1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 struct hugepage_subpool *spool;
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 spin_lock_init(&spool->lock);
139 spool->max_hpages = max_hpages;
141 spool->min_hpages = min_hpages;
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 spool->rsv_hpages = min_hpages;
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
159 unlock_or_release_subpool(spool, flags);
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
178 spin_lock_irq(&spool->lock);
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
205 spin_unlock_irq(&spool->lock);
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
224 spin_lock_irqsave(&spool->lock, flags);
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
245 unlock_or_release_subpool(spool, flags);
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 return HUGETLBFS_SB(inode->i_sb)->spool;
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 return subpool_inode(file_inode(vma->vm_file));
261 * hugetlb vma_lock helper routines
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 down_read(&vma_lock->rw_sema);
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 up_read(&vma_lock->rw_sema);
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 down_write(&vma_lock->rw_sema);
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 up_write(&vma_lock->rw_sema);
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 if (!__vma_shareable_lock(vma))
306 return down_write_trylock(&vma_lock->rw_sema);
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 lockdep_assert_held(&vma_lock->rw_sema);
318 void hugetlb_vma_lock_release(struct kref *kref)
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 struct vm_area_struct *vma = vma_lock->vma;
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 __hugetlb_vma_unlock_write_put(vma_lock);
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
353 * Only present in sharable vmas.
355 if (!vma || !__vma_shareable_lock(vma))
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 struct hugetlb_vma_lock *vma_lock;
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
397 vma->vm_private_data = vma_lock;
400 /* Helper that removes a struct file_region from the resv_map cache and returns
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 struct file_region *nrg;
408 VM_BUG_ON(resv->region_cache_count <= 0);
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
423 #ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 struct resv_map *resv,
435 struct file_region *nrg)
437 #ifdef CONFIG_CGROUP_HUGETLB
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 nrg->reservation_counter = NULL;
466 static void put_uncharge_info(struct file_region *rg)
468 #ifdef CONFIG_CGROUP_HUGETLB
474 static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
477 #ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 struct file_region *nrg, *prg;
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
496 put_uncharge_info(rg);
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
508 put_uncharge_info(rg);
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
518 struct file_region *nrg;
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
526 *regions_needed += 1;
532 * Must be called with resv->lock held.
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
567 /* When we find a region that starts beyond our range, we've
570 if (iter->from >= t) {
571 rg = iter->link.prev;
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
584 last_accounted_offset = iter->to;
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601 static int allocate_file_region_entries(struct resv_map *resv,
603 __must_hold(&resv->lock)
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
609 VM_BUG_ON(regions_needed < 0);
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
636 list_add(&trg->link, &allocated_regions);
639 spin_lock(&resv->lock);
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
663 * regions_needed is the out value provided by a previous call to region_chg.
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
672 static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
676 long add = 0, actual_regions_needed = 0;
678 spin_lock(&resv->lock);
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
701 VM_BUG_ON(t - f <= 1);
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 resv->adds_in_progress -= in_regions_needed;
715 spin_unlock(&resv->lock);
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
739 static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
744 spin_lock(&resv->lock);
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
753 if (allocate_file_region_entries(resv, *out_regions_needed))
756 resv->adds_in_progress += *out_regions_needed;
758 spin_unlock(&resv->lock);
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
775 static void region_abort(struct resv_map *resv, long f, long t,
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
798 static long region_del(struct resv_map *resv, long f, long t)
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
821 if (f > rg->from && t < rg->to) { /* Must split region */
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
831 list_del(&nrg->link);
832 resv->region_cache_count--;
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
847 /* New entry for end of split region */
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 INIT_LIST_HEAD(&nrg->link);
855 /* Original entry is trimmed */
858 list_add(&nrg->link, &rg->link);
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
887 spin_unlock(&resv->lock);
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
901 void hugetlb_fix_reserve_counts(struct inode *inode)
903 struct hugepage_subpool *spool = subpool_inode(inode);
905 bool reserved = false;
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
911 if (!hugetlb_acct_memory(h, 1))
913 } else if (!rsv_adjust) {
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
925 static long region_count(struct resv_map *resv, long f, long t)
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
945 chg += seg_to - seg_from;
947 spin_unlock(&resv->lock);
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 return vma_kernel_pagesize(vma);
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
998 #define HPAGE_RESV_OWNER (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 return (unsigned long)vma->vm_private_data;
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1029 vma->vm_private_data = (void *)value;
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1037 #ifdef CONFIG_CGROUP_HUGETLB
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1051 struct resv_map *resv_map_alloc(void)
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 if (!resv_map || !rg) {
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1066 resv_map->adds_in_progress = 0;
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1082 void resv_map_release(struct kref *ref)
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1097 VM_BUG_ON(resv_map->adds_in_progress);
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1122 return inode_resv_map(inode);
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 return (get_vma_private_data(vma) & flag) != 0;
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1175 vma->vm_private_data = NULL;
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1199 struct resv_map *reservations = vma_resv_map(vma);
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1206 hugetlb_dup_vma_private(vma);
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 if (vma->vm_flags & VM_NORESERVE) {
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1244 * Only the process that called mmap() has reserves for
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 int nid = folio_nid(folio);
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1288 struct folio *folio;
1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 lockdep_assert_held(&hugetlb_lock);
1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 if (pin && !folio_is_longterm_pinnable(folio))
1296 if (folio_test_hwpoison(folio))
1299 list_move(&folio->lru, &h->hugepage_activelist);
1300 folio_ref_unfreeze(folio, 1);
1301 folio_clear_hugetlb_freed(folio);
1302 h->free_huge_pages--;
1303 h->free_huge_pages_node[nid]--;
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 int nid, nodemask_t *nmask)
1313 unsigned int cpuset_mems_cookie;
1314 struct zonelist *zonelist;
1317 int node = NUMA_NO_NODE;
1319 zonelist = node_zonelist(nid, gfp_mask);
1322 cpuset_mems_cookie = read_mems_allowed_begin();
1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 struct folio *folio;
1326 if (!cpuset_zone_allowed(zone, gfp_mask))
1329 * no need to ask again on the same node. Pool is node rather than
1332 if (zone_to_nid(zone) == node)
1334 node = zone_to_nid(zone);
1336 folio = dequeue_hugetlb_folio_node_exact(h, node);
1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 static unsigned long available_huge_pages(struct hstate *h)
1348 return h->free_huge_pages - h->resv_huge_pages;
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 struct vm_area_struct *vma,
1353 unsigned long address, int avoid_reserve,
1356 struct folio *folio = NULL;
1357 struct mempolicy *mpol;
1359 nodemask_t *nodemask;
1363 * A child process with MAP_PRIVATE mappings created by their parent
1364 * have no page reserves. This check ensures that reservations are
1365 * not "stolen". The child may still get SIGKILLed
1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1370 /* If reserves cannot be used, ensure enough pages are in the pool */
1371 if (avoid_reserve && !available_huge_pages(h))
1374 gfp_mask = htlb_alloc_mask(h);
1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 if (mpol_is_preferred_many(mpol)) {
1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1381 /* Fallback to all nodes if page==NULL */
1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 folio_set_hugetlb_restore_reserve(folio);
1391 h->resv_huge_pages--;
1394 mpol_cond_put(mpol);
1402 * common helper functions for hstate_next_node_to_{alloc|free}.
1403 * We may have allocated or freed a huge page based on a different
1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405 * be outside of *nodes_allowed. Ensure that we use an allowed
1406 * node for alloc or free.
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 nid = next_node_in(nid, *nodes_allowed);
1411 VM_BUG_ON(nid >= MAX_NUMNODES);
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 if (!node_isset(nid, *nodes_allowed))
1419 nid = next_node_allowed(nid, nodes_allowed);
1424 * returns the previously saved node ["this node"] from which to
1425 * allocate a persistent huge page for the pool and advance the
1426 * next node from which to allocate, handling wrap at end of node
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 nodemask_t *nodes_allowed)
1434 VM_BUG_ON(!nodes_allowed);
1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1443 * helper for remove_pool_huge_page() - return the previously saved
1444 * node ["this node"] from which to free a huge page. Advance the
1445 * next node id whether or not we find a free huge page to free so
1446 * that the next attempt to free addresses the next node.
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 VM_BUG_ON(!nodes_allowed);
1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1461 for (nr_nodes = nodes_weight(*mask); \
1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 unsigned int order, bool demote)
1477 int nr_pages = 1 << order;
1480 atomic_set(&folio->_entire_mapcount, 0);
1481 atomic_set(&folio->_nr_pages_mapped, 0);
1482 atomic_set(&folio->_pincount, 0);
1484 for (i = 1; i < nr_pages; i++) {
1485 p = folio_page(folio, i);
1487 clear_compound_head(p);
1489 set_page_refcounted(p);
1492 __folio_clear_head(folio);
1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1498 __destroy_compound_gigantic_folio(folio, order, true);
1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1502 static void destroy_compound_gigantic_folio(struct folio *folio,
1505 __destroy_compound_gigantic_folio(folio, order, false);
1508 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1511 * If the page isn't allocated using the cma allocator,
1512 * cma_release() returns false.
1515 int nid = folio_nid(folio);
1517 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1521 free_contig_range(folio_pfn(folio), 1 << order);
1524 #ifdef CONFIG_CONTIG_ALLOC
1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1526 int nid, nodemask_t *nodemask)
1529 unsigned long nr_pages = pages_per_huge_page(h);
1530 if (nid == NUMA_NO_NODE)
1531 nid = numa_mem_id();
1537 if (hugetlb_cma[nid]) {
1538 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1539 huge_page_order(h), true);
1541 return page_folio(page);
1544 if (!(gfp_mask & __GFP_THISNODE)) {
1545 for_each_node_mask(node, *nodemask) {
1546 if (node == nid || !hugetlb_cma[node])
1549 page = cma_alloc(hugetlb_cma[node], nr_pages,
1550 huge_page_order(h), true);
1552 return page_folio(page);
1558 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1559 return page ? page_folio(page) : NULL;
1562 #else /* !CONFIG_CONTIG_ALLOC */
1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1564 int nid, nodemask_t *nodemask)
1568 #endif /* CONFIG_CONTIG_ALLOC */
1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 int nid, nodemask_t *nodemask)
1576 static inline void free_gigantic_folio(struct folio *folio,
1577 unsigned int order) { }
1578 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1579 unsigned int order) { }
1582 static inline void __clear_hugetlb_destructor(struct hstate *h,
1583 struct folio *folio)
1585 lockdep_assert_held(&hugetlb_lock);
1590 * For non-gigantic pages set the destructor to the normal compound
1591 * page dtor. This is needed in case someone takes an additional
1592 * temporary ref to the page, and freeing is delayed until they drop
1595 * For gigantic pages set the destructor to the null dtor. This
1596 * destructor will never be called. Before freeing the gigantic
1597 * page destroy_compound_gigantic_folio will turn the folio into a
1598 * simple group of pages. After this the destructor does not
1602 if (hstate_is_gigantic(h))
1603 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1605 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1609 * Remove hugetlb folio from lists.
1610 * If vmemmap exists for the folio, update dtor so that the folio appears
1611 * as just a compound page. Otherwise, wait until after allocating vmemmap
1614 * A reference is held on the folio, except in the case of demote.
1616 * Must be called with hugetlb lock held.
1618 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1619 bool adjust_surplus,
1622 int nid = folio_nid(folio);
1624 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1625 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1627 lockdep_assert_held(&hugetlb_lock);
1628 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1631 list_del(&folio->lru);
1633 if (folio_test_hugetlb_freed(folio)) {
1634 h->free_huge_pages--;
1635 h->free_huge_pages_node[nid]--;
1637 if (adjust_surplus) {
1638 h->surplus_huge_pages--;
1639 h->surplus_huge_pages_node[nid]--;
1643 * We can only clear the hugetlb destructor after allocating vmemmap
1644 * pages. Otherwise, someone (memory error handling) may try to write
1645 * to tail struct pages.
1647 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1648 __clear_hugetlb_destructor(h, folio);
1651 * In the case of demote we do not ref count the page as it will soon
1652 * be turned into a page of smaller size.
1655 folio_ref_unfreeze(folio, 1);
1658 h->nr_huge_pages_node[nid]--;
1661 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1662 bool adjust_surplus)
1664 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1667 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1668 bool adjust_surplus)
1670 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1673 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1674 bool adjust_surplus)
1677 int nid = folio_nid(folio);
1679 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1681 lockdep_assert_held(&hugetlb_lock);
1683 INIT_LIST_HEAD(&folio->lru);
1685 h->nr_huge_pages_node[nid]++;
1687 if (adjust_surplus) {
1688 h->surplus_huge_pages++;
1689 h->surplus_huge_pages_node[nid]++;
1692 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1693 folio_change_private(folio, NULL);
1695 * We have to set hugetlb_vmemmap_optimized again as above
1696 * folio_change_private(folio, NULL) cleared it.
1698 folio_set_hugetlb_vmemmap_optimized(folio);
1701 * This folio is about to be managed by the hugetlb allocator and
1702 * should have no users. Drop our reference, and check for others
1705 zeroed = folio_put_testzero(folio);
1706 if (unlikely(!zeroed))
1708 * It is VERY unlikely soneone else has taken a ref on
1709 * the page. In this case, we simply return as the
1710 * hugetlb destructor (free_huge_page) will be called
1711 * when this other ref is dropped.
1715 arch_clear_hugepage_flags(&folio->page);
1716 enqueue_hugetlb_folio(h, folio);
1719 static void __update_and_free_hugetlb_folio(struct hstate *h,
1720 struct folio *folio)
1723 struct page *subpage;
1724 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1726 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1730 * If we don't know which subpages are hwpoisoned, we can't free
1731 * the hugepage, so it's leaked intentionally.
1733 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1736 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1737 spin_lock_irq(&hugetlb_lock);
1739 * If we cannot allocate vmemmap pages, just refuse to free the
1740 * page and put the page back on the hugetlb free list and treat
1741 * as a surplus page.
1743 add_hugetlb_folio(h, folio, true);
1744 spin_unlock_irq(&hugetlb_lock);
1749 * Move PageHWPoison flag from head page to the raw error pages,
1750 * which makes any healthy subpages reusable.
1752 if (unlikely(folio_test_hwpoison(folio)))
1753 folio_clear_hugetlb_hwpoison(folio);
1756 * If vmemmap pages were allocated above, then we need to clear the
1757 * hugetlb destructor under the hugetlb lock.
1760 spin_lock_irq(&hugetlb_lock);
1761 __clear_hugetlb_destructor(h, folio);
1762 spin_unlock_irq(&hugetlb_lock);
1765 for (i = 0; i < pages_per_huge_page(h); i++) {
1766 subpage = folio_page(folio, i);
1767 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1768 1 << PG_referenced | 1 << PG_dirty |
1769 1 << PG_active | 1 << PG_private |
1774 * Non-gigantic pages demoted from CMA allocated gigantic pages
1775 * need to be given back to CMA in free_gigantic_folio.
1777 if (hstate_is_gigantic(h) ||
1778 hugetlb_cma_folio(folio, huge_page_order(h))) {
1779 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1780 free_gigantic_folio(folio, huge_page_order(h));
1782 __free_pages(&folio->page, huge_page_order(h));
1787 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1788 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1789 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1790 * the vmemmap pages.
1792 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1793 * freed and frees them one-by-one. As the page->mapping pointer is going
1794 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1795 * structure of a lockless linked list of huge pages to be freed.
1797 static LLIST_HEAD(hpage_freelist);
1799 static void free_hpage_workfn(struct work_struct *work)
1801 struct llist_node *node;
1803 node = llist_del_all(&hpage_freelist);
1809 page = container_of((struct address_space **)node,
1810 struct page, mapping);
1812 page->mapping = NULL;
1814 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1815 * is going to trigger because a previous call to
1816 * remove_hugetlb_folio() will call folio_set_compound_dtor
1817 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1820 h = size_to_hstate(page_size(page));
1822 __update_and_free_hugetlb_folio(h, page_folio(page));
1827 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1829 static inline void flush_free_hpage_work(struct hstate *h)
1831 if (hugetlb_vmemmap_optimizable(h))
1832 flush_work(&free_hpage_work);
1835 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1838 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1839 __update_and_free_hugetlb_folio(h, folio);
1844 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1846 * Only call schedule_work() if hpage_freelist is previously
1847 * empty. Otherwise, schedule_work() had been called but the workfn
1848 * hasn't retrieved the list yet.
1850 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1851 schedule_work(&free_hpage_work);
1854 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1856 struct page *page, *t_page;
1857 struct folio *folio;
1859 list_for_each_entry_safe(page, t_page, list, lru) {
1860 folio = page_folio(page);
1861 update_and_free_hugetlb_folio(h, folio, false);
1866 struct hstate *size_to_hstate(unsigned long size)
1870 for_each_hstate(h) {
1871 if (huge_page_size(h) == size)
1877 void free_huge_page(struct page *page)
1880 * Can't pass hstate in here because it is called from the
1881 * compound page destructor.
1883 struct folio *folio = page_folio(page);
1884 struct hstate *h = folio_hstate(folio);
1885 int nid = folio_nid(folio);
1886 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1887 bool restore_reserve;
1888 unsigned long flags;
1890 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1891 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1893 hugetlb_set_folio_subpool(folio, NULL);
1894 if (folio_test_anon(folio))
1895 __ClearPageAnonExclusive(&folio->page);
1896 folio->mapping = NULL;
1897 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1898 folio_clear_hugetlb_restore_reserve(folio);
1901 * If HPageRestoreReserve was set on page, page allocation consumed a
1902 * reservation. If the page was associated with a subpool, there
1903 * would have been a page reserved in the subpool before allocation
1904 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1905 * reservation, do not call hugepage_subpool_put_pages() as this will
1906 * remove the reserved page from the subpool.
1908 if (!restore_reserve) {
1910 * A return code of zero implies that the subpool will be
1911 * under its minimum size if the reservation is not restored
1912 * after page is free. Therefore, force restore_reserve
1915 if (hugepage_subpool_put_pages(spool, 1) == 0)
1916 restore_reserve = true;
1919 spin_lock_irqsave(&hugetlb_lock, flags);
1920 folio_clear_hugetlb_migratable(folio);
1921 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1922 pages_per_huge_page(h), folio);
1923 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1924 pages_per_huge_page(h), folio);
1925 if (restore_reserve)
1926 h->resv_huge_pages++;
1928 if (folio_test_hugetlb_temporary(folio)) {
1929 remove_hugetlb_folio(h, folio, false);
1930 spin_unlock_irqrestore(&hugetlb_lock, flags);
1931 update_and_free_hugetlb_folio(h, folio, true);
1932 } else if (h->surplus_huge_pages_node[nid]) {
1933 /* remove the page from active list */
1934 remove_hugetlb_folio(h, folio, true);
1935 spin_unlock_irqrestore(&hugetlb_lock, flags);
1936 update_and_free_hugetlb_folio(h, folio, true);
1938 arch_clear_hugepage_flags(page);
1939 enqueue_hugetlb_folio(h, folio);
1940 spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 * Must be called with the hugetlb lock held
1947 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1949 lockdep_assert_held(&hugetlb_lock);
1951 h->nr_huge_pages_node[nid]++;
1954 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1956 hugetlb_vmemmap_optimize(h, &folio->page);
1957 INIT_LIST_HEAD(&folio->lru);
1958 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1959 hugetlb_set_folio_subpool(folio, NULL);
1960 set_hugetlb_cgroup(folio, NULL);
1961 set_hugetlb_cgroup_rsvd(folio, NULL);
1964 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1966 __prep_new_hugetlb_folio(h, folio);
1967 spin_lock_irq(&hugetlb_lock);
1968 __prep_account_new_huge_page(h, nid);
1969 spin_unlock_irq(&hugetlb_lock);
1972 static bool __prep_compound_gigantic_folio(struct folio *folio,
1973 unsigned int order, bool demote)
1976 int nr_pages = 1 << order;
1979 __folio_clear_reserved(folio);
1980 for (i = 0; i < nr_pages; i++) {
1981 p = folio_page(folio, i);
1984 * For gigantic hugepages allocated through bootmem at
1985 * boot, it's safer to be consistent with the not-gigantic
1986 * hugepages and clear the PG_reserved bit from all tail pages
1987 * too. Otherwise drivers using get_user_pages() to access tail
1988 * pages may get the reference counting wrong if they see
1989 * PG_reserved set on a tail page (despite the head page not
1990 * having PG_reserved set). Enforcing this consistency between
1991 * head and tail pages allows drivers to optimize away a check
1992 * on the head page when they need know if put_page() is needed
1993 * after get_user_pages().
1995 if (i != 0) /* head page cleared above */
1996 __ClearPageReserved(p);
1998 * Subtle and very unlikely
2000 * Gigantic 'page allocators' such as memblock or cma will
2001 * return a set of pages with each page ref counted. We need
2002 * to turn this set of pages into a compound page with tail
2003 * page ref counts set to zero. Code such as speculative page
2004 * cache adding could take a ref on a 'to be' tail page.
2005 * We need to respect any increased ref count, and only set
2006 * the ref count to zero if count is currently 1. If count
2007 * is not 1, we return an error. An error return indicates
2008 * the set of pages can not be converted to a gigantic page.
2009 * The caller who allocated the pages should then discard the
2010 * pages using the appropriate free interface.
2012 * In the case of demote, the ref count will be zero.
2015 if (!page_ref_freeze(p, 1)) {
2016 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2020 VM_BUG_ON_PAGE(page_count(p), p);
2023 set_compound_head(p, &folio->page);
2025 __folio_set_head(folio);
2026 /* we rely on prep_new_hugetlb_folio to set the destructor */
2027 folio_set_order(folio, order);
2028 atomic_set(&folio->_entire_mapcount, -1);
2029 atomic_set(&folio->_nr_pages_mapped, 0);
2030 atomic_set(&folio->_pincount, 0);
2034 /* undo page modifications made above */
2035 for (j = 0; j < i; j++) {
2036 p = folio_page(folio, j);
2038 clear_compound_head(p);
2039 set_page_refcounted(p);
2041 /* need to clear PG_reserved on remaining tail pages */
2042 for (; j < nr_pages; j++) {
2043 p = folio_page(folio, j);
2044 __ClearPageReserved(p);
2049 static bool prep_compound_gigantic_folio(struct folio *folio,
2052 return __prep_compound_gigantic_folio(folio, order, false);
2055 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2058 return __prep_compound_gigantic_folio(folio, order, true);
2062 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2063 * transparent huge pages. See the PageTransHuge() documentation for more
2066 int PageHuge(struct page *page)
2068 struct folio *folio;
2070 if (!PageCompound(page))
2072 folio = page_folio(page);
2073 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2075 EXPORT_SYMBOL_GPL(PageHuge);
2078 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2079 * @folio: The folio to test.
2081 * Context: Any context. Caller should have a reference on the folio to
2082 * prevent it from being turned into a tail page.
2083 * Return: True for hugetlbfs folios, false for anon folios or folios
2084 * belonging to other filesystems.
2086 bool folio_test_hugetlb(struct folio *folio)
2088 if (!folio_test_large(folio))
2091 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2093 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2096 * Find and lock address space (mapping) in write mode.
2098 * Upon entry, the page is locked which means that page_mapping() is
2099 * stable. Due to locking order, we can only trylock_write. If we can
2100 * not get the lock, simply return NULL to caller.
2102 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2104 struct address_space *mapping = page_mapping(hpage);
2109 if (i_mmap_trylock_write(mapping))
2115 pgoff_t hugetlb_basepage_index(struct page *page)
2117 struct page *page_head = compound_head(page);
2118 pgoff_t index = page_index(page_head);
2119 unsigned long compound_idx;
2121 if (compound_order(page_head) > MAX_ORDER)
2122 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2124 compound_idx = page - page_head;
2126 return (index << compound_order(page_head)) + compound_idx;
2129 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2130 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2131 nodemask_t *node_alloc_noretry)
2133 int order = huge_page_order(h);
2135 bool alloc_try_hard = true;
2139 * By default we always try hard to allocate the page with
2140 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2141 * a loop (to adjust global huge page counts) and previous allocation
2142 * failed, do not continue to try hard on the same node. Use the
2143 * node_alloc_noretry bitmap to manage this state information.
2145 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2146 alloc_try_hard = false;
2147 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2149 gfp_mask |= __GFP_RETRY_MAYFAIL;
2150 if (nid == NUMA_NO_NODE)
2151 nid = numa_mem_id();
2153 page = __alloc_pages(gfp_mask, order, nid, nmask);
2155 /* Freeze head page */
2156 if (page && !page_ref_freeze(page, 1)) {
2157 __free_pages(page, order);
2158 if (retry) { /* retry once */
2162 /* WOW! twice in a row. */
2163 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2168 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2169 * indicates an overall state change. Clear bit so that we resume
2170 * normal 'try hard' allocations.
2172 if (node_alloc_noretry && page && !alloc_try_hard)
2173 node_clear(nid, *node_alloc_noretry);
2176 * If we tried hard to get a page but failed, set bit so that
2177 * subsequent attempts will not try as hard until there is an
2178 * overall state change.
2180 if (node_alloc_noretry && !page && alloc_try_hard)
2181 node_set(nid, *node_alloc_noretry);
2184 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2188 __count_vm_event(HTLB_BUDDY_PGALLOC);
2189 return page_folio(page);
2193 * Common helper to allocate a fresh hugetlb page. All specific allocators
2194 * should use this function to get new hugetlb pages
2196 * Note that returned page is 'frozen': ref count of head page and all tail
2199 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2200 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2201 nodemask_t *node_alloc_noretry)
2203 struct folio *folio;
2207 if (hstate_is_gigantic(h))
2208 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2210 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2211 nid, nmask, node_alloc_noretry);
2214 if (hstate_is_gigantic(h)) {
2215 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2217 * Rare failure to convert pages to compound page.
2218 * Free pages and try again - ONCE!
2220 free_gigantic_folio(folio, huge_page_order(h));
2228 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2234 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2237 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2238 nodemask_t *node_alloc_noretry)
2240 struct folio *folio;
2242 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2244 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2245 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2246 nodes_allowed, node_alloc_noretry);
2248 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2257 * Remove huge page from pool from next node to free. Attempt to keep
2258 * persistent huge pages more or less balanced over allowed nodes.
2259 * This routine only 'removes' the hugetlb page. The caller must make
2260 * an additional call to free the page to low level allocators.
2261 * Called with hugetlb_lock locked.
2263 static struct page *remove_pool_huge_page(struct hstate *h,
2264 nodemask_t *nodes_allowed,
2268 struct page *page = NULL;
2269 struct folio *folio;
2271 lockdep_assert_held(&hugetlb_lock);
2272 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2274 * If we're returning unused surplus pages, only examine
2275 * nodes with surplus pages.
2277 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2278 !list_empty(&h->hugepage_freelists[node])) {
2279 page = list_entry(h->hugepage_freelists[node].next,
2281 folio = page_folio(page);
2282 remove_hugetlb_folio(h, folio, acct_surplus);
2291 * Dissolve a given free hugepage into free buddy pages. This function does
2292 * nothing for in-use hugepages and non-hugepages.
2293 * This function returns values like below:
2295 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2296 * when the system is under memory pressure and the feature of
2297 * freeing unused vmemmap pages associated with each hugetlb page
2299 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2300 * (allocated or reserved.)
2301 * 0: successfully dissolved free hugepages or the page is not a
2302 * hugepage (considered as already dissolved)
2304 int dissolve_free_huge_page(struct page *page)
2307 struct folio *folio = page_folio(page);
2310 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2311 if (!folio_test_hugetlb(folio))
2314 spin_lock_irq(&hugetlb_lock);
2315 if (!folio_test_hugetlb(folio)) {
2320 if (!folio_ref_count(folio)) {
2321 struct hstate *h = folio_hstate(folio);
2322 if (!available_huge_pages(h))
2326 * We should make sure that the page is already on the free list
2327 * when it is dissolved.
2329 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2330 spin_unlock_irq(&hugetlb_lock);
2334 * Theoretically, we should return -EBUSY when we
2335 * encounter this race. In fact, we have a chance
2336 * to successfully dissolve the page if we do a
2337 * retry. Because the race window is quite small.
2338 * If we seize this opportunity, it is an optimization
2339 * for increasing the success rate of dissolving page.
2344 remove_hugetlb_folio(h, folio, false);
2345 h->max_huge_pages--;
2346 spin_unlock_irq(&hugetlb_lock);
2349 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2350 * before freeing the page. update_and_free_hugtlb_folio will fail to
2351 * free the page if it can not allocate required vmemmap. We
2352 * need to adjust max_huge_pages if the page is not freed.
2353 * Attempt to allocate vmemmmap here so that we can take
2354 * appropriate action on failure.
2356 rc = hugetlb_vmemmap_restore(h, &folio->page);
2358 update_and_free_hugetlb_folio(h, folio, false);
2360 spin_lock_irq(&hugetlb_lock);
2361 add_hugetlb_folio(h, folio, false);
2362 h->max_huge_pages++;
2363 spin_unlock_irq(&hugetlb_lock);
2369 spin_unlock_irq(&hugetlb_lock);
2374 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2375 * make specified memory blocks removable from the system.
2376 * Note that this will dissolve a free gigantic hugepage completely, if any
2377 * part of it lies within the given range.
2378 * Also note that if dissolve_free_huge_page() returns with an error, all
2379 * free hugepages that were dissolved before that error are lost.
2381 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2389 if (!hugepages_supported())
2392 order = huge_page_order(&default_hstate);
2394 order = min(order, huge_page_order(h));
2396 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2397 page = pfn_to_page(pfn);
2398 rc = dissolve_free_huge_page(page);
2407 * Allocates a fresh surplus page from the page allocator.
2409 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2410 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2412 struct folio *folio = NULL;
2414 if (hstate_is_gigantic(h))
2417 spin_lock_irq(&hugetlb_lock);
2418 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2420 spin_unlock_irq(&hugetlb_lock);
2422 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2426 spin_lock_irq(&hugetlb_lock);
2428 * We could have raced with the pool size change.
2429 * Double check that and simply deallocate the new page
2430 * if we would end up overcommiting the surpluses. Abuse
2431 * temporary page to workaround the nasty free_huge_page
2434 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2435 folio_set_hugetlb_temporary(folio);
2436 spin_unlock_irq(&hugetlb_lock);
2437 free_huge_page(&folio->page);
2441 h->surplus_huge_pages++;
2442 h->surplus_huge_pages_node[folio_nid(folio)]++;
2445 spin_unlock_irq(&hugetlb_lock);
2450 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2451 int nid, nodemask_t *nmask)
2453 struct folio *folio;
2455 if (hstate_is_gigantic(h))
2458 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2462 /* fresh huge pages are frozen */
2463 folio_ref_unfreeze(folio, 1);
2465 * We do not account these pages as surplus because they are only
2466 * temporary and will be released properly on the last reference
2468 folio_set_hugetlb_temporary(folio);
2474 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2477 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2478 struct vm_area_struct *vma, unsigned long addr)
2480 struct folio *folio = NULL;
2481 struct mempolicy *mpol;
2482 gfp_t gfp_mask = htlb_alloc_mask(h);
2484 nodemask_t *nodemask;
2486 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2487 if (mpol_is_preferred_many(mpol)) {
2488 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2490 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2491 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2493 /* Fallback to all nodes if page==NULL */
2498 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2499 mpol_cond_put(mpol);
2503 /* folio migration callback function */
2504 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2505 nodemask_t *nmask, gfp_t gfp_mask)
2507 spin_lock_irq(&hugetlb_lock);
2508 if (available_huge_pages(h)) {
2509 struct folio *folio;
2511 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2512 preferred_nid, nmask);
2514 spin_unlock_irq(&hugetlb_lock);
2518 spin_unlock_irq(&hugetlb_lock);
2520 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2523 /* mempolicy aware migration callback */
2524 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2525 unsigned long address)
2527 struct mempolicy *mpol;
2528 nodemask_t *nodemask;
2529 struct folio *folio;
2533 gfp_mask = htlb_alloc_mask(h);
2534 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2535 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2536 mpol_cond_put(mpol);
2542 * Increase the hugetlb pool such that it can accommodate a reservation
2545 static int gather_surplus_pages(struct hstate *h, long delta)
2546 __must_hold(&hugetlb_lock)
2548 LIST_HEAD(surplus_list);
2549 struct folio *folio;
2550 struct page *page, *tmp;
2553 long needed, allocated;
2554 bool alloc_ok = true;
2556 lockdep_assert_held(&hugetlb_lock);
2557 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2559 h->resv_huge_pages += delta;
2567 spin_unlock_irq(&hugetlb_lock);
2568 for (i = 0; i < needed; i++) {
2569 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2570 NUMA_NO_NODE, NULL);
2575 list_add(&folio->lru, &surplus_list);
2581 * After retaking hugetlb_lock, we need to recalculate 'needed'
2582 * because either resv_huge_pages or free_huge_pages may have changed.
2584 spin_lock_irq(&hugetlb_lock);
2585 needed = (h->resv_huge_pages + delta) -
2586 (h->free_huge_pages + allocated);
2591 * We were not able to allocate enough pages to
2592 * satisfy the entire reservation so we free what
2593 * we've allocated so far.
2598 * The surplus_list now contains _at_least_ the number of extra pages
2599 * needed to accommodate the reservation. Add the appropriate number
2600 * of pages to the hugetlb pool and free the extras back to the buddy
2601 * allocator. Commit the entire reservation here to prevent another
2602 * process from stealing the pages as they are added to the pool but
2603 * before they are reserved.
2605 needed += allocated;
2606 h->resv_huge_pages += delta;
2609 /* Free the needed pages to the hugetlb pool */
2610 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2613 /* Add the page to the hugetlb allocator */
2614 enqueue_hugetlb_folio(h, page_folio(page));
2617 spin_unlock_irq(&hugetlb_lock);
2620 * Free unnecessary surplus pages to the buddy allocator.
2621 * Pages have no ref count, call free_huge_page directly.
2623 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2624 free_huge_page(page);
2625 spin_lock_irq(&hugetlb_lock);
2631 * This routine has two main purposes:
2632 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2633 * in unused_resv_pages. This corresponds to the prior adjustments made
2634 * to the associated reservation map.
2635 * 2) Free any unused surplus pages that may have been allocated to satisfy
2636 * the reservation. As many as unused_resv_pages may be freed.
2638 static void return_unused_surplus_pages(struct hstate *h,
2639 unsigned long unused_resv_pages)
2641 unsigned long nr_pages;
2643 LIST_HEAD(page_list);
2645 lockdep_assert_held(&hugetlb_lock);
2646 /* Uncommit the reservation */
2647 h->resv_huge_pages -= unused_resv_pages;
2649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2653 * Part (or even all) of the reservation could have been backed
2654 * by pre-allocated pages. Only free surplus pages.
2656 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2659 * We want to release as many surplus pages as possible, spread
2660 * evenly across all nodes with memory. Iterate across these nodes
2661 * until we can no longer free unreserved surplus pages. This occurs
2662 * when the nodes with surplus pages have no free pages.
2663 * remove_pool_huge_page() will balance the freed pages across the
2664 * on-line nodes with memory and will handle the hstate accounting.
2666 while (nr_pages--) {
2667 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2671 list_add(&page->lru, &page_list);
2675 spin_unlock_irq(&hugetlb_lock);
2676 update_and_free_pages_bulk(h, &page_list);
2677 spin_lock_irq(&hugetlb_lock);
2682 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2683 * are used by the huge page allocation routines to manage reservations.
2685 * vma_needs_reservation is called to determine if the huge page at addr
2686 * within the vma has an associated reservation. If a reservation is
2687 * needed, the value 1 is returned. The caller is then responsible for
2688 * managing the global reservation and subpool usage counts. After
2689 * the huge page has been allocated, vma_commit_reservation is called
2690 * to add the page to the reservation map. If the page allocation fails,
2691 * the reservation must be ended instead of committed. vma_end_reservation
2692 * is called in such cases.
2694 * In the normal case, vma_commit_reservation returns the same value
2695 * as the preceding vma_needs_reservation call. The only time this
2696 * is not the case is if a reserve map was changed between calls. It
2697 * is the responsibility of the caller to notice the difference and
2698 * take appropriate action.
2700 * vma_add_reservation is used in error paths where a reservation must
2701 * be restored when a newly allocated huge page must be freed. It is
2702 * to be called after calling vma_needs_reservation to determine if a
2703 * reservation exists.
2705 * vma_del_reservation is used in error paths where an entry in the reserve
2706 * map was created during huge page allocation and must be removed. It is to
2707 * be called after calling vma_needs_reservation to determine if a reservation
2710 enum vma_resv_mode {
2717 static long __vma_reservation_common(struct hstate *h,
2718 struct vm_area_struct *vma, unsigned long addr,
2719 enum vma_resv_mode mode)
2721 struct resv_map *resv;
2724 long dummy_out_regions_needed;
2726 resv = vma_resv_map(vma);
2730 idx = vma_hugecache_offset(h, vma, addr);
2732 case VMA_NEEDS_RESV:
2733 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2734 /* We assume that vma_reservation_* routines always operate on
2735 * 1 page, and that adding to resv map a 1 page entry can only
2736 * ever require 1 region.
2738 VM_BUG_ON(dummy_out_regions_needed != 1);
2740 case VMA_COMMIT_RESV:
2741 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742 /* region_add calls of range 1 should never fail. */
2746 region_abort(resv, idx, idx + 1, 1);
2750 if (vma->vm_flags & VM_MAYSHARE) {
2751 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2752 /* region_add calls of range 1 should never fail. */
2755 region_abort(resv, idx, idx + 1, 1);
2756 ret = region_del(resv, idx, idx + 1);
2760 if (vma->vm_flags & VM_MAYSHARE) {
2761 region_abort(resv, idx, idx + 1, 1);
2762 ret = region_del(resv, idx, idx + 1);
2764 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2765 /* region_add calls of range 1 should never fail. */
2773 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2776 * We know private mapping must have HPAGE_RESV_OWNER set.
2778 * In most cases, reserves always exist for private mappings.
2779 * However, a file associated with mapping could have been
2780 * hole punched or truncated after reserves were consumed.
2781 * As subsequent fault on such a range will not use reserves.
2782 * Subtle - The reserve map for private mappings has the
2783 * opposite meaning than that of shared mappings. If NO
2784 * entry is in the reserve map, it means a reservation exists.
2785 * If an entry exists in the reserve map, it means the
2786 * reservation has already been consumed. As a result, the
2787 * return value of this routine is the opposite of the
2788 * value returned from reserve map manipulation routines above.
2797 static long vma_needs_reservation(struct hstate *h,
2798 struct vm_area_struct *vma, unsigned long addr)
2800 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2803 static long vma_commit_reservation(struct hstate *h,
2804 struct vm_area_struct *vma, unsigned long addr)
2806 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2809 static void vma_end_reservation(struct hstate *h,
2810 struct vm_area_struct *vma, unsigned long addr)
2812 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2815 static long vma_add_reservation(struct hstate *h,
2816 struct vm_area_struct *vma, unsigned long addr)
2818 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2821 static long vma_del_reservation(struct hstate *h,
2822 struct vm_area_struct *vma, unsigned long addr)
2824 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2828 * This routine is called to restore reservation information on error paths.
2829 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2830 * and the hugetlb mutex should remain held when calling this routine.
2832 * It handles two specific cases:
2833 * 1) A reservation was in place and the folio consumed the reservation.
2834 * hugetlb_restore_reserve is set in the folio.
2835 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2836 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2838 * In case 1, free_huge_page later in the error path will increment the
2839 * global reserve count. But, free_huge_page does not have enough context
2840 * to adjust the reservation map. This case deals primarily with private
2841 * mappings. Adjust the reserve map here to be consistent with global
2842 * reserve count adjustments to be made by free_huge_page. Make sure the
2843 * reserve map indicates there is a reservation present.
2845 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2847 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2848 unsigned long address, struct folio *folio)
2850 long rc = vma_needs_reservation(h, vma, address);
2852 if (folio_test_hugetlb_restore_reserve(folio)) {
2853 if (unlikely(rc < 0))
2855 * Rare out of memory condition in reserve map
2856 * manipulation. Clear hugetlb_restore_reserve so
2857 * that global reserve count will not be incremented
2858 * by free_huge_page. This will make it appear
2859 * as though the reservation for this folio was
2860 * consumed. This may prevent the task from
2861 * faulting in the folio at a later time. This
2862 * is better than inconsistent global huge page
2863 * accounting of reserve counts.
2865 folio_clear_hugetlb_restore_reserve(folio);
2867 (void)vma_add_reservation(h, vma, address);
2869 vma_end_reservation(h, vma, address);
2873 * This indicates there is an entry in the reserve map
2874 * not added by alloc_hugetlb_folio. We know it was added
2875 * before the alloc_hugetlb_folio call, otherwise
2876 * hugetlb_restore_reserve would be set on the folio.
2877 * Remove the entry so that a subsequent allocation
2878 * does not consume a reservation.
2880 rc = vma_del_reservation(h, vma, address);
2883 * VERY rare out of memory condition. Since
2884 * we can not delete the entry, set
2885 * hugetlb_restore_reserve so that the reserve
2886 * count will be incremented when the folio
2887 * is freed. This reserve will be consumed
2888 * on a subsequent allocation.
2890 folio_set_hugetlb_restore_reserve(folio);
2891 } else if (rc < 0) {
2893 * Rare out of memory condition from
2894 * vma_needs_reservation call. Memory allocation is
2895 * only attempted if a new entry is needed. Therefore,
2896 * this implies there is not an entry in the
2899 * For shared mappings, no entry in the map indicates
2900 * no reservation. We are done.
2902 if (!(vma->vm_flags & VM_MAYSHARE))
2904 * For private mappings, no entry indicates
2905 * a reservation is present. Since we can
2906 * not add an entry, set hugetlb_restore_reserve
2907 * on the folio so reserve count will be
2908 * incremented when freed. This reserve will
2909 * be consumed on a subsequent allocation.
2911 folio_set_hugetlb_restore_reserve(folio);
2914 * No reservation present, do nothing
2916 vma_end_reservation(h, vma, address);
2921 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2923 * @h: struct hstate old page belongs to
2924 * @old_folio: Old folio to dissolve
2925 * @list: List to isolate the page in case we need to
2926 * Returns 0 on success, otherwise negated error.
2928 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2929 struct folio *old_folio, struct list_head *list)
2931 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2932 int nid = folio_nid(old_folio);
2933 struct folio *new_folio;
2937 * Before dissolving the folio, we need to allocate a new one for the
2938 * pool to remain stable. Here, we allocate the folio and 'prep' it
2939 * by doing everything but actually updating counters and adding to
2940 * the pool. This simplifies and let us do most of the processing
2943 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2946 __prep_new_hugetlb_folio(h, new_folio);
2949 spin_lock_irq(&hugetlb_lock);
2950 if (!folio_test_hugetlb(old_folio)) {
2952 * Freed from under us. Drop new_folio too.
2955 } else if (folio_ref_count(old_folio)) {
2959 * Someone has grabbed the folio, try to isolate it here.
2960 * Fail with -EBUSY if not possible.
2962 spin_unlock_irq(&hugetlb_lock);
2963 isolated = isolate_hugetlb(old_folio, list);
2964 ret = isolated ? 0 : -EBUSY;
2965 spin_lock_irq(&hugetlb_lock);
2967 } else if (!folio_test_hugetlb_freed(old_folio)) {
2969 * Folio's refcount is 0 but it has not been enqueued in the
2970 * freelist yet. Race window is small, so we can succeed here if
2973 spin_unlock_irq(&hugetlb_lock);
2978 * Ok, old_folio is still a genuine free hugepage. Remove it from
2979 * the freelist and decrease the counters. These will be
2980 * incremented again when calling __prep_account_new_huge_page()
2981 * and enqueue_hugetlb_folio() for new_folio. The counters will
2982 * remain stable since this happens under the lock.
2984 remove_hugetlb_folio(h, old_folio, false);
2987 * Ref count on new_folio is already zero as it was dropped
2988 * earlier. It can be directly added to the pool free list.
2990 __prep_account_new_huge_page(h, nid);
2991 enqueue_hugetlb_folio(h, new_folio);
2994 * Folio has been replaced, we can safely free the old one.
2996 spin_unlock_irq(&hugetlb_lock);
2997 update_and_free_hugetlb_folio(h, old_folio, false);
3003 spin_unlock_irq(&hugetlb_lock);
3004 /* Folio has a zero ref count, but needs a ref to be freed */
3005 folio_ref_unfreeze(new_folio, 1);
3006 update_and_free_hugetlb_folio(h, new_folio, false);
3011 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3014 struct folio *folio = page_folio(page);
3018 * The page might have been dissolved from under our feet, so make sure
3019 * to carefully check the state under the lock.
3020 * Return success when racing as if we dissolved the page ourselves.
3022 spin_lock_irq(&hugetlb_lock);
3023 if (folio_test_hugetlb(folio)) {
3024 h = folio_hstate(folio);
3026 spin_unlock_irq(&hugetlb_lock);
3029 spin_unlock_irq(&hugetlb_lock);
3032 * Fence off gigantic pages as there is a cyclic dependency between
3033 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3034 * of bailing out right away without further retrying.
3036 if (hstate_is_gigantic(h))
3039 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3041 else if (!folio_ref_count(folio))
3042 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3047 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3048 unsigned long addr, int avoid_reserve)
3050 struct hugepage_subpool *spool = subpool_vma(vma);
3051 struct hstate *h = hstate_vma(vma);
3052 struct folio *folio;
3053 long map_chg, map_commit;
3056 struct hugetlb_cgroup *h_cg = NULL;
3057 bool deferred_reserve;
3059 idx = hstate_index(h);
3061 * Examine the region/reserve map to determine if the process
3062 * has a reservation for the page to be allocated. A return
3063 * code of zero indicates a reservation exists (no change).
3065 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3067 return ERR_PTR(-ENOMEM);
3070 * Processes that did not create the mapping will have no
3071 * reserves as indicated by the region/reserve map. Check
3072 * that the allocation will not exceed the subpool limit.
3073 * Allocations for MAP_NORESERVE mappings also need to be
3074 * checked against any subpool limit.
3076 if (map_chg || avoid_reserve) {
3077 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3079 vma_end_reservation(h, vma, addr);
3080 return ERR_PTR(-ENOSPC);
3084 * Even though there was no reservation in the region/reserve
3085 * map, there could be reservations associated with the
3086 * subpool that can be used. This would be indicated if the
3087 * return value of hugepage_subpool_get_pages() is zero.
3088 * However, if avoid_reserve is specified we still avoid even
3089 * the subpool reservations.
3095 /* If this allocation is not consuming a reservation, charge it now.
3097 deferred_reserve = map_chg || avoid_reserve;
3098 if (deferred_reserve) {
3099 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3100 idx, pages_per_huge_page(h), &h_cg);
3102 goto out_subpool_put;
3105 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3107 goto out_uncharge_cgroup_reservation;
3109 spin_lock_irq(&hugetlb_lock);
3111 * glb_chg is passed to indicate whether or not a page must be taken
3112 * from the global free pool (global change). gbl_chg == 0 indicates
3113 * a reservation exists for the allocation.
3115 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3117 spin_unlock_irq(&hugetlb_lock);
3118 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3120 goto out_uncharge_cgroup;
3121 spin_lock_irq(&hugetlb_lock);
3122 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3123 folio_set_hugetlb_restore_reserve(folio);
3124 h->resv_huge_pages--;
3126 list_add(&folio->lru, &h->hugepage_activelist);
3127 folio_ref_unfreeze(folio, 1);
3131 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3132 /* If allocation is not consuming a reservation, also store the
3133 * hugetlb_cgroup pointer on the page.
3135 if (deferred_reserve) {
3136 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3140 spin_unlock_irq(&hugetlb_lock);
3142 hugetlb_set_folio_subpool(folio, spool);
3144 map_commit = vma_commit_reservation(h, vma, addr);
3145 if (unlikely(map_chg > map_commit)) {
3147 * The page was added to the reservation map between
3148 * vma_needs_reservation and vma_commit_reservation.
3149 * This indicates a race with hugetlb_reserve_pages.
3150 * Adjust for the subpool count incremented above AND
3151 * in hugetlb_reserve_pages for the same page. Also,
3152 * the reservation count added in hugetlb_reserve_pages
3153 * no longer applies.
3157 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3158 hugetlb_acct_memory(h, -rsv_adjust);
3159 if (deferred_reserve)
3160 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3161 pages_per_huge_page(h), folio);
3165 out_uncharge_cgroup:
3166 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3167 out_uncharge_cgroup_reservation:
3168 if (deferred_reserve)
3169 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3172 if (map_chg || avoid_reserve)
3173 hugepage_subpool_put_pages(spool, 1);
3174 vma_end_reservation(h, vma, addr);
3175 return ERR_PTR(-ENOSPC);
3178 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3179 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3180 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3182 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3185 /* do node specific alloc */
3186 if (nid != NUMA_NO_NODE) {
3187 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3188 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3193 /* allocate from next node when distributing huge pages */
3194 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3195 m = memblock_alloc_try_nid_raw(
3196 huge_page_size(h), huge_page_size(h),
3197 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3199 * Use the beginning of the huge page to store the
3200 * huge_bootmem_page struct (until gather_bootmem
3201 * puts them into the mem_map).
3209 /* Put them into a private list first because mem_map is not up yet */
3210 INIT_LIST_HEAD(&m->list);
3211 list_add(&m->list, &huge_boot_pages);
3217 * Put bootmem huge pages into the standard lists after mem_map is up.
3218 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3220 static void __init gather_bootmem_prealloc(void)
3222 struct huge_bootmem_page *m;
3224 list_for_each_entry(m, &huge_boot_pages, list) {
3225 struct page *page = virt_to_page(m);
3226 struct folio *folio = page_folio(page);
3227 struct hstate *h = m->hstate;
3229 VM_BUG_ON(!hstate_is_gigantic(h));
3230 WARN_ON(folio_ref_count(folio) != 1);
3231 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3232 WARN_ON(folio_test_reserved(folio));
3233 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3234 free_huge_page(page); /* add to the hugepage allocator */
3236 /* VERY unlikely inflated ref count on a tail page */
3237 free_gigantic_folio(folio, huge_page_order(h));
3241 * We need to restore the 'stolen' pages to totalram_pages
3242 * in order to fix confusing memory reports from free(1) and
3243 * other side-effects, like CommitLimit going negative.
3245 adjust_managed_page_count(page, pages_per_huge_page(h));
3249 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3254 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3255 if (hstate_is_gigantic(h)) {
3256 if (!alloc_bootmem_huge_page(h, nid))
3259 struct folio *folio;
3260 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3262 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3263 &node_states[N_MEMORY], NULL);
3266 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3270 if (i == h->max_huge_pages_node[nid])
3273 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3274 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3275 h->max_huge_pages_node[nid], buf, nid, i);
3276 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3277 h->max_huge_pages_node[nid] = i;
3280 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3283 nodemask_t *node_alloc_noretry;
3284 bool node_specific_alloc = false;
3286 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3287 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3288 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3292 /* do node specific alloc */
3293 for_each_online_node(i) {
3294 if (h->max_huge_pages_node[i] > 0) {
3295 hugetlb_hstate_alloc_pages_onenode(h, i);
3296 node_specific_alloc = true;
3300 if (node_specific_alloc)
3303 /* below will do all node balanced alloc */
3304 if (!hstate_is_gigantic(h)) {
3306 * Bit mask controlling how hard we retry per-node allocations.
3307 * Ignore errors as lower level routines can deal with
3308 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3309 * time, we are likely in bigger trouble.
3311 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3314 /* allocations done at boot time */
3315 node_alloc_noretry = NULL;
3318 /* bit mask controlling how hard we retry per-node allocations */
3319 if (node_alloc_noretry)
3320 nodes_clear(*node_alloc_noretry);
3322 for (i = 0; i < h->max_huge_pages; ++i) {
3323 if (hstate_is_gigantic(h)) {
3324 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3326 } else if (!alloc_pool_huge_page(h,
3327 &node_states[N_MEMORY],
3328 node_alloc_noretry))
3332 if (i < h->max_huge_pages) {
3335 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3336 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3337 h->max_huge_pages, buf, i);
3338 h->max_huge_pages = i;
3340 kfree(node_alloc_noretry);
3343 static void __init hugetlb_init_hstates(void)
3345 struct hstate *h, *h2;
3347 for_each_hstate(h) {
3348 /* oversize hugepages were init'ed in early boot */
3349 if (!hstate_is_gigantic(h))
3350 hugetlb_hstate_alloc_pages(h);
3353 * Set demote order for each hstate. Note that
3354 * h->demote_order is initially 0.
3355 * - We can not demote gigantic pages if runtime freeing
3356 * is not supported, so skip this.
3357 * - If CMA allocation is possible, we can not demote
3358 * HUGETLB_PAGE_ORDER or smaller size pages.
3360 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3362 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3364 for_each_hstate(h2) {
3367 if (h2->order < h->order &&
3368 h2->order > h->demote_order)
3369 h->demote_order = h2->order;
3374 static void __init report_hugepages(void)
3378 for_each_hstate(h) {
3381 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3382 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3383 buf, h->free_huge_pages);
3384 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3385 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3389 #ifdef CONFIG_HIGHMEM
3390 static void try_to_free_low(struct hstate *h, unsigned long count,
3391 nodemask_t *nodes_allowed)
3394 LIST_HEAD(page_list);
3396 lockdep_assert_held(&hugetlb_lock);
3397 if (hstate_is_gigantic(h))
3401 * Collect pages to be freed on a list, and free after dropping lock
3403 for_each_node_mask(i, *nodes_allowed) {
3404 struct page *page, *next;
3405 struct list_head *freel = &h->hugepage_freelists[i];
3406 list_for_each_entry_safe(page, next, freel, lru) {
3407 if (count >= h->nr_huge_pages)
3409 if (PageHighMem(page))
3411 remove_hugetlb_folio(h, page_folio(page), false);
3412 list_add(&page->lru, &page_list);
3417 spin_unlock_irq(&hugetlb_lock);
3418 update_and_free_pages_bulk(h, &page_list);
3419 spin_lock_irq(&hugetlb_lock);
3422 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3423 nodemask_t *nodes_allowed)
3429 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3430 * balanced by operating on them in a round-robin fashion.
3431 * Returns 1 if an adjustment was made.
3433 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3438 lockdep_assert_held(&hugetlb_lock);
3439 VM_BUG_ON(delta != -1 && delta != 1);
3442 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3443 if (h->surplus_huge_pages_node[node])
3447 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3448 if (h->surplus_huge_pages_node[node] <
3449 h->nr_huge_pages_node[node])
3456 h->surplus_huge_pages += delta;
3457 h->surplus_huge_pages_node[node] += delta;
3461 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3462 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3463 nodemask_t *nodes_allowed)
3465 unsigned long min_count, ret;
3467 LIST_HEAD(page_list);
3468 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3471 * Bit mask controlling how hard we retry per-node allocations.
3472 * If we can not allocate the bit mask, do not attempt to allocate
3473 * the requested huge pages.
3475 if (node_alloc_noretry)
3476 nodes_clear(*node_alloc_noretry);
3481 * resize_lock mutex prevents concurrent adjustments to number of
3482 * pages in hstate via the proc/sysfs interfaces.
3484 mutex_lock(&h->resize_lock);
3485 flush_free_hpage_work(h);
3486 spin_lock_irq(&hugetlb_lock);
3489 * Check for a node specific request.
3490 * Changing node specific huge page count may require a corresponding
3491 * change to the global count. In any case, the passed node mask
3492 * (nodes_allowed) will restrict alloc/free to the specified node.
3494 if (nid != NUMA_NO_NODE) {
3495 unsigned long old_count = count;
3497 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3499 * User may have specified a large count value which caused the
3500 * above calculation to overflow. In this case, they wanted
3501 * to allocate as many huge pages as possible. Set count to
3502 * largest possible value to align with their intention.
3504 if (count < old_count)
3509 * Gigantic pages runtime allocation depend on the capability for large
3510 * page range allocation.
3511 * If the system does not provide this feature, return an error when
3512 * the user tries to allocate gigantic pages but let the user free the
3513 * boottime allocated gigantic pages.
3515 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3516 if (count > persistent_huge_pages(h)) {
3517 spin_unlock_irq(&hugetlb_lock);
3518 mutex_unlock(&h->resize_lock);
3519 NODEMASK_FREE(node_alloc_noretry);
3522 /* Fall through to decrease pool */
3526 * Increase the pool size
3527 * First take pages out of surplus state. Then make up the
3528 * remaining difference by allocating fresh huge pages.
3530 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3531 * to convert a surplus huge page to a normal huge page. That is
3532 * not critical, though, it just means the overall size of the
3533 * pool might be one hugepage larger than it needs to be, but
3534 * within all the constraints specified by the sysctls.
3536 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3537 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3541 while (count > persistent_huge_pages(h)) {
3543 * If this allocation races such that we no longer need the
3544 * page, free_huge_page will handle it by freeing the page
3545 * and reducing the surplus.
3547 spin_unlock_irq(&hugetlb_lock);
3549 /* yield cpu to avoid soft lockup */
3552 ret = alloc_pool_huge_page(h, nodes_allowed,
3553 node_alloc_noretry);
3554 spin_lock_irq(&hugetlb_lock);
3558 /* Bail for signals. Probably ctrl-c from user */
3559 if (signal_pending(current))
3564 * Decrease the pool size
3565 * First return free pages to the buddy allocator (being careful
3566 * to keep enough around to satisfy reservations). Then place
3567 * pages into surplus state as needed so the pool will shrink
3568 * to the desired size as pages become free.
3570 * By placing pages into the surplus state independent of the
3571 * overcommit value, we are allowing the surplus pool size to
3572 * exceed overcommit. There are few sane options here. Since
3573 * alloc_surplus_hugetlb_folio() is checking the global counter,
3574 * though, we'll note that we're not allowed to exceed surplus
3575 * and won't grow the pool anywhere else. Not until one of the
3576 * sysctls are changed, or the surplus pages go out of use.
3578 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3579 min_count = max(count, min_count);
3580 try_to_free_low(h, min_count, nodes_allowed);
3583 * Collect pages to be removed on list without dropping lock
3585 while (min_count < persistent_huge_pages(h)) {
3586 page = remove_pool_huge_page(h, nodes_allowed, 0);
3590 list_add(&page->lru, &page_list);
3592 /* free the pages after dropping lock */
3593 spin_unlock_irq(&hugetlb_lock);
3594 update_and_free_pages_bulk(h, &page_list);
3595 flush_free_hpage_work(h);
3596 spin_lock_irq(&hugetlb_lock);
3598 while (count < persistent_huge_pages(h)) {
3599 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3603 h->max_huge_pages = persistent_huge_pages(h);
3604 spin_unlock_irq(&hugetlb_lock);
3605 mutex_unlock(&h->resize_lock);
3607 NODEMASK_FREE(node_alloc_noretry);
3612 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3614 int i, nid = folio_nid(folio);
3615 struct hstate *target_hstate;
3616 struct page *subpage;
3617 struct folio *inner_folio;
3620 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3622 remove_hugetlb_folio_for_demote(h, folio, false);
3623 spin_unlock_irq(&hugetlb_lock);
3625 rc = hugetlb_vmemmap_restore(h, &folio->page);
3627 /* Allocation of vmemmmap failed, we can not demote folio */
3628 spin_lock_irq(&hugetlb_lock);
3629 folio_ref_unfreeze(folio, 1);
3630 add_hugetlb_folio(h, folio, false);
3635 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3636 * sizes as it will not ref count folios.
3638 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3641 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3642 * Without the mutex, pages added to target hstate could be marked
3645 * Note that we already hold h->resize_lock. To prevent deadlock,
3646 * use the convention of always taking larger size hstate mutex first.
3648 mutex_lock(&target_hstate->resize_lock);
3649 for (i = 0; i < pages_per_huge_page(h);
3650 i += pages_per_huge_page(target_hstate)) {
3651 subpage = folio_page(folio, i);
3652 inner_folio = page_folio(subpage);
3653 if (hstate_is_gigantic(target_hstate))
3654 prep_compound_gigantic_folio_for_demote(inner_folio,
3655 target_hstate->order);
3657 prep_compound_page(subpage, target_hstate->order);
3658 folio_change_private(inner_folio, NULL);
3659 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3660 free_huge_page(subpage);
3662 mutex_unlock(&target_hstate->resize_lock);
3664 spin_lock_irq(&hugetlb_lock);
3667 * Not absolutely necessary, but for consistency update max_huge_pages
3668 * based on pool changes for the demoted page.
3670 h->max_huge_pages--;
3671 target_hstate->max_huge_pages +=
3672 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3677 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3678 __must_hold(&hugetlb_lock)
3681 struct folio *folio;
3683 lockdep_assert_held(&hugetlb_lock);
3685 /* We should never get here if no demote order */
3686 if (!h->demote_order) {
3687 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3688 return -EINVAL; /* internal error */
3691 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3692 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3693 if (folio_test_hwpoison(folio))
3695 return demote_free_hugetlb_folio(h, folio);
3700 * Only way to get here is if all pages on free lists are poisoned.
3701 * Return -EBUSY so that caller will not retry.
3706 #define HSTATE_ATTR_RO(_name) \
3707 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3709 #define HSTATE_ATTR_WO(_name) \
3710 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3712 #define HSTATE_ATTR(_name) \
3713 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3715 static struct kobject *hugepages_kobj;
3716 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3718 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3720 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3724 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3725 if (hstate_kobjs[i] == kobj) {
3727 *nidp = NUMA_NO_NODE;
3731 return kobj_to_node_hstate(kobj, nidp);
3734 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3735 struct kobj_attribute *attr, char *buf)
3738 unsigned long nr_huge_pages;
3741 h = kobj_to_hstate(kobj, &nid);
3742 if (nid == NUMA_NO_NODE)
3743 nr_huge_pages = h->nr_huge_pages;
3745 nr_huge_pages = h->nr_huge_pages_node[nid];
3747 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3750 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3751 struct hstate *h, int nid,
3752 unsigned long count, size_t len)
3755 nodemask_t nodes_allowed, *n_mask;
3757 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3760 if (nid == NUMA_NO_NODE) {
3762 * global hstate attribute
3764 if (!(obey_mempolicy &&
3765 init_nodemask_of_mempolicy(&nodes_allowed)))
3766 n_mask = &node_states[N_MEMORY];
3768 n_mask = &nodes_allowed;
3771 * Node specific request. count adjustment happens in
3772 * set_max_huge_pages() after acquiring hugetlb_lock.
3774 init_nodemask_of_node(&nodes_allowed, nid);
3775 n_mask = &nodes_allowed;
3778 err = set_max_huge_pages(h, count, nid, n_mask);
3780 return err ? err : len;
3783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3784 struct kobject *kobj, const char *buf,
3788 unsigned long count;
3792 err = kstrtoul(buf, 10, &count);
3796 h = kobj_to_hstate(kobj, &nid);
3797 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3800 static ssize_t nr_hugepages_show(struct kobject *kobj,
3801 struct kobj_attribute *attr, char *buf)
3803 return nr_hugepages_show_common(kobj, attr, buf);
3806 static ssize_t nr_hugepages_store(struct kobject *kobj,
3807 struct kobj_attribute *attr, const char *buf, size_t len)
3809 return nr_hugepages_store_common(false, kobj, buf, len);
3811 HSTATE_ATTR(nr_hugepages);
3816 * hstate attribute for optionally mempolicy-based constraint on persistent
3817 * huge page alloc/free.
3819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3820 struct kobj_attribute *attr,
3823 return nr_hugepages_show_common(kobj, attr, buf);
3826 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3827 struct kobj_attribute *attr, const char *buf, size_t len)
3829 return nr_hugepages_store_common(true, kobj, buf, len);
3831 HSTATE_ATTR(nr_hugepages_mempolicy);
3835 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3836 struct kobj_attribute *attr, char *buf)
3838 struct hstate *h = kobj_to_hstate(kobj, NULL);
3839 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3842 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3843 struct kobj_attribute *attr, const char *buf, size_t count)
3846 unsigned long input;
3847 struct hstate *h = kobj_to_hstate(kobj, NULL);
3849 if (hstate_is_gigantic(h))
3852 err = kstrtoul(buf, 10, &input);
3856 spin_lock_irq(&hugetlb_lock);
3857 h->nr_overcommit_huge_pages = input;
3858 spin_unlock_irq(&hugetlb_lock);
3862 HSTATE_ATTR(nr_overcommit_hugepages);
3864 static ssize_t free_hugepages_show(struct kobject *kobj,
3865 struct kobj_attribute *attr, char *buf)
3868 unsigned long free_huge_pages;
3871 h = kobj_to_hstate(kobj, &nid);
3872 if (nid == NUMA_NO_NODE)
3873 free_huge_pages = h->free_huge_pages;
3875 free_huge_pages = h->free_huge_pages_node[nid];
3877 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3879 HSTATE_ATTR_RO(free_hugepages);
3881 static ssize_t resv_hugepages_show(struct kobject *kobj,
3882 struct kobj_attribute *attr, char *buf)
3884 struct hstate *h = kobj_to_hstate(kobj, NULL);
3885 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3887 HSTATE_ATTR_RO(resv_hugepages);
3889 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3890 struct kobj_attribute *attr, char *buf)
3893 unsigned long surplus_huge_pages;
3896 h = kobj_to_hstate(kobj, &nid);
3897 if (nid == NUMA_NO_NODE)
3898 surplus_huge_pages = h->surplus_huge_pages;
3900 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3902 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3904 HSTATE_ATTR_RO(surplus_hugepages);
3906 static ssize_t demote_store(struct kobject *kobj,
3907 struct kobj_attribute *attr, const char *buf, size_t len)
3909 unsigned long nr_demote;
3910 unsigned long nr_available;
3911 nodemask_t nodes_allowed, *n_mask;
3916 err = kstrtoul(buf, 10, &nr_demote);
3919 h = kobj_to_hstate(kobj, &nid);
3921 if (nid != NUMA_NO_NODE) {
3922 init_nodemask_of_node(&nodes_allowed, nid);
3923 n_mask = &nodes_allowed;
3925 n_mask = &node_states[N_MEMORY];
3928 /* Synchronize with other sysfs operations modifying huge pages */
3929 mutex_lock(&h->resize_lock);
3930 spin_lock_irq(&hugetlb_lock);
3934 * Check for available pages to demote each time thorough the
3935 * loop as demote_pool_huge_page will drop hugetlb_lock.
3937 if (nid != NUMA_NO_NODE)
3938 nr_available = h->free_huge_pages_node[nid];
3940 nr_available = h->free_huge_pages;
3941 nr_available -= h->resv_huge_pages;
3945 err = demote_pool_huge_page(h, n_mask);
3952 spin_unlock_irq(&hugetlb_lock);
3953 mutex_unlock(&h->resize_lock);
3959 HSTATE_ATTR_WO(demote);
3961 static ssize_t demote_size_show(struct kobject *kobj,
3962 struct kobj_attribute *attr, char *buf)
3964 struct hstate *h = kobj_to_hstate(kobj, NULL);
3965 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3967 return sysfs_emit(buf, "%lukB\n", demote_size);
3970 static ssize_t demote_size_store(struct kobject *kobj,
3971 struct kobj_attribute *attr,
3972 const char *buf, size_t count)
3974 struct hstate *h, *demote_hstate;
3975 unsigned long demote_size;
3976 unsigned int demote_order;
3978 demote_size = (unsigned long)memparse(buf, NULL);
3980 demote_hstate = size_to_hstate(demote_size);
3983 demote_order = demote_hstate->order;
3984 if (demote_order < HUGETLB_PAGE_ORDER)
3987 /* demote order must be smaller than hstate order */
3988 h = kobj_to_hstate(kobj, NULL);
3989 if (demote_order >= h->order)
3992 /* resize_lock synchronizes access to demote size and writes */
3993 mutex_lock(&h->resize_lock);
3994 h->demote_order = demote_order;
3995 mutex_unlock(&h->resize_lock);
3999 HSTATE_ATTR(demote_size);
4001 static struct attribute *hstate_attrs[] = {
4002 &nr_hugepages_attr.attr,
4003 &nr_overcommit_hugepages_attr.attr,
4004 &free_hugepages_attr.attr,
4005 &resv_hugepages_attr.attr,
4006 &surplus_hugepages_attr.attr,
4008 &nr_hugepages_mempolicy_attr.attr,
4013 static const struct attribute_group hstate_attr_group = {
4014 .attrs = hstate_attrs,
4017 static struct attribute *hstate_demote_attrs[] = {
4018 &demote_size_attr.attr,
4023 static const struct attribute_group hstate_demote_attr_group = {
4024 .attrs = hstate_demote_attrs,
4027 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4028 struct kobject **hstate_kobjs,
4029 const struct attribute_group *hstate_attr_group)
4032 int hi = hstate_index(h);
4034 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4035 if (!hstate_kobjs[hi])
4038 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4040 kobject_put(hstate_kobjs[hi]);
4041 hstate_kobjs[hi] = NULL;
4045 if (h->demote_order) {
4046 retval = sysfs_create_group(hstate_kobjs[hi],
4047 &hstate_demote_attr_group);
4049 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4050 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4051 kobject_put(hstate_kobjs[hi]);
4052 hstate_kobjs[hi] = NULL;
4061 static bool hugetlb_sysfs_initialized __ro_after_init;
4064 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4065 * with node devices in node_devices[] using a parallel array. The array
4066 * index of a node device or _hstate == node id.
4067 * This is here to avoid any static dependency of the node device driver, in
4068 * the base kernel, on the hugetlb module.
4070 struct node_hstate {
4071 struct kobject *hugepages_kobj;
4072 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4074 static struct node_hstate node_hstates[MAX_NUMNODES];
4077 * A subset of global hstate attributes for node devices
4079 static struct attribute *per_node_hstate_attrs[] = {
4080 &nr_hugepages_attr.attr,
4081 &free_hugepages_attr.attr,
4082 &surplus_hugepages_attr.attr,
4086 static const struct attribute_group per_node_hstate_attr_group = {
4087 .attrs = per_node_hstate_attrs,
4091 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4092 * Returns node id via non-NULL nidp.
4094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4098 for (nid = 0; nid < nr_node_ids; nid++) {
4099 struct node_hstate *nhs = &node_hstates[nid];
4101 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4102 if (nhs->hstate_kobjs[i] == kobj) {
4114 * Unregister hstate attributes from a single node device.
4115 * No-op if no hstate attributes attached.
4117 void hugetlb_unregister_node(struct node *node)
4120 struct node_hstate *nhs = &node_hstates[node->dev.id];
4122 if (!nhs->hugepages_kobj)
4123 return; /* no hstate attributes */
4125 for_each_hstate(h) {
4126 int idx = hstate_index(h);
4127 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4131 if (h->demote_order)
4132 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4133 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4134 kobject_put(hstate_kobj);
4135 nhs->hstate_kobjs[idx] = NULL;
4138 kobject_put(nhs->hugepages_kobj);
4139 nhs->hugepages_kobj = NULL;
4144 * Register hstate attributes for a single node device.
4145 * No-op if attributes already registered.
4147 void hugetlb_register_node(struct node *node)
4150 struct node_hstate *nhs = &node_hstates[node->dev.id];
4153 if (!hugetlb_sysfs_initialized)
4156 if (nhs->hugepages_kobj)
4157 return; /* already allocated */
4159 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4161 if (!nhs->hugepages_kobj)
4164 for_each_hstate(h) {
4165 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4167 &per_node_hstate_attr_group);
4169 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4170 h->name, node->dev.id);
4171 hugetlb_unregister_node(node);
4178 * hugetlb init time: register hstate attributes for all registered node
4179 * devices of nodes that have memory. All on-line nodes should have
4180 * registered their associated device by this time.
4182 static void __init hugetlb_register_all_nodes(void)
4186 for_each_online_node(nid)
4187 hugetlb_register_node(node_devices[nid]);
4189 #else /* !CONFIG_NUMA */
4191 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4199 static void hugetlb_register_all_nodes(void) { }
4204 static void __init hugetlb_cma_check(void);
4206 static inline __init void hugetlb_cma_check(void)
4211 static void __init hugetlb_sysfs_init(void)
4216 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4217 if (!hugepages_kobj)
4220 for_each_hstate(h) {
4221 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4222 hstate_kobjs, &hstate_attr_group);
4224 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4228 hugetlb_sysfs_initialized = true;
4230 hugetlb_register_all_nodes();
4233 #ifdef CONFIG_SYSCTL
4234 static void hugetlb_sysctl_init(void);
4236 static inline void hugetlb_sysctl_init(void) { }
4239 static int __init hugetlb_init(void)
4243 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4246 if (!hugepages_supported()) {
4247 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4248 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4253 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4254 * architectures depend on setup being done here.
4256 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4257 if (!parsed_default_hugepagesz) {
4259 * If we did not parse a default huge page size, set
4260 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4261 * number of huge pages for this default size was implicitly
4262 * specified, set that here as well.
4263 * Note that the implicit setting will overwrite an explicit
4264 * setting. A warning will be printed in this case.
4266 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4267 if (default_hstate_max_huge_pages) {
4268 if (default_hstate.max_huge_pages) {
4271 string_get_size(huge_page_size(&default_hstate),
4272 1, STRING_UNITS_2, buf, 32);
4273 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4274 default_hstate.max_huge_pages, buf);
4275 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4276 default_hstate_max_huge_pages);
4278 default_hstate.max_huge_pages =
4279 default_hstate_max_huge_pages;
4281 for_each_online_node(i)
4282 default_hstate.max_huge_pages_node[i] =
4283 default_hugepages_in_node[i];
4287 hugetlb_cma_check();
4288 hugetlb_init_hstates();
4289 gather_bootmem_prealloc();
4292 hugetlb_sysfs_init();
4293 hugetlb_cgroup_file_init();
4294 hugetlb_sysctl_init();
4297 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4299 num_fault_mutexes = 1;
4301 hugetlb_fault_mutex_table =
4302 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4304 BUG_ON(!hugetlb_fault_mutex_table);
4306 for (i = 0; i < num_fault_mutexes; i++)
4307 mutex_init(&hugetlb_fault_mutex_table[i]);
4310 subsys_initcall(hugetlb_init);
4312 /* Overwritten by architectures with more huge page sizes */
4313 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4315 return size == HPAGE_SIZE;
4318 void __init hugetlb_add_hstate(unsigned int order)
4323 if (size_to_hstate(PAGE_SIZE << order)) {
4326 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4328 h = &hstates[hugetlb_max_hstate++];
4329 mutex_init(&h->resize_lock);
4331 h->mask = ~(huge_page_size(h) - 1);
4332 for (i = 0; i < MAX_NUMNODES; ++i)
4333 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4334 INIT_LIST_HEAD(&h->hugepage_activelist);
4335 h->next_nid_to_alloc = first_memory_node;
4336 h->next_nid_to_free = first_memory_node;
4337 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4338 huge_page_size(h)/SZ_1K);
4343 bool __init __weak hugetlb_node_alloc_supported(void)
4348 static void __init hugepages_clear_pages_in_node(void)
4350 if (!hugetlb_max_hstate) {
4351 default_hstate_max_huge_pages = 0;
4352 memset(default_hugepages_in_node, 0,
4353 sizeof(default_hugepages_in_node));
4355 parsed_hstate->max_huge_pages = 0;
4356 memset(parsed_hstate->max_huge_pages_node, 0,
4357 sizeof(parsed_hstate->max_huge_pages_node));
4362 * hugepages command line processing
4363 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4364 * specification. If not, ignore the hugepages value. hugepages can also
4365 * be the first huge page command line option in which case it implicitly
4366 * specifies the number of huge pages for the default size.
4368 static int __init hugepages_setup(char *s)
4371 static unsigned long *last_mhp;
4372 int node = NUMA_NO_NODE;
4377 if (!parsed_valid_hugepagesz) {
4378 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4379 parsed_valid_hugepagesz = true;
4384 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4385 * yet, so this hugepages= parameter goes to the "default hstate".
4386 * Otherwise, it goes with the previously parsed hugepagesz or
4387 * default_hugepagesz.
4389 else if (!hugetlb_max_hstate)
4390 mhp = &default_hstate_max_huge_pages;
4392 mhp = &parsed_hstate->max_huge_pages;
4394 if (mhp == last_mhp) {
4395 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4401 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4403 /* Parameter is node format */
4404 if (p[count] == ':') {
4405 if (!hugetlb_node_alloc_supported()) {
4406 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4409 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4411 node = array_index_nospec(tmp, MAX_NUMNODES);
4413 /* Parse hugepages */
4414 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4416 if (!hugetlb_max_hstate)
4417 default_hugepages_in_node[node] = tmp;
4419 parsed_hstate->max_huge_pages_node[node] = tmp;
4421 /* Go to parse next node*/
4422 if (p[count] == ',')
4435 * Global state is always initialized later in hugetlb_init.
4436 * But we need to allocate gigantic hstates here early to still
4437 * use the bootmem allocator.
4439 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4440 hugetlb_hstate_alloc_pages(parsed_hstate);
4447 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4448 hugepages_clear_pages_in_node();
4451 __setup("hugepages=", hugepages_setup);
4454 * hugepagesz command line processing
4455 * A specific huge page size can only be specified once with hugepagesz.
4456 * hugepagesz is followed by hugepages on the command line. The global
4457 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4458 * hugepagesz argument was valid.
4460 static int __init hugepagesz_setup(char *s)
4465 parsed_valid_hugepagesz = false;
4466 size = (unsigned long)memparse(s, NULL);
4468 if (!arch_hugetlb_valid_size(size)) {
4469 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4473 h = size_to_hstate(size);
4476 * hstate for this size already exists. This is normally
4477 * an error, but is allowed if the existing hstate is the
4478 * default hstate. More specifically, it is only allowed if
4479 * the number of huge pages for the default hstate was not
4480 * previously specified.
4482 if (!parsed_default_hugepagesz || h != &default_hstate ||
4483 default_hstate.max_huge_pages) {
4484 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4489 * No need to call hugetlb_add_hstate() as hstate already
4490 * exists. But, do set parsed_hstate so that a following
4491 * hugepages= parameter will be applied to this hstate.
4494 parsed_valid_hugepagesz = true;
4498 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4499 parsed_valid_hugepagesz = true;
4502 __setup("hugepagesz=", hugepagesz_setup);
4505 * default_hugepagesz command line input
4506 * Only one instance of default_hugepagesz allowed on command line.
4508 static int __init default_hugepagesz_setup(char *s)
4513 parsed_valid_hugepagesz = false;
4514 if (parsed_default_hugepagesz) {
4515 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4519 size = (unsigned long)memparse(s, NULL);
4521 if (!arch_hugetlb_valid_size(size)) {
4522 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4526 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4527 parsed_valid_hugepagesz = true;
4528 parsed_default_hugepagesz = true;
4529 default_hstate_idx = hstate_index(size_to_hstate(size));
4532 * The number of default huge pages (for this size) could have been
4533 * specified as the first hugetlb parameter: hugepages=X. If so,
4534 * then default_hstate_max_huge_pages is set. If the default huge
4535 * page size is gigantic (> MAX_ORDER), then the pages must be
4536 * allocated here from bootmem allocator.
4538 if (default_hstate_max_huge_pages) {
4539 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4540 for_each_online_node(i)
4541 default_hstate.max_huge_pages_node[i] =
4542 default_hugepages_in_node[i];
4543 if (hstate_is_gigantic(&default_hstate))
4544 hugetlb_hstate_alloc_pages(&default_hstate);
4545 default_hstate_max_huge_pages = 0;
4550 __setup("default_hugepagesz=", default_hugepagesz_setup);
4552 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4555 struct mempolicy *mpol = get_task_policy(current);
4558 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4559 * (from policy_nodemask) specifically for hugetlb case
4561 if (mpol->mode == MPOL_BIND &&
4562 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4563 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4564 return &mpol->nodes;
4569 static unsigned int allowed_mems_nr(struct hstate *h)
4572 unsigned int nr = 0;
4573 nodemask_t *mbind_nodemask;
4574 unsigned int *array = h->free_huge_pages_node;
4575 gfp_t gfp_mask = htlb_alloc_mask(h);
4577 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4578 for_each_node_mask(node, cpuset_current_mems_allowed) {
4579 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4586 #ifdef CONFIG_SYSCTL
4587 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4588 void *buffer, size_t *length,
4589 loff_t *ppos, unsigned long *out)
4591 struct ctl_table dup_table;
4594 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4595 * can duplicate the @table and alter the duplicate of it.
4598 dup_table.data = out;
4600 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4603 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4604 struct ctl_table *table, int write,
4605 void *buffer, size_t *length, loff_t *ppos)
4607 struct hstate *h = &default_hstate;
4608 unsigned long tmp = h->max_huge_pages;
4611 if (!hugepages_supported())
4614 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4620 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4621 NUMA_NO_NODE, tmp, *length);
4626 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4627 void *buffer, size_t *length, loff_t *ppos)
4630 return hugetlb_sysctl_handler_common(false, table, write,
4631 buffer, length, ppos);
4635 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4636 void *buffer, size_t *length, loff_t *ppos)
4638 return hugetlb_sysctl_handler_common(true, table, write,
4639 buffer, length, ppos);
4641 #endif /* CONFIG_NUMA */
4643 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4644 void *buffer, size_t *length, loff_t *ppos)
4646 struct hstate *h = &default_hstate;
4650 if (!hugepages_supported())
4653 tmp = h->nr_overcommit_huge_pages;
4655 if (write && hstate_is_gigantic(h))
4658 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4664 spin_lock_irq(&hugetlb_lock);
4665 h->nr_overcommit_huge_pages = tmp;
4666 spin_unlock_irq(&hugetlb_lock);
4672 static struct ctl_table hugetlb_table[] = {
4674 .procname = "nr_hugepages",
4676 .maxlen = sizeof(unsigned long),
4678 .proc_handler = hugetlb_sysctl_handler,
4682 .procname = "nr_hugepages_mempolicy",
4684 .maxlen = sizeof(unsigned long),
4686 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4690 .procname = "hugetlb_shm_group",
4691 .data = &sysctl_hugetlb_shm_group,
4692 .maxlen = sizeof(gid_t),
4694 .proc_handler = proc_dointvec,
4697 .procname = "nr_overcommit_hugepages",
4699 .maxlen = sizeof(unsigned long),
4701 .proc_handler = hugetlb_overcommit_handler,
4706 static void hugetlb_sysctl_init(void)
4708 register_sysctl_init("vm", hugetlb_table);
4710 #endif /* CONFIG_SYSCTL */
4712 void hugetlb_report_meminfo(struct seq_file *m)
4715 unsigned long total = 0;
4717 if (!hugepages_supported())
4720 for_each_hstate(h) {
4721 unsigned long count = h->nr_huge_pages;
4723 total += huge_page_size(h) * count;
4725 if (h == &default_hstate)
4727 "HugePages_Total: %5lu\n"
4728 "HugePages_Free: %5lu\n"
4729 "HugePages_Rsvd: %5lu\n"
4730 "HugePages_Surp: %5lu\n"
4731 "Hugepagesize: %8lu kB\n",
4735 h->surplus_huge_pages,
4736 huge_page_size(h) / SZ_1K);
4739 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4742 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4744 struct hstate *h = &default_hstate;
4746 if (!hugepages_supported())
4749 return sysfs_emit_at(buf, len,
4750 "Node %d HugePages_Total: %5u\n"
4751 "Node %d HugePages_Free: %5u\n"
4752 "Node %d HugePages_Surp: %5u\n",
4753 nid, h->nr_huge_pages_node[nid],
4754 nid, h->free_huge_pages_node[nid],
4755 nid, h->surplus_huge_pages_node[nid]);
4758 void hugetlb_show_meminfo_node(int nid)
4762 if (!hugepages_supported())
4766 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4768 h->nr_huge_pages_node[nid],
4769 h->free_huge_pages_node[nid],
4770 h->surplus_huge_pages_node[nid],
4771 huge_page_size(h) / SZ_1K);
4774 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4776 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4777 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4780 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4781 unsigned long hugetlb_total_pages(void)
4784 unsigned long nr_total_pages = 0;
4787 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4788 return nr_total_pages;
4791 static int hugetlb_acct_memory(struct hstate *h, long delta)
4798 spin_lock_irq(&hugetlb_lock);
4800 * When cpuset is configured, it breaks the strict hugetlb page
4801 * reservation as the accounting is done on a global variable. Such
4802 * reservation is completely rubbish in the presence of cpuset because
4803 * the reservation is not checked against page availability for the
4804 * current cpuset. Application can still potentially OOM'ed by kernel
4805 * with lack of free htlb page in cpuset that the task is in.
4806 * Attempt to enforce strict accounting with cpuset is almost
4807 * impossible (or too ugly) because cpuset is too fluid that
4808 * task or memory node can be dynamically moved between cpusets.
4810 * The change of semantics for shared hugetlb mapping with cpuset is
4811 * undesirable. However, in order to preserve some of the semantics,
4812 * we fall back to check against current free page availability as
4813 * a best attempt and hopefully to minimize the impact of changing
4814 * semantics that cpuset has.
4816 * Apart from cpuset, we also have memory policy mechanism that
4817 * also determines from which node the kernel will allocate memory
4818 * in a NUMA system. So similar to cpuset, we also should consider
4819 * the memory policy of the current task. Similar to the description
4823 if (gather_surplus_pages(h, delta) < 0)
4826 if (delta > allowed_mems_nr(h)) {
4827 return_unused_surplus_pages(h, delta);
4834 return_unused_surplus_pages(h, (unsigned long) -delta);
4837 spin_unlock_irq(&hugetlb_lock);
4841 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4843 struct resv_map *resv = vma_resv_map(vma);
4846 * HPAGE_RESV_OWNER indicates a private mapping.
4847 * This new VMA should share its siblings reservation map if present.
4848 * The VMA will only ever have a valid reservation map pointer where
4849 * it is being copied for another still existing VMA. As that VMA
4850 * has a reference to the reservation map it cannot disappear until
4851 * after this open call completes. It is therefore safe to take a
4852 * new reference here without additional locking.
4854 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4855 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4856 kref_get(&resv->refs);
4860 * vma_lock structure for sharable mappings is vma specific.
4861 * Clear old pointer (if copied via vm_area_dup) and allocate
4862 * new structure. Before clearing, make sure vma_lock is not
4865 if (vma->vm_flags & VM_MAYSHARE) {
4866 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4869 if (vma_lock->vma != vma) {
4870 vma->vm_private_data = NULL;
4871 hugetlb_vma_lock_alloc(vma);
4873 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4875 hugetlb_vma_lock_alloc(vma);
4879 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4881 struct hstate *h = hstate_vma(vma);
4882 struct resv_map *resv;
4883 struct hugepage_subpool *spool = subpool_vma(vma);
4884 unsigned long reserve, start, end;
4887 hugetlb_vma_lock_free(vma);
4889 resv = vma_resv_map(vma);
4890 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4893 start = vma_hugecache_offset(h, vma, vma->vm_start);
4894 end = vma_hugecache_offset(h, vma, vma->vm_end);
4896 reserve = (end - start) - region_count(resv, start, end);
4897 hugetlb_cgroup_uncharge_counter(resv, start, end);
4900 * Decrement reserve counts. The global reserve count may be
4901 * adjusted if the subpool has a minimum size.
4903 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4904 hugetlb_acct_memory(h, -gbl_reserve);
4907 kref_put(&resv->refs, resv_map_release);
4910 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4912 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4916 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4917 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4918 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4920 if (addr & ~PUD_MASK) {
4922 * hugetlb_vm_op_split is called right before we attempt to
4923 * split the VMA. We will need to unshare PMDs in the old and
4924 * new VMAs, so let's unshare before we split.
4926 unsigned long floor = addr & PUD_MASK;
4927 unsigned long ceil = floor + PUD_SIZE;
4929 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4930 hugetlb_unshare_pmds(vma, floor, ceil);
4936 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4938 return huge_page_size(hstate_vma(vma));
4942 * We cannot handle pagefaults against hugetlb pages at all. They cause
4943 * handle_mm_fault() to try to instantiate regular-sized pages in the
4944 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4947 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4954 * When a new function is introduced to vm_operations_struct and added
4955 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4956 * This is because under System V memory model, mappings created via
4957 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4958 * their original vm_ops are overwritten with shm_vm_ops.
4960 const struct vm_operations_struct hugetlb_vm_ops = {
4961 .fault = hugetlb_vm_op_fault,
4962 .open = hugetlb_vm_op_open,
4963 .close = hugetlb_vm_op_close,
4964 .may_split = hugetlb_vm_op_split,
4965 .pagesize = hugetlb_vm_op_pagesize,
4968 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4972 unsigned int shift = huge_page_shift(hstate_vma(vma));
4975 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4976 vma->vm_page_prot)));
4978 entry = huge_pte_wrprotect(mk_huge_pte(page,
4979 vma->vm_page_prot));
4981 entry = pte_mkyoung(entry);
4982 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4987 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4988 unsigned long address, pte_t *ptep)
4992 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4993 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4994 update_mmu_cache(vma, address, ptep);
4997 bool is_hugetlb_entry_migration(pte_t pte)
5001 if (huge_pte_none(pte) || pte_present(pte))
5003 swp = pte_to_swp_entry(pte);
5004 if (is_migration_entry(swp))
5010 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5014 if (huge_pte_none(pte) || pte_present(pte))
5016 swp = pte_to_swp_entry(pte);
5017 if (is_hwpoison_entry(swp))
5024 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5025 struct folio *new_folio, pte_t old)
5027 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5029 __folio_mark_uptodate(new_folio);
5030 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5031 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5032 newpte = huge_pte_mkuffd_wp(newpte);
5033 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5034 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5035 folio_set_hugetlb_migratable(new_folio);
5038 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5039 struct vm_area_struct *dst_vma,
5040 struct vm_area_struct *src_vma)
5042 pte_t *src_pte, *dst_pte, entry;
5043 struct folio *pte_folio;
5045 bool cow = is_cow_mapping(src_vma->vm_flags);
5046 struct hstate *h = hstate_vma(src_vma);
5047 unsigned long sz = huge_page_size(h);
5048 unsigned long npages = pages_per_huge_page(h);
5049 struct mmu_notifier_range range;
5050 unsigned long last_addr_mask;
5054 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5057 mmu_notifier_invalidate_range_start(&range);
5058 mmap_assert_write_locked(src);
5059 raw_write_seqcount_begin(&src->write_protect_seq);
5062 * For shared mappings the vma lock must be held before
5063 * calling hugetlb_walk() in the src vma. Otherwise, the
5064 * returned ptep could go away if part of a shared pmd and
5065 * another thread calls huge_pmd_unshare.
5067 hugetlb_vma_lock_read(src_vma);
5070 last_addr_mask = hugetlb_mask_last_page(h);
5071 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5072 spinlock_t *src_ptl, *dst_ptl;
5073 src_pte = hugetlb_walk(src_vma, addr, sz);
5075 addr |= last_addr_mask;
5078 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5085 * If the pagetables are shared don't copy or take references.
5087 * dst_pte == src_pte is the common case of src/dest sharing.
5088 * However, src could have 'unshared' and dst shares with
5089 * another vma. So page_count of ptep page is checked instead
5090 * to reliably determine whether pte is shared.
5092 if (page_count(virt_to_page(dst_pte)) > 1) {
5093 addr |= last_addr_mask;
5097 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5098 src_ptl = huge_pte_lockptr(h, src, src_pte);
5099 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5100 entry = huge_ptep_get(src_pte);
5102 if (huge_pte_none(entry)) {
5104 * Skip if src entry none.
5107 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5108 if (!userfaultfd_wp(dst_vma))
5109 entry = huge_pte_clear_uffd_wp(entry);
5110 set_huge_pte_at(dst, addr, dst_pte, entry);
5111 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5112 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5113 bool uffd_wp = pte_swp_uffd_wp(entry);
5115 if (!is_readable_migration_entry(swp_entry) && cow) {
5117 * COW mappings require pages in both
5118 * parent and child to be set to read.
5120 swp_entry = make_readable_migration_entry(
5121 swp_offset(swp_entry));
5122 entry = swp_entry_to_pte(swp_entry);
5123 if (userfaultfd_wp(src_vma) && uffd_wp)
5124 entry = pte_swp_mkuffd_wp(entry);
5125 set_huge_pte_at(src, addr, src_pte, entry);
5127 if (!userfaultfd_wp(dst_vma))
5128 entry = huge_pte_clear_uffd_wp(entry);
5129 set_huge_pte_at(dst, addr, dst_pte, entry);
5130 } else if (unlikely(is_pte_marker(entry))) {
5131 /* No swap on hugetlb */
5133 is_swapin_error_entry(pte_to_swp_entry(entry)));
5135 * We copy the pte marker only if the dst vma has
5138 if (userfaultfd_wp(dst_vma))
5139 set_huge_pte_at(dst, addr, dst_pte, entry);
5141 entry = huge_ptep_get(src_pte);
5142 pte_folio = page_folio(pte_page(entry));
5143 folio_get(pte_folio);
5146 * Failing to duplicate the anon rmap is a rare case
5147 * where we see pinned hugetlb pages while they're
5148 * prone to COW. We need to do the COW earlier during
5151 * When pre-allocating the page or copying data, we
5152 * need to be without the pgtable locks since we could
5153 * sleep during the process.
5155 if (!folio_test_anon(pte_folio)) {
5156 page_dup_file_rmap(&pte_folio->page, true);
5157 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5159 pte_t src_pte_old = entry;
5160 struct folio *new_folio;
5162 spin_unlock(src_ptl);
5163 spin_unlock(dst_ptl);
5164 /* Do not use reserve as it's private owned */
5165 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5166 if (IS_ERR(new_folio)) {
5167 folio_put(pte_folio);
5168 ret = PTR_ERR(new_folio);
5171 ret = copy_user_large_folio(new_folio,
5174 folio_put(pte_folio);
5176 folio_put(new_folio);
5180 /* Install the new hugetlb folio if src pte stable */
5181 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5182 src_ptl = huge_pte_lockptr(h, src, src_pte);
5183 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5184 entry = huge_ptep_get(src_pte);
5185 if (!pte_same(src_pte_old, entry)) {
5186 restore_reserve_on_error(h, dst_vma, addr,
5188 folio_put(new_folio);
5189 /* huge_ptep of dst_pte won't change as in child */
5192 hugetlb_install_folio(dst_vma, dst_pte, addr,
5193 new_folio, src_pte_old);
5194 spin_unlock(src_ptl);
5195 spin_unlock(dst_ptl);
5201 * No need to notify as we are downgrading page
5202 * table protection not changing it to point
5205 * See Documentation/mm/mmu_notifier.rst
5207 huge_ptep_set_wrprotect(src, addr, src_pte);
5208 entry = huge_pte_wrprotect(entry);
5211 if (!userfaultfd_wp(dst_vma))
5212 entry = huge_pte_clear_uffd_wp(entry);
5214 set_huge_pte_at(dst, addr, dst_pte, entry);
5215 hugetlb_count_add(npages, dst);
5217 spin_unlock(src_ptl);
5218 spin_unlock(dst_ptl);
5222 raw_write_seqcount_end(&src->write_protect_seq);
5223 mmu_notifier_invalidate_range_end(&range);
5225 hugetlb_vma_unlock_read(src_vma);
5231 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5232 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5234 struct hstate *h = hstate_vma(vma);
5235 struct mm_struct *mm = vma->vm_mm;
5236 spinlock_t *src_ptl, *dst_ptl;
5239 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5240 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5243 * We don't have to worry about the ordering of src and dst ptlocks
5244 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5246 if (src_ptl != dst_ptl)
5247 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5249 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5250 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5252 if (src_ptl != dst_ptl)
5253 spin_unlock(src_ptl);
5254 spin_unlock(dst_ptl);
5257 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5258 struct vm_area_struct *new_vma,
5259 unsigned long old_addr, unsigned long new_addr,
5262 struct hstate *h = hstate_vma(vma);
5263 struct address_space *mapping = vma->vm_file->f_mapping;
5264 unsigned long sz = huge_page_size(h);
5265 struct mm_struct *mm = vma->vm_mm;
5266 unsigned long old_end = old_addr + len;
5267 unsigned long last_addr_mask;
5268 pte_t *src_pte, *dst_pte;
5269 struct mmu_notifier_range range;
5270 bool shared_pmd = false;
5272 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5274 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5276 * In case of shared PMDs, we should cover the maximum possible
5279 flush_cache_range(vma, range.start, range.end);
5281 mmu_notifier_invalidate_range_start(&range);
5282 last_addr_mask = hugetlb_mask_last_page(h);
5283 /* Prevent race with file truncation */
5284 hugetlb_vma_lock_write(vma);
5285 i_mmap_lock_write(mapping);
5286 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5287 src_pte = hugetlb_walk(vma, old_addr, sz);
5289 old_addr |= last_addr_mask;
5290 new_addr |= last_addr_mask;
5293 if (huge_pte_none(huge_ptep_get(src_pte)))
5296 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5298 old_addr |= last_addr_mask;
5299 new_addr |= last_addr_mask;
5303 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5307 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5311 flush_tlb_range(vma, range.start, range.end);
5313 flush_tlb_range(vma, old_end - len, old_end);
5314 mmu_notifier_invalidate_range_end(&range);
5315 i_mmap_unlock_write(mapping);
5316 hugetlb_vma_unlock_write(vma);
5318 return len + old_addr - old_end;
5321 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5322 unsigned long start, unsigned long end,
5323 struct page *ref_page, zap_flags_t zap_flags)
5325 struct mm_struct *mm = vma->vm_mm;
5326 unsigned long address;
5331 struct hstate *h = hstate_vma(vma);
5332 unsigned long sz = huge_page_size(h);
5333 unsigned long last_addr_mask;
5334 bool force_flush = false;
5336 WARN_ON(!is_vm_hugetlb_page(vma));
5337 BUG_ON(start & ~huge_page_mask(h));
5338 BUG_ON(end & ~huge_page_mask(h));
5341 * This is a hugetlb vma, all the pte entries should point
5344 tlb_change_page_size(tlb, sz);
5345 tlb_start_vma(tlb, vma);
5347 last_addr_mask = hugetlb_mask_last_page(h);
5349 for (; address < end; address += sz) {
5350 ptep = hugetlb_walk(vma, address, sz);
5352 address |= last_addr_mask;
5356 ptl = huge_pte_lock(h, mm, ptep);
5357 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5359 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5361 address |= last_addr_mask;
5365 pte = huge_ptep_get(ptep);
5366 if (huge_pte_none(pte)) {
5372 * Migrating hugepage or HWPoisoned hugepage is already
5373 * unmapped and its refcount is dropped, so just clear pte here.
5375 if (unlikely(!pte_present(pte))) {
5377 * If the pte was wr-protected by uffd-wp in any of the
5378 * swap forms, meanwhile the caller does not want to
5379 * drop the uffd-wp bit in this zap, then replace the
5380 * pte with a marker.
5382 if (pte_swp_uffd_wp_any(pte) &&
5383 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5384 set_huge_pte_at(mm, address, ptep,
5385 make_pte_marker(PTE_MARKER_UFFD_WP));
5387 huge_pte_clear(mm, address, ptep, sz);
5392 page = pte_page(pte);
5394 * If a reference page is supplied, it is because a specific
5395 * page is being unmapped, not a range. Ensure the page we
5396 * are about to unmap is the actual page of interest.
5399 if (page != ref_page) {
5404 * Mark the VMA as having unmapped its page so that
5405 * future faults in this VMA will fail rather than
5406 * looking like data was lost
5408 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5411 pte = huge_ptep_get_and_clear(mm, address, ptep);
5412 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5413 if (huge_pte_dirty(pte))
5414 set_page_dirty(page);
5415 /* Leave a uffd-wp pte marker if needed */
5416 if (huge_pte_uffd_wp(pte) &&
5417 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5418 set_huge_pte_at(mm, address, ptep,
5419 make_pte_marker(PTE_MARKER_UFFD_WP));
5420 hugetlb_count_sub(pages_per_huge_page(h), mm);
5421 page_remove_rmap(page, vma, true);
5424 tlb_remove_page_size(tlb, page, huge_page_size(h));
5426 * Bail out after unmapping reference page if supplied
5431 tlb_end_vma(tlb, vma);
5434 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5435 * could defer the flush until now, since by holding i_mmap_rwsem we
5436 * guaranteed that the last refernece would not be dropped. But we must
5437 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5438 * dropped and the last reference to the shared PMDs page might be
5441 * In theory we could defer the freeing of the PMD pages as well, but
5442 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5443 * detect sharing, so we cannot defer the release of the page either.
5444 * Instead, do flush now.
5447 tlb_flush_mmu_tlbonly(tlb);
5450 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5451 struct vm_area_struct *vma, unsigned long start,
5452 unsigned long end, struct page *ref_page,
5453 zap_flags_t zap_flags)
5455 hugetlb_vma_lock_write(vma);
5456 i_mmap_lock_write(vma->vm_file->f_mapping);
5458 /* mmu notification performed in caller */
5459 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5461 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5463 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5464 * When the vma_lock is freed, this makes the vma ineligible
5465 * for pmd sharing. And, i_mmap_rwsem is required to set up
5466 * pmd sharing. This is important as page tables for this
5467 * unmapped range will be asynchrously deleted. If the page
5468 * tables are shared, there will be issues when accessed by
5471 __hugetlb_vma_unlock_write_free(vma);
5472 i_mmap_unlock_write(vma->vm_file->f_mapping);
5474 i_mmap_unlock_write(vma->vm_file->f_mapping);
5475 hugetlb_vma_unlock_write(vma);
5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480 unsigned long end, struct page *ref_page,
5481 zap_flags_t zap_flags)
5483 struct mmu_notifier_range range;
5484 struct mmu_gather tlb;
5486 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5488 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489 mmu_notifier_invalidate_range_start(&range);
5490 tlb_gather_mmu(&tlb, vma->vm_mm);
5492 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5494 mmu_notifier_invalidate_range_end(&range);
5495 tlb_finish_mmu(&tlb);
5499 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500 * mapping it owns the reserve page for. The intention is to unmap the page
5501 * from other VMAs and let the children be SIGKILLed if they are faulting the
5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505 struct page *page, unsigned long address)
5507 struct hstate *h = hstate_vma(vma);
5508 struct vm_area_struct *iter_vma;
5509 struct address_space *mapping;
5513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514 * from page cache lookup which is in HPAGE_SIZE units.
5516 address = address & huge_page_mask(h);
5517 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5519 mapping = vma->vm_file->f_mapping;
5522 * Take the mapping lock for the duration of the table walk. As
5523 * this mapping should be shared between all the VMAs,
5524 * __unmap_hugepage_range() is called as the lock is already held
5526 i_mmap_lock_write(mapping);
5527 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528 /* Do not unmap the current VMA */
5529 if (iter_vma == vma)
5533 * Shared VMAs have their own reserves and do not affect
5534 * MAP_PRIVATE accounting but it is possible that a shared
5535 * VMA is using the same page so check and skip such VMAs.
5537 if (iter_vma->vm_flags & VM_MAYSHARE)
5541 * Unmap the page from other VMAs without their own reserves.
5542 * They get marked to be SIGKILLed if they fault in these
5543 * areas. This is because a future no-page fault on this VMA
5544 * could insert a zeroed page instead of the data existing
5545 * from the time of fork. This would look like data corruption
5547 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548 unmap_hugepage_range(iter_vma, address,
5549 address + huge_page_size(h), page, 0);
5551 i_mmap_unlock_write(mapping);
5555 * hugetlb_wp() should be called with page lock of the original hugepage held.
5556 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557 * cannot race with other handlers or page migration.
5558 * Keep the pte_same checks anyway to make transition from the mutex easier.
5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561 unsigned long address, pte_t *ptep, unsigned int flags,
5562 struct folio *pagecache_folio, spinlock_t *ptl)
5564 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565 pte_t pte = huge_ptep_get(ptep);
5566 struct hstate *h = hstate_vma(vma);
5567 struct folio *old_folio;
5568 struct folio *new_folio;
5569 int outside_reserve = 0;
5571 unsigned long haddr = address & huge_page_mask(h);
5572 struct mmu_notifier_range range;
5575 * Never handle CoW for uffd-wp protected pages. It should be only
5576 * handled when the uffd-wp protection is removed.
5578 * Note that only the CoW optimization path (in hugetlb_no_page())
5579 * can trigger this, because hugetlb_fault() will always resolve
5580 * uffd-wp bit first.
5582 if (!unshare && huge_pte_uffd_wp(pte))
5586 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587 * PTE mapped R/O such as maybe_mkwrite() would do.
5589 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590 return VM_FAULT_SIGSEGV;
5592 /* Let's take out MAP_SHARED mappings first. */
5593 if (vma->vm_flags & VM_MAYSHARE) {
5594 set_huge_ptep_writable(vma, haddr, ptep);
5598 old_folio = page_folio(pte_page(pte));
5600 delayacct_wpcopy_start();
5604 * If no-one else is actually using this page, we're the exclusive
5605 * owner and can reuse this page.
5607 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608 if (!PageAnonExclusive(&old_folio->page))
5609 page_move_anon_rmap(&old_folio->page, vma);
5610 if (likely(!unshare))
5611 set_huge_ptep_writable(vma, haddr, ptep);
5613 delayacct_wpcopy_end();
5616 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617 PageAnonExclusive(&old_folio->page), &old_folio->page);
5620 * If the process that created a MAP_PRIVATE mapping is about to
5621 * perform a COW due to a shared page count, attempt to satisfy
5622 * the allocation without using the existing reserves. The pagecache
5623 * page is used to determine if the reserve at this address was
5624 * consumed or not. If reserves were used, a partial faulted mapping
5625 * at the time of fork() could consume its reserves on COW instead
5626 * of the full address range.
5628 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629 old_folio != pagecache_folio)
5630 outside_reserve = 1;
5632 folio_get(old_folio);
5635 * Drop page table lock as buddy allocator may be called. It will
5636 * be acquired again before returning to the caller, as expected.
5639 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5641 if (IS_ERR(new_folio)) {
5643 * If a process owning a MAP_PRIVATE mapping fails to COW,
5644 * it is due to references held by a child and an insufficient
5645 * huge page pool. To guarantee the original mappers
5646 * reliability, unmap the page from child processes. The child
5647 * may get SIGKILLed if it later faults.
5649 if (outside_reserve) {
5650 struct address_space *mapping = vma->vm_file->f_mapping;
5654 folio_put(old_folio);
5656 * Drop hugetlb_fault_mutex and vma_lock before
5657 * unmapping. unmapping needs to hold vma_lock
5658 * in write mode. Dropping vma_lock in read mode
5659 * here is OK as COW mappings do not interact with
5662 * Reacquire both after unmap operation.
5664 idx = vma_hugecache_offset(h, vma, haddr);
5665 hash = hugetlb_fault_mutex_hash(mapping, idx);
5666 hugetlb_vma_unlock_read(vma);
5667 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5669 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5671 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672 hugetlb_vma_lock_read(vma);
5674 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5676 pte_same(huge_ptep_get(ptep), pte)))
5677 goto retry_avoidcopy;
5679 * race occurs while re-acquiring page table
5680 * lock, and our job is done.
5682 delayacct_wpcopy_end();
5686 ret = vmf_error(PTR_ERR(new_folio));
5687 goto out_release_old;
5691 * When the original hugepage is shared one, it does not have
5692 * anon_vma prepared.
5694 if (unlikely(anon_vma_prepare(vma))) {
5696 goto out_release_all;
5699 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700 ret = VM_FAULT_HWPOISON_LARGE;
5701 goto out_release_all;
5703 __folio_mark_uptodate(new_folio);
5705 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706 haddr + huge_page_size(h));
5707 mmu_notifier_invalidate_range_start(&range);
5710 * Retake the page table lock to check for racing updates
5711 * before the page tables are altered
5714 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5718 /* Break COW or unshare */
5719 huge_ptep_clear_flush(vma, haddr, ptep);
5720 mmu_notifier_invalidate_range(mm, range.start, range.end);
5721 page_remove_rmap(&old_folio->page, vma, true);
5722 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5723 if (huge_pte_uffd_wp(pte))
5724 newpte = huge_pte_mkuffd_wp(newpte);
5725 set_huge_pte_at(mm, haddr, ptep, newpte);
5726 folio_set_hugetlb_migratable(new_folio);
5727 /* Make the old page be freed below */
5728 new_folio = old_folio;
5731 mmu_notifier_invalidate_range_end(&range);
5734 * No restore in case of successful pagetable update (Break COW or
5737 if (new_folio != old_folio)
5738 restore_reserve_on_error(h, vma, haddr, new_folio);
5739 folio_put(new_folio);
5741 folio_put(old_folio);
5743 spin_lock(ptl); /* Caller expects lock to be held */
5745 delayacct_wpcopy_end();
5750 * Return whether there is a pagecache page to back given address within VMA.
5751 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5753 static bool hugetlbfs_pagecache_present(struct hstate *h,
5754 struct vm_area_struct *vma, unsigned long address)
5756 struct address_space *mapping = vma->vm_file->f_mapping;
5757 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5758 struct folio *folio;
5760 folio = filemap_get_folio(mapping, idx);
5767 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5770 struct inode *inode = mapping->host;
5771 struct hstate *h = hstate_inode(inode);
5774 __folio_set_locked(folio);
5775 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5777 if (unlikely(err)) {
5778 __folio_clear_locked(folio);
5781 folio_clear_hugetlb_restore_reserve(folio);
5784 * mark folio dirty so that it will not be removed from cache/file
5785 * by non-hugetlbfs specific code paths.
5787 folio_mark_dirty(folio);
5789 spin_lock(&inode->i_lock);
5790 inode->i_blocks += blocks_per_huge_page(h);
5791 spin_unlock(&inode->i_lock);
5795 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5796 struct address_space *mapping,
5799 unsigned long haddr,
5801 unsigned long reason)
5804 struct vm_fault vmf = {
5807 .real_address = addr,
5811 * Hard to debug if it ends up being
5812 * used by a callee that assumes
5813 * something about the other
5814 * uninitialized fields... same as in
5820 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5821 * userfault. Also mmap_lock could be dropped due to handling
5822 * userfault, any vma operation should be careful from here.
5824 hugetlb_vma_unlock_read(vma);
5825 hash = hugetlb_fault_mutex_hash(mapping, idx);
5826 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5827 return handle_userfault(&vmf, reason);
5831 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5832 * false if pte changed or is changing.
5834 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5835 pte_t *ptep, pte_t old_pte)
5840 ptl = huge_pte_lock(h, mm, ptep);
5841 same = pte_same(huge_ptep_get(ptep), old_pte);
5847 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5848 struct vm_area_struct *vma,
5849 struct address_space *mapping, pgoff_t idx,
5850 unsigned long address, pte_t *ptep,
5851 pte_t old_pte, unsigned int flags)
5853 struct hstate *h = hstate_vma(vma);
5854 vm_fault_t ret = VM_FAULT_SIGBUS;
5857 struct folio *folio;
5860 unsigned long haddr = address & huge_page_mask(h);
5861 bool new_folio, new_pagecache_folio = false;
5862 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5865 * Currently, we are forced to kill the process in the event the
5866 * original mapper has unmapped pages from the child due to a failed
5867 * COW/unsharing. Warn that such a situation has occurred as it may not
5870 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5871 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5877 * Use page lock to guard against racing truncation
5878 * before we get page_table_lock.
5881 folio = filemap_lock_folio(mapping, idx);
5882 if (IS_ERR(folio)) {
5883 size = i_size_read(mapping->host) >> huge_page_shift(h);
5886 /* Check for page in userfault range */
5887 if (userfaultfd_missing(vma)) {
5889 * Since hugetlb_no_page() was examining pte
5890 * without pgtable lock, we need to re-test under
5891 * lock because the pte may not be stable and could
5892 * have changed from under us. Try to detect
5893 * either changed or during-changing ptes and retry
5894 * properly when needed.
5896 * Note that userfaultfd is actually fine with
5897 * false positives (e.g. caused by pte changed),
5898 * but not wrong logical events (e.g. caused by
5899 * reading a pte during changing). The latter can
5900 * confuse the userspace, so the strictness is very
5901 * much preferred. E.g., MISSING event should
5902 * never happen on the page after UFFDIO_COPY has
5903 * correctly installed the page and returned.
5905 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5910 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5915 folio = alloc_hugetlb_folio(vma, haddr, 0);
5916 if (IS_ERR(folio)) {
5918 * Returning error will result in faulting task being
5919 * sent SIGBUS. The hugetlb fault mutex prevents two
5920 * tasks from racing to fault in the same page which
5921 * could result in false unable to allocate errors.
5922 * Page migration does not take the fault mutex, but
5923 * does a clear then write of pte's under page table
5924 * lock. Page fault code could race with migration,
5925 * notice the clear pte and try to allocate a page
5926 * here. Before returning error, get ptl and make
5927 * sure there really is no pte entry.
5929 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5930 ret = vmf_error(PTR_ERR(folio));
5935 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5936 __folio_mark_uptodate(folio);
5939 if (vma->vm_flags & VM_MAYSHARE) {
5940 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5943 * err can't be -EEXIST which implies someone
5944 * else consumed the reservation since hugetlb
5945 * fault mutex is held when add a hugetlb page
5946 * to the page cache. So it's safe to call
5947 * restore_reserve_on_error() here.
5949 restore_reserve_on_error(h, vma, haddr, folio);
5953 new_pagecache_folio = true;
5956 if (unlikely(anon_vma_prepare(vma))) {
5958 goto backout_unlocked;
5964 * If memory error occurs between mmap() and fault, some process
5965 * don't have hwpoisoned swap entry for errored virtual address.
5966 * So we need to block hugepage fault by PG_hwpoison bit check.
5968 if (unlikely(folio_test_hwpoison(folio))) {
5969 ret = VM_FAULT_HWPOISON_LARGE |
5970 VM_FAULT_SET_HINDEX(hstate_index(h));
5971 goto backout_unlocked;
5974 /* Check for page in userfault range. */
5975 if (userfaultfd_minor(vma)) {
5976 folio_unlock(folio);
5978 /* See comment in userfaultfd_missing() block above */
5979 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5983 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5990 * If we are going to COW a private mapping later, we examine the
5991 * pending reservations for this page now. This will ensure that
5992 * any allocations necessary to record that reservation occur outside
5995 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5996 if (vma_needs_reservation(h, vma, haddr) < 0) {
5998 goto backout_unlocked;
6000 /* Just decrements count, does not deallocate */
6001 vma_end_reservation(h, vma, haddr);
6004 ptl = huge_pte_lock(h, mm, ptep);
6006 /* If pte changed from under us, retry */
6007 if (!pte_same(huge_ptep_get(ptep), old_pte))
6011 hugepage_add_new_anon_rmap(folio, vma, haddr);
6013 page_dup_file_rmap(&folio->page, true);
6014 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6015 && (vma->vm_flags & VM_SHARED)));
6017 * If this pte was previously wr-protected, keep it wr-protected even
6020 if (unlikely(pte_marker_uffd_wp(old_pte)))
6021 new_pte = huge_pte_mkuffd_wp(new_pte);
6022 set_huge_pte_at(mm, haddr, ptep, new_pte);
6024 hugetlb_count_add(pages_per_huge_page(h), mm);
6025 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6026 /* Optimization, do the COW without a second fault */
6027 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6033 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6034 * found in the pagecache may not have hugetlb_migratable if they have
6035 * been isolated for migration.
6038 folio_set_hugetlb_migratable(folio);
6040 folio_unlock(folio);
6042 hugetlb_vma_unlock_read(vma);
6043 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6049 if (new_folio && !new_pagecache_folio)
6050 restore_reserve_on_error(h, vma, haddr, folio);
6052 folio_unlock(folio);
6058 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6060 unsigned long key[2];
6063 key[0] = (unsigned long) mapping;
6066 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6068 return hash & (num_fault_mutexes - 1);
6072 * For uniprocessor systems we always use a single mutex, so just
6073 * return 0 and avoid the hashing overhead.
6075 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6081 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6082 unsigned long address, unsigned int flags)
6089 struct folio *folio = NULL;
6090 struct folio *pagecache_folio = NULL;
6091 struct hstate *h = hstate_vma(vma);
6092 struct address_space *mapping;
6093 int need_wait_lock = 0;
6094 unsigned long haddr = address & huge_page_mask(h);
6097 * Serialize hugepage allocation and instantiation, so that we don't
6098 * get spurious allocation failures if two CPUs race to instantiate
6099 * the same page in the page cache.
6101 mapping = vma->vm_file->f_mapping;
6102 idx = vma_hugecache_offset(h, vma, haddr);
6103 hash = hugetlb_fault_mutex_hash(mapping, idx);
6104 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6107 * Acquire vma lock before calling huge_pte_alloc and hold
6108 * until finished with ptep. This prevents huge_pmd_unshare from
6109 * being called elsewhere and making the ptep no longer valid.
6111 hugetlb_vma_lock_read(vma);
6112 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6114 hugetlb_vma_unlock_read(vma);
6115 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6116 return VM_FAULT_OOM;
6119 entry = huge_ptep_get(ptep);
6120 /* PTE markers should be handled the same way as none pte */
6121 if (huge_pte_none_mostly(entry))
6123 * hugetlb_no_page will drop vma lock and hugetlb fault
6124 * mutex internally, which make us return immediately.
6126 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6132 * entry could be a migration/hwpoison entry at this point, so this
6133 * check prevents the kernel from going below assuming that we have
6134 * an active hugepage in pagecache. This goto expects the 2nd page
6135 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6136 * properly handle it.
6138 if (!pte_present(entry)) {
6139 if (unlikely(is_hugetlb_entry_migration(entry))) {
6141 * Release the hugetlb fault lock now, but retain
6142 * the vma lock, because it is needed to guard the
6143 * huge_pte_lockptr() later in
6144 * migration_entry_wait_huge(). The vma lock will
6145 * be released there.
6147 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6148 migration_entry_wait_huge(vma, ptep);
6150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6151 ret = VM_FAULT_HWPOISON_LARGE |
6152 VM_FAULT_SET_HINDEX(hstate_index(h));
6157 * If we are going to COW/unshare the mapping later, we examine the
6158 * pending reservations for this page now. This will ensure that any
6159 * allocations necessary to record that reservation occur outside the
6160 * spinlock. Also lookup the pagecache page now as it is used to
6161 * determine if a reservation has been consumed.
6163 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6164 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6165 if (vma_needs_reservation(h, vma, haddr) < 0) {
6169 /* Just decrements count, does not deallocate */
6170 vma_end_reservation(h, vma, haddr);
6172 pagecache_folio = filemap_lock_folio(mapping, idx);
6173 if (IS_ERR(pagecache_folio))
6174 pagecache_folio = NULL;
6177 ptl = huge_pte_lock(h, mm, ptep);
6179 /* Check for a racing update before calling hugetlb_wp() */
6180 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6183 /* Handle userfault-wp first, before trying to lock more pages */
6184 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6185 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6186 struct vm_fault vmf = {
6189 .real_address = address,
6194 if (pagecache_folio) {
6195 folio_unlock(pagecache_folio);
6196 folio_put(pagecache_folio);
6198 hugetlb_vma_unlock_read(vma);
6199 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6200 return handle_userfault(&vmf, VM_UFFD_WP);
6204 * hugetlb_wp() requires page locks of pte_page(entry) and
6205 * pagecache_folio, so here we need take the former one
6206 * when folio != pagecache_folio or !pagecache_folio.
6208 folio = page_folio(pte_page(entry));
6209 if (folio != pagecache_folio)
6210 if (!folio_trylock(folio)) {
6217 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6218 if (!huge_pte_write(entry)) {
6219 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6220 pagecache_folio, ptl);
6222 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6223 entry = huge_pte_mkdirty(entry);
6226 entry = pte_mkyoung(entry);
6227 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6228 flags & FAULT_FLAG_WRITE))
6229 update_mmu_cache(vma, haddr, ptep);
6231 if (folio != pagecache_folio)
6232 folio_unlock(folio);
6237 if (pagecache_folio) {
6238 folio_unlock(pagecache_folio);
6239 folio_put(pagecache_folio);
6242 hugetlb_vma_unlock_read(vma);
6243 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6245 * Generally it's safe to hold refcount during waiting page lock. But
6246 * here we just wait to defer the next page fault to avoid busy loop and
6247 * the page is not used after unlocked before returning from the current
6248 * page fault. So we are safe from accessing freed page, even if we wait
6249 * here without taking refcount.
6252 folio_wait_locked(folio);
6256 #ifdef CONFIG_USERFAULTFD
6258 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6259 * with modifications for hugetlb pages.
6261 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6262 struct vm_area_struct *dst_vma,
6263 unsigned long dst_addr,
6264 unsigned long src_addr,
6266 struct folio **foliop)
6268 struct mm_struct *dst_mm = dst_vma->vm_mm;
6269 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6270 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6271 struct hstate *h = hstate_vma(dst_vma);
6272 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6273 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6275 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6279 struct folio *folio;
6281 bool folio_in_pagecache = false;
6285 folio = filemap_lock_folio(mapping, idx);
6288 folio_in_pagecache = true;
6289 } else if (!*foliop) {
6290 /* If a folio already exists, then it's UFFDIO_COPY for
6291 * a non-missing case. Return -EEXIST.
6294 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6299 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6300 if (IS_ERR(folio)) {
6305 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6308 /* fallback to copy_from_user outside mmap_lock */
6309 if (unlikely(ret)) {
6311 /* Free the allocated folio which may have
6312 * consumed a reservation.
6314 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6317 /* Allocate a temporary folio to hold the copied
6320 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6326 /* Set the outparam foliop and return to the caller to
6327 * copy the contents outside the lock. Don't free the
6334 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6341 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6342 if (IS_ERR(folio)) {
6348 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6358 * The memory barrier inside __folio_mark_uptodate makes sure that
6359 * preceding stores to the page contents become visible before
6360 * the set_pte_at() write.
6362 __folio_mark_uptodate(folio);
6364 /* Add shared, newly allocated pages to the page cache. */
6365 if (vm_shared && !is_continue) {
6366 size = i_size_read(mapping->host) >> huge_page_shift(h);
6369 goto out_release_nounlock;
6372 * Serialization between remove_inode_hugepages() and
6373 * hugetlb_add_to_page_cache() below happens through the
6374 * hugetlb_fault_mutex_table that here must be hold by
6377 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6379 goto out_release_nounlock;
6380 folio_in_pagecache = true;
6383 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6386 if (folio_test_hwpoison(folio))
6387 goto out_release_unlock;
6390 * We allow to overwrite a pte marker: consider when both MISSING|WP
6391 * registered, we firstly wr-protect a none pte which has no page cache
6392 * page backing it, then access the page.
6395 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6396 goto out_release_unlock;
6398 if (folio_in_pagecache)
6399 page_dup_file_rmap(&folio->page, true);
6401 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6404 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6405 * with wp flag set, don't set pte write bit.
6407 if (wp_enabled || (is_continue && !vm_shared))
6410 writable = dst_vma->vm_flags & VM_WRITE;
6412 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6414 * Always mark UFFDIO_COPY page dirty; note that this may not be
6415 * extremely important for hugetlbfs for now since swapping is not
6416 * supported, but we should still be clear in that this page cannot be
6417 * thrown away at will, even if write bit not set.
6419 _dst_pte = huge_pte_mkdirty(_dst_pte);
6420 _dst_pte = pte_mkyoung(_dst_pte);
6423 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6425 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6427 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6429 /* No need to invalidate - it was non-present before */
6430 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6434 folio_set_hugetlb_migratable(folio);
6435 if (vm_shared || is_continue)
6436 folio_unlock(folio);
6442 if (vm_shared || is_continue)
6443 folio_unlock(folio);
6444 out_release_nounlock:
6445 if (!folio_in_pagecache)
6446 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6450 #endif /* CONFIG_USERFAULTFD */
6452 static void record_subpages(struct page *page, struct vm_area_struct *vma,
6453 int refs, struct page **pages)
6457 for (nr = 0; nr < refs; nr++) {
6459 pages[nr] = nth_page(page, nr);
6463 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6464 unsigned int flags, pte_t *pte,
6467 pte_t pteval = huge_ptep_get(pte);
6470 if (is_swap_pte(pteval))
6472 if (huge_pte_write(pteval))
6474 if (flags & FOLL_WRITE)
6476 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6483 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6484 unsigned long address, unsigned int flags)
6486 struct hstate *h = hstate_vma(vma);
6487 struct mm_struct *mm = vma->vm_mm;
6488 unsigned long haddr = address & huge_page_mask(h);
6489 struct page *page = NULL;
6494 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6495 * follow_hugetlb_page().
6497 if (WARN_ON_ONCE(flags & FOLL_PIN))
6500 hugetlb_vma_lock_read(vma);
6501 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6505 ptl = huge_pte_lock(h, mm, pte);
6506 entry = huge_ptep_get(pte);
6507 if (pte_present(entry)) {
6508 page = pte_page(entry) +
6509 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6511 * Note that page may be a sub-page, and with vmemmap
6512 * optimizations the page struct may be read only.
6513 * try_grab_page() will increase the ref count on the
6514 * head page, so this will be OK.
6516 * try_grab_page() should always be able to get the page here,
6517 * because we hold the ptl lock and have verified pte_present().
6519 if (try_grab_page(page, flags)) {
6527 hugetlb_vma_unlock_read(vma);
6531 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6532 struct page **pages, unsigned long *position,
6533 unsigned long *nr_pages, long i, unsigned int flags,
6536 unsigned long pfn_offset;
6537 unsigned long vaddr = *position;
6538 unsigned long remainder = *nr_pages;
6539 struct hstate *h = hstate_vma(vma);
6540 int err = -EFAULT, refs;
6542 while (vaddr < vma->vm_end && remainder) {
6544 spinlock_t *ptl = NULL;
6545 bool unshare = false;
6550 * If we have a pending SIGKILL, don't keep faulting pages and
6551 * potentially allocating memory.
6553 if (fatal_signal_pending(current)) {
6558 hugetlb_vma_lock_read(vma);
6560 * Some archs (sparc64, sh*) have multiple pte_ts to
6561 * each hugepage. We have to make sure we get the
6562 * first, for the page indexing below to work.
6564 * Note that page table lock is not held when pte is null.
6566 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6569 ptl = huge_pte_lock(h, mm, pte);
6570 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6573 * When coredumping, it suits get_dump_page if we just return
6574 * an error where there's an empty slot with no huge pagecache
6575 * to back it. This way, we avoid allocating a hugepage, and
6576 * the sparse dumpfile avoids allocating disk blocks, but its
6577 * huge holes still show up with zeroes where they need to be.
6579 if (absent && (flags & FOLL_DUMP) &&
6580 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6583 hugetlb_vma_unlock_read(vma);
6589 * We need call hugetlb_fault for both hugepages under migration
6590 * (in which case hugetlb_fault waits for the migration,) and
6591 * hwpoisoned hugepages (in which case we need to prevent the
6592 * caller from accessing to them.) In order to do this, we use
6593 * here is_swap_pte instead of is_hugetlb_entry_migration and
6594 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6595 * both cases, and because we can't follow correct pages
6596 * directly from any kind of swap entries.
6599 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6601 unsigned int fault_flags = 0;
6605 hugetlb_vma_unlock_read(vma);
6607 if (flags & FOLL_WRITE)
6608 fault_flags |= FAULT_FLAG_WRITE;
6610 fault_flags |= FAULT_FLAG_UNSHARE;
6612 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6613 FAULT_FLAG_KILLABLE;
6614 if (flags & FOLL_INTERRUPTIBLE)
6615 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6617 if (flags & FOLL_NOWAIT)
6618 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6619 FAULT_FLAG_RETRY_NOWAIT;
6620 if (flags & FOLL_TRIED) {
6622 * Note: FAULT_FLAG_ALLOW_RETRY and
6623 * FAULT_FLAG_TRIED can co-exist
6625 fault_flags |= FAULT_FLAG_TRIED;
6627 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6628 if (ret & VM_FAULT_ERROR) {
6629 err = vm_fault_to_errno(ret, flags);
6633 if (ret & VM_FAULT_RETRY) {
6635 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6639 * VM_FAULT_RETRY must not return an
6640 * error, it will return zero
6643 * No need to update "position" as the
6644 * caller will not check it after
6645 * *nr_pages is set to 0.
6652 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6653 page = pte_page(huge_ptep_get(pte));
6655 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6656 !PageAnonExclusive(page), page);
6659 * If subpage information not requested, update counters
6660 * and skip the same_page loop below.
6662 if (!pages && !pfn_offset &&
6663 (vaddr + huge_page_size(h) < vma->vm_end) &&
6664 (remainder >= pages_per_huge_page(h))) {
6665 vaddr += huge_page_size(h);
6666 remainder -= pages_per_huge_page(h);
6667 i += pages_per_huge_page(h);
6669 hugetlb_vma_unlock_read(vma);
6673 /* vaddr may not be aligned to PAGE_SIZE */
6674 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6675 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6678 record_subpages(nth_page(page, pfn_offset),
6680 likely(pages) ? pages + i : NULL);
6684 * try_grab_folio() should always succeed here,
6685 * because: a) we hold the ptl lock, and b) we've just
6686 * checked that the huge page is present in the page
6687 * tables. If the huge page is present, then the tail
6688 * pages must also be present. The ptl prevents the
6689 * head page and tail pages from being rearranged in
6690 * any way. As this is hugetlb, the pages will never
6691 * be p2pdma or not longterm pinable. So this page
6692 * must be available at this point, unless the page
6693 * refcount overflowed:
6695 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6698 hugetlb_vma_unlock_read(vma);
6705 vaddr += (refs << PAGE_SHIFT);
6710 hugetlb_vma_unlock_read(vma);
6712 *nr_pages = remainder;
6714 * setting position is actually required only if remainder is
6715 * not zero but it's faster not to add a "if (remainder)"
6723 long hugetlb_change_protection(struct vm_area_struct *vma,
6724 unsigned long address, unsigned long end,
6725 pgprot_t newprot, unsigned long cp_flags)
6727 struct mm_struct *mm = vma->vm_mm;
6728 unsigned long start = address;
6731 struct hstate *h = hstate_vma(vma);
6732 long pages = 0, psize = huge_page_size(h);
6733 bool shared_pmd = false;
6734 struct mmu_notifier_range range;
6735 unsigned long last_addr_mask;
6736 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6737 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6740 * In the case of shared PMDs, the area to flush could be beyond
6741 * start/end. Set range.start/range.end to cover the maximum possible
6742 * range if PMD sharing is possible.
6744 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6746 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6748 BUG_ON(address >= end);
6749 flush_cache_range(vma, range.start, range.end);
6751 mmu_notifier_invalidate_range_start(&range);
6752 hugetlb_vma_lock_write(vma);
6753 i_mmap_lock_write(vma->vm_file->f_mapping);
6754 last_addr_mask = hugetlb_mask_last_page(h);
6755 for (; address < end; address += psize) {
6757 ptep = hugetlb_walk(vma, address, psize);
6760 address |= last_addr_mask;
6764 * Userfaultfd wr-protect requires pgtable
6765 * pre-allocations to install pte markers.
6767 ptep = huge_pte_alloc(mm, vma, address, psize);
6773 ptl = huge_pte_lock(h, mm, ptep);
6774 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6776 * When uffd-wp is enabled on the vma, unshare
6777 * shouldn't happen at all. Warn about it if it
6778 * happened due to some reason.
6780 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6784 address |= last_addr_mask;
6787 pte = huge_ptep_get(ptep);
6788 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6789 /* Nothing to do. */
6790 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6791 swp_entry_t entry = pte_to_swp_entry(pte);
6792 struct page *page = pfn_swap_entry_to_page(entry);
6795 if (is_writable_migration_entry(entry)) {
6797 entry = make_readable_exclusive_migration_entry(
6800 entry = make_readable_migration_entry(
6802 newpte = swp_entry_to_pte(entry);
6807 newpte = pte_swp_mkuffd_wp(newpte);
6808 else if (uffd_wp_resolve)
6809 newpte = pte_swp_clear_uffd_wp(newpte);
6810 if (!pte_same(pte, newpte))
6811 set_huge_pte_at(mm, address, ptep, newpte);
6812 } else if (unlikely(is_pte_marker(pte))) {
6813 /* No other markers apply for now. */
6814 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6815 if (uffd_wp_resolve)
6816 /* Safe to modify directly (non-present->none). */
6817 huge_pte_clear(mm, address, ptep, psize);
6818 } else if (!huge_pte_none(pte)) {
6820 unsigned int shift = huge_page_shift(hstate_vma(vma));
6822 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6823 pte = huge_pte_modify(old_pte, newprot);
6824 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6826 pte = huge_pte_mkuffd_wp(pte);
6827 else if (uffd_wp_resolve)
6828 pte = huge_pte_clear_uffd_wp(pte);
6829 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6833 if (unlikely(uffd_wp))
6834 /* Safe to modify directly (none->non-present). */
6835 set_huge_pte_at(mm, address, ptep,
6836 make_pte_marker(PTE_MARKER_UFFD_WP));
6841 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6842 * may have cleared our pud entry and done put_page on the page table:
6843 * once we release i_mmap_rwsem, another task can do the final put_page
6844 * and that page table be reused and filled with junk. If we actually
6845 * did unshare a page of pmds, flush the range corresponding to the pud.
6848 flush_hugetlb_tlb_range(vma, range.start, range.end);
6850 flush_hugetlb_tlb_range(vma, start, end);
6852 * No need to call mmu_notifier_invalidate_range() we are downgrading
6853 * page table protection not changing it to point to a new page.
6855 * See Documentation/mm/mmu_notifier.rst
6857 i_mmap_unlock_write(vma->vm_file->f_mapping);
6858 hugetlb_vma_unlock_write(vma);
6859 mmu_notifier_invalidate_range_end(&range);
6861 return pages > 0 ? (pages << h->order) : pages;
6864 /* Return true if reservation was successful, false otherwise. */
6865 bool hugetlb_reserve_pages(struct inode *inode,
6867 struct vm_area_struct *vma,
6868 vm_flags_t vm_flags)
6870 long chg = -1, add = -1;
6871 struct hstate *h = hstate_inode(inode);
6872 struct hugepage_subpool *spool = subpool_inode(inode);
6873 struct resv_map *resv_map;
6874 struct hugetlb_cgroup *h_cg = NULL;
6875 long gbl_reserve, regions_needed = 0;
6877 /* This should never happen */
6879 VM_WARN(1, "%s called with a negative range\n", __func__);
6884 * vma specific semaphore used for pmd sharing and fault/truncation
6887 hugetlb_vma_lock_alloc(vma);
6890 * Only apply hugepage reservation if asked. At fault time, an
6891 * attempt will be made for VM_NORESERVE to allocate a page
6892 * without using reserves
6894 if (vm_flags & VM_NORESERVE)
6898 * Shared mappings base their reservation on the number of pages that
6899 * are already allocated on behalf of the file. Private mappings need
6900 * to reserve the full area even if read-only as mprotect() may be
6901 * called to make the mapping read-write. Assume !vma is a shm mapping
6903 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6905 * resv_map can not be NULL as hugetlb_reserve_pages is only
6906 * called for inodes for which resv_maps were created (see
6907 * hugetlbfs_get_inode).
6909 resv_map = inode_resv_map(inode);
6911 chg = region_chg(resv_map, from, to, ®ions_needed);
6913 /* Private mapping. */
6914 resv_map = resv_map_alloc();
6920 set_vma_resv_map(vma, resv_map);
6921 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6927 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6928 chg * pages_per_huge_page(h), &h_cg) < 0)
6931 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6932 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6935 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6939 * There must be enough pages in the subpool for the mapping. If
6940 * the subpool has a minimum size, there may be some global
6941 * reservations already in place (gbl_reserve).
6943 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6944 if (gbl_reserve < 0)
6945 goto out_uncharge_cgroup;
6948 * Check enough hugepages are available for the reservation.
6949 * Hand the pages back to the subpool if there are not
6951 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6955 * Account for the reservations made. Shared mappings record regions
6956 * that have reservations as they are shared by multiple VMAs.
6957 * When the last VMA disappears, the region map says how much
6958 * the reservation was and the page cache tells how much of
6959 * the reservation was consumed. Private mappings are per-VMA and
6960 * only the consumed reservations are tracked. When the VMA
6961 * disappears, the original reservation is the VMA size and the
6962 * consumed reservations are stored in the map. Hence, nothing
6963 * else has to be done for private mappings here
6965 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6966 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6968 if (unlikely(add < 0)) {
6969 hugetlb_acct_memory(h, -gbl_reserve);
6971 } else if (unlikely(chg > add)) {
6973 * pages in this range were added to the reserve
6974 * map between region_chg and region_add. This
6975 * indicates a race with alloc_hugetlb_folio. Adjust
6976 * the subpool and reserve counts modified above
6977 * based on the difference.
6982 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6983 * reference to h_cg->css. See comment below for detail.
6985 hugetlb_cgroup_uncharge_cgroup_rsvd(
6987 (chg - add) * pages_per_huge_page(h), h_cg);
6989 rsv_adjust = hugepage_subpool_put_pages(spool,
6991 hugetlb_acct_memory(h, -rsv_adjust);
6994 * The file_regions will hold their own reference to
6995 * h_cg->css. So we should release the reference held
6996 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6999 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7005 /* put back original number of pages, chg */
7006 (void)hugepage_subpool_put_pages(spool, chg);
7007 out_uncharge_cgroup:
7008 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7009 chg * pages_per_huge_page(h), h_cg);
7011 hugetlb_vma_lock_free(vma);
7012 if (!vma || vma->vm_flags & VM_MAYSHARE)
7013 /* Only call region_abort if the region_chg succeeded but the
7014 * region_add failed or didn't run.
7016 if (chg >= 0 && add < 0)
7017 region_abort(resv_map, from, to, regions_needed);
7018 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
7019 kref_put(&resv_map->refs, resv_map_release);
7023 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7026 struct hstate *h = hstate_inode(inode);
7027 struct resv_map *resv_map = inode_resv_map(inode);
7029 struct hugepage_subpool *spool = subpool_inode(inode);
7033 * Since this routine can be called in the evict inode path for all
7034 * hugetlbfs inodes, resv_map could be NULL.
7037 chg = region_del(resv_map, start, end);
7039 * region_del() can fail in the rare case where a region
7040 * must be split and another region descriptor can not be
7041 * allocated. If end == LONG_MAX, it will not fail.
7047 spin_lock(&inode->i_lock);
7048 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7049 spin_unlock(&inode->i_lock);
7052 * If the subpool has a minimum size, the number of global
7053 * reservations to be released may be adjusted.
7055 * Note that !resv_map implies freed == 0. So (chg - freed)
7056 * won't go negative.
7058 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7059 hugetlb_acct_memory(h, -gbl_reserve);
7064 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7065 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7066 struct vm_area_struct *vma,
7067 unsigned long addr, pgoff_t idx)
7069 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7071 unsigned long sbase = saddr & PUD_MASK;
7072 unsigned long s_end = sbase + PUD_SIZE;
7074 /* Allow segments to share if only one is marked locked */
7075 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7076 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7079 * match the virtual addresses, permission and the alignment of the
7082 * Also, vma_lock (vm_private_data) is required for sharing.
7084 if (pmd_index(addr) != pmd_index(saddr) ||
7085 vm_flags != svm_flags ||
7086 !range_in_vma(svma, sbase, s_end) ||
7087 !svma->vm_private_data)
7093 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7095 unsigned long start = addr & PUD_MASK;
7096 unsigned long end = start + PUD_SIZE;
7098 #ifdef CONFIG_USERFAULTFD
7099 if (uffd_disable_huge_pmd_share(vma))
7103 * check on proper vm_flags and page table alignment
7105 if (!(vma->vm_flags & VM_MAYSHARE))
7107 if (!vma->vm_private_data) /* vma lock required for sharing */
7109 if (!range_in_vma(vma, start, end))
7115 * Determine if start,end range within vma could be mapped by shared pmd.
7116 * If yes, adjust start and end to cover range associated with possible
7117 * shared pmd mappings.
7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120 unsigned long *start, unsigned long *end)
7122 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7123 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7126 * vma needs to span at least one aligned PUD size, and the range
7127 * must be at least partially within in.
7129 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7130 (*end <= v_start) || (*start >= v_end))
7133 /* Extend the range to be PUD aligned for a worst case scenario */
7134 if (*start > v_start)
7135 *start = ALIGN_DOWN(*start, PUD_SIZE);
7138 *end = ALIGN(*end, PUD_SIZE);
7142 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7143 * and returns the corresponding pte. While this is not necessary for the
7144 * !shared pmd case because we can allocate the pmd later as well, it makes the
7145 * code much cleaner. pmd allocation is essential for the shared case because
7146 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7147 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7148 * bad pmd for sharing.
7150 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7151 unsigned long addr, pud_t *pud)
7153 struct address_space *mapping = vma->vm_file->f_mapping;
7154 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7156 struct vm_area_struct *svma;
7157 unsigned long saddr;
7161 i_mmap_lock_read(mapping);
7162 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7166 saddr = page_table_shareable(svma, vma, addr, idx);
7168 spte = hugetlb_walk(svma, saddr,
7169 vma_mmu_pagesize(svma));
7171 get_page(virt_to_page(spte));
7180 spin_lock(&mm->page_table_lock);
7181 if (pud_none(*pud)) {
7182 pud_populate(mm, pud,
7183 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7186 put_page(virt_to_page(spte));
7188 spin_unlock(&mm->page_table_lock);
7190 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7191 i_mmap_unlock_read(mapping);
7196 * unmap huge page backed by shared pte.
7198 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7199 * indicated by page_count > 1, unmap is achieved by clearing pud and
7200 * decrementing the ref count. If count == 1, the pte page is not shared.
7202 * Called with page table lock held.
7204 * returns: 1 successfully unmapped a shared pte page
7205 * 0 the underlying pte page is not shared, or it is the last user
7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7208 unsigned long addr, pte_t *ptep)
7210 pgd_t *pgd = pgd_offset(mm, addr);
7211 p4d_t *p4d = p4d_offset(pgd, addr);
7212 pud_t *pud = pud_offset(p4d, addr);
7214 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7215 hugetlb_vma_assert_locked(vma);
7216 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7217 if (page_count(virt_to_page(ptep)) == 1)
7221 put_page(virt_to_page(ptep));
7226 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7228 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7229 unsigned long addr, pud_t *pud)
7234 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7235 unsigned long addr, pte_t *ptep)
7240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7241 unsigned long *start, unsigned long *end)
7245 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7249 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7251 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7252 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7253 unsigned long addr, unsigned long sz)
7260 pgd = pgd_offset(mm, addr);
7261 p4d = p4d_alloc(mm, pgd, addr);
7264 pud = pud_alloc(mm, p4d, addr);
7266 if (sz == PUD_SIZE) {
7269 BUG_ON(sz != PMD_SIZE);
7270 if (want_pmd_share(vma, addr) && pud_none(*pud))
7271 pte = huge_pmd_share(mm, vma, addr, pud);
7273 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7278 pte_t pteval = ptep_get_lockless(pte);
7280 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7287 * huge_pte_offset() - Walk the page table to resolve the hugepage
7288 * entry at address @addr
7290 * Return: Pointer to page table entry (PUD or PMD) for
7291 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7292 * size @sz doesn't match the hugepage size at this level of the page
7295 pte_t *huge_pte_offset(struct mm_struct *mm,
7296 unsigned long addr, unsigned long sz)
7303 pgd = pgd_offset(mm, addr);
7304 if (!pgd_present(*pgd))
7306 p4d = p4d_offset(pgd, addr);
7307 if (!p4d_present(*p4d))
7310 pud = pud_offset(p4d, addr);
7312 /* must be pud huge, non-present or none */
7313 return (pte_t *)pud;
7314 if (!pud_present(*pud))
7316 /* must have a valid entry and size to go further */
7318 pmd = pmd_offset(pud, addr);
7319 /* must be pmd huge, non-present or none */
7320 return (pte_t *)pmd;
7324 * Return a mask that can be used to update an address to the last huge
7325 * page in a page table page mapping size. Used to skip non-present
7326 * page table entries when linearly scanning address ranges. Architectures
7327 * with unique huge page to page table relationships can define their own
7328 * version of this routine.
7330 unsigned long hugetlb_mask_last_page(struct hstate *h)
7332 unsigned long hp_size = huge_page_size(h);
7334 if (hp_size == PUD_SIZE)
7335 return P4D_SIZE - PUD_SIZE;
7336 else if (hp_size == PMD_SIZE)
7337 return PUD_SIZE - PMD_SIZE;
7344 /* See description above. Architectures can provide their own version. */
7345 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7347 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7348 if (huge_page_size(h) == PMD_SIZE)
7349 return PUD_SIZE - PMD_SIZE;
7354 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7357 * These functions are overwritable if your architecture needs its own
7360 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7364 spin_lock_irq(&hugetlb_lock);
7365 if (!folio_test_hugetlb(folio) ||
7366 !folio_test_hugetlb_migratable(folio) ||
7367 !folio_try_get(folio)) {
7371 folio_clear_hugetlb_migratable(folio);
7372 list_move_tail(&folio->lru, list);
7374 spin_unlock_irq(&hugetlb_lock);
7378 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7383 spin_lock_irq(&hugetlb_lock);
7384 if (folio_test_hugetlb(folio)) {
7386 if (folio_test_hugetlb_freed(folio))
7388 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7389 ret = folio_try_get(folio);
7393 spin_unlock_irq(&hugetlb_lock);
7397 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7398 bool *migratable_cleared)
7402 spin_lock_irq(&hugetlb_lock);
7403 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7404 spin_unlock_irq(&hugetlb_lock);
7408 void folio_putback_active_hugetlb(struct folio *folio)
7410 spin_lock_irq(&hugetlb_lock);
7411 folio_set_hugetlb_migratable(folio);
7412 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7413 spin_unlock_irq(&hugetlb_lock);
7417 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7419 struct hstate *h = folio_hstate(old_folio);
7421 hugetlb_cgroup_migrate(old_folio, new_folio);
7422 set_page_owner_migrate_reason(&new_folio->page, reason);
7425 * transfer temporary state of the new hugetlb folio. This is
7426 * reverse to other transitions because the newpage is going to
7427 * be final while the old one will be freed so it takes over
7428 * the temporary status.
7430 * Also note that we have to transfer the per-node surplus state
7431 * here as well otherwise the global surplus count will not match
7434 if (folio_test_hugetlb_temporary(new_folio)) {
7435 int old_nid = folio_nid(old_folio);
7436 int new_nid = folio_nid(new_folio);
7438 folio_set_hugetlb_temporary(old_folio);
7439 folio_clear_hugetlb_temporary(new_folio);
7443 * There is no need to transfer the per-node surplus state
7444 * when we do not cross the node.
7446 if (new_nid == old_nid)
7448 spin_lock_irq(&hugetlb_lock);
7449 if (h->surplus_huge_pages_node[old_nid]) {
7450 h->surplus_huge_pages_node[old_nid]--;
7451 h->surplus_huge_pages_node[new_nid]++;
7453 spin_unlock_irq(&hugetlb_lock);
7457 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7458 unsigned long start,
7461 struct hstate *h = hstate_vma(vma);
7462 unsigned long sz = huge_page_size(h);
7463 struct mm_struct *mm = vma->vm_mm;
7464 struct mmu_notifier_range range;
7465 unsigned long address;
7469 if (!(vma->vm_flags & VM_MAYSHARE))
7475 flush_cache_range(vma, start, end);
7477 * No need to call adjust_range_if_pmd_sharing_possible(), because
7478 * we have already done the PUD_SIZE alignment.
7480 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7482 mmu_notifier_invalidate_range_start(&range);
7483 hugetlb_vma_lock_write(vma);
7484 i_mmap_lock_write(vma->vm_file->f_mapping);
7485 for (address = start; address < end; address += PUD_SIZE) {
7486 ptep = hugetlb_walk(vma, address, sz);
7489 ptl = huge_pte_lock(h, mm, ptep);
7490 huge_pmd_unshare(mm, vma, address, ptep);
7493 flush_hugetlb_tlb_range(vma, start, end);
7494 i_mmap_unlock_write(vma->vm_file->f_mapping);
7495 hugetlb_vma_unlock_write(vma);
7497 * No need to call mmu_notifier_invalidate_range(), see
7498 * Documentation/mm/mmu_notifier.rst.
7500 mmu_notifier_invalidate_range_end(&range);
7504 * This function will unconditionally remove all the shared pmd pgtable entries
7505 * within the specific vma for a hugetlbfs memory range.
7507 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7509 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7510 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7514 static bool cma_reserve_called __initdata;
7516 static int __init cmdline_parse_hugetlb_cma(char *p)
7523 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7526 if (s[count] == ':') {
7527 if (tmp >= MAX_NUMNODES)
7529 nid = array_index_nospec(tmp, MAX_NUMNODES);
7532 tmp = memparse(s, &s);
7533 hugetlb_cma_size_in_node[nid] = tmp;
7534 hugetlb_cma_size += tmp;
7537 * Skip the separator if have one, otherwise
7538 * break the parsing.
7545 hugetlb_cma_size = memparse(p, &p);
7553 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7555 void __init hugetlb_cma_reserve(int order)
7557 unsigned long size, reserved, per_node;
7558 bool node_specific_cma_alloc = false;
7561 cma_reserve_called = true;
7563 if (!hugetlb_cma_size)
7566 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7567 if (hugetlb_cma_size_in_node[nid] == 0)
7570 if (!node_online(nid)) {
7571 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7572 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7573 hugetlb_cma_size_in_node[nid] = 0;
7577 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7578 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7579 nid, (PAGE_SIZE << order) / SZ_1M);
7580 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7581 hugetlb_cma_size_in_node[nid] = 0;
7583 node_specific_cma_alloc = true;
7587 /* Validate the CMA size again in case some invalid nodes specified. */
7588 if (!hugetlb_cma_size)
7591 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7592 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7593 (PAGE_SIZE << order) / SZ_1M);
7594 hugetlb_cma_size = 0;
7598 if (!node_specific_cma_alloc) {
7600 * If 3 GB area is requested on a machine with 4 numa nodes,
7601 * let's allocate 1 GB on first three nodes and ignore the last one.
7603 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7604 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7605 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7609 for_each_online_node(nid) {
7611 char name[CMA_MAX_NAME];
7613 if (node_specific_cma_alloc) {
7614 if (hugetlb_cma_size_in_node[nid] == 0)
7617 size = hugetlb_cma_size_in_node[nid];
7619 size = min(per_node, hugetlb_cma_size - reserved);
7622 size = round_up(size, PAGE_SIZE << order);
7624 snprintf(name, sizeof(name), "hugetlb%d", nid);
7626 * Note that 'order per bit' is based on smallest size that
7627 * may be returned to CMA allocator in the case of
7628 * huge page demotion.
7630 res = cma_declare_contiguous_nid(0, size, 0,
7631 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7633 &hugetlb_cma[nid], nid);
7635 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7641 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7644 if (reserved >= hugetlb_cma_size)
7650 * hugetlb_cma_size is used to determine if allocations from
7651 * cma are possible. Set to zero if no cma regions are set up.
7653 hugetlb_cma_size = 0;
7656 static void __init hugetlb_cma_check(void)
7658 if (!hugetlb_cma_size || cma_reserve_called)
7661 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7664 #endif /* CONFIG_CMA */