drivers/base/memory: pass a block_id to init_memory_block()
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76         bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78         spin_unlock(&spool->lock);
79
80         /* If no pages are used, and no other handles to the subpool
81          * remain, give up any reservations mased on minimum size and
82          * free the subpool */
83         if (free) {
84                 if (spool->min_hpages != -1)
85                         hugetlb_acct_memory(spool->hstate,
86                                                 -spool->min_hpages);
87                 kfree(spool);
88         }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92                                                 long min_hpages)
93 {
94         struct hugepage_subpool *spool;
95
96         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97         if (!spool)
98                 return NULL;
99
100         spin_lock_init(&spool->lock);
101         spool->count = 1;
102         spool->max_hpages = max_hpages;
103         spool->hstate = h;
104         spool->min_hpages = min_hpages;
105
106         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107                 kfree(spool);
108                 return NULL;
109         }
110         spool->rsv_hpages = min_hpages;
111
112         return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117         spin_lock(&spool->lock);
118         BUG_ON(!spool->count);
119         spool->count--;
120         unlock_or_release_subpool(spool);
121 }
122
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132                                       long delta)
133 {
134         long ret = delta;
135
136         if (!spool)
137                 return ret;
138
139         spin_lock(&spool->lock);
140
141         if (spool->max_hpages != -1) {          /* maximum size accounting */
142                 if ((spool->used_hpages + delta) <= spool->max_hpages)
143                         spool->used_hpages += delta;
144                 else {
145                         ret = -ENOMEM;
146                         goto unlock_ret;
147                 }
148         }
149
150         /* minimum size accounting */
151         if (spool->min_hpages != -1 && spool->rsv_hpages) {
152                 if (delta > spool->rsv_hpages) {
153                         /*
154                          * Asking for more reserves than those already taken on
155                          * behalf of subpool.  Return difference.
156                          */
157                         ret = delta - spool->rsv_hpages;
158                         spool->rsv_hpages = 0;
159                 } else {
160                         ret = 0;        /* reserves already accounted for */
161                         spool->rsv_hpages -= delta;
162                 }
163         }
164
165 unlock_ret:
166         spin_unlock(&spool->lock);
167         return ret;
168 }
169
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177                                        long delta)
178 {
179         long ret = delta;
180
181         if (!spool)
182                 return delta;
183
184         spin_lock(&spool->lock);
185
186         if (spool->max_hpages != -1)            /* maximum size accounting */
187                 spool->used_hpages -= delta;
188
189          /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191                 if (spool->rsv_hpages + delta <= spool->min_hpages)
192                         ret = 0;
193                 else
194                         ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196                 spool->rsv_hpages += delta;
197                 if (spool->rsv_hpages > spool->min_hpages)
198                         spool->rsv_hpages = spool->min_hpages;
199         }
200
201         /*
202          * If hugetlbfs_put_super couldn't free spool due to an outstanding
203          * quota reference, free it now.
204          */
205         unlock_or_release_subpool(spool);
206
207         return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212         return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217         return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240         struct list_head link;
241         long from;
242         long to;
243 };
244
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261         struct list_head *head = &resv->regions;
262         struct file_region *rg, *nrg, *trg;
263         long add = 0;
264
265         spin_lock(&resv->lock);
266         /* Locate the region we are either in or before. */
267         list_for_each_entry(rg, head, link)
268                 if (f <= rg->to)
269                         break;
270
271         /*
272          * If no region exists which can be expanded to include the
273          * specified range, the list must have been modified by an
274          * interleving call to region_del().  Pull a region descriptor
275          * from the cache and use it for this range.
276          */
277         if (&rg->link == head || t < rg->from) {
278                 VM_BUG_ON(resv->region_cache_count <= 0);
279
280                 resv->region_cache_count--;
281                 nrg = list_first_entry(&resv->region_cache, struct file_region,
282                                         link);
283                 list_del(&nrg->link);
284
285                 nrg->from = f;
286                 nrg->to = t;
287                 list_add(&nrg->link, rg->link.prev);
288
289                 add += t - f;
290                 goto out_locked;
291         }
292
293         /* Round our left edge to the current segment if it encloses us. */
294         if (f > rg->from)
295                 f = rg->from;
296
297         /* Check for and consume any regions we now overlap with. */
298         nrg = rg;
299         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300                 if (&rg->link == head)
301                         break;
302                 if (rg->from > t)
303                         break;
304
305                 /* If this area reaches higher then extend our area to
306                  * include it completely.  If this is not the first area
307                  * which we intend to reuse, free it. */
308                 if (rg->to > t)
309                         t = rg->to;
310                 if (rg != nrg) {
311                         /* Decrement return value by the deleted range.
312                          * Another range will span this area so that by
313                          * end of routine add will be >= zero
314                          */
315                         add -= (rg->to - rg->from);
316                         list_del(&rg->link);
317                         kfree(rg);
318                 }
319         }
320
321         add += (nrg->from - f);         /* Added to beginning of region */
322         nrg->from = f;
323         add += t - nrg->to;             /* Added to end of region */
324         nrg->to = t;
325
326 out_locked:
327         resv->adds_in_progress--;
328         spin_unlock(&resv->lock);
329         VM_BUG_ON(add < 0);
330         return add;
331 }
332
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357         struct list_head *head = &resv->regions;
358         struct file_region *rg, *nrg = NULL;
359         long chg = 0;
360
361 retry:
362         spin_lock(&resv->lock);
363 retry_locked:
364         resv->adds_in_progress++;
365
366         /*
367          * Check for sufficient descriptors in the cache to accommodate
368          * the number of in progress add operations.
369          */
370         if (resv->adds_in_progress > resv->region_cache_count) {
371                 struct file_region *trg;
372
373                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374                 /* Must drop lock to allocate a new descriptor. */
375                 resv->adds_in_progress--;
376                 spin_unlock(&resv->lock);
377
378                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379                 if (!trg) {
380                         kfree(nrg);
381                         return -ENOMEM;
382                 }
383
384                 spin_lock(&resv->lock);
385                 list_add(&trg->link, &resv->region_cache);
386                 resv->region_cache_count++;
387                 goto retry_locked;
388         }
389
390         /* Locate the region we are before or in. */
391         list_for_each_entry(rg, head, link)
392                 if (f <= rg->to)
393                         break;
394
395         /* If we are below the current region then a new region is required.
396          * Subtle, allocate a new region at the position but make it zero
397          * size such that we can guarantee to record the reservation. */
398         if (&rg->link == head || t < rg->from) {
399                 if (!nrg) {
400                         resv->adds_in_progress--;
401                         spin_unlock(&resv->lock);
402                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403                         if (!nrg)
404                                 return -ENOMEM;
405
406                         nrg->from = f;
407                         nrg->to   = f;
408                         INIT_LIST_HEAD(&nrg->link);
409                         goto retry;
410                 }
411
412                 list_add(&nrg->link, rg->link.prev);
413                 chg = t - f;
414                 goto out_nrg;
415         }
416
417         /* Round our left edge to the current segment if it encloses us. */
418         if (f > rg->from)
419                 f = rg->from;
420         chg = t - f;
421
422         /* Check for and consume any regions we now overlap with. */
423         list_for_each_entry(rg, rg->link.prev, link) {
424                 if (&rg->link == head)
425                         break;
426                 if (rg->from > t)
427                         goto out;
428
429                 /* We overlap with this area, if it extends further than
430                  * us then we must extend ourselves.  Account for its
431                  * existing reservation. */
432                 if (rg->to > t) {
433                         chg += rg->to - t;
434                         t = rg->to;
435                 }
436                 chg -= rg->to - rg->from;
437         }
438
439 out:
440         spin_unlock(&resv->lock);
441         /*  We already know we raced and no longer need the new region */
442         kfree(nrg);
443         return chg;
444 out_nrg:
445         spin_unlock(&resv->lock);
446         return chg;
447 }
448
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462         spin_lock(&resv->lock);
463         VM_BUG_ON(!resv->region_cache_count);
464         resv->adds_in_progress--;
465         spin_unlock(&resv->lock);
466 }
467
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484         struct list_head *head = &resv->regions;
485         struct file_region *rg, *trg;
486         struct file_region *nrg = NULL;
487         long del = 0;
488
489 retry:
490         spin_lock(&resv->lock);
491         list_for_each_entry_safe(rg, trg, head, link) {
492                 /*
493                  * Skip regions before the range to be deleted.  file_region
494                  * ranges are normally of the form [from, to).  However, there
495                  * may be a "placeholder" entry in the map which is of the form
496                  * (from, to) with from == to.  Check for placeholder entries
497                  * at the beginning of the range to be deleted.
498                  */
499                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500                         continue;
501
502                 if (rg->from >= t)
503                         break;
504
505                 if (f > rg->from && t < rg->to) { /* Must split region */
506                         /*
507                          * Check for an entry in the cache before dropping
508                          * lock and attempting allocation.
509                          */
510                         if (!nrg &&
511                             resv->region_cache_count > resv->adds_in_progress) {
512                                 nrg = list_first_entry(&resv->region_cache,
513                                                         struct file_region,
514                                                         link);
515                                 list_del(&nrg->link);
516                                 resv->region_cache_count--;
517                         }
518
519                         if (!nrg) {
520                                 spin_unlock(&resv->lock);
521                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522                                 if (!nrg)
523                                         return -ENOMEM;
524                                 goto retry;
525                         }
526
527                         del += t - f;
528
529                         /* New entry for end of split region */
530                         nrg->from = t;
531                         nrg->to = rg->to;
532                         INIT_LIST_HEAD(&nrg->link);
533
534                         /* Original entry is trimmed */
535                         rg->to = f;
536
537                         list_add(&nrg->link, &rg->link);
538                         nrg = NULL;
539                         break;
540                 }
541
542                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543                         del += rg->to - rg->from;
544                         list_del(&rg->link);
545                         kfree(rg);
546                         continue;
547                 }
548
549                 if (f <= rg->from) {    /* Trim beginning of region */
550                         del += t - rg->from;
551                         rg->from = t;
552                 } else {                /* Trim end of region */
553                         del += rg->to - f;
554                         rg->to = f;
555                 }
556         }
557
558         spin_unlock(&resv->lock);
559         kfree(nrg);
560         return del;
561 }
562
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574         struct hugepage_subpool *spool = subpool_inode(inode);
575         long rsv_adjust;
576
577         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578         if (rsv_adjust) {
579                 struct hstate *h = hstate_inode(inode);
580
581                 hugetlb_acct_memory(h, 1);
582         }
583 }
584
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591         struct list_head *head = &resv->regions;
592         struct file_region *rg;
593         long chg = 0;
594
595         spin_lock(&resv->lock);
596         /* Locate each segment we overlap with, and count that overlap. */
597         list_for_each_entry(rg, head, link) {
598                 long seg_from;
599                 long seg_to;
600
601                 if (rg->to <= f)
602                         continue;
603                 if (rg->from >= t)
604                         break;
605
606                 seg_from = max(rg->from, f);
607                 seg_to = min(rg->to, t);
608
609                 chg += seg_to - seg_from;
610         }
611         spin_unlock(&resv->lock);
612
613         return chg;
614 }
615
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621                         struct vm_area_struct *vma, unsigned long address)
622 {
623         return ((address - vma->vm_start) >> huge_page_shift(h)) +
624                         (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628                                      unsigned long address)
629 {
630         return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640         if (vma->vm_ops && vma->vm_ops->pagesize)
641                 return vma->vm_ops->pagesize(vma);
642         return PAGE_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific 'strong'
650  * version of this symbol is required.
651  */
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654         return vma_kernel_pagesize(vma);
655 }
656
657 /*
658  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
659  * bits of the reservation map pointer, which are always clear due to
660  * alignment.
661  */
662 #define HPAGE_RESV_OWNER    (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665
666 /*
667  * These helpers are used to track how many pages are reserved for
668  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669  * is guaranteed to have their future faults succeed.
670  *
671  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672  * the reserve counters are updated with the hugetlb_lock held. It is safe
673  * to reset the VMA at fork() time as it is not in use yet and there is no
674  * chance of the global counters getting corrupted as a result of the values.
675  *
676  * The private mapping reservation is represented in a subtly different
677  * manner to a shared mapping.  A shared mapping has a region map associated
678  * with the underlying file, this region map represents the backing file
679  * pages which have ever had a reservation assigned which this persists even
680  * after the page is instantiated.  A private mapping has a region map
681  * associated with the original mmap which is attached to all VMAs which
682  * reference it, this region map represents those offsets which have consumed
683  * reservation ie. where pages have been instantiated.
684  */
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686 {
687         return (unsigned long)vma->vm_private_data;
688 }
689
690 static void set_vma_private_data(struct vm_area_struct *vma,
691                                                         unsigned long value)
692 {
693         vma->vm_private_data = (void *)value;
694 }
695
696 struct resv_map *resv_map_alloc(void)
697 {
698         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700
701         if (!resv_map || !rg) {
702                 kfree(resv_map);
703                 kfree(rg);
704                 return NULL;
705         }
706
707         kref_init(&resv_map->refs);
708         spin_lock_init(&resv_map->lock);
709         INIT_LIST_HEAD(&resv_map->regions);
710
711         resv_map->adds_in_progress = 0;
712
713         INIT_LIST_HEAD(&resv_map->region_cache);
714         list_add(&rg->link, &resv_map->region_cache);
715         resv_map->region_cache_count = 1;
716
717         return resv_map;
718 }
719
720 void resv_map_release(struct kref *ref)
721 {
722         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723         struct list_head *head = &resv_map->region_cache;
724         struct file_region *rg, *trg;
725
726         /* Clear out any active regions before we release the map. */
727         region_del(resv_map, 0, LONG_MAX);
728
729         /* ... and any entries left in the cache */
730         list_for_each_entry_safe(rg, trg, head, link) {
731                 list_del(&rg->link);
732                 kfree(rg);
733         }
734
735         VM_BUG_ON(resv_map->adds_in_progress);
736
737         kfree(resv_map);
738 }
739
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
741 {
742         return inode->i_mapping->private_data;
743 }
744
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746 {
747         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748         if (vma->vm_flags & VM_MAYSHARE) {
749                 struct address_space *mapping = vma->vm_file->f_mapping;
750                 struct inode *inode = mapping->host;
751
752                 return inode_resv_map(inode);
753
754         } else {
755                 return (struct resv_map *)(get_vma_private_data(vma) &
756                                                         ~HPAGE_RESV_MASK);
757         }
758 }
759
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761 {
762         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764
765         set_vma_private_data(vma, (get_vma_private_data(vma) &
766                                 HPAGE_RESV_MASK) | (unsigned long)map);
767 }
768
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773
774         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 }
776
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
781         return (get_vma_private_data(vma) & flag) != 0;
782 }
783
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786 {
787         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788         if (!(vma->vm_flags & VM_MAYSHARE))
789                 vma->vm_private_data = (void *)0;
790 }
791
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794 {
795         if (vma->vm_flags & VM_NORESERVE) {
796                 /*
797                  * This address is already reserved by other process(chg == 0),
798                  * so, we should decrement reserved count. Without decrementing,
799                  * reserve count remains after releasing inode, because this
800                  * allocated page will go into page cache and is regarded as
801                  * coming from reserved pool in releasing step.  Currently, we
802                  * don't have any other solution to deal with this situation
803                  * properly, so add work-around here.
804                  */
805                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806                         return true;
807                 else
808                         return false;
809         }
810
811         /* Shared mappings always use reserves */
812         if (vma->vm_flags & VM_MAYSHARE) {
813                 /*
814                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
815                  * be a region map for all pages.  The only situation where
816                  * there is no region map is if a hole was punched via
817                  * fallocate.  In this case, there really are no reverves to
818                  * use.  This situation is indicated if chg != 0.
819                  */
820                 if (chg)
821                         return false;
822                 else
823                         return true;
824         }
825
826         /*
827          * Only the process that called mmap() has reserves for
828          * private mappings.
829          */
830         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831                 /*
832                  * Like the shared case above, a hole punch or truncate
833                  * could have been performed on the private mapping.
834                  * Examine the value of chg to determine if reserves
835                  * actually exist or were previously consumed.
836                  * Very Subtle - The value of chg comes from a previous
837                  * call to vma_needs_reserves().  The reserve map for
838                  * private mappings has different (opposite) semantics
839                  * than that of shared mappings.  vma_needs_reserves()
840                  * has already taken this difference in semantics into
841                  * account.  Therefore, the meaning of chg is the same
842                  * as in the shared case above.  Code could easily be
843                  * combined, but keeping it separate draws attention to
844                  * subtle differences.
845                  */
846                 if (chg)
847                         return false;
848                 else
849                         return true;
850         }
851
852         return false;
853 }
854
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
856 {
857         int nid = page_to_nid(page);
858         list_move(&page->lru, &h->hugepage_freelists[nid]);
859         h->free_huge_pages++;
860         h->free_huge_pages_node[nid]++;
861 }
862
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 {
865         struct page *page;
866
867         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868                 if (!PageHWPoison(page))
869                         break;
870         /*
871          * if 'non-isolated free hugepage' not found on the list,
872          * the allocation fails.
873          */
874         if (&h->hugepage_freelists[nid] == &page->lru)
875                 return NULL;
876         list_move(&page->lru, &h->hugepage_activelist);
877         set_page_refcounted(page);
878         h->free_huge_pages--;
879         h->free_huge_pages_node[nid]--;
880         return page;
881 }
882
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884                 nodemask_t *nmask)
885 {
886         unsigned int cpuset_mems_cookie;
887         struct zonelist *zonelist;
888         struct zone *zone;
889         struct zoneref *z;
890         int node = -1;
891
892         zonelist = node_zonelist(nid, gfp_mask);
893
894 retry_cpuset:
895         cpuset_mems_cookie = read_mems_allowed_begin();
896         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897                 struct page *page;
898
899                 if (!cpuset_zone_allowed(zone, gfp_mask))
900                         continue;
901                 /*
902                  * no need to ask again on the same node. Pool is node rather than
903                  * zone aware
904                  */
905                 if (zone_to_nid(zone) == node)
906                         continue;
907                 node = zone_to_nid(zone);
908
909                 page = dequeue_huge_page_node_exact(h, node);
910                 if (page)
911                         return page;
912         }
913         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914                 goto retry_cpuset;
915
916         return NULL;
917 }
918
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
921 {
922         if (hugepage_migration_supported(h))
923                 return GFP_HIGHUSER_MOVABLE;
924         else
925                 return GFP_HIGHUSER;
926 }
927
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929                                 struct vm_area_struct *vma,
930                                 unsigned long address, int avoid_reserve,
931                                 long chg)
932 {
933         struct page *page;
934         struct mempolicy *mpol;
935         gfp_t gfp_mask;
936         nodemask_t *nodemask;
937         int nid;
938
939         /*
940          * A child process with MAP_PRIVATE mappings created by their parent
941          * have no page reserves. This check ensures that reservations are
942          * not "stolen". The child may still get SIGKILLed
943          */
944         if (!vma_has_reserves(vma, chg) &&
945                         h->free_huge_pages - h->resv_huge_pages == 0)
946                 goto err;
947
948         /* If reserves cannot be used, ensure enough pages are in the pool */
949         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950                 goto err;
951
952         gfp_mask = htlb_alloc_mask(h);
953         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956                 SetPagePrivate(page);
957                 h->resv_huge_pages--;
958         }
959
960         mpol_cond_put(mpol);
961         return page;
962
963 err:
964         return NULL;
965 }
966
967 /*
968  * common helper functions for hstate_next_node_to_{alloc|free}.
969  * We may have allocated or freed a huge page based on a different
970  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971  * be outside of *nodes_allowed.  Ensure that we use an allowed
972  * node for alloc or free.
973  */
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975 {
976         nid = next_node_in(nid, *nodes_allowed);
977         VM_BUG_ON(nid >= MAX_NUMNODES);
978
979         return nid;
980 }
981
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984         if (!node_isset(nid, *nodes_allowed))
985                 nid = next_node_allowed(nid, nodes_allowed);
986         return nid;
987 }
988
989 /*
990  * returns the previously saved node ["this node"] from which to
991  * allocate a persistent huge page for the pool and advance the
992  * next node from which to allocate, handling wrap at end of node
993  * mask.
994  */
995 static int hstate_next_node_to_alloc(struct hstate *h,
996                                         nodemask_t *nodes_allowed)
997 {
998         int nid;
999
1000         VM_BUG_ON(!nodes_allowed);
1001
1002         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005         return nid;
1006 }
1007
1008 /*
1009  * helper for free_pool_huge_page() - return the previously saved
1010  * node ["this node"] from which to free a huge page.  Advance the
1011  * next node id whether or not we find a free huge page to free so
1012  * that the next attempt to free addresses the next node.
1013  */
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015 {
1016         int nid;
1017
1018         VM_BUG_ON(!nodes_allowed);
1019
1020         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023         return nid;
1024 }
1025
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1027         for (nr_nodes = nodes_weight(*mask);                            \
1028                 nr_nodes > 0 &&                                         \
1029                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1030                 nr_nodes--)
1031
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1033         for (nr_nodes = nodes_weight(*mask);                            \
1034                 nr_nodes > 0 &&                                         \
1035                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1036                 nr_nodes--)
1037
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040                                         unsigned int order)
1041 {
1042         int i;
1043         int nr_pages = 1 << order;
1044         struct page *p = page + 1;
1045
1046         atomic_set(compound_mapcount_ptr(page), 0);
1047         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048                 clear_compound_head(p);
1049                 set_page_refcounted(p);
1050         }
1051
1052         set_compound_order(page, 0);
1053         __ClearPageHead(page);
1054 }
1055
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1057 {
1058         free_contig_range(page_to_pfn(page), 1 << order);
1059 }
1060
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062                                 unsigned long nr_pages, gfp_t gfp_mask)
1063 {
1064         unsigned long end_pfn = start_pfn + nr_pages;
1065         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066                                   gfp_mask);
1067 }
1068
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070                         unsigned long start_pfn, unsigned long nr_pages)
1071 {
1072         unsigned long i, end_pfn = start_pfn + nr_pages;
1073         struct page *page;
1074
1075         for (i = start_pfn; i < end_pfn; i++) {
1076                 page = pfn_to_online_page(i);
1077                 if (!page)
1078                         return false;
1079
1080                 if (page_zone(page) != z)
1081                         return false;
1082
1083                 if (PageReserved(page))
1084                         return false;
1085
1086                 if (page_count(page) > 0)
1087                         return false;
1088
1089                 if (PageHuge(page))
1090                         return false;
1091         }
1092
1093         return true;
1094 }
1095
1096 static bool zone_spans_last_pfn(const struct zone *zone,
1097                         unsigned long start_pfn, unsigned long nr_pages)
1098 {
1099         unsigned long last_pfn = start_pfn + nr_pages - 1;
1100         return zone_spans_pfn(zone, last_pfn);
1101 }
1102
1103 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1104                 int nid, nodemask_t *nodemask)
1105 {
1106         unsigned int order = huge_page_order(h);
1107         unsigned long nr_pages = 1 << order;
1108         unsigned long ret, pfn, flags;
1109         struct zonelist *zonelist;
1110         struct zone *zone;
1111         struct zoneref *z;
1112
1113         zonelist = node_zonelist(nid, gfp_mask);
1114         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1115                 spin_lock_irqsave(&zone->lock, flags);
1116
1117                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1118                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1119                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1120                                 /*
1121                                  * We release the zone lock here because
1122                                  * alloc_contig_range() will also lock the zone
1123                                  * at some point. If there's an allocation
1124                                  * spinning on this lock, it may win the race
1125                                  * and cause alloc_contig_range() to fail...
1126                                  */
1127                                 spin_unlock_irqrestore(&zone->lock, flags);
1128                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1129                                 if (!ret)
1130                                         return pfn_to_page(pfn);
1131                                 spin_lock_irqsave(&zone->lock, flags);
1132                         }
1133                         pfn += nr_pages;
1134                 }
1135
1136                 spin_unlock_irqrestore(&zone->lock, flags);
1137         }
1138
1139         return NULL;
1140 }
1141
1142 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1143 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1144
1145 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1146 static inline bool gigantic_page_supported(void) { return false; }
1147 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1148                 int nid, nodemask_t *nodemask) { return NULL; }
1149 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1150 static inline void destroy_compound_gigantic_page(struct page *page,
1151                                                 unsigned int order) { }
1152 #endif
1153
1154 static void update_and_free_page(struct hstate *h, struct page *page)
1155 {
1156         int i;
1157
1158         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1159                 return;
1160
1161         h->nr_huge_pages--;
1162         h->nr_huge_pages_node[page_to_nid(page)]--;
1163         for (i = 0; i < pages_per_huge_page(h); i++) {
1164                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1165                                 1 << PG_referenced | 1 << PG_dirty |
1166                                 1 << PG_active | 1 << PG_private |
1167                                 1 << PG_writeback);
1168         }
1169         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1170         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1171         set_page_refcounted(page);
1172         if (hstate_is_gigantic(h)) {
1173                 destroy_compound_gigantic_page(page, huge_page_order(h));
1174                 free_gigantic_page(page, huge_page_order(h));
1175         } else {
1176                 __free_pages(page, huge_page_order(h));
1177         }
1178 }
1179
1180 struct hstate *size_to_hstate(unsigned long size)
1181 {
1182         struct hstate *h;
1183
1184         for_each_hstate(h) {
1185                 if (huge_page_size(h) == size)
1186                         return h;
1187         }
1188         return NULL;
1189 }
1190
1191 /*
1192  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1193  * to hstate->hugepage_activelist.)
1194  *
1195  * This function can be called for tail pages, but never returns true for them.
1196  */
1197 bool page_huge_active(struct page *page)
1198 {
1199         VM_BUG_ON_PAGE(!PageHuge(page), page);
1200         return PageHead(page) && PagePrivate(&page[1]);
1201 }
1202
1203 /* never called for tail page */
1204 static void set_page_huge_active(struct page *page)
1205 {
1206         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1207         SetPagePrivate(&page[1]);
1208 }
1209
1210 static void clear_page_huge_active(struct page *page)
1211 {
1212         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1213         ClearPagePrivate(&page[1]);
1214 }
1215
1216 /*
1217  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1218  * code
1219  */
1220 static inline bool PageHugeTemporary(struct page *page)
1221 {
1222         if (!PageHuge(page))
1223                 return false;
1224
1225         return (unsigned long)page[2].mapping == -1U;
1226 }
1227
1228 static inline void SetPageHugeTemporary(struct page *page)
1229 {
1230         page[2].mapping = (void *)-1U;
1231 }
1232
1233 static inline void ClearPageHugeTemporary(struct page *page)
1234 {
1235         page[2].mapping = NULL;
1236 }
1237
1238 void free_huge_page(struct page *page)
1239 {
1240         /*
1241          * Can't pass hstate in here because it is called from the
1242          * compound page destructor.
1243          */
1244         struct hstate *h = page_hstate(page);
1245         int nid = page_to_nid(page);
1246         struct hugepage_subpool *spool =
1247                 (struct hugepage_subpool *)page_private(page);
1248         bool restore_reserve;
1249
1250         set_page_private(page, 0);
1251         page->mapping = NULL;
1252         VM_BUG_ON_PAGE(page_count(page), page);
1253         VM_BUG_ON_PAGE(page_mapcount(page), page);
1254         restore_reserve = PagePrivate(page);
1255         ClearPagePrivate(page);
1256
1257         /*
1258          * If PagePrivate() was set on page, page allocation consumed a
1259          * reservation.  If the page was associated with a subpool, there
1260          * would have been a page reserved in the subpool before allocation
1261          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1262          * reservtion, do not call hugepage_subpool_put_pages() as this will
1263          * remove the reserved page from the subpool.
1264          */
1265         if (!restore_reserve) {
1266                 /*
1267                  * A return code of zero implies that the subpool will be
1268                  * under its minimum size if the reservation is not restored
1269                  * after page is free.  Therefore, force restore_reserve
1270                  * operation.
1271                  */
1272                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1273                         restore_reserve = true;
1274         }
1275
1276         spin_lock(&hugetlb_lock);
1277         clear_page_huge_active(page);
1278         hugetlb_cgroup_uncharge_page(hstate_index(h),
1279                                      pages_per_huge_page(h), page);
1280         if (restore_reserve)
1281                 h->resv_huge_pages++;
1282
1283         if (PageHugeTemporary(page)) {
1284                 list_del(&page->lru);
1285                 ClearPageHugeTemporary(page);
1286                 update_and_free_page(h, page);
1287         } else if (h->surplus_huge_pages_node[nid]) {
1288                 /* remove the page from active list */
1289                 list_del(&page->lru);
1290                 update_and_free_page(h, page);
1291                 h->surplus_huge_pages--;
1292                 h->surplus_huge_pages_node[nid]--;
1293         } else {
1294                 arch_clear_hugepage_flags(page);
1295                 enqueue_huge_page(h, page);
1296         }
1297         spin_unlock(&hugetlb_lock);
1298 }
1299
1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1301 {
1302         INIT_LIST_HEAD(&page->lru);
1303         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1304         spin_lock(&hugetlb_lock);
1305         set_hugetlb_cgroup(page, NULL);
1306         h->nr_huge_pages++;
1307         h->nr_huge_pages_node[nid]++;
1308         spin_unlock(&hugetlb_lock);
1309 }
1310
1311 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1312 {
1313         int i;
1314         int nr_pages = 1 << order;
1315         struct page *p = page + 1;
1316
1317         /* we rely on prep_new_huge_page to set the destructor */
1318         set_compound_order(page, order);
1319         __ClearPageReserved(page);
1320         __SetPageHead(page);
1321         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1322                 /*
1323                  * For gigantic hugepages allocated through bootmem at
1324                  * boot, it's safer to be consistent with the not-gigantic
1325                  * hugepages and clear the PG_reserved bit from all tail pages
1326                  * too.  Otherwse drivers using get_user_pages() to access tail
1327                  * pages may get the reference counting wrong if they see
1328                  * PG_reserved set on a tail page (despite the head page not
1329                  * having PG_reserved set).  Enforcing this consistency between
1330                  * head and tail pages allows drivers to optimize away a check
1331                  * on the head page when they need know if put_page() is needed
1332                  * after get_user_pages().
1333                  */
1334                 __ClearPageReserved(p);
1335                 set_page_count(p, 0);
1336                 set_compound_head(p, page);
1337         }
1338         atomic_set(compound_mapcount_ptr(page), -1);
1339 }
1340
1341 /*
1342  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1343  * transparent huge pages.  See the PageTransHuge() documentation for more
1344  * details.
1345  */
1346 int PageHuge(struct page *page)
1347 {
1348         if (!PageCompound(page))
1349                 return 0;
1350
1351         page = compound_head(page);
1352         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1353 }
1354 EXPORT_SYMBOL_GPL(PageHuge);
1355
1356 /*
1357  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1358  * normal or transparent huge pages.
1359  */
1360 int PageHeadHuge(struct page *page_head)
1361 {
1362         if (!PageHead(page_head))
1363                 return 0;
1364
1365         return get_compound_page_dtor(page_head) == free_huge_page;
1366 }
1367
1368 pgoff_t __basepage_index(struct page *page)
1369 {
1370         struct page *page_head = compound_head(page);
1371         pgoff_t index = page_index(page_head);
1372         unsigned long compound_idx;
1373
1374         if (!PageHuge(page_head))
1375                 return page_index(page);
1376
1377         if (compound_order(page_head) >= MAX_ORDER)
1378                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1379         else
1380                 compound_idx = page - page_head;
1381
1382         return (index << compound_order(page_head)) + compound_idx;
1383 }
1384
1385 static struct page *alloc_buddy_huge_page(struct hstate *h,
1386                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1387 {
1388         int order = huge_page_order(h);
1389         struct page *page;
1390
1391         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1392         if (nid == NUMA_NO_NODE)
1393                 nid = numa_mem_id();
1394         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1395         if (page)
1396                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1397         else
1398                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399
1400         return page;
1401 }
1402
1403 /*
1404  * Common helper to allocate a fresh hugetlb page. All specific allocators
1405  * should use this function to get new hugetlb pages
1406  */
1407 static struct page *alloc_fresh_huge_page(struct hstate *h,
1408                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1409 {
1410         struct page *page;
1411
1412         if (hstate_is_gigantic(h))
1413                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1414         else
1415                 page = alloc_buddy_huge_page(h, gfp_mask,
1416                                 nid, nmask);
1417         if (!page)
1418                 return NULL;
1419
1420         if (hstate_is_gigantic(h))
1421                 prep_compound_gigantic_page(page, huge_page_order(h));
1422         prep_new_huge_page(h, page, page_to_nid(page));
1423
1424         return page;
1425 }
1426
1427 /*
1428  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1429  * manner.
1430  */
1431 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1432 {
1433         struct page *page;
1434         int nr_nodes, node;
1435         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1436
1437         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1438                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1439                 if (page)
1440                         break;
1441         }
1442
1443         if (!page)
1444                 return 0;
1445
1446         put_page(page); /* free it into the hugepage allocator */
1447
1448         return 1;
1449 }
1450
1451 /*
1452  * Free huge page from pool from next node to free.
1453  * Attempt to keep persistent huge pages more or less
1454  * balanced over allowed nodes.
1455  * Called with hugetlb_lock locked.
1456  */
1457 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1458                                                          bool acct_surplus)
1459 {
1460         int nr_nodes, node;
1461         int ret = 0;
1462
1463         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1464                 /*
1465                  * If we're returning unused surplus pages, only examine
1466                  * nodes with surplus pages.
1467                  */
1468                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1469                     !list_empty(&h->hugepage_freelists[node])) {
1470                         struct page *page =
1471                                 list_entry(h->hugepage_freelists[node].next,
1472                                           struct page, lru);
1473                         list_del(&page->lru);
1474                         h->free_huge_pages--;
1475                         h->free_huge_pages_node[node]--;
1476                         if (acct_surplus) {
1477                                 h->surplus_huge_pages--;
1478                                 h->surplus_huge_pages_node[node]--;
1479                         }
1480                         update_and_free_page(h, page);
1481                         ret = 1;
1482                         break;
1483                 }
1484         }
1485
1486         return ret;
1487 }
1488
1489 /*
1490  * Dissolve a given free hugepage into free buddy pages. This function does
1491  * nothing for in-use hugepages and non-hugepages.
1492  * This function returns values like below:
1493  *
1494  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1495  *          (allocated or reserved.)
1496  *       0: successfully dissolved free hugepages or the page is not a
1497  *          hugepage (considered as already dissolved)
1498  */
1499 int dissolve_free_huge_page(struct page *page)
1500 {
1501         int rc = -EBUSY;
1502
1503         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1504         if (!PageHuge(page))
1505                 return 0;
1506
1507         spin_lock(&hugetlb_lock);
1508         if (!PageHuge(page)) {
1509                 rc = 0;
1510                 goto out;
1511         }
1512
1513         if (!page_count(page)) {
1514                 struct page *head = compound_head(page);
1515                 struct hstate *h = page_hstate(head);
1516                 int nid = page_to_nid(head);
1517                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1518                         goto out;
1519                 /*
1520                  * Move PageHWPoison flag from head page to the raw error page,
1521                  * which makes any subpages rather than the error page reusable.
1522                  */
1523                 if (PageHWPoison(head) && page != head) {
1524                         SetPageHWPoison(page);
1525                         ClearPageHWPoison(head);
1526                 }
1527                 list_del(&head->lru);
1528                 h->free_huge_pages--;
1529                 h->free_huge_pages_node[nid]--;
1530                 h->max_huge_pages--;
1531                 update_and_free_page(h, head);
1532                 rc = 0;
1533         }
1534 out:
1535         spin_unlock(&hugetlb_lock);
1536         return rc;
1537 }
1538
1539 /*
1540  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1541  * make specified memory blocks removable from the system.
1542  * Note that this will dissolve a free gigantic hugepage completely, if any
1543  * part of it lies within the given range.
1544  * Also note that if dissolve_free_huge_page() returns with an error, all
1545  * free hugepages that were dissolved before that error are lost.
1546  */
1547 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1548 {
1549         unsigned long pfn;
1550         struct page *page;
1551         int rc = 0;
1552
1553         if (!hugepages_supported())
1554                 return rc;
1555
1556         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1557                 page = pfn_to_page(pfn);
1558                 rc = dissolve_free_huge_page(page);
1559                 if (rc)
1560                         break;
1561         }
1562
1563         return rc;
1564 }
1565
1566 /*
1567  * Allocates a fresh surplus page from the page allocator.
1568  */
1569 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1570                 int nid, nodemask_t *nmask)
1571 {
1572         struct page *page = NULL;
1573
1574         if (hstate_is_gigantic(h))
1575                 return NULL;
1576
1577         spin_lock(&hugetlb_lock);
1578         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1579                 goto out_unlock;
1580         spin_unlock(&hugetlb_lock);
1581
1582         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1583         if (!page)
1584                 return NULL;
1585
1586         spin_lock(&hugetlb_lock);
1587         /*
1588          * We could have raced with the pool size change.
1589          * Double check that and simply deallocate the new page
1590          * if we would end up overcommiting the surpluses. Abuse
1591          * temporary page to workaround the nasty free_huge_page
1592          * codeflow
1593          */
1594         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1595                 SetPageHugeTemporary(page);
1596                 spin_unlock(&hugetlb_lock);
1597                 put_page(page);
1598                 return NULL;
1599         } else {
1600                 h->surplus_huge_pages++;
1601                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1602         }
1603
1604 out_unlock:
1605         spin_unlock(&hugetlb_lock);
1606
1607         return page;
1608 }
1609
1610 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1611                 int nid, nodemask_t *nmask)
1612 {
1613         struct page *page;
1614
1615         if (hstate_is_gigantic(h))
1616                 return NULL;
1617
1618         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1619         if (!page)
1620                 return NULL;
1621
1622         /*
1623          * We do not account these pages as surplus because they are only
1624          * temporary and will be released properly on the last reference
1625          */
1626         SetPageHugeTemporary(page);
1627
1628         return page;
1629 }
1630
1631 /*
1632  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1633  */
1634 static
1635 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1636                 struct vm_area_struct *vma, unsigned long addr)
1637 {
1638         struct page *page;
1639         struct mempolicy *mpol;
1640         gfp_t gfp_mask = htlb_alloc_mask(h);
1641         int nid;
1642         nodemask_t *nodemask;
1643
1644         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1645         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1646         mpol_cond_put(mpol);
1647
1648         return page;
1649 }
1650
1651 /* page migration callback function */
1652 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1653 {
1654         gfp_t gfp_mask = htlb_alloc_mask(h);
1655         struct page *page = NULL;
1656
1657         if (nid != NUMA_NO_NODE)
1658                 gfp_mask |= __GFP_THISNODE;
1659
1660         spin_lock(&hugetlb_lock);
1661         if (h->free_huge_pages - h->resv_huge_pages > 0)
1662                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1663         spin_unlock(&hugetlb_lock);
1664
1665         if (!page)
1666                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1667
1668         return page;
1669 }
1670
1671 /* page migration callback function */
1672 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1673                 nodemask_t *nmask)
1674 {
1675         gfp_t gfp_mask = htlb_alloc_mask(h);
1676
1677         spin_lock(&hugetlb_lock);
1678         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1679                 struct page *page;
1680
1681                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1682                 if (page) {
1683                         spin_unlock(&hugetlb_lock);
1684                         return page;
1685                 }
1686         }
1687         spin_unlock(&hugetlb_lock);
1688
1689         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1690 }
1691
1692 /* mempolicy aware migration callback */
1693 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1694                 unsigned long address)
1695 {
1696         struct mempolicy *mpol;
1697         nodemask_t *nodemask;
1698         struct page *page;
1699         gfp_t gfp_mask;
1700         int node;
1701
1702         gfp_mask = htlb_alloc_mask(h);
1703         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1704         page = alloc_huge_page_nodemask(h, node, nodemask);
1705         mpol_cond_put(mpol);
1706
1707         return page;
1708 }
1709
1710 /*
1711  * Increase the hugetlb pool such that it can accommodate a reservation
1712  * of size 'delta'.
1713  */
1714 static int gather_surplus_pages(struct hstate *h, int delta)
1715 {
1716         struct list_head surplus_list;
1717         struct page *page, *tmp;
1718         int ret, i;
1719         int needed, allocated;
1720         bool alloc_ok = true;
1721
1722         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1723         if (needed <= 0) {
1724                 h->resv_huge_pages += delta;
1725                 return 0;
1726         }
1727
1728         allocated = 0;
1729         INIT_LIST_HEAD(&surplus_list);
1730
1731         ret = -ENOMEM;
1732 retry:
1733         spin_unlock(&hugetlb_lock);
1734         for (i = 0; i < needed; i++) {
1735                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1736                                 NUMA_NO_NODE, NULL);
1737                 if (!page) {
1738                         alloc_ok = false;
1739                         break;
1740                 }
1741                 list_add(&page->lru, &surplus_list);
1742                 cond_resched();
1743         }
1744         allocated += i;
1745
1746         /*
1747          * After retaking hugetlb_lock, we need to recalculate 'needed'
1748          * because either resv_huge_pages or free_huge_pages may have changed.
1749          */
1750         spin_lock(&hugetlb_lock);
1751         needed = (h->resv_huge_pages + delta) -
1752                         (h->free_huge_pages + allocated);
1753         if (needed > 0) {
1754                 if (alloc_ok)
1755                         goto retry;
1756                 /*
1757                  * We were not able to allocate enough pages to
1758                  * satisfy the entire reservation so we free what
1759                  * we've allocated so far.
1760                  */
1761                 goto free;
1762         }
1763         /*
1764          * The surplus_list now contains _at_least_ the number of extra pages
1765          * needed to accommodate the reservation.  Add the appropriate number
1766          * of pages to the hugetlb pool and free the extras back to the buddy
1767          * allocator.  Commit the entire reservation here to prevent another
1768          * process from stealing the pages as they are added to the pool but
1769          * before they are reserved.
1770          */
1771         needed += allocated;
1772         h->resv_huge_pages += delta;
1773         ret = 0;
1774
1775         /* Free the needed pages to the hugetlb pool */
1776         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1777                 if ((--needed) < 0)
1778                         break;
1779                 /*
1780                  * This page is now managed by the hugetlb allocator and has
1781                  * no users -- drop the buddy allocator's reference.
1782                  */
1783                 put_page_testzero(page);
1784                 VM_BUG_ON_PAGE(page_count(page), page);
1785                 enqueue_huge_page(h, page);
1786         }
1787 free:
1788         spin_unlock(&hugetlb_lock);
1789
1790         /* Free unnecessary surplus pages to the buddy allocator */
1791         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1792                 put_page(page);
1793         spin_lock(&hugetlb_lock);
1794
1795         return ret;
1796 }
1797
1798 /*
1799  * This routine has two main purposes:
1800  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1801  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1802  *    to the associated reservation map.
1803  * 2) Free any unused surplus pages that may have been allocated to satisfy
1804  *    the reservation.  As many as unused_resv_pages may be freed.
1805  *
1806  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1807  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1808  * we must make sure nobody else can claim pages we are in the process of
1809  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1810  * number of huge pages we plan to free when dropping the lock.
1811  */
1812 static void return_unused_surplus_pages(struct hstate *h,
1813                                         unsigned long unused_resv_pages)
1814 {
1815         unsigned long nr_pages;
1816
1817         /* Cannot return gigantic pages currently */
1818         if (hstate_is_gigantic(h))
1819                 goto out;
1820
1821         /*
1822          * Part (or even all) of the reservation could have been backed
1823          * by pre-allocated pages. Only free surplus pages.
1824          */
1825         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1826
1827         /*
1828          * We want to release as many surplus pages as possible, spread
1829          * evenly across all nodes with memory. Iterate across these nodes
1830          * until we can no longer free unreserved surplus pages. This occurs
1831          * when the nodes with surplus pages have no free pages.
1832          * free_pool_huge_page() will balance the the freed pages across the
1833          * on-line nodes with memory and will handle the hstate accounting.
1834          *
1835          * Note that we decrement resv_huge_pages as we free the pages.  If
1836          * we drop the lock, resv_huge_pages will still be sufficiently large
1837          * to cover subsequent pages we may free.
1838          */
1839         while (nr_pages--) {
1840                 h->resv_huge_pages--;
1841                 unused_resv_pages--;
1842                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1843                         goto out;
1844                 cond_resched_lock(&hugetlb_lock);
1845         }
1846
1847 out:
1848         /* Fully uncommit the reservation */
1849         h->resv_huge_pages -= unused_resv_pages;
1850 }
1851
1852
1853 /*
1854  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1855  * are used by the huge page allocation routines to manage reservations.
1856  *
1857  * vma_needs_reservation is called to determine if the huge page at addr
1858  * within the vma has an associated reservation.  If a reservation is
1859  * needed, the value 1 is returned.  The caller is then responsible for
1860  * managing the global reservation and subpool usage counts.  After
1861  * the huge page has been allocated, vma_commit_reservation is called
1862  * to add the page to the reservation map.  If the page allocation fails,
1863  * the reservation must be ended instead of committed.  vma_end_reservation
1864  * is called in such cases.
1865  *
1866  * In the normal case, vma_commit_reservation returns the same value
1867  * as the preceding vma_needs_reservation call.  The only time this
1868  * is not the case is if a reserve map was changed between calls.  It
1869  * is the responsibility of the caller to notice the difference and
1870  * take appropriate action.
1871  *
1872  * vma_add_reservation is used in error paths where a reservation must
1873  * be restored when a newly allocated huge page must be freed.  It is
1874  * to be called after calling vma_needs_reservation to determine if a
1875  * reservation exists.
1876  */
1877 enum vma_resv_mode {
1878         VMA_NEEDS_RESV,
1879         VMA_COMMIT_RESV,
1880         VMA_END_RESV,
1881         VMA_ADD_RESV,
1882 };
1883 static long __vma_reservation_common(struct hstate *h,
1884                                 struct vm_area_struct *vma, unsigned long addr,
1885                                 enum vma_resv_mode mode)
1886 {
1887         struct resv_map *resv;
1888         pgoff_t idx;
1889         long ret;
1890
1891         resv = vma_resv_map(vma);
1892         if (!resv)
1893                 return 1;
1894
1895         idx = vma_hugecache_offset(h, vma, addr);
1896         switch (mode) {
1897         case VMA_NEEDS_RESV:
1898                 ret = region_chg(resv, idx, idx + 1);
1899                 break;
1900         case VMA_COMMIT_RESV:
1901                 ret = region_add(resv, idx, idx + 1);
1902                 break;
1903         case VMA_END_RESV:
1904                 region_abort(resv, idx, idx + 1);
1905                 ret = 0;
1906                 break;
1907         case VMA_ADD_RESV:
1908                 if (vma->vm_flags & VM_MAYSHARE)
1909                         ret = region_add(resv, idx, idx + 1);
1910                 else {
1911                         region_abort(resv, idx, idx + 1);
1912                         ret = region_del(resv, idx, idx + 1);
1913                 }
1914                 break;
1915         default:
1916                 BUG();
1917         }
1918
1919         if (vma->vm_flags & VM_MAYSHARE)
1920                 return ret;
1921         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1922                 /*
1923                  * In most cases, reserves always exist for private mappings.
1924                  * However, a file associated with mapping could have been
1925                  * hole punched or truncated after reserves were consumed.
1926                  * As subsequent fault on such a range will not use reserves.
1927                  * Subtle - The reserve map for private mappings has the
1928                  * opposite meaning than that of shared mappings.  If NO
1929                  * entry is in the reserve map, it means a reservation exists.
1930                  * If an entry exists in the reserve map, it means the
1931                  * reservation has already been consumed.  As a result, the
1932                  * return value of this routine is the opposite of the
1933                  * value returned from reserve map manipulation routines above.
1934                  */
1935                 if (ret)
1936                         return 0;
1937                 else
1938                         return 1;
1939         }
1940         else
1941                 return ret < 0 ? ret : 0;
1942 }
1943
1944 static long vma_needs_reservation(struct hstate *h,
1945                         struct vm_area_struct *vma, unsigned long addr)
1946 {
1947         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1948 }
1949
1950 static long vma_commit_reservation(struct hstate *h,
1951                         struct vm_area_struct *vma, unsigned long addr)
1952 {
1953         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1954 }
1955
1956 static void vma_end_reservation(struct hstate *h,
1957                         struct vm_area_struct *vma, unsigned long addr)
1958 {
1959         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1960 }
1961
1962 static long vma_add_reservation(struct hstate *h,
1963                         struct vm_area_struct *vma, unsigned long addr)
1964 {
1965         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1966 }
1967
1968 /*
1969  * This routine is called to restore a reservation on error paths.  In the
1970  * specific error paths, a huge page was allocated (via alloc_huge_page)
1971  * and is about to be freed.  If a reservation for the page existed,
1972  * alloc_huge_page would have consumed the reservation and set PagePrivate
1973  * in the newly allocated page.  When the page is freed via free_huge_page,
1974  * the global reservation count will be incremented if PagePrivate is set.
1975  * However, free_huge_page can not adjust the reserve map.  Adjust the
1976  * reserve map here to be consistent with global reserve count adjustments
1977  * to be made by free_huge_page.
1978  */
1979 static void restore_reserve_on_error(struct hstate *h,
1980                         struct vm_area_struct *vma, unsigned long address,
1981                         struct page *page)
1982 {
1983         if (unlikely(PagePrivate(page))) {
1984                 long rc = vma_needs_reservation(h, vma, address);
1985
1986                 if (unlikely(rc < 0)) {
1987                         /*
1988                          * Rare out of memory condition in reserve map
1989                          * manipulation.  Clear PagePrivate so that
1990                          * global reserve count will not be incremented
1991                          * by free_huge_page.  This will make it appear
1992                          * as though the reservation for this page was
1993                          * consumed.  This may prevent the task from
1994                          * faulting in the page at a later time.  This
1995                          * is better than inconsistent global huge page
1996                          * accounting of reserve counts.
1997                          */
1998                         ClearPagePrivate(page);
1999                 } else if (rc) {
2000                         rc = vma_add_reservation(h, vma, address);
2001                         if (unlikely(rc < 0))
2002                                 /*
2003                                  * See above comment about rare out of
2004                                  * memory condition.
2005                                  */
2006                                 ClearPagePrivate(page);
2007                 } else
2008                         vma_end_reservation(h, vma, address);
2009         }
2010 }
2011
2012 struct page *alloc_huge_page(struct vm_area_struct *vma,
2013                                     unsigned long addr, int avoid_reserve)
2014 {
2015         struct hugepage_subpool *spool = subpool_vma(vma);
2016         struct hstate *h = hstate_vma(vma);
2017         struct page *page;
2018         long map_chg, map_commit;
2019         long gbl_chg;
2020         int ret, idx;
2021         struct hugetlb_cgroup *h_cg;
2022
2023         idx = hstate_index(h);
2024         /*
2025          * Examine the region/reserve map to determine if the process
2026          * has a reservation for the page to be allocated.  A return
2027          * code of zero indicates a reservation exists (no change).
2028          */
2029         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2030         if (map_chg < 0)
2031                 return ERR_PTR(-ENOMEM);
2032
2033         /*
2034          * Processes that did not create the mapping will have no
2035          * reserves as indicated by the region/reserve map. Check
2036          * that the allocation will not exceed the subpool limit.
2037          * Allocations for MAP_NORESERVE mappings also need to be
2038          * checked against any subpool limit.
2039          */
2040         if (map_chg || avoid_reserve) {
2041                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2042                 if (gbl_chg < 0) {
2043                         vma_end_reservation(h, vma, addr);
2044                         return ERR_PTR(-ENOSPC);
2045                 }
2046
2047                 /*
2048                  * Even though there was no reservation in the region/reserve
2049                  * map, there could be reservations associated with the
2050                  * subpool that can be used.  This would be indicated if the
2051                  * return value of hugepage_subpool_get_pages() is zero.
2052                  * However, if avoid_reserve is specified we still avoid even
2053                  * the subpool reservations.
2054                  */
2055                 if (avoid_reserve)
2056                         gbl_chg = 1;
2057         }
2058
2059         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2060         if (ret)
2061                 goto out_subpool_put;
2062
2063         spin_lock(&hugetlb_lock);
2064         /*
2065          * glb_chg is passed to indicate whether or not a page must be taken
2066          * from the global free pool (global change).  gbl_chg == 0 indicates
2067          * a reservation exists for the allocation.
2068          */
2069         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2070         if (!page) {
2071                 spin_unlock(&hugetlb_lock);
2072                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2073                 if (!page)
2074                         goto out_uncharge_cgroup;
2075                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2076                         SetPagePrivate(page);
2077                         h->resv_huge_pages--;
2078                 }
2079                 spin_lock(&hugetlb_lock);
2080                 list_move(&page->lru, &h->hugepage_activelist);
2081                 /* Fall through */
2082         }
2083         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2084         spin_unlock(&hugetlb_lock);
2085
2086         set_page_private(page, (unsigned long)spool);
2087
2088         map_commit = vma_commit_reservation(h, vma, addr);
2089         if (unlikely(map_chg > map_commit)) {
2090                 /*
2091                  * The page was added to the reservation map between
2092                  * vma_needs_reservation and vma_commit_reservation.
2093                  * This indicates a race with hugetlb_reserve_pages.
2094                  * Adjust for the subpool count incremented above AND
2095                  * in hugetlb_reserve_pages for the same page.  Also,
2096                  * the reservation count added in hugetlb_reserve_pages
2097                  * no longer applies.
2098                  */
2099                 long rsv_adjust;
2100
2101                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2102                 hugetlb_acct_memory(h, -rsv_adjust);
2103         }
2104         return page;
2105
2106 out_uncharge_cgroup:
2107         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2108 out_subpool_put:
2109         if (map_chg || avoid_reserve)
2110                 hugepage_subpool_put_pages(spool, 1);
2111         vma_end_reservation(h, vma, addr);
2112         return ERR_PTR(-ENOSPC);
2113 }
2114
2115 int alloc_bootmem_huge_page(struct hstate *h)
2116         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2117 int __alloc_bootmem_huge_page(struct hstate *h)
2118 {
2119         struct huge_bootmem_page *m;
2120         int nr_nodes, node;
2121
2122         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2123                 void *addr;
2124
2125                 addr = memblock_virt_alloc_try_nid_raw(
2126                                 huge_page_size(h), huge_page_size(h),
2127                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2128                 if (addr) {
2129                         /*
2130                          * Use the beginning of the huge page to store the
2131                          * huge_bootmem_page struct (until gather_bootmem
2132                          * puts them into the mem_map).
2133                          */
2134                         m = addr;
2135                         goto found;
2136                 }
2137         }
2138         return 0;
2139
2140 found:
2141         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2142         /* Put them into a private list first because mem_map is not up yet */
2143         INIT_LIST_HEAD(&m->list);
2144         list_add(&m->list, &huge_boot_pages);
2145         m->hstate = h;
2146         return 1;
2147 }
2148
2149 static void __init prep_compound_huge_page(struct page *page,
2150                 unsigned int order)
2151 {
2152         if (unlikely(order > (MAX_ORDER - 1)))
2153                 prep_compound_gigantic_page(page, order);
2154         else
2155                 prep_compound_page(page, order);
2156 }
2157
2158 /* Put bootmem huge pages into the standard lists after mem_map is up */
2159 static void __init gather_bootmem_prealloc(void)
2160 {
2161         struct huge_bootmem_page *m;
2162
2163         list_for_each_entry(m, &huge_boot_pages, list) {
2164                 struct page *page = virt_to_page(m);
2165                 struct hstate *h = m->hstate;
2166
2167                 WARN_ON(page_count(page) != 1);
2168                 prep_compound_huge_page(page, h->order);
2169                 WARN_ON(PageReserved(page));
2170                 prep_new_huge_page(h, page, page_to_nid(page));
2171                 put_page(page); /* free it into the hugepage allocator */
2172
2173                 /*
2174                  * If we had gigantic hugepages allocated at boot time, we need
2175                  * to restore the 'stolen' pages to totalram_pages in order to
2176                  * fix confusing memory reports from free(1) and another
2177                  * side-effects, like CommitLimit going negative.
2178                  */
2179                 if (hstate_is_gigantic(h))
2180                         adjust_managed_page_count(page, 1 << h->order);
2181                 cond_resched();
2182         }
2183 }
2184
2185 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2186 {
2187         unsigned long i;
2188
2189         for (i = 0; i < h->max_huge_pages; ++i) {
2190                 if (hstate_is_gigantic(h)) {
2191                         if (!alloc_bootmem_huge_page(h))
2192                                 break;
2193                 } else if (!alloc_pool_huge_page(h,
2194                                          &node_states[N_MEMORY]))
2195                         break;
2196                 cond_resched();
2197         }
2198         if (i < h->max_huge_pages) {
2199                 char buf[32];
2200
2201                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2202                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2203                         h->max_huge_pages, buf, i);
2204                 h->max_huge_pages = i;
2205         }
2206 }
2207
2208 static void __init hugetlb_init_hstates(void)
2209 {
2210         struct hstate *h;
2211
2212         for_each_hstate(h) {
2213                 if (minimum_order > huge_page_order(h))
2214                         minimum_order = huge_page_order(h);
2215
2216                 /* oversize hugepages were init'ed in early boot */
2217                 if (!hstate_is_gigantic(h))
2218                         hugetlb_hstate_alloc_pages(h);
2219         }
2220         VM_BUG_ON(minimum_order == UINT_MAX);
2221 }
2222
2223 static void __init report_hugepages(void)
2224 {
2225         struct hstate *h;
2226
2227         for_each_hstate(h) {
2228                 char buf[32];
2229
2230                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2231                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2232                         buf, h->free_huge_pages);
2233         }
2234 }
2235
2236 #ifdef CONFIG_HIGHMEM
2237 static void try_to_free_low(struct hstate *h, unsigned long count,
2238                                                 nodemask_t *nodes_allowed)
2239 {
2240         int i;
2241
2242         if (hstate_is_gigantic(h))
2243                 return;
2244
2245         for_each_node_mask(i, *nodes_allowed) {
2246                 struct page *page, *next;
2247                 struct list_head *freel = &h->hugepage_freelists[i];
2248                 list_for_each_entry_safe(page, next, freel, lru) {
2249                         if (count >= h->nr_huge_pages)
2250                                 return;
2251                         if (PageHighMem(page))
2252                                 continue;
2253                         list_del(&page->lru);
2254                         update_and_free_page(h, page);
2255                         h->free_huge_pages--;
2256                         h->free_huge_pages_node[page_to_nid(page)]--;
2257                 }
2258         }
2259 }
2260 #else
2261 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2262                                                 nodemask_t *nodes_allowed)
2263 {
2264 }
2265 #endif
2266
2267 /*
2268  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2269  * balanced by operating on them in a round-robin fashion.
2270  * Returns 1 if an adjustment was made.
2271  */
2272 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2273                                 int delta)
2274 {
2275         int nr_nodes, node;
2276
2277         VM_BUG_ON(delta != -1 && delta != 1);
2278
2279         if (delta < 0) {
2280                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2281                         if (h->surplus_huge_pages_node[node])
2282                                 goto found;
2283                 }
2284         } else {
2285                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2286                         if (h->surplus_huge_pages_node[node] <
2287                                         h->nr_huge_pages_node[node])
2288                                 goto found;
2289                 }
2290         }
2291         return 0;
2292
2293 found:
2294         h->surplus_huge_pages += delta;
2295         h->surplus_huge_pages_node[node] += delta;
2296         return 1;
2297 }
2298
2299 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2300 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2301                                                 nodemask_t *nodes_allowed)
2302 {
2303         unsigned long min_count, ret;
2304
2305         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2306                 return h->max_huge_pages;
2307
2308         /*
2309          * Increase the pool size
2310          * First take pages out of surplus state.  Then make up the
2311          * remaining difference by allocating fresh huge pages.
2312          *
2313          * We might race with alloc_surplus_huge_page() here and be unable
2314          * to convert a surplus huge page to a normal huge page. That is
2315          * not critical, though, it just means the overall size of the
2316          * pool might be one hugepage larger than it needs to be, but
2317          * within all the constraints specified by the sysctls.
2318          */
2319         spin_lock(&hugetlb_lock);
2320         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2321                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2322                         break;
2323         }
2324
2325         while (count > persistent_huge_pages(h)) {
2326                 /*
2327                  * If this allocation races such that we no longer need the
2328                  * page, free_huge_page will handle it by freeing the page
2329                  * and reducing the surplus.
2330                  */
2331                 spin_unlock(&hugetlb_lock);
2332
2333                 /* yield cpu to avoid soft lockup */
2334                 cond_resched();
2335
2336                 ret = alloc_pool_huge_page(h, nodes_allowed);
2337                 spin_lock(&hugetlb_lock);
2338                 if (!ret)
2339                         goto out;
2340
2341                 /* Bail for signals. Probably ctrl-c from user */
2342                 if (signal_pending(current))
2343                         goto out;
2344         }
2345
2346         /*
2347          * Decrease the pool size
2348          * First return free pages to the buddy allocator (being careful
2349          * to keep enough around to satisfy reservations).  Then place
2350          * pages into surplus state as needed so the pool will shrink
2351          * to the desired size as pages become free.
2352          *
2353          * By placing pages into the surplus state independent of the
2354          * overcommit value, we are allowing the surplus pool size to
2355          * exceed overcommit. There are few sane options here. Since
2356          * alloc_surplus_huge_page() is checking the global counter,
2357          * though, we'll note that we're not allowed to exceed surplus
2358          * and won't grow the pool anywhere else. Not until one of the
2359          * sysctls are changed, or the surplus pages go out of use.
2360          */
2361         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362         min_count = max(count, min_count);
2363         try_to_free_low(h, min_count, nodes_allowed);
2364         while (min_count < persistent_huge_pages(h)) {
2365                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2366                         break;
2367                 cond_resched_lock(&hugetlb_lock);
2368         }
2369         while (count < persistent_huge_pages(h)) {
2370                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371                         break;
2372         }
2373 out:
2374         ret = persistent_huge_pages(h);
2375         spin_unlock(&hugetlb_lock);
2376         return ret;
2377 }
2378
2379 #define HSTATE_ATTR_RO(_name) \
2380         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2381
2382 #define HSTATE_ATTR(_name) \
2383         static struct kobj_attribute _name##_attr = \
2384                 __ATTR(_name, 0644, _name##_show, _name##_store)
2385
2386 static struct kobject *hugepages_kobj;
2387 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2388
2389 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2390
2391 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2392 {
2393         int i;
2394
2395         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396                 if (hstate_kobjs[i] == kobj) {
2397                         if (nidp)
2398                                 *nidp = NUMA_NO_NODE;
2399                         return &hstates[i];
2400                 }
2401
2402         return kobj_to_node_hstate(kobj, nidp);
2403 }
2404
2405 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406                                         struct kobj_attribute *attr, char *buf)
2407 {
2408         struct hstate *h;
2409         unsigned long nr_huge_pages;
2410         int nid;
2411
2412         h = kobj_to_hstate(kobj, &nid);
2413         if (nid == NUMA_NO_NODE)
2414                 nr_huge_pages = h->nr_huge_pages;
2415         else
2416                 nr_huge_pages = h->nr_huge_pages_node[nid];
2417
2418         return sprintf(buf, "%lu\n", nr_huge_pages);
2419 }
2420
2421 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422                                            struct hstate *h, int nid,
2423                                            unsigned long count, size_t len)
2424 {
2425         int err;
2426         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2427
2428         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429                 err = -EINVAL;
2430                 goto out;
2431         }
2432
2433         if (nid == NUMA_NO_NODE) {
2434                 /*
2435                  * global hstate attribute
2436                  */
2437                 if (!(obey_mempolicy &&
2438                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2439                         NODEMASK_FREE(nodes_allowed);
2440                         nodes_allowed = &node_states[N_MEMORY];
2441                 }
2442         } else if (nodes_allowed) {
2443                 /*
2444                  * per node hstate attribute: adjust count to global,
2445                  * but restrict alloc/free to the specified node.
2446                  */
2447                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448                 init_nodemask_of_node(nodes_allowed, nid);
2449         } else
2450                 nodes_allowed = &node_states[N_MEMORY];
2451
2452         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2453
2454         if (nodes_allowed != &node_states[N_MEMORY])
2455                 NODEMASK_FREE(nodes_allowed);
2456
2457         return len;
2458 out:
2459         NODEMASK_FREE(nodes_allowed);
2460         return err;
2461 }
2462
2463 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464                                          struct kobject *kobj, const char *buf,
2465                                          size_t len)
2466 {
2467         struct hstate *h;
2468         unsigned long count;
2469         int nid;
2470         int err;
2471
2472         err = kstrtoul(buf, 10, &count);
2473         if (err)
2474                 return err;
2475
2476         h = kobj_to_hstate(kobj, &nid);
2477         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478 }
2479
2480 static ssize_t nr_hugepages_show(struct kobject *kobj,
2481                                        struct kobj_attribute *attr, char *buf)
2482 {
2483         return nr_hugepages_show_common(kobj, attr, buf);
2484 }
2485
2486 static ssize_t nr_hugepages_store(struct kobject *kobj,
2487                struct kobj_attribute *attr, const char *buf, size_t len)
2488 {
2489         return nr_hugepages_store_common(false, kobj, buf, len);
2490 }
2491 HSTATE_ATTR(nr_hugepages);
2492
2493 #ifdef CONFIG_NUMA
2494
2495 /*
2496  * hstate attribute for optionally mempolicy-based constraint on persistent
2497  * huge page alloc/free.
2498  */
2499 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500                                        struct kobj_attribute *attr, char *buf)
2501 {
2502         return nr_hugepages_show_common(kobj, attr, buf);
2503 }
2504
2505 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506                struct kobj_attribute *attr, const char *buf, size_t len)
2507 {
2508         return nr_hugepages_store_common(true, kobj, buf, len);
2509 }
2510 HSTATE_ATTR(nr_hugepages_mempolicy);
2511 #endif
2512
2513
2514 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515                                         struct kobj_attribute *attr, char *buf)
2516 {
2517         struct hstate *h = kobj_to_hstate(kobj, NULL);
2518         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519 }
2520
2521 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522                 struct kobj_attribute *attr, const char *buf, size_t count)
2523 {
2524         int err;
2525         unsigned long input;
2526         struct hstate *h = kobj_to_hstate(kobj, NULL);
2527
2528         if (hstate_is_gigantic(h))
2529                 return -EINVAL;
2530
2531         err = kstrtoul(buf, 10, &input);
2532         if (err)
2533                 return err;
2534
2535         spin_lock(&hugetlb_lock);
2536         h->nr_overcommit_huge_pages = input;
2537         spin_unlock(&hugetlb_lock);
2538
2539         return count;
2540 }
2541 HSTATE_ATTR(nr_overcommit_hugepages);
2542
2543 static ssize_t free_hugepages_show(struct kobject *kobj,
2544                                         struct kobj_attribute *attr, char *buf)
2545 {
2546         struct hstate *h;
2547         unsigned long free_huge_pages;
2548         int nid;
2549
2550         h = kobj_to_hstate(kobj, &nid);
2551         if (nid == NUMA_NO_NODE)
2552                 free_huge_pages = h->free_huge_pages;
2553         else
2554                 free_huge_pages = h->free_huge_pages_node[nid];
2555
2556         return sprintf(buf, "%lu\n", free_huge_pages);
2557 }
2558 HSTATE_ATTR_RO(free_hugepages);
2559
2560 static ssize_t resv_hugepages_show(struct kobject *kobj,
2561                                         struct kobj_attribute *attr, char *buf)
2562 {
2563         struct hstate *h = kobj_to_hstate(kobj, NULL);
2564         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2565 }
2566 HSTATE_ATTR_RO(resv_hugepages);
2567
2568 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569                                         struct kobj_attribute *attr, char *buf)
2570 {
2571         struct hstate *h;
2572         unsigned long surplus_huge_pages;
2573         int nid;
2574
2575         h = kobj_to_hstate(kobj, &nid);
2576         if (nid == NUMA_NO_NODE)
2577                 surplus_huge_pages = h->surplus_huge_pages;
2578         else
2579                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2580
2581         return sprintf(buf, "%lu\n", surplus_huge_pages);
2582 }
2583 HSTATE_ATTR_RO(surplus_hugepages);
2584
2585 static struct attribute *hstate_attrs[] = {
2586         &nr_hugepages_attr.attr,
2587         &nr_overcommit_hugepages_attr.attr,
2588         &free_hugepages_attr.attr,
2589         &resv_hugepages_attr.attr,
2590         &surplus_hugepages_attr.attr,
2591 #ifdef CONFIG_NUMA
2592         &nr_hugepages_mempolicy_attr.attr,
2593 #endif
2594         NULL,
2595 };
2596
2597 static const struct attribute_group hstate_attr_group = {
2598         .attrs = hstate_attrs,
2599 };
2600
2601 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602                                     struct kobject **hstate_kobjs,
2603                                     const struct attribute_group *hstate_attr_group)
2604 {
2605         int retval;
2606         int hi = hstate_index(h);
2607
2608         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609         if (!hstate_kobjs[hi])
2610                 return -ENOMEM;
2611
2612         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613         if (retval)
2614                 kobject_put(hstate_kobjs[hi]);
2615
2616         return retval;
2617 }
2618
2619 static void __init hugetlb_sysfs_init(void)
2620 {
2621         struct hstate *h;
2622         int err;
2623
2624         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625         if (!hugepages_kobj)
2626                 return;
2627
2628         for_each_hstate(h) {
2629                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630                                          hstate_kobjs, &hstate_attr_group);
2631                 if (err)
2632                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2633         }
2634 }
2635
2636 #ifdef CONFIG_NUMA
2637
2638 /*
2639  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640  * with node devices in node_devices[] using a parallel array.  The array
2641  * index of a node device or _hstate == node id.
2642  * This is here to avoid any static dependency of the node device driver, in
2643  * the base kernel, on the hugetlb module.
2644  */
2645 struct node_hstate {
2646         struct kobject          *hugepages_kobj;
2647         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2648 };
2649 static struct node_hstate node_hstates[MAX_NUMNODES];
2650
2651 /*
2652  * A subset of global hstate attributes for node devices
2653  */
2654 static struct attribute *per_node_hstate_attrs[] = {
2655         &nr_hugepages_attr.attr,
2656         &free_hugepages_attr.attr,
2657         &surplus_hugepages_attr.attr,
2658         NULL,
2659 };
2660
2661 static const struct attribute_group per_node_hstate_attr_group = {
2662         .attrs = per_node_hstate_attrs,
2663 };
2664
2665 /*
2666  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667  * Returns node id via non-NULL nidp.
2668  */
2669 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2670 {
2671         int nid;
2672
2673         for (nid = 0; nid < nr_node_ids; nid++) {
2674                 struct node_hstate *nhs = &node_hstates[nid];
2675                 int i;
2676                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677                         if (nhs->hstate_kobjs[i] == kobj) {
2678                                 if (nidp)
2679                                         *nidp = nid;
2680                                 return &hstates[i];
2681                         }
2682         }
2683
2684         BUG();
2685         return NULL;
2686 }
2687
2688 /*
2689  * Unregister hstate attributes from a single node device.
2690  * No-op if no hstate attributes attached.
2691  */
2692 static void hugetlb_unregister_node(struct node *node)
2693 {
2694         struct hstate *h;
2695         struct node_hstate *nhs = &node_hstates[node->dev.id];
2696
2697         if (!nhs->hugepages_kobj)
2698                 return;         /* no hstate attributes */
2699
2700         for_each_hstate(h) {
2701                 int idx = hstate_index(h);
2702                 if (nhs->hstate_kobjs[idx]) {
2703                         kobject_put(nhs->hstate_kobjs[idx]);
2704                         nhs->hstate_kobjs[idx] = NULL;
2705                 }
2706         }
2707
2708         kobject_put(nhs->hugepages_kobj);
2709         nhs->hugepages_kobj = NULL;
2710 }
2711
2712
2713 /*
2714  * Register hstate attributes for a single node device.
2715  * No-op if attributes already registered.
2716  */
2717 static void hugetlb_register_node(struct node *node)
2718 {
2719         struct hstate *h;
2720         struct node_hstate *nhs = &node_hstates[node->dev.id];
2721         int err;
2722
2723         if (nhs->hugepages_kobj)
2724                 return;         /* already allocated */
2725
2726         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727                                                         &node->dev.kobj);
2728         if (!nhs->hugepages_kobj)
2729                 return;
2730
2731         for_each_hstate(h) {
2732                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733                                                 nhs->hstate_kobjs,
2734                                                 &per_node_hstate_attr_group);
2735                 if (err) {
2736                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737                                 h->name, node->dev.id);
2738                         hugetlb_unregister_node(node);
2739                         break;
2740                 }
2741         }
2742 }
2743
2744 /*
2745  * hugetlb init time:  register hstate attributes for all registered node
2746  * devices of nodes that have memory.  All on-line nodes should have
2747  * registered their associated device by this time.
2748  */
2749 static void __init hugetlb_register_all_nodes(void)
2750 {
2751         int nid;
2752
2753         for_each_node_state(nid, N_MEMORY) {
2754                 struct node *node = node_devices[nid];
2755                 if (node->dev.id == nid)
2756                         hugetlb_register_node(node);
2757         }
2758
2759         /*
2760          * Let the node device driver know we're here so it can
2761          * [un]register hstate attributes on node hotplug.
2762          */
2763         register_hugetlbfs_with_node(hugetlb_register_node,
2764                                      hugetlb_unregister_node);
2765 }
2766 #else   /* !CONFIG_NUMA */
2767
2768 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2769 {
2770         BUG();
2771         if (nidp)
2772                 *nidp = -1;
2773         return NULL;
2774 }
2775
2776 static void hugetlb_register_all_nodes(void) { }
2777
2778 #endif
2779
2780 static int __init hugetlb_init(void)
2781 {
2782         int i;
2783
2784         if (!hugepages_supported())
2785                 return 0;
2786
2787         if (!size_to_hstate(default_hstate_size)) {
2788                 if (default_hstate_size != 0) {
2789                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2790                                default_hstate_size, HPAGE_SIZE);
2791                 }
2792
2793                 default_hstate_size = HPAGE_SIZE;
2794                 if (!size_to_hstate(default_hstate_size))
2795                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2796         }
2797         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2798         if (default_hstate_max_huge_pages) {
2799                 if (!default_hstate.max_huge_pages)
2800                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2801         }
2802
2803         hugetlb_init_hstates();
2804         gather_bootmem_prealloc();
2805         report_hugepages();
2806
2807         hugetlb_sysfs_init();
2808         hugetlb_register_all_nodes();
2809         hugetlb_cgroup_file_init();
2810
2811 #ifdef CONFIG_SMP
2812         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2813 #else
2814         num_fault_mutexes = 1;
2815 #endif
2816         hugetlb_fault_mutex_table =
2817                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2818                               GFP_KERNEL);
2819         BUG_ON(!hugetlb_fault_mutex_table);
2820
2821         for (i = 0; i < num_fault_mutexes; i++)
2822                 mutex_init(&hugetlb_fault_mutex_table[i]);
2823         return 0;
2824 }
2825 subsys_initcall(hugetlb_init);
2826
2827 /* Should be called on processing a hugepagesz=... option */
2828 void __init hugetlb_bad_size(void)
2829 {
2830         parsed_valid_hugepagesz = false;
2831 }
2832
2833 void __init hugetlb_add_hstate(unsigned int order)
2834 {
2835         struct hstate *h;
2836         unsigned long i;
2837
2838         if (size_to_hstate(PAGE_SIZE << order)) {
2839                 pr_warn("hugepagesz= specified twice, ignoring\n");
2840                 return;
2841         }
2842         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2843         BUG_ON(order == 0);
2844         h = &hstates[hugetlb_max_hstate++];
2845         h->order = order;
2846         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2847         h->nr_huge_pages = 0;
2848         h->free_huge_pages = 0;
2849         for (i = 0; i < MAX_NUMNODES; ++i)
2850                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2851         INIT_LIST_HEAD(&h->hugepage_activelist);
2852         h->next_nid_to_alloc = first_memory_node;
2853         h->next_nid_to_free = first_memory_node;
2854         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2855                                         huge_page_size(h)/1024);
2856
2857         parsed_hstate = h;
2858 }
2859
2860 static int __init hugetlb_nrpages_setup(char *s)
2861 {
2862         unsigned long *mhp;
2863         static unsigned long *last_mhp;
2864
2865         if (!parsed_valid_hugepagesz) {
2866                 pr_warn("hugepages = %s preceded by "
2867                         "an unsupported hugepagesz, ignoring\n", s);
2868                 parsed_valid_hugepagesz = true;
2869                 return 1;
2870         }
2871         /*
2872          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2873          * so this hugepages= parameter goes to the "default hstate".
2874          */
2875         else if (!hugetlb_max_hstate)
2876                 mhp = &default_hstate_max_huge_pages;
2877         else
2878                 mhp = &parsed_hstate->max_huge_pages;
2879
2880         if (mhp == last_mhp) {
2881                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2882                 return 1;
2883         }
2884
2885         if (sscanf(s, "%lu", mhp) <= 0)
2886                 *mhp = 0;
2887
2888         /*
2889          * Global state is always initialized later in hugetlb_init.
2890          * But we need to allocate >= MAX_ORDER hstates here early to still
2891          * use the bootmem allocator.
2892          */
2893         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2894                 hugetlb_hstate_alloc_pages(parsed_hstate);
2895
2896         last_mhp = mhp;
2897
2898         return 1;
2899 }
2900 __setup("hugepages=", hugetlb_nrpages_setup);
2901
2902 static int __init hugetlb_default_setup(char *s)
2903 {
2904         default_hstate_size = memparse(s, &s);
2905         return 1;
2906 }
2907 __setup("default_hugepagesz=", hugetlb_default_setup);
2908
2909 static unsigned int cpuset_mems_nr(unsigned int *array)
2910 {
2911         int node;
2912         unsigned int nr = 0;
2913
2914         for_each_node_mask(node, cpuset_current_mems_allowed)
2915                 nr += array[node];
2916
2917         return nr;
2918 }
2919
2920 #ifdef CONFIG_SYSCTL
2921 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2922                          struct ctl_table *table, int write,
2923                          void __user *buffer, size_t *length, loff_t *ppos)
2924 {
2925         struct hstate *h = &default_hstate;
2926         unsigned long tmp = h->max_huge_pages;
2927         int ret;
2928
2929         if (!hugepages_supported())
2930                 return -EOPNOTSUPP;
2931
2932         table->data = &tmp;
2933         table->maxlen = sizeof(unsigned long);
2934         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2935         if (ret)
2936                 goto out;
2937
2938         if (write)
2939                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2940                                                   NUMA_NO_NODE, tmp, *length);
2941 out:
2942         return ret;
2943 }
2944
2945 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2946                           void __user *buffer, size_t *length, loff_t *ppos)
2947 {
2948
2949         return hugetlb_sysctl_handler_common(false, table, write,
2950                                                         buffer, length, ppos);
2951 }
2952
2953 #ifdef CONFIG_NUMA
2954 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2955                           void __user *buffer, size_t *length, loff_t *ppos)
2956 {
2957         return hugetlb_sysctl_handler_common(true, table, write,
2958                                                         buffer, length, ppos);
2959 }
2960 #endif /* CONFIG_NUMA */
2961
2962 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2963                         void __user *buffer,
2964                         size_t *length, loff_t *ppos)
2965 {
2966         struct hstate *h = &default_hstate;
2967         unsigned long tmp;
2968         int ret;
2969
2970         if (!hugepages_supported())
2971                 return -EOPNOTSUPP;
2972
2973         tmp = h->nr_overcommit_huge_pages;
2974
2975         if (write && hstate_is_gigantic(h))
2976                 return -EINVAL;
2977
2978         table->data = &tmp;
2979         table->maxlen = sizeof(unsigned long);
2980         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2981         if (ret)
2982                 goto out;
2983
2984         if (write) {
2985                 spin_lock(&hugetlb_lock);
2986                 h->nr_overcommit_huge_pages = tmp;
2987                 spin_unlock(&hugetlb_lock);
2988         }
2989 out:
2990         return ret;
2991 }
2992
2993 #endif /* CONFIG_SYSCTL */
2994
2995 void hugetlb_report_meminfo(struct seq_file *m)
2996 {
2997         struct hstate *h;
2998         unsigned long total = 0;
2999
3000         if (!hugepages_supported())
3001                 return;
3002
3003         for_each_hstate(h) {
3004                 unsigned long count = h->nr_huge_pages;
3005
3006                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3007
3008                 if (h == &default_hstate)
3009                         seq_printf(m,
3010                                    "HugePages_Total:   %5lu\n"
3011                                    "HugePages_Free:    %5lu\n"
3012                                    "HugePages_Rsvd:    %5lu\n"
3013                                    "HugePages_Surp:    %5lu\n"
3014                                    "Hugepagesize:   %8lu kB\n",
3015                                    count,
3016                                    h->free_huge_pages,
3017                                    h->resv_huge_pages,
3018                                    h->surplus_huge_pages,
3019                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3020         }
3021
3022         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3023 }
3024
3025 int hugetlb_report_node_meminfo(int nid, char *buf)
3026 {
3027         struct hstate *h = &default_hstate;
3028         if (!hugepages_supported())
3029                 return 0;
3030         return sprintf(buf,
3031                 "Node %d HugePages_Total: %5u\n"
3032                 "Node %d HugePages_Free:  %5u\n"
3033                 "Node %d HugePages_Surp:  %5u\n",
3034                 nid, h->nr_huge_pages_node[nid],
3035                 nid, h->free_huge_pages_node[nid],
3036                 nid, h->surplus_huge_pages_node[nid]);
3037 }
3038
3039 void hugetlb_show_meminfo(void)
3040 {
3041         struct hstate *h;
3042         int nid;
3043
3044         if (!hugepages_supported())
3045                 return;
3046
3047         for_each_node_state(nid, N_MEMORY)
3048                 for_each_hstate(h)
3049                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3050                                 nid,
3051                                 h->nr_huge_pages_node[nid],
3052                                 h->free_huge_pages_node[nid],
3053                                 h->surplus_huge_pages_node[nid],
3054                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3055 }
3056
3057 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3058 {
3059         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3060                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3061 }
3062
3063 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3064 unsigned long hugetlb_total_pages(void)
3065 {
3066         struct hstate *h;
3067         unsigned long nr_total_pages = 0;
3068
3069         for_each_hstate(h)
3070                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3071         return nr_total_pages;
3072 }
3073
3074 static int hugetlb_acct_memory(struct hstate *h, long delta)
3075 {
3076         int ret = -ENOMEM;
3077
3078         spin_lock(&hugetlb_lock);
3079         /*
3080          * When cpuset is configured, it breaks the strict hugetlb page
3081          * reservation as the accounting is done on a global variable. Such
3082          * reservation is completely rubbish in the presence of cpuset because
3083          * the reservation is not checked against page availability for the
3084          * current cpuset. Application can still potentially OOM'ed by kernel
3085          * with lack of free htlb page in cpuset that the task is in.
3086          * Attempt to enforce strict accounting with cpuset is almost
3087          * impossible (or too ugly) because cpuset is too fluid that
3088          * task or memory node can be dynamically moved between cpusets.
3089          *
3090          * The change of semantics for shared hugetlb mapping with cpuset is
3091          * undesirable. However, in order to preserve some of the semantics,
3092          * we fall back to check against current free page availability as
3093          * a best attempt and hopefully to minimize the impact of changing
3094          * semantics that cpuset has.
3095          */
3096         if (delta > 0) {
3097                 if (gather_surplus_pages(h, delta) < 0)
3098                         goto out;
3099
3100                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3101                         return_unused_surplus_pages(h, delta);
3102                         goto out;
3103                 }
3104         }
3105
3106         ret = 0;
3107         if (delta < 0)
3108                 return_unused_surplus_pages(h, (unsigned long) -delta);
3109
3110 out:
3111         spin_unlock(&hugetlb_lock);
3112         return ret;
3113 }
3114
3115 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3116 {
3117         struct resv_map *resv = vma_resv_map(vma);
3118
3119         /*
3120          * This new VMA should share its siblings reservation map if present.
3121          * The VMA will only ever have a valid reservation map pointer where
3122          * it is being copied for another still existing VMA.  As that VMA
3123          * has a reference to the reservation map it cannot disappear until
3124          * after this open call completes.  It is therefore safe to take a
3125          * new reference here without additional locking.
3126          */
3127         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3128                 kref_get(&resv->refs);
3129 }
3130
3131 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3132 {
3133         struct hstate *h = hstate_vma(vma);
3134         struct resv_map *resv = vma_resv_map(vma);
3135         struct hugepage_subpool *spool = subpool_vma(vma);
3136         unsigned long reserve, start, end;
3137         long gbl_reserve;
3138
3139         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3140                 return;
3141
3142         start = vma_hugecache_offset(h, vma, vma->vm_start);
3143         end = vma_hugecache_offset(h, vma, vma->vm_end);
3144
3145         reserve = (end - start) - region_count(resv, start, end);
3146
3147         kref_put(&resv->refs, resv_map_release);
3148
3149         if (reserve) {
3150                 /*
3151                  * Decrement reserve counts.  The global reserve count may be
3152                  * adjusted if the subpool has a minimum size.
3153                  */
3154                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3155                 hugetlb_acct_memory(h, -gbl_reserve);
3156         }
3157 }
3158
3159 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3160 {
3161         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3162                 return -EINVAL;
3163         return 0;
3164 }
3165
3166 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3167 {
3168         struct hstate *hstate = hstate_vma(vma);
3169
3170         return 1UL << huge_page_shift(hstate);
3171 }
3172
3173 /*
3174  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3175  * handle_mm_fault() to try to instantiate regular-sized pages in the
3176  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3177  * this far.
3178  */
3179 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3180 {
3181         BUG();
3182         return 0;
3183 }
3184
3185 /*
3186  * When a new function is introduced to vm_operations_struct and added
3187  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3188  * This is because under System V memory model, mappings created via
3189  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3190  * their original vm_ops are overwritten with shm_vm_ops.
3191  */
3192 const struct vm_operations_struct hugetlb_vm_ops = {
3193         .fault = hugetlb_vm_op_fault,
3194         .open = hugetlb_vm_op_open,
3195         .close = hugetlb_vm_op_close,
3196         .split = hugetlb_vm_op_split,
3197         .pagesize = hugetlb_vm_op_pagesize,
3198 };
3199
3200 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3201                                 int writable)
3202 {
3203         pte_t entry;
3204
3205         if (writable) {
3206                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3207                                          vma->vm_page_prot)));
3208         } else {
3209                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3210                                            vma->vm_page_prot));
3211         }
3212         entry = pte_mkyoung(entry);
3213         entry = pte_mkhuge(entry);
3214         entry = arch_make_huge_pte(entry, vma, page, writable);
3215
3216         return entry;
3217 }
3218
3219 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3220                                    unsigned long address, pte_t *ptep)
3221 {
3222         pte_t entry;
3223
3224         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3225         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3226                 update_mmu_cache(vma, address, ptep);
3227 }
3228
3229 bool is_hugetlb_entry_migration(pte_t pte)
3230 {
3231         swp_entry_t swp;
3232
3233         if (huge_pte_none(pte) || pte_present(pte))
3234                 return false;
3235         swp = pte_to_swp_entry(pte);
3236         if (non_swap_entry(swp) && is_migration_entry(swp))
3237                 return true;
3238         else
3239                 return false;
3240 }
3241
3242 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3243 {
3244         swp_entry_t swp;
3245
3246         if (huge_pte_none(pte) || pte_present(pte))
3247                 return 0;
3248         swp = pte_to_swp_entry(pte);
3249         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3250                 return 1;
3251         else
3252                 return 0;
3253 }
3254
3255 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3256                             struct vm_area_struct *vma)
3257 {
3258         pte_t *src_pte, *dst_pte, entry, dst_entry;
3259         struct page *ptepage;
3260         unsigned long addr;
3261         int cow;
3262         struct hstate *h = hstate_vma(vma);
3263         unsigned long sz = huge_page_size(h);
3264         unsigned long mmun_start;       /* For mmu_notifiers */
3265         unsigned long mmun_end;         /* For mmu_notifiers */
3266         int ret = 0;
3267
3268         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3269
3270         mmun_start = vma->vm_start;
3271         mmun_end = vma->vm_end;
3272         if (cow)
3273                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3274
3275         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3276                 spinlock_t *src_ptl, *dst_ptl;
3277                 src_pte = huge_pte_offset(src, addr, sz);
3278                 if (!src_pte)
3279                         continue;
3280                 dst_pte = huge_pte_alloc(dst, addr, sz);
3281                 if (!dst_pte) {
3282                         ret = -ENOMEM;
3283                         break;
3284                 }
3285
3286                 /*
3287                  * If the pagetables are shared don't copy or take references.
3288                  * dst_pte == src_pte is the common case of src/dest sharing.
3289                  *
3290                  * However, src could have 'unshared' and dst shares with
3291                  * another vma.  If dst_pte !none, this implies sharing.
3292                  * Check here before taking page table lock, and once again
3293                  * after taking the lock below.
3294                  */
3295                 dst_entry = huge_ptep_get(dst_pte);
3296                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3297                         continue;
3298
3299                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3300                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3301                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3302                 entry = huge_ptep_get(src_pte);
3303                 dst_entry = huge_ptep_get(dst_pte);
3304                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3305                         /*
3306                          * Skip if src entry none.  Also, skip in the
3307                          * unlikely case dst entry !none as this implies
3308                          * sharing with another vma.
3309                          */
3310                         ;
3311                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3312                                     is_hugetlb_entry_hwpoisoned(entry))) {
3313                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3314
3315                         if (is_write_migration_entry(swp_entry) && cow) {
3316                                 /*
3317                                  * COW mappings require pages in both
3318                                  * parent and child to be set to read.
3319                                  */
3320                                 make_migration_entry_read(&swp_entry);
3321                                 entry = swp_entry_to_pte(swp_entry);
3322                                 set_huge_swap_pte_at(src, addr, src_pte,
3323                                                      entry, sz);
3324                         }
3325                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3326                 } else {
3327                         if (cow) {
3328                                 /*
3329                                  * No need to notify as we are downgrading page
3330                                  * table protection not changing it to point
3331                                  * to a new page.
3332                                  *
3333                                  * See Documentation/vm/mmu_notifier.rst
3334                                  */
3335                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3336                         }
3337                         entry = huge_ptep_get(src_pte);
3338                         ptepage = pte_page(entry);
3339                         get_page(ptepage);
3340                         page_dup_rmap(ptepage, true);
3341                         set_huge_pte_at(dst, addr, dst_pte, entry);
3342                         hugetlb_count_add(pages_per_huge_page(h), dst);
3343                 }
3344                 spin_unlock(src_ptl);
3345                 spin_unlock(dst_ptl);
3346         }
3347
3348         if (cow)
3349                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3350
3351         return ret;
3352 }
3353
3354 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3355                             unsigned long start, unsigned long end,
3356                             struct page *ref_page)
3357 {
3358         struct mm_struct *mm = vma->vm_mm;
3359         unsigned long address;
3360         pte_t *ptep;
3361         pte_t pte;
3362         spinlock_t *ptl;
3363         struct page *page;
3364         struct hstate *h = hstate_vma(vma);
3365         unsigned long sz = huge_page_size(h);
3366         unsigned long mmun_start = start;       /* For mmu_notifiers */
3367         unsigned long mmun_end   = end;         /* For mmu_notifiers */
3368
3369         WARN_ON(!is_vm_hugetlb_page(vma));
3370         BUG_ON(start & ~huge_page_mask(h));
3371         BUG_ON(end & ~huge_page_mask(h));
3372
3373         /*
3374          * This is a hugetlb vma, all the pte entries should point
3375          * to huge page.
3376          */
3377         tlb_remove_check_page_size_change(tlb, sz);
3378         tlb_start_vma(tlb, vma);
3379
3380         /*
3381          * If sharing possible, alert mmu notifiers of worst case.
3382          */
3383         adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3384         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3385         address = start;
3386         for (; address < end; address += sz) {
3387                 ptep = huge_pte_offset(mm, address, sz);
3388                 if (!ptep)
3389                         continue;
3390
3391                 ptl = huge_pte_lock(h, mm, ptep);
3392                 if (huge_pmd_unshare(mm, &address, ptep)) {
3393                         spin_unlock(ptl);
3394                         /*
3395                          * We just unmapped a page of PMDs by clearing a PUD.
3396                          * The caller's TLB flush range should cover this area.
3397                          */
3398                         continue;
3399                 }
3400
3401                 pte = huge_ptep_get(ptep);
3402                 if (huge_pte_none(pte)) {
3403                         spin_unlock(ptl);
3404                         continue;
3405                 }
3406
3407                 /*
3408                  * Migrating hugepage or HWPoisoned hugepage is already
3409                  * unmapped and its refcount is dropped, so just clear pte here.
3410                  */
3411                 if (unlikely(!pte_present(pte))) {
3412                         huge_pte_clear(mm, address, ptep, sz);
3413                         spin_unlock(ptl);
3414                         continue;
3415                 }
3416
3417                 page = pte_page(pte);
3418                 /*
3419                  * If a reference page is supplied, it is because a specific
3420                  * page is being unmapped, not a range. Ensure the page we
3421                  * are about to unmap is the actual page of interest.
3422                  */
3423                 if (ref_page) {
3424                         if (page != ref_page) {
3425                                 spin_unlock(ptl);
3426                                 continue;
3427                         }
3428                         /*
3429                          * Mark the VMA as having unmapped its page so that
3430                          * future faults in this VMA will fail rather than
3431                          * looking like data was lost
3432                          */
3433                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3434                 }
3435
3436                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3437                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3438                 if (huge_pte_dirty(pte))
3439                         set_page_dirty(page);
3440
3441                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3442                 page_remove_rmap(page, true);
3443
3444                 spin_unlock(ptl);
3445                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3446                 /*
3447                  * Bail out after unmapping reference page if supplied
3448                  */
3449                 if (ref_page)
3450                         break;
3451         }
3452         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3453         tlb_end_vma(tlb, vma);
3454 }
3455
3456 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3457                           struct vm_area_struct *vma, unsigned long start,
3458                           unsigned long end, struct page *ref_page)
3459 {
3460         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3461
3462         /*
3463          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3464          * test will fail on a vma being torn down, and not grab a page table
3465          * on its way out.  We're lucky that the flag has such an appropriate
3466          * name, and can in fact be safely cleared here. We could clear it
3467          * before the __unmap_hugepage_range above, but all that's necessary
3468          * is to clear it before releasing the i_mmap_rwsem. This works
3469          * because in the context this is called, the VMA is about to be
3470          * destroyed and the i_mmap_rwsem is held.
3471          */
3472         vma->vm_flags &= ~VM_MAYSHARE;
3473 }
3474
3475 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3476                           unsigned long end, struct page *ref_page)
3477 {
3478         struct mm_struct *mm;
3479         struct mmu_gather tlb;
3480         unsigned long tlb_start = start;
3481         unsigned long tlb_end = end;
3482
3483         /*
3484          * If shared PMDs were possibly used within this vma range, adjust
3485          * start/end for worst case tlb flushing.
3486          * Note that we can not be sure if PMDs are shared until we try to
3487          * unmap pages.  However, we want to make sure TLB flushing covers
3488          * the largest possible range.
3489          */
3490         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3491
3492         mm = vma->vm_mm;
3493
3494         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3495         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3496         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3497 }
3498
3499 /*
3500  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3501  * mappping it owns the reserve page for. The intention is to unmap the page
3502  * from other VMAs and let the children be SIGKILLed if they are faulting the
3503  * same region.
3504  */
3505 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3506                               struct page *page, unsigned long address)
3507 {
3508         struct hstate *h = hstate_vma(vma);
3509         struct vm_area_struct *iter_vma;
3510         struct address_space *mapping;
3511         pgoff_t pgoff;
3512
3513         /*
3514          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3515          * from page cache lookup which is in HPAGE_SIZE units.
3516          */
3517         address = address & huge_page_mask(h);
3518         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3519                         vma->vm_pgoff;
3520         mapping = vma->vm_file->f_mapping;
3521
3522         /*
3523          * Take the mapping lock for the duration of the table walk. As
3524          * this mapping should be shared between all the VMAs,
3525          * __unmap_hugepage_range() is called as the lock is already held
3526          */
3527         i_mmap_lock_write(mapping);
3528         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3529                 /* Do not unmap the current VMA */
3530                 if (iter_vma == vma)
3531                         continue;
3532
3533                 /*
3534                  * Shared VMAs have their own reserves and do not affect
3535                  * MAP_PRIVATE accounting but it is possible that a shared
3536                  * VMA is using the same page so check and skip such VMAs.
3537                  */
3538                 if (iter_vma->vm_flags & VM_MAYSHARE)
3539                         continue;
3540
3541                 /*
3542                  * Unmap the page from other VMAs without their own reserves.
3543                  * They get marked to be SIGKILLed if they fault in these
3544                  * areas. This is because a future no-page fault on this VMA
3545                  * could insert a zeroed page instead of the data existing
3546                  * from the time of fork. This would look like data corruption
3547                  */
3548                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3549                         unmap_hugepage_range(iter_vma, address,
3550                                              address + huge_page_size(h), page);
3551         }
3552         i_mmap_unlock_write(mapping);
3553 }
3554
3555 /*
3556  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3557  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3558  * cannot race with other handlers or page migration.
3559  * Keep the pte_same checks anyway to make transition from the mutex easier.
3560  */
3561 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3562                        unsigned long address, pte_t *ptep,
3563                        struct page *pagecache_page, spinlock_t *ptl)
3564 {
3565         pte_t pte;
3566         struct hstate *h = hstate_vma(vma);
3567         struct page *old_page, *new_page;
3568         int outside_reserve = 0;
3569         vm_fault_t ret = 0;
3570         unsigned long mmun_start;       /* For mmu_notifiers */
3571         unsigned long mmun_end;         /* For mmu_notifiers */
3572         unsigned long haddr = address & huge_page_mask(h);
3573
3574         pte = huge_ptep_get(ptep);
3575         old_page = pte_page(pte);
3576
3577 retry_avoidcopy:
3578         /* If no-one else is actually using this page, avoid the copy
3579          * and just make the page writable */
3580         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3581                 page_move_anon_rmap(old_page, vma);
3582                 set_huge_ptep_writable(vma, haddr, ptep);
3583                 return 0;
3584         }
3585
3586         /*
3587          * If the process that created a MAP_PRIVATE mapping is about to
3588          * perform a COW due to a shared page count, attempt to satisfy
3589          * the allocation without using the existing reserves. The pagecache
3590          * page is used to determine if the reserve at this address was
3591          * consumed or not. If reserves were used, a partial faulted mapping
3592          * at the time of fork() could consume its reserves on COW instead
3593          * of the full address range.
3594          */
3595         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3596                         old_page != pagecache_page)
3597                 outside_reserve = 1;
3598
3599         get_page(old_page);
3600
3601         /*
3602          * Drop page table lock as buddy allocator may be called. It will
3603          * be acquired again before returning to the caller, as expected.
3604          */
3605         spin_unlock(ptl);
3606         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3607
3608         if (IS_ERR(new_page)) {
3609                 /*
3610                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3611                  * it is due to references held by a child and an insufficient
3612                  * huge page pool. To guarantee the original mappers
3613                  * reliability, unmap the page from child processes. The child
3614                  * may get SIGKILLed if it later faults.
3615                  */
3616                 if (outside_reserve) {
3617                         put_page(old_page);
3618                         BUG_ON(huge_pte_none(pte));
3619                         unmap_ref_private(mm, vma, old_page, haddr);
3620                         BUG_ON(huge_pte_none(pte));
3621                         spin_lock(ptl);
3622                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3623                         if (likely(ptep &&
3624                                    pte_same(huge_ptep_get(ptep), pte)))
3625                                 goto retry_avoidcopy;
3626                         /*
3627                          * race occurs while re-acquiring page table
3628                          * lock, and our job is done.
3629                          */
3630                         return 0;
3631                 }
3632
3633                 ret = vmf_error(PTR_ERR(new_page));
3634                 goto out_release_old;
3635         }
3636
3637         /*
3638          * When the original hugepage is shared one, it does not have
3639          * anon_vma prepared.
3640          */
3641         if (unlikely(anon_vma_prepare(vma))) {
3642                 ret = VM_FAULT_OOM;
3643                 goto out_release_all;
3644         }
3645
3646         copy_user_huge_page(new_page, old_page, address, vma,
3647                             pages_per_huge_page(h));
3648         __SetPageUptodate(new_page);
3649
3650         mmun_start = haddr;
3651         mmun_end = mmun_start + huge_page_size(h);
3652         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3653
3654         /*
3655          * Retake the page table lock to check for racing updates
3656          * before the page tables are altered
3657          */
3658         spin_lock(ptl);
3659         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3660         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3661                 ClearPagePrivate(new_page);
3662
3663                 /* Break COW */
3664                 huge_ptep_clear_flush(vma, haddr, ptep);
3665                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3666                 set_huge_pte_at(mm, haddr, ptep,
3667                                 make_huge_pte(vma, new_page, 1));
3668                 page_remove_rmap(old_page, true);
3669                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3670                 set_page_huge_active(new_page);
3671                 /* Make the old page be freed below */
3672                 new_page = old_page;
3673         }
3674         spin_unlock(ptl);
3675         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3676 out_release_all:
3677         restore_reserve_on_error(h, vma, haddr, new_page);
3678         put_page(new_page);
3679 out_release_old:
3680         put_page(old_page);
3681
3682         spin_lock(ptl); /* Caller expects lock to be held */
3683         return ret;
3684 }
3685
3686 /* Return the pagecache page at a given address within a VMA */
3687 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3688                         struct vm_area_struct *vma, unsigned long address)
3689 {
3690         struct address_space *mapping;
3691         pgoff_t idx;
3692
3693         mapping = vma->vm_file->f_mapping;
3694         idx = vma_hugecache_offset(h, vma, address);
3695
3696         return find_lock_page(mapping, idx);
3697 }
3698
3699 /*
3700  * Return whether there is a pagecache page to back given address within VMA.
3701  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3702  */
3703 static bool hugetlbfs_pagecache_present(struct hstate *h,
3704                         struct vm_area_struct *vma, unsigned long address)
3705 {
3706         struct address_space *mapping;
3707         pgoff_t idx;
3708         struct page *page;
3709
3710         mapping = vma->vm_file->f_mapping;
3711         idx = vma_hugecache_offset(h, vma, address);
3712
3713         page = find_get_page(mapping, idx);
3714         if (page)
3715                 put_page(page);
3716         return page != NULL;
3717 }
3718
3719 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3720                            pgoff_t idx)
3721 {
3722         struct inode *inode = mapping->host;
3723         struct hstate *h = hstate_inode(inode);
3724         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3725
3726         if (err)
3727                 return err;
3728         ClearPagePrivate(page);
3729
3730         /*
3731          * set page dirty so that it will not be removed from cache/file
3732          * by non-hugetlbfs specific code paths.
3733          */
3734         set_page_dirty(page);
3735
3736         spin_lock(&inode->i_lock);
3737         inode->i_blocks += blocks_per_huge_page(h);
3738         spin_unlock(&inode->i_lock);
3739         return 0;
3740 }
3741
3742 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3743                         struct vm_area_struct *vma,
3744                         struct address_space *mapping, pgoff_t idx,
3745                         unsigned long address, pte_t *ptep, unsigned int flags)
3746 {
3747         struct hstate *h = hstate_vma(vma);
3748         vm_fault_t ret = VM_FAULT_SIGBUS;
3749         int anon_rmap = 0;
3750         unsigned long size;
3751         struct page *page;
3752         pte_t new_pte;
3753         spinlock_t *ptl;
3754         unsigned long haddr = address & huge_page_mask(h);
3755         bool new_page = false;
3756
3757         /*
3758          * Currently, we are forced to kill the process in the event the
3759          * original mapper has unmapped pages from the child due to a failed
3760          * COW. Warn that such a situation has occurred as it may not be obvious
3761          */
3762         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3763                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3764                            current->pid);
3765                 return ret;
3766         }
3767
3768         /*
3769          * Use page lock to guard against racing truncation
3770          * before we get page_table_lock.
3771          */
3772 retry:
3773         page = find_lock_page(mapping, idx);
3774         if (!page) {
3775                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3776                 if (idx >= size)
3777                         goto out;
3778
3779                 /*
3780                  * Check for page in userfault range
3781                  */
3782                 if (userfaultfd_missing(vma)) {
3783                         u32 hash;
3784                         struct vm_fault vmf = {
3785                                 .vma = vma,
3786                                 .address = haddr,
3787                                 .flags = flags,
3788                                 /*
3789                                  * Hard to debug if it ends up being
3790                                  * used by a callee that assumes
3791                                  * something about the other
3792                                  * uninitialized fields... same as in
3793                                  * memory.c
3794                                  */
3795                         };
3796
3797                         /*
3798                          * hugetlb_fault_mutex must be dropped before
3799                          * handling userfault.  Reacquire after handling
3800                          * fault to make calling code simpler.
3801                          */
3802                         hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3803                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3804                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3805                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3806                         goto out;
3807                 }
3808
3809                 page = alloc_huge_page(vma, haddr, 0);
3810                 if (IS_ERR(page)) {
3811                         ret = vmf_error(PTR_ERR(page));
3812                         goto out;
3813                 }
3814                 clear_huge_page(page, address, pages_per_huge_page(h));
3815                 __SetPageUptodate(page);
3816                 new_page = true;
3817
3818                 if (vma->vm_flags & VM_MAYSHARE) {
3819                         int err = huge_add_to_page_cache(page, mapping, idx);
3820                         if (err) {
3821                                 put_page(page);
3822                                 if (err == -EEXIST)
3823                                         goto retry;
3824                                 goto out;
3825                         }
3826                 } else {
3827                         lock_page(page);
3828                         if (unlikely(anon_vma_prepare(vma))) {
3829                                 ret = VM_FAULT_OOM;
3830                                 goto backout_unlocked;
3831                         }
3832                         anon_rmap = 1;
3833                 }
3834         } else {
3835                 /*
3836                  * If memory error occurs between mmap() and fault, some process
3837                  * don't have hwpoisoned swap entry for errored virtual address.
3838                  * So we need to block hugepage fault by PG_hwpoison bit check.
3839                  */
3840                 if (unlikely(PageHWPoison(page))) {
3841                         ret = VM_FAULT_HWPOISON |
3842                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3843                         goto backout_unlocked;
3844                 }
3845         }
3846
3847         /*
3848          * If we are going to COW a private mapping later, we examine the
3849          * pending reservations for this page now. This will ensure that
3850          * any allocations necessary to record that reservation occur outside
3851          * the spinlock.
3852          */
3853         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3854                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3855                         ret = VM_FAULT_OOM;
3856                         goto backout_unlocked;
3857                 }
3858                 /* Just decrements count, does not deallocate */
3859                 vma_end_reservation(h, vma, haddr);
3860         }
3861
3862         ptl = huge_pte_lock(h, mm, ptep);
3863         size = i_size_read(mapping->host) >> huge_page_shift(h);
3864         if (idx >= size)
3865                 goto backout;
3866
3867         ret = 0;
3868         if (!huge_pte_none(huge_ptep_get(ptep)))
3869                 goto backout;
3870
3871         if (anon_rmap) {
3872                 ClearPagePrivate(page);
3873                 hugepage_add_new_anon_rmap(page, vma, haddr);
3874         } else
3875                 page_dup_rmap(page, true);
3876         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3877                                 && (vma->vm_flags & VM_SHARED)));
3878         set_huge_pte_at(mm, haddr, ptep, new_pte);
3879
3880         hugetlb_count_add(pages_per_huge_page(h), mm);
3881         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3882                 /* Optimization, do the COW without a second fault */
3883                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3884         }
3885
3886         spin_unlock(ptl);
3887
3888         /*
3889          * Only make newly allocated pages active.  Existing pages found
3890          * in the pagecache could be !page_huge_active() if they have been
3891          * isolated for migration.
3892          */
3893         if (new_page)
3894                 set_page_huge_active(page);
3895
3896         unlock_page(page);
3897 out:
3898         return ret;
3899
3900 backout:
3901         spin_unlock(ptl);
3902 backout_unlocked:
3903         unlock_page(page);
3904         restore_reserve_on_error(h, vma, haddr, page);
3905         put_page(page);
3906         goto out;
3907 }
3908
3909 #ifdef CONFIG_SMP
3910 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3911                             pgoff_t idx, unsigned long address)
3912 {
3913         unsigned long key[2];
3914         u32 hash;
3915
3916         key[0] = (unsigned long) mapping;
3917         key[1] = idx;
3918
3919         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3920
3921         return hash & (num_fault_mutexes - 1);
3922 }
3923 #else
3924 /*
3925  * For uniprocesor systems we always use a single mutex, so just
3926  * return 0 and avoid the hashing overhead.
3927  */
3928 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3929                             pgoff_t idx, unsigned long address)
3930 {
3931         return 0;
3932 }
3933 #endif
3934
3935 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3936                         unsigned long address, unsigned int flags)
3937 {
3938         pte_t *ptep, entry;
3939         spinlock_t *ptl;
3940         vm_fault_t ret;
3941         u32 hash;
3942         pgoff_t idx;
3943         struct page *page = NULL;
3944         struct page *pagecache_page = NULL;
3945         struct hstate *h = hstate_vma(vma);
3946         struct address_space *mapping;
3947         int need_wait_lock = 0;
3948         unsigned long haddr = address & huge_page_mask(h);
3949
3950         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3951         if (ptep) {
3952                 entry = huge_ptep_get(ptep);
3953                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3954                         migration_entry_wait_huge(vma, mm, ptep);
3955                         return 0;
3956                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3957                         return VM_FAULT_HWPOISON_LARGE |
3958                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3959         } else {
3960                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3961                 if (!ptep)
3962                         return VM_FAULT_OOM;
3963         }
3964
3965         mapping = vma->vm_file->f_mapping;
3966         idx = vma_hugecache_offset(h, vma, haddr);
3967
3968         /*
3969          * Serialize hugepage allocation and instantiation, so that we don't
3970          * get spurious allocation failures if two CPUs race to instantiate
3971          * the same page in the page cache.
3972          */
3973         hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3974         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3975
3976         entry = huge_ptep_get(ptep);
3977         if (huge_pte_none(entry)) {
3978                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3979                 goto out_mutex;
3980         }
3981
3982         ret = 0;
3983
3984         /*
3985          * entry could be a migration/hwpoison entry at this point, so this
3986          * check prevents the kernel from going below assuming that we have
3987          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3988          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3989          * handle it.
3990          */
3991         if (!pte_present(entry))
3992                 goto out_mutex;
3993
3994         /*
3995          * If we are going to COW the mapping later, we examine the pending
3996          * reservations for this page now. This will ensure that any
3997          * allocations necessary to record that reservation occur outside the
3998          * spinlock. For private mappings, we also lookup the pagecache
3999          * page now as it is used to determine if a reservation has been
4000          * consumed.
4001          */
4002         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4003                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4004                         ret = VM_FAULT_OOM;
4005                         goto out_mutex;
4006                 }
4007                 /* Just decrements count, does not deallocate */
4008                 vma_end_reservation(h, vma, haddr);
4009
4010                 if (!(vma->vm_flags & VM_MAYSHARE))
4011                         pagecache_page = hugetlbfs_pagecache_page(h,
4012                                                                 vma, haddr);
4013         }
4014
4015         ptl = huge_pte_lock(h, mm, ptep);
4016
4017         /* Check for a racing update before calling hugetlb_cow */
4018         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4019                 goto out_ptl;
4020
4021         /*
4022          * hugetlb_cow() requires page locks of pte_page(entry) and
4023          * pagecache_page, so here we need take the former one
4024          * when page != pagecache_page or !pagecache_page.
4025          */
4026         page = pte_page(entry);
4027         if (page != pagecache_page)
4028                 if (!trylock_page(page)) {
4029                         need_wait_lock = 1;
4030                         goto out_ptl;
4031                 }
4032
4033         get_page(page);
4034
4035         if (flags & FAULT_FLAG_WRITE) {
4036                 if (!huge_pte_write(entry)) {
4037                         ret = hugetlb_cow(mm, vma, address, ptep,
4038                                           pagecache_page, ptl);
4039                         goto out_put_page;
4040                 }
4041                 entry = huge_pte_mkdirty(entry);
4042         }
4043         entry = pte_mkyoung(entry);
4044         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4045                                                 flags & FAULT_FLAG_WRITE))
4046                 update_mmu_cache(vma, haddr, ptep);
4047 out_put_page:
4048         if (page != pagecache_page)
4049                 unlock_page(page);
4050         put_page(page);
4051 out_ptl:
4052         spin_unlock(ptl);
4053
4054         if (pagecache_page) {
4055                 unlock_page(pagecache_page);
4056                 put_page(pagecache_page);
4057         }
4058 out_mutex:
4059         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4060         /*
4061          * Generally it's safe to hold refcount during waiting page lock. But
4062          * here we just wait to defer the next page fault to avoid busy loop and
4063          * the page is not used after unlocked before returning from the current
4064          * page fault. So we are safe from accessing freed page, even if we wait
4065          * here without taking refcount.
4066          */
4067         if (need_wait_lock)
4068                 wait_on_page_locked(page);
4069         return ret;
4070 }
4071
4072 /*
4073  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4074  * modifications for huge pages.
4075  */
4076 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4077                             pte_t *dst_pte,
4078                             struct vm_area_struct *dst_vma,
4079                             unsigned long dst_addr,
4080                             unsigned long src_addr,
4081                             struct page **pagep)
4082 {
4083         struct address_space *mapping;
4084         pgoff_t idx;
4085         unsigned long size;
4086         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4087         struct hstate *h = hstate_vma(dst_vma);
4088         pte_t _dst_pte;
4089         spinlock_t *ptl;
4090         int ret;
4091         struct page *page;
4092
4093         if (!*pagep) {
4094                 ret = -ENOMEM;
4095                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4096                 if (IS_ERR(page))
4097                         goto out;
4098
4099                 ret = copy_huge_page_from_user(page,
4100                                                 (const void __user *) src_addr,
4101                                                 pages_per_huge_page(h), false);
4102
4103                 /* fallback to copy_from_user outside mmap_sem */
4104                 if (unlikely(ret)) {
4105                         ret = -ENOENT;
4106                         *pagep = page;
4107                         /* don't free the page */
4108                         goto out;
4109                 }
4110         } else {
4111                 page = *pagep;
4112                 *pagep = NULL;
4113         }
4114
4115         /*
4116          * The memory barrier inside __SetPageUptodate makes sure that
4117          * preceding stores to the page contents become visible before
4118          * the set_pte_at() write.
4119          */
4120         __SetPageUptodate(page);
4121
4122         mapping = dst_vma->vm_file->f_mapping;
4123         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4124
4125         /*
4126          * If shared, add to page cache
4127          */
4128         if (vm_shared) {
4129                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4130                 ret = -EFAULT;
4131                 if (idx >= size)
4132                         goto out_release_nounlock;
4133
4134                 /*
4135                  * Serialization between remove_inode_hugepages() and
4136                  * huge_add_to_page_cache() below happens through the
4137                  * hugetlb_fault_mutex_table that here must be hold by
4138                  * the caller.
4139                  */
4140                 ret = huge_add_to_page_cache(page, mapping, idx);
4141                 if (ret)
4142                         goto out_release_nounlock;
4143         }
4144
4145         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4146         spin_lock(ptl);
4147
4148         /*
4149          * Recheck the i_size after holding PT lock to make sure not
4150          * to leave any page mapped (as page_mapped()) beyond the end
4151          * of the i_size (remove_inode_hugepages() is strict about
4152          * enforcing that). If we bail out here, we'll also leave a
4153          * page in the radix tree in the vm_shared case beyond the end
4154          * of the i_size, but remove_inode_hugepages() will take care
4155          * of it as soon as we drop the hugetlb_fault_mutex_table.
4156          */
4157         size = i_size_read(mapping->host) >> huge_page_shift(h);
4158         ret = -EFAULT;
4159         if (idx >= size)
4160                 goto out_release_unlock;
4161
4162         ret = -EEXIST;
4163         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4164                 goto out_release_unlock;
4165
4166         if (vm_shared) {
4167                 page_dup_rmap(page, true);
4168         } else {
4169                 ClearPagePrivate(page);
4170                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4171         }
4172
4173         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4174         if (dst_vma->vm_flags & VM_WRITE)
4175                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4176         _dst_pte = pte_mkyoung(_dst_pte);
4177
4178         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4179
4180         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4181                                         dst_vma->vm_flags & VM_WRITE);
4182         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4183
4184         /* No need to invalidate - it was non-present before */
4185         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4186
4187         spin_unlock(ptl);
4188         set_page_huge_active(page);
4189         if (vm_shared)
4190                 unlock_page(page);
4191         ret = 0;
4192 out:
4193         return ret;
4194 out_release_unlock:
4195         spin_unlock(ptl);
4196         if (vm_shared)
4197                 unlock_page(page);
4198 out_release_nounlock:
4199         put_page(page);
4200         goto out;
4201 }
4202
4203 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4204                          struct page **pages, struct vm_area_struct **vmas,
4205                          unsigned long *position, unsigned long *nr_pages,
4206                          long i, unsigned int flags, int *nonblocking)
4207 {
4208         unsigned long pfn_offset;
4209         unsigned long vaddr = *position;
4210         unsigned long remainder = *nr_pages;
4211         struct hstate *h = hstate_vma(vma);
4212         int err = -EFAULT;
4213
4214         while (vaddr < vma->vm_end && remainder) {
4215                 pte_t *pte;
4216                 spinlock_t *ptl = NULL;
4217                 int absent;
4218                 struct page *page;
4219
4220                 /*
4221                  * If we have a pending SIGKILL, don't keep faulting pages and
4222                  * potentially allocating memory.
4223                  */
4224                 if (unlikely(fatal_signal_pending(current))) {
4225                         remainder = 0;
4226                         break;
4227                 }
4228
4229                 /*
4230                  * Some archs (sparc64, sh*) have multiple pte_ts to
4231                  * each hugepage.  We have to make sure we get the
4232                  * first, for the page indexing below to work.
4233                  *
4234                  * Note that page table lock is not held when pte is null.
4235                  */
4236                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4237                                       huge_page_size(h));
4238                 if (pte)
4239                         ptl = huge_pte_lock(h, mm, pte);
4240                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4241
4242                 /*
4243                  * When coredumping, it suits get_dump_page if we just return
4244                  * an error where there's an empty slot with no huge pagecache
4245                  * to back it.  This way, we avoid allocating a hugepage, and
4246                  * the sparse dumpfile avoids allocating disk blocks, but its
4247                  * huge holes still show up with zeroes where they need to be.
4248                  */
4249                 if (absent && (flags & FOLL_DUMP) &&
4250                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4251                         if (pte)
4252                                 spin_unlock(ptl);
4253                         remainder = 0;
4254                         break;
4255                 }
4256
4257                 /*
4258                  * We need call hugetlb_fault for both hugepages under migration
4259                  * (in which case hugetlb_fault waits for the migration,) and
4260                  * hwpoisoned hugepages (in which case we need to prevent the
4261                  * caller from accessing to them.) In order to do this, we use
4262                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4263                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4264                  * both cases, and because we can't follow correct pages
4265                  * directly from any kind of swap entries.
4266                  */
4267                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4268                     ((flags & FOLL_WRITE) &&
4269                       !huge_pte_write(huge_ptep_get(pte)))) {
4270                         vm_fault_t ret;
4271                         unsigned int fault_flags = 0;
4272
4273                         if (pte)
4274                                 spin_unlock(ptl);
4275                         if (flags & FOLL_WRITE)
4276                                 fault_flags |= FAULT_FLAG_WRITE;
4277                         if (nonblocking)
4278                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4279                         if (flags & FOLL_NOWAIT)
4280                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4281                                         FAULT_FLAG_RETRY_NOWAIT;
4282                         if (flags & FOLL_TRIED) {
4283                                 VM_WARN_ON_ONCE(fault_flags &
4284                                                 FAULT_FLAG_ALLOW_RETRY);
4285                                 fault_flags |= FAULT_FLAG_TRIED;
4286                         }
4287                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4288                         if (ret & VM_FAULT_ERROR) {
4289                                 err = vm_fault_to_errno(ret, flags);
4290                                 remainder = 0;
4291                                 break;
4292                         }
4293                         if (ret & VM_FAULT_RETRY) {
4294                                 if (nonblocking &&
4295                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4296                                         *nonblocking = 0;
4297                                 *nr_pages = 0;
4298                                 /*
4299                                  * VM_FAULT_RETRY must not return an
4300                                  * error, it will return zero
4301                                  * instead.
4302                                  *
4303                                  * No need to update "position" as the
4304                                  * caller will not check it after
4305                                  * *nr_pages is set to 0.
4306                                  */
4307                                 return i;
4308                         }
4309                         continue;
4310                 }
4311
4312                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4313                 page = pte_page(huge_ptep_get(pte));
4314
4315                 /*
4316                  * Instead of doing 'try_get_page()' below in the same_page
4317                  * loop, just check the count once here.
4318                  */
4319                 if (unlikely(page_count(page) <= 0)) {
4320                         if (pages) {
4321                                 spin_unlock(ptl);
4322                                 remainder = 0;
4323                                 err = -ENOMEM;
4324                                 break;
4325                         }
4326                 }
4327 same_page:
4328                 if (pages) {
4329                         pages[i] = mem_map_offset(page, pfn_offset);
4330                         get_page(pages[i]);
4331                 }
4332
4333                 if (vmas)
4334                         vmas[i] = vma;
4335
4336                 vaddr += PAGE_SIZE;
4337                 ++pfn_offset;
4338                 --remainder;
4339                 ++i;
4340                 if (vaddr < vma->vm_end && remainder &&
4341                                 pfn_offset < pages_per_huge_page(h)) {
4342                         /*
4343                          * We use pfn_offset to avoid touching the pageframes
4344                          * of this compound page.
4345                          */
4346                         goto same_page;
4347                 }
4348                 spin_unlock(ptl);
4349         }
4350         *nr_pages = remainder;
4351         /*
4352          * setting position is actually required only if remainder is
4353          * not zero but it's faster not to add a "if (remainder)"
4354          * branch.
4355          */
4356         *position = vaddr;
4357
4358         return i ? i : err;
4359 }
4360
4361 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4362 /*
4363  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4364  * implement this.
4365  */
4366 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4367 #endif
4368
4369 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4370                 unsigned long address, unsigned long end, pgprot_t newprot)
4371 {
4372         struct mm_struct *mm = vma->vm_mm;
4373         unsigned long start = address;
4374         pte_t *ptep;
4375         pte_t pte;
4376         struct hstate *h = hstate_vma(vma);
4377         unsigned long pages = 0;
4378         unsigned long f_start = start;
4379         unsigned long f_end = end;
4380         bool shared_pmd = false;
4381
4382         /*
4383          * In the case of shared PMDs, the area to flush could be beyond
4384          * start/end.  Set f_start/f_end to cover the maximum possible
4385          * range if PMD sharing is possible.
4386          */
4387         adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4388
4389         BUG_ON(address >= end);
4390         flush_cache_range(vma, f_start, f_end);
4391
4392         mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4393         i_mmap_lock_write(vma->vm_file->f_mapping);
4394         for (; address < end; address += huge_page_size(h)) {
4395                 spinlock_t *ptl;
4396                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4397                 if (!ptep)
4398                         continue;
4399                 ptl = huge_pte_lock(h, mm, ptep);
4400                 if (huge_pmd_unshare(mm, &address, ptep)) {
4401                         pages++;
4402                         spin_unlock(ptl);
4403                         shared_pmd = true;
4404                         continue;
4405                 }
4406                 pte = huge_ptep_get(ptep);
4407                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4408                         spin_unlock(ptl);
4409                         continue;
4410                 }
4411                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4412                         swp_entry_t entry = pte_to_swp_entry(pte);
4413
4414                         if (is_write_migration_entry(entry)) {
4415                                 pte_t newpte;
4416
4417                                 make_migration_entry_read(&entry);
4418                                 newpte = swp_entry_to_pte(entry);
4419                                 set_huge_swap_pte_at(mm, address, ptep,
4420                                                      newpte, huge_page_size(h));
4421                                 pages++;
4422                         }
4423                         spin_unlock(ptl);
4424                         continue;
4425                 }
4426                 if (!huge_pte_none(pte)) {
4427                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4428                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4429                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4430                         set_huge_pte_at(mm, address, ptep, pte);
4431                         pages++;
4432                 }
4433                 spin_unlock(ptl);
4434         }
4435         /*
4436          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4437          * may have cleared our pud entry and done put_page on the page table:
4438          * once we release i_mmap_rwsem, another task can do the final put_page
4439          * and that page table be reused and filled with junk.  If we actually
4440          * did unshare a page of pmds, flush the range corresponding to the pud.
4441          */
4442         if (shared_pmd)
4443                 flush_hugetlb_tlb_range(vma, f_start, f_end);
4444         else
4445                 flush_hugetlb_tlb_range(vma, start, end);
4446         /*
4447          * No need to call mmu_notifier_invalidate_range() we are downgrading
4448          * page table protection not changing it to point to a new page.
4449          *
4450          * See Documentation/vm/mmu_notifier.rst
4451          */
4452         i_mmap_unlock_write(vma->vm_file->f_mapping);
4453         mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4454
4455         return pages << h->order;
4456 }
4457
4458 int hugetlb_reserve_pages(struct inode *inode,
4459                                         long from, long to,
4460                                         struct vm_area_struct *vma,
4461                                         vm_flags_t vm_flags)
4462 {
4463         long ret, chg;
4464         struct hstate *h = hstate_inode(inode);
4465         struct hugepage_subpool *spool = subpool_inode(inode);
4466         struct resv_map *resv_map;
4467         long gbl_reserve;
4468
4469         /* This should never happen */
4470         if (from > to) {
4471                 VM_WARN(1, "%s called with a negative range\n", __func__);
4472                 return -EINVAL;
4473         }
4474
4475         /*
4476          * Only apply hugepage reservation if asked. At fault time, an
4477          * attempt will be made for VM_NORESERVE to allocate a page
4478          * without using reserves
4479          */
4480         if (vm_flags & VM_NORESERVE)
4481                 return 0;
4482
4483         /*
4484          * Shared mappings base their reservation on the number of pages that
4485          * are already allocated on behalf of the file. Private mappings need
4486          * to reserve the full area even if read-only as mprotect() may be
4487          * called to make the mapping read-write. Assume !vma is a shm mapping
4488          */
4489         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4490                 resv_map = inode_resv_map(inode);
4491
4492                 chg = region_chg(resv_map, from, to);
4493
4494         } else {
4495                 resv_map = resv_map_alloc();
4496                 if (!resv_map)
4497                         return -ENOMEM;
4498
4499                 chg = to - from;
4500
4501                 set_vma_resv_map(vma, resv_map);
4502                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4503         }
4504
4505         if (chg < 0) {
4506                 ret = chg;
4507                 goto out_err;
4508         }
4509
4510         /*
4511          * There must be enough pages in the subpool for the mapping. If
4512          * the subpool has a minimum size, there may be some global
4513          * reservations already in place (gbl_reserve).
4514          */
4515         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4516         if (gbl_reserve < 0) {
4517                 ret = -ENOSPC;
4518                 goto out_err;
4519         }
4520
4521         /*
4522          * Check enough hugepages are available for the reservation.
4523          * Hand the pages back to the subpool if there are not
4524          */
4525         ret = hugetlb_acct_memory(h, gbl_reserve);
4526         if (ret < 0) {
4527                 /* put back original number of pages, chg */
4528                 (void)hugepage_subpool_put_pages(spool, chg);
4529                 goto out_err;
4530         }
4531
4532         /*
4533          * Account for the reservations made. Shared mappings record regions
4534          * that have reservations as they are shared by multiple VMAs.
4535          * When the last VMA disappears, the region map says how much
4536          * the reservation was and the page cache tells how much of
4537          * the reservation was consumed. Private mappings are per-VMA and
4538          * only the consumed reservations are tracked. When the VMA
4539          * disappears, the original reservation is the VMA size and the
4540          * consumed reservations are stored in the map. Hence, nothing
4541          * else has to be done for private mappings here
4542          */
4543         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4544                 long add = region_add(resv_map, from, to);
4545
4546                 if (unlikely(chg > add)) {
4547                         /*
4548                          * pages in this range were added to the reserve
4549                          * map between region_chg and region_add.  This
4550                          * indicates a race with alloc_huge_page.  Adjust
4551                          * the subpool and reserve counts modified above
4552                          * based on the difference.
4553                          */
4554                         long rsv_adjust;
4555
4556                         rsv_adjust = hugepage_subpool_put_pages(spool,
4557                                                                 chg - add);
4558                         hugetlb_acct_memory(h, -rsv_adjust);
4559                 }
4560         }
4561         return 0;
4562 out_err:
4563         if (!vma || vma->vm_flags & VM_MAYSHARE)
4564                 /* Don't call region_abort if region_chg failed */
4565                 if (chg >= 0)
4566                         region_abort(resv_map, from, to);
4567         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4568                 kref_put(&resv_map->refs, resv_map_release);
4569         return ret;
4570 }
4571
4572 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4573                                                                 long freed)
4574 {
4575         struct hstate *h = hstate_inode(inode);
4576         struct resv_map *resv_map = inode_resv_map(inode);
4577         long chg = 0;
4578         struct hugepage_subpool *spool = subpool_inode(inode);
4579         long gbl_reserve;
4580
4581         if (resv_map) {
4582                 chg = region_del(resv_map, start, end);
4583                 /*
4584                  * region_del() can fail in the rare case where a region
4585                  * must be split and another region descriptor can not be
4586                  * allocated.  If end == LONG_MAX, it will not fail.
4587                  */
4588                 if (chg < 0)
4589                         return chg;
4590         }
4591
4592         spin_lock(&inode->i_lock);
4593         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4594         spin_unlock(&inode->i_lock);
4595
4596         /*
4597          * If the subpool has a minimum size, the number of global
4598          * reservations to be released may be adjusted.
4599          */
4600         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4601         hugetlb_acct_memory(h, -gbl_reserve);
4602
4603         return 0;
4604 }
4605
4606 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4607 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4608                                 struct vm_area_struct *vma,
4609                                 unsigned long addr, pgoff_t idx)
4610 {
4611         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4612                                 svma->vm_start;
4613         unsigned long sbase = saddr & PUD_MASK;
4614         unsigned long s_end = sbase + PUD_SIZE;
4615
4616         /* Allow segments to share if only one is marked locked */
4617         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4618         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4619
4620         /*
4621          * match the virtual addresses, permission and the alignment of the
4622          * page table page.
4623          */
4624         if (pmd_index(addr) != pmd_index(saddr) ||
4625             vm_flags != svm_flags ||
4626             sbase < svma->vm_start || svma->vm_end < s_end)
4627                 return 0;
4628
4629         return saddr;
4630 }
4631
4632 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4633 {
4634         unsigned long base = addr & PUD_MASK;
4635         unsigned long end = base + PUD_SIZE;
4636
4637         /*
4638          * check on proper vm_flags and page table alignment
4639          */
4640         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4641                 return true;
4642         return false;
4643 }
4644
4645 /*
4646  * Determine if start,end range within vma could be mapped by shared pmd.
4647  * If yes, adjust start and end to cover range associated with possible
4648  * shared pmd mappings.
4649  */
4650 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4651                                 unsigned long *start, unsigned long *end)
4652 {
4653         unsigned long check_addr = *start;
4654
4655         if (!(vma->vm_flags & VM_MAYSHARE))
4656                 return;
4657
4658         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4659                 unsigned long a_start = check_addr & PUD_MASK;
4660                 unsigned long a_end = a_start + PUD_SIZE;
4661
4662                 /*
4663                  * If sharing is possible, adjust start/end if necessary.
4664                  */
4665                 if (range_in_vma(vma, a_start, a_end)) {
4666                         if (a_start < *start)
4667                                 *start = a_start;
4668                         if (a_end > *end)
4669                                 *end = a_end;
4670                 }
4671         }
4672 }
4673
4674 /*
4675  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4676  * and returns the corresponding pte. While this is not necessary for the
4677  * !shared pmd case because we can allocate the pmd later as well, it makes the
4678  * code much cleaner. pmd allocation is essential for the shared case because
4679  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4680  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4681  * bad pmd for sharing.
4682  */
4683 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4684 {
4685         struct vm_area_struct *vma = find_vma(mm, addr);
4686         struct address_space *mapping = vma->vm_file->f_mapping;
4687         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4688                         vma->vm_pgoff;
4689         struct vm_area_struct *svma;
4690         unsigned long saddr;
4691         pte_t *spte = NULL;
4692         pte_t *pte;
4693         spinlock_t *ptl;
4694
4695         if (!vma_shareable(vma, addr))
4696                 return (pte_t *)pmd_alloc(mm, pud, addr);
4697
4698         i_mmap_lock_write(mapping);
4699         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4700                 if (svma == vma)
4701                         continue;
4702
4703                 saddr = page_table_shareable(svma, vma, addr, idx);
4704                 if (saddr) {
4705                         spte = huge_pte_offset(svma->vm_mm, saddr,
4706                                                vma_mmu_pagesize(svma));
4707                         if (spte) {
4708                                 get_page(virt_to_page(spte));
4709                                 break;
4710                         }
4711                 }
4712         }
4713
4714         if (!spte)
4715                 goto out;
4716
4717         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4718         if (pud_none(*pud)) {
4719                 pud_populate(mm, pud,
4720                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4721                 mm_inc_nr_pmds(mm);
4722         } else {
4723                 put_page(virt_to_page(spte));
4724         }
4725         spin_unlock(ptl);
4726 out:
4727         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4728         i_mmap_unlock_write(mapping);
4729         return pte;
4730 }
4731
4732 /*
4733  * unmap huge page backed by shared pte.
4734  *
4735  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4736  * indicated by page_count > 1, unmap is achieved by clearing pud and
4737  * decrementing the ref count. If count == 1, the pte page is not shared.
4738  *
4739  * called with page table lock held.
4740  *
4741  * returns: 1 successfully unmapped a shared pte page
4742  *          0 the underlying pte page is not shared, or it is the last user
4743  */
4744 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4745 {
4746         pgd_t *pgd = pgd_offset(mm, *addr);
4747         p4d_t *p4d = p4d_offset(pgd, *addr);
4748         pud_t *pud = pud_offset(p4d, *addr);
4749
4750         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4751         if (page_count(virt_to_page(ptep)) == 1)
4752                 return 0;
4753
4754         pud_clear(pud);
4755         put_page(virt_to_page(ptep));
4756         mm_dec_nr_pmds(mm);
4757         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4758         return 1;
4759 }
4760 #define want_pmd_share()        (1)
4761 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4762 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4763 {
4764         return NULL;
4765 }
4766
4767 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4768 {
4769         return 0;
4770 }
4771
4772 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4773                                 unsigned long *start, unsigned long *end)
4774 {
4775 }
4776 #define want_pmd_share()        (0)
4777 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4778
4779 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4780 pte_t *huge_pte_alloc(struct mm_struct *mm,
4781                         unsigned long addr, unsigned long sz)
4782 {
4783         pgd_t *pgd;
4784         p4d_t *p4d;
4785         pud_t *pud;
4786         pte_t *pte = NULL;
4787
4788         pgd = pgd_offset(mm, addr);
4789         p4d = p4d_alloc(mm, pgd, addr);
4790         if (!p4d)
4791                 return NULL;
4792         pud = pud_alloc(mm, p4d, addr);
4793         if (pud) {
4794                 if (sz == PUD_SIZE) {
4795                         pte = (pte_t *)pud;
4796                 } else {
4797                         BUG_ON(sz != PMD_SIZE);
4798                         if (want_pmd_share() && pud_none(*pud))
4799                                 pte = huge_pmd_share(mm, addr, pud);
4800                         else
4801                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4802                 }
4803         }
4804         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4805
4806         return pte;
4807 }
4808
4809 /*
4810  * huge_pte_offset() - Walk the page table to resolve the hugepage
4811  * entry at address @addr
4812  *
4813  * Return: Pointer to page table or swap entry (PUD or PMD) for
4814  * address @addr, or NULL if a p*d_none() entry is encountered and the
4815  * size @sz doesn't match the hugepage size at this level of the page
4816  * table.
4817  */
4818 pte_t *huge_pte_offset(struct mm_struct *mm,
4819                        unsigned long addr, unsigned long sz)
4820 {
4821         pgd_t *pgd;
4822         p4d_t *p4d;
4823         pud_t *pud;
4824         pmd_t *pmd;
4825
4826         pgd = pgd_offset(mm, addr);
4827         if (!pgd_present(*pgd))
4828                 return NULL;
4829         p4d = p4d_offset(pgd, addr);
4830         if (!p4d_present(*p4d))
4831                 return NULL;
4832
4833         pud = pud_offset(p4d, addr);
4834         if (sz != PUD_SIZE && pud_none(*pud))
4835                 return NULL;
4836         /* hugepage or swap? */
4837         if (pud_huge(*pud) || !pud_present(*pud))
4838                 return (pte_t *)pud;
4839
4840         pmd = pmd_offset(pud, addr);
4841         if (sz != PMD_SIZE && pmd_none(*pmd))
4842                 return NULL;
4843         /* hugepage or swap? */
4844         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4845                 return (pte_t *)pmd;
4846
4847         return NULL;
4848 }
4849
4850 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4851
4852 /*
4853  * These functions are overwritable if your architecture needs its own
4854  * behavior.
4855  */
4856 struct page * __weak
4857 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4858                               int write)
4859 {
4860         return ERR_PTR(-EINVAL);
4861 }
4862
4863 struct page * __weak
4864 follow_huge_pd(struct vm_area_struct *vma,
4865                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4866 {
4867         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4868         return NULL;
4869 }
4870
4871 struct page * __weak
4872 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4873                 pmd_t *pmd, int flags)
4874 {
4875         struct page *page = NULL;
4876         spinlock_t *ptl;
4877         pte_t pte;
4878 retry:
4879         ptl = pmd_lockptr(mm, pmd);
4880         spin_lock(ptl);
4881         /*
4882          * make sure that the address range covered by this pmd is not
4883          * unmapped from other threads.
4884          */
4885         if (!pmd_huge(*pmd))
4886                 goto out;
4887         pte = huge_ptep_get((pte_t *)pmd);
4888         if (pte_present(pte)) {
4889                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4890                 if (flags & FOLL_GET)
4891                         get_page(page);
4892         } else {
4893                 if (is_hugetlb_entry_migration(pte)) {
4894                         spin_unlock(ptl);
4895                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4896                         goto retry;
4897                 }
4898                 /*
4899                  * hwpoisoned entry is treated as no_page_table in
4900                  * follow_page_mask().
4901                  */
4902         }
4903 out:
4904         spin_unlock(ptl);
4905         return page;
4906 }
4907
4908 struct page * __weak
4909 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4910                 pud_t *pud, int flags)
4911 {
4912         if (flags & FOLL_GET)
4913                 return NULL;
4914
4915         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4916 }
4917
4918 struct page * __weak
4919 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4920 {
4921         if (flags & FOLL_GET)
4922                 return NULL;
4923
4924         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4925 }
4926
4927 bool isolate_huge_page(struct page *page, struct list_head *list)
4928 {
4929         bool ret = true;
4930
4931         VM_BUG_ON_PAGE(!PageHead(page), page);
4932         spin_lock(&hugetlb_lock);
4933         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4934                 ret = false;
4935                 goto unlock;
4936         }
4937         clear_page_huge_active(page);
4938         list_move_tail(&page->lru, list);
4939 unlock:
4940         spin_unlock(&hugetlb_lock);
4941         return ret;
4942 }
4943
4944 void putback_active_hugepage(struct page *page)
4945 {
4946         VM_BUG_ON_PAGE(!PageHead(page), page);
4947         spin_lock(&hugetlb_lock);
4948         set_page_huge_active(page);
4949         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4950         spin_unlock(&hugetlb_lock);
4951         put_page(page);
4952 }
4953
4954 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4955 {
4956         struct hstate *h = page_hstate(oldpage);
4957
4958         hugetlb_cgroup_migrate(oldpage, newpage);
4959         set_page_owner_migrate_reason(newpage, reason);
4960
4961         /*
4962          * transfer temporary state of the new huge page. This is
4963          * reverse to other transitions because the newpage is going to
4964          * be final while the old one will be freed so it takes over
4965          * the temporary status.
4966          *
4967          * Also note that we have to transfer the per-node surplus state
4968          * here as well otherwise the global surplus count will not match
4969          * the per-node's.
4970          */
4971         if (PageHugeTemporary(newpage)) {
4972                 int old_nid = page_to_nid(oldpage);
4973                 int new_nid = page_to_nid(newpage);
4974
4975                 SetPageHugeTemporary(oldpage);
4976                 ClearPageHugeTemporary(newpage);
4977
4978                 spin_lock(&hugetlb_lock);
4979                 if (h->surplus_huge_pages_node[old_nid]) {
4980                         h->surplus_huge_pages_node[old_nid]--;
4981                         h->surplus_huge_pages_node[new_nid]++;
4982                 }
4983                 spin_unlock(&hugetlb_lock);
4984         }
4985 }