1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
36 #include <asm/pgalloc.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
45 #include "hugetlb_vmemmap.h"
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
54 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 static bool hugetlb_cma_page(struct page *page, unsigned int order)
65 static unsigned long hugetlb_cma_size __initdata;
68 * Minimum page order among possible hugepage sizes, set to a proper value
71 static unsigned int minimum_order __read_mostly = UINT_MAX;
73 __initdata LIST_HEAD(huge_boot_pages);
75 /* for command line parsing */
76 static struct hstate * __initdata parsed_hstate;
77 static unsigned long __initdata default_hstate_max_huge_pages;
78 static bool __initdata parsed_valid_hugepagesz = true;
79 static bool __initdata parsed_default_hugepagesz;
80 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
83 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
84 * free_huge_pages, and surplus_huge_pages.
86 DEFINE_SPINLOCK(hugetlb_lock);
89 * Serializes faults on the same logical page. This is used to
90 * prevent spurious OOMs when the hugepage pool is fully utilized.
92 static int num_fault_mutexes;
93 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95 /* Forward declaration */
96 static int hugetlb_acct_memory(struct hstate *h, long delta);
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 struct hugepage_subpool *spool;
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 spin_lock_init(&spool->lock);
137 spool->max_hpages = max_hpages;
139 spool->min_hpages = min_hpages;
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 spool->rsv_hpages = min_hpages;
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
157 unlock_or_release_subpool(spool, flags);
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 spin_lock_irq(&spool->lock);
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
203 spin_unlock_irq(&spool->lock);
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
222 spin_lock_irqsave(&spool->lock, flags);
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
243 unlock_or_release_subpool(spool, flags);
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 return HUGETLBFS_SB(inode->i_sb)->spool;
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 return subpool_inode(file_inode(vma->vm_file));
258 /* Helper that removes a struct file_region from the resv_map cache and returns
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 struct file_region *nrg = NULL;
266 VM_BUG_ON(resv->region_cache_count <= 0);
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 list_del(&nrg->link);
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
281 #ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 struct resv_map *resv,
293 struct file_region *nrg)
295 #ifdef CONFIG_CGROUP_HUGETLB
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 nrg->reservation_counter = NULL;
324 static void put_uncharge_info(struct file_region *rg)
326 #ifdef CONFIG_CGROUP_HUGETLB
332 static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
335 #ifdef CONFIG_CGROUP_HUGETLB
336 return rg->reservation_counter == org->reservation_counter &&
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 struct file_region *nrg = NULL, *prg = NULL;
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
354 put_uncharge_info(rg);
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
366 put_uncharge_info(rg);
372 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
376 struct file_region *nrg;
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg->link.prev);
382 coalesce_file_region(map, nrg);
384 *regions_needed += 1;
390 * Must be called with resv->lock held.
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 struct hugetlb_cgroup *h_cg,
399 struct hstate *h, long *regions_needed)
402 struct list_head *head = &resv->regions;
403 long last_accounted_offset = f;
404 struct file_region *rg = NULL, *trg = NULL;
409 /* In this loop, we essentially handle an entry for the range
410 * [last_accounted_offset, rg->from), at every iteration, with some
413 list_for_each_entry_safe(rg, trg, head, link) {
414 /* Skip irrelevant regions that start before our range. */
416 /* If this region ends after the last accounted offset,
417 * then we need to update last_accounted_offset.
419 if (rg->to > last_accounted_offset)
420 last_accounted_offset = rg->to;
424 /* When we find a region that starts beyond our range, we've
430 /* Add an entry for last_accounted_offset -> rg->from, and
431 * update last_accounted_offset.
433 if (rg->from > last_accounted_offset)
434 add += hugetlb_resv_map_add(resv, rg,
435 last_accounted_offset,
439 last_accounted_offset = rg->to;
442 /* Handle the case where our range extends beyond
443 * last_accounted_offset.
445 if (last_accounted_offset < t)
446 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
447 t, h, h_cg, regions_needed);
452 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454 static int allocate_file_region_entries(struct resv_map *resv,
456 __must_hold(&resv->lock)
458 struct list_head allocated_regions;
459 int to_allocate = 0, i = 0;
460 struct file_region *trg = NULL, *rg = NULL;
462 VM_BUG_ON(regions_needed < 0);
464 INIT_LIST_HEAD(&allocated_regions);
467 * Check for sufficient descriptors in the cache to accommodate
468 * the number of in progress add operations plus regions_needed.
470 * This is a while loop because when we drop the lock, some other call
471 * to region_add or region_del may have consumed some region_entries,
472 * so we keep looping here until we finally have enough entries for
473 * (adds_in_progress + regions_needed).
475 while (resv->region_cache_count <
476 (resv->adds_in_progress + regions_needed)) {
477 to_allocate = resv->adds_in_progress + regions_needed -
478 resv->region_cache_count;
480 /* At this point, we should have enough entries in the cache
481 * for all the existing adds_in_progress. We should only be
482 * needing to allocate for regions_needed.
484 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486 spin_unlock(&resv->lock);
487 for (i = 0; i < to_allocate; i++) {
488 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
491 list_add(&trg->link, &allocated_regions);
494 spin_lock(&resv->lock);
496 list_splice(&allocated_regions, &resv->region_cache);
497 resv->region_cache_count += to_allocate;
503 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
511 * Add the huge page range represented by [f, t) to the reserve
512 * map. Regions will be taken from the cache to fill in this range.
513 * Sufficient regions should exist in the cache due to the previous
514 * call to region_chg with the same range, but in some cases the cache will not
515 * have sufficient entries due to races with other code doing region_add or
516 * region_del. The extra needed entries will be allocated.
518 * regions_needed is the out value provided by a previous call to region_chg.
520 * Return the number of new huge pages added to the map. This number is greater
521 * than or equal to zero. If file_region entries needed to be allocated for
522 * this operation and we were not able to allocate, it returns -ENOMEM.
523 * region_add of regions of length 1 never allocate file_regions and cannot
524 * fail; region_chg will always allocate at least 1 entry and a region_add for
525 * 1 page will only require at most 1 entry.
527 static long region_add(struct resv_map *resv, long f, long t,
528 long in_regions_needed, struct hstate *h,
529 struct hugetlb_cgroup *h_cg)
531 long add = 0, actual_regions_needed = 0;
533 spin_lock(&resv->lock);
536 /* Count how many regions are actually needed to execute this add. */
537 add_reservation_in_range(resv, f, t, NULL, NULL,
538 &actual_regions_needed);
541 * Check for sufficient descriptors in the cache to accommodate
542 * this add operation. Note that actual_regions_needed may be greater
543 * than in_regions_needed, as the resv_map may have been modified since
544 * the region_chg call. In this case, we need to make sure that we
545 * allocate extra entries, such that we have enough for all the
546 * existing adds_in_progress, plus the excess needed for this
549 if (actual_regions_needed > in_regions_needed &&
550 resv->region_cache_count <
551 resv->adds_in_progress +
552 (actual_regions_needed - in_regions_needed)) {
553 /* region_add operation of range 1 should never need to
554 * allocate file_region entries.
556 VM_BUG_ON(t - f <= 1);
558 if (allocate_file_region_entries(
559 resv, actual_regions_needed - in_regions_needed)) {
566 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568 resv->adds_in_progress -= in_regions_needed;
570 spin_unlock(&resv->lock);
575 * Examine the existing reserve map and determine how many
576 * huge pages in the specified range [f, t) are NOT currently
577 * represented. This routine is called before a subsequent
578 * call to region_add that will actually modify the reserve
579 * map to add the specified range [f, t). region_chg does
580 * not change the number of huge pages represented by the
581 * map. A number of new file_region structures is added to the cache as a
582 * placeholder, for the subsequent region_add call to use. At least 1
583 * file_region structure is added.
585 * out_regions_needed is the number of regions added to the
586 * resv->adds_in_progress. This value needs to be provided to a follow up call
587 * to region_add or region_abort for proper accounting.
589 * Returns the number of huge pages that need to be added to the existing
590 * reservation map for the range [f, t). This number is greater or equal to
591 * zero. -ENOMEM is returned if a new file_region structure or cache entry
592 * is needed and can not be allocated.
594 static long region_chg(struct resv_map *resv, long f, long t,
595 long *out_regions_needed)
599 spin_lock(&resv->lock);
601 /* Count how many hugepages in this range are NOT represented. */
602 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
605 if (*out_regions_needed == 0)
606 *out_regions_needed = 1;
608 if (allocate_file_region_entries(resv, *out_regions_needed))
611 resv->adds_in_progress += *out_regions_needed;
613 spin_unlock(&resv->lock);
618 * Abort the in progress add operation. The adds_in_progress field
619 * of the resv_map keeps track of the operations in progress between
620 * calls to region_chg and region_add. Operations are sometimes
621 * aborted after the call to region_chg. In such cases, region_abort
622 * is called to decrement the adds_in_progress counter. regions_needed
623 * is the value returned by the region_chg call, it is used to decrement
624 * the adds_in_progress counter.
626 * NOTE: The range arguments [f, t) are not needed or used in this
627 * routine. They are kept to make reading the calling code easier as
628 * arguments will match the associated region_chg call.
630 static void region_abort(struct resv_map *resv, long f, long t,
633 spin_lock(&resv->lock);
634 VM_BUG_ON(!resv->region_cache_count);
635 resv->adds_in_progress -= regions_needed;
636 spin_unlock(&resv->lock);
640 * Delete the specified range [f, t) from the reserve map. If the
641 * t parameter is LONG_MAX, this indicates that ALL regions after f
642 * should be deleted. Locate the regions which intersect [f, t)
643 * and either trim, delete or split the existing regions.
645 * Returns the number of huge pages deleted from the reserve map.
646 * In the normal case, the return value is zero or more. In the
647 * case where a region must be split, a new region descriptor must
648 * be allocated. If the allocation fails, -ENOMEM will be returned.
649 * NOTE: If the parameter t == LONG_MAX, then we will never split
650 * a region and possibly return -ENOMEM. Callers specifying
651 * t == LONG_MAX do not need to check for -ENOMEM error.
653 static long region_del(struct resv_map *resv, long f, long t)
655 struct list_head *head = &resv->regions;
656 struct file_region *rg, *trg;
657 struct file_region *nrg = NULL;
661 spin_lock(&resv->lock);
662 list_for_each_entry_safe(rg, trg, head, link) {
664 * Skip regions before the range to be deleted. file_region
665 * ranges are normally of the form [from, to). However, there
666 * may be a "placeholder" entry in the map which is of the form
667 * (from, to) with from == to. Check for placeholder entries
668 * at the beginning of the range to be deleted.
670 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
676 if (f > rg->from && t < rg->to) { /* Must split region */
678 * Check for an entry in the cache before dropping
679 * lock and attempting allocation.
682 resv->region_cache_count > resv->adds_in_progress) {
683 nrg = list_first_entry(&resv->region_cache,
686 list_del(&nrg->link);
687 resv->region_cache_count--;
691 spin_unlock(&resv->lock);
692 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
699 hugetlb_cgroup_uncharge_file_region(
700 resv, rg, t - f, false);
702 /* New entry for end of split region */
706 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708 INIT_LIST_HEAD(&nrg->link);
710 /* Original entry is trimmed */
713 list_add(&nrg->link, &rg->link);
718 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
719 del += rg->to - rg->from;
720 hugetlb_cgroup_uncharge_file_region(resv, rg,
721 rg->to - rg->from, true);
727 if (f <= rg->from) { /* Trim beginning of region */
728 hugetlb_cgroup_uncharge_file_region(resv, rg,
729 t - rg->from, false);
733 } else { /* Trim end of region */
734 hugetlb_cgroup_uncharge_file_region(resv, rg,
742 spin_unlock(&resv->lock);
748 * A rare out of memory error was encountered which prevented removal of
749 * the reserve map region for a page. The huge page itself was free'ed
750 * and removed from the page cache. This routine will adjust the subpool
751 * usage count, and the global reserve count if needed. By incrementing
752 * these counts, the reserve map entry which could not be deleted will
753 * appear as a "reserved" entry instead of simply dangling with incorrect
756 void hugetlb_fix_reserve_counts(struct inode *inode)
758 struct hugepage_subpool *spool = subpool_inode(inode);
760 bool reserved = false;
762 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
763 if (rsv_adjust > 0) {
764 struct hstate *h = hstate_inode(inode);
766 if (!hugetlb_acct_memory(h, 1))
768 } else if (!rsv_adjust) {
773 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 * Count and return the number of huge pages in the reserve map
778 * that intersect with the range [f, t).
780 static long region_count(struct resv_map *resv, long f, long t)
782 struct list_head *head = &resv->regions;
783 struct file_region *rg;
786 spin_lock(&resv->lock);
787 /* Locate each segment we overlap with, and count that overlap. */
788 list_for_each_entry(rg, head, link) {
797 seg_from = max(rg->from, f);
798 seg_to = min(rg->to, t);
800 chg += seg_to - seg_from;
802 spin_unlock(&resv->lock);
808 * Convert the address within this vma to the page offset within
809 * the mapping, in pagecache page units; huge pages here.
811 static pgoff_t vma_hugecache_offset(struct hstate *h,
812 struct vm_area_struct *vma, unsigned long address)
814 return ((address - vma->vm_start) >> huge_page_shift(h)) +
815 (vma->vm_pgoff >> huge_page_order(h));
818 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
819 unsigned long address)
821 return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 EXPORT_SYMBOL_GPL(linear_hugepage_index);
826 * Return the size of the pages allocated when backing a VMA. In the majority
827 * cases this will be same size as used by the page table entries.
829 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 if (vma->vm_ops && vma->vm_ops->pagesize)
832 return vma->vm_ops->pagesize(vma);
835 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
838 * Return the page size being used by the MMU to back a VMA. In the majority
839 * of cases, the page size used by the kernel matches the MMU size. On
840 * architectures where it differs, an architecture-specific 'strong'
841 * version of this symbol is required.
843 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 return vma_kernel_pagesize(vma);
849 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
850 * bits of the reservation map pointer, which are always clear due to
853 #define HPAGE_RESV_OWNER (1UL << 0)
854 #define HPAGE_RESV_UNMAPPED (1UL << 1)
855 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
858 * These helpers are used to track how many pages are reserved for
859 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
860 * is guaranteed to have their future faults succeed.
862 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
863 * the reserve counters are updated with the hugetlb_lock held. It is safe
864 * to reset the VMA at fork() time as it is not in use yet and there is no
865 * chance of the global counters getting corrupted as a result of the values.
867 * The private mapping reservation is represented in a subtly different
868 * manner to a shared mapping. A shared mapping has a region map associated
869 * with the underlying file, this region map represents the backing file
870 * pages which have ever had a reservation assigned which this persists even
871 * after the page is instantiated. A private mapping has a region map
872 * associated with the original mmap which is attached to all VMAs which
873 * reference it, this region map represents those offsets which have consumed
874 * reservation ie. where pages have been instantiated.
876 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 return (unsigned long)vma->vm_private_data;
881 static void set_vma_private_data(struct vm_area_struct *vma,
884 vma->vm_private_data = (void *)value;
888 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
889 struct hugetlb_cgroup *h_cg,
892 #ifdef CONFIG_CGROUP_HUGETLB
894 resv_map->reservation_counter = NULL;
895 resv_map->pages_per_hpage = 0;
896 resv_map->css = NULL;
898 resv_map->reservation_counter =
899 &h_cg->rsvd_hugepage[hstate_index(h)];
900 resv_map->pages_per_hpage = pages_per_huge_page(h);
901 resv_map->css = &h_cg->css;
906 struct resv_map *resv_map_alloc(void)
908 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
909 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911 if (!resv_map || !rg) {
917 kref_init(&resv_map->refs);
918 spin_lock_init(&resv_map->lock);
919 INIT_LIST_HEAD(&resv_map->regions);
921 resv_map->adds_in_progress = 0;
923 * Initialize these to 0. On shared mappings, 0's here indicate these
924 * fields don't do cgroup accounting. On private mappings, these will be
925 * re-initialized to the proper values, to indicate that hugetlb cgroup
926 * reservations are to be un-charged from here.
928 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930 INIT_LIST_HEAD(&resv_map->region_cache);
931 list_add(&rg->link, &resv_map->region_cache);
932 resv_map->region_cache_count = 1;
937 void resv_map_release(struct kref *ref)
939 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
940 struct list_head *head = &resv_map->region_cache;
941 struct file_region *rg, *trg;
943 /* Clear out any active regions before we release the map. */
944 region_del(resv_map, 0, LONG_MAX);
946 /* ... and any entries left in the cache */
947 list_for_each_entry_safe(rg, trg, head, link) {
952 VM_BUG_ON(resv_map->adds_in_progress);
957 static inline struct resv_map *inode_resv_map(struct inode *inode)
960 * At inode evict time, i_mapping may not point to the original
961 * address space within the inode. This original address space
962 * contains the pointer to the resv_map. So, always use the
963 * address space embedded within the inode.
964 * The VERY common case is inode->mapping == &inode->i_data but,
965 * this may not be true for device special inodes.
967 return (struct resv_map *)(&inode->i_data)->private_data;
970 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 if (vma->vm_flags & VM_MAYSHARE) {
974 struct address_space *mapping = vma->vm_file->f_mapping;
975 struct inode *inode = mapping->host;
977 return inode_resv_map(inode);
980 return (struct resv_map *)(get_vma_private_data(vma) &
985 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
988 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 set_vma_private_data(vma, (get_vma_private_data(vma) &
991 HPAGE_RESV_MASK) | (unsigned long)map);
994 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1002 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006 return (get_vma_private_data(vma) & flag) != 0;
1009 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1010 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013 if (!(vma->vm_flags & VM_MAYSHARE))
1014 vma->vm_private_data = (void *)0;
1018 * Reset and decrement one ref on hugepage private reservation.
1019 * Called with mm->mmap_sem writer semaphore held.
1020 * This function should be only used by move_vma() and operate on
1021 * same sized vma. It should never come here with last ref on the
1024 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1027 * Clear the old hugetlb private page reservation.
1028 * It has already been transferred to new_vma.
1030 * During a mremap() operation of a hugetlb vma we call move_vma()
1031 * which copies vma into new_vma and unmaps vma. After the copy
1032 * operation both new_vma and vma share a reference to the resv_map
1033 * struct, and at that point vma is about to be unmapped. We don't
1034 * want to return the reservation to the pool at unmap of vma because
1035 * the reservation still lives on in new_vma, so simply decrement the
1036 * ref here and remove the resv_map reference from this vma.
1038 struct resv_map *reservations = vma_resv_map(vma);
1040 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1042 kref_put(&reservations->refs, resv_map_release);
1045 reset_vma_resv_huge_pages(vma);
1048 /* Returns true if the VMA has associated reserve pages */
1049 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 if (vma->vm_flags & VM_NORESERVE) {
1053 * This address is already reserved by other process(chg == 0),
1054 * so, we should decrement reserved count. Without decrementing,
1055 * reserve count remains after releasing inode, because this
1056 * allocated page will go into page cache and is regarded as
1057 * coming from reserved pool in releasing step. Currently, we
1058 * don't have any other solution to deal with this situation
1059 * properly, so add work-around here.
1061 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1067 /* Shared mappings always use reserves */
1068 if (vma->vm_flags & VM_MAYSHARE) {
1070 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1071 * be a region map for all pages. The only situation where
1072 * there is no region map is if a hole was punched via
1073 * fallocate. In this case, there really are no reserves to
1074 * use. This situation is indicated if chg != 0.
1083 * Only the process that called mmap() has reserves for
1086 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 * Like the shared case above, a hole punch or truncate
1089 * could have been performed on the private mapping.
1090 * Examine the value of chg to determine if reserves
1091 * actually exist or were previously consumed.
1092 * Very Subtle - The value of chg comes from a previous
1093 * call to vma_needs_reserves(). The reserve map for
1094 * private mappings has different (opposite) semantics
1095 * than that of shared mappings. vma_needs_reserves()
1096 * has already taken this difference in semantics into
1097 * account. Therefore, the meaning of chg is the same
1098 * as in the shared case above. Code could easily be
1099 * combined, but keeping it separate draws attention to
1100 * subtle differences.
1111 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 int nid = page_to_nid(page);
1115 lockdep_assert_held(&hugetlb_lock);
1116 VM_BUG_ON_PAGE(page_count(page), page);
1118 list_move(&page->lru, &h->hugepage_freelists[nid]);
1119 h->free_huge_pages++;
1120 h->free_huge_pages_node[nid]++;
1121 SetHPageFreed(page);
1124 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1127 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129 lockdep_assert_held(&hugetlb_lock);
1130 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1131 if (pin && !is_pinnable_page(page))
1134 if (PageHWPoison(page))
1137 list_move(&page->lru, &h->hugepage_activelist);
1138 set_page_refcounted(page);
1139 ClearHPageFreed(page);
1140 h->free_huge_pages--;
1141 h->free_huge_pages_node[nid]--;
1148 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1151 unsigned int cpuset_mems_cookie;
1152 struct zonelist *zonelist;
1155 int node = NUMA_NO_NODE;
1157 zonelist = node_zonelist(nid, gfp_mask);
1160 cpuset_mems_cookie = read_mems_allowed_begin();
1161 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1164 if (!cpuset_zone_allowed(zone, gfp_mask))
1167 * no need to ask again on the same node. Pool is node rather than
1170 if (zone_to_nid(zone) == node)
1172 node = zone_to_nid(zone);
1174 page = dequeue_huge_page_node_exact(h, node);
1178 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1184 static struct page *dequeue_huge_page_vma(struct hstate *h,
1185 struct vm_area_struct *vma,
1186 unsigned long address, int avoid_reserve,
1189 struct page *page = NULL;
1190 struct mempolicy *mpol;
1192 nodemask_t *nodemask;
1196 * A child process with MAP_PRIVATE mappings created by their parent
1197 * have no page reserves. This check ensures that reservations are
1198 * not "stolen". The child may still get SIGKILLed
1200 if (!vma_has_reserves(vma, chg) &&
1201 h->free_huge_pages - h->resv_huge_pages == 0)
1204 /* If reserves cannot be used, ensure enough pages are in the pool */
1205 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1208 gfp_mask = htlb_alloc_mask(h);
1209 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211 if (mpol_is_preferred_many(mpol)) {
1212 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214 /* Fallback to all nodes if page==NULL */
1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1222 SetHPageRestoreReserve(page);
1223 h->resv_huge_pages--;
1226 mpol_cond_put(mpol);
1234 * common helper functions for hstate_next_node_to_{alloc|free}.
1235 * We may have allocated or freed a huge page based on a different
1236 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1237 * be outside of *nodes_allowed. Ensure that we use an allowed
1238 * node for alloc or free.
1240 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 nid = next_node_in(nid, *nodes_allowed);
1243 VM_BUG_ON(nid >= MAX_NUMNODES);
1248 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 if (!node_isset(nid, *nodes_allowed))
1251 nid = next_node_allowed(nid, nodes_allowed);
1256 * returns the previously saved node ["this node"] from which to
1257 * allocate a persistent huge page for the pool and advance the
1258 * next node from which to allocate, handling wrap at end of node
1261 static int hstate_next_node_to_alloc(struct hstate *h,
1262 nodemask_t *nodes_allowed)
1266 VM_BUG_ON(!nodes_allowed);
1268 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1269 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1275 * helper for remove_pool_huge_page() - return the previously saved
1276 * node ["this node"] from which to free a huge page. Advance the
1277 * next node id whether or not we find a free huge page to free so
1278 * that the next attempt to free addresses the next node.
1280 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1284 VM_BUG_ON(!nodes_allowed);
1286 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1287 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1292 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1293 for (nr_nodes = nodes_weight(*mask); \
1295 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1298 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1299 for (nr_nodes = nodes_weight(*mask); \
1301 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1304 /* used to demote non-gigantic_huge pages as well */
1305 static void __destroy_compound_gigantic_page(struct page *page,
1306 unsigned int order, bool demote)
1309 int nr_pages = 1 << order;
1310 struct page *p = page + 1;
1312 atomic_set(compound_mapcount_ptr(page), 0);
1313 atomic_set(compound_pincount_ptr(page), 0);
1315 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317 clear_compound_head(p);
1319 set_page_refcounted(p);
1322 set_compound_order(page, 0);
1323 page[1].compound_nr = 0;
1324 __ClearPageHead(page);
1327 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1330 __destroy_compound_gigantic_page(page, order, true);
1333 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1334 static void destroy_compound_gigantic_page(struct page *page,
1337 __destroy_compound_gigantic_page(page, order, false);
1340 static void free_gigantic_page(struct page *page, unsigned int order)
1343 * If the page isn't allocated using the cma allocator,
1344 * cma_release() returns false.
1347 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351 free_contig_range(page_to_pfn(page), 1 << order);
1354 #ifdef CONFIG_CONTIG_ALLOC
1355 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nodemask)
1358 unsigned long nr_pages = pages_per_huge_page(h);
1359 if (nid == NUMA_NO_NODE)
1360 nid = numa_mem_id();
1367 if (hugetlb_cma[nid]) {
1368 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1369 huge_page_order(h), true);
1374 if (!(gfp_mask & __GFP_THISNODE)) {
1375 for_each_node_mask(node, *nodemask) {
1376 if (node == nid || !hugetlb_cma[node])
1379 page = cma_alloc(hugetlb_cma[node], nr_pages,
1380 huge_page_order(h), true);
1388 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1391 #else /* !CONFIG_CONTIG_ALLOC */
1392 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1393 int nid, nodemask_t *nodemask)
1397 #endif /* CONFIG_CONTIG_ALLOC */
1399 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401 int nid, nodemask_t *nodemask)
1405 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1406 static inline void destroy_compound_gigantic_page(struct page *page,
1407 unsigned int order) { }
1411 * Remove hugetlb page from lists, and update dtor so that page appears
1412 * as just a compound page.
1414 * A reference is held on the page, except in the case of demote.
1416 * Must be called with hugetlb lock held.
1418 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1419 bool adjust_surplus,
1422 int nid = page_to_nid(page);
1424 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1425 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1427 lockdep_assert_held(&hugetlb_lock);
1428 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1431 list_del(&page->lru);
1433 if (HPageFreed(page)) {
1434 h->free_huge_pages--;
1435 h->free_huge_pages_node[nid]--;
1437 if (adjust_surplus) {
1438 h->surplus_huge_pages--;
1439 h->surplus_huge_pages_node[nid]--;
1445 * For non-gigantic pages set the destructor to the normal compound
1446 * page dtor. This is needed in case someone takes an additional
1447 * temporary ref to the page, and freeing is delayed until they drop
1450 * For gigantic pages set the destructor to the null dtor. This
1451 * destructor will never be called. Before freeing the gigantic
1452 * page destroy_compound_gigantic_page will turn the compound page
1453 * into a simple group of pages. After this the destructor does not
1456 * This handles the case where more than one ref is held when and
1457 * after update_and_free_page is called.
1459 * In the case of demote we do not ref count the page as it will soon
1460 * be turned into a page of smaller size.
1463 set_page_refcounted(page);
1464 if (hstate_is_gigantic(h))
1465 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1467 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1470 h->nr_huge_pages_node[nid]--;
1473 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1474 bool adjust_surplus)
1476 __remove_hugetlb_page(h, page, adjust_surplus, false);
1479 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1480 bool adjust_surplus)
1482 __remove_hugetlb_page(h, page, adjust_surplus, true);
1485 static void add_hugetlb_page(struct hstate *h, struct page *page,
1486 bool adjust_surplus)
1489 int nid = page_to_nid(page);
1491 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1493 lockdep_assert_held(&hugetlb_lock);
1495 INIT_LIST_HEAD(&page->lru);
1497 h->nr_huge_pages_node[nid]++;
1499 if (adjust_surplus) {
1500 h->surplus_huge_pages++;
1501 h->surplus_huge_pages_node[nid]++;
1504 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505 set_page_private(page, 0);
1506 SetHPageVmemmapOptimized(page);
1509 * This page is about to be managed by the hugetlb allocator and
1510 * should have no users. Drop our reference, and check for others
1513 zeroed = put_page_testzero(page);
1516 * It is VERY unlikely soneone else has taken a ref on
1517 * the page. In this case, we simply return as the
1518 * hugetlb destructor (free_huge_page) will be called
1519 * when this other ref is dropped.
1523 arch_clear_hugepage_flags(page);
1524 enqueue_huge_page(h, page);
1527 static void __update_and_free_page(struct hstate *h, struct page *page)
1530 struct page *subpage = page;
1532 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1535 if (alloc_huge_page_vmemmap(h, page)) {
1536 spin_lock_irq(&hugetlb_lock);
1538 * If we cannot allocate vmemmap pages, just refuse to free the
1539 * page and put the page back on the hugetlb free list and treat
1540 * as a surplus page.
1542 add_hugetlb_page(h, page, true);
1543 spin_unlock_irq(&hugetlb_lock);
1547 for (i = 0; i < pages_per_huge_page(h);
1548 i++, subpage = mem_map_next(subpage, page, i)) {
1549 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1550 1 << PG_referenced | 1 << PG_dirty |
1551 1 << PG_active | 1 << PG_private |
1556 * Non-gigantic pages demoted from CMA allocated gigantic pages
1557 * need to be given back to CMA in free_gigantic_page.
1559 if (hstate_is_gigantic(h) ||
1560 hugetlb_cma_page(page, huge_page_order(h))) {
1561 destroy_compound_gigantic_page(page, huge_page_order(h));
1562 free_gigantic_page(page, huge_page_order(h));
1564 __free_pages(page, huge_page_order(h));
1569 * As update_and_free_page() can be called under any context, so we cannot
1570 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1571 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1572 * the vmemmap pages.
1574 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1575 * freed and frees them one-by-one. As the page->mapping pointer is going
1576 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1577 * structure of a lockless linked list of huge pages to be freed.
1579 static LLIST_HEAD(hpage_freelist);
1581 static void free_hpage_workfn(struct work_struct *work)
1583 struct llist_node *node;
1585 node = llist_del_all(&hpage_freelist);
1591 page = container_of((struct address_space **)node,
1592 struct page, mapping);
1594 page->mapping = NULL;
1596 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1597 * is going to trigger because a previous call to
1598 * remove_hugetlb_page() will set_compound_page_dtor(page,
1599 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1601 h = size_to_hstate(page_size(page));
1603 __update_and_free_page(h, page);
1608 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1610 static inline void flush_free_hpage_work(struct hstate *h)
1612 if (free_vmemmap_pages_per_hpage(h))
1613 flush_work(&free_hpage_work);
1616 static void update_and_free_page(struct hstate *h, struct page *page,
1619 if (!HPageVmemmapOptimized(page) || !atomic) {
1620 __update_and_free_page(h, page);
1625 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1627 * Only call schedule_work() if hpage_freelist is previously
1628 * empty. Otherwise, schedule_work() had been called but the workfn
1629 * hasn't retrieved the list yet.
1631 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1632 schedule_work(&free_hpage_work);
1635 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1637 struct page *page, *t_page;
1639 list_for_each_entry_safe(page, t_page, list, lru) {
1640 update_and_free_page(h, page, false);
1645 struct hstate *size_to_hstate(unsigned long size)
1649 for_each_hstate(h) {
1650 if (huge_page_size(h) == size)
1656 void free_huge_page(struct page *page)
1659 * Can't pass hstate in here because it is called from the
1660 * compound page destructor.
1662 struct hstate *h = page_hstate(page);
1663 int nid = page_to_nid(page);
1664 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1665 bool restore_reserve;
1666 unsigned long flags;
1668 VM_BUG_ON_PAGE(page_count(page), page);
1669 VM_BUG_ON_PAGE(page_mapcount(page), page);
1671 hugetlb_set_page_subpool(page, NULL);
1672 page->mapping = NULL;
1673 restore_reserve = HPageRestoreReserve(page);
1674 ClearHPageRestoreReserve(page);
1677 * If HPageRestoreReserve was set on page, page allocation consumed a
1678 * reservation. If the page was associated with a subpool, there
1679 * would have been a page reserved in the subpool before allocation
1680 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1681 * reservation, do not call hugepage_subpool_put_pages() as this will
1682 * remove the reserved page from the subpool.
1684 if (!restore_reserve) {
1686 * A return code of zero implies that the subpool will be
1687 * under its minimum size if the reservation is not restored
1688 * after page is free. Therefore, force restore_reserve
1691 if (hugepage_subpool_put_pages(spool, 1) == 0)
1692 restore_reserve = true;
1695 spin_lock_irqsave(&hugetlb_lock, flags);
1696 ClearHPageMigratable(page);
1697 hugetlb_cgroup_uncharge_page(hstate_index(h),
1698 pages_per_huge_page(h), page);
1699 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1700 pages_per_huge_page(h), page);
1701 if (restore_reserve)
1702 h->resv_huge_pages++;
1704 if (HPageTemporary(page)) {
1705 remove_hugetlb_page(h, page, false);
1706 spin_unlock_irqrestore(&hugetlb_lock, flags);
1707 update_and_free_page(h, page, true);
1708 } else if (h->surplus_huge_pages_node[nid]) {
1709 /* remove the page from active list */
1710 remove_hugetlb_page(h, page, true);
1711 spin_unlock_irqrestore(&hugetlb_lock, flags);
1712 update_and_free_page(h, page, true);
1714 arch_clear_hugepage_flags(page);
1715 enqueue_huge_page(h, page);
1716 spin_unlock_irqrestore(&hugetlb_lock, flags);
1721 * Must be called with the hugetlb lock held
1723 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1725 lockdep_assert_held(&hugetlb_lock);
1727 h->nr_huge_pages_node[nid]++;
1730 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1732 free_huge_page_vmemmap(h, page);
1733 INIT_LIST_HEAD(&page->lru);
1734 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1735 hugetlb_set_page_subpool(page, NULL);
1736 set_hugetlb_cgroup(page, NULL);
1737 set_hugetlb_cgroup_rsvd(page, NULL);
1740 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1742 __prep_new_huge_page(h, page);
1743 spin_lock_irq(&hugetlb_lock);
1744 __prep_account_new_huge_page(h, nid);
1745 spin_unlock_irq(&hugetlb_lock);
1748 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1752 int nr_pages = 1 << order;
1753 struct page *p = page + 1;
1755 /* we rely on prep_new_huge_page to set the destructor */
1756 set_compound_order(page, order);
1757 __ClearPageReserved(page);
1758 __SetPageHead(page);
1759 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1761 * For gigantic hugepages allocated through bootmem at
1762 * boot, it's safer to be consistent with the not-gigantic
1763 * hugepages and clear the PG_reserved bit from all tail pages
1764 * too. Otherwise drivers using get_user_pages() to access tail
1765 * pages may get the reference counting wrong if they see
1766 * PG_reserved set on a tail page (despite the head page not
1767 * having PG_reserved set). Enforcing this consistency between
1768 * head and tail pages allows drivers to optimize away a check
1769 * on the head page when they need know if put_page() is needed
1770 * after get_user_pages().
1772 __ClearPageReserved(p);
1774 * Subtle and very unlikely
1776 * Gigantic 'page allocators' such as memblock or cma will
1777 * return a set of pages with each page ref counted. We need
1778 * to turn this set of pages into a compound page with tail
1779 * page ref counts set to zero. Code such as speculative page
1780 * cache adding could take a ref on a 'to be' tail page.
1781 * We need to respect any increased ref count, and only set
1782 * the ref count to zero if count is currently 1. If count
1783 * is not 1, we return an error. An error return indicates
1784 * the set of pages can not be converted to a gigantic page.
1785 * The caller who allocated the pages should then discard the
1786 * pages using the appropriate free interface.
1788 * In the case of demote, the ref count will be zero.
1791 if (!page_ref_freeze(p, 1)) {
1792 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1796 VM_BUG_ON_PAGE(page_count(p), p);
1798 set_compound_head(p, page);
1800 atomic_set(compound_mapcount_ptr(page), -1);
1801 atomic_set(compound_pincount_ptr(page), 0);
1805 /* undo tail page modifications made above */
1807 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1808 clear_compound_head(p);
1809 set_page_refcounted(p);
1811 /* need to clear PG_reserved on remaining tail pages */
1812 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1813 __ClearPageReserved(p);
1814 set_compound_order(page, 0);
1815 page[1].compound_nr = 0;
1816 __ClearPageHead(page);
1820 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1822 return __prep_compound_gigantic_page(page, order, false);
1825 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1828 return __prep_compound_gigantic_page(page, order, true);
1832 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1833 * transparent huge pages. See the PageTransHuge() documentation for more
1836 int PageHuge(struct page *page)
1838 if (!PageCompound(page))
1841 page = compound_head(page);
1842 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1844 EXPORT_SYMBOL_GPL(PageHuge);
1847 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1848 * normal or transparent huge pages.
1850 int PageHeadHuge(struct page *page_head)
1852 if (!PageHead(page_head))
1855 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1859 * Find and lock address space (mapping) in write mode.
1861 * Upon entry, the page is locked which means that page_mapping() is
1862 * stable. Due to locking order, we can only trylock_write. If we can
1863 * not get the lock, simply return NULL to caller.
1865 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1867 struct address_space *mapping = page_mapping(hpage);
1872 if (i_mmap_trylock_write(mapping))
1878 pgoff_t hugetlb_basepage_index(struct page *page)
1880 struct page *page_head = compound_head(page);
1881 pgoff_t index = page_index(page_head);
1882 unsigned long compound_idx;
1884 if (compound_order(page_head) >= MAX_ORDER)
1885 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1887 compound_idx = page - page_head;
1889 return (index << compound_order(page_head)) + compound_idx;
1892 static struct page *alloc_buddy_huge_page(struct hstate *h,
1893 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1894 nodemask_t *node_alloc_noretry)
1896 int order = huge_page_order(h);
1898 bool alloc_try_hard = true;
1901 * By default we always try hard to allocate the page with
1902 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1903 * a loop (to adjust global huge page counts) and previous allocation
1904 * failed, do not continue to try hard on the same node. Use the
1905 * node_alloc_noretry bitmap to manage this state information.
1907 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1908 alloc_try_hard = false;
1909 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1911 gfp_mask |= __GFP_RETRY_MAYFAIL;
1912 if (nid == NUMA_NO_NODE)
1913 nid = numa_mem_id();
1914 page = __alloc_pages(gfp_mask, order, nid, nmask);
1916 __count_vm_event(HTLB_BUDDY_PGALLOC);
1918 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1921 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1922 * indicates an overall state change. Clear bit so that we resume
1923 * normal 'try hard' allocations.
1925 if (node_alloc_noretry && page && !alloc_try_hard)
1926 node_clear(nid, *node_alloc_noretry);
1929 * If we tried hard to get a page but failed, set bit so that
1930 * subsequent attempts will not try as hard until there is an
1931 * overall state change.
1933 if (node_alloc_noretry && !page && alloc_try_hard)
1934 node_set(nid, *node_alloc_noretry);
1940 * Common helper to allocate a fresh hugetlb page. All specific allocators
1941 * should use this function to get new hugetlb pages
1943 static struct page *alloc_fresh_huge_page(struct hstate *h,
1944 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1945 nodemask_t *node_alloc_noretry)
1951 if (hstate_is_gigantic(h))
1952 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1954 page = alloc_buddy_huge_page(h, gfp_mask,
1955 nid, nmask, node_alloc_noretry);
1959 if (hstate_is_gigantic(h)) {
1960 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1962 * Rare failure to convert pages to compound page.
1963 * Free pages and try again - ONCE!
1965 free_gigantic_page(page, huge_page_order(h));
1973 prep_new_huge_page(h, page, page_to_nid(page));
1979 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1982 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1983 nodemask_t *node_alloc_noretry)
1987 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1989 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1990 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1991 node_alloc_noretry);
1999 put_page(page); /* free it into the hugepage allocator */
2005 * Remove huge page from pool from next node to free. Attempt to keep
2006 * persistent huge pages more or less balanced over allowed nodes.
2007 * This routine only 'removes' the hugetlb page. The caller must make
2008 * an additional call to free the page to low level allocators.
2009 * Called with hugetlb_lock locked.
2011 static struct page *remove_pool_huge_page(struct hstate *h,
2012 nodemask_t *nodes_allowed,
2016 struct page *page = NULL;
2018 lockdep_assert_held(&hugetlb_lock);
2019 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2021 * If we're returning unused surplus pages, only examine
2022 * nodes with surplus pages.
2024 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2025 !list_empty(&h->hugepage_freelists[node])) {
2026 page = list_entry(h->hugepage_freelists[node].next,
2028 remove_hugetlb_page(h, page, acct_surplus);
2037 * Dissolve a given free hugepage into free buddy pages. This function does
2038 * nothing for in-use hugepages and non-hugepages.
2039 * This function returns values like below:
2041 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2042 * when the system is under memory pressure and the feature of
2043 * freeing unused vmemmap pages associated with each hugetlb page
2045 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2046 * (allocated or reserved.)
2047 * 0: successfully dissolved free hugepages or the page is not a
2048 * hugepage (considered as already dissolved)
2050 int dissolve_free_huge_page(struct page *page)
2055 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2056 if (!PageHuge(page))
2059 spin_lock_irq(&hugetlb_lock);
2060 if (!PageHuge(page)) {
2065 if (!page_count(page)) {
2066 struct page *head = compound_head(page);
2067 struct hstate *h = page_hstate(head);
2068 if (h->free_huge_pages - h->resv_huge_pages == 0)
2072 * We should make sure that the page is already on the free list
2073 * when it is dissolved.
2075 if (unlikely(!HPageFreed(head))) {
2076 spin_unlock_irq(&hugetlb_lock);
2080 * Theoretically, we should return -EBUSY when we
2081 * encounter this race. In fact, we have a chance
2082 * to successfully dissolve the page if we do a
2083 * retry. Because the race window is quite small.
2084 * If we seize this opportunity, it is an optimization
2085 * for increasing the success rate of dissolving page.
2090 remove_hugetlb_page(h, head, false);
2091 h->max_huge_pages--;
2092 spin_unlock_irq(&hugetlb_lock);
2095 * Normally update_and_free_page will allocate required vmemmmap
2096 * before freeing the page. update_and_free_page will fail to
2097 * free the page if it can not allocate required vmemmap. We
2098 * need to adjust max_huge_pages if the page is not freed.
2099 * Attempt to allocate vmemmmap here so that we can take
2100 * appropriate action on failure.
2102 rc = alloc_huge_page_vmemmap(h, head);
2105 * Move PageHWPoison flag from head page to the raw
2106 * error page, which makes any subpages rather than
2107 * the error page reusable.
2109 if (PageHWPoison(head) && page != head) {
2110 SetPageHWPoison(page);
2111 ClearPageHWPoison(head);
2113 update_and_free_page(h, head, false);
2115 spin_lock_irq(&hugetlb_lock);
2116 add_hugetlb_page(h, head, false);
2117 h->max_huge_pages++;
2118 spin_unlock_irq(&hugetlb_lock);
2124 spin_unlock_irq(&hugetlb_lock);
2129 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2130 * make specified memory blocks removable from the system.
2131 * Note that this will dissolve a free gigantic hugepage completely, if any
2132 * part of it lies within the given range.
2133 * Also note that if dissolve_free_huge_page() returns with an error, all
2134 * free hugepages that were dissolved before that error are lost.
2136 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2142 if (!hugepages_supported())
2145 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2146 page = pfn_to_page(pfn);
2147 rc = dissolve_free_huge_page(page);
2156 * Allocates a fresh surplus page from the page allocator.
2158 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2159 int nid, nodemask_t *nmask, bool zero_ref)
2161 struct page *page = NULL;
2164 if (hstate_is_gigantic(h))
2167 spin_lock_irq(&hugetlb_lock);
2168 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2170 spin_unlock_irq(&hugetlb_lock);
2173 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2177 spin_lock_irq(&hugetlb_lock);
2179 * We could have raced with the pool size change.
2180 * Double check that and simply deallocate the new page
2181 * if we would end up overcommiting the surpluses. Abuse
2182 * temporary page to workaround the nasty free_huge_page
2185 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2186 SetHPageTemporary(page);
2187 spin_unlock_irq(&hugetlb_lock);
2194 * Caller requires a page with zero ref count.
2195 * We will drop ref count here. If someone else is holding
2196 * a ref, the page will be freed when they drop it. Abuse
2197 * temporary page flag to accomplish this.
2199 SetHPageTemporary(page);
2200 if (!put_page_testzero(page)) {
2202 * Unexpected inflated ref count on freshly allocated
2205 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2206 spin_unlock_irq(&hugetlb_lock);
2213 ClearHPageTemporary(page);
2216 h->surplus_huge_pages++;
2217 h->surplus_huge_pages_node[page_to_nid(page)]++;
2220 spin_unlock_irq(&hugetlb_lock);
2225 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2226 int nid, nodemask_t *nmask)
2230 if (hstate_is_gigantic(h))
2233 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2238 * We do not account these pages as surplus because they are only
2239 * temporary and will be released properly on the last reference
2241 SetHPageTemporary(page);
2247 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2250 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2251 struct vm_area_struct *vma, unsigned long addr)
2253 struct page *page = NULL;
2254 struct mempolicy *mpol;
2255 gfp_t gfp_mask = htlb_alloc_mask(h);
2257 nodemask_t *nodemask;
2259 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2260 if (mpol_is_preferred_many(mpol)) {
2261 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2263 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2264 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2266 /* Fallback to all nodes if page==NULL */
2271 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2272 mpol_cond_put(mpol);
2276 /* page migration callback function */
2277 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2278 nodemask_t *nmask, gfp_t gfp_mask)
2280 spin_lock_irq(&hugetlb_lock);
2281 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2284 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2286 spin_unlock_irq(&hugetlb_lock);
2290 spin_unlock_irq(&hugetlb_lock);
2292 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2295 /* mempolicy aware migration callback */
2296 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2297 unsigned long address)
2299 struct mempolicy *mpol;
2300 nodemask_t *nodemask;
2305 gfp_mask = htlb_alloc_mask(h);
2306 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2307 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2308 mpol_cond_put(mpol);
2314 * Increase the hugetlb pool such that it can accommodate a reservation
2317 static int gather_surplus_pages(struct hstate *h, long delta)
2318 __must_hold(&hugetlb_lock)
2320 struct list_head surplus_list;
2321 struct page *page, *tmp;
2324 long needed, allocated;
2325 bool alloc_ok = true;
2327 lockdep_assert_held(&hugetlb_lock);
2328 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2330 h->resv_huge_pages += delta;
2335 INIT_LIST_HEAD(&surplus_list);
2339 spin_unlock_irq(&hugetlb_lock);
2340 for (i = 0; i < needed; i++) {
2341 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2342 NUMA_NO_NODE, NULL, true);
2347 list_add(&page->lru, &surplus_list);
2353 * After retaking hugetlb_lock, we need to recalculate 'needed'
2354 * because either resv_huge_pages or free_huge_pages may have changed.
2356 spin_lock_irq(&hugetlb_lock);
2357 needed = (h->resv_huge_pages + delta) -
2358 (h->free_huge_pages + allocated);
2363 * We were not able to allocate enough pages to
2364 * satisfy the entire reservation so we free what
2365 * we've allocated so far.
2370 * The surplus_list now contains _at_least_ the number of extra pages
2371 * needed to accommodate the reservation. Add the appropriate number
2372 * of pages to the hugetlb pool and free the extras back to the buddy
2373 * allocator. Commit the entire reservation here to prevent another
2374 * process from stealing the pages as they are added to the pool but
2375 * before they are reserved.
2377 needed += allocated;
2378 h->resv_huge_pages += delta;
2381 /* Free the needed pages to the hugetlb pool */
2382 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2385 /* Add the page to the hugetlb allocator */
2386 enqueue_huge_page(h, page);
2389 spin_unlock_irq(&hugetlb_lock);
2392 * Free unnecessary surplus pages to the buddy allocator.
2393 * Pages have no ref count, call free_huge_page directly.
2395 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2396 free_huge_page(page);
2397 spin_lock_irq(&hugetlb_lock);
2403 * This routine has two main purposes:
2404 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2405 * in unused_resv_pages. This corresponds to the prior adjustments made
2406 * to the associated reservation map.
2407 * 2) Free any unused surplus pages that may have been allocated to satisfy
2408 * the reservation. As many as unused_resv_pages may be freed.
2410 static void return_unused_surplus_pages(struct hstate *h,
2411 unsigned long unused_resv_pages)
2413 unsigned long nr_pages;
2415 LIST_HEAD(page_list);
2417 lockdep_assert_held(&hugetlb_lock);
2418 /* Uncommit the reservation */
2419 h->resv_huge_pages -= unused_resv_pages;
2421 /* Cannot return gigantic pages currently */
2422 if (hstate_is_gigantic(h))
2426 * Part (or even all) of the reservation could have been backed
2427 * by pre-allocated pages. Only free surplus pages.
2429 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2432 * We want to release as many surplus pages as possible, spread
2433 * evenly across all nodes with memory. Iterate across these nodes
2434 * until we can no longer free unreserved surplus pages. This occurs
2435 * when the nodes with surplus pages have no free pages.
2436 * remove_pool_huge_page() will balance the freed pages across the
2437 * on-line nodes with memory and will handle the hstate accounting.
2439 while (nr_pages--) {
2440 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2444 list_add(&page->lru, &page_list);
2448 spin_unlock_irq(&hugetlb_lock);
2449 update_and_free_pages_bulk(h, &page_list);
2450 spin_lock_irq(&hugetlb_lock);
2455 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2456 * are used by the huge page allocation routines to manage reservations.
2458 * vma_needs_reservation is called to determine if the huge page at addr
2459 * within the vma has an associated reservation. If a reservation is
2460 * needed, the value 1 is returned. The caller is then responsible for
2461 * managing the global reservation and subpool usage counts. After
2462 * the huge page has been allocated, vma_commit_reservation is called
2463 * to add the page to the reservation map. If the page allocation fails,
2464 * the reservation must be ended instead of committed. vma_end_reservation
2465 * is called in such cases.
2467 * In the normal case, vma_commit_reservation returns the same value
2468 * as the preceding vma_needs_reservation call. The only time this
2469 * is not the case is if a reserve map was changed between calls. It
2470 * is the responsibility of the caller to notice the difference and
2471 * take appropriate action.
2473 * vma_add_reservation is used in error paths where a reservation must
2474 * be restored when a newly allocated huge page must be freed. It is
2475 * to be called after calling vma_needs_reservation to determine if a
2476 * reservation exists.
2478 * vma_del_reservation is used in error paths where an entry in the reserve
2479 * map was created during huge page allocation and must be removed. It is to
2480 * be called after calling vma_needs_reservation to determine if a reservation
2483 enum vma_resv_mode {
2490 static long __vma_reservation_common(struct hstate *h,
2491 struct vm_area_struct *vma, unsigned long addr,
2492 enum vma_resv_mode mode)
2494 struct resv_map *resv;
2497 long dummy_out_regions_needed;
2499 resv = vma_resv_map(vma);
2503 idx = vma_hugecache_offset(h, vma, addr);
2505 case VMA_NEEDS_RESV:
2506 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2507 /* We assume that vma_reservation_* routines always operate on
2508 * 1 page, and that adding to resv map a 1 page entry can only
2509 * ever require 1 region.
2511 VM_BUG_ON(dummy_out_regions_needed != 1);
2513 case VMA_COMMIT_RESV:
2514 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2515 /* region_add calls of range 1 should never fail. */
2519 region_abort(resv, idx, idx + 1, 1);
2523 if (vma->vm_flags & VM_MAYSHARE) {
2524 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2525 /* region_add calls of range 1 should never fail. */
2528 region_abort(resv, idx, idx + 1, 1);
2529 ret = region_del(resv, idx, idx + 1);
2533 if (vma->vm_flags & VM_MAYSHARE) {
2534 region_abort(resv, idx, idx + 1, 1);
2535 ret = region_del(resv, idx, idx + 1);
2537 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538 /* region_add calls of range 1 should never fail. */
2546 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2549 * We know private mapping must have HPAGE_RESV_OWNER set.
2551 * In most cases, reserves always exist for private mappings.
2552 * However, a file associated with mapping could have been
2553 * hole punched or truncated after reserves were consumed.
2554 * As subsequent fault on such a range will not use reserves.
2555 * Subtle - The reserve map for private mappings has the
2556 * opposite meaning than that of shared mappings. If NO
2557 * entry is in the reserve map, it means a reservation exists.
2558 * If an entry exists in the reserve map, it means the
2559 * reservation has already been consumed. As a result, the
2560 * return value of this routine is the opposite of the
2561 * value returned from reserve map manipulation routines above.
2570 static long vma_needs_reservation(struct hstate *h,
2571 struct vm_area_struct *vma, unsigned long addr)
2573 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2576 static long vma_commit_reservation(struct hstate *h,
2577 struct vm_area_struct *vma, unsigned long addr)
2579 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2582 static void vma_end_reservation(struct hstate *h,
2583 struct vm_area_struct *vma, unsigned long addr)
2585 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2588 static long vma_add_reservation(struct hstate *h,
2589 struct vm_area_struct *vma, unsigned long addr)
2591 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2594 static long vma_del_reservation(struct hstate *h,
2595 struct vm_area_struct *vma, unsigned long addr)
2597 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2601 * This routine is called to restore reservation information on error paths.
2602 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2603 * the hugetlb mutex should remain held when calling this routine.
2605 * It handles two specific cases:
2606 * 1) A reservation was in place and the page consumed the reservation.
2607 * HPageRestoreReserve is set in the page.
2608 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2609 * not set. However, alloc_huge_page always updates the reserve map.
2611 * In case 1, free_huge_page later in the error path will increment the
2612 * global reserve count. But, free_huge_page does not have enough context
2613 * to adjust the reservation map. This case deals primarily with private
2614 * mappings. Adjust the reserve map here to be consistent with global
2615 * reserve count adjustments to be made by free_huge_page. Make sure the
2616 * reserve map indicates there is a reservation present.
2618 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2620 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2621 unsigned long address, struct page *page)
2623 long rc = vma_needs_reservation(h, vma, address);
2625 if (HPageRestoreReserve(page)) {
2626 if (unlikely(rc < 0))
2628 * Rare out of memory condition in reserve map
2629 * manipulation. Clear HPageRestoreReserve so that
2630 * global reserve count will not be incremented
2631 * by free_huge_page. This will make it appear
2632 * as though the reservation for this page was
2633 * consumed. This may prevent the task from
2634 * faulting in the page at a later time. This
2635 * is better than inconsistent global huge page
2636 * accounting of reserve counts.
2638 ClearHPageRestoreReserve(page);
2640 (void)vma_add_reservation(h, vma, address);
2642 vma_end_reservation(h, vma, address);
2646 * This indicates there is an entry in the reserve map
2647 * not added by alloc_huge_page. We know it was added
2648 * before the alloc_huge_page call, otherwise
2649 * HPageRestoreReserve would be set on the page.
2650 * Remove the entry so that a subsequent allocation
2651 * does not consume a reservation.
2653 rc = vma_del_reservation(h, vma, address);
2656 * VERY rare out of memory condition. Since
2657 * we can not delete the entry, set
2658 * HPageRestoreReserve so that the reserve
2659 * count will be incremented when the page
2660 * is freed. This reserve will be consumed
2661 * on a subsequent allocation.
2663 SetHPageRestoreReserve(page);
2664 } else if (rc < 0) {
2666 * Rare out of memory condition from
2667 * vma_needs_reservation call. Memory allocation is
2668 * only attempted if a new entry is needed. Therefore,
2669 * this implies there is not an entry in the
2672 * For shared mappings, no entry in the map indicates
2673 * no reservation. We are done.
2675 if (!(vma->vm_flags & VM_MAYSHARE))
2677 * For private mappings, no entry indicates
2678 * a reservation is present. Since we can
2679 * not add an entry, set SetHPageRestoreReserve
2680 * on the page so reserve count will be
2681 * incremented when freed. This reserve will
2682 * be consumed on a subsequent allocation.
2684 SetHPageRestoreReserve(page);
2687 * No reservation present, do nothing
2689 vma_end_reservation(h, vma, address);
2694 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2695 * @h: struct hstate old page belongs to
2696 * @old_page: Old page to dissolve
2697 * @list: List to isolate the page in case we need to
2698 * Returns 0 on success, otherwise negated error.
2700 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2701 struct list_head *list)
2703 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2704 int nid = page_to_nid(old_page);
2705 bool alloc_retry = false;
2706 struct page *new_page;
2710 * Before dissolving the page, we need to allocate a new one for the
2711 * pool to remain stable. Here, we allocate the page and 'prep' it
2712 * by doing everything but actually updating counters and adding to
2713 * the pool. This simplifies and let us do most of the processing
2717 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2721 * If all goes well, this page will be directly added to the free
2722 * list in the pool. For this the ref count needs to be zero.
2723 * Attempt to drop now, and retry once if needed. It is VERY
2724 * unlikely there is another ref on the page.
2726 * If someone else has a reference to the page, it will be freed
2727 * when they drop their ref. Abuse temporary page flag to accomplish
2728 * this. Retry once if there is an inflated ref count.
2730 SetHPageTemporary(new_page);
2731 if (!put_page_testzero(new_page)) {
2738 ClearHPageTemporary(new_page);
2740 __prep_new_huge_page(h, new_page);
2743 spin_lock_irq(&hugetlb_lock);
2744 if (!PageHuge(old_page)) {
2746 * Freed from under us. Drop new_page too.
2749 } else if (page_count(old_page)) {
2751 * Someone has grabbed the page, try to isolate it here.
2752 * Fail with -EBUSY if not possible.
2754 spin_unlock_irq(&hugetlb_lock);
2755 if (!isolate_huge_page(old_page, list))
2757 spin_lock_irq(&hugetlb_lock);
2759 } else if (!HPageFreed(old_page)) {
2761 * Page's refcount is 0 but it has not been enqueued in the
2762 * freelist yet. Race window is small, so we can succeed here if
2765 spin_unlock_irq(&hugetlb_lock);
2770 * Ok, old_page is still a genuine free hugepage. Remove it from
2771 * the freelist and decrease the counters. These will be
2772 * incremented again when calling __prep_account_new_huge_page()
2773 * and enqueue_huge_page() for new_page. The counters will remain
2774 * stable since this happens under the lock.
2776 remove_hugetlb_page(h, old_page, false);
2779 * Ref count on new page is already zero as it was dropped
2780 * earlier. It can be directly added to the pool free list.
2782 __prep_account_new_huge_page(h, nid);
2783 enqueue_huge_page(h, new_page);
2786 * Pages have been replaced, we can safely free the old one.
2788 spin_unlock_irq(&hugetlb_lock);
2789 update_and_free_page(h, old_page, false);
2795 spin_unlock_irq(&hugetlb_lock);
2796 /* Page has a zero ref count, but needs a ref to be freed */
2797 set_page_refcounted(new_page);
2798 update_and_free_page(h, new_page, false);
2803 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2810 * The page might have been dissolved from under our feet, so make sure
2811 * to carefully check the state under the lock.
2812 * Return success when racing as if we dissolved the page ourselves.
2814 spin_lock_irq(&hugetlb_lock);
2815 if (PageHuge(page)) {
2816 head = compound_head(page);
2817 h = page_hstate(head);
2819 spin_unlock_irq(&hugetlb_lock);
2822 spin_unlock_irq(&hugetlb_lock);
2825 * Fence off gigantic pages as there is a cyclic dependency between
2826 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2827 * of bailing out right away without further retrying.
2829 if (hstate_is_gigantic(h))
2832 if (page_count(head) && isolate_huge_page(head, list))
2834 else if (!page_count(head))
2835 ret = alloc_and_dissolve_huge_page(h, head, list);
2840 struct page *alloc_huge_page(struct vm_area_struct *vma,
2841 unsigned long addr, int avoid_reserve)
2843 struct hugepage_subpool *spool = subpool_vma(vma);
2844 struct hstate *h = hstate_vma(vma);
2846 long map_chg, map_commit;
2849 struct hugetlb_cgroup *h_cg;
2850 bool deferred_reserve;
2852 idx = hstate_index(h);
2854 * Examine the region/reserve map to determine if the process
2855 * has a reservation for the page to be allocated. A return
2856 * code of zero indicates a reservation exists (no change).
2858 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2860 return ERR_PTR(-ENOMEM);
2863 * Processes that did not create the mapping will have no
2864 * reserves as indicated by the region/reserve map. Check
2865 * that the allocation will not exceed the subpool limit.
2866 * Allocations for MAP_NORESERVE mappings also need to be
2867 * checked against any subpool limit.
2869 if (map_chg || avoid_reserve) {
2870 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2872 vma_end_reservation(h, vma, addr);
2873 return ERR_PTR(-ENOSPC);
2877 * Even though there was no reservation in the region/reserve
2878 * map, there could be reservations associated with the
2879 * subpool that can be used. This would be indicated if the
2880 * return value of hugepage_subpool_get_pages() is zero.
2881 * However, if avoid_reserve is specified we still avoid even
2882 * the subpool reservations.
2888 /* If this allocation is not consuming a reservation, charge it now.
2890 deferred_reserve = map_chg || avoid_reserve;
2891 if (deferred_reserve) {
2892 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2893 idx, pages_per_huge_page(h), &h_cg);
2895 goto out_subpool_put;
2898 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2900 goto out_uncharge_cgroup_reservation;
2902 spin_lock_irq(&hugetlb_lock);
2904 * glb_chg is passed to indicate whether or not a page must be taken
2905 * from the global free pool (global change). gbl_chg == 0 indicates
2906 * a reservation exists for the allocation.
2908 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2910 spin_unlock_irq(&hugetlb_lock);
2911 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2913 goto out_uncharge_cgroup;
2914 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2915 SetHPageRestoreReserve(page);
2916 h->resv_huge_pages--;
2918 spin_lock_irq(&hugetlb_lock);
2919 list_add(&page->lru, &h->hugepage_activelist);
2922 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2923 /* If allocation is not consuming a reservation, also store the
2924 * hugetlb_cgroup pointer on the page.
2926 if (deferred_reserve) {
2927 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2931 spin_unlock_irq(&hugetlb_lock);
2933 hugetlb_set_page_subpool(page, spool);
2935 map_commit = vma_commit_reservation(h, vma, addr);
2936 if (unlikely(map_chg > map_commit)) {
2938 * The page was added to the reservation map between
2939 * vma_needs_reservation and vma_commit_reservation.
2940 * This indicates a race with hugetlb_reserve_pages.
2941 * Adjust for the subpool count incremented above AND
2942 * in hugetlb_reserve_pages for the same page. Also,
2943 * the reservation count added in hugetlb_reserve_pages
2944 * no longer applies.
2948 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2949 hugetlb_acct_memory(h, -rsv_adjust);
2950 if (deferred_reserve)
2951 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2952 pages_per_huge_page(h), page);
2956 out_uncharge_cgroup:
2957 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2958 out_uncharge_cgroup_reservation:
2959 if (deferred_reserve)
2960 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2963 if (map_chg || avoid_reserve)
2964 hugepage_subpool_put_pages(spool, 1);
2965 vma_end_reservation(h, vma, addr);
2966 return ERR_PTR(-ENOSPC);
2969 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2970 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2971 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2973 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2976 if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2978 /* do node specific alloc */
2979 if (nid != NUMA_NO_NODE) {
2980 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2981 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2986 /* allocate from next node when distributing huge pages */
2987 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2988 m = memblock_alloc_try_nid_raw(
2989 huge_page_size(h), huge_page_size(h),
2990 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2992 * Use the beginning of the huge page to store the
2993 * huge_bootmem_page struct (until gather_bootmem
2994 * puts them into the mem_map).
3002 /* Put them into a private list first because mem_map is not up yet */
3003 INIT_LIST_HEAD(&m->list);
3004 list_add(&m->list, &huge_boot_pages);
3010 * Put bootmem huge pages into the standard lists after mem_map is up.
3011 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3013 static void __init gather_bootmem_prealloc(void)
3015 struct huge_bootmem_page *m;
3017 list_for_each_entry(m, &huge_boot_pages, list) {
3018 struct page *page = virt_to_page(m);
3019 struct hstate *h = m->hstate;
3021 VM_BUG_ON(!hstate_is_gigantic(h));
3022 WARN_ON(page_count(page) != 1);
3023 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3024 WARN_ON(PageReserved(page));
3025 prep_new_huge_page(h, page, page_to_nid(page));
3026 put_page(page); /* add to the hugepage allocator */
3028 /* VERY unlikely inflated ref count on a tail page */
3029 free_gigantic_page(page, huge_page_order(h));
3033 * We need to restore the 'stolen' pages to totalram_pages
3034 * in order to fix confusing memory reports from free(1) and
3035 * other side-effects, like CommitLimit going negative.
3037 adjust_managed_page_count(page, pages_per_huge_page(h));
3041 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3046 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3047 if (hstate_is_gigantic(h)) {
3048 if (!alloc_bootmem_huge_page(h, nid))
3052 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3054 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3055 &node_states[N_MEMORY], NULL);
3058 put_page(page); /* free it into the hugepage allocator */
3062 if (i == h->max_huge_pages_node[nid])
3065 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3066 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3067 h->max_huge_pages_node[nid], buf, nid, i);
3068 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3069 h->max_huge_pages_node[nid] = i;
3072 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3075 nodemask_t *node_alloc_noretry;
3076 bool node_specific_alloc = false;
3078 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3079 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3080 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3084 /* do node specific alloc */
3085 for (i = 0; i < nr_online_nodes; i++) {
3086 if (h->max_huge_pages_node[i] > 0) {
3087 hugetlb_hstate_alloc_pages_onenode(h, i);
3088 node_specific_alloc = true;
3092 if (node_specific_alloc)
3095 /* below will do all node balanced alloc */
3096 if (!hstate_is_gigantic(h)) {
3098 * Bit mask controlling how hard we retry per-node allocations.
3099 * Ignore errors as lower level routines can deal with
3100 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3101 * time, we are likely in bigger trouble.
3103 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3106 /* allocations done at boot time */
3107 node_alloc_noretry = NULL;
3110 /* bit mask controlling how hard we retry per-node allocations */
3111 if (node_alloc_noretry)
3112 nodes_clear(*node_alloc_noretry);
3114 for (i = 0; i < h->max_huge_pages; ++i) {
3115 if (hstate_is_gigantic(h)) {
3116 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3118 } else if (!alloc_pool_huge_page(h,
3119 &node_states[N_MEMORY],
3120 node_alloc_noretry))
3124 if (i < h->max_huge_pages) {
3127 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3128 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3129 h->max_huge_pages, buf, i);
3130 h->max_huge_pages = i;
3132 kfree(node_alloc_noretry);
3135 static void __init hugetlb_init_hstates(void)
3137 struct hstate *h, *h2;
3139 for_each_hstate(h) {
3140 if (minimum_order > huge_page_order(h))
3141 minimum_order = huge_page_order(h);
3143 /* oversize hugepages were init'ed in early boot */
3144 if (!hstate_is_gigantic(h))
3145 hugetlb_hstate_alloc_pages(h);
3148 * Set demote order for each hstate. Note that
3149 * h->demote_order is initially 0.
3150 * - We can not demote gigantic pages if runtime freeing
3151 * is not supported, so skip this.
3152 * - If CMA allocation is possible, we can not demote
3153 * HUGETLB_PAGE_ORDER or smaller size pages.
3155 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3157 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3159 for_each_hstate(h2) {
3162 if (h2->order < h->order &&
3163 h2->order > h->demote_order)
3164 h->demote_order = h2->order;
3167 VM_BUG_ON(minimum_order == UINT_MAX);
3170 static void __init report_hugepages(void)
3174 for_each_hstate(h) {
3177 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3178 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3179 buf, h->free_huge_pages);
3183 #ifdef CONFIG_HIGHMEM
3184 static void try_to_free_low(struct hstate *h, unsigned long count,
3185 nodemask_t *nodes_allowed)
3188 LIST_HEAD(page_list);
3190 lockdep_assert_held(&hugetlb_lock);
3191 if (hstate_is_gigantic(h))
3195 * Collect pages to be freed on a list, and free after dropping lock
3197 for_each_node_mask(i, *nodes_allowed) {
3198 struct page *page, *next;
3199 struct list_head *freel = &h->hugepage_freelists[i];
3200 list_for_each_entry_safe(page, next, freel, lru) {
3201 if (count >= h->nr_huge_pages)
3203 if (PageHighMem(page))
3205 remove_hugetlb_page(h, page, false);
3206 list_add(&page->lru, &page_list);
3211 spin_unlock_irq(&hugetlb_lock);
3212 update_and_free_pages_bulk(h, &page_list);
3213 spin_lock_irq(&hugetlb_lock);
3216 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3217 nodemask_t *nodes_allowed)
3223 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3224 * balanced by operating on them in a round-robin fashion.
3225 * Returns 1 if an adjustment was made.
3227 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3232 lockdep_assert_held(&hugetlb_lock);
3233 VM_BUG_ON(delta != -1 && delta != 1);
3236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3237 if (h->surplus_huge_pages_node[node])
3241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3242 if (h->surplus_huge_pages_node[node] <
3243 h->nr_huge_pages_node[node])
3250 h->surplus_huge_pages += delta;
3251 h->surplus_huge_pages_node[node] += delta;
3255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3257 nodemask_t *nodes_allowed)
3259 unsigned long min_count, ret;
3261 LIST_HEAD(page_list);
3262 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3265 * Bit mask controlling how hard we retry per-node allocations.
3266 * If we can not allocate the bit mask, do not attempt to allocate
3267 * the requested huge pages.
3269 if (node_alloc_noretry)
3270 nodes_clear(*node_alloc_noretry);
3275 * resize_lock mutex prevents concurrent adjustments to number of
3276 * pages in hstate via the proc/sysfs interfaces.
3278 mutex_lock(&h->resize_lock);
3279 flush_free_hpage_work(h);
3280 spin_lock_irq(&hugetlb_lock);
3283 * Check for a node specific request.
3284 * Changing node specific huge page count may require a corresponding
3285 * change to the global count. In any case, the passed node mask
3286 * (nodes_allowed) will restrict alloc/free to the specified node.
3288 if (nid != NUMA_NO_NODE) {
3289 unsigned long old_count = count;
3291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3293 * User may have specified a large count value which caused the
3294 * above calculation to overflow. In this case, they wanted
3295 * to allocate as many huge pages as possible. Set count to
3296 * largest possible value to align with their intention.
3298 if (count < old_count)
3303 * Gigantic pages runtime allocation depend on the capability for large
3304 * page range allocation.
3305 * If the system does not provide this feature, return an error when
3306 * the user tries to allocate gigantic pages but let the user free the
3307 * boottime allocated gigantic pages.
3309 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3310 if (count > persistent_huge_pages(h)) {
3311 spin_unlock_irq(&hugetlb_lock);
3312 mutex_unlock(&h->resize_lock);
3313 NODEMASK_FREE(node_alloc_noretry);
3316 /* Fall through to decrease pool */
3320 * Increase the pool size
3321 * First take pages out of surplus state. Then make up the
3322 * remaining difference by allocating fresh huge pages.
3324 * We might race with alloc_surplus_huge_page() here and be unable
3325 * to convert a surplus huge page to a normal huge page. That is
3326 * not critical, though, it just means the overall size of the
3327 * pool might be one hugepage larger than it needs to be, but
3328 * within all the constraints specified by the sysctls.
3330 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3331 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3335 while (count > persistent_huge_pages(h)) {
3337 * If this allocation races such that we no longer need the
3338 * page, free_huge_page will handle it by freeing the page
3339 * and reducing the surplus.
3341 spin_unlock_irq(&hugetlb_lock);
3343 /* yield cpu to avoid soft lockup */
3346 ret = alloc_pool_huge_page(h, nodes_allowed,
3347 node_alloc_noretry);
3348 spin_lock_irq(&hugetlb_lock);
3352 /* Bail for signals. Probably ctrl-c from user */
3353 if (signal_pending(current))
3358 * Decrease the pool size
3359 * First return free pages to the buddy allocator (being careful
3360 * to keep enough around to satisfy reservations). Then place
3361 * pages into surplus state as needed so the pool will shrink
3362 * to the desired size as pages become free.
3364 * By placing pages into the surplus state independent of the
3365 * overcommit value, we are allowing the surplus pool size to
3366 * exceed overcommit. There are few sane options here. Since
3367 * alloc_surplus_huge_page() is checking the global counter,
3368 * though, we'll note that we're not allowed to exceed surplus
3369 * and won't grow the pool anywhere else. Not until one of the
3370 * sysctls are changed, or the surplus pages go out of use.
3372 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3373 min_count = max(count, min_count);
3374 try_to_free_low(h, min_count, nodes_allowed);
3377 * Collect pages to be removed on list without dropping lock
3379 while (min_count < persistent_huge_pages(h)) {
3380 page = remove_pool_huge_page(h, nodes_allowed, 0);
3384 list_add(&page->lru, &page_list);
3386 /* free the pages after dropping lock */
3387 spin_unlock_irq(&hugetlb_lock);
3388 update_and_free_pages_bulk(h, &page_list);
3389 flush_free_hpage_work(h);
3390 spin_lock_irq(&hugetlb_lock);
3392 while (count < persistent_huge_pages(h)) {
3393 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3397 h->max_huge_pages = persistent_huge_pages(h);
3398 spin_unlock_irq(&hugetlb_lock);
3399 mutex_unlock(&h->resize_lock);
3401 NODEMASK_FREE(node_alloc_noretry);
3406 static int demote_free_huge_page(struct hstate *h, struct page *page)
3408 int i, nid = page_to_nid(page);
3409 struct hstate *target_hstate;
3412 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3414 remove_hugetlb_page_for_demote(h, page, false);
3415 spin_unlock_irq(&hugetlb_lock);
3417 rc = alloc_huge_page_vmemmap(h, page);
3419 /* Allocation of vmemmmap failed, we can not demote page */
3420 spin_lock_irq(&hugetlb_lock);
3421 set_page_refcounted(page);
3422 add_hugetlb_page(h, page, false);
3427 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3428 * sizes as it will not ref count pages.
3430 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3433 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3434 * Without the mutex, pages added to target hstate could be marked
3437 * Note that we already hold h->resize_lock. To prevent deadlock,
3438 * use the convention of always taking larger size hstate mutex first.
3440 mutex_lock(&target_hstate->resize_lock);
3441 for (i = 0; i < pages_per_huge_page(h);
3442 i += pages_per_huge_page(target_hstate)) {
3443 if (hstate_is_gigantic(target_hstate))
3444 prep_compound_gigantic_page_for_demote(page + i,
3445 target_hstate->order);
3447 prep_compound_page(page + i, target_hstate->order);
3448 set_page_private(page + i, 0);
3449 set_page_refcounted(page + i);
3450 prep_new_huge_page(target_hstate, page + i, nid);
3453 mutex_unlock(&target_hstate->resize_lock);
3455 spin_lock_irq(&hugetlb_lock);
3458 * Not absolutely necessary, but for consistency update max_huge_pages
3459 * based on pool changes for the demoted page.
3461 h->max_huge_pages--;
3462 target_hstate->max_huge_pages += pages_per_huge_page(h);
3467 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3468 __must_hold(&hugetlb_lock)
3474 lockdep_assert_held(&hugetlb_lock);
3476 /* We should never get here if no demote order */
3477 if (!h->demote_order) {
3478 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3479 return -EINVAL; /* internal error */
3482 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3483 if (!list_empty(&h->hugepage_freelists[node])) {
3484 page = list_entry(h->hugepage_freelists[node].next,
3486 rc = demote_free_huge_page(h, page);
3494 #define HSTATE_ATTR_RO(_name) \
3495 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3497 #define HSTATE_ATTR_WO(_name) \
3498 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3500 #define HSTATE_ATTR(_name) \
3501 static struct kobj_attribute _name##_attr = \
3502 __ATTR(_name, 0644, _name##_show, _name##_store)
3504 static struct kobject *hugepages_kobj;
3505 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3507 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3509 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3513 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3514 if (hstate_kobjs[i] == kobj) {
3516 *nidp = NUMA_NO_NODE;
3520 return kobj_to_node_hstate(kobj, nidp);
3523 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3524 struct kobj_attribute *attr, char *buf)
3527 unsigned long nr_huge_pages;
3530 h = kobj_to_hstate(kobj, &nid);
3531 if (nid == NUMA_NO_NODE)
3532 nr_huge_pages = h->nr_huge_pages;
3534 nr_huge_pages = h->nr_huge_pages_node[nid];
3536 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3539 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3540 struct hstate *h, int nid,
3541 unsigned long count, size_t len)
3544 nodemask_t nodes_allowed, *n_mask;
3546 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3549 if (nid == NUMA_NO_NODE) {
3551 * global hstate attribute
3553 if (!(obey_mempolicy &&
3554 init_nodemask_of_mempolicy(&nodes_allowed)))
3555 n_mask = &node_states[N_MEMORY];
3557 n_mask = &nodes_allowed;
3560 * Node specific request. count adjustment happens in
3561 * set_max_huge_pages() after acquiring hugetlb_lock.
3563 init_nodemask_of_node(&nodes_allowed, nid);
3564 n_mask = &nodes_allowed;
3567 err = set_max_huge_pages(h, count, nid, n_mask);
3569 return err ? err : len;
3572 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3573 struct kobject *kobj, const char *buf,
3577 unsigned long count;
3581 err = kstrtoul(buf, 10, &count);
3585 h = kobj_to_hstate(kobj, &nid);
3586 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3589 static ssize_t nr_hugepages_show(struct kobject *kobj,
3590 struct kobj_attribute *attr, char *buf)
3592 return nr_hugepages_show_common(kobj, attr, buf);
3595 static ssize_t nr_hugepages_store(struct kobject *kobj,
3596 struct kobj_attribute *attr, const char *buf, size_t len)
3598 return nr_hugepages_store_common(false, kobj, buf, len);
3600 HSTATE_ATTR(nr_hugepages);
3605 * hstate attribute for optionally mempolicy-based constraint on persistent
3606 * huge page alloc/free.
3608 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3609 struct kobj_attribute *attr,
3612 return nr_hugepages_show_common(kobj, attr, buf);
3615 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3616 struct kobj_attribute *attr, const char *buf, size_t len)
3618 return nr_hugepages_store_common(true, kobj, buf, len);
3620 HSTATE_ATTR(nr_hugepages_mempolicy);
3624 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3625 struct kobj_attribute *attr, char *buf)
3627 struct hstate *h = kobj_to_hstate(kobj, NULL);
3628 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3631 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3632 struct kobj_attribute *attr, const char *buf, size_t count)
3635 unsigned long input;
3636 struct hstate *h = kobj_to_hstate(kobj, NULL);
3638 if (hstate_is_gigantic(h))
3641 err = kstrtoul(buf, 10, &input);
3645 spin_lock_irq(&hugetlb_lock);
3646 h->nr_overcommit_huge_pages = input;
3647 spin_unlock_irq(&hugetlb_lock);
3651 HSTATE_ATTR(nr_overcommit_hugepages);
3653 static ssize_t free_hugepages_show(struct kobject *kobj,
3654 struct kobj_attribute *attr, char *buf)
3657 unsigned long free_huge_pages;
3660 h = kobj_to_hstate(kobj, &nid);
3661 if (nid == NUMA_NO_NODE)
3662 free_huge_pages = h->free_huge_pages;
3664 free_huge_pages = h->free_huge_pages_node[nid];
3666 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3668 HSTATE_ATTR_RO(free_hugepages);
3670 static ssize_t resv_hugepages_show(struct kobject *kobj,
3671 struct kobj_attribute *attr, char *buf)
3673 struct hstate *h = kobj_to_hstate(kobj, NULL);
3674 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3676 HSTATE_ATTR_RO(resv_hugepages);
3678 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3679 struct kobj_attribute *attr, char *buf)
3682 unsigned long surplus_huge_pages;
3685 h = kobj_to_hstate(kobj, &nid);
3686 if (nid == NUMA_NO_NODE)
3687 surplus_huge_pages = h->surplus_huge_pages;
3689 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3691 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3693 HSTATE_ATTR_RO(surplus_hugepages);
3695 static ssize_t demote_store(struct kobject *kobj,
3696 struct kobj_attribute *attr, const char *buf, size_t len)
3698 unsigned long nr_demote;
3699 unsigned long nr_available;
3700 nodemask_t nodes_allowed, *n_mask;
3705 err = kstrtoul(buf, 10, &nr_demote);
3708 h = kobj_to_hstate(kobj, &nid);
3710 if (nid != NUMA_NO_NODE) {
3711 init_nodemask_of_node(&nodes_allowed, nid);
3712 n_mask = &nodes_allowed;
3714 n_mask = &node_states[N_MEMORY];
3717 /* Synchronize with other sysfs operations modifying huge pages */
3718 mutex_lock(&h->resize_lock);
3719 spin_lock_irq(&hugetlb_lock);
3723 * Check for available pages to demote each time thorough the
3724 * loop as demote_pool_huge_page will drop hugetlb_lock.
3726 if (nid != NUMA_NO_NODE)
3727 nr_available = h->free_huge_pages_node[nid];
3729 nr_available = h->free_huge_pages;
3730 nr_available -= h->resv_huge_pages;
3734 err = demote_pool_huge_page(h, n_mask);
3741 spin_unlock_irq(&hugetlb_lock);
3742 mutex_unlock(&h->resize_lock);
3748 HSTATE_ATTR_WO(demote);
3750 static ssize_t demote_size_show(struct kobject *kobj,
3751 struct kobj_attribute *attr, char *buf)
3754 struct hstate *h = kobj_to_hstate(kobj, &nid);
3755 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3757 return sysfs_emit(buf, "%lukB\n", demote_size);
3760 static ssize_t demote_size_store(struct kobject *kobj,
3761 struct kobj_attribute *attr,
3762 const char *buf, size_t count)
3764 struct hstate *h, *demote_hstate;
3765 unsigned long demote_size;
3766 unsigned int demote_order;
3769 demote_size = (unsigned long)memparse(buf, NULL);
3771 demote_hstate = size_to_hstate(demote_size);
3774 demote_order = demote_hstate->order;
3775 if (demote_order < HUGETLB_PAGE_ORDER)
3778 /* demote order must be smaller than hstate order */
3779 h = kobj_to_hstate(kobj, &nid);
3780 if (demote_order >= h->order)
3783 /* resize_lock synchronizes access to demote size and writes */
3784 mutex_lock(&h->resize_lock);
3785 h->demote_order = demote_order;
3786 mutex_unlock(&h->resize_lock);
3790 HSTATE_ATTR(demote_size);
3792 static struct attribute *hstate_attrs[] = {
3793 &nr_hugepages_attr.attr,
3794 &nr_overcommit_hugepages_attr.attr,
3795 &free_hugepages_attr.attr,
3796 &resv_hugepages_attr.attr,
3797 &surplus_hugepages_attr.attr,
3799 &nr_hugepages_mempolicy_attr.attr,
3804 static const struct attribute_group hstate_attr_group = {
3805 .attrs = hstate_attrs,
3808 static struct attribute *hstate_demote_attrs[] = {
3809 &demote_size_attr.attr,
3814 static const struct attribute_group hstate_demote_attr_group = {
3815 .attrs = hstate_demote_attrs,
3818 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3819 struct kobject **hstate_kobjs,
3820 const struct attribute_group *hstate_attr_group)
3823 int hi = hstate_index(h);
3825 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3826 if (!hstate_kobjs[hi])
3829 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3831 kobject_put(hstate_kobjs[hi]);
3832 hstate_kobjs[hi] = NULL;
3835 if (h->demote_order) {
3836 if (sysfs_create_group(hstate_kobjs[hi],
3837 &hstate_demote_attr_group))
3838 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3844 static void __init hugetlb_sysfs_init(void)
3849 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3850 if (!hugepages_kobj)
3853 for_each_hstate(h) {
3854 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3855 hstate_kobjs, &hstate_attr_group);
3857 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3864 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3865 * with node devices in node_devices[] using a parallel array. The array
3866 * index of a node device or _hstate == node id.
3867 * This is here to avoid any static dependency of the node device driver, in
3868 * the base kernel, on the hugetlb module.
3870 struct node_hstate {
3871 struct kobject *hugepages_kobj;
3872 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3874 static struct node_hstate node_hstates[MAX_NUMNODES];
3877 * A subset of global hstate attributes for node devices
3879 static struct attribute *per_node_hstate_attrs[] = {
3880 &nr_hugepages_attr.attr,
3881 &free_hugepages_attr.attr,
3882 &surplus_hugepages_attr.attr,
3886 static const struct attribute_group per_node_hstate_attr_group = {
3887 .attrs = per_node_hstate_attrs,
3891 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3892 * Returns node id via non-NULL nidp.
3894 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3898 for (nid = 0; nid < nr_node_ids; nid++) {
3899 struct node_hstate *nhs = &node_hstates[nid];
3901 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3902 if (nhs->hstate_kobjs[i] == kobj) {
3914 * Unregister hstate attributes from a single node device.
3915 * No-op if no hstate attributes attached.
3917 static void hugetlb_unregister_node(struct node *node)
3920 struct node_hstate *nhs = &node_hstates[node->dev.id];
3922 if (!nhs->hugepages_kobj)
3923 return; /* no hstate attributes */
3925 for_each_hstate(h) {
3926 int idx = hstate_index(h);
3927 if (nhs->hstate_kobjs[idx]) {
3928 kobject_put(nhs->hstate_kobjs[idx]);
3929 nhs->hstate_kobjs[idx] = NULL;
3933 kobject_put(nhs->hugepages_kobj);
3934 nhs->hugepages_kobj = NULL;
3939 * Register hstate attributes for a single node device.
3940 * No-op if attributes already registered.
3942 static void hugetlb_register_node(struct node *node)
3945 struct node_hstate *nhs = &node_hstates[node->dev.id];
3948 if (nhs->hugepages_kobj)
3949 return; /* already allocated */
3951 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3953 if (!nhs->hugepages_kobj)
3956 for_each_hstate(h) {
3957 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3959 &per_node_hstate_attr_group);
3961 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3962 h->name, node->dev.id);
3963 hugetlb_unregister_node(node);
3970 * hugetlb init time: register hstate attributes for all registered node
3971 * devices of nodes that have memory. All on-line nodes should have
3972 * registered their associated device by this time.
3974 static void __init hugetlb_register_all_nodes(void)
3978 for_each_node_state(nid, N_MEMORY) {
3979 struct node *node = node_devices[nid];
3980 if (node->dev.id == nid)
3981 hugetlb_register_node(node);
3985 * Let the node device driver know we're here so it can
3986 * [un]register hstate attributes on node hotplug.
3988 register_hugetlbfs_with_node(hugetlb_register_node,
3989 hugetlb_unregister_node);
3991 #else /* !CONFIG_NUMA */
3993 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4001 static void hugetlb_register_all_nodes(void) { }
4005 static int __init hugetlb_init(void)
4009 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4012 if (!hugepages_supported()) {
4013 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4014 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4019 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4020 * architectures depend on setup being done here.
4022 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4023 if (!parsed_default_hugepagesz) {
4025 * If we did not parse a default huge page size, set
4026 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4027 * number of huge pages for this default size was implicitly
4028 * specified, set that here as well.
4029 * Note that the implicit setting will overwrite an explicit
4030 * setting. A warning will be printed in this case.
4032 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4033 if (default_hstate_max_huge_pages) {
4034 if (default_hstate.max_huge_pages) {
4037 string_get_size(huge_page_size(&default_hstate),
4038 1, STRING_UNITS_2, buf, 32);
4039 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4040 default_hstate.max_huge_pages, buf);
4041 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4042 default_hstate_max_huge_pages);
4044 default_hstate.max_huge_pages =
4045 default_hstate_max_huge_pages;
4047 for (i = 0; i < nr_online_nodes; i++)
4048 default_hstate.max_huge_pages_node[i] =
4049 default_hugepages_in_node[i];
4053 hugetlb_cma_check();
4054 hugetlb_init_hstates();
4055 gather_bootmem_prealloc();
4058 hugetlb_sysfs_init();
4059 hugetlb_register_all_nodes();
4060 hugetlb_cgroup_file_init();
4063 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4065 num_fault_mutexes = 1;
4067 hugetlb_fault_mutex_table =
4068 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4070 BUG_ON(!hugetlb_fault_mutex_table);
4072 for (i = 0; i < num_fault_mutexes; i++)
4073 mutex_init(&hugetlb_fault_mutex_table[i]);
4076 subsys_initcall(hugetlb_init);
4078 /* Overwritten by architectures with more huge page sizes */
4079 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4081 return size == HPAGE_SIZE;
4084 void __init hugetlb_add_hstate(unsigned int order)
4089 if (size_to_hstate(PAGE_SIZE << order)) {
4092 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4094 h = &hstates[hugetlb_max_hstate++];
4095 mutex_init(&h->resize_lock);
4097 h->mask = ~(huge_page_size(h) - 1);
4098 for (i = 0; i < MAX_NUMNODES; ++i)
4099 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4100 INIT_LIST_HEAD(&h->hugepage_activelist);
4101 h->next_nid_to_alloc = first_memory_node;
4102 h->next_nid_to_free = first_memory_node;
4103 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4104 huge_page_size(h)/1024);
4105 hugetlb_vmemmap_init(h);
4110 bool __init __weak hugetlb_node_alloc_supported(void)
4115 * hugepages command line processing
4116 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4117 * specification. If not, ignore the hugepages value. hugepages can also
4118 * be the first huge page command line option in which case it implicitly
4119 * specifies the number of huge pages for the default size.
4121 static int __init hugepages_setup(char *s)
4124 static unsigned long *last_mhp;
4125 int node = NUMA_NO_NODE;
4130 if (!parsed_valid_hugepagesz) {
4131 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4132 parsed_valid_hugepagesz = true;
4137 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4138 * yet, so this hugepages= parameter goes to the "default hstate".
4139 * Otherwise, it goes with the previously parsed hugepagesz or
4140 * default_hugepagesz.
4142 else if (!hugetlb_max_hstate)
4143 mhp = &default_hstate_max_huge_pages;
4145 mhp = &parsed_hstate->max_huge_pages;
4147 if (mhp == last_mhp) {
4148 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4154 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4156 /* Parameter is node format */
4157 if (p[count] == ':') {
4158 if (!hugetlb_node_alloc_supported()) {
4159 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4164 if (node < 0 || node >= nr_online_nodes)
4166 /* Parse hugepages */
4167 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4169 if (!hugetlb_max_hstate)
4170 default_hugepages_in_node[node] = tmp;
4172 parsed_hstate->max_huge_pages_node[node] = tmp;
4174 /* Go to parse next node*/
4175 if (p[count] == ',')
4188 * Global state is always initialized later in hugetlb_init.
4189 * But we need to allocate gigantic hstates here early to still
4190 * use the bootmem allocator.
4192 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4193 hugetlb_hstate_alloc_pages(parsed_hstate);
4200 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4203 __setup("hugepages=", hugepages_setup);
4206 * hugepagesz command line processing
4207 * A specific huge page size can only be specified once with hugepagesz.
4208 * hugepagesz is followed by hugepages on the command line. The global
4209 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4210 * hugepagesz argument was valid.
4212 static int __init hugepagesz_setup(char *s)
4217 parsed_valid_hugepagesz = false;
4218 size = (unsigned long)memparse(s, NULL);
4220 if (!arch_hugetlb_valid_size(size)) {
4221 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4225 h = size_to_hstate(size);
4228 * hstate for this size already exists. This is normally
4229 * an error, but is allowed if the existing hstate is the
4230 * default hstate. More specifically, it is only allowed if
4231 * the number of huge pages for the default hstate was not
4232 * previously specified.
4234 if (!parsed_default_hugepagesz || h != &default_hstate ||
4235 default_hstate.max_huge_pages) {
4236 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4241 * No need to call hugetlb_add_hstate() as hstate already
4242 * exists. But, do set parsed_hstate so that a following
4243 * hugepages= parameter will be applied to this hstate.
4246 parsed_valid_hugepagesz = true;
4250 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4251 parsed_valid_hugepagesz = true;
4254 __setup("hugepagesz=", hugepagesz_setup);
4257 * default_hugepagesz command line input
4258 * Only one instance of default_hugepagesz allowed on command line.
4260 static int __init default_hugepagesz_setup(char *s)
4265 parsed_valid_hugepagesz = false;
4266 if (parsed_default_hugepagesz) {
4267 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4271 size = (unsigned long)memparse(s, NULL);
4273 if (!arch_hugetlb_valid_size(size)) {
4274 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4278 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 parsed_valid_hugepagesz = true;
4280 parsed_default_hugepagesz = true;
4281 default_hstate_idx = hstate_index(size_to_hstate(size));
4284 * The number of default huge pages (for this size) could have been
4285 * specified as the first hugetlb parameter: hugepages=X. If so,
4286 * then default_hstate_max_huge_pages is set. If the default huge
4287 * page size is gigantic (>= MAX_ORDER), then the pages must be
4288 * allocated here from bootmem allocator.
4290 if (default_hstate_max_huge_pages) {
4291 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4292 for (i = 0; i < nr_online_nodes; i++)
4293 default_hstate.max_huge_pages_node[i] =
4294 default_hugepages_in_node[i];
4295 if (hstate_is_gigantic(&default_hstate))
4296 hugetlb_hstate_alloc_pages(&default_hstate);
4297 default_hstate_max_huge_pages = 0;
4302 __setup("default_hugepagesz=", default_hugepagesz_setup);
4304 static unsigned int allowed_mems_nr(struct hstate *h)
4307 unsigned int nr = 0;
4308 nodemask_t *mpol_allowed;
4309 unsigned int *array = h->free_huge_pages_node;
4310 gfp_t gfp_mask = htlb_alloc_mask(h);
4312 mpol_allowed = policy_nodemask_current(gfp_mask);
4314 for_each_node_mask(node, cpuset_current_mems_allowed) {
4315 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4322 #ifdef CONFIG_SYSCTL
4323 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4324 void *buffer, size_t *length,
4325 loff_t *ppos, unsigned long *out)
4327 struct ctl_table dup_table;
4330 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4331 * can duplicate the @table and alter the duplicate of it.
4334 dup_table.data = out;
4336 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4339 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4340 struct ctl_table *table, int write,
4341 void *buffer, size_t *length, loff_t *ppos)
4343 struct hstate *h = &default_hstate;
4344 unsigned long tmp = h->max_huge_pages;
4347 if (!hugepages_supported())
4350 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4356 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4357 NUMA_NO_NODE, tmp, *length);
4362 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4363 void *buffer, size_t *length, loff_t *ppos)
4366 return hugetlb_sysctl_handler_common(false, table, write,
4367 buffer, length, ppos);
4371 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4372 void *buffer, size_t *length, loff_t *ppos)
4374 return hugetlb_sysctl_handler_common(true, table, write,
4375 buffer, length, ppos);
4377 #endif /* CONFIG_NUMA */
4379 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4380 void *buffer, size_t *length, loff_t *ppos)
4382 struct hstate *h = &default_hstate;
4386 if (!hugepages_supported())
4389 tmp = h->nr_overcommit_huge_pages;
4391 if (write && hstate_is_gigantic(h))
4394 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4400 spin_lock_irq(&hugetlb_lock);
4401 h->nr_overcommit_huge_pages = tmp;
4402 spin_unlock_irq(&hugetlb_lock);
4408 #endif /* CONFIG_SYSCTL */
4410 void hugetlb_report_meminfo(struct seq_file *m)
4413 unsigned long total = 0;
4415 if (!hugepages_supported())
4418 for_each_hstate(h) {
4419 unsigned long count = h->nr_huge_pages;
4421 total += huge_page_size(h) * count;
4423 if (h == &default_hstate)
4425 "HugePages_Total: %5lu\n"
4426 "HugePages_Free: %5lu\n"
4427 "HugePages_Rsvd: %5lu\n"
4428 "HugePages_Surp: %5lu\n"
4429 "Hugepagesize: %8lu kB\n",
4433 h->surplus_huge_pages,
4434 huge_page_size(h) / SZ_1K);
4437 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4440 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4442 struct hstate *h = &default_hstate;
4444 if (!hugepages_supported())
4447 return sysfs_emit_at(buf, len,
4448 "Node %d HugePages_Total: %5u\n"
4449 "Node %d HugePages_Free: %5u\n"
4450 "Node %d HugePages_Surp: %5u\n",
4451 nid, h->nr_huge_pages_node[nid],
4452 nid, h->free_huge_pages_node[nid],
4453 nid, h->surplus_huge_pages_node[nid]);
4456 void hugetlb_show_meminfo(void)
4461 if (!hugepages_supported())
4464 for_each_node_state(nid, N_MEMORY)
4466 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4468 h->nr_huge_pages_node[nid],
4469 h->free_huge_pages_node[nid],
4470 h->surplus_huge_pages_node[nid],
4471 huge_page_size(h) / SZ_1K);
4474 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4476 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4477 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4480 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4481 unsigned long hugetlb_total_pages(void)
4484 unsigned long nr_total_pages = 0;
4487 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4488 return nr_total_pages;
4491 static int hugetlb_acct_memory(struct hstate *h, long delta)
4498 spin_lock_irq(&hugetlb_lock);
4500 * When cpuset is configured, it breaks the strict hugetlb page
4501 * reservation as the accounting is done on a global variable. Such
4502 * reservation is completely rubbish in the presence of cpuset because
4503 * the reservation is not checked against page availability for the
4504 * current cpuset. Application can still potentially OOM'ed by kernel
4505 * with lack of free htlb page in cpuset that the task is in.
4506 * Attempt to enforce strict accounting with cpuset is almost
4507 * impossible (or too ugly) because cpuset is too fluid that
4508 * task or memory node can be dynamically moved between cpusets.
4510 * The change of semantics for shared hugetlb mapping with cpuset is
4511 * undesirable. However, in order to preserve some of the semantics,
4512 * we fall back to check against current free page availability as
4513 * a best attempt and hopefully to minimize the impact of changing
4514 * semantics that cpuset has.
4516 * Apart from cpuset, we also have memory policy mechanism that
4517 * also determines from which node the kernel will allocate memory
4518 * in a NUMA system. So similar to cpuset, we also should consider
4519 * the memory policy of the current task. Similar to the description
4523 if (gather_surplus_pages(h, delta) < 0)
4526 if (delta > allowed_mems_nr(h)) {
4527 return_unused_surplus_pages(h, delta);
4534 return_unused_surplus_pages(h, (unsigned long) -delta);
4537 spin_unlock_irq(&hugetlb_lock);
4541 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4543 struct resv_map *resv = vma_resv_map(vma);
4546 * This new VMA should share its siblings reservation map if present.
4547 * The VMA will only ever have a valid reservation map pointer where
4548 * it is being copied for another still existing VMA. As that VMA
4549 * has a reference to the reservation map it cannot disappear until
4550 * after this open call completes. It is therefore safe to take a
4551 * new reference here without additional locking.
4553 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4554 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4555 kref_get(&resv->refs);
4559 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4561 struct hstate *h = hstate_vma(vma);
4562 struct resv_map *resv = vma_resv_map(vma);
4563 struct hugepage_subpool *spool = subpool_vma(vma);
4564 unsigned long reserve, start, end;
4567 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4570 start = vma_hugecache_offset(h, vma, vma->vm_start);
4571 end = vma_hugecache_offset(h, vma, vma->vm_end);
4573 reserve = (end - start) - region_count(resv, start, end);
4574 hugetlb_cgroup_uncharge_counter(resv, start, end);
4577 * Decrement reserve counts. The global reserve count may be
4578 * adjusted if the subpool has a minimum size.
4580 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4581 hugetlb_acct_memory(h, -gbl_reserve);
4584 kref_put(&resv->refs, resv_map_release);
4587 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4589 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4594 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4596 return huge_page_size(hstate_vma(vma));
4600 * We cannot handle pagefaults against hugetlb pages at all. They cause
4601 * handle_mm_fault() to try to instantiate regular-sized pages in the
4602 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4605 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4612 * When a new function is introduced to vm_operations_struct and added
4613 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4614 * This is because under System V memory model, mappings created via
4615 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4616 * their original vm_ops are overwritten with shm_vm_ops.
4618 const struct vm_operations_struct hugetlb_vm_ops = {
4619 .fault = hugetlb_vm_op_fault,
4620 .open = hugetlb_vm_op_open,
4621 .close = hugetlb_vm_op_close,
4622 .may_split = hugetlb_vm_op_split,
4623 .pagesize = hugetlb_vm_op_pagesize,
4626 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4630 unsigned int shift = huge_page_shift(hstate_vma(vma));
4633 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4634 vma->vm_page_prot)));
4636 entry = huge_pte_wrprotect(mk_huge_pte(page,
4637 vma->vm_page_prot));
4639 entry = pte_mkyoung(entry);
4640 entry = pte_mkhuge(entry);
4641 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4646 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4647 unsigned long address, pte_t *ptep)
4651 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4652 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4653 update_mmu_cache(vma, address, ptep);
4656 bool is_hugetlb_entry_migration(pte_t pte)
4660 if (huge_pte_none(pte) || pte_present(pte))
4662 swp = pte_to_swp_entry(pte);
4663 if (is_migration_entry(swp))
4669 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4673 if (huge_pte_none(pte) || pte_present(pte))
4675 swp = pte_to_swp_entry(pte);
4676 if (is_hwpoison_entry(swp))
4683 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4684 struct page *new_page)
4686 __SetPageUptodate(new_page);
4687 hugepage_add_new_anon_rmap(new_page, vma, addr);
4688 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4689 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4690 ClearHPageRestoreReserve(new_page);
4691 SetHPageMigratable(new_page);
4694 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4695 struct vm_area_struct *vma)
4697 pte_t *src_pte, *dst_pte, entry, dst_entry;
4698 struct page *ptepage;
4700 bool cow = is_cow_mapping(vma->vm_flags);
4701 struct hstate *h = hstate_vma(vma);
4702 unsigned long sz = huge_page_size(h);
4703 unsigned long npages = pages_per_huge_page(h);
4704 struct address_space *mapping = vma->vm_file->f_mapping;
4705 struct mmu_notifier_range range;
4709 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4712 mmu_notifier_invalidate_range_start(&range);
4715 * For shared mappings i_mmap_rwsem must be held to call
4716 * huge_pte_alloc, otherwise the returned ptep could go
4717 * away if part of a shared pmd and another thread calls
4720 i_mmap_lock_read(mapping);
4723 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4724 spinlock_t *src_ptl, *dst_ptl;
4725 src_pte = huge_pte_offset(src, addr, sz);
4728 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4735 * If the pagetables are shared don't copy or take references.
4736 * dst_pte == src_pte is the common case of src/dest sharing.
4738 * However, src could have 'unshared' and dst shares with
4739 * another vma. If dst_pte !none, this implies sharing.
4740 * Check here before taking page table lock, and once again
4741 * after taking the lock below.
4743 dst_entry = huge_ptep_get(dst_pte);
4744 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4747 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4748 src_ptl = huge_pte_lockptr(h, src, src_pte);
4749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4750 entry = huge_ptep_get(src_pte);
4751 dst_entry = huge_ptep_get(dst_pte);
4753 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4755 * Skip if src entry none. Also, skip in the
4756 * unlikely case dst entry !none as this implies
4757 * sharing with another vma.
4760 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4761 is_hugetlb_entry_hwpoisoned(entry))) {
4762 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4764 if (is_writable_migration_entry(swp_entry) && cow) {
4766 * COW mappings require pages in both
4767 * parent and child to be set to read.
4769 swp_entry = make_readable_migration_entry(
4770 swp_offset(swp_entry));
4771 entry = swp_entry_to_pte(swp_entry);
4772 set_huge_swap_pte_at(src, addr, src_pte,
4775 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4777 entry = huge_ptep_get(src_pte);
4778 ptepage = pte_page(entry);
4782 * This is a rare case where we see pinned hugetlb
4783 * pages while they're prone to COW. We need to do the
4784 * COW earlier during fork.
4786 * When pre-allocating the page or copying data, we
4787 * need to be without the pgtable locks since we could
4788 * sleep during the process.
4790 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4791 pte_t src_pte_old = entry;
4794 spin_unlock(src_ptl);
4795 spin_unlock(dst_ptl);
4796 /* Do not use reserve as it's private owned */
4797 new = alloc_huge_page(vma, addr, 1);
4803 copy_user_huge_page(new, ptepage, addr, vma,
4807 /* Install the new huge page if src pte stable */
4808 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4809 src_ptl = huge_pte_lockptr(h, src, src_pte);
4810 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4811 entry = huge_ptep_get(src_pte);
4812 if (!pte_same(src_pte_old, entry)) {
4813 restore_reserve_on_error(h, vma, addr,
4816 /* dst_entry won't change as in child */
4819 hugetlb_install_page(vma, dst_pte, addr, new);
4820 spin_unlock(src_ptl);
4821 spin_unlock(dst_ptl);
4827 * No need to notify as we are downgrading page
4828 * table protection not changing it to point
4831 * See Documentation/vm/mmu_notifier.rst
4833 huge_ptep_set_wrprotect(src, addr, src_pte);
4834 entry = huge_pte_wrprotect(entry);
4837 page_dup_rmap(ptepage, true);
4838 set_huge_pte_at(dst, addr, dst_pte, entry);
4839 hugetlb_count_add(npages, dst);
4841 spin_unlock(src_ptl);
4842 spin_unlock(dst_ptl);
4846 mmu_notifier_invalidate_range_end(&range);
4848 i_mmap_unlock_read(mapping);
4853 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4854 unsigned long new_addr, pte_t *src_pte)
4856 struct hstate *h = hstate_vma(vma);
4857 struct mm_struct *mm = vma->vm_mm;
4858 pte_t *dst_pte, pte;
4859 spinlock_t *src_ptl, *dst_ptl;
4861 dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h));
4862 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4863 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4866 * We don't have to worry about the ordering of src and dst ptlocks
4867 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4869 if (src_ptl != dst_ptl)
4870 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4872 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4873 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4875 if (src_ptl != dst_ptl)
4876 spin_unlock(src_ptl);
4877 spin_unlock(dst_ptl);
4880 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4881 struct vm_area_struct *new_vma,
4882 unsigned long old_addr, unsigned long new_addr,
4885 struct hstate *h = hstate_vma(vma);
4886 struct address_space *mapping = vma->vm_file->f_mapping;
4887 unsigned long sz = huge_page_size(h);
4888 struct mm_struct *mm = vma->vm_mm;
4889 unsigned long old_end = old_addr + len;
4890 unsigned long old_addr_copy;
4891 pte_t *src_pte, *dst_pte;
4892 struct mmu_notifier_range range;
4894 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4896 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4897 mmu_notifier_invalidate_range_start(&range);
4898 /* Prevent race with file truncation */
4899 i_mmap_lock_write(mapping);
4900 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4901 src_pte = huge_pte_offset(mm, old_addr, sz);
4904 if (huge_pte_none(huge_ptep_get(src_pte)))
4907 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4908 * arg may be modified. Pass a copy instead to preserve the
4909 * value in old_addr.
4911 old_addr_copy = old_addr;
4913 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4916 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4920 move_huge_pte(vma, old_addr, new_addr, src_pte);
4922 flush_tlb_range(vma, old_end - len, old_end);
4923 mmu_notifier_invalidate_range_end(&range);
4924 i_mmap_unlock_write(mapping);
4926 return len + old_addr - old_end;
4929 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4930 unsigned long start, unsigned long end,
4931 struct page *ref_page)
4933 struct mm_struct *mm = vma->vm_mm;
4934 unsigned long address;
4939 struct hstate *h = hstate_vma(vma);
4940 unsigned long sz = huge_page_size(h);
4941 struct mmu_notifier_range range;
4942 bool force_flush = false;
4944 WARN_ON(!is_vm_hugetlb_page(vma));
4945 BUG_ON(start & ~huge_page_mask(h));
4946 BUG_ON(end & ~huge_page_mask(h));
4949 * This is a hugetlb vma, all the pte entries should point
4952 tlb_change_page_size(tlb, sz);
4953 tlb_start_vma(tlb, vma);
4956 * If sharing possible, alert mmu notifiers of worst case.
4958 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4960 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4961 mmu_notifier_invalidate_range_start(&range);
4963 for (; address < end; address += sz) {
4964 ptep = huge_pte_offset(mm, address, sz);
4968 ptl = huge_pte_lock(h, mm, ptep);
4969 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4971 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4976 pte = huge_ptep_get(ptep);
4977 if (huge_pte_none(pte)) {
4983 * Migrating hugepage or HWPoisoned hugepage is already
4984 * unmapped and its refcount is dropped, so just clear pte here.
4986 if (unlikely(!pte_present(pte))) {
4987 huge_pte_clear(mm, address, ptep, sz);
4992 page = pte_page(pte);
4994 * If a reference page is supplied, it is because a specific
4995 * page is being unmapped, not a range. Ensure the page we
4996 * are about to unmap is the actual page of interest.
4999 if (page != ref_page) {
5004 * Mark the VMA as having unmapped its page so that
5005 * future faults in this VMA will fail rather than
5006 * looking like data was lost
5008 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5011 pte = huge_ptep_get_and_clear(mm, address, ptep);
5012 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5013 if (huge_pte_dirty(pte))
5014 set_page_dirty(page);
5016 hugetlb_count_sub(pages_per_huge_page(h), mm);
5017 page_remove_rmap(page, true);
5020 tlb_remove_page_size(tlb, page, huge_page_size(h));
5022 * Bail out after unmapping reference page if supplied
5027 mmu_notifier_invalidate_range_end(&range);
5028 tlb_end_vma(tlb, vma);
5031 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5032 * could defer the flush until now, since by holding i_mmap_rwsem we
5033 * guaranteed that the last refernece would not be dropped. But we must
5034 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5035 * dropped and the last reference to the shared PMDs page might be
5038 * In theory we could defer the freeing of the PMD pages as well, but
5039 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5040 * detect sharing, so we cannot defer the release of the page either.
5041 * Instead, do flush now.
5044 tlb_flush_mmu_tlbonly(tlb);
5047 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5048 struct vm_area_struct *vma, unsigned long start,
5049 unsigned long end, struct page *ref_page)
5051 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5054 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5055 * test will fail on a vma being torn down, and not grab a page table
5056 * on its way out. We're lucky that the flag has such an appropriate
5057 * name, and can in fact be safely cleared here. We could clear it
5058 * before the __unmap_hugepage_range above, but all that's necessary
5059 * is to clear it before releasing the i_mmap_rwsem. This works
5060 * because in the context this is called, the VMA is about to be
5061 * destroyed and the i_mmap_rwsem is held.
5063 vma->vm_flags &= ~VM_MAYSHARE;
5066 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5067 unsigned long end, struct page *ref_page)
5069 struct mmu_gather tlb;
5071 tlb_gather_mmu(&tlb, vma->vm_mm);
5072 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5073 tlb_finish_mmu(&tlb);
5077 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5078 * mapping it owns the reserve page for. The intention is to unmap the page
5079 * from other VMAs and let the children be SIGKILLed if they are faulting the
5082 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5083 struct page *page, unsigned long address)
5085 struct hstate *h = hstate_vma(vma);
5086 struct vm_area_struct *iter_vma;
5087 struct address_space *mapping;
5091 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5092 * from page cache lookup which is in HPAGE_SIZE units.
5094 address = address & huge_page_mask(h);
5095 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5097 mapping = vma->vm_file->f_mapping;
5100 * Take the mapping lock for the duration of the table walk. As
5101 * this mapping should be shared between all the VMAs,
5102 * __unmap_hugepage_range() is called as the lock is already held
5104 i_mmap_lock_write(mapping);
5105 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5106 /* Do not unmap the current VMA */
5107 if (iter_vma == vma)
5111 * Shared VMAs have their own reserves and do not affect
5112 * MAP_PRIVATE accounting but it is possible that a shared
5113 * VMA is using the same page so check and skip such VMAs.
5115 if (iter_vma->vm_flags & VM_MAYSHARE)
5119 * Unmap the page from other VMAs without their own reserves.
5120 * They get marked to be SIGKILLed if they fault in these
5121 * areas. This is because a future no-page fault on this VMA
5122 * could insert a zeroed page instead of the data existing
5123 * from the time of fork. This would look like data corruption
5125 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5126 unmap_hugepage_range(iter_vma, address,
5127 address + huge_page_size(h), page);
5129 i_mmap_unlock_write(mapping);
5133 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5134 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5135 * cannot race with other handlers or page migration.
5136 * Keep the pte_same checks anyway to make transition from the mutex easier.
5138 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5139 unsigned long address, pte_t *ptep,
5140 struct page *pagecache_page, spinlock_t *ptl)
5143 struct hstate *h = hstate_vma(vma);
5144 struct page *old_page, *new_page;
5145 int outside_reserve = 0;
5147 unsigned long haddr = address & huge_page_mask(h);
5148 struct mmu_notifier_range range;
5150 pte = huge_ptep_get(ptep);
5151 old_page = pte_page(pte);
5154 /* If no-one else is actually using this page, avoid the copy
5155 * and just make the page writable */
5156 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5157 page_move_anon_rmap(old_page, vma);
5158 set_huge_ptep_writable(vma, haddr, ptep);
5163 * If the process that created a MAP_PRIVATE mapping is about to
5164 * perform a COW due to a shared page count, attempt to satisfy
5165 * the allocation without using the existing reserves. The pagecache
5166 * page is used to determine if the reserve at this address was
5167 * consumed or not. If reserves were used, a partial faulted mapping
5168 * at the time of fork() could consume its reserves on COW instead
5169 * of the full address range.
5171 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5172 old_page != pagecache_page)
5173 outside_reserve = 1;
5178 * Drop page table lock as buddy allocator may be called. It will
5179 * be acquired again before returning to the caller, as expected.
5182 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5184 if (IS_ERR(new_page)) {
5186 * If a process owning a MAP_PRIVATE mapping fails to COW,
5187 * it is due to references held by a child and an insufficient
5188 * huge page pool. To guarantee the original mappers
5189 * reliability, unmap the page from child processes. The child
5190 * may get SIGKILLed if it later faults.
5192 if (outside_reserve) {
5193 struct address_space *mapping = vma->vm_file->f_mapping;
5198 BUG_ON(huge_pte_none(pte));
5200 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5201 * unmapping. unmapping needs to hold i_mmap_rwsem
5202 * in write mode. Dropping i_mmap_rwsem in read mode
5203 * here is OK as COW mappings do not interact with
5206 * Reacquire both after unmap operation.
5208 idx = vma_hugecache_offset(h, vma, haddr);
5209 hash = hugetlb_fault_mutex_hash(mapping, idx);
5210 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5211 i_mmap_unlock_read(mapping);
5213 unmap_ref_private(mm, vma, old_page, haddr);
5215 i_mmap_lock_read(mapping);
5216 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5218 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5220 pte_same(huge_ptep_get(ptep), pte)))
5221 goto retry_avoidcopy;
5223 * race occurs while re-acquiring page table
5224 * lock, and our job is done.
5229 ret = vmf_error(PTR_ERR(new_page));
5230 goto out_release_old;
5234 * When the original hugepage is shared one, it does not have
5235 * anon_vma prepared.
5237 if (unlikely(anon_vma_prepare(vma))) {
5239 goto out_release_all;
5242 copy_user_huge_page(new_page, old_page, address, vma,
5243 pages_per_huge_page(h));
5244 __SetPageUptodate(new_page);
5246 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5247 haddr + huge_page_size(h));
5248 mmu_notifier_invalidate_range_start(&range);
5251 * Retake the page table lock to check for racing updates
5252 * before the page tables are altered
5255 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5256 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5257 ClearHPageRestoreReserve(new_page);
5260 huge_ptep_clear_flush(vma, haddr, ptep);
5261 mmu_notifier_invalidate_range(mm, range.start, range.end);
5262 page_remove_rmap(old_page, true);
5263 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5264 set_huge_pte_at(mm, haddr, ptep,
5265 make_huge_pte(vma, new_page, 1));
5266 SetHPageMigratable(new_page);
5267 /* Make the old page be freed below */
5268 new_page = old_page;
5271 mmu_notifier_invalidate_range_end(&range);
5273 /* No restore in case of successful pagetable update (Break COW) */
5274 if (new_page != old_page)
5275 restore_reserve_on_error(h, vma, haddr, new_page);
5280 spin_lock(ptl); /* Caller expects lock to be held */
5284 /* Return the pagecache page at a given address within a VMA */
5285 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5286 struct vm_area_struct *vma, unsigned long address)
5288 struct address_space *mapping;
5291 mapping = vma->vm_file->f_mapping;
5292 idx = vma_hugecache_offset(h, vma, address);
5294 return find_lock_page(mapping, idx);
5298 * Return whether there is a pagecache page to back given address within VMA.
5299 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5301 static bool hugetlbfs_pagecache_present(struct hstate *h,
5302 struct vm_area_struct *vma, unsigned long address)
5304 struct address_space *mapping;
5308 mapping = vma->vm_file->f_mapping;
5309 idx = vma_hugecache_offset(h, vma, address);
5311 page = find_get_page(mapping, idx);
5314 return page != NULL;
5317 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5320 struct inode *inode = mapping->host;
5321 struct hstate *h = hstate_inode(inode);
5322 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5326 ClearHPageRestoreReserve(page);
5329 * set page dirty so that it will not be removed from cache/file
5330 * by non-hugetlbfs specific code paths.
5332 set_page_dirty(page);
5334 spin_lock(&inode->i_lock);
5335 inode->i_blocks += blocks_per_huge_page(h);
5336 spin_unlock(&inode->i_lock);
5340 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5341 struct address_space *mapping,
5344 unsigned long haddr,
5345 unsigned long reason)
5349 struct vm_fault vmf = {
5355 * Hard to debug if it ends up being
5356 * used by a callee that assumes
5357 * something about the other
5358 * uninitialized fields... same as in
5364 * hugetlb_fault_mutex and i_mmap_rwsem must be
5365 * dropped before handling userfault. Reacquire
5366 * after handling fault to make calling code simpler.
5368 hash = hugetlb_fault_mutex_hash(mapping, idx);
5369 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5370 i_mmap_unlock_read(mapping);
5371 ret = handle_userfault(&vmf, reason);
5372 i_mmap_lock_read(mapping);
5373 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5378 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5379 struct vm_area_struct *vma,
5380 struct address_space *mapping, pgoff_t idx,
5381 unsigned long address, pte_t *ptep, unsigned int flags)
5383 struct hstate *h = hstate_vma(vma);
5384 vm_fault_t ret = VM_FAULT_SIGBUS;
5390 unsigned long haddr = address & huge_page_mask(h);
5391 bool new_page, new_pagecache_page = false;
5394 * Currently, we are forced to kill the process in the event the
5395 * original mapper has unmapped pages from the child due to a failed
5396 * COW. Warn that such a situation has occurred as it may not be obvious
5398 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5399 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5405 * We can not race with truncation due to holding i_mmap_rwsem.
5406 * i_size is modified when holding i_mmap_rwsem, so check here
5407 * once for faults beyond end of file.
5409 size = i_size_read(mapping->host) >> huge_page_shift(h);
5415 page = find_lock_page(mapping, idx);
5417 /* Check for page in userfault range */
5418 if (userfaultfd_missing(vma)) {
5419 ret = hugetlb_handle_userfault(vma, mapping, idx,
5425 page = alloc_huge_page(vma, haddr, 0);
5428 * Returning error will result in faulting task being
5429 * sent SIGBUS. The hugetlb fault mutex prevents two
5430 * tasks from racing to fault in the same page which
5431 * could result in false unable to allocate errors.
5432 * Page migration does not take the fault mutex, but
5433 * does a clear then write of pte's under page table
5434 * lock. Page fault code could race with migration,
5435 * notice the clear pte and try to allocate a page
5436 * here. Before returning error, get ptl and make
5437 * sure there really is no pte entry.
5439 ptl = huge_pte_lock(h, mm, ptep);
5441 if (huge_pte_none(huge_ptep_get(ptep)))
5442 ret = vmf_error(PTR_ERR(page));
5446 clear_huge_page(page, address, pages_per_huge_page(h));
5447 __SetPageUptodate(page);
5450 if (vma->vm_flags & VM_MAYSHARE) {
5451 int err = huge_add_to_page_cache(page, mapping, idx);
5458 new_pagecache_page = true;
5461 if (unlikely(anon_vma_prepare(vma))) {
5463 goto backout_unlocked;
5469 * If memory error occurs between mmap() and fault, some process
5470 * don't have hwpoisoned swap entry for errored virtual address.
5471 * So we need to block hugepage fault by PG_hwpoison bit check.
5473 if (unlikely(PageHWPoison(page))) {
5474 ret = VM_FAULT_HWPOISON_LARGE |
5475 VM_FAULT_SET_HINDEX(hstate_index(h));
5476 goto backout_unlocked;
5479 /* Check for page in userfault range. */
5480 if (userfaultfd_minor(vma)) {
5483 ret = hugetlb_handle_userfault(vma, mapping, idx,
5491 * If we are going to COW a private mapping later, we examine the
5492 * pending reservations for this page now. This will ensure that
5493 * any allocations necessary to record that reservation occur outside
5496 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5497 if (vma_needs_reservation(h, vma, haddr) < 0) {
5499 goto backout_unlocked;
5501 /* Just decrements count, does not deallocate */
5502 vma_end_reservation(h, vma, haddr);
5505 ptl = huge_pte_lock(h, mm, ptep);
5507 if (!huge_pte_none(huge_ptep_get(ptep)))
5511 ClearHPageRestoreReserve(page);
5512 hugepage_add_new_anon_rmap(page, vma, haddr);
5514 page_dup_rmap(page, true);
5515 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5516 && (vma->vm_flags & VM_SHARED)));
5517 set_huge_pte_at(mm, haddr, ptep, new_pte);
5519 hugetlb_count_add(pages_per_huge_page(h), mm);
5520 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5521 /* Optimization, do the COW without a second fault */
5522 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5528 * Only set HPageMigratable in newly allocated pages. Existing pages
5529 * found in the pagecache may not have HPageMigratableset if they have
5530 * been isolated for migration.
5533 SetHPageMigratable(page);
5543 /* restore reserve for newly allocated pages not in page cache */
5544 if (new_page && !new_pagecache_page)
5545 restore_reserve_on_error(h, vma, haddr, page);
5551 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5553 unsigned long key[2];
5556 key[0] = (unsigned long) mapping;
5559 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5561 return hash & (num_fault_mutexes - 1);
5565 * For uniprocessor systems we always use a single mutex, so just
5566 * return 0 and avoid the hashing overhead.
5568 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5574 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5575 unsigned long address, unsigned int flags)
5582 struct page *page = NULL;
5583 struct page *pagecache_page = NULL;
5584 struct hstate *h = hstate_vma(vma);
5585 struct address_space *mapping;
5586 int need_wait_lock = 0;
5587 unsigned long haddr = address & huge_page_mask(h);
5589 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5592 * Since we hold no locks, ptep could be stale. That is
5593 * OK as we are only making decisions based on content and
5594 * not actually modifying content here.
5596 entry = huge_ptep_get(ptep);
5597 if (unlikely(is_hugetlb_entry_migration(entry))) {
5598 migration_entry_wait_huge(vma, mm, ptep);
5600 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5601 return VM_FAULT_HWPOISON_LARGE |
5602 VM_FAULT_SET_HINDEX(hstate_index(h));
5606 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5607 * until finished with ptep. This serves two purposes:
5608 * 1) It prevents huge_pmd_unshare from being called elsewhere
5609 * and making the ptep no longer valid.
5610 * 2) It synchronizes us with i_size modifications during truncation.
5612 * ptep could have already be assigned via huge_pte_offset. That
5613 * is OK, as huge_pte_alloc will return the same value unless
5614 * something has changed.
5616 mapping = vma->vm_file->f_mapping;
5617 i_mmap_lock_read(mapping);
5618 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5620 i_mmap_unlock_read(mapping);
5621 return VM_FAULT_OOM;
5625 * Serialize hugepage allocation and instantiation, so that we don't
5626 * get spurious allocation failures if two CPUs race to instantiate
5627 * the same page in the page cache.
5629 idx = vma_hugecache_offset(h, vma, haddr);
5630 hash = hugetlb_fault_mutex_hash(mapping, idx);
5631 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5633 entry = huge_ptep_get(ptep);
5634 if (huge_pte_none(entry)) {
5635 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5642 * entry could be a migration/hwpoison entry at this point, so this
5643 * check prevents the kernel from going below assuming that we have
5644 * an active hugepage in pagecache. This goto expects the 2nd page
5645 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5646 * properly handle it.
5648 if (!pte_present(entry))
5652 * If we are going to COW the mapping later, we examine the pending
5653 * reservations for this page now. This will ensure that any
5654 * allocations necessary to record that reservation occur outside the
5655 * spinlock. For private mappings, we also lookup the pagecache
5656 * page now as it is used to determine if a reservation has been
5659 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5660 if (vma_needs_reservation(h, vma, haddr) < 0) {
5664 /* Just decrements count, does not deallocate */
5665 vma_end_reservation(h, vma, haddr);
5667 if (!(vma->vm_flags & VM_MAYSHARE))
5668 pagecache_page = hugetlbfs_pagecache_page(h,
5672 ptl = huge_pte_lock(h, mm, ptep);
5674 /* Check for a racing update before calling hugetlb_cow */
5675 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5679 * hugetlb_cow() requires page locks of pte_page(entry) and
5680 * pagecache_page, so here we need take the former one
5681 * when page != pagecache_page or !pagecache_page.
5683 page = pte_page(entry);
5684 if (page != pagecache_page)
5685 if (!trylock_page(page)) {
5692 if (flags & FAULT_FLAG_WRITE) {
5693 if (!huge_pte_write(entry)) {
5694 ret = hugetlb_cow(mm, vma, address, ptep,
5695 pagecache_page, ptl);
5698 entry = huge_pte_mkdirty(entry);
5700 entry = pte_mkyoung(entry);
5701 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5702 flags & FAULT_FLAG_WRITE))
5703 update_mmu_cache(vma, haddr, ptep);
5705 if (page != pagecache_page)
5711 if (pagecache_page) {
5712 unlock_page(pagecache_page);
5713 put_page(pagecache_page);
5716 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5717 i_mmap_unlock_read(mapping);
5719 * Generally it's safe to hold refcount during waiting page lock. But
5720 * here we just wait to defer the next page fault to avoid busy loop and
5721 * the page is not used after unlocked before returning from the current
5722 * page fault. So we are safe from accessing freed page, even if we wait
5723 * here without taking refcount.
5726 wait_on_page_locked(page);
5730 #ifdef CONFIG_USERFAULTFD
5732 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5733 * modifications for huge pages.
5735 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5737 struct vm_area_struct *dst_vma,
5738 unsigned long dst_addr,
5739 unsigned long src_addr,
5740 enum mcopy_atomic_mode mode,
5741 struct page **pagep)
5743 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5744 struct hstate *h = hstate_vma(dst_vma);
5745 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5746 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5748 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5754 bool page_in_pagecache = false;
5758 page = find_lock_page(mapping, idx);
5761 page_in_pagecache = true;
5762 } else if (!*pagep) {
5763 /* If a page already exists, then it's UFFDIO_COPY for
5764 * a non-missing case. Return -EEXIST.
5767 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5772 page = alloc_huge_page(dst_vma, dst_addr, 0);
5778 ret = copy_huge_page_from_user(page,
5779 (const void __user *) src_addr,
5780 pages_per_huge_page(h), false);
5782 /* fallback to copy_from_user outside mmap_lock */
5783 if (unlikely(ret)) {
5785 /* Free the allocated page which may have
5786 * consumed a reservation.
5788 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5791 /* Allocate a temporary page to hold the copied
5794 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5800 /* Set the outparam pagep and return to the caller to
5801 * copy the contents outside the lock. Don't free the
5808 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5815 page = alloc_huge_page(dst_vma, dst_addr, 0);
5821 folio_copy(page_folio(page), page_folio(*pagep));
5827 * The memory barrier inside __SetPageUptodate makes sure that
5828 * preceding stores to the page contents become visible before
5829 * the set_pte_at() write.
5831 __SetPageUptodate(page);
5833 /* Add shared, newly allocated pages to the page cache. */
5834 if (vm_shared && !is_continue) {
5835 size = i_size_read(mapping->host) >> huge_page_shift(h);
5838 goto out_release_nounlock;
5841 * Serialization between remove_inode_hugepages() and
5842 * huge_add_to_page_cache() below happens through the
5843 * hugetlb_fault_mutex_table that here must be hold by
5846 ret = huge_add_to_page_cache(page, mapping, idx);
5848 goto out_release_nounlock;
5849 page_in_pagecache = true;
5852 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5856 * Recheck the i_size after holding PT lock to make sure not
5857 * to leave any page mapped (as page_mapped()) beyond the end
5858 * of the i_size (remove_inode_hugepages() is strict about
5859 * enforcing that). If we bail out here, we'll also leave a
5860 * page in the radix tree in the vm_shared case beyond the end
5861 * of the i_size, but remove_inode_hugepages() will take care
5862 * of it as soon as we drop the hugetlb_fault_mutex_table.
5864 size = i_size_read(mapping->host) >> huge_page_shift(h);
5867 goto out_release_unlock;
5870 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5871 goto out_release_unlock;
5874 page_dup_rmap(page, true);
5876 ClearHPageRestoreReserve(page);
5877 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5880 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5881 if (is_continue && !vm_shared)
5884 writable = dst_vma->vm_flags & VM_WRITE;
5886 _dst_pte = make_huge_pte(dst_vma, page, writable);
5888 _dst_pte = huge_pte_mkdirty(_dst_pte);
5889 _dst_pte = pte_mkyoung(_dst_pte);
5891 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5893 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5894 dst_vma->vm_flags & VM_WRITE);
5895 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5897 /* No need to invalidate - it was non-present before */
5898 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5902 SetHPageMigratable(page);
5903 if (vm_shared || is_continue)
5910 if (vm_shared || is_continue)
5912 out_release_nounlock:
5913 if (!page_in_pagecache)
5914 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5918 #endif /* CONFIG_USERFAULTFD */
5920 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5921 int refs, struct page **pages,
5922 struct vm_area_struct **vmas)
5926 for (nr = 0; nr < refs; nr++) {
5928 pages[nr] = mem_map_offset(page, nr);
5934 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5935 struct page **pages, struct vm_area_struct **vmas,
5936 unsigned long *position, unsigned long *nr_pages,
5937 long i, unsigned int flags, int *locked)
5939 unsigned long pfn_offset;
5940 unsigned long vaddr = *position;
5941 unsigned long remainder = *nr_pages;
5942 struct hstate *h = hstate_vma(vma);
5943 int err = -EFAULT, refs;
5945 while (vaddr < vma->vm_end && remainder) {
5947 spinlock_t *ptl = NULL;
5952 * If we have a pending SIGKILL, don't keep faulting pages and
5953 * potentially allocating memory.
5955 if (fatal_signal_pending(current)) {
5961 * Some archs (sparc64, sh*) have multiple pte_ts to
5962 * each hugepage. We have to make sure we get the
5963 * first, for the page indexing below to work.
5965 * Note that page table lock is not held when pte is null.
5967 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5970 ptl = huge_pte_lock(h, mm, pte);
5971 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5974 * When coredumping, it suits get_dump_page if we just return
5975 * an error where there's an empty slot with no huge pagecache
5976 * to back it. This way, we avoid allocating a hugepage, and
5977 * the sparse dumpfile avoids allocating disk blocks, but its
5978 * huge holes still show up with zeroes where they need to be.
5980 if (absent && (flags & FOLL_DUMP) &&
5981 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5989 * We need call hugetlb_fault for both hugepages under migration
5990 * (in which case hugetlb_fault waits for the migration,) and
5991 * hwpoisoned hugepages (in which case we need to prevent the
5992 * caller from accessing to them.) In order to do this, we use
5993 * here is_swap_pte instead of is_hugetlb_entry_migration and
5994 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5995 * both cases, and because we can't follow correct pages
5996 * directly from any kind of swap entries.
5998 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5999 ((flags & FOLL_WRITE) &&
6000 !huge_pte_write(huge_ptep_get(pte)))) {
6002 unsigned int fault_flags = 0;
6006 if (flags & FOLL_WRITE)
6007 fault_flags |= FAULT_FLAG_WRITE;
6009 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6010 FAULT_FLAG_KILLABLE;
6011 if (flags & FOLL_NOWAIT)
6012 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6013 FAULT_FLAG_RETRY_NOWAIT;
6014 if (flags & FOLL_TRIED) {
6016 * Note: FAULT_FLAG_ALLOW_RETRY and
6017 * FAULT_FLAG_TRIED can co-exist
6019 fault_flags |= FAULT_FLAG_TRIED;
6021 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6022 if (ret & VM_FAULT_ERROR) {
6023 err = vm_fault_to_errno(ret, flags);
6027 if (ret & VM_FAULT_RETRY) {
6029 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6033 * VM_FAULT_RETRY must not return an
6034 * error, it will return zero
6037 * No need to update "position" as the
6038 * caller will not check it after
6039 * *nr_pages is set to 0.
6046 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6047 page = pte_page(huge_ptep_get(pte));
6050 * If subpage information not requested, update counters
6051 * and skip the same_page loop below.
6053 if (!pages && !vmas && !pfn_offset &&
6054 (vaddr + huge_page_size(h) < vma->vm_end) &&
6055 (remainder >= pages_per_huge_page(h))) {
6056 vaddr += huge_page_size(h);
6057 remainder -= pages_per_huge_page(h);
6058 i += pages_per_huge_page(h);
6063 /* vaddr may not be aligned to PAGE_SIZE */
6064 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6065 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6068 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6070 likely(pages) ? pages + i : NULL,
6071 vmas ? vmas + i : NULL);
6075 * try_grab_compound_head() should always succeed here,
6076 * because: a) we hold the ptl lock, and b) we've just
6077 * checked that the huge page is present in the page
6078 * tables. If the huge page is present, then the tail
6079 * pages must also be present. The ptl prevents the
6080 * head page and tail pages from being rearranged in
6081 * any way. So this page must be available at this
6082 * point, unless the page refcount overflowed:
6084 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
6094 vaddr += (refs << PAGE_SHIFT);
6100 *nr_pages = remainder;
6102 * setting position is actually required only if remainder is
6103 * not zero but it's faster not to add a "if (remainder)"
6111 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6112 unsigned long address, unsigned long end, pgprot_t newprot)
6114 struct mm_struct *mm = vma->vm_mm;
6115 unsigned long start = address;
6118 struct hstate *h = hstate_vma(vma);
6119 unsigned long pages = 0;
6120 bool shared_pmd = false;
6121 struct mmu_notifier_range range;
6124 * In the case of shared PMDs, the area to flush could be beyond
6125 * start/end. Set range.start/range.end to cover the maximum possible
6126 * range if PMD sharing is possible.
6128 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6129 0, vma, mm, start, end);
6130 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6132 BUG_ON(address >= end);
6133 flush_cache_range(vma, range.start, range.end);
6135 mmu_notifier_invalidate_range_start(&range);
6136 i_mmap_lock_write(vma->vm_file->f_mapping);
6137 for (; address < end; address += huge_page_size(h)) {
6139 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6142 ptl = huge_pte_lock(h, mm, ptep);
6143 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6149 pte = huge_ptep_get(ptep);
6150 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6154 if (unlikely(is_hugetlb_entry_migration(pte))) {
6155 swp_entry_t entry = pte_to_swp_entry(pte);
6157 if (is_writable_migration_entry(entry)) {
6160 entry = make_readable_migration_entry(
6162 newpte = swp_entry_to_pte(entry);
6163 set_huge_swap_pte_at(mm, address, ptep,
6164 newpte, huge_page_size(h));
6170 if (!huge_pte_none(pte)) {
6172 unsigned int shift = huge_page_shift(hstate_vma(vma));
6174 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6175 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6176 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6177 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6183 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6184 * may have cleared our pud entry and done put_page on the page table:
6185 * once we release i_mmap_rwsem, another task can do the final put_page
6186 * and that page table be reused and filled with junk. If we actually
6187 * did unshare a page of pmds, flush the range corresponding to the pud.
6190 flush_hugetlb_tlb_range(vma, range.start, range.end);
6192 flush_hugetlb_tlb_range(vma, start, end);
6194 * No need to call mmu_notifier_invalidate_range() we are downgrading
6195 * page table protection not changing it to point to a new page.
6197 * See Documentation/vm/mmu_notifier.rst
6199 i_mmap_unlock_write(vma->vm_file->f_mapping);
6200 mmu_notifier_invalidate_range_end(&range);
6202 return pages << h->order;
6205 /* Return true if reservation was successful, false otherwise. */
6206 bool hugetlb_reserve_pages(struct inode *inode,
6208 struct vm_area_struct *vma,
6209 vm_flags_t vm_flags)
6212 struct hstate *h = hstate_inode(inode);
6213 struct hugepage_subpool *spool = subpool_inode(inode);
6214 struct resv_map *resv_map;
6215 struct hugetlb_cgroup *h_cg = NULL;
6216 long gbl_reserve, regions_needed = 0;
6218 /* This should never happen */
6220 VM_WARN(1, "%s called with a negative range\n", __func__);
6225 * Only apply hugepage reservation if asked. At fault time, an
6226 * attempt will be made for VM_NORESERVE to allocate a page
6227 * without using reserves
6229 if (vm_flags & VM_NORESERVE)
6233 * Shared mappings base their reservation on the number of pages that
6234 * are already allocated on behalf of the file. Private mappings need
6235 * to reserve the full area even if read-only as mprotect() may be
6236 * called to make the mapping read-write. Assume !vma is a shm mapping
6238 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6240 * resv_map can not be NULL as hugetlb_reserve_pages is only
6241 * called for inodes for which resv_maps were created (see
6242 * hugetlbfs_get_inode).
6244 resv_map = inode_resv_map(inode);
6246 chg = region_chg(resv_map, from, to, ®ions_needed);
6249 /* Private mapping. */
6250 resv_map = resv_map_alloc();
6256 set_vma_resv_map(vma, resv_map);
6257 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6263 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6264 chg * pages_per_huge_page(h), &h_cg) < 0)
6267 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6268 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6271 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6275 * There must be enough pages in the subpool for the mapping. If
6276 * the subpool has a minimum size, there may be some global
6277 * reservations already in place (gbl_reserve).
6279 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6280 if (gbl_reserve < 0)
6281 goto out_uncharge_cgroup;
6284 * Check enough hugepages are available for the reservation.
6285 * Hand the pages back to the subpool if there are not
6287 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6291 * Account for the reservations made. Shared mappings record regions
6292 * that have reservations as they are shared by multiple VMAs.
6293 * When the last VMA disappears, the region map says how much
6294 * the reservation was and the page cache tells how much of
6295 * the reservation was consumed. Private mappings are per-VMA and
6296 * only the consumed reservations are tracked. When the VMA
6297 * disappears, the original reservation is the VMA size and the
6298 * consumed reservations are stored in the map. Hence, nothing
6299 * else has to be done for private mappings here
6301 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6302 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6304 if (unlikely(add < 0)) {
6305 hugetlb_acct_memory(h, -gbl_reserve);
6307 } else if (unlikely(chg > add)) {
6309 * pages in this range were added to the reserve
6310 * map between region_chg and region_add. This
6311 * indicates a race with alloc_huge_page. Adjust
6312 * the subpool and reserve counts modified above
6313 * based on the difference.
6318 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6319 * reference to h_cg->css. See comment below for detail.
6321 hugetlb_cgroup_uncharge_cgroup_rsvd(
6323 (chg - add) * pages_per_huge_page(h), h_cg);
6325 rsv_adjust = hugepage_subpool_put_pages(spool,
6327 hugetlb_acct_memory(h, -rsv_adjust);
6330 * The file_regions will hold their own reference to
6331 * h_cg->css. So we should release the reference held
6332 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6335 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6341 /* put back original number of pages, chg */
6342 (void)hugepage_subpool_put_pages(spool, chg);
6343 out_uncharge_cgroup:
6344 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6345 chg * pages_per_huge_page(h), h_cg);
6347 if (!vma || vma->vm_flags & VM_MAYSHARE)
6348 /* Only call region_abort if the region_chg succeeded but the
6349 * region_add failed or didn't run.
6351 if (chg >= 0 && add < 0)
6352 region_abort(resv_map, from, to, regions_needed);
6353 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6354 kref_put(&resv_map->refs, resv_map_release);
6358 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6361 struct hstate *h = hstate_inode(inode);
6362 struct resv_map *resv_map = inode_resv_map(inode);
6364 struct hugepage_subpool *spool = subpool_inode(inode);
6368 * Since this routine can be called in the evict inode path for all
6369 * hugetlbfs inodes, resv_map could be NULL.
6372 chg = region_del(resv_map, start, end);
6374 * region_del() can fail in the rare case where a region
6375 * must be split and another region descriptor can not be
6376 * allocated. If end == LONG_MAX, it will not fail.
6382 spin_lock(&inode->i_lock);
6383 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6384 spin_unlock(&inode->i_lock);
6387 * If the subpool has a minimum size, the number of global
6388 * reservations to be released may be adjusted.
6390 * Note that !resv_map implies freed == 0. So (chg - freed)
6391 * won't go negative.
6393 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6394 hugetlb_acct_memory(h, -gbl_reserve);
6399 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6400 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6401 struct vm_area_struct *vma,
6402 unsigned long addr, pgoff_t idx)
6404 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6406 unsigned long sbase = saddr & PUD_MASK;
6407 unsigned long s_end = sbase + PUD_SIZE;
6409 /* Allow segments to share if only one is marked locked */
6410 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6411 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6414 * match the virtual addresses, permission and the alignment of the
6417 if (pmd_index(addr) != pmd_index(saddr) ||
6418 vm_flags != svm_flags ||
6419 !range_in_vma(svma, sbase, s_end))
6425 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6427 unsigned long base = addr & PUD_MASK;
6428 unsigned long end = base + PUD_SIZE;
6431 * check on proper vm_flags and page table alignment
6433 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6438 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6440 #ifdef CONFIG_USERFAULTFD
6441 if (uffd_disable_huge_pmd_share(vma))
6444 return vma_shareable(vma, addr);
6448 * Determine if start,end range within vma could be mapped by shared pmd.
6449 * If yes, adjust start and end to cover range associated with possible
6450 * shared pmd mappings.
6452 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6453 unsigned long *start, unsigned long *end)
6455 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6456 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6459 * vma needs to span at least one aligned PUD size, and the range
6460 * must be at least partially within in.
6462 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6463 (*end <= v_start) || (*start >= v_end))
6466 /* Extend the range to be PUD aligned for a worst case scenario */
6467 if (*start > v_start)
6468 *start = ALIGN_DOWN(*start, PUD_SIZE);
6471 *end = ALIGN(*end, PUD_SIZE);
6475 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6476 * and returns the corresponding pte. While this is not necessary for the
6477 * !shared pmd case because we can allocate the pmd later as well, it makes the
6478 * code much cleaner.
6480 * This routine must be called with i_mmap_rwsem held in at least read mode if
6481 * sharing is possible. For hugetlbfs, this prevents removal of any page
6482 * table entries associated with the address space. This is important as we
6483 * are setting up sharing based on existing page table entries (mappings).
6485 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6486 unsigned long addr, pud_t *pud)
6488 struct address_space *mapping = vma->vm_file->f_mapping;
6489 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6491 struct vm_area_struct *svma;
6492 unsigned long saddr;
6497 i_mmap_assert_locked(mapping);
6498 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6502 saddr = page_table_shareable(svma, vma, addr, idx);
6504 spte = huge_pte_offset(svma->vm_mm, saddr,
6505 vma_mmu_pagesize(svma));
6507 get_page(virt_to_page(spte));
6516 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6517 if (pud_none(*pud)) {
6518 pud_populate(mm, pud,
6519 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6522 put_page(virt_to_page(spte));
6526 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6531 * unmap huge page backed by shared pte.
6533 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6534 * indicated by page_count > 1, unmap is achieved by clearing pud and
6535 * decrementing the ref count. If count == 1, the pte page is not shared.
6537 * Called with page table lock held and i_mmap_rwsem held in write mode.
6539 * returns: 1 successfully unmapped a shared pte page
6540 * 0 the underlying pte page is not shared, or it is the last user
6542 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6543 unsigned long *addr, pte_t *ptep)
6545 pgd_t *pgd = pgd_offset(mm, *addr);
6546 p4d_t *p4d = p4d_offset(pgd, *addr);
6547 pud_t *pud = pud_offset(p4d, *addr);
6549 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6550 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6551 if (page_count(virt_to_page(ptep)) == 1)
6555 put_page(virt_to_page(ptep));
6557 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6561 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6562 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6563 unsigned long addr, pud_t *pud)
6568 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6569 unsigned long *addr, pte_t *ptep)
6574 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6575 unsigned long *start, unsigned long *end)
6579 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6583 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6585 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6586 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6587 unsigned long addr, unsigned long sz)
6594 pgd = pgd_offset(mm, addr);
6595 p4d = p4d_alloc(mm, pgd, addr);
6598 pud = pud_alloc(mm, p4d, addr);
6600 if (sz == PUD_SIZE) {
6603 BUG_ON(sz != PMD_SIZE);
6604 if (want_pmd_share(vma, addr) && pud_none(*pud))
6605 pte = huge_pmd_share(mm, vma, addr, pud);
6607 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6610 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6616 * huge_pte_offset() - Walk the page table to resolve the hugepage
6617 * entry at address @addr
6619 * Return: Pointer to page table entry (PUD or PMD) for
6620 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6621 * size @sz doesn't match the hugepage size at this level of the page
6624 pte_t *huge_pte_offset(struct mm_struct *mm,
6625 unsigned long addr, unsigned long sz)
6632 pgd = pgd_offset(mm, addr);
6633 if (!pgd_present(*pgd))
6635 p4d = p4d_offset(pgd, addr);
6636 if (!p4d_present(*p4d))
6639 pud = pud_offset(p4d, addr);
6641 /* must be pud huge, non-present or none */
6642 return (pte_t *)pud;
6643 if (!pud_present(*pud))
6645 /* must have a valid entry and size to go further */
6647 pmd = pmd_offset(pud, addr);
6648 /* must be pmd huge, non-present or none */
6649 return (pte_t *)pmd;
6652 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6655 * These functions are overwritable if your architecture needs its own
6658 struct page * __weak
6659 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6662 return ERR_PTR(-EINVAL);
6665 struct page * __weak
6666 follow_huge_pd(struct vm_area_struct *vma,
6667 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6669 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6673 struct page * __weak
6674 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6675 pmd_t *pmd, int flags)
6677 struct page *page = NULL;
6681 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6682 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6683 (FOLL_PIN | FOLL_GET)))
6687 ptl = pmd_lockptr(mm, pmd);
6690 * make sure that the address range covered by this pmd is not
6691 * unmapped from other threads.
6693 if (!pmd_huge(*pmd))
6695 pte = huge_ptep_get((pte_t *)pmd);
6696 if (pte_present(pte)) {
6697 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6699 * try_grab_page() should always succeed here, because: a) we
6700 * hold the pmd (ptl) lock, and b) we've just checked that the
6701 * huge pmd (head) page is present in the page tables. The ptl
6702 * prevents the head page and tail pages from being rearranged
6703 * in any way. So this page must be available at this point,
6704 * unless the page refcount overflowed:
6706 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6711 if (is_hugetlb_entry_migration(pte)) {
6713 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6717 * hwpoisoned entry is treated as no_page_table in
6718 * follow_page_mask().
6726 struct page * __weak
6727 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6728 pud_t *pud, int flags)
6730 if (flags & (FOLL_GET | FOLL_PIN))
6733 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6736 struct page * __weak
6737 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6739 if (flags & (FOLL_GET | FOLL_PIN))
6742 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6745 bool isolate_huge_page(struct page *page, struct list_head *list)
6749 spin_lock_irq(&hugetlb_lock);
6750 if (!PageHeadHuge(page) ||
6751 !HPageMigratable(page) ||
6752 !get_page_unless_zero(page)) {
6756 ClearHPageMigratable(page);
6757 list_move_tail(&page->lru, list);
6759 spin_unlock_irq(&hugetlb_lock);
6763 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6768 spin_lock_irq(&hugetlb_lock);
6769 if (PageHeadHuge(page)) {
6771 if (HPageFreed(page) || HPageMigratable(page))
6772 ret = get_page_unless_zero(page);
6776 spin_unlock_irq(&hugetlb_lock);
6780 void putback_active_hugepage(struct page *page)
6782 spin_lock_irq(&hugetlb_lock);
6783 SetHPageMigratable(page);
6784 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6785 spin_unlock_irq(&hugetlb_lock);
6789 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6791 struct hstate *h = page_hstate(oldpage);
6793 hugetlb_cgroup_migrate(oldpage, newpage);
6794 set_page_owner_migrate_reason(newpage, reason);
6797 * transfer temporary state of the new huge page. This is
6798 * reverse to other transitions because the newpage is going to
6799 * be final while the old one will be freed so it takes over
6800 * the temporary status.
6802 * Also note that we have to transfer the per-node surplus state
6803 * here as well otherwise the global surplus count will not match
6806 if (HPageTemporary(newpage)) {
6807 int old_nid = page_to_nid(oldpage);
6808 int new_nid = page_to_nid(newpage);
6810 SetHPageTemporary(oldpage);
6811 ClearHPageTemporary(newpage);
6814 * There is no need to transfer the per-node surplus state
6815 * when we do not cross the node.
6817 if (new_nid == old_nid)
6819 spin_lock_irq(&hugetlb_lock);
6820 if (h->surplus_huge_pages_node[old_nid]) {
6821 h->surplus_huge_pages_node[old_nid]--;
6822 h->surplus_huge_pages_node[new_nid]++;
6824 spin_unlock_irq(&hugetlb_lock);
6829 * This function will unconditionally remove all the shared pmd pgtable entries
6830 * within the specific vma for a hugetlbfs memory range.
6832 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6834 struct hstate *h = hstate_vma(vma);
6835 unsigned long sz = huge_page_size(h);
6836 struct mm_struct *mm = vma->vm_mm;
6837 struct mmu_notifier_range range;
6838 unsigned long address, start, end;
6842 if (!(vma->vm_flags & VM_MAYSHARE))
6845 start = ALIGN(vma->vm_start, PUD_SIZE);
6846 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6852 * No need to call adjust_range_if_pmd_sharing_possible(), because
6853 * we have already done the PUD_SIZE alignment.
6855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6857 mmu_notifier_invalidate_range_start(&range);
6858 i_mmap_lock_write(vma->vm_file->f_mapping);
6859 for (address = start; address < end; address += PUD_SIZE) {
6860 unsigned long tmp = address;
6862 ptep = huge_pte_offset(mm, address, sz);
6865 ptl = huge_pte_lock(h, mm, ptep);
6866 /* We don't want 'address' to be changed */
6867 huge_pmd_unshare(mm, vma, &tmp, ptep);
6870 flush_hugetlb_tlb_range(vma, start, end);
6871 i_mmap_unlock_write(vma->vm_file->f_mapping);
6873 * No need to call mmu_notifier_invalidate_range(), see
6874 * Documentation/vm/mmu_notifier.rst.
6876 mmu_notifier_invalidate_range_end(&range);
6880 static bool cma_reserve_called __initdata;
6882 static int __init cmdline_parse_hugetlb_cma(char *p)
6889 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6892 if (s[count] == ':') {
6894 if (nid < 0 || nid >= MAX_NUMNODES)
6898 tmp = memparse(s, &s);
6899 hugetlb_cma_size_in_node[nid] = tmp;
6900 hugetlb_cma_size += tmp;
6903 * Skip the separator if have one, otherwise
6904 * break the parsing.
6911 hugetlb_cma_size = memparse(p, &p);
6919 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6921 void __init hugetlb_cma_reserve(int order)
6923 unsigned long size, reserved, per_node;
6924 bool node_specific_cma_alloc = false;
6927 cma_reserve_called = true;
6929 if (!hugetlb_cma_size)
6932 for (nid = 0; nid < MAX_NUMNODES; nid++) {
6933 if (hugetlb_cma_size_in_node[nid] == 0)
6936 if (!node_state(nid, N_ONLINE)) {
6937 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6938 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6939 hugetlb_cma_size_in_node[nid] = 0;
6943 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6944 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6945 nid, (PAGE_SIZE << order) / SZ_1M);
6946 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6947 hugetlb_cma_size_in_node[nid] = 0;
6949 node_specific_cma_alloc = true;
6953 /* Validate the CMA size again in case some invalid nodes specified. */
6954 if (!hugetlb_cma_size)
6957 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6958 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6959 (PAGE_SIZE << order) / SZ_1M);
6960 hugetlb_cma_size = 0;
6964 if (!node_specific_cma_alloc) {
6966 * If 3 GB area is requested on a machine with 4 numa nodes,
6967 * let's allocate 1 GB on first three nodes and ignore the last one.
6969 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6970 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6971 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6975 for_each_node_state(nid, N_ONLINE) {
6977 char name[CMA_MAX_NAME];
6979 if (node_specific_cma_alloc) {
6980 if (hugetlb_cma_size_in_node[nid] == 0)
6983 size = hugetlb_cma_size_in_node[nid];
6985 size = min(per_node, hugetlb_cma_size - reserved);
6988 size = round_up(size, PAGE_SIZE << order);
6990 snprintf(name, sizeof(name), "hugetlb%d", nid);
6992 * Note that 'order per bit' is based on smallest size that
6993 * may be returned to CMA allocator in the case of
6994 * huge page demotion.
6996 res = cma_declare_contiguous_nid(0, size, 0,
6997 PAGE_SIZE << HUGETLB_PAGE_ORDER,
6999 &hugetlb_cma[nid], nid);
7001 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7007 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7010 if (reserved >= hugetlb_cma_size)
7016 * hugetlb_cma_size is used to determine if allocations from
7017 * cma are possible. Set to zero if no cma regions are set up.
7019 hugetlb_cma_size = 0;
7022 void __init hugetlb_cma_check(void)
7024 if (!hugetlb_cma_size || cma_reserve_called)
7027 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7030 #endif /* CONFIG_CMA */