Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77         bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79         spin_unlock(&spool->lock);
80
81         /* If no pages are used, and no other handles to the subpool
82          * remain, give up any reservations mased on minimum size and
83          * free the subpool */
84         if (free) {
85                 if (spool->min_hpages != -1)
86                         hugetlb_acct_memory(spool->hstate,
87                                                 -spool->min_hpages);
88                 kfree(spool);
89         }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93                                                 long min_hpages)
94 {
95         struct hugepage_subpool *spool;
96
97         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98         if (!spool)
99                 return NULL;
100
101         spin_lock_init(&spool->lock);
102         spool->count = 1;
103         spool->max_hpages = max_hpages;
104         spool->hstate = h;
105         spool->min_hpages = min_hpages;
106
107         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108                 kfree(spool);
109                 return NULL;
110         }
111         spool->rsv_hpages = min_hpages;
112
113         return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118         spin_lock(&spool->lock);
119         BUG_ON(!spool->count);
120         spool->count--;
121         unlock_or_release_subpool(spool);
122 }
123
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133                                       long delta)
134 {
135         long ret = delta;
136
137         if (!spool)
138                 return ret;
139
140         spin_lock(&spool->lock);
141
142         if (spool->max_hpages != -1) {          /* maximum size accounting */
143                 if ((spool->used_hpages + delta) <= spool->max_hpages)
144                         spool->used_hpages += delta;
145                 else {
146                         ret = -ENOMEM;
147                         goto unlock_ret;
148                 }
149         }
150
151         /* minimum size accounting */
152         if (spool->min_hpages != -1 && spool->rsv_hpages) {
153                 if (delta > spool->rsv_hpages) {
154                         /*
155                          * Asking for more reserves than those already taken on
156                          * behalf of subpool.  Return difference.
157                          */
158                         ret = delta - spool->rsv_hpages;
159                         spool->rsv_hpages = 0;
160                 } else {
161                         ret = 0;        /* reserves already accounted for */
162                         spool->rsv_hpages -= delta;
163                 }
164         }
165
166 unlock_ret:
167         spin_unlock(&spool->lock);
168         return ret;
169 }
170
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178                                        long delta)
179 {
180         long ret = delta;
181
182         if (!spool)
183                 return delta;
184
185         spin_lock(&spool->lock);
186
187         if (spool->max_hpages != -1)            /* maximum size accounting */
188                 spool->used_hpages -= delta;
189
190          /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192                 if (spool->rsv_hpages + delta <= spool->min_hpages)
193                         ret = 0;
194                 else
195                         ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197                 spool->rsv_hpages += delta;
198                 if (spool->rsv_hpages > spool->min_hpages)
199                         spool->rsv_hpages = spool->min_hpages;
200         }
201
202         /*
203          * If hugetlbfs_put_super couldn't free spool due to an outstanding
204          * quota reference, free it now.
205          */
206         unlock_or_release_subpool(spool);
207
208         return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213         return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218         return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241         struct list_head link;
242         long from;
243         long to;
244 };
245
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *nrg, *trg;
264         long add = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (f <= rg->to)
270                         break;
271
272         /*
273          * If no region exists which can be expanded to include the
274          * specified range, the list must have been modified by an
275          * interleving call to region_del().  Pull a region descriptor
276          * from the cache and use it for this range.
277          */
278         if (&rg->link == head || t < rg->from) {
279                 VM_BUG_ON(resv->region_cache_count <= 0);
280
281                 resv->region_cache_count--;
282                 nrg = list_first_entry(&resv->region_cache, struct file_region,
283                                         link);
284                 list_del(&nrg->link);
285
286                 nrg->from = f;
287                 nrg->to = t;
288                 list_add(&nrg->link, rg->link.prev);
289
290                 add += t - f;
291                 goto out_locked;
292         }
293
294         /* Round our left edge to the current segment if it encloses us. */
295         if (f > rg->from)
296                 f = rg->from;
297
298         /* Check for and consume any regions we now overlap with. */
299         nrg = rg;
300         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301                 if (&rg->link == head)
302                         break;
303                 if (rg->from > t)
304                         break;
305
306                 /* If this area reaches higher then extend our area to
307                  * include it completely.  If this is not the first area
308                  * which we intend to reuse, free it. */
309                 if (rg->to > t)
310                         t = rg->to;
311                 if (rg != nrg) {
312                         /* Decrement return value by the deleted range.
313                          * Another range will span this area so that by
314                          * end of routine add will be >= zero
315                          */
316                         add -= (rg->to - rg->from);
317                         list_del(&rg->link);
318                         kfree(rg);
319                 }
320         }
321
322         add += (nrg->from - f);         /* Added to beginning of region */
323         nrg->from = f;
324         add += t - nrg->to;             /* Added to end of region */
325         nrg->to = t;
326
327 out_locked:
328         resv->adds_in_progress--;
329         spin_unlock(&resv->lock);
330         VM_BUG_ON(add < 0);
331         return add;
332 }
333
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358         struct list_head *head = &resv->regions;
359         struct file_region *rg, *nrg = NULL;
360         long chg = 0;
361
362 retry:
363         spin_lock(&resv->lock);
364 retry_locked:
365         resv->adds_in_progress++;
366
367         /*
368          * Check for sufficient descriptors in the cache to accommodate
369          * the number of in progress add operations.
370          */
371         if (resv->adds_in_progress > resv->region_cache_count) {
372                 struct file_region *trg;
373
374                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375                 /* Must drop lock to allocate a new descriptor. */
376                 resv->adds_in_progress--;
377                 spin_unlock(&resv->lock);
378
379                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380                 if (!trg) {
381                         kfree(nrg);
382                         return -ENOMEM;
383                 }
384
385                 spin_lock(&resv->lock);
386                 list_add(&trg->link, &resv->region_cache);
387                 resv->region_cache_count++;
388                 goto retry_locked;
389         }
390
391         /* Locate the region we are before or in. */
392         list_for_each_entry(rg, head, link)
393                 if (f <= rg->to)
394                         break;
395
396         /* If we are below the current region then a new region is required.
397          * Subtle, allocate a new region at the position but make it zero
398          * size such that we can guarantee to record the reservation. */
399         if (&rg->link == head || t < rg->from) {
400                 if (!nrg) {
401                         resv->adds_in_progress--;
402                         spin_unlock(&resv->lock);
403                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404                         if (!nrg)
405                                 return -ENOMEM;
406
407                         nrg->from = f;
408                         nrg->to   = f;
409                         INIT_LIST_HEAD(&nrg->link);
410                         goto retry;
411                 }
412
413                 list_add(&nrg->link, rg->link.prev);
414                 chg = t - f;
415                 goto out_nrg;
416         }
417
418         /* Round our left edge to the current segment if it encloses us. */
419         if (f > rg->from)
420                 f = rg->from;
421         chg = t - f;
422
423         /* Check for and consume any regions we now overlap with. */
424         list_for_each_entry(rg, rg->link.prev, link) {
425                 if (&rg->link == head)
426                         break;
427                 if (rg->from > t)
428                         goto out;
429
430                 /* We overlap with this area, if it extends further than
431                  * us then we must extend ourselves.  Account for its
432                  * existing reservation. */
433                 if (rg->to > t) {
434                         chg += rg->to - t;
435                         t = rg->to;
436                 }
437                 chg -= rg->to - rg->from;
438         }
439
440 out:
441         spin_unlock(&resv->lock);
442         /*  We already know we raced and no longer need the new region */
443         kfree(nrg);
444         return chg;
445 out_nrg:
446         spin_unlock(&resv->lock);
447         return chg;
448 }
449
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463         spin_lock(&resv->lock);
464         VM_BUG_ON(!resv->region_cache_count);
465         resv->adds_in_progress--;
466         spin_unlock(&resv->lock);
467 }
468
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485         struct list_head *head = &resv->regions;
486         struct file_region *rg, *trg;
487         struct file_region *nrg = NULL;
488         long del = 0;
489
490 retry:
491         spin_lock(&resv->lock);
492         list_for_each_entry_safe(rg, trg, head, link) {
493                 /*
494                  * Skip regions before the range to be deleted.  file_region
495                  * ranges are normally of the form [from, to).  However, there
496                  * may be a "placeholder" entry in the map which is of the form
497                  * (from, to) with from == to.  Check for placeholder entries
498                  * at the beginning of the range to be deleted.
499                  */
500                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501                         continue;
502
503                 if (rg->from >= t)
504                         break;
505
506                 if (f > rg->from && t < rg->to) { /* Must split region */
507                         /*
508                          * Check for an entry in the cache before dropping
509                          * lock and attempting allocation.
510                          */
511                         if (!nrg &&
512                             resv->region_cache_count > resv->adds_in_progress) {
513                                 nrg = list_first_entry(&resv->region_cache,
514                                                         struct file_region,
515                                                         link);
516                                 list_del(&nrg->link);
517                                 resv->region_cache_count--;
518                         }
519
520                         if (!nrg) {
521                                 spin_unlock(&resv->lock);
522                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523                                 if (!nrg)
524                                         return -ENOMEM;
525                                 goto retry;
526                         }
527
528                         del += t - f;
529
530                         /* New entry for end of split region */
531                         nrg->from = t;
532                         nrg->to = rg->to;
533                         INIT_LIST_HEAD(&nrg->link);
534
535                         /* Original entry is trimmed */
536                         rg->to = f;
537
538                         list_add(&nrg->link, &rg->link);
539                         nrg = NULL;
540                         break;
541                 }
542
543                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544                         del += rg->to - rg->from;
545                         list_del(&rg->link);
546                         kfree(rg);
547                         continue;
548                 }
549
550                 if (f <= rg->from) {    /* Trim beginning of region */
551                         del += t - rg->from;
552                         rg->from = t;
553                 } else {                /* Trim end of region */
554                         del += rg->to - f;
555                         rg->to = f;
556                 }
557         }
558
559         spin_unlock(&resv->lock);
560         kfree(nrg);
561         return del;
562 }
563
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575         struct hugepage_subpool *spool = subpool_inode(inode);
576         long rsv_adjust;
577
578         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579         if (rsv_adjust) {
580                 struct hstate *h = hstate_inode(inode);
581
582                 hugetlb_acct_memory(h, 1);
583         }
584 }
585
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592         struct list_head *head = &resv->regions;
593         struct file_region *rg;
594         long chg = 0;
595
596         spin_lock(&resv->lock);
597         /* Locate each segment we overlap with, and count that overlap. */
598         list_for_each_entry(rg, head, link) {
599                 long seg_from;
600                 long seg_to;
601
602                 if (rg->to <= f)
603                         continue;
604                 if (rg->from >= t)
605                         break;
606
607                 seg_from = max(rg->from, f);
608                 seg_to = min(rg->to, t);
609
610                 chg += seg_to - seg_from;
611         }
612         spin_unlock(&resv->lock);
613
614         return chg;
615 }
616
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622                         struct vm_area_struct *vma, unsigned long address)
623 {
624         return ((address - vma->vm_start) >> huge_page_shift(h)) +
625                         (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629                                      unsigned long address)
630 {
631         return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641         if (vma->vm_ops && vma->vm_ops->pagesize)
642                 return vma->vm_ops->pagesize(vma);
643         return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832                 /*
833                  * Like the shared case above, a hole punch or truncate
834                  * could have been performed on the private mapping.
835                  * Examine the value of chg to determine if reserves
836                  * actually exist or were previously consumed.
837                  * Very Subtle - The value of chg comes from a previous
838                  * call to vma_needs_reserves().  The reserve map for
839                  * private mappings has different (opposite) semantics
840                  * than that of shared mappings.  vma_needs_reserves()
841                  * has already taken this difference in semantics into
842                  * account.  Therefore, the meaning of chg is the same
843                  * as in the shared case above.  Code could easily be
844                  * combined, but keeping it separate draws attention to
845                  * subtle differences.
846                  */
847                 if (chg)
848                         return false;
849                 else
850                         return true;
851         }
852
853         return false;
854 }
855
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858         int nid = page_to_nid(page);
859         list_move(&page->lru, &h->hugepage_freelists[nid]);
860         h->free_huge_pages++;
861         h->free_huge_pages_node[nid]++;
862 }
863
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866         struct page *page;
867
868         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869                 if (!PageHWPoison(page))
870                         break;
871         /*
872          * if 'non-isolated free hugepage' not found on the list,
873          * the allocation fails.
874          */
875         if (&h->hugepage_freelists[nid] == &page->lru)
876                 return NULL;
877         list_move(&page->lru, &h->hugepage_activelist);
878         set_page_refcounted(page);
879         h->free_huge_pages--;
880         h->free_huge_pages_node[nid]--;
881         return page;
882 }
883
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885                 nodemask_t *nmask)
886 {
887         unsigned int cpuset_mems_cookie;
888         struct zonelist *zonelist;
889         struct zone *zone;
890         struct zoneref *z;
891         int node = NUMA_NO_NODE;
892
893         zonelist = node_zonelist(nid, gfp_mask);
894
895 retry_cpuset:
896         cpuset_mems_cookie = read_mems_allowed_begin();
897         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898                 struct page *page;
899
900                 if (!cpuset_zone_allowed(zone, gfp_mask))
901                         continue;
902                 /*
903                  * no need to ask again on the same node. Pool is node rather than
904                  * zone aware
905                  */
906                 if (zone_to_nid(zone) == node)
907                         continue;
908                 node = zone_to_nid(zone);
909
910                 page = dequeue_huge_page_node_exact(h, node);
911                 if (page)
912                         return page;
913         }
914         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916
917         return NULL;
918 }
919
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923         if (hugepage_movable_supported(h))
924                 return GFP_HIGHUSER_MOVABLE;
925         else
926                 return GFP_HIGHUSER;
927 }
928
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930                                 struct vm_area_struct *vma,
931                                 unsigned long address, int avoid_reserve,
932                                 long chg)
933 {
934         struct page *page;
935         struct mempolicy *mpol;
936         gfp_t gfp_mask;
937         nodemask_t *nodemask;
938         int nid;
939
940         /*
941          * A child process with MAP_PRIVATE mappings created by their parent
942          * have no page reserves. This check ensures that reservations are
943          * not "stolen". The child may still get SIGKILLed
944          */
945         if (!vma_has_reserves(vma, chg) &&
946                         h->free_huge_pages - h->resv_huge_pages == 0)
947                 goto err;
948
949         /* If reserves cannot be used, ensure enough pages are in the pool */
950         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951                 goto err;
952
953         gfp_mask = htlb_alloc_mask(h);
954         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957                 SetPagePrivate(page);
958                 h->resv_huge_pages--;
959         }
960
961         mpol_cond_put(mpol);
962         return page;
963
964 err:
965         return NULL;
966 }
967
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977         nid = next_node_in(nid, *nodes_allowed);
978         VM_BUG_ON(nid >= MAX_NUMNODES);
979
980         return nid;
981 }
982
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985         if (!node_isset(nid, *nodes_allowed))
986                 nid = next_node_allowed(nid, nodes_allowed);
987         return nid;
988 }
989
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997                                         nodemask_t *nodes_allowed)
998 {
999         int nid;
1000
1001         VM_BUG_ON(!nodes_allowed);
1002
1003         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006         return nid;
1007 }
1008
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017         int nid;
1018
1019         VM_BUG_ON(!nodes_allowed);
1020
1021         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024         return nid;
1025 }
1026
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028         for (nr_nodes = nodes_weight(*mask);                            \
1029                 nr_nodes > 0 &&                                         \
1030                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                 nr_nodes--)
1032
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                 nr_nodes--)
1038
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041                                         unsigned int order)
1042 {
1043         int i;
1044         int nr_pages = 1 << order;
1045         struct page *p = page + 1;
1046
1047         atomic_set(compound_mapcount_ptr(page), 0);
1048         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                 clear_compound_head(p);
1050                 set_page_refcounted(p);
1051         }
1052
1053         set_compound_order(page, 0);
1054         __ClearPageHead(page);
1055 }
1056
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059         free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061
1062 static int __alloc_gigantic_page(unsigned long start_pfn,
1063                                 unsigned long nr_pages, gfp_t gfp_mask)
1064 {
1065         unsigned long end_pfn = start_pfn + nr_pages;
1066         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1067                                   gfp_mask);
1068 }
1069
1070 static bool pfn_range_valid_gigantic(struct zone *z,
1071                         unsigned long start_pfn, unsigned long nr_pages)
1072 {
1073         unsigned long i, end_pfn = start_pfn + nr_pages;
1074         struct page *page;
1075
1076         for (i = start_pfn; i < end_pfn; i++) {
1077                 if (!pfn_valid(i))
1078                         return false;
1079
1080                 page = pfn_to_page(i);
1081
1082                 if (page_zone(page) != z)
1083                         return false;
1084
1085                 if (PageReserved(page))
1086                         return false;
1087
1088                 if (page_count(page) > 0)
1089                         return false;
1090
1091                 if (PageHuge(page))
1092                         return false;
1093         }
1094
1095         return true;
1096 }
1097
1098 static bool zone_spans_last_pfn(const struct zone *zone,
1099                         unsigned long start_pfn, unsigned long nr_pages)
1100 {
1101         unsigned long last_pfn = start_pfn + nr_pages - 1;
1102         return zone_spans_pfn(zone, last_pfn);
1103 }
1104
1105 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1106                 int nid, nodemask_t *nodemask)
1107 {
1108         unsigned int order = huge_page_order(h);
1109         unsigned long nr_pages = 1 << order;
1110         unsigned long ret, pfn, flags;
1111         struct zonelist *zonelist;
1112         struct zone *zone;
1113         struct zoneref *z;
1114
1115         zonelist = node_zonelist(nid, gfp_mask);
1116         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1117                 spin_lock_irqsave(&zone->lock, flags);
1118
1119                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1120                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1121                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122                                 /*
1123                                  * We release the zone lock here because
1124                                  * alloc_contig_range() will also lock the zone
1125                                  * at some point. If there's an allocation
1126                                  * spinning on this lock, it may win the race
1127                                  * and cause alloc_contig_range() to fail...
1128                                  */
1129                                 spin_unlock_irqrestore(&zone->lock, flags);
1130                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131                                 if (!ret)
1132                                         return pfn_to_page(pfn);
1133                                 spin_lock_irqsave(&zone->lock, flags);
1134                         }
1135                         pfn += nr_pages;
1136                 }
1137
1138                 spin_unlock_irqrestore(&zone->lock, flags);
1139         }
1140
1141         return NULL;
1142 }
1143
1144 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1145 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146
1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148 static inline bool gigantic_page_supported(void) { return false; }
1149 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1150                 int nid, nodemask_t *nodemask) { return NULL; }
1151 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1152 static inline void destroy_compound_gigantic_page(struct page *page,
1153                                                 unsigned int order) { }
1154 #endif
1155
1156 static void update_and_free_page(struct hstate *h, struct page *page)
1157 {
1158         int i;
1159
1160         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1161                 return;
1162
1163         h->nr_huge_pages--;
1164         h->nr_huge_pages_node[page_to_nid(page)]--;
1165         for (i = 0; i < pages_per_huge_page(h); i++) {
1166                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1167                                 1 << PG_referenced | 1 << PG_dirty |
1168                                 1 << PG_active | 1 << PG_private |
1169                                 1 << PG_writeback);
1170         }
1171         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1172         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1173         set_page_refcounted(page);
1174         if (hstate_is_gigantic(h)) {
1175                 destroy_compound_gigantic_page(page, huge_page_order(h));
1176                 free_gigantic_page(page, huge_page_order(h));
1177         } else {
1178                 __free_pages(page, huge_page_order(h));
1179         }
1180 }
1181
1182 struct hstate *size_to_hstate(unsigned long size)
1183 {
1184         struct hstate *h;
1185
1186         for_each_hstate(h) {
1187                 if (huge_page_size(h) == size)
1188                         return h;
1189         }
1190         return NULL;
1191 }
1192
1193 /*
1194  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195  * to hstate->hugepage_activelist.)
1196  *
1197  * This function can be called for tail pages, but never returns true for them.
1198  */
1199 bool page_huge_active(struct page *page)
1200 {
1201         VM_BUG_ON_PAGE(!PageHuge(page), page);
1202         return PageHead(page) && PagePrivate(&page[1]);
1203 }
1204
1205 /* never called for tail page */
1206 static void set_page_huge_active(struct page *page)
1207 {
1208         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1209         SetPagePrivate(&page[1]);
1210 }
1211
1212 static void clear_page_huge_active(struct page *page)
1213 {
1214         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215         ClearPagePrivate(&page[1]);
1216 }
1217
1218 /*
1219  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1220  * code
1221  */
1222 static inline bool PageHugeTemporary(struct page *page)
1223 {
1224         if (!PageHuge(page))
1225                 return false;
1226
1227         return (unsigned long)page[2].mapping == -1U;
1228 }
1229
1230 static inline void SetPageHugeTemporary(struct page *page)
1231 {
1232         page[2].mapping = (void *)-1U;
1233 }
1234
1235 static inline void ClearPageHugeTemporary(struct page *page)
1236 {
1237         page[2].mapping = NULL;
1238 }
1239
1240 void free_huge_page(struct page *page)
1241 {
1242         /*
1243          * Can't pass hstate in here because it is called from the
1244          * compound page destructor.
1245          */
1246         struct hstate *h = page_hstate(page);
1247         int nid = page_to_nid(page);
1248         struct hugepage_subpool *spool =
1249                 (struct hugepage_subpool *)page_private(page);
1250         bool restore_reserve;
1251
1252         VM_BUG_ON_PAGE(page_count(page), page);
1253         VM_BUG_ON_PAGE(page_mapcount(page), page);
1254
1255         set_page_private(page, 0);
1256         page->mapping = NULL;
1257         restore_reserve = PagePrivate(page);
1258         ClearPagePrivate(page);
1259
1260         /*
1261          * A return code of zero implies that the subpool will be under its
1262          * minimum size if the reservation is not restored after page is free.
1263          * Therefore, force restore_reserve operation.
1264          */
1265         if (hugepage_subpool_put_pages(spool, 1) == 0)
1266                 restore_reserve = true;
1267
1268         spin_lock(&hugetlb_lock);
1269         clear_page_huge_active(page);
1270         hugetlb_cgroup_uncharge_page(hstate_index(h),
1271                                      pages_per_huge_page(h), page);
1272         if (restore_reserve)
1273                 h->resv_huge_pages++;
1274
1275         if (PageHugeTemporary(page)) {
1276                 list_del(&page->lru);
1277                 ClearPageHugeTemporary(page);
1278                 update_and_free_page(h, page);
1279         } else if (h->surplus_huge_pages_node[nid]) {
1280                 /* remove the page from active list */
1281                 list_del(&page->lru);
1282                 update_and_free_page(h, page);
1283                 h->surplus_huge_pages--;
1284                 h->surplus_huge_pages_node[nid]--;
1285         } else {
1286                 arch_clear_hugepage_flags(page);
1287                 enqueue_huge_page(h, page);
1288         }
1289         spin_unlock(&hugetlb_lock);
1290 }
1291
1292 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1293 {
1294         INIT_LIST_HEAD(&page->lru);
1295         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1296         spin_lock(&hugetlb_lock);
1297         set_hugetlb_cgroup(page, NULL);
1298         h->nr_huge_pages++;
1299         h->nr_huge_pages_node[nid]++;
1300         spin_unlock(&hugetlb_lock);
1301 }
1302
1303 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 {
1305         int i;
1306         int nr_pages = 1 << order;
1307         struct page *p = page + 1;
1308
1309         /* we rely on prep_new_huge_page to set the destructor */
1310         set_compound_order(page, order);
1311         __ClearPageReserved(page);
1312         __SetPageHead(page);
1313         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314                 /*
1315                  * For gigantic hugepages allocated through bootmem at
1316                  * boot, it's safer to be consistent with the not-gigantic
1317                  * hugepages and clear the PG_reserved bit from all tail pages
1318                  * too.  Otherwse drivers using get_user_pages() to access tail
1319                  * pages may get the reference counting wrong if they see
1320                  * PG_reserved set on a tail page (despite the head page not
1321                  * having PG_reserved set).  Enforcing this consistency between
1322                  * head and tail pages allows drivers to optimize away a check
1323                  * on the head page when they need know if put_page() is needed
1324                  * after get_user_pages().
1325                  */
1326                 __ClearPageReserved(p);
1327                 set_page_count(p, 0);
1328                 set_compound_head(p, page);
1329         }
1330         atomic_set(compound_mapcount_ptr(page), -1);
1331 }
1332
1333 /*
1334  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1335  * transparent huge pages.  See the PageTransHuge() documentation for more
1336  * details.
1337  */
1338 int PageHuge(struct page *page)
1339 {
1340         if (!PageCompound(page))
1341                 return 0;
1342
1343         page = compound_head(page);
1344         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1345 }
1346 EXPORT_SYMBOL_GPL(PageHuge);
1347
1348 /*
1349  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1350  * normal or transparent huge pages.
1351  */
1352 int PageHeadHuge(struct page *page_head)
1353 {
1354         if (!PageHead(page_head))
1355                 return 0;
1356
1357         return get_compound_page_dtor(page_head) == free_huge_page;
1358 }
1359
1360 pgoff_t __basepage_index(struct page *page)
1361 {
1362         struct page *page_head = compound_head(page);
1363         pgoff_t index = page_index(page_head);
1364         unsigned long compound_idx;
1365
1366         if (!PageHuge(page_head))
1367                 return page_index(page);
1368
1369         if (compound_order(page_head) >= MAX_ORDER)
1370                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1371         else
1372                 compound_idx = page - page_head;
1373
1374         return (index << compound_order(page_head)) + compound_idx;
1375 }
1376
1377 static struct page *alloc_buddy_huge_page(struct hstate *h,
1378                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1379 {
1380         int order = huge_page_order(h);
1381         struct page *page;
1382
1383         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1384         if (nid == NUMA_NO_NODE)
1385                 nid = numa_mem_id();
1386         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1387         if (page)
1388                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1389         else
1390                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1391
1392         return page;
1393 }
1394
1395 /*
1396  * Common helper to allocate a fresh hugetlb page. All specific allocators
1397  * should use this function to get new hugetlb pages
1398  */
1399 static struct page *alloc_fresh_huge_page(struct hstate *h,
1400                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1401 {
1402         struct page *page;
1403
1404         if (hstate_is_gigantic(h))
1405                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1406         else
1407                 page = alloc_buddy_huge_page(h, gfp_mask,
1408                                 nid, nmask);
1409         if (!page)
1410                 return NULL;
1411
1412         if (hstate_is_gigantic(h))
1413                 prep_compound_gigantic_page(page, huge_page_order(h));
1414         prep_new_huge_page(h, page, page_to_nid(page));
1415
1416         return page;
1417 }
1418
1419 /*
1420  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421  * manner.
1422  */
1423 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1424 {
1425         struct page *page;
1426         int nr_nodes, node;
1427         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1428
1429         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1431                 if (page)
1432                         break;
1433         }
1434
1435         if (!page)
1436                 return 0;
1437
1438         put_page(page); /* free it into the hugepage allocator */
1439
1440         return 1;
1441 }
1442
1443 /*
1444  * Free huge page from pool from next node to free.
1445  * Attempt to keep persistent huge pages more or less
1446  * balanced over allowed nodes.
1447  * Called with hugetlb_lock locked.
1448  */
1449 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1450                                                          bool acct_surplus)
1451 {
1452         int nr_nodes, node;
1453         int ret = 0;
1454
1455         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1456                 /*
1457                  * If we're returning unused surplus pages, only examine
1458                  * nodes with surplus pages.
1459                  */
1460                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1461                     !list_empty(&h->hugepage_freelists[node])) {
1462                         struct page *page =
1463                                 list_entry(h->hugepage_freelists[node].next,
1464                                           struct page, lru);
1465                         list_del(&page->lru);
1466                         h->free_huge_pages--;
1467                         h->free_huge_pages_node[node]--;
1468                         if (acct_surplus) {
1469                                 h->surplus_huge_pages--;
1470                                 h->surplus_huge_pages_node[node]--;
1471                         }
1472                         update_and_free_page(h, page);
1473                         ret = 1;
1474                         break;
1475                 }
1476         }
1477
1478         return ret;
1479 }
1480
1481 /*
1482  * Dissolve a given free hugepage into free buddy pages. This function does
1483  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1484  * dissolution fails because a give page is not a free hugepage, or because
1485  * free hugepages are fully reserved.
1486  */
1487 int dissolve_free_huge_page(struct page *page)
1488 {
1489         int rc = -EBUSY;
1490
1491         spin_lock(&hugetlb_lock);
1492         if (PageHuge(page) && !page_count(page)) {
1493                 struct page *head = compound_head(page);
1494                 struct hstate *h = page_hstate(head);
1495                 int nid = page_to_nid(head);
1496                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1497                         goto out;
1498                 /*
1499                  * Move PageHWPoison flag from head page to the raw error page,
1500                  * which makes any subpages rather than the error page reusable.
1501                  */
1502                 if (PageHWPoison(head) && page != head) {
1503                         SetPageHWPoison(page);
1504                         ClearPageHWPoison(head);
1505                 }
1506                 list_del(&head->lru);
1507                 h->free_huge_pages--;
1508                 h->free_huge_pages_node[nid]--;
1509                 h->max_huge_pages--;
1510                 update_and_free_page(h, head);
1511                 rc = 0;
1512         }
1513 out:
1514         spin_unlock(&hugetlb_lock);
1515         return rc;
1516 }
1517
1518 /*
1519  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1520  * make specified memory blocks removable from the system.
1521  * Note that this will dissolve a free gigantic hugepage completely, if any
1522  * part of it lies within the given range.
1523  * Also note that if dissolve_free_huge_page() returns with an error, all
1524  * free hugepages that were dissolved before that error are lost.
1525  */
1526 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1527 {
1528         unsigned long pfn;
1529         struct page *page;
1530         int rc = 0;
1531
1532         if (!hugepages_supported())
1533                 return rc;
1534
1535         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1536                 page = pfn_to_page(pfn);
1537                 if (PageHuge(page) && !page_count(page)) {
1538                         rc = dissolve_free_huge_page(page);
1539                         if (rc)
1540                                 break;
1541                 }
1542         }
1543
1544         return rc;
1545 }
1546
1547 /*
1548  * Allocates a fresh surplus page from the page allocator.
1549  */
1550 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1551                 int nid, nodemask_t *nmask)
1552 {
1553         struct page *page = NULL;
1554
1555         if (hstate_is_gigantic(h))
1556                 return NULL;
1557
1558         spin_lock(&hugetlb_lock);
1559         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1560                 goto out_unlock;
1561         spin_unlock(&hugetlb_lock);
1562
1563         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1564         if (!page)
1565                 return NULL;
1566
1567         spin_lock(&hugetlb_lock);
1568         /*
1569          * We could have raced with the pool size change.
1570          * Double check that and simply deallocate the new page
1571          * if we would end up overcommiting the surpluses. Abuse
1572          * temporary page to workaround the nasty free_huge_page
1573          * codeflow
1574          */
1575         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1576                 SetPageHugeTemporary(page);
1577                 put_page(page);
1578                 page = NULL;
1579         } else {
1580                 h->surplus_huge_pages++;
1581                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1582         }
1583
1584 out_unlock:
1585         spin_unlock(&hugetlb_lock);
1586
1587         return page;
1588 }
1589
1590 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1591                                      int nid, nodemask_t *nmask)
1592 {
1593         struct page *page;
1594
1595         if (hstate_is_gigantic(h))
1596                 return NULL;
1597
1598         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1599         if (!page)
1600                 return NULL;
1601
1602         /*
1603          * We do not account these pages as surplus because they are only
1604          * temporary and will be released properly on the last reference
1605          */
1606         SetPageHugeTemporary(page);
1607
1608         return page;
1609 }
1610
1611 /*
1612  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613  */
1614 static
1615 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1616                 struct vm_area_struct *vma, unsigned long addr)
1617 {
1618         struct page *page;
1619         struct mempolicy *mpol;
1620         gfp_t gfp_mask = htlb_alloc_mask(h);
1621         int nid;
1622         nodemask_t *nodemask;
1623
1624         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1625         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1626         mpol_cond_put(mpol);
1627
1628         return page;
1629 }
1630
1631 /* page migration callback function */
1632 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633 {
1634         gfp_t gfp_mask = htlb_alloc_mask(h);
1635         struct page *page = NULL;
1636
1637         if (nid != NUMA_NO_NODE)
1638                 gfp_mask |= __GFP_THISNODE;
1639
1640         spin_lock(&hugetlb_lock);
1641         if (h->free_huge_pages - h->resv_huge_pages > 0)
1642                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1643         spin_unlock(&hugetlb_lock);
1644
1645         if (!page)
1646                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1647
1648         return page;
1649 }
1650
1651 /* page migration callback function */
1652 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1653                 nodemask_t *nmask)
1654 {
1655         gfp_t gfp_mask = htlb_alloc_mask(h);
1656
1657         spin_lock(&hugetlb_lock);
1658         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1659                 struct page *page;
1660
1661                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1662                 if (page) {
1663                         spin_unlock(&hugetlb_lock);
1664                         return page;
1665                 }
1666         }
1667         spin_unlock(&hugetlb_lock);
1668
1669         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1670 }
1671
1672 /* mempolicy aware migration callback */
1673 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1674                 unsigned long address)
1675 {
1676         struct mempolicy *mpol;
1677         nodemask_t *nodemask;
1678         struct page *page;
1679         gfp_t gfp_mask;
1680         int node;
1681
1682         gfp_mask = htlb_alloc_mask(h);
1683         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1684         page = alloc_huge_page_nodemask(h, node, nodemask);
1685         mpol_cond_put(mpol);
1686
1687         return page;
1688 }
1689
1690 /*
1691  * Increase the hugetlb pool such that it can accommodate a reservation
1692  * of size 'delta'.
1693  */
1694 static int gather_surplus_pages(struct hstate *h, int delta)
1695 {
1696         struct list_head surplus_list;
1697         struct page *page, *tmp;
1698         int ret, i;
1699         int needed, allocated;
1700         bool alloc_ok = true;
1701
1702         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703         if (needed <= 0) {
1704                 h->resv_huge_pages += delta;
1705                 return 0;
1706         }
1707
1708         allocated = 0;
1709         INIT_LIST_HEAD(&surplus_list);
1710
1711         ret = -ENOMEM;
1712 retry:
1713         spin_unlock(&hugetlb_lock);
1714         for (i = 0; i < needed; i++) {
1715                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1716                                 NUMA_NO_NODE, NULL);
1717                 if (!page) {
1718                         alloc_ok = false;
1719                         break;
1720                 }
1721                 list_add(&page->lru, &surplus_list);
1722                 cond_resched();
1723         }
1724         allocated += i;
1725
1726         /*
1727          * After retaking hugetlb_lock, we need to recalculate 'needed'
1728          * because either resv_huge_pages or free_huge_pages may have changed.
1729          */
1730         spin_lock(&hugetlb_lock);
1731         needed = (h->resv_huge_pages + delta) -
1732                         (h->free_huge_pages + allocated);
1733         if (needed > 0) {
1734                 if (alloc_ok)
1735                         goto retry;
1736                 /*
1737                  * We were not able to allocate enough pages to
1738                  * satisfy the entire reservation so we free what
1739                  * we've allocated so far.
1740                  */
1741                 goto free;
1742         }
1743         /*
1744          * The surplus_list now contains _at_least_ the number of extra pages
1745          * needed to accommodate the reservation.  Add the appropriate number
1746          * of pages to the hugetlb pool and free the extras back to the buddy
1747          * allocator.  Commit the entire reservation here to prevent another
1748          * process from stealing the pages as they are added to the pool but
1749          * before they are reserved.
1750          */
1751         needed += allocated;
1752         h->resv_huge_pages += delta;
1753         ret = 0;
1754
1755         /* Free the needed pages to the hugetlb pool */
1756         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757                 if ((--needed) < 0)
1758                         break;
1759                 /*
1760                  * This page is now managed by the hugetlb allocator and has
1761                  * no users -- drop the buddy allocator's reference.
1762                  */
1763                 put_page_testzero(page);
1764                 VM_BUG_ON_PAGE(page_count(page), page);
1765                 enqueue_huge_page(h, page);
1766         }
1767 free:
1768         spin_unlock(&hugetlb_lock);
1769
1770         /* Free unnecessary surplus pages to the buddy allocator */
1771         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772                 put_page(page);
1773         spin_lock(&hugetlb_lock);
1774
1775         return ret;
1776 }
1777
1778 /*
1779  * This routine has two main purposes:
1780  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1782  *    to the associated reservation map.
1783  * 2) Free any unused surplus pages that may have been allocated to satisfy
1784  *    the reservation.  As many as unused_resv_pages may be freed.
1785  *
1786  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1787  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1788  * we must make sure nobody else can claim pages we are in the process of
1789  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1790  * number of huge pages we plan to free when dropping the lock.
1791  */
1792 static void return_unused_surplus_pages(struct hstate *h,
1793                                         unsigned long unused_resv_pages)
1794 {
1795         unsigned long nr_pages;
1796
1797         /* Cannot return gigantic pages currently */
1798         if (hstate_is_gigantic(h))
1799                 goto out;
1800
1801         /*
1802          * Part (or even all) of the reservation could have been backed
1803          * by pre-allocated pages. Only free surplus pages.
1804          */
1805         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806
1807         /*
1808          * We want to release as many surplus pages as possible, spread
1809          * evenly across all nodes with memory. Iterate across these nodes
1810          * until we can no longer free unreserved surplus pages. This occurs
1811          * when the nodes with surplus pages have no free pages.
1812          * free_pool_huge_page() will balance the the freed pages across the
1813          * on-line nodes with memory and will handle the hstate accounting.
1814          *
1815          * Note that we decrement resv_huge_pages as we free the pages.  If
1816          * we drop the lock, resv_huge_pages will still be sufficiently large
1817          * to cover subsequent pages we may free.
1818          */
1819         while (nr_pages--) {
1820                 h->resv_huge_pages--;
1821                 unused_resv_pages--;
1822                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823                         goto out;
1824                 cond_resched_lock(&hugetlb_lock);
1825         }
1826
1827 out:
1828         /* Fully uncommit the reservation */
1829         h->resv_huge_pages -= unused_resv_pages;
1830 }
1831
1832
1833 /*
1834  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835  * are used by the huge page allocation routines to manage reservations.
1836  *
1837  * vma_needs_reservation is called to determine if the huge page at addr
1838  * within the vma has an associated reservation.  If a reservation is
1839  * needed, the value 1 is returned.  The caller is then responsible for
1840  * managing the global reservation and subpool usage counts.  After
1841  * the huge page has been allocated, vma_commit_reservation is called
1842  * to add the page to the reservation map.  If the page allocation fails,
1843  * the reservation must be ended instead of committed.  vma_end_reservation
1844  * is called in such cases.
1845  *
1846  * In the normal case, vma_commit_reservation returns the same value
1847  * as the preceding vma_needs_reservation call.  The only time this
1848  * is not the case is if a reserve map was changed between calls.  It
1849  * is the responsibility of the caller to notice the difference and
1850  * take appropriate action.
1851  *
1852  * vma_add_reservation is used in error paths where a reservation must
1853  * be restored when a newly allocated huge page must be freed.  It is
1854  * to be called after calling vma_needs_reservation to determine if a
1855  * reservation exists.
1856  */
1857 enum vma_resv_mode {
1858         VMA_NEEDS_RESV,
1859         VMA_COMMIT_RESV,
1860         VMA_END_RESV,
1861         VMA_ADD_RESV,
1862 };
1863 static long __vma_reservation_common(struct hstate *h,
1864                                 struct vm_area_struct *vma, unsigned long addr,
1865                                 enum vma_resv_mode mode)
1866 {
1867         struct resv_map *resv;
1868         pgoff_t idx;
1869         long ret;
1870
1871         resv = vma_resv_map(vma);
1872         if (!resv)
1873                 return 1;
1874
1875         idx = vma_hugecache_offset(h, vma, addr);
1876         switch (mode) {
1877         case VMA_NEEDS_RESV:
1878                 ret = region_chg(resv, idx, idx + 1);
1879                 break;
1880         case VMA_COMMIT_RESV:
1881                 ret = region_add(resv, idx, idx + 1);
1882                 break;
1883         case VMA_END_RESV:
1884                 region_abort(resv, idx, idx + 1);
1885                 ret = 0;
1886                 break;
1887         case VMA_ADD_RESV:
1888                 if (vma->vm_flags & VM_MAYSHARE)
1889                         ret = region_add(resv, idx, idx + 1);
1890                 else {
1891                         region_abort(resv, idx, idx + 1);
1892                         ret = region_del(resv, idx, idx + 1);
1893                 }
1894                 break;
1895         default:
1896                 BUG();
1897         }
1898
1899         if (vma->vm_flags & VM_MAYSHARE)
1900                 return ret;
1901         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902                 /*
1903                  * In most cases, reserves always exist for private mappings.
1904                  * However, a file associated with mapping could have been
1905                  * hole punched or truncated after reserves were consumed.
1906                  * As subsequent fault on such a range will not use reserves.
1907                  * Subtle - The reserve map for private mappings has the
1908                  * opposite meaning than that of shared mappings.  If NO
1909                  * entry is in the reserve map, it means a reservation exists.
1910                  * If an entry exists in the reserve map, it means the
1911                  * reservation has already been consumed.  As a result, the
1912                  * return value of this routine is the opposite of the
1913                  * value returned from reserve map manipulation routines above.
1914                  */
1915                 if (ret)
1916                         return 0;
1917                 else
1918                         return 1;
1919         }
1920         else
1921                 return ret < 0 ? ret : 0;
1922 }
1923
1924 static long vma_needs_reservation(struct hstate *h,
1925                         struct vm_area_struct *vma, unsigned long addr)
1926 {
1927         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928 }
1929
1930 static long vma_commit_reservation(struct hstate *h,
1931                         struct vm_area_struct *vma, unsigned long addr)
1932 {
1933         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934 }
1935
1936 static void vma_end_reservation(struct hstate *h,
1937                         struct vm_area_struct *vma, unsigned long addr)
1938 {
1939         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 }
1941
1942 static long vma_add_reservation(struct hstate *h,
1943                         struct vm_area_struct *vma, unsigned long addr)
1944 {
1945         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946 }
1947
1948 /*
1949  * This routine is called to restore a reservation on error paths.  In the
1950  * specific error paths, a huge page was allocated (via alloc_huge_page)
1951  * and is about to be freed.  If a reservation for the page existed,
1952  * alloc_huge_page would have consumed the reservation and set PagePrivate
1953  * in the newly allocated page.  When the page is freed via free_huge_page,
1954  * the global reservation count will be incremented if PagePrivate is set.
1955  * However, free_huge_page can not adjust the reserve map.  Adjust the
1956  * reserve map here to be consistent with global reserve count adjustments
1957  * to be made by free_huge_page.
1958  */
1959 static void restore_reserve_on_error(struct hstate *h,
1960                         struct vm_area_struct *vma, unsigned long address,
1961                         struct page *page)
1962 {
1963         if (unlikely(PagePrivate(page))) {
1964                 long rc = vma_needs_reservation(h, vma, address);
1965
1966                 if (unlikely(rc < 0)) {
1967                         /*
1968                          * Rare out of memory condition in reserve map
1969                          * manipulation.  Clear PagePrivate so that
1970                          * global reserve count will not be incremented
1971                          * by free_huge_page.  This will make it appear
1972                          * as though the reservation for this page was
1973                          * consumed.  This may prevent the task from
1974                          * faulting in the page at a later time.  This
1975                          * is better than inconsistent global huge page
1976                          * accounting of reserve counts.
1977                          */
1978                         ClearPagePrivate(page);
1979                 } else if (rc) {
1980                         rc = vma_add_reservation(h, vma, address);
1981                         if (unlikely(rc < 0))
1982                                 /*
1983                                  * See above comment about rare out of
1984                                  * memory condition.
1985                                  */
1986                                 ClearPagePrivate(page);
1987                 } else
1988                         vma_end_reservation(h, vma, address);
1989         }
1990 }
1991
1992 struct page *alloc_huge_page(struct vm_area_struct *vma,
1993                                     unsigned long addr, int avoid_reserve)
1994 {
1995         struct hugepage_subpool *spool = subpool_vma(vma);
1996         struct hstate *h = hstate_vma(vma);
1997         struct page *page;
1998         long map_chg, map_commit;
1999         long gbl_chg;
2000         int ret, idx;
2001         struct hugetlb_cgroup *h_cg;
2002
2003         idx = hstate_index(h);
2004         /*
2005          * Examine the region/reserve map to determine if the process
2006          * has a reservation for the page to be allocated.  A return
2007          * code of zero indicates a reservation exists (no change).
2008          */
2009         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010         if (map_chg < 0)
2011                 return ERR_PTR(-ENOMEM);
2012
2013         /*
2014          * Processes that did not create the mapping will have no
2015          * reserves as indicated by the region/reserve map. Check
2016          * that the allocation will not exceed the subpool limit.
2017          * Allocations for MAP_NORESERVE mappings also need to be
2018          * checked against any subpool limit.
2019          */
2020         if (map_chg || avoid_reserve) {
2021                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022                 if (gbl_chg < 0) {
2023                         vma_end_reservation(h, vma, addr);
2024                         return ERR_PTR(-ENOSPC);
2025                 }
2026
2027                 /*
2028                  * Even though there was no reservation in the region/reserve
2029                  * map, there could be reservations associated with the
2030                  * subpool that can be used.  This would be indicated if the
2031                  * return value of hugepage_subpool_get_pages() is zero.
2032                  * However, if avoid_reserve is specified we still avoid even
2033                  * the subpool reservations.
2034                  */
2035                 if (avoid_reserve)
2036                         gbl_chg = 1;
2037         }
2038
2039         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040         if (ret)
2041                 goto out_subpool_put;
2042
2043         spin_lock(&hugetlb_lock);
2044         /*
2045          * glb_chg is passed to indicate whether or not a page must be taken
2046          * from the global free pool (global change).  gbl_chg == 0 indicates
2047          * a reservation exists for the allocation.
2048          */
2049         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050         if (!page) {
2051                 spin_unlock(&hugetlb_lock);
2052                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053                 if (!page)
2054                         goto out_uncharge_cgroup;
2055                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056                         SetPagePrivate(page);
2057                         h->resv_huge_pages--;
2058                 }
2059                 spin_lock(&hugetlb_lock);
2060                 list_move(&page->lru, &h->hugepage_activelist);
2061                 /* Fall through */
2062         }
2063         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064         spin_unlock(&hugetlb_lock);
2065
2066         set_page_private(page, (unsigned long)spool);
2067
2068         map_commit = vma_commit_reservation(h, vma, addr);
2069         if (unlikely(map_chg > map_commit)) {
2070                 /*
2071                  * The page was added to the reservation map between
2072                  * vma_needs_reservation and vma_commit_reservation.
2073                  * This indicates a race with hugetlb_reserve_pages.
2074                  * Adjust for the subpool count incremented above AND
2075                  * in hugetlb_reserve_pages for the same page.  Also,
2076                  * the reservation count added in hugetlb_reserve_pages
2077                  * no longer applies.
2078                  */
2079                 long rsv_adjust;
2080
2081                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082                 hugetlb_acct_memory(h, -rsv_adjust);
2083         }
2084         return page;
2085
2086 out_uncharge_cgroup:
2087         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088 out_subpool_put:
2089         if (map_chg || avoid_reserve)
2090                 hugepage_subpool_put_pages(spool, 1);
2091         vma_end_reservation(h, vma, addr);
2092         return ERR_PTR(-ENOSPC);
2093 }
2094
2095 int alloc_bootmem_huge_page(struct hstate *h)
2096         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2097 int __alloc_bootmem_huge_page(struct hstate *h)
2098 {
2099         struct huge_bootmem_page *m;
2100         int nr_nodes, node;
2101
2102         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2103                 void *addr;
2104
2105                 addr = memblock_alloc_try_nid_raw(
2106                                 huge_page_size(h), huge_page_size(h),
2107                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2108                 if (addr) {
2109                         /*
2110                          * Use the beginning of the huge page to store the
2111                          * huge_bootmem_page struct (until gather_bootmem
2112                          * puts them into the mem_map).
2113                          */
2114                         m = addr;
2115                         goto found;
2116                 }
2117         }
2118         return 0;
2119
2120 found:
2121         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2122         /* Put them into a private list first because mem_map is not up yet */
2123         INIT_LIST_HEAD(&m->list);
2124         list_add(&m->list, &huge_boot_pages);
2125         m->hstate = h;
2126         return 1;
2127 }
2128
2129 static void __init prep_compound_huge_page(struct page *page,
2130                 unsigned int order)
2131 {
2132         if (unlikely(order > (MAX_ORDER - 1)))
2133                 prep_compound_gigantic_page(page, order);
2134         else
2135                 prep_compound_page(page, order);
2136 }
2137
2138 /* Put bootmem huge pages into the standard lists after mem_map is up */
2139 static void __init gather_bootmem_prealloc(void)
2140 {
2141         struct huge_bootmem_page *m;
2142
2143         list_for_each_entry(m, &huge_boot_pages, list) {
2144                 struct page *page = virt_to_page(m);
2145                 struct hstate *h = m->hstate;
2146
2147                 WARN_ON(page_count(page) != 1);
2148                 prep_compound_huge_page(page, h->order);
2149                 WARN_ON(PageReserved(page));
2150                 prep_new_huge_page(h, page, page_to_nid(page));
2151                 put_page(page); /* free it into the hugepage allocator */
2152
2153                 /*
2154                  * If we had gigantic hugepages allocated at boot time, we need
2155                  * to restore the 'stolen' pages to totalram_pages in order to
2156                  * fix confusing memory reports from free(1) and another
2157                  * side-effects, like CommitLimit going negative.
2158                  */
2159                 if (hstate_is_gigantic(h))
2160                         adjust_managed_page_count(page, 1 << h->order);
2161                 cond_resched();
2162         }
2163 }
2164
2165 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2166 {
2167         unsigned long i;
2168
2169         for (i = 0; i < h->max_huge_pages; ++i) {
2170                 if (hstate_is_gigantic(h)) {
2171                         if (!alloc_bootmem_huge_page(h))
2172                                 break;
2173                 } else if (!alloc_pool_huge_page(h,
2174                                          &node_states[N_MEMORY]))
2175                         break;
2176                 cond_resched();
2177         }
2178         if (i < h->max_huge_pages) {
2179                 char buf[32];
2180
2181                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2182                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2183                         h->max_huge_pages, buf, i);
2184                 h->max_huge_pages = i;
2185         }
2186 }
2187
2188 static void __init hugetlb_init_hstates(void)
2189 {
2190         struct hstate *h;
2191
2192         for_each_hstate(h) {
2193                 if (minimum_order > huge_page_order(h))
2194                         minimum_order = huge_page_order(h);
2195
2196                 /* oversize hugepages were init'ed in early boot */
2197                 if (!hstate_is_gigantic(h))
2198                         hugetlb_hstate_alloc_pages(h);
2199         }
2200         VM_BUG_ON(minimum_order == UINT_MAX);
2201 }
2202
2203 static void __init report_hugepages(void)
2204 {
2205         struct hstate *h;
2206
2207         for_each_hstate(h) {
2208                 char buf[32];
2209
2210                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2211                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2212                         buf, h->free_huge_pages);
2213         }
2214 }
2215
2216 #ifdef CONFIG_HIGHMEM
2217 static void try_to_free_low(struct hstate *h, unsigned long count,
2218                                                 nodemask_t *nodes_allowed)
2219 {
2220         int i;
2221
2222         if (hstate_is_gigantic(h))
2223                 return;
2224
2225         for_each_node_mask(i, *nodes_allowed) {
2226                 struct page *page, *next;
2227                 struct list_head *freel = &h->hugepage_freelists[i];
2228                 list_for_each_entry_safe(page, next, freel, lru) {
2229                         if (count >= h->nr_huge_pages)
2230                                 return;
2231                         if (PageHighMem(page))
2232                                 continue;
2233                         list_del(&page->lru);
2234                         update_and_free_page(h, page);
2235                         h->free_huge_pages--;
2236                         h->free_huge_pages_node[page_to_nid(page)]--;
2237                 }
2238         }
2239 }
2240 #else
2241 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2242                                                 nodemask_t *nodes_allowed)
2243 {
2244 }
2245 #endif
2246
2247 /*
2248  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2249  * balanced by operating on them in a round-robin fashion.
2250  * Returns 1 if an adjustment was made.
2251  */
2252 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2253                                 int delta)
2254 {
2255         int nr_nodes, node;
2256
2257         VM_BUG_ON(delta != -1 && delta != 1);
2258
2259         if (delta < 0) {
2260                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2261                         if (h->surplus_huge_pages_node[node])
2262                                 goto found;
2263                 }
2264         } else {
2265                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2266                         if (h->surplus_huge_pages_node[node] <
2267                                         h->nr_huge_pages_node[node])
2268                                 goto found;
2269                 }
2270         }
2271         return 0;
2272
2273 found:
2274         h->surplus_huge_pages += delta;
2275         h->surplus_huge_pages_node[node] += delta;
2276         return 1;
2277 }
2278
2279 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2280 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2281                                                 nodemask_t *nodes_allowed)
2282 {
2283         unsigned long min_count, ret;
2284
2285         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2286                 return h->max_huge_pages;
2287
2288         /*
2289          * Increase the pool size
2290          * First take pages out of surplus state.  Then make up the
2291          * remaining difference by allocating fresh huge pages.
2292          *
2293          * We might race with alloc_surplus_huge_page() here and be unable
2294          * to convert a surplus huge page to a normal huge page. That is
2295          * not critical, though, it just means the overall size of the
2296          * pool might be one hugepage larger than it needs to be, but
2297          * within all the constraints specified by the sysctls.
2298          */
2299         spin_lock(&hugetlb_lock);
2300         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2301                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2302                         break;
2303         }
2304
2305         while (count > persistent_huge_pages(h)) {
2306                 /*
2307                  * If this allocation races such that we no longer need the
2308                  * page, free_huge_page will handle it by freeing the page
2309                  * and reducing the surplus.
2310                  */
2311                 spin_unlock(&hugetlb_lock);
2312
2313                 /* yield cpu to avoid soft lockup */
2314                 cond_resched();
2315
2316                 ret = alloc_pool_huge_page(h, nodes_allowed);
2317                 spin_lock(&hugetlb_lock);
2318                 if (!ret)
2319                         goto out;
2320
2321                 /* Bail for signals. Probably ctrl-c from user */
2322                 if (signal_pending(current))
2323                         goto out;
2324         }
2325
2326         /*
2327          * Decrease the pool size
2328          * First return free pages to the buddy allocator (being careful
2329          * to keep enough around to satisfy reservations).  Then place
2330          * pages into surplus state as needed so the pool will shrink
2331          * to the desired size as pages become free.
2332          *
2333          * By placing pages into the surplus state independent of the
2334          * overcommit value, we are allowing the surplus pool size to
2335          * exceed overcommit. There are few sane options here. Since
2336          * alloc_surplus_huge_page() is checking the global counter,
2337          * though, we'll note that we're not allowed to exceed surplus
2338          * and won't grow the pool anywhere else. Not until one of the
2339          * sysctls are changed, or the surplus pages go out of use.
2340          */
2341         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2342         min_count = max(count, min_count);
2343         try_to_free_low(h, min_count, nodes_allowed);
2344         while (min_count < persistent_huge_pages(h)) {
2345                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2346                         break;
2347                 cond_resched_lock(&hugetlb_lock);
2348         }
2349         while (count < persistent_huge_pages(h)) {
2350                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2351                         break;
2352         }
2353 out:
2354         ret = persistent_huge_pages(h);
2355         spin_unlock(&hugetlb_lock);
2356         return ret;
2357 }
2358
2359 #define HSTATE_ATTR_RO(_name) \
2360         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361
2362 #define HSTATE_ATTR(_name) \
2363         static struct kobj_attribute _name##_attr = \
2364                 __ATTR(_name, 0644, _name##_show, _name##_store)
2365
2366 static struct kobject *hugepages_kobj;
2367 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2368
2369 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2370
2371 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2372 {
2373         int i;
2374
2375         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2376                 if (hstate_kobjs[i] == kobj) {
2377                         if (nidp)
2378                                 *nidp = NUMA_NO_NODE;
2379                         return &hstates[i];
2380                 }
2381
2382         return kobj_to_node_hstate(kobj, nidp);
2383 }
2384
2385 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2386                                         struct kobj_attribute *attr, char *buf)
2387 {
2388         struct hstate *h;
2389         unsigned long nr_huge_pages;
2390         int nid;
2391
2392         h = kobj_to_hstate(kobj, &nid);
2393         if (nid == NUMA_NO_NODE)
2394                 nr_huge_pages = h->nr_huge_pages;
2395         else
2396                 nr_huge_pages = h->nr_huge_pages_node[nid];
2397
2398         return sprintf(buf, "%lu\n", nr_huge_pages);
2399 }
2400
2401 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2402                                            struct hstate *h, int nid,
2403                                            unsigned long count, size_t len)
2404 {
2405         int err;
2406         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2407
2408         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2409                 err = -EINVAL;
2410                 goto out;
2411         }
2412
2413         if (nid == NUMA_NO_NODE) {
2414                 /*
2415                  * global hstate attribute
2416                  */
2417                 if (!(obey_mempolicy &&
2418                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2419                         NODEMASK_FREE(nodes_allowed);
2420                         nodes_allowed = &node_states[N_MEMORY];
2421                 }
2422         } else if (nodes_allowed) {
2423                 /*
2424                  * per node hstate attribute: adjust count to global,
2425                  * but restrict alloc/free to the specified node.
2426                  */
2427                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2428                 init_nodemask_of_node(nodes_allowed, nid);
2429         } else
2430                 nodes_allowed = &node_states[N_MEMORY];
2431
2432         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2433
2434         if (nodes_allowed != &node_states[N_MEMORY])
2435                 NODEMASK_FREE(nodes_allowed);
2436
2437         return len;
2438 out:
2439         NODEMASK_FREE(nodes_allowed);
2440         return err;
2441 }
2442
2443 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2444                                          struct kobject *kobj, const char *buf,
2445                                          size_t len)
2446 {
2447         struct hstate *h;
2448         unsigned long count;
2449         int nid;
2450         int err;
2451
2452         err = kstrtoul(buf, 10, &count);
2453         if (err)
2454                 return err;
2455
2456         h = kobj_to_hstate(kobj, &nid);
2457         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458 }
2459
2460 static ssize_t nr_hugepages_show(struct kobject *kobj,
2461                                        struct kobj_attribute *attr, char *buf)
2462 {
2463         return nr_hugepages_show_common(kobj, attr, buf);
2464 }
2465
2466 static ssize_t nr_hugepages_store(struct kobject *kobj,
2467                struct kobj_attribute *attr, const char *buf, size_t len)
2468 {
2469         return nr_hugepages_store_common(false, kobj, buf, len);
2470 }
2471 HSTATE_ATTR(nr_hugepages);
2472
2473 #ifdef CONFIG_NUMA
2474
2475 /*
2476  * hstate attribute for optionally mempolicy-based constraint on persistent
2477  * huge page alloc/free.
2478  */
2479 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2480                                        struct kobj_attribute *attr, char *buf)
2481 {
2482         return nr_hugepages_show_common(kobj, attr, buf);
2483 }
2484
2485 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2486                struct kobj_attribute *attr, const char *buf, size_t len)
2487 {
2488         return nr_hugepages_store_common(true, kobj, buf, len);
2489 }
2490 HSTATE_ATTR(nr_hugepages_mempolicy);
2491 #endif
2492
2493
2494 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2495                                         struct kobj_attribute *attr, char *buf)
2496 {
2497         struct hstate *h = kobj_to_hstate(kobj, NULL);
2498         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499 }
2500
2501 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2502                 struct kobj_attribute *attr, const char *buf, size_t count)
2503 {
2504         int err;
2505         unsigned long input;
2506         struct hstate *h = kobj_to_hstate(kobj, NULL);
2507
2508         if (hstate_is_gigantic(h))
2509                 return -EINVAL;
2510
2511         err = kstrtoul(buf, 10, &input);
2512         if (err)
2513                 return err;
2514
2515         spin_lock(&hugetlb_lock);
2516         h->nr_overcommit_huge_pages = input;
2517         spin_unlock(&hugetlb_lock);
2518
2519         return count;
2520 }
2521 HSTATE_ATTR(nr_overcommit_hugepages);
2522
2523 static ssize_t free_hugepages_show(struct kobject *kobj,
2524                                         struct kobj_attribute *attr, char *buf)
2525 {
2526         struct hstate *h;
2527         unsigned long free_huge_pages;
2528         int nid;
2529
2530         h = kobj_to_hstate(kobj, &nid);
2531         if (nid == NUMA_NO_NODE)
2532                 free_huge_pages = h->free_huge_pages;
2533         else
2534                 free_huge_pages = h->free_huge_pages_node[nid];
2535
2536         return sprintf(buf, "%lu\n", free_huge_pages);
2537 }
2538 HSTATE_ATTR_RO(free_hugepages);
2539
2540 static ssize_t resv_hugepages_show(struct kobject *kobj,
2541                                         struct kobj_attribute *attr, char *buf)
2542 {
2543         struct hstate *h = kobj_to_hstate(kobj, NULL);
2544         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2545 }
2546 HSTATE_ATTR_RO(resv_hugepages);
2547
2548 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2549                                         struct kobj_attribute *attr, char *buf)
2550 {
2551         struct hstate *h;
2552         unsigned long surplus_huge_pages;
2553         int nid;
2554
2555         h = kobj_to_hstate(kobj, &nid);
2556         if (nid == NUMA_NO_NODE)
2557                 surplus_huge_pages = h->surplus_huge_pages;
2558         else
2559                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2560
2561         return sprintf(buf, "%lu\n", surplus_huge_pages);
2562 }
2563 HSTATE_ATTR_RO(surplus_hugepages);
2564
2565 static struct attribute *hstate_attrs[] = {
2566         &nr_hugepages_attr.attr,
2567         &nr_overcommit_hugepages_attr.attr,
2568         &free_hugepages_attr.attr,
2569         &resv_hugepages_attr.attr,
2570         &surplus_hugepages_attr.attr,
2571 #ifdef CONFIG_NUMA
2572         &nr_hugepages_mempolicy_attr.attr,
2573 #endif
2574         NULL,
2575 };
2576
2577 static const struct attribute_group hstate_attr_group = {
2578         .attrs = hstate_attrs,
2579 };
2580
2581 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2582                                     struct kobject **hstate_kobjs,
2583                                     const struct attribute_group *hstate_attr_group)
2584 {
2585         int retval;
2586         int hi = hstate_index(h);
2587
2588         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2589         if (!hstate_kobjs[hi])
2590                 return -ENOMEM;
2591
2592         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2593         if (retval)
2594                 kobject_put(hstate_kobjs[hi]);
2595
2596         return retval;
2597 }
2598
2599 static void __init hugetlb_sysfs_init(void)
2600 {
2601         struct hstate *h;
2602         int err;
2603
2604         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2605         if (!hugepages_kobj)
2606                 return;
2607
2608         for_each_hstate(h) {
2609                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2610                                          hstate_kobjs, &hstate_attr_group);
2611                 if (err)
2612                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2613         }
2614 }
2615
2616 #ifdef CONFIG_NUMA
2617
2618 /*
2619  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2620  * with node devices in node_devices[] using a parallel array.  The array
2621  * index of a node device or _hstate == node id.
2622  * This is here to avoid any static dependency of the node device driver, in
2623  * the base kernel, on the hugetlb module.
2624  */
2625 struct node_hstate {
2626         struct kobject          *hugepages_kobj;
2627         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2628 };
2629 static struct node_hstate node_hstates[MAX_NUMNODES];
2630
2631 /*
2632  * A subset of global hstate attributes for node devices
2633  */
2634 static struct attribute *per_node_hstate_attrs[] = {
2635         &nr_hugepages_attr.attr,
2636         &free_hugepages_attr.attr,
2637         &surplus_hugepages_attr.attr,
2638         NULL,
2639 };
2640
2641 static const struct attribute_group per_node_hstate_attr_group = {
2642         .attrs = per_node_hstate_attrs,
2643 };
2644
2645 /*
2646  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2647  * Returns node id via non-NULL nidp.
2648  */
2649 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2650 {
2651         int nid;
2652
2653         for (nid = 0; nid < nr_node_ids; nid++) {
2654                 struct node_hstate *nhs = &node_hstates[nid];
2655                 int i;
2656                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2657                         if (nhs->hstate_kobjs[i] == kobj) {
2658                                 if (nidp)
2659                                         *nidp = nid;
2660                                 return &hstates[i];
2661                         }
2662         }
2663
2664         BUG();
2665         return NULL;
2666 }
2667
2668 /*
2669  * Unregister hstate attributes from a single node device.
2670  * No-op if no hstate attributes attached.
2671  */
2672 static void hugetlb_unregister_node(struct node *node)
2673 {
2674         struct hstate *h;
2675         struct node_hstate *nhs = &node_hstates[node->dev.id];
2676
2677         if (!nhs->hugepages_kobj)
2678                 return;         /* no hstate attributes */
2679
2680         for_each_hstate(h) {
2681                 int idx = hstate_index(h);
2682                 if (nhs->hstate_kobjs[idx]) {
2683                         kobject_put(nhs->hstate_kobjs[idx]);
2684                         nhs->hstate_kobjs[idx] = NULL;
2685                 }
2686         }
2687
2688         kobject_put(nhs->hugepages_kobj);
2689         nhs->hugepages_kobj = NULL;
2690 }
2691
2692
2693 /*
2694  * Register hstate attributes for a single node device.
2695  * No-op if attributes already registered.
2696  */
2697 static void hugetlb_register_node(struct node *node)
2698 {
2699         struct hstate *h;
2700         struct node_hstate *nhs = &node_hstates[node->dev.id];
2701         int err;
2702
2703         if (nhs->hugepages_kobj)
2704                 return;         /* already allocated */
2705
2706         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2707                                                         &node->dev.kobj);
2708         if (!nhs->hugepages_kobj)
2709                 return;
2710
2711         for_each_hstate(h) {
2712                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2713                                                 nhs->hstate_kobjs,
2714                                                 &per_node_hstate_attr_group);
2715                 if (err) {
2716                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2717                                 h->name, node->dev.id);
2718                         hugetlb_unregister_node(node);
2719                         break;
2720                 }
2721         }
2722 }
2723
2724 /*
2725  * hugetlb init time:  register hstate attributes for all registered node
2726  * devices of nodes that have memory.  All on-line nodes should have
2727  * registered their associated device by this time.
2728  */
2729 static void __init hugetlb_register_all_nodes(void)
2730 {
2731         int nid;
2732
2733         for_each_node_state(nid, N_MEMORY) {
2734                 struct node *node = node_devices[nid];
2735                 if (node->dev.id == nid)
2736                         hugetlb_register_node(node);
2737         }
2738
2739         /*
2740          * Let the node device driver know we're here so it can
2741          * [un]register hstate attributes on node hotplug.
2742          */
2743         register_hugetlbfs_with_node(hugetlb_register_node,
2744                                      hugetlb_unregister_node);
2745 }
2746 #else   /* !CONFIG_NUMA */
2747
2748 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2749 {
2750         BUG();
2751         if (nidp)
2752                 *nidp = -1;
2753         return NULL;
2754 }
2755
2756 static void hugetlb_register_all_nodes(void) { }
2757
2758 #endif
2759
2760 static int __init hugetlb_init(void)
2761 {
2762         int i;
2763
2764         if (!hugepages_supported())
2765                 return 0;
2766
2767         if (!size_to_hstate(default_hstate_size)) {
2768                 if (default_hstate_size != 0) {
2769                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2770                                default_hstate_size, HPAGE_SIZE);
2771                 }
2772
2773                 default_hstate_size = HPAGE_SIZE;
2774                 if (!size_to_hstate(default_hstate_size))
2775                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2776         }
2777         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2778         if (default_hstate_max_huge_pages) {
2779                 if (!default_hstate.max_huge_pages)
2780                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2781         }
2782
2783         hugetlb_init_hstates();
2784         gather_bootmem_prealloc();
2785         report_hugepages();
2786
2787         hugetlb_sysfs_init();
2788         hugetlb_register_all_nodes();
2789         hugetlb_cgroup_file_init();
2790
2791 #ifdef CONFIG_SMP
2792         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2793 #else
2794         num_fault_mutexes = 1;
2795 #endif
2796         hugetlb_fault_mutex_table =
2797                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2798                               GFP_KERNEL);
2799         BUG_ON(!hugetlb_fault_mutex_table);
2800
2801         for (i = 0; i < num_fault_mutexes; i++)
2802                 mutex_init(&hugetlb_fault_mutex_table[i]);
2803         return 0;
2804 }
2805 subsys_initcall(hugetlb_init);
2806
2807 /* Should be called on processing a hugepagesz=... option */
2808 void __init hugetlb_bad_size(void)
2809 {
2810         parsed_valid_hugepagesz = false;
2811 }
2812
2813 void __init hugetlb_add_hstate(unsigned int order)
2814 {
2815         struct hstate *h;
2816         unsigned long i;
2817
2818         if (size_to_hstate(PAGE_SIZE << order)) {
2819                 pr_warn("hugepagesz= specified twice, ignoring\n");
2820                 return;
2821         }
2822         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2823         BUG_ON(order == 0);
2824         h = &hstates[hugetlb_max_hstate++];
2825         h->order = order;
2826         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2827         h->nr_huge_pages = 0;
2828         h->free_huge_pages = 0;
2829         for (i = 0; i < MAX_NUMNODES; ++i)
2830                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2831         INIT_LIST_HEAD(&h->hugepage_activelist);
2832         h->next_nid_to_alloc = first_memory_node;
2833         h->next_nid_to_free = first_memory_node;
2834         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2835                                         huge_page_size(h)/1024);
2836
2837         parsed_hstate = h;
2838 }
2839
2840 static int __init hugetlb_nrpages_setup(char *s)
2841 {
2842         unsigned long *mhp;
2843         static unsigned long *last_mhp;
2844
2845         if (!parsed_valid_hugepagesz) {
2846                 pr_warn("hugepages = %s preceded by "
2847                         "an unsupported hugepagesz, ignoring\n", s);
2848                 parsed_valid_hugepagesz = true;
2849                 return 1;
2850         }
2851         /*
2852          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2853          * so this hugepages= parameter goes to the "default hstate".
2854          */
2855         else if (!hugetlb_max_hstate)
2856                 mhp = &default_hstate_max_huge_pages;
2857         else
2858                 mhp = &parsed_hstate->max_huge_pages;
2859
2860         if (mhp == last_mhp) {
2861                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2862                 return 1;
2863         }
2864
2865         if (sscanf(s, "%lu", mhp) <= 0)
2866                 *mhp = 0;
2867
2868         /*
2869          * Global state is always initialized later in hugetlb_init.
2870          * But we need to allocate >= MAX_ORDER hstates here early to still
2871          * use the bootmem allocator.
2872          */
2873         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2874                 hugetlb_hstate_alloc_pages(parsed_hstate);
2875
2876         last_mhp = mhp;
2877
2878         return 1;
2879 }
2880 __setup("hugepages=", hugetlb_nrpages_setup);
2881
2882 static int __init hugetlb_default_setup(char *s)
2883 {
2884         default_hstate_size = memparse(s, &s);
2885         return 1;
2886 }
2887 __setup("default_hugepagesz=", hugetlb_default_setup);
2888
2889 static unsigned int cpuset_mems_nr(unsigned int *array)
2890 {
2891         int node;
2892         unsigned int nr = 0;
2893
2894         for_each_node_mask(node, cpuset_current_mems_allowed)
2895                 nr += array[node];
2896
2897         return nr;
2898 }
2899
2900 #ifdef CONFIG_SYSCTL
2901 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2902                          struct ctl_table *table, int write,
2903                          void __user *buffer, size_t *length, loff_t *ppos)
2904 {
2905         struct hstate *h = &default_hstate;
2906         unsigned long tmp = h->max_huge_pages;
2907         int ret;
2908
2909         if (!hugepages_supported())
2910                 return -EOPNOTSUPP;
2911
2912         table->data = &tmp;
2913         table->maxlen = sizeof(unsigned long);
2914         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2915         if (ret)
2916                 goto out;
2917
2918         if (write)
2919                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2920                                                   NUMA_NO_NODE, tmp, *length);
2921 out:
2922         return ret;
2923 }
2924
2925 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2926                           void __user *buffer, size_t *length, loff_t *ppos)
2927 {
2928
2929         return hugetlb_sysctl_handler_common(false, table, write,
2930                                                         buffer, length, ppos);
2931 }
2932
2933 #ifdef CONFIG_NUMA
2934 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2935                           void __user *buffer, size_t *length, loff_t *ppos)
2936 {
2937         return hugetlb_sysctl_handler_common(true, table, write,
2938                                                         buffer, length, ppos);
2939 }
2940 #endif /* CONFIG_NUMA */
2941
2942 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2943                         void __user *buffer,
2944                         size_t *length, loff_t *ppos)
2945 {
2946         struct hstate *h = &default_hstate;
2947         unsigned long tmp;
2948         int ret;
2949
2950         if (!hugepages_supported())
2951                 return -EOPNOTSUPP;
2952
2953         tmp = h->nr_overcommit_huge_pages;
2954
2955         if (write && hstate_is_gigantic(h))
2956                 return -EINVAL;
2957
2958         table->data = &tmp;
2959         table->maxlen = sizeof(unsigned long);
2960         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2961         if (ret)
2962                 goto out;
2963
2964         if (write) {
2965                 spin_lock(&hugetlb_lock);
2966                 h->nr_overcommit_huge_pages = tmp;
2967                 spin_unlock(&hugetlb_lock);
2968         }
2969 out:
2970         return ret;
2971 }
2972
2973 #endif /* CONFIG_SYSCTL */
2974
2975 void hugetlb_report_meminfo(struct seq_file *m)
2976 {
2977         struct hstate *h;
2978         unsigned long total = 0;
2979
2980         if (!hugepages_supported())
2981                 return;
2982
2983         for_each_hstate(h) {
2984                 unsigned long count = h->nr_huge_pages;
2985
2986                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2987
2988                 if (h == &default_hstate)
2989                         seq_printf(m,
2990                                    "HugePages_Total:   %5lu\n"
2991                                    "HugePages_Free:    %5lu\n"
2992                                    "HugePages_Rsvd:    %5lu\n"
2993                                    "HugePages_Surp:    %5lu\n"
2994                                    "Hugepagesize:   %8lu kB\n",
2995                                    count,
2996                                    h->free_huge_pages,
2997                                    h->resv_huge_pages,
2998                                    h->surplus_huge_pages,
2999                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3000         }
3001
3002         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3003 }
3004
3005 int hugetlb_report_node_meminfo(int nid, char *buf)
3006 {
3007         struct hstate *h = &default_hstate;
3008         if (!hugepages_supported())
3009                 return 0;
3010         return sprintf(buf,
3011                 "Node %d HugePages_Total: %5u\n"
3012                 "Node %d HugePages_Free:  %5u\n"
3013                 "Node %d HugePages_Surp:  %5u\n",
3014                 nid, h->nr_huge_pages_node[nid],
3015                 nid, h->free_huge_pages_node[nid],
3016                 nid, h->surplus_huge_pages_node[nid]);
3017 }
3018
3019 void hugetlb_show_meminfo(void)
3020 {
3021         struct hstate *h;
3022         int nid;
3023
3024         if (!hugepages_supported())
3025                 return;
3026
3027         for_each_node_state(nid, N_MEMORY)
3028                 for_each_hstate(h)
3029                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030                                 nid,
3031                                 h->nr_huge_pages_node[nid],
3032                                 h->free_huge_pages_node[nid],
3033                                 h->surplus_huge_pages_node[nid],
3034                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035 }
3036
3037 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038 {
3039         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041 }
3042
3043 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044 unsigned long hugetlb_total_pages(void)
3045 {
3046         struct hstate *h;
3047         unsigned long nr_total_pages = 0;
3048
3049         for_each_hstate(h)
3050                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051         return nr_total_pages;
3052 }
3053
3054 static int hugetlb_acct_memory(struct hstate *h, long delta)
3055 {
3056         int ret = -ENOMEM;
3057
3058         spin_lock(&hugetlb_lock);
3059         /*
3060          * When cpuset is configured, it breaks the strict hugetlb page
3061          * reservation as the accounting is done on a global variable. Such
3062          * reservation is completely rubbish in the presence of cpuset because
3063          * the reservation is not checked against page availability for the
3064          * current cpuset. Application can still potentially OOM'ed by kernel
3065          * with lack of free htlb page in cpuset that the task is in.
3066          * Attempt to enforce strict accounting with cpuset is almost
3067          * impossible (or too ugly) because cpuset is too fluid that
3068          * task or memory node can be dynamically moved between cpusets.
3069          *
3070          * The change of semantics for shared hugetlb mapping with cpuset is
3071          * undesirable. However, in order to preserve some of the semantics,
3072          * we fall back to check against current free page availability as
3073          * a best attempt and hopefully to minimize the impact of changing
3074          * semantics that cpuset has.
3075          */
3076         if (delta > 0) {
3077                 if (gather_surplus_pages(h, delta) < 0)
3078                         goto out;
3079
3080                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081                         return_unused_surplus_pages(h, delta);
3082                         goto out;
3083                 }
3084         }
3085
3086         ret = 0;
3087         if (delta < 0)
3088                 return_unused_surplus_pages(h, (unsigned long) -delta);
3089
3090 out:
3091         spin_unlock(&hugetlb_lock);
3092         return ret;
3093 }
3094
3095 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096 {
3097         struct resv_map *resv = vma_resv_map(vma);
3098
3099         /*
3100          * This new VMA should share its siblings reservation map if present.
3101          * The VMA will only ever have a valid reservation map pointer where
3102          * it is being copied for another still existing VMA.  As that VMA
3103          * has a reference to the reservation map it cannot disappear until
3104          * after this open call completes.  It is therefore safe to take a
3105          * new reference here without additional locking.
3106          */
3107         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108                 kref_get(&resv->refs);
3109 }
3110
3111 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112 {
3113         struct hstate *h = hstate_vma(vma);
3114         struct resv_map *resv = vma_resv_map(vma);
3115         struct hugepage_subpool *spool = subpool_vma(vma);
3116         unsigned long reserve, start, end;
3117         long gbl_reserve;
3118
3119         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120                 return;
3121
3122         start = vma_hugecache_offset(h, vma, vma->vm_start);
3123         end = vma_hugecache_offset(h, vma, vma->vm_end);
3124
3125         reserve = (end - start) - region_count(resv, start, end);
3126
3127         kref_put(&resv->refs, resv_map_release);
3128
3129         if (reserve) {
3130                 /*
3131                  * Decrement reserve counts.  The global reserve count may be
3132                  * adjusted if the subpool has a minimum size.
3133                  */
3134                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135                 hugetlb_acct_memory(h, -gbl_reserve);
3136         }
3137 }
3138
3139 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3140 {
3141         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3142                 return -EINVAL;
3143         return 0;
3144 }
3145
3146 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3147 {
3148         struct hstate *hstate = hstate_vma(vma);
3149
3150         return 1UL << huge_page_shift(hstate);
3151 }
3152
3153 /*
3154  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3155  * handle_mm_fault() to try to instantiate regular-sized pages in the
3156  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3157  * this far.
3158  */
3159 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3160 {
3161         BUG();
3162         return 0;
3163 }
3164
3165 /*
3166  * When a new function is introduced to vm_operations_struct and added
3167  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3168  * This is because under System V memory model, mappings created via
3169  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3170  * their original vm_ops are overwritten with shm_vm_ops.
3171  */
3172 const struct vm_operations_struct hugetlb_vm_ops = {
3173         .fault = hugetlb_vm_op_fault,
3174         .open = hugetlb_vm_op_open,
3175         .close = hugetlb_vm_op_close,
3176         .split = hugetlb_vm_op_split,
3177         .pagesize = hugetlb_vm_op_pagesize,
3178 };
3179
3180 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3181                                 int writable)
3182 {
3183         pte_t entry;
3184
3185         if (writable) {
3186                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3187                                          vma->vm_page_prot)));
3188         } else {
3189                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3190                                            vma->vm_page_prot));
3191         }
3192         entry = pte_mkyoung(entry);
3193         entry = pte_mkhuge(entry);
3194         entry = arch_make_huge_pte(entry, vma, page, writable);
3195
3196         return entry;
3197 }
3198
3199 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3200                                    unsigned long address, pte_t *ptep)
3201 {
3202         pte_t entry;
3203
3204         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3205         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3206                 update_mmu_cache(vma, address, ptep);
3207 }
3208
3209 bool is_hugetlb_entry_migration(pte_t pte)
3210 {
3211         swp_entry_t swp;
3212
3213         if (huge_pte_none(pte) || pte_present(pte))
3214                 return false;
3215         swp = pte_to_swp_entry(pte);
3216         if (non_swap_entry(swp) && is_migration_entry(swp))
3217                 return true;
3218         else
3219                 return false;
3220 }
3221
3222 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3223 {
3224         swp_entry_t swp;
3225
3226         if (huge_pte_none(pte) || pte_present(pte))
3227                 return 0;
3228         swp = pte_to_swp_entry(pte);
3229         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3230                 return 1;
3231         else
3232                 return 0;
3233 }
3234
3235 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3236                             struct vm_area_struct *vma)
3237 {
3238         pte_t *src_pte, *dst_pte, entry, dst_entry;
3239         struct page *ptepage;
3240         unsigned long addr;
3241         int cow;
3242         struct hstate *h = hstate_vma(vma);
3243         unsigned long sz = huge_page_size(h);
3244         struct mmu_notifier_range range;
3245         int ret = 0;
3246
3247         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3248
3249         if (cow) {
3250                 mmu_notifier_range_init(&range, src, vma->vm_start,
3251                                         vma->vm_end);
3252                 mmu_notifier_invalidate_range_start(&range);
3253         }
3254
3255         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3256                 spinlock_t *src_ptl, *dst_ptl;
3257                 src_pte = huge_pte_offset(src, addr, sz);
3258                 if (!src_pte)
3259                         continue;
3260                 dst_pte = huge_pte_alloc(dst, addr, sz);
3261                 if (!dst_pte) {
3262                         ret = -ENOMEM;
3263                         break;
3264                 }
3265
3266                 /*
3267                  * If the pagetables are shared don't copy or take references.
3268                  * dst_pte == src_pte is the common case of src/dest sharing.
3269                  *
3270                  * However, src could have 'unshared' and dst shares with
3271                  * another vma.  If dst_pte !none, this implies sharing.
3272                  * Check here before taking page table lock, and once again
3273                  * after taking the lock below.
3274                  */
3275                 dst_entry = huge_ptep_get(dst_pte);
3276                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3277                         continue;
3278
3279                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3280                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3281                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3282                 entry = huge_ptep_get(src_pte);
3283                 dst_entry = huge_ptep_get(dst_pte);
3284                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3285                         /*
3286                          * Skip if src entry none.  Also, skip in the
3287                          * unlikely case dst entry !none as this implies
3288                          * sharing with another vma.
3289                          */
3290                         ;
3291                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3292                                     is_hugetlb_entry_hwpoisoned(entry))) {
3293                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3294
3295                         if (is_write_migration_entry(swp_entry) && cow) {
3296                                 /*
3297                                  * COW mappings require pages in both
3298                                  * parent and child to be set to read.
3299                                  */
3300                                 make_migration_entry_read(&swp_entry);
3301                                 entry = swp_entry_to_pte(swp_entry);
3302                                 set_huge_swap_pte_at(src, addr, src_pte,
3303                                                      entry, sz);
3304                         }
3305                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3306                 } else {
3307                         if (cow) {
3308                                 /*
3309                                  * No need to notify as we are downgrading page
3310                                  * table protection not changing it to point
3311                                  * to a new page.
3312                                  *
3313                                  * See Documentation/vm/mmu_notifier.rst
3314                                  */
3315                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3316                         }
3317                         entry = huge_ptep_get(src_pte);
3318                         ptepage = pte_page(entry);
3319                         get_page(ptepage);
3320                         page_dup_rmap(ptepage, true);
3321                         set_huge_pte_at(dst, addr, dst_pte, entry);
3322                         hugetlb_count_add(pages_per_huge_page(h), dst);
3323                 }
3324                 spin_unlock(src_ptl);
3325                 spin_unlock(dst_ptl);
3326         }
3327
3328         if (cow)
3329                 mmu_notifier_invalidate_range_end(&range);
3330
3331         return ret;
3332 }
3333
3334 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3335                             unsigned long start, unsigned long end,
3336                             struct page *ref_page)
3337 {
3338         struct mm_struct *mm = vma->vm_mm;
3339         unsigned long address;
3340         pte_t *ptep;
3341         pte_t pte;
3342         spinlock_t *ptl;
3343         struct page *page;
3344         struct hstate *h = hstate_vma(vma);
3345         unsigned long sz = huge_page_size(h);
3346         struct mmu_notifier_range range;
3347
3348         WARN_ON(!is_vm_hugetlb_page(vma));
3349         BUG_ON(start & ~huge_page_mask(h));
3350         BUG_ON(end & ~huge_page_mask(h));
3351
3352         /*
3353          * This is a hugetlb vma, all the pte entries should point
3354          * to huge page.
3355          */
3356         tlb_change_page_size(tlb, sz);
3357         tlb_start_vma(tlb, vma);
3358
3359         /*
3360          * If sharing possible, alert mmu notifiers of worst case.
3361          */
3362         mmu_notifier_range_init(&range, mm, start, end);
3363         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3364         mmu_notifier_invalidate_range_start(&range);
3365         address = start;
3366         for (; address < end; address += sz) {
3367                 ptep = huge_pte_offset(mm, address, sz);
3368                 if (!ptep)
3369                         continue;
3370
3371                 ptl = huge_pte_lock(h, mm, ptep);
3372                 if (huge_pmd_unshare(mm, &address, ptep)) {
3373                         spin_unlock(ptl);
3374                         /*
3375                          * We just unmapped a page of PMDs by clearing a PUD.
3376                          * The caller's TLB flush range should cover this area.
3377                          */
3378                         continue;
3379                 }
3380
3381                 pte = huge_ptep_get(ptep);
3382                 if (huge_pte_none(pte)) {
3383                         spin_unlock(ptl);
3384                         continue;
3385                 }
3386
3387                 /*
3388                  * Migrating hugepage or HWPoisoned hugepage is already
3389                  * unmapped and its refcount is dropped, so just clear pte here.
3390                  */
3391                 if (unlikely(!pte_present(pte))) {
3392                         huge_pte_clear(mm, address, ptep, sz);
3393                         spin_unlock(ptl);
3394                         continue;
3395                 }
3396
3397                 page = pte_page(pte);
3398                 /*
3399                  * If a reference page is supplied, it is because a specific
3400                  * page is being unmapped, not a range. Ensure the page we
3401                  * are about to unmap is the actual page of interest.
3402                  */
3403                 if (ref_page) {
3404                         if (page != ref_page) {
3405                                 spin_unlock(ptl);
3406                                 continue;
3407                         }
3408                         /*
3409                          * Mark the VMA as having unmapped its page so that
3410                          * future faults in this VMA will fail rather than
3411                          * looking like data was lost
3412                          */
3413                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3414                 }
3415
3416                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3417                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3418                 if (huge_pte_dirty(pte))
3419                         set_page_dirty(page);
3420
3421                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3422                 page_remove_rmap(page, true);
3423
3424                 spin_unlock(ptl);
3425                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3426                 /*
3427                  * Bail out after unmapping reference page if supplied
3428                  */
3429                 if (ref_page)
3430                         break;
3431         }
3432         mmu_notifier_invalidate_range_end(&range);
3433         tlb_end_vma(tlb, vma);
3434 }
3435
3436 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3437                           struct vm_area_struct *vma, unsigned long start,
3438                           unsigned long end, struct page *ref_page)
3439 {
3440         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3441
3442         /*
3443          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3444          * test will fail on a vma being torn down, and not grab a page table
3445          * on its way out.  We're lucky that the flag has such an appropriate
3446          * name, and can in fact be safely cleared here. We could clear it
3447          * before the __unmap_hugepage_range above, but all that's necessary
3448          * is to clear it before releasing the i_mmap_rwsem. This works
3449          * because in the context this is called, the VMA is about to be
3450          * destroyed and the i_mmap_rwsem is held.
3451          */
3452         vma->vm_flags &= ~VM_MAYSHARE;
3453 }
3454
3455 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3456                           unsigned long end, struct page *ref_page)
3457 {
3458         struct mm_struct *mm;
3459         struct mmu_gather tlb;
3460         unsigned long tlb_start = start;
3461         unsigned long tlb_end = end;
3462
3463         /*
3464          * If shared PMDs were possibly used within this vma range, adjust
3465          * start/end for worst case tlb flushing.
3466          * Note that we can not be sure if PMDs are shared until we try to
3467          * unmap pages.  However, we want to make sure TLB flushing covers
3468          * the largest possible range.
3469          */
3470         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3471
3472         mm = vma->vm_mm;
3473
3474         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3475         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3476         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3477 }
3478
3479 /*
3480  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3481  * mappping it owns the reserve page for. The intention is to unmap the page
3482  * from other VMAs and let the children be SIGKILLed if they are faulting the
3483  * same region.
3484  */
3485 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3486                               struct page *page, unsigned long address)
3487 {
3488         struct hstate *h = hstate_vma(vma);
3489         struct vm_area_struct *iter_vma;
3490         struct address_space *mapping;
3491         pgoff_t pgoff;
3492
3493         /*
3494          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3495          * from page cache lookup which is in HPAGE_SIZE units.
3496          */
3497         address = address & huge_page_mask(h);
3498         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3499                         vma->vm_pgoff;
3500         mapping = vma->vm_file->f_mapping;
3501
3502         /*
3503          * Take the mapping lock for the duration of the table walk. As
3504          * this mapping should be shared between all the VMAs,
3505          * __unmap_hugepage_range() is called as the lock is already held
3506          */
3507         i_mmap_lock_write(mapping);
3508         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3509                 /* Do not unmap the current VMA */
3510                 if (iter_vma == vma)
3511                         continue;
3512
3513                 /*
3514                  * Shared VMAs have their own reserves and do not affect
3515                  * MAP_PRIVATE accounting but it is possible that a shared
3516                  * VMA is using the same page so check and skip such VMAs.
3517                  */
3518                 if (iter_vma->vm_flags & VM_MAYSHARE)
3519                         continue;
3520
3521                 /*
3522                  * Unmap the page from other VMAs without their own reserves.
3523                  * They get marked to be SIGKILLed if they fault in these
3524                  * areas. This is because a future no-page fault on this VMA
3525                  * could insert a zeroed page instead of the data existing
3526                  * from the time of fork. This would look like data corruption
3527                  */
3528                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3529                         unmap_hugepage_range(iter_vma, address,
3530                                              address + huge_page_size(h), page);
3531         }
3532         i_mmap_unlock_write(mapping);
3533 }
3534
3535 /*
3536  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3537  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3538  * cannot race with other handlers or page migration.
3539  * Keep the pte_same checks anyway to make transition from the mutex easier.
3540  */
3541 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3542                        unsigned long address, pte_t *ptep,
3543                        struct page *pagecache_page, spinlock_t *ptl)
3544 {
3545         pte_t pte;
3546         struct hstate *h = hstate_vma(vma);
3547         struct page *old_page, *new_page;
3548         int outside_reserve = 0;
3549         vm_fault_t ret = 0;
3550         unsigned long haddr = address & huge_page_mask(h);
3551         struct mmu_notifier_range range;
3552
3553         pte = huge_ptep_get(ptep);
3554         old_page = pte_page(pte);
3555
3556 retry_avoidcopy:
3557         /* If no-one else is actually using this page, avoid the copy
3558          * and just make the page writable */
3559         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3560                 page_move_anon_rmap(old_page, vma);
3561                 set_huge_ptep_writable(vma, haddr, ptep);
3562                 return 0;
3563         }
3564
3565         /*
3566          * If the process that created a MAP_PRIVATE mapping is about to
3567          * perform a COW due to a shared page count, attempt to satisfy
3568          * the allocation without using the existing reserves. The pagecache
3569          * page is used to determine if the reserve at this address was
3570          * consumed or not. If reserves were used, a partial faulted mapping
3571          * at the time of fork() could consume its reserves on COW instead
3572          * of the full address range.
3573          */
3574         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3575                         old_page != pagecache_page)
3576                 outside_reserve = 1;
3577
3578         get_page(old_page);
3579
3580         /*
3581          * Drop page table lock as buddy allocator may be called. It will
3582          * be acquired again before returning to the caller, as expected.
3583          */
3584         spin_unlock(ptl);
3585         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3586
3587         if (IS_ERR(new_page)) {
3588                 /*
3589                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3590                  * it is due to references held by a child and an insufficient
3591                  * huge page pool. To guarantee the original mappers
3592                  * reliability, unmap the page from child processes. The child
3593                  * may get SIGKILLed if it later faults.
3594                  */
3595                 if (outside_reserve) {
3596                         put_page(old_page);
3597                         BUG_ON(huge_pte_none(pte));
3598                         unmap_ref_private(mm, vma, old_page, haddr);
3599                         BUG_ON(huge_pte_none(pte));
3600                         spin_lock(ptl);
3601                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3602                         if (likely(ptep &&
3603                                    pte_same(huge_ptep_get(ptep), pte)))
3604                                 goto retry_avoidcopy;
3605                         /*
3606                          * race occurs while re-acquiring page table
3607                          * lock, and our job is done.
3608                          */
3609                         return 0;
3610                 }
3611
3612                 ret = vmf_error(PTR_ERR(new_page));
3613                 goto out_release_old;
3614         }
3615
3616         /*
3617          * When the original hugepage is shared one, it does not have
3618          * anon_vma prepared.
3619          */
3620         if (unlikely(anon_vma_prepare(vma))) {
3621                 ret = VM_FAULT_OOM;
3622                 goto out_release_all;
3623         }
3624
3625         copy_user_huge_page(new_page, old_page, address, vma,
3626                             pages_per_huge_page(h));
3627         __SetPageUptodate(new_page);
3628
3629         mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3630         mmu_notifier_invalidate_range_start(&range);
3631
3632         /*
3633          * Retake the page table lock to check for racing updates
3634          * before the page tables are altered
3635          */
3636         spin_lock(ptl);
3637         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3638         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3639                 ClearPagePrivate(new_page);
3640
3641                 /* Break COW */
3642                 huge_ptep_clear_flush(vma, haddr, ptep);
3643                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3644                 set_huge_pte_at(mm, haddr, ptep,
3645                                 make_huge_pte(vma, new_page, 1));
3646                 page_remove_rmap(old_page, true);
3647                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3648                 set_page_huge_active(new_page);
3649                 /* Make the old page be freed below */
3650                 new_page = old_page;
3651         }
3652         spin_unlock(ptl);
3653         mmu_notifier_invalidate_range_end(&range);
3654 out_release_all:
3655         restore_reserve_on_error(h, vma, haddr, new_page);
3656         put_page(new_page);
3657 out_release_old:
3658         put_page(old_page);
3659
3660         spin_lock(ptl); /* Caller expects lock to be held */
3661         return ret;
3662 }
3663
3664 /* Return the pagecache page at a given address within a VMA */
3665 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3666                         struct vm_area_struct *vma, unsigned long address)
3667 {
3668         struct address_space *mapping;
3669         pgoff_t idx;
3670
3671         mapping = vma->vm_file->f_mapping;
3672         idx = vma_hugecache_offset(h, vma, address);
3673
3674         return find_lock_page(mapping, idx);
3675 }
3676
3677 /*
3678  * Return whether there is a pagecache page to back given address within VMA.
3679  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3680  */
3681 static bool hugetlbfs_pagecache_present(struct hstate *h,
3682                         struct vm_area_struct *vma, unsigned long address)
3683 {
3684         struct address_space *mapping;
3685         pgoff_t idx;
3686         struct page *page;
3687
3688         mapping = vma->vm_file->f_mapping;
3689         idx = vma_hugecache_offset(h, vma, address);
3690
3691         page = find_get_page(mapping, idx);
3692         if (page)
3693                 put_page(page);
3694         return page != NULL;
3695 }
3696
3697 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3698                            pgoff_t idx)
3699 {
3700         struct inode *inode = mapping->host;
3701         struct hstate *h = hstate_inode(inode);
3702         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3703
3704         if (err)
3705                 return err;
3706         ClearPagePrivate(page);
3707
3708         /*
3709          * set page dirty so that it will not be removed from cache/file
3710          * by non-hugetlbfs specific code paths.
3711          */
3712         set_page_dirty(page);
3713
3714         spin_lock(&inode->i_lock);
3715         inode->i_blocks += blocks_per_huge_page(h);
3716         spin_unlock(&inode->i_lock);
3717         return 0;
3718 }
3719
3720 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3721                         struct vm_area_struct *vma,
3722                         struct address_space *mapping, pgoff_t idx,
3723                         unsigned long address, pte_t *ptep, unsigned int flags)
3724 {
3725         struct hstate *h = hstate_vma(vma);
3726         vm_fault_t ret = VM_FAULT_SIGBUS;
3727         int anon_rmap = 0;
3728         unsigned long size;
3729         struct page *page;
3730         pte_t new_pte;
3731         spinlock_t *ptl;
3732         unsigned long haddr = address & huge_page_mask(h);
3733         bool new_page = false;
3734
3735         /*
3736          * Currently, we are forced to kill the process in the event the
3737          * original mapper has unmapped pages from the child due to a failed
3738          * COW. Warn that such a situation has occurred as it may not be obvious
3739          */
3740         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3741                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3742                            current->pid);
3743                 return ret;
3744         }
3745
3746         /*
3747          * Use page lock to guard against racing truncation
3748          * before we get page_table_lock.
3749          */
3750 retry:
3751         page = find_lock_page(mapping, idx);
3752         if (!page) {
3753                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3754                 if (idx >= size)
3755                         goto out;
3756
3757                 /*
3758                  * Check for page in userfault range
3759                  */
3760                 if (userfaultfd_missing(vma)) {
3761                         u32 hash;
3762                         struct vm_fault vmf = {
3763                                 .vma = vma,
3764                                 .address = haddr,
3765                                 .flags = flags,
3766                                 /*
3767                                  * Hard to debug if it ends up being
3768                                  * used by a callee that assumes
3769                                  * something about the other
3770                                  * uninitialized fields... same as in
3771                                  * memory.c
3772                                  */
3773                         };
3774
3775                         /*
3776                          * hugetlb_fault_mutex must be dropped before
3777                          * handling userfault.  Reacquire after handling
3778                          * fault to make calling code simpler.
3779                          */
3780                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3781                                                         idx, haddr);
3782                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3783                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3784                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3785                         goto out;
3786                 }
3787
3788                 page = alloc_huge_page(vma, haddr, 0);
3789                 if (IS_ERR(page)) {
3790                         ret = vmf_error(PTR_ERR(page));
3791                         goto out;
3792                 }
3793                 clear_huge_page(page, address, pages_per_huge_page(h));
3794                 __SetPageUptodate(page);
3795                 new_page = true;
3796
3797                 if (vma->vm_flags & VM_MAYSHARE) {
3798                         int err = huge_add_to_page_cache(page, mapping, idx);
3799                         if (err) {
3800                                 put_page(page);
3801                                 if (err == -EEXIST)
3802                                         goto retry;
3803                                 goto out;
3804                         }
3805                 } else {
3806                         lock_page(page);
3807                         if (unlikely(anon_vma_prepare(vma))) {
3808                                 ret = VM_FAULT_OOM;
3809                                 goto backout_unlocked;
3810                         }
3811                         anon_rmap = 1;
3812                 }
3813         } else {
3814                 /*
3815                  * If memory error occurs between mmap() and fault, some process
3816                  * don't have hwpoisoned swap entry for errored virtual address.
3817                  * So we need to block hugepage fault by PG_hwpoison bit check.
3818                  */
3819                 if (unlikely(PageHWPoison(page))) {
3820                         ret = VM_FAULT_HWPOISON |
3821                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3822                         goto backout_unlocked;
3823                 }
3824         }
3825
3826         /*
3827          * If we are going to COW a private mapping later, we examine the
3828          * pending reservations for this page now. This will ensure that
3829          * any allocations necessary to record that reservation occur outside
3830          * the spinlock.
3831          */
3832         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3833                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3834                         ret = VM_FAULT_OOM;
3835                         goto backout_unlocked;
3836                 }
3837                 /* Just decrements count, does not deallocate */
3838                 vma_end_reservation(h, vma, haddr);
3839         }
3840
3841         ptl = huge_pte_lock(h, mm, ptep);
3842         size = i_size_read(mapping->host) >> huge_page_shift(h);
3843         if (idx >= size)
3844                 goto backout;
3845
3846         ret = 0;
3847         if (!huge_pte_none(huge_ptep_get(ptep)))
3848                 goto backout;
3849
3850         if (anon_rmap) {
3851                 ClearPagePrivate(page);
3852                 hugepage_add_new_anon_rmap(page, vma, haddr);
3853         } else
3854                 page_dup_rmap(page, true);
3855         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3856                                 && (vma->vm_flags & VM_SHARED)));
3857         set_huge_pte_at(mm, haddr, ptep, new_pte);
3858
3859         hugetlb_count_add(pages_per_huge_page(h), mm);
3860         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3861                 /* Optimization, do the COW without a second fault */
3862                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3863         }
3864
3865         spin_unlock(ptl);
3866
3867         /*
3868          * Only make newly allocated pages active.  Existing pages found
3869          * in the pagecache could be !page_huge_active() if they have been
3870          * isolated for migration.
3871          */
3872         if (new_page)
3873                 set_page_huge_active(page);
3874
3875         unlock_page(page);
3876 out:
3877         return ret;
3878
3879 backout:
3880         spin_unlock(ptl);
3881 backout_unlocked:
3882         unlock_page(page);
3883         restore_reserve_on_error(h, vma, haddr, page);
3884         put_page(page);
3885         goto out;
3886 }
3887
3888 #ifdef CONFIG_SMP
3889 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3890                             struct vm_area_struct *vma,
3891                             struct address_space *mapping,
3892                             pgoff_t idx, unsigned long address)
3893 {
3894         unsigned long key[2];
3895         u32 hash;
3896
3897         if (vma->vm_flags & VM_SHARED) {
3898                 key[0] = (unsigned long) mapping;
3899                 key[1] = idx;
3900         } else {
3901                 key[0] = (unsigned long) mm;
3902                 key[1] = address >> huge_page_shift(h);
3903         }
3904
3905         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3906
3907         return hash & (num_fault_mutexes - 1);
3908 }
3909 #else
3910 /*
3911  * For uniprocesor systems we always use a single mutex, so just
3912  * return 0 and avoid the hashing overhead.
3913  */
3914 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3915                             struct vm_area_struct *vma,
3916                             struct address_space *mapping,
3917                             pgoff_t idx, unsigned long address)
3918 {
3919         return 0;
3920 }
3921 #endif
3922
3923 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3924                         unsigned long address, unsigned int flags)
3925 {
3926         pte_t *ptep, entry;
3927         spinlock_t *ptl;
3928         vm_fault_t ret;
3929         u32 hash;
3930         pgoff_t idx;
3931         struct page *page = NULL;
3932         struct page *pagecache_page = NULL;
3933         struct hstate *h = hstate_vma(vma);
3934         struct address_space *mapping;
3935         int need_wait_lock = 0;
3936         unsigned long haddr = address & huge_page_mask(h);
3937
3938         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3939         if (ptep) {
3940                 entry = huge_ptep_get(ptep);
3941                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3942                         migration_entry_wait_huge(vma, mm, ptep);
3943                         return 0;
3944                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3945                         return VM_FAULT_HWPOISON_LARGE |
3946                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3947         } else {
3948                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3949                 if (!ptep)
3950                         return VM_FAULT_OOM;
3951         }
3952
3953         mapping = vma->vm_file->f_mapping;
3954         idx = vma_hugecache_offset(h, vma, haddr);
3955
3956         /*
3957          * Serialize hugepage allocation and instantiation, so that we don't
3958          * get spurious allocation failures if two CPUs race to instantiate
3959          * the same page in the page cache.
3960          */
3961         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3962         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3963
3964         entry = huge_ptep_get(ptep);
3965         if (huge_pte_none(entry)) {
3966                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3967                 goto out_mutex;
3968         }
3969
3970         ret = 0;
3971
3972         /*
3973          * entry could be a migration/hwpoison entry at this point, so this
3974          * check prevents the kernel from going below assuming that we have
3975          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3976          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3977          * handle it.
3978          */
3979         if (!pte_present(entry))
3980                 goto out_mutex;
3981
3982         /*
3983          * If we are going to COW the mapping later, we examine the pending
3984          * reservations for this page now. This will ensure that any
3985          * allocations necessary to record that reservation occur outside the
3986          * spinlock. For private mappings, we also lookup the pagecache
3987          * page now as it is used to determine if a reservation has been
3988          * consumed.
3989          */
3990         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3991                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3992                         ret = VM_FAULT_OOM;
3993                         goto out_mutex;
3994                 }
3995                 /* Just decrements count, does not deallocate */
3996                 vma_end_reservation(h, vma, haddr);
3997
3998                 if (!(vma->vm_flags & VM_MAYSHARE))
3999                         pagecache_page = hugetlbfs_pagecache_page(h,
4000                                                                 vma, haddr);
4001         }
4002
4003         ptl = huge_pte_lock(h, mm, ptep);
4004
4005         /* Check for a racing update before calling hugetlb_cow */
4006         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4007                 goto out_ptl;
4008
4009         /*
4010          * hugetlb_cow() requires page locks of pte_page(entry) and
4011          * pagecache_page, so here we need take the former one
4012          * when page != pagecache_page or !pagecache_page.
4013          */
4014         page = pte_page(entry);
4015         if (page != pagecache_page)
4016                 if (!trylock_page(page)) {
4017                         need_wait_lock = 1;
4018                         goto out_ptl;
4019                 }
4020
4021         get_page(page);
4022
4023         if (flags & FAULT_FLAG_WRITE) {
4024                 if (!huge_pte_write(entry)) {
4025                         ret = hugetlb_cow(mm, vma, address, ptep,
4026                                           pagecache_page, ptl);
4027                         goto out_put_page;
4028                 }
4029                 entry = huge_pte_mkdirty(entry);
4030         }
4031         entry = pte_mkyoung(entry);
4032         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4033                                                 flags & FAULT_FLAG_WRITE))
4034                 update_mmu_cache(vma, haddr, ptep);
4035 out_put_page:
4036         if (page != pagecache_page)
4037                 unlock_page(page);
4038         put_page(page);
4039 out_ptl:
4040         spin_unlock(ptl);
4041
4042         if (pagecache_page) {
4043                 unlock_page(pagecache_page);
4044                 put_page(pagecache_page);
4045         }
4046 out_mutex:
4047         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4048         /*
4049          * Generally it's safe to hold refcount during waiting page lock. But
4050          * here we just wait to defer the next page fault to avoid busy loop and
4051          * the page is not used after unlocked before returning from the current
4052          * page fault. So we are safe from accessing freed page, even if we wait
4053          * here without taking refcount.
4054          */
4055         if (need_wait_lock)
4056                 wait_on_page_locked(page);
4057         return ret;
4058 }
4059
4060 /*
4061  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4062  * modifications for huge pages.
4063  */
4064 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4065                             pte_t *dst_pte,
4066                             struct vm_area_struct *dst_vma,
4067                             unsigned long dst_addr,
4068                             unsigned long src_addr,
4069                             struct page **pagep)
4070 {
4071         struct address_space *mapping;
4072         pgoff_t idx;
4073         unsigned long size;
4074         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4075         struct hstate *h = hstate_vma(dst_vma);
4076         pte_t _dst_pte;
4077         spinlock_t *ptl;
4078         int ret;
4079         struct page *page;
4080
4081         if (!*pagep) {
4082                 ret = -ENOMEM;
4083                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4084                 if (IS_ERR(page))
4085                         goto out;
4086
4087                 ret = copy_huge_page_from_user(page,
4088                                                 (const void __user *) src_addr,
4089                                                 pages_per_huge_page(h), false);
4090
4091                 /* fallback to copy_from_user outside mmap_sem */
4092                 if (unlikely(ret)) {
4093                         ret = -ENOENT;
4094                         *pagep = page;
4095                         /* don't free the page */
4096                         goto out;
4097                 }
4098         } else {
4099                 page = *pagep;
4100                 *pagep = NULL;
4101         }
4102
4103         /*
4104          * The memory barrier inside __SetPageUptodate makes sure that
4105          * preceding stores to the page contents become visible before
4106          * the set_pte_at() write.
4107          */
4108         __SetPageUptodate(page);
4109
4110         mapping = dst_vma->vm_file->f_mapping;
4111         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4112
4113         /*
4114          * If shared, add to page cache
4115          */
4116         if (vm_shared) {
4117                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4118                 ret = -EFAULT;
4119                 if (idx >= size)
4120                         goto out_release_nounlock;
4121
4122                 /*
4123                  * Serialization between remove_inode_hugepages() and
4124                  * huge_add_to_page_cache() below happens through the
4125                  * hugetlb_fault_mutex_table that here must be hold by
4126                  * the caller.
4127                  */
4128                 ret = huge_add_to_page_cache(page, mapping, idx);
4129                 if (ret)
4130                         goto out_release_nounlock;
4131         }
4132
4133         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4134         spin_lock(ptl);
4135
4136         /*
4137          * Recheck the i_size after holding PT lock to make sure not
4138          * to leave any page mapped (as page_mapped()) beyond the end
4139          * of the i_size (remove_inode_hugepages() is strict about
4140          * enforcing that). If we bail out here, we'll also leave a
4141          * page in the radix tree in the vm_shared case beyond the end
4142          * of the i_size, but remove_inode_hugepages() will take care
4143          * of it as soon as we drop the hugetlb_fault_mutex_table.
4144          */
4145         size = i_size_read(mapping->host) >> huge_page_shift(h);
4146         ret = -EFAULT;
4147         if (idx >= size)
4148                 goto out_release_unlock;
4149
4150         ret = -EEXIST;
4151         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4152                 goto out_release_unlock;
4153
4154         if (vm_shared) {
4155                 page_dup_rmap(page, true);
4156         } else {
4157                 ClearPagePrivate(page);
4158                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4159         }
4160
4161         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4162         if (dst_vma->vm_flags & VM_WRITE)
4163                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4164         _dst_pte = pte_mkyoung(_dst_pte);
4165
4166         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4167
4168         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4169                                         dst_vma->vm_flags & VM_WRITE);
4170         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4171
4172         /* No need to invalidate - it was non-present before */
4173         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4174
4175         spin_unlock(ptl);
4176         set_page_huge_active(page);
4177         if (vm_shared)
4178                 unlock_page(page);
4179         ret = 0;
4180 out:
4181         return ret;
4182 out_release_unlock:
4183         spin_unlock(ptl);
4184         if (vm_shared)
4185                 unlock_page(page);
4186 out_release_nounlock:
4187         put_page(page);
4188         goto out;
4189 }
4190
4191 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4192                          struct page **pages, struct vm_area_struct **vmas,
4193                          unsigned long *position, unsigned long *nr_pages,
4194                          long i, unsigned int flags, int *nonblocking)
4195 {
4196         unsigned long pfn_offset;
4197         unsigned long vaddr = *position;
4198         unsigned long remainder = *nr_pages;
4199         struct hstate *h = hstate_vma(vma);
4200         int err = -EFAULT;
4201
4202         while (vaddr < vma->vm_end && remainder) {
4203                 pte_t *pte;
4204                 spinlock_t *ptl = NULL;
4205                 int absent;
4206                 struct page *page;
4207
4208                 /*
4209                  * If we have a pending SIGKILL, don't keep faulting pages and
4210                  * potentially allocating memory.
4211                  */
4212                 if (fatal_signal_pending(current)) {
4213                         remainder = 0;
4214                         break;
4215                 }
4216
4217                 /*
4218                  * Some archs (sparc64, sh*) have multiple pte_ts to
4219                  * each hugepage.  We have to make sure we get the
4220                  * first, for the page indexing below to work.
4221                  *
4222                  * Note that page table lock is not held when pte is null.
4223                  */
4224                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4225                                       huge_page_size(h));
4226                 if (pte)
4227                         ptl = huge_pte_lock(h, mm, pte);
4228                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4229
4230                 /*
4231                  * When coredumping, it suits get_dump_page if we just return
4232                  * an error where there's an empty slot with no huge pagecache
4233                  * to back it.  This way, we avoid allocating a hugepage, and
4234                  * the sparse dumpfile avoids allocating disk blocks, but its
4235                  * huge holes still show up with zeroes where they need to be.
4236                  */
4237                 if (absent && (flags & FOLL_DUMP) &&
4238                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4239                         if (pte)
4240                                 spin_unlock(ptl);
4241                         remainder = 0;
4242                         break;
4243                 }
4244
4245                 /*
4246                  * We need call hugetlb_fault for both hugepages under migration
4247                  * (in which case hugetlb_fault waits for the migration,) and
4248                  * hwpoisoned hugepages (in which case we need to prevent the
4249                  * caller from accessing to them.) In order to do this, we use
4250                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4251                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4252                  * both cases, and because we can't follow correct pages
4253                  * directly from any kind of swap entries.
4254                  */
4255                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4256                     ((flags & FOLL_WRITE) &&
4257                       !huge_pte_write(huge_ptep_get(pte)))) {
4258                         vm_fault_t ret;
4259                         unsigned int fault_flags = 0;
4260
4261                         if (pte)
4262                                 spin_unlock(ptl);
4263                         if (flags & FOLL_WRITE)
4264                                 fault_flags |= FAULT_FLAG_WRITE;
4265                         if (nonblocking)
4266                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4267                         if (flags & FOLL_NOWAIT)
4268                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4269                                         FAULT_FLAG_RETRY_NOWAIT;
4270                         if (flags & FOLL_TRIED) {
4271                                 VM_WARN_ON_ONCE(fault_flags &
4272                                                 FAULT_FLAG_ALLOW_RETRY);
4273                                 fault_flags |= FAULT_FLAG_TRIED;
4274                         }
4275                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4276                         if (ret & VM_FAULT_ERROR) {
4277                                 err = vm_fault_to_errno(ret, flags);
4278                                 remainder = 0;
4279                                 break;
4280                         }
4281                         if (ret & VM_FAULT_RETRY) {
4282                                 if (nonblocking &&
4283                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4284                                         *nonblocking = 0;
4285                                 *nr_pages = 0;
4286                                 /*
4287                                  * VM_FAULT_RETRY must not return an
4288                                  * error, it will return zero
4289                                  * instead.
4290                                  *
4291                                  * No need to update "position" as the
4292                                  * caller will not check it after
4293                                  * *nr_pages is set to 0.
4294                                  */
4295                                 return i;
4296                         }
4297                         continue;
4298                 }
4299
4300                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4301                 page = pte_page(huge_ptep_get(pte));
4302
4303                 /*
4304                  * Instead of doing 'try_get_page()' below in the same_page
4305                  * loop, just check the count once here.
4306                  */
4307                 if (unlikely(page_count(page) <= 0)) {
4308                         if (pages) {
4309                                 spin_unlock(ptl);
4310                                 remainder = 0;
4311                                 err = -ENOMEM;
4312                                 break;
4313                         }
4314                 }
4315 same_page:
4316                 if (pages) {
4317                         pages[i] = mem_map_offset(page, pfn_offset);
4318                         get_page(pages[i]);
4319                 }
4320
4321                 if (vmas)
4322                         vmas[i] = vma;
4323
4324                 vaddr += PAGE_SIZE;
4325                 ++pfn_offset;
4326                 --remainder;
4327                 ++i;
4328                 if (vaddr < vma->vm_end && remainder &&
4329                                 pfn_offset < pages_per_huge_page(h)) {
4330                         /*
4331                          * We use pfn_offset to avoid touching the pageframes
4332                          * of this compound page.
4333                          */
4334                         goto same_page;
4335                 }
4336                 spin_unlock(ptl);
4337         }
4338         *nr_pages = remainder;
4339         /*
4340          * setting position is actually required only if remainder is
4341          * not zero but it's faster not to add a "if (remainder)"
4342          * branch.
4343          */
4344         *position = vaddr;
4345
4346         return i ? i : err;
4347 }
4348
4349 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4350 /*
4351  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4352  * implement this.
4353  */
4354 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4355 #endif
4356
4357 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4358                 unsigned long address, unsigned long end, pgprot_t newprot)
4359 {
4360         struct mm_struct *mm = vma->vm_mm;
4361         unsigned long start = address;
4362         pte_t *ptep;
4363         pte_t pte;
4364         struct hstate *h = hstate_vma(vma);
4365         unsigned long pages = 0;
4366         bool shared_pmd = false;
4367         struct mmu_notifier_range range;
4368
4369         /*
4370          * In the case of shared PMDs, the area to flush could be beyond
4371          * start/end.  Set range.start/range.end to cover the maximum possible
4372          * range if PMD sharing is possible.
4373          */
4374         mmu_notifier_range_init(&range, mm, start, end);
4375         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4376
4377         BUG_ON(address >= end);
4378         flush_cache_range(vma, range.start, range.end);
4379
4380         mmu_notifier_invalidate_range_start(&range);
4381         i_mmap_lock_write(vma->vm_file->f_mapping);
4382         for (; address < end; address += huge_page_size(h)) {
4383                 spinlock_t *ptl;
4384                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4385                 if (!ptep)
4386                         continue;
4387                 ptl = huge_pte_lock(h, mm, ptep);
4388                 if (huge_pmd_unshare(mm, &address, ptep)) {
4389                         pages++;
4390                         spin_unlock(ptl);
4391                         shared_pmd = true;
4392                         continue;
4393                 }
4394                 pte = huge_ptep_get(ptep);
4395                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4396                         spin_unlock(ptl);
4397                         continue;
4398                 }
4399                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4400                         swp_entry_t entry = pte_to_swp_entry(pte);
4401
4402                         if (is_write_migration_entry(entry)) {
4403                                 pte_t newpte;
4404
4405                                 make_migration_entry_read(&entry);
4406                                 newpte = swp_entry_to_pte(entry);
4407                                 set_huge_swap_pte_at(mm, address, ptep,
4408                                                      newpte, huge_page_size(h));
4409                                 pages++;
4410                         }
4411                         spin_unlock(ptl);
4412                         continue;
4413                 }
4414                 if (!huge_pte_none(pte)) {
4415                         pte_t old_pte;
4416
4417                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4418                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4419                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4420                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4421                         pages++;
4422                 }
4423                 spin_unlock(ptl);
4424         }
4425         /*
4426          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4427          * may have cleared our pud entry and done put_page on the page table:
4428          * once we release i_mmap_rwsem, another task can do the final put_page
4429          * and that page table be reused and filled with junk.  If we actually
4430          * did unshare a page of pmds, flush the range corresponding to the pud.
4431          */
4432         if (shared_pmd)
4433                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4434         else
4435                 flush_hugetlb_tlb_range(vma, start, end);
4436         /*
4437          * No need to call mmu_notifier_invalidate_range() we are downgrading
4438          * page table protection not changing it to point to a new page.
4439          *
4440          * See Documentation/vm/mmu_notifier.rst
4441          */
4442         i_mmap_unlock_write(vma->vm_file->f_mapping);
4443         mmu_notifier_invalidate_range_end(&range);
4444
4445         return pages << h->order;
4446 }
4447
4448 int hugetlb_reserve_pages(struct inode *inode,
4449                                         long from, long to,
4450                                         struct vm_area_struct *vma,
4451                                         vm_flags_t vm_flags)
4452 {
4453         long ret, chg;
4454         struct hstate *h = hstate_inode(inode);
4455         struct hugepage_subpool *spool = subpool_inode(inode);
4456         struct resv_map *resv_map;
4457         long gbl_reserve;
4458
4459         /* This should never happen */
4460         if (from > to) {
4461                 VM_WARN(1, "%s called with a negative range\n", __func__);
4462                 return -EINVAL;
4463         }
4464
4465         /*
4466          * Only apply hugepage reservation if asked. At fault time, an
4467          * attempt will be made for VM_NORESERVE to allocate a page
4468          * without using reserves
4469          */
4470         if (vm_flags & VM_NORESERVE)
4471                 return 0;
4472
4473         /*
4474          * Shared mappings base their reservation on the number of pages that
4475          * are already allocated on behalf of the file. Private mappings need
4476          * to reserve the full area even if read-only as mprotect() may be
4477          * called to make the mapping read-write. Assume !vma is a shm mapping
4478          */
4479         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4480                 resv_map = inode_resv_map(inode);
4481
4482                 chg = region_chg(resv_map, from, to);
4483
4484         } else {
4485                 resv_map = resv_map_alloc();
4486                 if (!resv_map)
4487                         return -ENOMEM;
4488
4489                 chg = to - from;
4490
4491                 set_vma_resv_map(vma, resv_map);
4492                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4493         }
4494
4495         if (chg < 0) {
4496                 ret = chg;
4497                 goto out_err;
4498         }
4499
4500         /*
4501          * There must be enough pages in the subpool for the mapping. If
4502          * the subpool has a minimum size, there may be some global
4503          * reservations already in place (gbl_reserve).
4504          */
4505         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4506         if (gbl_reserve < 0) {
4507                 ret = -ENOSPC;
4508                 goto out_err;
4509         }
4510
4511         /*
4512          * Check enough hugepages are available for the reservation.
4513          * Hand the pages back to the subpool if there are not
4514          */
4515         ret = hugetlb_acct_memory(h, gbl_reserve);
4516         if (ret < 0) {
4517                 /* put back original number of pages, chg */
4518                 (void)hugepage_subpool_put_pages(spool, chg);
4519                 goto out_err;
4520         }
4521
4522         /*
4523          * Account for the reservations made. Shared mappings record regions
4524          * that have reservations as they are shared by multiple VMAs.
4525          * When the last VMA disappears, the region map says how much
4526          * the reservation was and the page cache tells how much of
4527          * the reservation was consumed. Private mappings are per-VMA and
4528          * only the consumed reservations are tracked. When the VMA
4529          * disappears, the original reservation is the VMA size and the
4530          * consumed reservations are stored in the map. Hence, nothing
4531          * else has to be done for private mappings here
4532          */
4533         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4534                 long add = region_add(resv_map, from, to);
4535
4536                 if (unlikely(chg > add)) {
4537                         /*
4538                          * pages in this range were added to the reserve
4539                          * map between region_chg and region_add.  This
4540                          * indicates a race with alloc_huge_page.  Adjust
4541                          * the subpool and reserve counts modified above
4542                          * based on the difference.
4543                          */
4544                         long rsv_adjust;
4545
4546                         rsv_adjust = hugepage_subpool_put_pages(spool,
4547                                                                 chg - add);
4548                         hugetlb_acct_memory(h, -rsv_adjust);
4549                 }
4550         }
4551         return 0;
4552 out_err:
4553         if (!vma || vma->vm_flags & VM_MAYSHARE)
4554                 /* Don't call region_abort if region_chg failed */
4555                 if (chg >= 0)
4556                         region_abort(resv_map, from, to);
4557         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4558                 kref_put(&resv_map->refs, resv_map_release);
4559         return ret;
4560 }
4561
4562 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4563                                                                 long freed)
4564 {
4565         struct hstate *h = hstate_inode(inode);
4566         struct resv_map *resv_map = inode_resv_map(inode);
4567         long chg = 0;
4568         struct hugepage_subpool *spool = subpool_inode(inode);
4569         long gbl_reserve;
4570
4571         if (resv_map) {
4572                 chg = region_del(resv_map, start, end);
4573                 /*
4574                  * region_del() can fail in the rare case where a region
4575                  * must be split and another region descriptor can not be
4576                  * allocated.  If end == LONG_MAX, it will not fail.
4577                  */
4578                 if (chg < 0)
4579                         return chg;
4580         }
4581
4582         spin_lock(&inode->i_lock);
4583         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4584         spin_unlock(&inode->i_lock);
4585
4586         /*
4587          * If the subpool has a minimum size, the number of global
4588          * reservations to be released may be adjusted.
4589          */
4590         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4591         hugetlb_acct_memory(h, -gbl_reserve);
4592
4593         return 0;
4594 }
4595
4596 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4597 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4598                                 struct vm_area_struct *vma,
4599                                 unsigned long addr, pgoff_t idx)
4600 {
4601         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4602                                 svma->vm_start;
4603         unsigned long sbase = saddr & PUD_MASK;
4604         unsigned long s_end = sbase + PUD_SIZE;
4605
4606         /* Allow segments to share if only one is marked locked */
4607         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4608         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4609
4610         /*
4611          * match the virtual addresses, permission and the alignment of the
4612          * page table page.
4613          */
4614         if (pmd_index(addr) != pmd_index(saddr) ||
4615             vm_flags != svm_flags ||
4616             sbase < svma->vm_start || svma->vm_end < s_end)
4617                 return 0;
4618
4619         return saddr;
4620 }
4621
4622 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4623 {
4624         unsigned long base = addr & PUD_MASK;
4625         unsigned long end = base + PUD_SIZE;
4626
4627         /*
4628          * check on proper vm_flags and page table alignment
4629          */
4630         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4631                 return true;
4632         return false;
4633 }
4634
4635 /*
4636  * Determine if start,end range within vma could be mapped by shared pmd.
4637  * If yes, adjust start and end to cover range associated with possible
4638  * shared pmd mappings.
4639  */
4640 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4641                                 unsigned long *start, unsigned long *end)
4642 {
4643         unsigned long check_addr = *start;
4644
4645         if (!(vma->vm_flags & VM_MAYSHARE))
4646                 return;
4647
4648         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4649                 unsigned long a_start = check_addr & PUD_MASK;
4650                 unsigned long a_end = a_start + PUD_SIZE;
4651
4652                 /*
4653                  * If sharing is possible, adjust start/end if necessary.
4654                  */
4655                 if (range_in_vma(vma, a_start, a_end)) {
4656                         if (a_start < *start)
4657                                 *start = a_start;
4658                         if (a_end > *end)
4659                                 *end = a_end;
4660                 }
4661         }
4662 }
4663
4664 /*
4665  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4666  * and returns the corresponding pte. While this is not necessary for the
4667  * !shared pmd case because we can allocate the pmd later as well, it makes the
4668  * code much cleaner. pmd allocation is essential for the shared case because
4669  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4670  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4671  * bad pmd for sharing.
4672  */
4673 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4674 {
4675         struct vm_area_struct *vma = find_vma(mm, addr);
4676         struct address_space *mapping = vma->vm_file->f_mapping;
4677         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4678                         vma->vm_pgoff;
4679         struct vm_area_struct *svma;
4680         unsigned long saddr;
4681         pte_t *spte = NULL;
4682         pte_t *pte;
4683         spinlock_t *ptl;
4684
4685         if (!vma_shareable(vma, addr))
4686                 return (pte_t *)pmd_alloc(mm, pud, addr);
4687
4688         i_mmap_lock_write(mapping);
4689         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4690                 if (svma == vma)
4691                         continue;
4692
4693                 saddr = page_table_shareable(svma, vma, addr, idx);
4694                 if (saddr) {
4695                         spte = huge_pte_offset(svma->vm_mm, saddr,
4696                                                vma_mmu_pagesize(svma));
4697                         if (spte) {
4698                                 get_page(virt_to_page(spte));
4699                                 break;
4700                         }
4701                 }
4702         }
4703
4704         if (!spte)
4705                 goto out;
4706
4707         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4708         if (pud_none(*pud)) {
4709                 pud_populate(mm, pud,
4710                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4711                 mm_inc_nr_pmds(mm);
4712         } else {
4713                 put_page(virt_to_page(spte));
4714         }
4715         spin_unlock(ptl);
4716 out:
4717         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4718         i_mmap_unlock_write(mapping);
4719         return pte;
4720 }
4721
4722 /*
4723  * unmap huge page backed by shared pte.
4724  *
4725  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4726  * indicated by page_count > 1, unmap is achieved by clearing pud and
4727  * decrementing the ref count. If count == 1, the pte page is not shared.
4728  *
4729  * called with page table lock held.
4730  *
4731  * returns: 1 successfully unmapped a shared pte page
4732  *          0 the underlying pte page is not shared, or it is the last user
4733  */
4734 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4735 {
4736         pgd_t *pgd = pgd_offset(mm, *addr);
4737         p4d_t *p4d = p4d_offset(pgd, *addr);
4738         pud_t *pud = pud_offset(p4d, *addr);
4739
4740         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4741         if (page_count(virt_to_page(ptep)) == 1)
4742                 return 0;
4743
4744         pud_clear(pud);
4745         put_page(virt_to_page(ptep));
4746         mm_dec_nr_pmds(mm);
4747         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4748         return 1;
4749 }
4750 #define want_pmd_share()        (1)
4751 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4752 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4753 {
4754         return NULL;
4755 }
4756
4757 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4758 {
4759         return 0;
4760 }
4761
4762 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4763                                 unsigned long *start, unsigned long *end)
4764 {
4765 }
4766 #define want_pmd_share()        (0)
4767 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4768
4769 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4770 pte_t *huge_pte_alloc(struct mm_struct *mm,
4771                         unsigned long addr, unsigned long sz)
4772 {
4773         pgd_t *pgd;
4774         p4d_t *p4d;
4775         pud_t *pud;
4776         pte_t *pte = NULL;
4777
4778         pgd = pgd_offset(mm, addr);
4779         p4d = p4d_alloc(mm, pgd, addr);
4780         if (!p4d)
4781                 return NULL;
4782         pud = pud_alloc(mm, p4d, addr);
4783         if (pud) {
4784                 if (sz == PUD_SIZE) {
4785                         pte = (pte_t *)pud;
4786                 } else {
4787                         BUG_ON(sz != PMD_SIZE);
4788                         if (want_pmd_share() && pud_none(*pud))
4789                                 pte = huge_pmd_share(mm, addr, pud);
4790                         else
4791                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4792                 }
4793         }
4794         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4795
4796         return pte;
4797 }
4798
4799 /*
4800  * huge_pte_offset() - Walk the page table to resolve the hugepage
4801  * entry at address @addr
4802  *
4803  * Return: Pointer to page table or swap entry (PUD or PMD) for
4804  * address @addr, or NULL if a p*d_none() entry is encountered and the
4805  * size @sz doesn't match the hugepage size at this level of the page
4806  * table.
4807  */
4808 pte_t *huge_pte_offset(struct mm_struct *mm,
4809                        unsigned long addr, unsigned long sz)
4810 {
4811         pgd_t *pgd;
4812         p4d_t *p4d;
4813         pud_t *pud;
4814         pmd_t *pmd;
4815
4816         pgd = pgd_offset(mm, addr);
4817         if (!pgd_present(*pgd))
4818                 return NULL;
4819         p4d = p4d_offset(pgd, addr);
4820         if (!p4d_present(*p4d))
4821                 return NULL;
4822
4823         pud = pud_offset(p4d, addr);
4824         if (sz != PUD_SIZE && pud_none(*pud))
4825                 return NULL;
4826         /* hugepage or swap? */
4827         if (pud_huge(*pud) || !pud_present(*pud))
4828                 return (pte_t *)pud;
4829
4830         pmd = pmd_offset(pud, addr);
4831         if (sz != PMD_SIZE && pmd_none(*pmd))
4832                 return NULL;
4833         /* hugepage or swap? */
4834         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4835                 return (pte_t *)pmd;
4836
4837         return NULL;
4838 }
4839
4840 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4841
4842 /*
4843  * These functions are overwritable if your architecture needs its own
4844  * behavior.
4845  */
4846 struct page * __weak
4847 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4848                               int write)
4849 {
4850         return ERR_PTR(-EINVAL);
4851 }
4852
4853 struct page * __weak
4854 follow_huge_pd(struct vm_area_struct *vma,
4855                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4856 {
4857         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4858         return NULL;
4859 }
4860
4861 struct page * __weak
4862 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4863                 pmd_t *pmd, int flags)
4864 {
4865         struct page *page = NULL;
4866         spinlock_t *ptl;
4867         pte_t pte;
4868 retry:
4869         ptl = pmd_lockptr(mm, pmd);
4870         spin_lock(ptl);
4871         /*
4872          * make sure that the address range covered by this pmd is not
4873          * unmapped from other threads.
4874          */
4875         if (!pmd_huge(*pmd))
4876                 goto out;
4877         pte = huge_ptep_get((pte_t *)pmd);
4878         if (pte_present(pte)) {
4879                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4880                 if (flags & FOLL_GET)
4881                         get_page(page);
4882         } else {
4883                 if (is_hugetlb_entry_migration(pte)) {
4884                         spin_unlock(ptl);
4885                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4886                         goto retry;
4887                 }
4888                 /*
4889                  * hwpoisoned entry is treated as no_page_table in
4890                  * follow_page_mask().
4891                  */
4892         }
4893 out:
4894         spin_unlock(ptl);
4895         return page;
4896 }
4897
4898 struct page * __weak
4899 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4900                 pud_t *pud, int flags)
4901 {
4902         if (flags & FOLL_GET)
4903                 return NULL;
4904
4905         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4906 }
4907
4908 struct page * __weak
4909 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4910 {
4911         if (flags & FOLL_GET)
4912                 return NULL;
4913
4914         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4915 }
4916
4917 bool isolate_huge_page(struct page *page, struct list_head *list)
4918 {
4919         bool ret = true;
4920
4921         VM_BUG_ON_PAGE(!PageHead(page), page);
4922         spin_lock(&hugetlb_lock);
4923         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4924                 ret = false;
4925                 goto unlock;
4926         }
4927         clear_page_huge_active(page);
4928         list_move_tail(&page->lru, list);
4929 unlock:
4930         spin_unlock(&hugetlb_lock);
4931         return ret;
4932 }
4933
4934 void putback_active_hugepage(struct page *page)
4935 {
4936         VM_BUG_ON_PAGE(!PageHead(page), page);
4937         spin_lock(&hugetlb_lock);
4938         set_page_huge_active(page);
4939         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4940         spin_unlock(&hugetlb_lock);
4941         put_page(page);
4942 }
4943
4944 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4945 {
4946         struct hstate *h = page_hstate(oldpage);
4947
4948         hugetlb_cgroup_migrate(oldpage, newpage);
4949         set_page_owner_migrate_reason(newpage, reason);
4950
4951         /*
4952          * transfer temporary state of the new huge page. This is
4953          * reverse to other transitions because the newpage is going to
4954          * be final while the old one will be freed so it takes over
4955          * the temporary status.
4956          *
4957          * Also note that we have to transfer the per-node surplus state
4958          * here as well otherwise the global surplus count will not match
4959          * the per-node's.
4960          */
4961         if (PageHugeTemporary(newpage)) {
4962                 int old_nid = page_to_nid(oldpage);
4963                 int new_nid = page_to_nid(newpage);
4964
4965                 SetPageHugeTemporary(oldpage);
4966                 ClearPageHugeTemporary(newpage);
4967
4968                 spin_lock(&hugetlb_lock);
4969                 if (h->surplus_huge_pages_node[old_nid]) {
4970                         h->surplus_huge_pages_node[old_nid]--;
4971                         h->surplus_huge_pages_node[new_nid]++;
4972                 }
4973                 spin_unlock(&hugetlb_lock);
4974         }
4975 }