 }
7197
7198 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7199                                 bool *migratable_cleared)
7200 {
7201         int ret;
7202
7203         spin_lock_irq(&hugetlb_lock);
7204         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7205         spin_unlock_irq(&hugetlb_lock);
7206         return ret;
7207 }
7208
7209 void folio_putback_active_hugetlb(struct folio *folio)
7210 {
7211         spin_lock_irq(&hugetlb_lock);
7212         folio_set_hugetlb_migratable(folio);
7213         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7214         spin_unlock_irq(&hugetlb_lock);
7215         folio_put(folio);
7216 }
7217
7218 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7219 {
7220         struct hstate *h = folio_hstate(old_folio);
7221
7222         hugetlb_cgroup_migrate(old_folio, new_folio);
7223         set_page_owner_migrate_reason(&new_folio->page, reason);
7224
7225         /*
7226          * transfer temporary state of the new hugetlb folio. This is
7227          * reverse to other transitions because the newpage is going to
7228          * be final while the old one will be freed so it takes over
7229          * the temporary status.
7230          *
7231          * Also note that we have to transfer the per-node surplus state
7232          * here as well otherwise the global surplus count will not match
7233          * the per-node's.
7234          */
7235         if (folio_test_hugetlb_temporary(new_folio)) {
7236                 int old_nid = folio_nid(old_folio);
7237                 int new_nid = folio_nid(new_folio);
7238
7239                 folio_set_hugetlb_temporary(old_folio);
7240                 folio_clear_hugetlb_temporary(new_folio);
7241
7242
7243                 /*
7244                  * There is no need to transfer the per-node surplus state
7245                  * when we do not cross the node.
7246                  */
7247                 if (new_nid == old_nid)
7248                         return;
7249                 spin_lock_irq(&hugetlb_lock);
7250                 if (h->surplus_huge_pages_node[old_nid]) {
7251                         h->surplus_huge_pages_node[old_nid]--;
7252                         h->surplus_huge_pages_node[new_nid]++;
7253                 }
7254                 spin_unlock_irq(&hugetlb_lock);
7255         }
7256 }
7257
7258 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7259                                    unsigned long start,
7260                                    unsigned long end)
7261 {
7262         struct hstate *h = hstate_vma(vma);
7263         unsigned long sz = huge_page_size(h);
7264         struct mm_struct *mm = vma->vm_mm;
7265         struct mmu_notifier_range range;
7266         unsigned long address;
7267         spinlock_t *ptl;
7268         pte_t *ptep;
7269
7270         if (!(vma->vm_flags & VM_MAYSHARE))
7271                 return;
7272
7273         if (start >= end)
7274                 return;
7275
7276         flush_cache_range(vma, start, end);
7277         /*
7278          * No need to call adjust_range_if_pmd_sharing_possible(), because
7279          * we have already done the PUD_SIZE alignment.
7280          */
7281         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7282                                 start, end);
7283         mmu_notifier_invalidate_range_start(&range);
7284         hugetlb_vma_lock_write(vma);
7285         i_mmap_lock_write(vma->vm_file->f_mapping);
7286         for (address = start; address < end; address += PUD_SIZE) {
7287                 ptep = hugetlb_walk(vma, address, sz);
7288                 if (!ptep)
7289                         continue;
7290                 ptl = huge_pte_lock(h, mm, ptep);
7291                 huge_pmd_unshare(mm, vma, address, ptep);
7292                 spin_unlock(ptl);
7293         }
7294         flush_hugetlb_tlb_range(vma, start, end);
7295         i_mmap_unlock_write(vma->vm_file->f_mapping);
7296         hugetlb_vma_unlock_write(vma);
7297         /*
7298          * No need to call mmu_notifier_invalidate_range(), see
7299          * Documentation/mm/mmu_notifier.rst.
7300          */
7301         mmu_notifier_invalidate_range_end(&range);
7302 }
7303
7304 /*
7305  * This function will unconditionally remove all the shared pmd pgtable entries
7306  * within the specific vma for a hugetlbfs memory range.
7307  */
7308 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7309 {
7310         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7311                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7312 }
7313
7314 #ifdef CONFIG_CMA
7315 static bool cma_reserve_called __initdata;
7316
7317 static int __init cmdline_parse_hugetlb_cma(char *p)
7318 {
7319         int nid, count = 0;
7320         unsigned long tmp;
7321         char *s = p;
7322
7323         while (*s) {
7324                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7325                         break;
7326
7327                 if (s[count] == ':') {
7328                         if (tmp >= MAX_NUMNODES)
7329                                 break;
7330                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7331
7332                         s += count + 1;
7333                         tmp = memparse(s, &s);
7334                         hugetlb_cma_size_in_node[nid] = tmp;
7335                         hugetlb_cma_size += tmp;
7336
7337                         /*
7338                          * Skip the separator if have one, otherwise
7339                          * break the parsing.
7340                          */
7341                         if (*s == ',')
7342                                 s++;
7343                         else
7344                                 break;
7345                 } else {
7346                         hugetlb_cma_size = memparse(p, &p);
7347                         break;
7348                 }
7349         }
7350
7351         return 0;
7352 }
7353
7354 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7355
7356 void __init hugetlb_cma_reserve(int order)
7357 {
7358         unsigned long size, reserved, per_node;
7359         bool node_specific_cma_alloc = false;
7360         int nid;
7361
7362         cma_reserve_called = true;
7363
7364         if (!hugetlb_cma_size)
7365                 return;
7366
7367         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7368                 if (hugetlb_cma_size_in_node[nid] == 0)
7369                         continue;
7370
7371                 if (!node_online(nid)) {
7372                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7373                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7374                         hugetlb_cma_size_in_node[nid] = 0;
7375                         continue;
7376                 }
7377
7378                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7379                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7380                                 nid, (PAGE_SIZE << order) / SZ_1M);
7381                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7382                         hugetlb_cma_size_in_node[nid] = 0;
7383                 } else {
7384                         node_specific_cma_alloc = true;
7385                 }
7386         }
7387
7388         /* Validate the CMA size again in case some invalid nodes specified. */
7389         if (!hugetlb_cma_size)
7390                 return;
7391
7392         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7393                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7394                         (PAGE_SIZE << order) / SZ_1M);
7395                 hugetlb_cma_size = 0;
7396                 return;
7397         }
7398
7399         if (!node_specific_cma_alloc) {
7400                 /*
7401                  * If 3 GB area is requested on a machine with 4 numa nodes,
7402                  * let's allocate 1 GB on first three nodes and ignore the last one.
7403                  */
7404                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7405                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7406                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7407         }
7408
7409         reserved = 0;
7410         for_each_online_node(nid) {
7411                 int res;
7412                 char name[CMA_MAX_NAME];
7413
7414                 if (node_specific_cma_alloc) {
7415                         if (hugetlb_cma_size_in_node[nid] == 0)
7416                                 continue;
7417
7418                         size = hugetlb_cma_size_in_node[nid];
7419                 } else {
7420                         size = min(per_node, hugetlb_cma_size - reserved);
7421                 }
7422
7423                 size = round_up(size, PAGE_SIZE << order);
7424
7425                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7426                 /*
7427                  * Note that 'order per bit' is based on smallest size that
7428                  * may be returned to CMA allocator in the case of
7429                  * huge page demotion.
7430                  */
7431                 res = cma_declare_contiguous_nid(0, size, 0,
7432                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7433                                                  0, false, name,
7434                                                  &hugetlb_cma[nid], nid);
7435                 if (res) {
7436                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7437                                 res, nid);
7438                         continue;
7439                 }
7440
7441                 reserved += size;
7442                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7443                         size / SZ_1M, nid);
7444
7445                 if (reserved >= hugetlb_cma_size)
7446                         break;
7447         }
7448
7449         if (!reserved)
7450                 /*
7451                  * hugetlb_cma_size is used to determine if allocations from
7452                  * cma are possible.  Set to zero if no cma regions are set up.
7453                  */
7454                 hugetlb_cma_size = 0;
7455 }
7456
7457 static void __init hugetlb_cma_check(void)
7458 {
7459         if (!hugetlb_cma_size || cma_reserve_called)
7460                 return;
7461
7462         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7463 }
7464
7465 #endif /* CONFIG_CMA */