603bdd01ec2c17ab60d71cef9c7b1ae4ae7554b0
[platform/kernel/linux-exynos.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         /* minimum size accounting */
149         if (spool->min_hpages != -1 && spool->rsv_hpages) {
150                 if (delta > spool->rsv_hpages) {
151                         /*
152                          * Asking for more reserves than those already taken on
153                          * behalf of subpool.  Return difference.
154                          */
155                         ret = delta - spool->rsv_hpages;
156                         spool->rsv_hpages = 0;
157                 } else {
158                         ret = 0;        /* reserves already accounted for */
159                         spool->rsv_hpages -= delta;
160                 }
161         }
162
163 unlock_ret:
164         spin_unlock(&spool->lock);
165         return ret;
166 }
167
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175                                        long delta)
176 {
177         long ret = delta;
178
179         if (!spool)
180                 return delta;
181
182         spin_lock(&spool->lock);
183
184         if (spool->max_hpages != -1)            /* maximum size accounting */
185                 spool->used_hpages -= delta;
186
187          /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189                 if (spool->rsv_hpages + delta <= spool->min_hpages)
190                         ret = 0;
191                 else
192                         ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194                 spool->rsv_hpages += delta;
195                 if (spool->rsv_hpages > spool->min_hpages)
196                         spool->rsv_hpages = spool->min_hpages;
197         }
198
199         /*
200          * If hugetlbfs_put_super couldn't free spool due to an outstanding
201          * quota reference, free it now.
202          */
203         unlock_or_release_subpool(spool);
204
205         return ret;
206 }
207
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210         return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215         return subpool_inode(file_inode(vma->vm_file));
216 }
217
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238         struct list_head link;
239         long from;
240         long to;
241 };
242
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259         struct list_head *head = &resv->regions;
260         struct file_region *rg, *nrg, *trg;
261         long add = 0;
262
263         spin_lock(&resv->lock);
264         /* Locate the region we are either in or before. */
265         list_for_each_entry(rg, head, link)
266                 if (f <= rg->to)
267                         break;
268
269         /*
270          * If no region exists which can be expanded to include the
271          * specified range, the list must have been modified by an
272          * interleving call to region_del().  Pull a region descriptor
273          * from the cache and use it for this range.
274          */
275         if (&rg->link == head || t < rg->from) {
276                 VM_BUG_ON(resv->region_cache_count <= 0);
277
278                 resv->region_cache_count--;
279                 nrg = list_first_entry(&resv->region_cache, struct file_region,
280                                         link);
281                 list_del(&nrg->link);
282
283                 nrg->from = f;
284                 nrg->to = t;
285                 list_add(&nrg->link, rg->link.prev);
286
287                 add += t - f;
288                 goto out_locked;
289         }
290
291         /* Round our left edge to the current segment if it encloses us. */
292         if (f > rg->from)
293                 f = rg->from;
294
295         /* Check for and consume any regions we now overlap with. */
296         nrg = rg;
297         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298                 if (&rg->link == head)
299                         break;
300                 if (rg->from > t)
301                         break;
302
303                 /* If this area reaches higher then extend our area to
304                  * include it completely.  If this is not the first area
305                  * which we intend to reuse, free it. */
306                 if (rg->to > t)
307                         t = rg->to;
308                 if (rg != nrg) {
309                         /* Decrement return value by the deleted range.
310                          * Another range will span this area so that by
311                          * end of routine add will be >= zero
312                          */
313                         add -= (rg->to - rg->from);
314                         list_del(&rg->link);
315                         kfree(rg);
316                 }
317         }
318
319         add += (nrg->from - f);         /* Added to beginning of region */
320         nrg->from = f;
321         add += t - nrg->to;             /* Added to end of region */
322         nrg->to = t;
323
324 out_locked:
325         resv->adds_in_progress--;
326         spin_unlock(&resv->lock);
327         VM_BUG_ON(add < 0);
328         return add;
329 }
330
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355         struct list_head *head = &resv->regions;
356         struct file_region *rg, *nrg = NULL;
357         long chg = 0;
358
359 retry:
360         spin_lock(&resv->lock);
361 retry_locked:
362         resv->adds_in_progress++;
363
364         /*
365          * Check for sufficient descriptors in the cache to accommodate
366          * the number of in progress add operations.
367          */
368         if (resv->adds_in_progress > resv->region_cache_count) {
369                 struct file_region *trg;
370
371                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372                 /* Must drop lock to allocate a new descriptor. */
373                 resv->adds_in_progress--;
374                 spin_unlock(&resv->lock);
375
376                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377                 if (!trg) {
378                         kfree(nrg);
379                         return -ENOMEM;
380                 }
381
382                 spin_lock(&resv->lock);
383                 list_add(&trg->link, &resv->region_cache);
384                 resv->region_cache_count++;
385                 goto retry_locked;
386         }
387
388         /* Locate the region we are before or in. */
389         list_for_each_entry(rg, head, link)
390                 if (f <= rg->to)
391                         break;
392
393         /* If we are below the current region then a new region is required.
394          * Subtle, allocate a new region at the position but make it zero
395          * size such that we can guarantee to record the reservation. */
396         if (&rg->link == head || t < rg->from) {
397                 if (!nrg) {
398                         resv->adds_in_progress--;
399                         spin_unlock(&resv->lock);
400                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401                         if (!nrg)
402                                 return -ENOMEM;
403
404                         nrg->from = f;
405                         nrg->to   = f;
406                         INIT_LIST_HEAD(&nrg->link);
407                         goto retry;
408                 }
409
410                 list_add(&nrg->link, rg->link.prev);
411                 chg = t - f;
412                 goto out_nrg;
413         }
414
415         /* Round our left edge to the current segment if it encloses us. */
416         if (f > rg->from)
417                 f = rg->from;
418         chg = t - f;
419
420         /* Check for and consume any regions we now overlap with. */
421         list_for_each_entry(rg, rg->link.prev, link) {
422                 if (&rg->link == head)
423                         break;
424                 if (rg->from > t)
425                         goto out;
426
427                 /* We overlap with this area, if it extends further than
428                  * us then we must extend ourselves.  Account for its
429                  * existing reservation. */
430                 if (rg->to > t) {
431                         chg += rg->to - t;
432                         t = rg->to;
433                 }
434                 chg -= rg->to - rg->from;
435         }
436
437 out:
438         spin_unlock(&resv->lock);
439         /*  We already know we raced and no longer need the new region */
440         kfree(nrg);
441         return chg;
442 out_nrg:
443         spin_unlock(&resv->lock);
444         return chg;
445 }
446
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460         spin_lock(&resv->lock);
461         VM_BUG_ON(!resv->region_cache_count);
462         resv->adds_in_progress--;
463         spin_unlock(&resv->lock);
464 }
465
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482         struct list_head *head = &resv->regions;
483         struct file_region *rg, *trg;
484         struct file_region *nrg = NULL;
485         long del = 0;
486
487 retry:
488         spin_lock(&resv->lock);
489         list_for_each_entry_safe(rg, trg, head, link) {
490                 /*
491                  * Skip regions before the range to be deleted.  file_region
492                  * ranges are normally of the form [from, to).  However, there
493                  * may be a "placeholder" entry in the map which is of the form
494                  * (from, to) with from == to.  Check for placeholder entries
495                  * at the beginning of the range to be deleted.
496                  */
497                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498                         continue;
499
500                 if (rg->from >= t)
501                         break;
502
503                 if (f > rg->from && t < rg->to) { /* Must split region */
504                         /*
505                          * Check for an entry in the cache before dropping
506                          * lock and attempting allocation.
507                          */
508                         if (!nrg &&
509                             resv->region_cache_count > resv->adds_in_progress) {
510                                 nrg = list_first_entry(&resv->region_cache,
511                                                         struct file_region,
512                                                         link);
513                                 list_del(&nrg->link);
514                                 resv->region_cache_count--;
515                         }
516
517                         if (!nrg) {
518                                 spin_unlock(&resv->lock);
519                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520                                 if (!nrg)
521                                         return -ENOMEM;
522                                 goto retry;
523                         }
524
525                         del += t - f;
526
527                         /* New entry for end of split region */
528                         nrg->from = t;
529                         nrg->to = rg->to;
530                         INIT_LIST_HEAD(&nrg->link);
531
532                         /* Original entry is trimmed */
533                         rg->to = f;
534
535                         list_add(&nrg->link, &rg->link);
536                         nrg = NULL;
537                         break;
538                 }
539
540                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541                         del += rg->to - rg->from;
542                         list_del(&rg->link);
543                         kfree(rg);
544                         continue;
545                 }
546
547                 if (f <= rg->from) {    /* Trim beginning of region */
548                         del += t - rg->from;
549                         rg->from = t;
550                 } else {                /* Trim end of region */
551                         del += rg->to - f;
552                         rg->to = f;
553                 }
554         }
555
556         spin_unlock(&resv->lock);
557         kfree(nrg);
558         return del;
559 }
560
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572         struct hugepage_subpool *spool = subpool_inode(inode);
573         long rsv_adjust;
574
575         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576         if (restore_reserve && rsv_adjust) {
577                 struct hstate *h = hstate_inode(inode);
578
579                 hugetlb_acct_memory(h, 1);
580         }
581 }
582
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589         struct list_head *head = &resv->regions;
590         struct file_region *rg;
591         long chg = 0;
592
593         spin_lock(&resv->lock);
594         /* Locate each segment we overlap with, and count that overlap. */
595         list_for_each_entry(rg, head, link) {
596                 long seg_from;
597                 long seg_to;
598
599                 if (rg->to <= f)
600                         continue;
601                 if (rg->from >= t)
602                         break;
603
604                 seg_from = max(rg->from, f);
605                 seg_to = min(rg->to, t);
606
607                 chg += seg_to - seg_from;
608         }
609         spin_unlock(&resv->lock);
610
611         return chg;
612 }
613
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619                         struct vm_area_struct *vma, unsigned long address)
620 {
621         return ((address - vma->vm_start) >> huge_page_shift(h)) +
622                         (vma->vm_pgoff >> huge_page_order(h));
623 }
624
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626                                      unsigned long address)
627 {
628         return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638         struct hstate *hstate;
639
640         if (!is_vm_hugetlb_page(vma))
641                 return PAGE_SIZE;
642
643         hstate = hstate_vma(vma);
644
645         return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658         return vma_kernel_pagesize(vma);
659 }
660 #endif
661
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692         return (unsigned long)vma->vm_private_data;
693 }
694
695 static void set_vma_private_data(struct vm_area_struct *vma,
696                                                         unsigned long value)
697 {
698         vma->vm_private_data = (void *)value;
699 }
700
701 struct resv_map *resv_map_alloc(void)
702 {
703         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706         if (!resv_map || !rg) {
707                 kfree(resv_map);
708                 kfree(rg);
709                 return NULL;
710         }
711
712         kref_init(&resv_map->refs);
713         spin_lock_init(&resv_map->lock);
714         INIT_LIST_HEAD(&resv_map->regions);
715
716         resv_map->adds_in_progress = 0;
717
718         INIT_LIST_HEAD(&resv_map->region_cache);
719         list_add(&rg->link, &resv_map->region_cache);
720         resv_map->region_cache_count = 1;
721
722         return resv_map;
723 }
724
725 void resv_map_release(struct kref *ref)
726 {
727         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728         struct list_head *head = &resv_map->region_cache;
729         struct file_region *rg, *trg;
730
731         /* Clear out any active regions before we release the map. */
732         region_del(resv_map, 0, LONG_MAX);
733
734         /* ... and any entries left in the cache */
735         list_for_each_entry_safe(rg, trg, head, link) {
736                 list_del(&rg->link);
737                 kfree(rg);
738         }
739
740         VM_BUG_ON(resv_map->adds_in_progress);
741
742         kfree(resv_map);
743 }
744
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747         return inode->i_mapping->private_data;
748 }
749
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753         if (vma->vm_flags & VM_MAYSHARE) {
754                 struct address_space *mapping = vma->vm_file->f_mapping;
755                 struct inode *inode = mapping->host;
756
757                 return inode_resv_map(inode);
758
759         } else {
760                 return (struct resv_map *)(get_vma_private_data(vma) &
761                                                         ~HPAGE_RESV_MASK);
762         }
763 }
764
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770         set_vma_private_data(vma, (get_vma_private_data(vma) &
771                                 HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786         return (get_vma_private_data(vma) & flag) != 0;
787 }
788
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793         if (!(vma->vm_flags & VM_MAYSHARE))
794                 vma->vm_private_data = (void *)0;
795 }
796
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800         if (vma->vm_flags & VM_NORESERVE) {
801                 /*
802                  * This address is already reserved by other process(chg == 0),
803                  * so, we should decrement reserved count. Without decrementing,
804                  * reserve count remains after releasing inode, because this
805                  * allocated page will go into page cache and is regarded as
806                  * coming from reserved pool in releasing step.  Currently, we
807                  * don't have any other solution to deal with this situation
808                  * properly, so add work-around here.
809                  */
810                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811                         return true;
812                 else
813                         return false;
814         }
815
816         /* Shared mappings always use reserves */
817         if (vma->vm_flags & VM_MAYSHARE) {
818                 /*
819                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820                  * be a region map for all pages.  The only situation where
821                  * there is no region map is if a hole was punched via
822                  * fallocate.  In this case, there really are no reverves to
823                  * use.  This situation is indicated if chg != 0.
824                  */
825                 if (chg)
826                         return false;
827                 else
828                         return true;
829         }
830
831         /*
832          * Only the process that called mmap() has reserves for
833          * private mappings.
834          */
835         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836                 /*
837                  * Like the shared case above, a hole punch or truncate
838                  * could have been performed on the private mapping.
839                  * Examine the value of chg to determine if reserves
840                  * actually exist or were previously consumed.
841                  * Very Subtle - The value of chg comes from a previous
842                  * call to vma_needs_reserves().  The reserve map for
843                  * private mappings has different (opposite) semantics
844                  * than that of shared mappings.  vma_needs_reserves()
845                  * has already taken this difference in semantics into
846                  * account.  Therefore, the meaning of chg is the same
847                  * as in the shared case above.  Code could easily be
848                  * combined, but keeping it separate draws attention to
849                  * subtle differences.
850                  */
851                 if (chg)
852                         return false;
853                 else
854                         return true;
855         }
856
857         return false;
858 }
859
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862         int nid = page_to_nid(page);
863         list_move(&page->lru, &h->hugepage_freelists[nid]);
864         h->free_huge_pages++;
865         h->free_huge_pages_node[nid]++;
866 }
867
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870         struct page *page;
871
872         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873                 if (!is_migrate_isolate_page(page))
874                         break;
875         /*
876          * if 'non-isolated free hugepage' not found on the list,
877          * the allocation fails.
878          */
879         if (&h->hugepage_freelists[nid] == &page->lru)
880                 return NULL;
881         list_move(&page->lru, &h->hugepage_activelist);
882         set_page_refcounted(page);
883         h->free_huge_pages--;
884         h->free_huge_pages_node[nid]--;
885         return page;
886 }
887
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892                 return GFP_HIGHUSER_MOVABLE;
893         else
894                 return GFP_HIGHUSER;
895 }
896
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898                                 struct vm_area_struct *vma,
899                                 unsigned long address, int avoid_reserve,
900                                 long chg)
901 {
902         struct page *page = NULL;
903         struct mempolicy *mpol;
904         nodemask_t *nodemask;
905         struct zonelist *zonelist;
906         struct zone *zone;
907         struct zoneref *z;
908         unsigned int cpuset_mems_cookie;
909
910         /*
911          * A child process with MAP_PRIVATE mappings created by their parent
912          * have no page reserves. This check ensures that reservations are
913          * not "stolen". The child may still get SIGKILLed
914          */
915         if (!vma_has_reserves(vma, chg) &&
916                         h->free_huge_pages - h->resv_huge_pages == 0)
917                 goto err;
918
919         /* If reserves cannot be used, ensure enough pages are in the pool */
920         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921                 goto err;
922
923 retry_cpuset:
924         cpuset_mems_cookie = read_mems_allowed_begin();
925         zonelist = huge_zonelist(vma, address,
926                                         htlb_alloc_mask(h), &mpol, &nodemask);
927
928         for_each_zone_zonelist_nodemask(zone, z, zonelist,
929                                                 MAX_NR_ZONES - 1, nodemask) {
930                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
932                         if (page) {
933                                 if (avoid_reserve)
934                                         break;
935                                 if (!vma_has_reserves(vma, chg))
936                                         break;
937
938                                 SetPagePrivate(page);
939                                 h->resv_huge_pages--;
940                                 break;
941                         }
942                 }
943         }
944
945         mpol_cond_put(mpol);
946         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947                 goto retry_cpuset;
948         return page;
949
950 err:
951         return NULL;
952 }
953
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963         nid = next_node_in(nid, *nodes_allowed);
964         VM_BUG_ON(nid >= MAX_NUMNODES);
965
966         return nid;
967 }
968
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971         if (!node_isset(nid, *nodes_allowed))
972                 nid = next_node_allowed(nid, nodes_allowed);
973         return nid;
974 }
975
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983                                         nodemask_t *nodes_allowed)
984 {
985         int nid;
986
987         VM_BUG_ON(!nodes_allowed);
988
989         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992         return nid;
993 }
994
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003         int nid;
1004
1005         VM_BUG_ON(!nodes_allowed);
1006
1007         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010         return nid;
1011 }
1012
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1014         for (nr_nodes = nodes_weight(*mask);                            \
1015                 nr_nodes > 0 &&                                         \
1016                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1017                 nr_nodes--)
1018
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1020         for (nr_nodes = nodes_weight(*mask);                            \
1021                 nr_nodes > 0 &&                                         \
1022                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1023                 nr_nodes--)
1024
1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027         defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029                                         unsigned int order)
1030 {
1031         int i;
1032         int nr_pages = 1 << order;
1033         struct page *p = page + 1;
1034
1035         atomic_set(compound_mapcount_ptr(page), 0);
1036         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037                 clear_compound_head(p);
1038                 set_page_refcounted(p);
1039         }
1040
1041         set_compound_order(page, 0);
1042         __ClearPageHead(page);
1043 }
1044
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047         free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051                                 unsigned long nr_pages)
1052 {
1053         unsigned long end_pfn = start_pfn + nr_pages;
1054         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058                         unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060         unsigned long i, end_pfn = start_pfn + nr_pages;
1061         struct page *page;
1062
1063         for (i = start_pfn; i < end_pfn; i++) {
1064                 if (!pfn_valid(i))
1065                         return false;
1066
1067                 page = pfn_to_page(i);
1068
1069                 if (page_zone(page) != z)
1070                         return false;
1071
1072                 if (PageReserved(page))
1073                         return false;
1074
1075                 if (page_count(page) > 0)
1076                         return false;
1077
1078                 if (PageHuge(page))
1079                         return false;
1080         }
1081
1082         return true;
1083 }
1084
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086                         unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088         unsigned long last_pfn = start_pfn + nr_pages - 1;
1089         return zone_spans_pfn(zone, last_pfn);
1090 }
1091
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094         unsigned long nr_pages = 1 << order;
1095         unsigned long ret, pfn, flags;
1096         struct zone *z;
1097
1098         z = NODE_DATA(nid)->node_zones;
1099         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100                 spin_lock_irqsave(&z->lock, flags);
1101
1102                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105                                 /*
1106                                  * We release the zone lock here because
1107                                  * alloc_contig_range() will also lock the zone
1108                                  * at some point. If there's an allocation
1109                                  * spinning on this lock, it may win the race
1110                                  * and cause alloc_contig_range() to fail...
1111                                  */
1112                                 spin_unlock_irqrestore(&z->lock, flags);
1113                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1114                                 if (!ret)
1115                                         return pfn_to_page(pfn);
1116                                 spin_lock_irqsave(&z->lock, flags);
1117                         }
1118                         pfn += nr_pages;
1119                 }
1120
1121                 spin_unlock_irqrestore(&z->lock, flags);
1122         }
1123
1124         return NULL;
1125 }
1126
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132         struct page *page;
1133
1134         page = alloc_gigantic_page(nid, huge_page_order(h));
1135         if (page) {
1136                 prep_compound_gigantic_page(page, huge_page_order(h));
1137                 prep_new_huge_page(h, page, nid);
1138         }
1139
1140         return page;
1141 }
1142
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144                                 nodemask_t *nodes_allowed)
1145 {
1146         struct page *page = NULL;
1147         int nr_nodes, node;
1148
1149         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150                 page = alloc_fresh_gigantic_page_node(h, node);
1151                 if (page)
1152                         return 1;
1153         }
1154
1155         return 0;
1156 }
1157
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165                                         nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170         int i;
1171
1172         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173                 return;
1174
1175         h->nr_huge_pages--;
1176         h->nr_huge_pages_node[page_to_nid(page)]--;
1177         for (i = 0; i < pages_per_huge_page(h); i++) {
1178                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179                                 1 << PG_referenced | 1 << PG_dirty |
1180                                 1 << PG_active | 1 << PG_private |
1181                                 1 << PG_writeback);
1182         }
1183         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185         set_page_refcounted(page);
1186         if (hstate_is_gigantic(h)) {
1187                 destroy_compound_gigantic_page(page, huge_page_order(h));
1188                 free_gigantic_page(page, huge_page_order(h));
1189         } else {
1190                 __free_pages(page, huge_page_order(h));
1191         }
1192 }
1193
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196         struct hstate *h;
1197
1198         for_each_hstate(h) {
1199                 if (huge_page_size(h) == size)
1200                         return h;
1201         }
1202         return NULL;
1203 }
1204
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHuge(page), page);
1214         return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221         SetPagePrivate(&page[1]);
1222 }
1223
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227         ClearPagePrivate(&page[1]);
1228 }
1229
1230 void free_huge_page(struct page *page)
1231 {
1232         /*
1233          * Can't pass hstate in here because it is called from the
1234          * compound page destructor.
1235          */
1236         struct hstate *h = page_hstate(page);
1237         int nid = page_to_nid(page);
1238         struct hugepage_subpool *spool =
1239                 (struct hugepage_subpool *)page_private(page);
1240         bool restore_reserve;
1241
1242         set_page_private(page, 0);
1243         page->mapping = NULL;
1244         VM_BUG_ON_PAGE(page_count(page), page);
1245         VM_BUG_ON_PAGE(page_mapcount(page), page);
1246         restore_reserve = PagePrivate(page);
1247         ClearPagePrivate(page);
1248
1249         /*
1250          * A return code of zero implies that the subpool will be under its
1251          * minimum size if the reservation is not restored after page is free.
1252          * Therefore, force restore_reserve operation.
1253          */
1254         if (hugepage_subpool_put_pages(spool, 1) == 0)
1255                 restore_reserve = true;
1256
1257         spin_lock(&hugetlb_lock);
1258         clear_page_huge_active(page);
1259         hugetlb_cgroup_uncharge_page(hstate_index(h),
1260                                      pages_per_huge_page(h), page);
1261         if (restore_reserve)
1262                 h->resv_huge_pages++;
1263
1264         if (h->surplus_huge_pages_node[nid]) {
1265                 /* remove the page from active list */
1266                 list_del(&page->lru);
1267                 update_and_free_page(h, page);
1268                 h->surplus_huge_pages--;
1269                 h->surplus_huge_pages_node[nid]--;
1270         } else {
1271                 arch_clear_hugepage_flags(page);
1272                 enqueue_huge_page(h, page);
1273         }
1274         spin_unlock(&hugetlb_lock);
1275 }
1276
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279         INIT_LIST_HEAD(&page->lru);
1280         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281         spin_lock(&hugetlb_lock);
1282         set_hugetlb_cgroup(page, NULL);
1283         h->nr_huge_pages++;
1284         h->nr_huge_pages_node[nid]++;
1285         spin_unlock(&hugetlb_lock);
1286         put_page(page); /* free it into the hugepage allocator */
1287 }
1288
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291         int i;
1292         int nr_pages = 1 << order;
1293         struct page *p = page + 1;
1294
1295         /* we rely on prep_new_huge_page to set the destructor */
1296         set_compound_order(page, order);
1297         __ClearPageReserved(page);
1298         __SetPageHead(page);
1299         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300                 /*
1301                  * For gigantic hugepages allocated through bootmem at
1302                  * boot, it's safer to be consistent with the not-gigantic
1303                  * hugepages and clear the PG_reserved bit from all tail pages
1304                  * too.  Otherwse drivers using get_user_pages() to access tail
1305                  * pages may get the reference counting wrong if they see
1306                  * PG_reserved set on a tail page (despite the head page not
1307                  * having PG_reserved set).  Enforcing this consistency between
1308                  * head and tail pages allows drivers to optimize away a check
1309                  * on the head page when they need know if put_page() is needed
1310                  * after get_user_pages().
1311                  */
1312                 __ClearPageReserved(p);
1313                 set_page_count(p, 0);
1314                 set_compound_head(p, page);
1315         }
1316         atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326         if (!PageCompound(page))
1327                 return 0;
1328
1329         page = compound_head(page);
1330         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340         if (!PageHead(page_head))
1341                 return 0;
1342
1343         return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348         struct page *page_head = compound_head(page);
1349         pgoff_t index = page_index(page_head);
1350         unsigned long compound_idx;
1351
1352         if (!PageHuge(page_head))
1353                 return page_index(page);
1354
1355         if (compound_order(page_head) >= MAX_ORDER)
1356                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357         else
1358                 compound_idx = page - page_head;
1359
1360         return (index << compound_order(page_head)) + compound_idx;
1361 }
1362
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365         struct page *page;
1366
1367         page = __alloc_pages_node(nid,
1368                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369                                                 __GFP_REPEAT|__GFP_NOWARN,
1370                 huge_page_order(h));
1371         if (page) {
1372                 prep_new_huge_page(h, page, nid);
1373         }
1374
1375         return page;
1376 }
1377
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380         struct page *page;
1381         int nr_nodes, node;
1382         int ret = 0;
1383
1384         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385                 page = alloc_fresh_huge_page_node(h, node);
1386                 if (page) {
1387                         ret = 1;
1388                         break;
1389                 }
1390         }
1391
1392         if (ret)
1393                 count_vm_event(HTLB_BUDDY_PGALLOC);
1394         else
1395                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397         return ret;
1398 }
1399
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407                                                          bool acct_surplus)
1408 {
1409         int nr_nodes, node;
1410         int ret = 0;
1411
1412         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413                 /*
1414                  * If we're returning unused surplus pages, only examine
1415                  * nodes with surplus pages.
1416                  */
1417                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418                     !list_empty(&h->hugepage_freelists[node])) {
1419                         struct page *page =
1420                                 list_entry(h->hugepage_freelists[node].next,
1421                                           struct page, lru);
1422                         list_del(&page->lru);
1423                         h->free_huge_pages--;
1424                         h->free_huge_pages_node[node]--;
1425                         if (acct_surplus) {
1426                                 h->surplus_huge_pages--;
1427                                 h->surplus_huge_pages_node[node]--;
1428                         }
1429                         update_and_free_page(h, page);
1430                         ret = 1;
1431                         break;
1432                 }
1433         }
1434
1435         return ret;
1436 }
1437
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages.
1441  */
1442 static void dissolve_free_huge_page(struct page *page)
1443 {
1444         spin_lock(&hugetlb_lock);
1445         if (PageHuge(page) && !page_count(page)) {
1446                 struct page *head = compound_head(page);
1447                 struct hstate *h = page_hstate(head);
1448                 int nid = page_to_nid(head);
1449                 list_del(&head->lru);
1450                 h->free_huge_pages--;
1451                 h->free_huge_pages_node[nid]--;
1452                 h->max_huge_pages--;
1453                 update_and_free_page(h, head);
1454         }
1455         spin_unlock(&hugetlb_lock);
1456 }
1457
1458 /*
1459  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1460  * make specified memory blocks removable from the system.
1461  * Note that this will dissolve a free gigantic hugepage completely, if any
1462  * part of it lies within the given range.
1463  */
1464 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1465 {
1466         unsigned long pfn;
1467
1468         if (!hugepages_supported())
1469                 return;
1470
1471         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1472                 dissolve_free_huge_page(pfn_to_page(pfn));
1473 }
1474
1475 /*
1476  * There are 3 ways this can get called:
1477  * 1. With vma+addr: we use the VMA's memory policy
1478  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1479  *    page from any node, and let the buddy allocator itself figure
1480  *    it out.
1481  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1482  *    strictly from 'nid'
1483  */
1484 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1485                 struct vm_area_struct *vma, unsigned long addr, int nid)
1486 {
1487         int order = huge_page_order(h);
1488         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1489         unsigned int cpuset_mems_cookie;
1490
1491         /*
1492          * We need a VMA to get a memory policy.  If we do not
1493          * have one, we use the 'nid' argument.
1494          *
1495          * The mempolicy stuff below has some non-inlined bits
1496          * and calls ->vm_ops.  That makes it hard to optimize at
1497          * compile-time, even when NUMA is off and it does
1498          * nothing.  This helps the compiler optimize it out.
1499          */
1500         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1501                 /*
1502                  * If a specific node is requested, make sure to
1503                  * get memory from there, but only when a node
1504                  * is explicitly specified.
1505                  */
1506                 if (nid != NUMA_NO_NODE)
1507                         gfp |= __GFP_THISNODE;
1508                 /*
1509                  * Make sure to call something that can handle
1510                  * nid=NUMA_NO_NODE
1511                  */
1512                 return alloc_pages_node(nid, gfp, order);
1513         }
1514
1515         /*
1516          * OK, so we have a VMA.  Fetch the mempolicy and try to
1517          * allocate a huge page with it.  We will only reach this
1518          * when CONFIG_NUMA=y.
1519          */
1520         do {
1521                 struct page *page;
1522                 struct mempolicy *mpol;
1523                 struct zonelist *zl;
1524                 nodemask_t *nodemask;
1525
1526                 cpuset_mems_cookie = read_mems_allowed_begin();
1527                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1528                 mpol_cond_put(mpol);
1529                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1530                 if (page)
1531                         return page;
1532         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1533
1534         return NULL;
1535 }
1536
1537 /*
1538  * There are two ways to allocate a huge page:
1539  * 1. When you have a VMA and an address (like a fault)
1540  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1541  *
1542  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1543  * this case which signifies that the allocation should be done with
1544  * respect for the VMA's memory policy.
1545  *
1546  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1547  * implies that memory policies will not be taken in to account.
1548  */
1549 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1550                 struct vm_area_struct *vma, unsigned long addr, int nid)
1551 {
1552         struct page *page;
1553         unsigned int r_nid;
1554
1555         if (hstate_is_gigantic(h))
1556                 return NULL;
1557
1558         /*
1559          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1560          * This makes sure the caller is picking _one_ of the modes with which
1561          * we can call this function, not both.
1562          */
1563         if (vma || (addr != -1)) {
1564                 VM_WARN_ON_ONCE(addr == -1);
1565                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1566         }
1567         /*
1568          * Assume we will successfully allocate the surplus page to
1569          * prevent racing processes from causing the surplus to exceed
1570          * overcommit
1571          *
1572          * This however introduces a different race, where a process B
1573          * tries to grow the static hugepage pool while alloc_pages() is
1574          * called by process A. B will only examine the per-node
1575          * counters in determining if surplus huge pages can be
1576          * converted to normal huge pages in adjust_pool_surplus(). A
1577          * won't be able to increment the per-node counter, until the
1578          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1579          * no more huge pages can be converted from surplus to normal
1580          * state (and doesn't try to convert again). Thus, we have a
1581          * case where a surplus huge page exists, the pool is grown, and
1582          * the surplus huge page still exists after, even though it
1583          * should just have been converted to a normal huge page. This
1584          * does not leak memory, though, as the hugepage will be freed
1585          * once it is out of use. It also does not allow the counters to
1586          * go out of whack in adjust_pool_surplus() as we don't modify
1587          * the node values until we've gotten the hugepage and only the
1588          * per-node value is checked there.
1589          */
1590         spin_lock(&hugetlb_lock);
1591         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1592                 spin_unlock(&hugetlb_lock);
1593                 return NULL;
1594         } else {
1595                 h->nr_huge_pages++;
1596                 h->surplus_huge_pages++;
1597         }
1598         spin_unlock(&hugetlb_lock);
1599
1600         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1601
1602         spin_lock(&hugetlb_lock);
1603         if (page) {
1604                 INIT_LIST_HEAD(&page->lru);
1605                 r_nid = page_to_nid(page);
1606                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1607                 set_hugetlb_cgroup(page, NULL);
1608                 /*
1609                  * We incremented the global counters already
1610                  */
1611                 h->nr_huge_pages_node[r_nid]++;
1612                 h->surplus_huge_pages_node[r_nid]++;
1613                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1614         } else {
1615                 h->nr_huge_pages--;
1616                 h->surplus_huge_pages--;
1617                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1618         }
1619         spin_unlock(&hugetlb_lock);
1620
1621         return page;
1622 }
1623
1624 /*
1625  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1626  * NUMA_NO_NODE, which means that it may be allocated
1627  * anywhere.
1628  */
1629 static
1630 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1631 {
1632         unsigned long addr = -1;
1633
1634         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1635 }
1636
1637 /*
1638  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1639  */
1640 static
1641 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1642                 struct vm_area_struct *vma, unsigned long addr)
1643 {
1644         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1645 }
1646
1647 /*
1648  * This allocation function is useful in the context where vma is irrelevant.
1649  * E.g. soft-offlining uses this function because it only cares physical
1650  * address of error page.
1651  */
1652 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1653 {
1654         struct page *page = NULL;
1655
1656         spin_lock(&hugetlb_lock);
1657         if (h->free_huge_pages - h->resv_huge_pages > 0)
1658                 page = dequeue_huge_page_node(h, nid);
1659         spin_unlock(&hugetlb_lock);
1660
1661         if (!page)
1662                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1663
1664         return page;
1665 }
1666
1667 /*
1668  * Increase the hugetlb pool such that it can accommodate a reservation
1669  * of size 'delta'.
1670  */
1671 static int gather_surplus_pages(struct hstate *h, int delta)
1672 {
1673         struct list_head surplus_list;
1674         struct page *page, *tmp;
1675         int ret, i;
1676         int needed, allocated;
1677         bool alloc_ok = true;
1678
1679         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1680         if (needed <= 0) {
1681                 h->resv_huge_pages += delta;
1682                 return 0;
1683         }
1684
1685         allocated = 0;
1686         INIT_LIST_HEAD(&surplus_list);
1687
1688         ret = -ENOMEM;
1689 retry:
1690         spin_unlock(&hugetlb_lock);
1691         for (i = 0; i < needed; i++) {
1692                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1693                 if (!page) {
1694                         alloc_ok = false;
1695                         break;
1696                 }
1697                 list_add(&page->lru, &surplus_list);
1698         }
1699         allocated += i;
1700
1701         /*
1702          * After retaking hugetlb_lock, we need to recalculate 'needed'
1703          * because either resv_huge_pages or free_huge_pages may have changed.
1704          */
1705         spin_lock(&hugetlb_lock);
1706         needed = (h->resv_huge_pages + delta) -
1707                         (h->free_huge_pages + allocated);
1708         if (needed > 0) {
1709                 if (alloc_ok)
1710                         goto retry;
1711                 /*
1712                  * We were not able to allocate enough pages to
1713                  * satisfy the entire reservation so we free what
1714                  * we've allocated so far.
1715                  */
1716                 goto free;
1717         }
1718         /*
1719          * The surplus_list now contains _at_least_ the number of extra pages
1720          * needed to accommodate the reservation.  Add the appropriate number
1721          * of pages to the hugetlb pool and free the extras back to the buddy
1722          * allocator.  Commit the entire reservation here to prevent another
1723          * process from stealing the pages as they are added to the pool but
1724          * before they are reserved.
1725          */
1726         needed += allocated;
1727         h->resv_huge_pages += delta;
1728         ret = 0;
1729
1730         /* Free the needed pages to the hugetlb pool */
1731         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1732                 if ((--needed) < 0)
1733                         break;
1734                 /*
1735                  * This page is now managed by the hugetlb allocator and has
1736                  * no users -- drop the buddy allocator's reference.
1737                  */
1738                 put_page_testzero(page);
1739                 VM_BUG_ON_PAGE(page_count(page), page);
1740                 enqueue_huge_page(h, page);
1741         }
1742 free:
1743         spin_unlock(&hugetlb_lock);
1744
1745         /* Free unnecessary surplus pages to the buddy allocator */
1746         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1747                 put_page(page);
1748         spin_lock(&hugetlb_lock);
1749
1750         return ret;
1751 }
1752
1753 /*
1754  * When releasing a hugetlb pool reservation, any surplus pages that were
1755  * allocated to satisfy the reservation must be explicitly freed if they were
1756  * never used.
1757  * Called with hugetlb_lock held.
1758  */
1759 static void return_unused_surplus_pages(struct hstate *h,
1760                                         unsigned long unused_resv_pages)
1761 {
1762         unsigned long nr_pages;
1763
1764         /* Uncommit the reservation */
1765         h->resv_huge_pages -= unused_resv_pages;
1766
1767         /* Cannot return gigantic pages currently */
1768         if (hstate_is_gigantic(h))
1769                 return;
1770
1771         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1772
1773         /*
1774          * We want to release as many surplus pages as possible, spread
1775          * evenly across all nodes with memory. Iterate across these nodes
1776          * until we can no longer free unreserved surplus pages. This occurs
1777          * when the nodes with surplus pages have no free pages.
1778          * free_pool_huge_page() will balance the the freed pages across the
1779          * on-line nodes with memory and will handle the hstate accounting.
1780          */
1781         while (nr_pages--) {
1782                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1783                         break;
1784                 cond_resched_lock(&hugetlb_lock);
1785         }
1786 }
1787
1788
1789 /*
1790  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1791  * are used by the huge page allocation routines to manage reservations.
1792  *
1793  * vma_needs_reservation is called to determine if the huge page at addr
1794  * within the vma has an associated reservation.  If a reservation is
1795  * needed, the value 1 is returned.  The caller is then responsible for
1796  * managing the global reservation and subpool usage counts.  After
1797  * the huge page has been allocated, vma_commit_reservation is called
1798  * to add the page to the reservation map.  If the page allocation fails,
1799  * the reservation must be ended instead of committed.  vma_end_reservation
1800  * is called in such cases.
1801  *
1802  * In the normal case, vma_commit_reservation returns the same value
1803  * as the preceding vma_needs_reservation call.  The only time this
1804  * is not the case is if a reserve map was changed between calls.  It
1805  * is the responsibility of the caller to notice the difference and
1806  * take appropriate action.
1807  */
1808 enum vma_resv_mode {
1809         VMA_NEEDS_RESV,
1810         VMA_COMMIT_RESV,
1811         VMA_END_RESV,
1812 };
1813 static long __vma_reservation_common(struct hstate *h,
1814                                 struct vm_area_struct *vma, unsigned long addr,
1815                                 enum vma_resv_mode mode)
1816 {
1817         struct resv_map *resv;
1818         pgoff_t idx;
1819         long ret;
1820
1821         resv = vma_resv_map(vma);
1822         if (!resv)
1823                 return 1;
1824
1825         idx = vma_hugecache_offset(h, vma, addr);
1826         switch (mode) {
1827         case VMA_NEEDS_RESV:
1828                 ret = region_chg(resv, idx, idx + 1);
1829                 break;
1830         case VMA_COMMIT_RESV:
1831                 ret = region_add(resv, idx, idx + 1);
1832                 break;
1833         case VMA_END_RESV:
1834                 region_abort(resv, idx, idx + 1);
1835                 ret = 0;
1836                 break;
1837         default:
1838                 BUG();
1839         }
1840
1841         if (vma->vm_flags & VM_MAYSHARE)
1842                 return ret;
1843         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1844                 /*
1845                  * In most cases, reserves always exist for private mappings.
1846                  * However, a file associated with mapping could have been
1847                  * hole punched or truncated after reserves were consumed.
1848                  * As subsequent fault on such a range will not use reserves.
1849                  * Subtle - The reserve map for private mappings has the
1850                  * opposite meaning than that of shared mappings.  If NO
1851                  * entry is in the reserve map, it means a reservation exists.
1852                  * If an entry exists in the reserve map, it means the
1853                  * reservation has already been consumed.  As a result, the
1854                  * return value of this routine is the opposite of the
1855                  * value returned from reserve map manipulation routines above.
1856                  */
1857                 if (ret)
1858                         return 0;
1859                 else
1860                         return 1;
1861         }
1862         else
1863                 return ret < 0 ? ret : 0;
1864 }
1865
1866 static long vma_needs_reservation(struct hstate *h,
1867                         struct vm_area_struct *vma, unsigned long addr)
1868 {
1869         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1870 }
1871
1872 static long vma_commit_reservation(struct hstate *h,
1873                         struct vm_area_struct *vma, unsigned long addr)
1874 {
1875         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1876 }
1877
1878 static void vma_end_reservation(struct hstate *h,
1879                         struct vm_area_struct *vma, unsigned long addr)
1880 {
1881         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1882 }
1883
1884 struct page *alloc_huge_page(struct vm_area_struct *vma,
1885                                     unsigned long addr, int avoid_reserve)
1886 {
1887         struct hugepage_subpool *spool = subpool_vma(vma);
1888         struct hstate *h = hstate_vma(vma);
1889         struct page *page;
1890         long map_chg, map_commit;
1891         long gbl_chg;
1892         int ret, idx;
1893         struct hugetlb_cgroup *h_cg;
1894
1895         idx = hstate_index(h);
1896         /*
1897          * Examine the region/reserve map to determine if the process
1898          * has a reservation for the page to be allocated.  A return
1899          * code of zero indicates a reservation exists (no change).
1900          */
1901         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1902         if (map_chg < 0)
1903                 return ERR_PTR(-ENOMEM);
1904
1905         /*
1906          * Processes that did not create the mapping will have no
1907          * reserves as indicated by the region/reserve map. Check
1908          * that the allocation will not exceed the subpool limit.
1909          * Allocations for MAP_NORESERVE mappings also need to be
1910          * checked against any subpool limit.
1911          */
1912         if (map_chg || avoid_reserve) {
1913                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1914                 if (gbl_chg < 0) {
1915                         vma_end_reservation(h, vma, addr);
1916                         return ERR_PTR(-ENOSPC);
1917                 }
1918
1919                 /*
1920                  * Even though there was no reservation in the region/reserve
1921                  * map, there could be reservations associated with the
1922                  * subpool that can be used.  This would be indicated if the
1923                  * return value of hugepage_subpool_get_pages() is zero.
1924                  * However, if avoid_reserve is specified we still avoid even
1925                  * the subpool reservations.
1926                  */
1927                 if (avoid_reserve)
1928                         gbl_chg = 1;
1929         }
1930
1931         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1932         if (ret)
1933                 goto out_subpool_put;
1934
1935         spin_lock(&hugetlb_lock);
1936         /*
1937          * glb_chg is passed to indicate whether or not a page must be taken
1938          * from the global free pool (global change).  gbl_chg == 0 indicates
1939          * a reservation exists for the allocation.
1940          */
1941         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1942         if (!page) {
1943                 spin_unlock(&hugetlb_lock);
1944                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1945                 if (!page)
1946                         goto out_uncharge_cgroup;
1947                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1948                         SetPagePrivate(page);
1949                         h->resv_huge_pages--;
1950                 }
1951                 spin_lock(&hugetlb_lock);
1952                 list_move(&page->lru, &h->hugepage_activelist);
1953                 /* Fall through */
1954         }
1955         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1956         spin_unlock(&hugetlb_lock);
1957
1958         set_page_private(page, (unsigned long)spool);
1959
1960         map_commit = vma_commit_reservation(h, vma, addr);
1961         if (unlikely(map_chg > map_commit)) {
1962                 /*
1963                  * The page was added to the reservation map between
1964                  * vma_needs_reservation and vma_commit_reservation.
1965                  * This indicates a race with hugetlb_reserve_pages.
1966                  * Adjust for the subpool count incremented above AND
1967                  * in hugetlb_reserve_pages for the same page.  Also,
1968                  * the reservation count added in hugetlb_reserve_pages
1969                  * no longer applies.
1970                  */
1971                 long rsv_adjust;
1972
1973                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1974                 hugetlb_acct_memory(h, -rsv_adjust);
1975         }
1976         return page;
1977
1978 out_uncharge_cgroup:
1979         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1980 out_subpool_put:
1981         if (map_chg || avoid_reserve)
1982                 hugepage_subpool_put_pages(spool, 1);
1983         vma_end_reservation(h, vma, addr);
1984         return ERR_PTR(-ENOSPC);
1985 }
1986
1987 /*
1988  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1989  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1990  * where no ERR_VALUE is expected to be returned.
1991  */
1992 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1993                                 unsigned long addr, int avoid_reserve)
1994 {
1995         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1996         if (IS_ERR(page))
1997                 page = NULL;
1998         return page;
1999 }
2000
2001 int __weak alloc_bootmem_huge_page(struct hstate *h)
2002 {
2003         struct huge_bootmem_page *m;
2004         int nr_nodes, node;
2005
2006         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2007                 void *addr;
2008
2009                 addr = memblock_virt_alloc_try_nid_nopanic(
2010                                 huge_page_size(h), huge_page_size(h),
2011                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2012                 if (addr) {
2013                         /*
2014                          * Use the beginning of the huge page to store the
2015                          * huge_bootmem_page struct (until gather_bootmem
2016                          * puts them into the mem_map).
2017                          */
2018                         m = addr;
2019                         goto found;
2020                 }
2021         }
2022         return 0;
2023
2024 found:
2025         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2026         /* Put them into a private list first because mem_map is not up yet */
2027         list_add(&m->list, &huge_boot_pages);
2028         m->hstate = h;
2029         return 1;
2030 }
2031
2032 static void __init prep_compound_huge_page(struct page *page,
2033                 unsigned int order)
2034 {
2035         if (unlikely(order > (MAX_ORDER - 1)))
2036                 prep_compound_gigantic_page(page, order);
2037         else
2038                 prep_compound_page(page, order);
2039 }
2040
2041 /* Put bootmem huge pages into the standard lists after mem_map is up */
2042 static void __init gather_bootmem_prealloc(void)
2043 {
2044         struct huge_bootmem_page *m;
2045
2046         list_for_each_entry(m, &huge_boot_pages, list) {
2047                 struct hstate *h = m->hstate;
2048                 struct page *page;
2049
2050 #ifdef CONFIG_HIGHMEM
2051                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2052                 memblock_free_late(__pa(m),
2053                                    sizeof(struct huge_bootmem_page));
2054 #else
2055                 page = virt_to_page(m);
2056 #endif
2057                 WARN_ON(page_count(page) != 1);
2058                 prep_compound_huge_page(page, h->order);
2059                 WARN_ON(PageReserved(page));
2060                 prep_new_huge_page(h, page, page_to_nid(page));
2061                 /*
2062                  * If we had gigantic hugepages allocated at boot time, we need
2063                  * to restore the 'stolen' pages to totalram_pages in order to
2064                  * fix confusing memory reports from free(1) and another
2065                  * side-effects, like CommitLimit going negative.
2066                  */
2067                 if (hstate_is_gigantic(h))
2068                         adjust_managed_page_count(page, 1 << h->order);
2069         }
2070 }
2071
2072 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2073 {
2074         unsigned long i;
2075
2076         for (i = 0; i < h->max_huge_pages; ++i) {
2077                 if (hstate_is_gigantic(h)) {
2078                         if (!alloc_bootmem_huge_page(h))
2079                                 break;
2080                 } else if (!alloc_fresh_huge_page(h,
2081                                          &node_states[N_MEMORY]))
2082                         break;
2083         }
2084         h->max_huge_pages = i;
2085 }
2086
2087 static void __init hugetlb_init_hstates(void)
2088 {
2089         struct hstate *h;
2090
2091         for_each_hstate(h) {
2092                 if (minimum_order > huge_page_order(h))
2093                         minimum_order = huge_page_order(h);
2094
2095                 /* oversize hugepages were init'ed in early boot */
2096                 if (!hstate_is_gigantic(h))
2097                         hugetlb_hstate_alloc_pages(h);
2098         }
2099         VM_BUG_ON(minimum_order == UINT_MAX);
2100 }
2101
2102 static char * __init memfmt(char *buf, unsigned long n)
2103 {
2104         if (n >= (1UL << 30))
2105                 sprintf(buf, "%lu GB", n >> 30);
2106         else if (n >= (1UL << 20))
2107                 sprintf(buf, "%lu MB", n >> 20);
2108         else
2109                 sprintf(buf, "%lu KB", n >> 10);
2110         return buf;
2111 }
2112
2113 static void __init report_hugepages(void)
2114 {
2115         struct hstate *h;
2116
2117         for_each_hstate(h) {
2118                 char buf[32];
2119                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2120                         memfmt(buf, huge_page_size(h)),
2121                         h->free_huge_pages);
2122         }
2123 }
2124
2125 #ifdef CONFIG_HIGHMEM
2126 static void try_to_free_low(struct hstate *h, unsigned long count,
2127                                                 nodemask_t *nodes_allowed)
2128 {
2129         int i;
2130
2131         if (hstate_is_gigantic(h))
2132                 return;
2133
2134         for_each_node_mask(i, *nodes_allowed) {
2135                 struct page *page, *next;
2136                 struct list_head *freel = &h->hugepage_freelists[i];
2137                 list_for_each_entry_safe(page, next, freel, lru) {
2138                         if (count >= h->nr_huge_pages)
2139                                 return;
2140                         if (PageHighMem(page))
2141                                 continue;
2142                         list_del(&page->lru);
2143                         update_and_free_page(h, page);
2144                         h->free_huge_pages--;
2145                         h->free_huge_pages_node[page_to_nid(page)]--;
2146                 }
2147         }
2148 }
2149 #else
2150 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2151                                                 nodemask_t *nodes_allowed)
2152 {
2153 }
2154 #endif
2155
2156 /*
2157  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2158  * balanced by operating on them in a round-robin fashion.
2159  * Returns 1 if an adjustment was made.
2160  */
2161 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2162                                 int delta)
2163 {
2164         int nr_nodes, node;
2165
2166         VM_BUG_ON(delta != -1 && delta != 1);
2167
2168         if (delta < 0) {
2169                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2170                         if (h->surplus_huge_pages_node[node])
2171                                 goto found;
2172                 }
2173         } else {
2174                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2175                         if (h->surplus_huge_pages_node[node] <
2176                                         h->nr_huge_pages_node[node])
2177                                 goto found;
2178                 }
2179         }
2180         return 0;
2181
2182 found:
2183         h->surplus_huge_pages += delta;
2184         h->surplus_huge_pages_node[node] += delta;
2185         return 1;
2186 }
2187
2188 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2189 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2190                                                 nodemask_t *nodes_allowed)
2191 {
2192         unsigned long min_count, ret;
2193
2194         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2195                 return h->max_huge_pages;
2196
2197         /*
2198          * Increase the pool size
2199          * First take pages out of surplus state.  Then make up the
2200          * remaining difference by allocating fresh huge pages.
2201          *
2202          * We might race with __alloc_buddy_huge_page() here and be unable
2203          * to convert a surplus huge page to a normal huge page. That is
2204          * not critical, though, it just means the overall size of the
2205          * pool might be one hugepage larger than it needs to be, but
2206          * within all the constraints specified by the sysctls.
2207          */
2208         spin_lock(&hugetlb_lock);
2209         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2210                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2211                         break;
2212         }
2213
2214         while (count > persistent_huge_pages(h)) {
2215                 /*
2216                  * If this allocation races such that we no longer need the
2217                  * page, free_huge_page will handle it by freeing the page
2218                  * and reducing the surplus.
2219                  */
2220                 spin_unlock(&hugetlb_lock);
2221
2222                 /* yield cpu to avoid soft lockup */
2223                 cond_resched();
2224
2225                 if (hstate_is_gigantic(h))
2226                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2227                 else
2228                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2229                 spin_lock(&hugetlb_lock);
2230                 if (!ret)
2231                         goto out;
2232
2233                 /* Bail for signals. Probably ctrl-c from user */
2234                 if (signal_pending(current))
2235                         goto out;
2236         }
2237
2238         /*
2239          * Decrease the pool size
2240          * First return free pages to the buddy allocator (being careful
2241          * to keep enough around to satisfy reservations).  Then place
2242          * pages into surplus state as needed so the pool will shrink
2243          * to the desired size as pages become free.
2244          *
2245          * By placing pages into the surplus state independent of the
2246          * overcommit value, we are allowing the surplus pool size to
2247          * exceed overcommit. There are few sane options here. Since
2248          * __alloc_buddy_huge_page() is checking the global counter,
2249          * though, we'll note that we're not allowed to exceed surplus
2250          * and won't grow the pool anywhere else. Not until one of the
2251          * sysctls are changed, or the surplus pages go out of use.
2252          */
2253         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2254         min_count = max(count, min_count);
2255         try_to_free_low(h, min_count, nodes_allowed);
2256         while (min_count < persistent_huge_pages(h)) {
2257                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2258                         break;
2259                 cond_resched_lock(&hugetlb_lock);
2260         }
2261         while (count < persistent_huge_pages(h)) {
2262                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2263                         break;
2264         }
2265 out:
2266         ret = persistent_huge_pages(h);
2267         spin_unlock(&hugetlb_lock);
2268         return ret;
2269 }
2270
2271 #define HSTATE_ATTR_RO(_name) \
2272         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2273
2274 #define HSTATE_ATTR(_name) \
2275         static struct kobj_attribute _name##_attr = \
2276                 __ATTR(_name, 0644, _name##_show, _name##_store)
2277
2278 static struct kobject *hugepages_kobj;
2279 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2280
2281 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2282
2283 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2284 {
2285         int i;
2286
2287         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2288                 if (hstate_kobjs[i] == kobj) {
2289                         if (nidp)
2290                                 *nidp = NUMA_NO_NODE;
2291                         return &hstates[i];
2292                 }
2293
2294         return kobj_to_node_hstate(kobj, nidp);
2295 }
2296
2297 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2298                                         struct kobj_attribute *attr, char *buf)
2299 {
2300         struct hstate *h;
2301         unsigned long nr_huge_pages;
2302         int nid;
2303
2304         h = kobj_to_hstate(kobj, &nid);
2305         if (nid == NUMA_NO_NODE)
2306                 nr_huge_pages = h->nr_huge_pages;
2307         else
2308                 nr_huge_pages = h->nr_huge_pages_node[nid];
2309
2310         return sprintf(buf, "%lu\n", nr_huge_pages);
2311 }
2312
2313 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2314                                            struct hstate *h, int nid,
2315                                            unsigned long count, size_t len)
2316 {
2317         int err;
2318         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2319
2320         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2321                 err = -EINVAL;
2322                 goto out;
2323         }
2324
2325         if (nid == NUMA_NO_NODE) {
2326                 /*
2327                  * global hstate attribute
2328                  */
2329                 if (!(obey_mempolicy &&
2330                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2331                         NODEMASK_FREE(nodes_allowed);
2332                         nodes_allowed = &node_states[N_MEMORY];
2333                 }
2334         } else if (nodes_allowed) {
2335                 /*
2336                  * per node hstate attribute: adjust count to global,
2337                  * but restrict alloc/free to the specified node.
2338                  */
2339                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2340                 init_nodemask_of_node(nodes_allowed, nid);
2341         } else
2342                 nodes_allowed = &node_states[N_MEMORY];
2343
2344         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2345
2346         if (nodes_allowed != &node_states[N_MEMORY])
2347                 NODEMASK_FREE(nodes_allowed);
2348
2349         return len;
2350 out:
2351         NODEMASK_FREE(nodes_allowed);
2352         return err;
2353 }
2354
2355 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2356                                          struct kobject *kobj, const char *buf,
2357                                          size_t len)
2358 {
2359         struct hstate *h;
2360         unsigned long count;
2361         int nid;
2362         int err;
2363
2364         err = kstrtoul(buf, 10, &count);
2365         if (err)
2366                 return err;
2367
2368         h = kobj_to_hstate(kobj, &nid);
2369         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2370 }
2371
2372 static ssize_t nr_hugepages_show(struct kobject *kobj,
2373                                        struct kobj_attribute *attr, char *buf)
2374 {
2375         return nr_hugepages_show_common(kobj, attr, buf);
2376 }
2377
2378 static ssize_t nr_hugepages_store(struct kobject *kobj,
2379                struct kobj_attribute *attr, const char *buf, size_t len)
2380 {
2381         return nr_hugepages_store_common(false, kobj, buf, len);
2382 }
2383 HSTATE_ATTR(nr_hugepages);
2384
2385 #ifdef CONFIG_NUMA
2386
2387 /*
2388  * hstate attribute for optionally mempolicy-based constraint on persistent
2389  * huge page alloc/free.
2390  */
2391 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2392                                        struct kobj_attribute *attr, char *buf)
2393 {
2394         return nr_hugepages_show_common(kobj, attr, buf);
2395 }
2396
2397 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2398                struct kobj_attribute *attr, const char *buf, size_t len)
2399 {
2400         return nr_hugepages_store_common(true, kobj, buf, len);
2401 }
2402 HSTATE_ATTR(nr_hugepages_mempolicy);
2403 #endif
2404
2405
2406 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2407                                         struct kobj_attribute *attr, char *buf)
2408 {
2409         struct hstate *h = kobj_to_hstate(kobj, NULL);
2410         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2411 }
2412
2413 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2414                 struct kobj_attribute *attr, const char *buf, size_t count)
2415 {
2416         int err;
2417         unsigned long input;
2418         struct hstate *h = kobj_to_hstate(kobj, NULL);
2419
2420         if (hstate_is_gigantic(h))
2421                 return -EINVAL;
2422
2423         err = kstrtoul(buf, 10, &input);
2424         if (err)
2425                 return err;
2426
2427         spin_lock(&hugetlb_lock);
2428         h->nr_overcommit_huge_pages = input;
2429         spin_unlock(&hugetlb_lock);
2430
2431         return count;
2432 }
2433 HSTATE_ATTR(nr_overcommit_hugepages);
2434
2435 static ssize_t free_hugepages_show(struct kobject *kobj,
2436                                         struct kobj_attribute *attr, char *buf)
2437 {
2438         struct hstate *h;
2439         unsigned long free_huge_pages;
2440         int nid;
2441
2442         h = kobj_to_hstate(kobj, &nid);
2443         if (nid == NUMA_NO_NODE)
2444                 free_huge_pages = h->free_huge_pages;
2445         else
2446                 free_huge_pages = h->free_huge_pages_node[nid];
2447
2448         return sprintf(buf, "%lu\n", free_huge_pages);
2449 }
2450 HSTATE_ATTR_RO(free_hugepages);
2451
2452 static ssize_t resv_hugepages_show(struct kobject *kobj,
2453                                         struct kobj_attribute *attr, char *buf)
2454 {
2455         struct hstate *h = kobj_to_hstate(kobj, NULL);
2456         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2457 }
2458 HSTATE_ATTR_RO(resv_hugepages);
2459
2460 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2461                                         struct kobj_attribute *attr, char *buf)
2462 {
2463         struct hstate *h;
2464         unsigned long surplus_huge_pages;
2465         int nid;
2466
2467         h = kobj_to_hstate(kobj, &nid);
2468         if (nid == NUMA_NO_NODE)
2469                 surplus_huge_pages = h->surplus_huge_pages;
2470         else
2471                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2472
2473         return sprintf(buf, "%lu\n", surplus_huge_pages);
2474 }
2475 HSTATE_ATTR_RO(surplus_hugepages);
2476
2477 static struct attribute *hstate_attrs[] = {
2478         &nr_hugepages_attr.attr,
2479         &nr_overcommit_hugepages_attr.attr,
2480         &free_hugepages_attr.attr,
2481         &resv_hugepages_attr.attr,
2482         &surplus_hugepages_attr.attr,
2483 #ifdef CONFIG_NUMA
2484         &nr_hugepages_mempolicy_attr.attr,
2485 #endif
2486         NULL,
2487 };
2488
2489 static struct attribute_group hstate_attr_group = {
2490         .attrs = hstate_attrs,
2491 };
2492
2493 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2494                                     struct kobject **hstate_kobjs,
2495                                     struct attribute_group *hstate_attr_group)
2496 {
2497         int retval;
2498         int hi = hstate_index(h);
2499
2500         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2501         if (!hstate_kobjs[hi])
2502                 return -ENOMEM;
2503
2504         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2505         if (retval)
2506                 kobject_put(hstate_kobjs[hi]);
2507
2508         return retval;
2509 }
2510
2511 static void __init hugetlb_sysfs_init(void)
2512 {
2513         struct hstate *h;
2514         int err;
2515
2516         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2517         if (!hugepages_kobj)
2518                 return;
2519
2520         for_each_hstate(h) {
2521                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2522                                          hstate_kobjs, &hstate_attr_group);
2523                 if (err)
2524                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2525         }
2526 }
2527
2528 #ifdef CONFIG_NUMA
2529
2530 /*
2531  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2532  * with node devices in node_devices[] using a parallel array.  The array
2533  * index of a node device or _hstate == node id.
2534  * This is here to avoid any static dependency of the node device driver, in
2535  * the base kernel, on the hugetlb module.
2536  */
2537 struct node_hstate {
2538         struct kobject          *hugepages_kobj;
2539         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2540 };
2541 static struct node_hstate node_hstates[MAX_NUMNODES];
2542
2543 /*
2544  * A subset of global hstate attributes for node devices
2545  */
2546 static struct attribute *per_node_hstate_attrs[] = {
2547         &nr_hugepages_attr.attr,
2548         &free_hugepages_attr.attr,
2549         &surplus_hugepages_attr.attr,
2550         NULL,
2551 };
2552
2553 static struct attribute_group per_node_hstate_attr_group = {
2554         .attrs = per_node_hstate_attrs,
2555 };
2556
2557 /*
2558  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2559  * Returns node id via non-NULL nidp.
2560  */
2561 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2562 {
2563         int nid;
2564
2565         for (nid = 0; nid < nr_node_ids; nid++) {
2566                 struct node_hstate *nhs = &node_hstates[nid];
2567                 int i;
2568                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2569                         if (nhs->hstate_kobjs[i] == kobj) {
2570                                 if (nidp)
2571                                         *nidp = nid;
2572                                 return &hstates[i];
2573                         }
2574         }
2575
2576         BUG();
2577         return NULL;
2578 }
2579
2580 /*
2581  * Unregister hstate attributes from a single node device.
2582  * No-op if no hstate attributes attached.
2583  */
2584 static void hugetlb_unregister_node(struct node *node)
2585 {
2586         struct hstate *h;
2587         struct node_hstate *nhs = &node_hstates[node->dev.id];
2588
2589         if (!nhs->hugepages_kobj)
2590                 return;         /* no hstate attributes */
2591
2592         for_each_hstate(h) {
2593                 int idx = hstate_index(h);
2594                 if (nhs->hstate_kobjs[idx]) {
2595                         kobject_put(nhs->hstate_kobjs[idx]);
2596                         nhs->hstate_kobjs[idx] = NULL;
2597                 }
2598         }
2599
2600         kobject_put(nhs->hugepages_kobj);
2601         nhs->hugepages_kobj = NULL;
2602 }
2603
2604
2605 /*
2606  * Register hstate attributes for a single node device.
2607  * No-op if attributes already registered.
2608  */
2609 static void hugetlb_register_node(struct node *node)
2610 {
2611         struct hstate *h;
2612         struct node_hstate *nhs = &node_hstates[node->dev.id];
2613         int err;
2614
2615         if (nhs->hugepages_kobj)
2616                 return;         /* already allocated */
2617
2618         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2619                                                         &node->dev.kobj);
2620         if (!nhs->hugepages_kobj)
2621                 return;
2622
2623         for_each_hstate(h) {
2624                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2625                                                 nhs->hstate_kobjs,
2626                                                 &per_node_hstate_attr_group);
2627                 if (err) {
2628                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2629                                 h->name, node->dev.id);
2630                         hugetlb_unregister_node(node);
2631                         break;
2632                 }
2633         }
2634 }
2635
2636 /*
2637  * hugetlb init time:  register hstate attributes for all registered node
2638  * devices of nodes that have memory.  All on-line nodes should have
2639  * registered their associated device by this time.
2640  */
2641 static void __init hugetlb_register_all_nodes(void)
2642 {
2643         int nid;
2644
2645         for_each_node_state(nid, N_MEMORY) {
2646                 struct node *node = node_devices[nid];
2647                 if (node->dev.id == nid)
2648                         hugetlb_register_node(node);
2649         }
2650
2651         /*
2652          * Let the node device driver know we're here so it can
2653          * [un]register hstate attributes on node hotplug.
2654          */
2655         register_hugetlbfs_with_node(hugetlb_register_node,
2656                                      hugetlb_unregister_node);
2657 }
2658 #else   /* !CONFIG_NUMA */
2659
2660 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2661 {
2662         BUG();
2663         if (nidp)
2664                 *nidp = -1;
2665         return NULL;
2666 }
2667
2668 static void hugetlb_register_all_nodes(void) { }
2669
2670 #endif
2671
2672 static int __init hugetlb_init(void)
2673 {
2674         int i;
2675
2676         if (!hugepages_supported())
2677                 return 0;
2678
2679         if (!size_to_hstate(default_hstate_size)) {
2680                 default_hstate_size = HPAGE_SIZE;
2681                 if (!size_to_hstate(default_hstate_size))
2682                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2683         }
2684         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2685         if (default_hstate_max_huge_pages) {
2686                 if (!default_hstate.max_huge_pages)
2687                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2688         }
2689
2690         hugetlb_init_hstates();
2691         gather_bootmem_prealloc();
2692         report_hugepages();
2693
2694         hugetlb_sysfs_init();
2695         hugetlb_register_all_nodes();
2696         hugetlb_cgroup_file_init();
2697
2698 #ifdef CONFIG_SMP
2699         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2700 #else
2701         num_fault_mutexes = 1;
2702 #endif
2703         hugetlb_fault_mutex_table =
2704                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2705         BUG_ON(!hugetlb_fault_mutex_table);
2706
2707         for (i = 0; i < num_fault_mutexes; i++)
2708                 mutex_init(&hugetlb_fault_mutex_table[i]);
2709         return 0;
2710 }
2711 subsys_initcall(hugetlb_init);
2712
2713 /* Should be called on processing a hugepagesz=... option */
2714 void __init hugetlb_bad_size(void)
2715 {
2716         parsed_valid_hugepagesz = false;
2717 }
2718
2719 void __init hugetlb_add_hstate(unsigned int order)
2720 {
2721         struct hstate *h;
2722         unsigned long i;
2723
2724         if (size_to_hstate(PAGE_SIZE << order)) {
2725                 pr_warn("hugepagesz= specified twice, ignoring\n");
2726                 return;
2727         }
2728         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2729         BUG_ON(order == 0);
2730         h = &hstates[hugetlb_max_hstate++];
2731         h->order = order;
2732         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2733         h->nr_huge_pages = 0;
2734         h->free_huge_pages = 0;
2735         for (i = 0; i < MAX_NUMNODES; ++i)
2736                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2737         INIT_LIST_HEAD(&h->hugepage_activelist);
2738         h->next_nid_to_alloc = first_memory_node;
2739         h->next_nid_to_free = first_memory_node;
2740         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2741                                         huge_page_size(h)/1024);
2742
2743         parsed_hstate = h;
2744 }
2745
2746 static int __init hugetlb_nrpages_setup(char *s)
2747 {
2748         unsigned long *mhp;
2749         static unsigned long *last_mhp;
2750
2751         if (!parsed_valid_hugepagesz) {
2752                 pr_warn("hugepages = %s preceded by "
2753                         "an unsupported hugepagesz, ignoring\n", s);
2754                 parsed_valid_hugepagesz = true;
2755                 return 1;
2756         }
2757         /*
2758          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2759          * so this hugepages= parameter goes to the "default hstate".
2760          */
2761         else if (!hugetlb_max_hstate)
2762                 mhp = &default_hstate_max_huge_pages;
2763         else
2764                 mhp = &parsed_hstate->max_huge_pages;
2765
2766         if (mhp == last_mhp) {
2767                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2768                 return 1;
2769         }
2770
2771         if (sscanf(s, "%lu", mhp) <= 0)
2772                 *mhp = 0;
2773
2774         /*
2775          * Global state is always initialized later in hugetlb_init.
2776          * But we need to allocate >= MAX_ORDER hstates here early to still
2777          * use the bootmem allocator.
2778          */
2779         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2780                 hugetlb_hstate_alloc_pages(parsed_hstate);
2781
2782         last_mhp = mhp;
2783
2784         return 1;
2785 }
2786 __setup("hugepages=", hugetlb_nrpages_setup);
2787
2788 static int __init hugetlb_default_setup(char *s)
2789 {
2790         default_hstate_size = memparse(s, &s);
2791         return 1;
2792 }
2793 __setup("default_hugepagesz=", hugetlb_default_setup);
2794
2795 static unsigned int cpuset_mems_nr(unsigned int *array)
2796 {
2797         int node;
2798         unsigned int nr = 0;
2799
2800         for_each_node_mask(node, cpuset_current_mems_allowed)
2801                 nr += array[node];
2802
2803         return nr;
2804 }
2805
2806 #ifdef CONFIG_SYSCTL
2807 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2808                          struct ctl_table *table, int write,
2809                          void __user *buffer, size_t *length, loff_t *ppos)
2810 {
2811         struct hstate *h = &default_hstate;
2812         unsigned long tmp = h->max_huge_pages;
2813         int ret;
2814
2815         if (!hugepages_supported())
2816                 return -EOPNOTSUPP;
2817
2818         table->data = &tmp;
2819         table->maxlen = sizeof(unsigned long);
2820         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2821         if (ret)
2822                 goto out;
2823
2824         if (write)
2825                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2826                                                   NUMA_NO_NODE, tmp, *length);
2827 out:
2828         return ret;
2829 }
2830
2831 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2832                           void __user *buffer, size_t *length, loff_t *ppos)
2833 {
2834
2835         return hugetlb_sysctl_handler_common(false, table, write,
2836                                                         buffer, length, ppos);
2837 }
2838
2839 #ifdef CONFIG_NUMA
2840 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2841                           void __user *buffer, size_t *length, loff_t *ppos)
2842 {
2843         return hugetlb_sysctl_handler_common(true, table, write,
2844                                                         buffer, length, ppos);
2845 }
2846 #endif /* CONFIG_NUMA */
2847
2848 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2849                         void __user *buffer,
2850                         size_t *length, loff_t *ppos)
2851 {
2852         struct hstate *h = &default_hstate;
2853         unsigned long tmp;
2854         int ret;
2855
2856         if (!hugepages_supported())
2857                 return -EOPNOTSUPP;
2858
2859         tmp = h->nr_overcommit_huge_pages;
2860
2861         if (write && hstate_is_gigantic(h))
2862                 return -EINVAL;
2863
2864         table->data = &tmp;
2865         table->maxlen = sizeof(unsigned long);
2866         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2867         if (ret)
2868                 goto out;
2869
2870         if (write) {
2871                 spin_lock(&hugetlb_lock);
2872                 h->nr_overcommit_huge_pages = tmp;
2873                 spin_unlock(&hugetlb_lock);
2874         }
2875 out:
2876         return ret;
2877 }
2878
2879 #endif /* CONFIG_SYSCTL */
2880
2881 void hugetlb_report_meminfo(struct seq_file *m)
2882 {
2883         struct hstate *h = &default_hstate;
2884         if (!hugepages_supported())
2885                 return;
2886         seq_printf(m,
2887                         "HugePages_Total:   %5lu\n"
2888                         "HugePages_Free:    %5lu\n"
2889                         "HugePages_Rsvd:    %5lu\n"
2890                         "HugePages_Surp:    %5lu\n"
2891                         "Hugepagesize:   %8lu kB\n",
2892                         h->nr_huge_pages,
2893                         h->free_huge_pages,
2894                         h->resv_huge_pages,
2895                         h->surplus_huge_pages,
2896                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2897 }
2898
2899 int hugetlb_report_node_meminfo(int nid, char *buf)
2900 {
2901         struct hstate *h = &default_hstate;
2902         if (!hugepages_supported())
2903                 return 0;
2904         return sprintf(buf,
2905                 "Node %d HugePages_Total: %5u\n"
2906                 "Node %d HugePages_Free:  %5u\n"
2907                 "Node %d HugePages_Surp:  %5u\n",
2908                 nid, h->nr_huge_pages_node[nid],
2909                 nid, h->free_huge_pages_node[nid],
2910                 nid, h->surplus_huge_pages_node[nid]);
2911 }
2912
2913 void hugetlb_show_meminfo(void)
2914 {
2915         struct hstate *h;
2916         int nid;
2917
2918         if (!hugepages_supported())
2919                 return;
2920
2921         for_each_node_state(nid, N_MEMORY)
2922                 for_each_hstate(h)
2923                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2924                                 nid,
2925                                 h->nr_huge_pages_node[nid],
2926                                 h->free_huge_pages_node[nid],
2927                                 h->surplus_huge_pages_node[nid],
2928                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2929 }
2930
2931 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2932 {
2933         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2934                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2935 }
2936
2937 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2938 unsigned long hugetlb_total_pages(void)
2939 {
2940         struct hstate *h;
2941         unsigned long nr_total_pages = 0;
2942
2943         for_each_hstate(h)
2944                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2945         return nr_total_pages;
2946 }
2947
2948 static int hugetlb_acct_memory(struct hstate *h, long delta)
2949 {
2950         int ret = -ENOMEM;
2951
2952         spin_lock(&hugetlb_lock);
2953         /*
2954          * When cpuset is configured, it breaks the strict hugetlb page
2955          * reservation as the accounting is done on a global variable. Such
2956          * reservation is completely rubbish in the presence of cpuset because
2957          * the reservation is not checked against page availability for the
2958          * current cpuset. Application can still potentially OOM'ed by kernel
2959          * with lack of free htlb page in cpuset that the task is in.
2960          * Attempt to enforce strict accounting with cpuset is almost
2961          * impossible (or too ugly) because cpuset is too fluid that
2962          * task or memory node can be dynamically moved between cpusets.
2963          *
2964          * The change of semantics for shared hugetlb mapping with cpuset is
2965          * undesirable. However, in order to preserve some of the semantics,
2966          * we fall back to check against current free page availability as
2967          * a best attempt and hopefully to minimize the impact of changing
2968          * semantics that cpuset has.
2969          */
2970         if (delta > 0) {
2971                 if (gather_surplus_pages(h, delta) < 0)
2972                         goto out;
2973
2974                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2975                         return_unused_surplus_pages(h, delta);
2976                         goto out;
2977                 }
2978         }
2979
2980         ret = 0;
2981         if (delta < 0)
2982                 return_unused_surplus_pages(h, (unsigned long) -delta);
2983
2984 out:
2985         spin_unlock(&hugetlb_lock);
2986         return ret;
2987 }
2988
2989 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2990 {
2991         struct resv_map *resv = vma_resv_map(vma);
2992
2993         /*
2994          * This new VMA should share its siblings reservation map if present.
2995          * The VMA will only ever have a valid reservation map pointer where
2996          * it is being copied for another still existing VMA.  As that VMA
2997          * has a reference to the reservation map it cannot disappear until
2998          * after this open call completes.  It is therefore safe to take a
2999          * new reference here without additional locking.
3000          */
3001         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3002                 kref_get(&resv->refs);
3003 }
3004
3005 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3006 {
3007         struct hstate *h = hstate_vma(vma);
3008         struct resv_map *resv = vma_resv_map(vma);
3009         struct hugepage_subpool *spool = subpool_vma(vma);
3010         unsigned long reserve, start, end;
3011         long gbl_reserve;
3012
3013         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3014                 return;
3015
3016         start = vma_hugecache_offset(h, vma, vma->vm_start);
3017         end = vma_hugecache_offset(h, vma, vma->vm_end);
3018
3019         reserve = (end - start) - region_count(resv, start, end);
3020
3021         kref_put(&resv->refs, resv_map_release);
3022
3023         if (reserve) {
3024                 /*
3025                  * Decrement reserve counts.  The global reserve count may be
3026                  * adjusted if the subpool has a minimum size.
3027                  */
3028                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3029                 hugetlb_acct_memory(h, -gbl_reserve);
3030         }
3031 }
3032
3033 /*
3034  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3035  * handle_mm_fault() to try to instantiate regular-sized pages in the
3036  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3037  * this far.
3038  */
3039 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3040 {
3041         BUG();
3042         return 0;
3043 }
3044
3045 const struct vm_operations_struct hugetlb_vm_ops = {
3046         .fault = hugetlb_vm_op_fault,
3047         .open = hugetlb_vm_op_open,
3048         .close = hugetlb_vm_op_close,
3049 };
3050
3051 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3052                                 int writable)
3053 {
3054         pte_t entry;
3055
3056         if (writable) {
3057                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3058                                          vma->vm_page_prot)));
3059         } else {
3060                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3061                                            vma->vm_page_prot));
3062         }
3063         entry = pte_mkyoung(entry);
3064         entry = pte_mkhuge(entry);
3065         entry = arch_make_huge_pte(entry, vma, page, writable);
3066
3067         return entry;
3068 }
3069
3070 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3071                                    unsigned long address, pte_t *ptep)
3072 {
3073         pte_t entry;
3074
3075         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3076         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3077                 update_mmu_cache(vma, address, ptep);
3078 }
3079
3080 static int is_hugetlb_entry_migration(pte_t pte)
3081 {
3082         swp_entry_t swp;
3083
3084         if (huge_pte_none(pte) || pte_present(pte))
3085                 return 0;
3086         swp = pte_to_swp_entry(pte);
3087         if (non_swap_entry(swp) && is_migration_entry(swp))
3088                 return 1;
3089         else
3090                 return 0;
3091 }
3092
3093 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3094 {
3095         swp_entry_t swp;
3096
3097         if (huge_pte_none(pte) || pte_present(pte))
3098                 return 0;
3099         swp = pte_to_swp_entry(pte);
3100         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3101                 return 1;
3102         else
3103                 return 0;
3104 }
3105
3106 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3107                             struct vm_area_struct *vma)
3108 {
3109         pte_t *src_pte, *dst_pte, entry;
3110         struct page *ptepage;
3111         unsigned long addr;
3112         int cow;
3113         struct hstate *h = hstate_vma(vma);
3114         unsigned long sz = huge_page_size(h);
3115         unsigned long mmun_start;       /* For mmu_notifiers */
3116         unsigned long mmun_end;         /* For mmu_notifiers */
3117         int ret = 0;
3118
3119         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3120
3121         mmun_start = vma->vm_start;
3122         mmun_end = vma->vm_end;
3123         if (cow)
3124                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3125
3126         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3127                 spinlock_t *src_ptl, *dst_ptl;
3128                 src_pte = huge_pte_offset(src, addr);
3129                 if (!src_pte)
3130                         continue;
3131                 dst_pte = huge_pte_alloc(dst, addr, sz);
3132                 if (!dst_pte) {
3133                         ret = -ENOMEM;
3134                         break;
3135                 }
3136
3137                 /* If the pagetables are shared don't copy or take references */
3138                 if (dst_pte == src_pte)
3139                         continue;
3140
3141                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3142                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3143                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3144                 entry = huge_ptep_get(src_pte);
3145                 if (huge_pte_none(entry)) { /* skip none entry */
3146                         ;
3147                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3148                                     is_hugetlb_entry_hwpoisoned(entry))) {
3149                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3150
3151                         if (is_write_migration_entry(swp_entry) && cow) {
3152                                 /*
3153                                  * COW mappings require pages in both
3154                                  * parent and child to be set to read.
3155                                  */
3156                                 make_migration_entry_read(&swp_entry);
3157                                 entry = swp_entry_to_pte(swp_entry);
3158                                 set_huge_pte_at(src, addr, src_pte, entry);
3159                         }
3160                         set_huge_pte_at(dst, addr, dst_pte, entry);
3161                 } else {
3162                         if (cow) {
3163                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3164                                 mmu_notifier_invalidate_range(src, mmun_start,
3165                                                                    mmun_end);
3166                         }
3167                         entry = huge_ptep_get(src_pte);
3168                         ptepage = pte_page(entry);
3169                         get_page(ptepage);
3170                         page_dup_rmap(ptepage, true);
3171                         set_huge_pte_at(dst, addr, dst_pte, entry);
3172                         hugetlb_count_add(pages_per_huge_page(h), dst);
3173                 }
3174                 spin_unlock(src_ptl);
3175                 spin_unlock(dst_ptl);
3176         }
3177
3178         if (cow)
3179                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3180
3181         return ret;
3182 }
3183
3184 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3185                             unsigned long start, unsigned long end,
3186                             struct page *ref_page)
3187 {
3188         struct mm_struct *mm = vma->vm_mm;
3189         unsigned long address;
3190         pte_t *ptep;
3191         pte_t pte;
3192         spinlock_t *ptl;
3193         struct page *page;
3194         struct hstate *h = hstate_vma(vma);
3195         unsigned long sz = huge_page_size(h);
3196         const unsigned long mmun_start = start; /* For mmu_notifiers */
3197         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3198
3199         WARN_ON(!is_vm_hugetlb_page(vma));
3200         BUG_ON(start & ~huge_page_mask(h));
3201         BUG_ON(end & ~huge_page_mask(h));
3202
3203         tlb_start_vma(tlb, vma);
3204         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3205         address = start;
3206         for (; address < end; address += sz) {
3207                 ptep = huge_pte_offset(mm, address);
3208                 if (!ptep)
3209                         continue;
3210
3211                 ptl = huge_pte_lock(h, mm, ptep);
3212                 if (huge_pmd_unshare(mm, &address, ptep)) {
3213                         spin_unlock(ptl);
3214                         continue;
3215                 }
3216
3217                 pte = huge_ptep_get(ptep);
3218                 if (huge_pte_none(pte)) {
3219                         spin_unlock(ptl);
3220                         continue;
3221                 }
3222
3223                 /*
3224                  * Migrating hugepage or HWPoisoned hugepage is already
3225                  * unmapped and its refcount is dropped, so just clear pte here.
3226                  */
3227                 if (unlikely(!pte_present(pte))) {
3228                         huge_pte_clear(mm, address, ptep);
3229                         spin_unlock(ptl);
3230                         continue;
3231                 }
3232
3233                 page = pte_page(pte);
3234                 /*
3235                  * If a reference page is supplied, it is because a specific
3236                  * page is being unmapped, not a range. Ensure the page we
3237                  * are about to unmap is the actual page of interest.
3238                  */
3239                 if (ref_page) {
3240                         if (page != ref_page) {
3241                                 spin_unlock(ptl);
3242                                 continue;
3243                         }
3244                         /*
3245                          * Mark the VMA as having unmapped its page so that
3246                          * future faults in this VMA will fail rather than
3247                          * looking like data was lost
3248                          */
3249                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3250                 }
3251
3252                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3253                 tlb_remove_tlb_entry(tlb, ptep, address);
3254                 if (huge_pte_dirty(pte))
3255                         set_page_dirty(page);
3256
3257                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3258                 page_remove_rmap(page, true);
3259
3260                 spin_unlock(ptl);
3261                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3262                 /*
3263                  * Bail out after unmapping reference page if supplied
3264                  */
3265                 if (ref_page)
3266                         break;
3267         }
3268         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3269         tlb_end_vma(tlb, vma);
3270 }
3271
3272 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3273                           struct vm_area_struct *vma, unsigned long start,
3274                           unsigned long end, struct page *ref_page)
3275 {
3276         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3277
3278         /*
3279          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3280          * test will fail on a vma being torn down, and not grab a page table
3281          * on its way out.  We're lucky that the flag has such an appropriate
3282          * name, and can in fact be safely cleared here. We could clear it
3283          * before the __unmap_hugepage_range above, but all that's necessary
3284          * is to clear it before releasing the i_mmap_rwsem. This works
3285          * because in the context this is called, the VMA is about to be
3286          * destroyed and the i_mmap_rwsem is held.
3287          */
3288         vma->vm_flags &= ~VM_MAYSHARE;
3289 }
3290
3291 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3292                           unsigned long end, struct page *ref_page)
3293 {
3294         struct mm_struct *mm;
3295         struct mmu_gather tlb;
3296
3297         mm = vma->vm_mm;
3298
3299         tlb_gather_mmu(&tlb, mm, start, end);
3300         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3301         tlb_finish_mmu(&tlb, start, end);
3302 }
3303
3304 /*
3305  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3306  * mappping it owns the reserve page for. The intention is to unmap the page
3307  * from other VMAs and let the children be SIGKILLed if they are faulting the
3308  * same region.
3309  */
3310 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3311                               struct page *page, unsigned long address)
3312 {
3313         struct hstate *h = hstate_vma(vma);
3314         struct vm_area_struct *iter_vma;
3315         struct address_space *mapping;
3316         pgoff_t pgoff;
3317
3318         /*
3319          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3320          * from page cache lookup which is in HPAGE_SIZE units.
3321          */
3322         address = address & huge_page_mask(h);
3323         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3324                         vma->vm_pgoff;
3325         mapping = vma->vm_file->f_mapping;
3326
3327         /*
3328          * Take the mapping lock for the duration of the table walk. As
3329          * this mapping should be shared between all the VMAs,
3330          * __unmap_hugepage_range() is called as the lock is already held
3331          */
3332         i_mmap_lock_write(mapping);
3333         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3334                 /* Do not unmap the current VMA */
3335                 if (iter_vma == vma)
3336                         continue;
3337
3338                 /*
3339                  * Shared VMAs have their own reserves and do not affect
3340                  * MAP_PRIVATE accounting but it is possible that a shared
3341                  * VMA is using the same page so check and skip such VMAs.
3342                  */
3343                 if (iter_vma->vm_flags & VM_MAYSHARE)
3344                         continue;
3345
3346                 /*
3347                  * Unmap the page from other VMAs without their own reserves.
3348                  * They get marked to be SIGKILLed if they fault in these
3349                  * areas. This is because a future no-page fault on this VMA
3350                  * could insert a zeroed page instead of the data existing
3351                  * from the time of fork. This would look like data corruption
3352                  */
3353                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3354                         unmap_hugepage_range(iter_vma, address,
3355                                              address + huge_page_size(h), page);
3356         }
3357         i_mmap_unlock_write(mapping);
3358 }
3359
3360 /*
3361  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3362  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3363  * cannot race with other handlers or page migration.
3364  * Keep the pte_same checks anyway to make transition from the mutex easier.
3365  */
3366 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3367                         unsigned long address, pte_t *ptep, pte_t pte,
3368                         struct page *pagecache_page, spinlock_t *ptl)
3369 {
3370         struct hstate *h = hstate_vma(vma);
3371         struct page *old_page, *new_page;
3372         int ret = 0, outside_reserve = 0;
3373         unsigned long mmun_start;       /* For mmu_notifiers */
3374         unsigned long mmun_end;         /* For mmu_notifiers */
3375
3376         old_page = pte_page(pte);
3377
3378 retry_avoidcopy:
3379         /* If no-one else is actually using this page, avoid the copy
3380          * and just make the page writable */
3381         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3382                 page_move_anon_rmap(old_page, vma);
3383                 set_huge_ptep_writable(vma, address, ptep);
3384                 return 0;
3385         }
3386
3387         /*
3388          * If the process that created a MAP_PRIVATE mapping is about to
3389          * perform a COW due to a shared page count, attempt to satisfy
3390          * the allocation without using the existing reserves. The pagecache
3391          * page is used to determine if the reserve at this address was
3392          * consumed or not. If reserves were used, a partial faulted mapping
3393          * at the time of fork() could consume its reserves on COW instead
3394          * of the full address range.
3395          */
3396         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3397                         old_page != pagecache_page)
3398                 outside_reserve = 1;
3399
3400         get_page(old_page);
3401
3402         /*
3403          * Drop page table lock as buddy allocator may be called. It will
3404          * be acquired again before returning to the caller, as expected.
3405          */
3406         spin_unlock(ptl);
3407         new_page = alloc_huge_page(vma, address, outside_reserve);
3408
3409         if (IS_ERR(new_page)) {
3410                 /*
3411                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3412                  * it is due to references held by a child and an insufficient
3413                  * huge page pool. To guarantee the original mappers
3414                  * reliability, unmap the page from child processes. The child
3415                  * may get SIGKILLed if it later faults.
3416                  */
3417                 if (outside_reserve) {
3418                         put_page(old_page);
3419                         BUG_ON(huge_pte_none(pte));
3420                         unmap_ref_private(mm, vma, old_page, address);
3421                         BUG_ON(huge_pte_none(pte));
3422                         spin_lock(ptl);
3423                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3424                         if (likely(ptep &&
3425                                    pte_same(huge_ptep_get(ptep), pte)))
3426                                 goto retry_avoidcopy;
3427                         /*
3428                          * race occurs while re-acquiring page table
3429                          * lock, and our job is done.
3430                          */
3431                         return 0;
3432                 }
3433
3434                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3435                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3436                 goto out_release_old;
3437         }
3438
3439         /*
3440          * When the original hugepage is shared one, it does not have
3441          * anon_vma prepared.
3442          */
3443         if (unlikely(anon_vma_prepare(vma))) {
3444                 ret = VM_FAULT_OOM;
3445                 goto out_release_all;
3446         }
3447
3448         copy_user_huge_page(new_page, old_page, address, vma,
3449                             pages_per_huge_page(h));
3450         __SetPageUptodate(new_page);
3451         set_page_huge_active(new_page);
3452
3453         mmun_start = address & huge_page_mask(h);
3454         mmun_end = mmun_start + huge_page_size(h);
3455         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3456
3457         /*
3458          * Retake the page table lock to check for racing updates
3459          * before the page tables are altered
3460          */
3461         spin_lock(ptl);
3462         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3463         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3464                 ClearPagePrivate(new_page);
3465
3466                 /* Break COW */
3467                 huge_ptep_clear_flush(vma, address, ptep);
3468                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3469                 set_huge_pte_at(mm, address, ptep,
3470                                 make_huge_pte(vma, new_page, 1));
3471                 page_remove_rmap(old_page, true);
3472                 hugepage_add_new_anon_rmap(new_page, vma, address);
3473                 /* Make the old page be freed below */
3474                 new_page = old_page;
3475         }
3476         spin_unlock(ptl);
3477         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3478 out_release_all:
3479         put_page(new_page);
3480 out_release_old:
3481         put_page(old_page);
3482
3483         spin_lock(ptl); /* Caller expects lock to be held */
3484         return ret;
3485 }
3486
3487 /* Return the pagecache page at a given address within a VMA */
3488 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3489                         struct vm_area_struct *vma, unsigned long address)
3490 {
3491         struct address_space *mapping;
3492         pgoff_t idx;
3493
3494         mapping = vma->vm_file->f_mapping;
3495         idx = vma_hugecache_offset(h, vma, address);
3496
3497         return find_lock_page(mapping, idx);
3498 }
3499
3500 /*
3501  * Return whether there is a pagecache page to back given address within VMA.
3502  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3503  */
3504 static bool hugetlbfs_pagecache_present(struct hstate *h,
3505                         struct vm_area_struct *vma, unsigned long address)
3506 {
3507         struct address_space *mapping;
3508         pgoff_t idx;
3509         struct page *page;
3510
3511         mapping = vma->vm_file->f_mapping;
3512         idx = vma_hugecache_offset(h, vma, address);
3513
3514         page = find_get_page(mapping, idx);
3515         if (page)
3516                 put_page(page);
3517         return page != NULL;
3518 }
3519
3520 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3521                            pgoff_t idx)
3522 {
3523         struct inode *inode = mapping->host;
3524         struct hstate *h = hstate_inode(inode);
3525         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3526
3527         if (err)
3528                 return err;
3529         ClearPagePrivate(page);
3530
3531         spin_lock(&inode->i_lock);
3532         inode->i_blocks += blocks_per_huge_page(h);
3533         spin_unlock(&inode->i_lock);
3534         return 0;
3535 }
3536
3537 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3538                            struct address_space *mapping, pgoff_t idx,
3539                            unsigned long address, pte_t *ptep, unsigned int flags)
3540 {
3541         struct hstate *h = hstate_vma(vma);
3542         int ret = VM_FAULT_SIGBUS;
3543         int anon_rmap = 0;
3544         unsigned long size;
3545         struct page *page;
3546         pte_t new_pte;
3547         spinlock_t *ptl;
3548
3549         /*
3550          * Currently, we are forced to kill the process in the event the
3551          * original mapper has unmapped pages from the child due to a failed
3552          * COW. Warn that such a situation has occurred as it may not be obvious
3553          */
3554         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3555                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3556                            current->pid);
3557                 return ret;
3558         }
3559
3560         /*
3561          * Use page lock to guard against racing truncation
3562          * before we get page_table_lock.
3563          */
3564 retry:
3565         page = find_lock_page(mapping, idx);
3566         if (!page) {
3567                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3568                 if (idx >= size)
3569                         goto out;
3570                 page = alloc_huge_page(vma, address, 0);
3571                 if (IS_ERR(page)) {
3572                         ret = PTR_ERR(page);
3573                         if (ret == -ENOMEM)
3574                                 ret = VM_FAULT_OOM;
3575                         else
3576                                 ret = VM_FAULT_SIGBUS;
3577                         goto out;
3578                 }
3579                 clear_huge_page(page, address, pages_per_huge_page(h));
3580                 __SetPageUptodate(page);
3581                 set_page_huge_active(page);
3582
3583                 if (vma->vm_flags & VM_MAYSHARE) {
3584                         int err = huge_add_to_page_cache(page, mapping, idx);
3585                         if (err) {
3586                                 put_page(page);
3587                                 if (err == -EEXIST)
3588                                         goto retry;
3589                                 goto out;
3590                         }
3591                 } else {
3592                         lock_page(page);
3593                         if (unlikely(anon_vma_prepare(vma))) {
3594                                 ret = VM_FAULT_OOM;
3595                                 goto backout_unlocked;
3596                         }
3597                         anon_rmap = 1;
3598                 }
3599         } else {
3600                 /*
3601                  * If memory error occurs between mmap() and fault, some process
3602                  * don't have hwpoisoned swap entry for errored virtual address.
3603                  * So we need to block hugepage fault by PG_hwpoison bit check.
3604                  */
3605                 if (unlikely(PageHWPoison(page))) {
3606                         ret = VM_FAULT_HWPOISON |
3607                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3608                         goto backout_unlocked;
3609                 }
3610         }
3611
3612         /*
3613          * If we are going to COW a private mapping later, we examine the
3614          * pending reservations for this page now. This will ensure that
3615          * any allocations necessary to record that reservation occur outside
3616          * the spinlock.
3617          */
3618         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3619                 if (vma_needs_reservation(h, vma, address) < 0) {
3620                         ret = VM_FAULT_OOM;
3621                         goto backout_unlocked;
3622                 }
3623                 /* Just decrements count, does not deallocate */
3624                 vma_end_reservation(h, vma, address);
3625         }
3626
3627         ptl = huge_pte_lockptr(h, mm, ptep);
3628         spin_lock(ptl);
3629         size = i_size_read(mapping->host) >> huge_page_shift(h);
3630         if (idx >= size)
3631                 goto backout;
3632
3633         ret = 0;
3634         if (!huge_pte_none(huge_ptep_get(ptep)))
3635                 goto backout;
3636
3637         if (anon_rmap) {
3638                 ClearPagePrivate(page);
3639                 hugepage_add_new_anon_rmap(page, vma, address);
3640         } else
3641                 page_dup_rmap(page, true);
3642         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3643                                 && (vma->vm_flags & VM_SHARED)));
3644         set_huge_pte_at(mm, address, ptep, new_pte);
3645
3646         hugetlb_count_add(pages_per_huge_page(h), mm);
3647         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3648                 /* Optimization, do the COW without a second fault */
3649                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3650         }
3651
3652         spin_unlock(ptl);
3653         unlock_page(page);
3654 out:
3655         return ret;
3656
3657 backout:
3658         spin_unlock(ptl);
3659 backout_unlocked:
3660         unlock_page(page);
3661         put_page(page);
3662         goto out;
3663 }
3664
3665 #ifdef CONFIG_SMP
3666 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3667                             struct vm_area_struct *vma,
3668                             struct address_space *mapping,
3669                             pgoff_t idx, unsigned long address)
3670 {
3671         unsigned long key[2];
3672         u32 hash;
3673
3674         if (vma->vm_flags & VM_SHARED) {
3675                 key[0] = (unsigned long) mapping;
3676                 key[1] = idx;
3677         } else {
3678                 key[0] = (unsigned long) mm;
3679                 key[1] = address >> huge_page_shift(h);
3680         }
3681
3682         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3683
3684         return hash & (num_fault_mutexes - 1);
3685 }
3686 #else
3687 /*
3688  * For uniprocesor systems we always use a single mutex, so just
3689  * return 0 and avoid the hashing overhead.
3690  */
3691 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3692                             struct vm_area_struct *vma,
3693                             struct address_space *mapping,
3694                             pgoff_t idx, unsigned long address)
3695 {
3696         return 0;
3697 }
3698 #endif
3699
3700 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3701                         unsigned long address, unsigned int flags)
3702 {
3703         pte_t *ptep, entry;
3704         spinlock_t *ptl;
3705         int ret;
3706         u32 hash;
3707         pgoff_t idx;
3708         struct page *page = NULL;
3709         struct page *pagecache_page = NULL;
3710         struct hstate *h = hstate_vma(vma);
3711         struct address_space *mapping;
3712         int need_wait_lock = 0;
3713
3714         address &= huge_page_mask(h);
3715
3716         ptep = huge_pte_offset(mm, address);
3717         if (ptep) {
3718                 entry = huge_ptep_get(ptep);
3719                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3720                         migration_entry_wait_huge(vma, mm, ptep);
3721                         return 0;
3722                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3723                         return VM_FAULT_HWPOISON_LARGE |
3724                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3725         } else {
3726                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3727                 if (!ptep)
3728                         return VM_FAULT_OOM;
3729         }
3730
3731         mapping = vma->vm_file->f_mapping;
3732         idx = vma_hugecache_offset(h, vma, address);
3733
3734         /*
3735          * Serialize hugepage allocation and instantiation, so that we don't
3736          * get spurious allocation failures if two CPUs race to instantiate
3737          * the same page in the page cache.
3738          */
3739         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3740         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3741
3742         entry = huge_ptep_get(ptep);
3743         if (huge_pte_none(entry)) {
3744                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3745                 goto out_mutex;
3746         }
3747
3748         ret = 0;
3749
3750         /*
3751          * entry could be a migration/hwpoison entry at this point, so this
3752          * check prevents the kernel from going below assuming that we have
3753          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3754          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3755          * handle it.
3756          */
3757         if (!pte_present(entry))
3758                 goto out_mutex;
3759
3760         /*
3761          * If we are going to COW the mapping later, we examine the pending
3762          * reservations for this page now. This will ensure that any
3763          * allocations necessary to record that reservation occur outside the
3764          * spinlock. For private mappings, we also lookup the pagecache
3765          * page now as it is used to determine if a reservation has been
3766          * consumed.
3767          */
3768         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3769                 if (vma_needs_reservation(h, vma, address) < 0) {
3770                         ret = VM_FAULT_OOM;
3771                         goto out_mutex;
3772                 }
3773                 /* Just decrements count, does not deallocate */
3774                 vma_end_reservation(h, vma, address);
3775
3776                 if (!(vma->vm_flags & VM_MAYSHARE))
3777                         pagecache_page = hugetlbfs_pagecache_page(h,
3778                                                                 vma, address);
3779         }
3780
3781         ptl = huge_pte_lock(h, mm, ptep);
3782
3783         /* Check for a racing update before calling hugetlb_cow */
3784         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3785                 goto out_ptl;
3786
3787         /*
3788          * hugetlb_cow() requires page locks of pte_page(entry) and
3789          * pagecache_page, so here we need take the former one
3790          * when page != pagecache_page or !pagecache_page.
3791          */
3792         page = pte_page(entry);
3793         if (page != pagecache_page)
3794                 if (!trylock_page(page)) {
3795                         need_wait_lock = 1;
3796                         goto out_ptl;
3797                 }
3798
3799         get_page(page);
3800
3801         if (flags & FAULT_FLAG_WRITE) {
3802                 if (!huge_pte_write(entry)) {
3803                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3804                                         pagecache_page, ptl);
3805                         goto out_put_page;
3806                 }
3807                 entry = huge_pte_mkdirty(entry);
3808         }
3809         entry = pte_mkyoung(entry);
3810         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3811                                                 flags & FAULT_FLAG_WRITE))
3812                 update_mmu_cache(vma, address, ptep);
3813 out_put_page:
3814         if (page != pagecache_page)
3815                 unlock_page(page);
3816         put_page(page);
3817 out_ptl:
3818         spin_unlock(ptl);
3819
3820         if (pagecache_page) {
3821                 unlock_page(pagecache_page);
3822                 put_page(pagecache_page);
3823         }
3824 out_mutex:
3825         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3826         /*
3827          * Generally it's safe to hold refcount during waiting page lock. But
3828          * here we just wait to defer the next page fault to avoid busy loop and
3829          * the page is not used after unlocked before returning from the current
3830          * page fault. So we are safe from accessing freed page, even if we wait
3831          * here without taking refcount.
3832          */
3833         if (need_wait_lock)
3834                 wait_on_page_locked(page);
3835         return ret;
3836 }
3837
3838 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3839                          struct page **pages, struct vm_area_struct **vmas,
3840                          unsigned long *position, unsigned long *nr_pages,
3841                          long i, unsigned int flags)
3842 {
3843         unsigned long pfn_offset;
3844         unsigned long vaddr = *position;
3845         unsigned long remainder = *nr_pages;
3846         struct hstate *h = hstate_vma(vma);
3847
3848         while (vaddr < vma->vm_end && remainder) {
3849                 pte_t *pte;
3850                 spinlock_t *ptl = NULL;
3851                 int absent;
3852                 struct page *page;
3853
3854                 /*
3855                  * If we have a pending SIGKILL, don't keep faulting pages and
3856                  * potentially allocating memory.
3857                  */
3858                 if (unlikely(fatal_signal_pending(current))) {
3859                         remainder = 0;
3860                         break;
3861                 }
3862
3863                 /*
3864                  * Some archs (sparc64, sh*) have multiple pte_ts to
3865                  * each hugepage.  We have to make sure we get the
3866                  * first, for the page indexing below to work.
3867                  *
3868                  * Note that page table lock is not held when pte is null.
3869                  */
3870                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3871                 if (pte)
3872                         ptl = huge_pte_lock(h, mm, pte);
3873                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3874
3875                 /*
3876                  * When coredumping, it suits get_dump_page if we just return
3877                  * an error where there's an empty slot with no huge pagecache
3878                  * to back it.  This way, we avoid allocating a hugepage, and
3879                  * the sparse dumpfile avoids allocating disk blocks, but its
3880                  * huge holes still show up with zeroes where they need to be.
3881                  */
3882                 if (absent && (flags & FOLL_DUMP) &&
3883                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3884                         if (pte)
3885                                 spin_unlock(ptl);
3886                         remainder = 0;
3887                         break;
3888                 }
3889
3890                 /*
3891                  * We need call hugetlb_fault for both hugepages under migration
3892                  * (in which case hugetlb_fault waits for the migration,) and
3893                  * hwpoisoned hugepages (in which case we need to prevent the
3894                  * caller from accessing to them.) In order to do this, we use
3895                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3896                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3897                  * both cases, and because we can't follow correct pages
3898                  * directly from any kind of swap entries.
3899                  */
3900                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3901                     ((flags & FOLL_WRITE) &&
3902                       !huge_pte_write(huge_ptep_get(pte)))) {
3903                         int ret;
3904
3905                         if (pte)
3906                                 spin_unlock(ptl);
3907                         ret = hugetlb_fault(mm, vma, vaddr,
3908                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3909                         if (!(ret & VM_FAULT_ERROR))
3910                                 continue;
3911
3912                         remainder = 0;
3913                         break;
3914                 }
3915
3916                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3917                 page = pte_page(huge_ptep_get(pte));
3918 same_page:
3919                 if (pages) {
3920                         pages[i] = mem_map_offset(page, pfn_offset);
3921                         get_page(pages[i]);
3922                 }
3923
3924                 if (vmas)
3925                         vmas[i] = vma;
3926
3927                 vaddr += PAGE_SIZE;
3928                 ++pfn_offset;
3929                 --remainder;
3930                 ++i;
3931                 if (vaddr < vma->vm_end && remainder &&
3932                                 pfn_offset < pages_per_huge_page(h)) {
3933                         /*
3934                          * We use pfn_offset to avoid touching the pageframes
3935                          * of this compound page.
3936                          */
3937                         goto same_page;
3938                 }
3939                 spin_unlock(ptl);
3940         }
3941         *nr_pages = remainder;
3942         *position = vaddr;
3943
3944         return i ? i : -EFAULT;
3945 }
3946
3947 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3948 /*
3949  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3950  * implement this.
3951  */
3952 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3953 #endif
3954
3955 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3956                 unsigned long address, unsigned long end, pgprot_t newprot)
3957 {
3958         struct mm_struct *mm = vma->vm_mm;
3959         unsigned long start = address;
3960         pte_t *ptep;
3961         pte_t pte;
3962         struct hstate *h = hstate_vma(vma);
3963         unsigned long pages = 0;
3964
3965         BUG_ON(address >= end);
3966         flush_cache_range(vma, address, end);
3967
3968         mmu_notifier_invalidate_range_start(mm, start, end);
3969         i_mmap_lock_write(vma->vm_file->f_mapping);
3970         for (; address < end; address += huge_page_size(h)) {
3971                 spinlock_t *ptl;
3972                 ptep = huge_pte_offset(mm, address);
3973                 if (!ptep)
3974                         continue;
3975                 ptl = huge_pte_lock(h, mm, ptep);
3976                 if (huge_pmd_unshare(mm, &address, ptep)) {
3977                         pages++;
3978                         spin_unlock(ptl);
3979                         continue;
3980                 }
3981                 pte = huge_ptep_get(ptep);
3982                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3983                         spin_unlock(ptl);
3984                         continue;
3985                 }
3986                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3987                         swp_entry_t entry = pte_to_swp_entry(pte);
3988
3989                         if (is_write_migration_entry(entry)) {
3990                                 pte_t newpte;
3991
3992                                 make_migration_entry_read(&entry);
3993                                 newpte = swp_entry_to_pte(entry);
3994                                 set_huge_pte_at(mm, address, ptep, newpte);
3995                                 pages++;
3996                         }
3997                         spin_unlock(ptl);
3998                         continue;
3999                 }
4000                 if (!huge_pte_none(pte)) {
4001                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4002                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4003                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4004                         set_huge_pte_at(mm, address, ptep, pte);
4005                         pages++;
4006                 }
4007                 spin_unlock(ptl);
4008         }
4009         /*
4010          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4011          * may have cleared our pud entry and done put_page on the page table:
4012          * once we release i_mmap_rwsem, another task can do the final put_page
4013          * and that page table be reused and filled with junk.
4014          */
4015         flush_hugetlb_tlb_range(vma, start, end);
4016         mmu_notifier_invalidate_range(mm, start, end);
4017         i_mmap_unlock_write(vma->vm_file->f_mapping);
4018         mmu_notifier_invalidate_range_end(mm, start, end);
4019
4020         return pages << h->order;
4021 }
4022
4023 int hugetlb_reserve_pages(struct inode *inode,
4024                                         long from, long to,
4025                                         struct vm_area_struct *vma,
4026                                         vm_flags_t vm_flags)
4027 {
4028         long ret, chg;
4029         struct hstate *h = hstate_inode(inode);
4030         struct hugepage_subpool *spool = subpool_inode(inode);
4031         struct resv_map *resv_map;
4032         long gbl_reserve;
4033
4034         /*
4035          * Only apply hugepage reservation if asked. At fault time, an
4036          * attempt will be made for VM_NORESERVE to allocate a page
4037          * without using reserves
4038          */
4039         if (vm_flags & VM_NORESERVE)
4040                 return 0;
4041
4042         /*
4043          * Shared mappings base their reservation on the number of pages that
4044          * are already allocated on behalf of the file. Private mappings need
4045          * to reserve the full area even if read-only as mprotect() may be
4046          * called to make the mapping read-write. Assume !vma is a shm mapping
4047          */
4048         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4049                 resv_map = inode_resv_map(inode);
4050
4051                 chg = region_chg(resv_map, from, to);
4052
4053         } else {
4054                 resv_map = resv_map_alloc();
4055                 if (!resv_map)
4056                         return -ENOMEM;
4057
4058                 chg = to - from;
4059
4060                 set_vma_resv_map(vma, resv_map);
4061                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4062         }
4063
4064         if (chg < 0) {
4065                 ret = chg;
4066                 goto out_err;
4067         }
4068
4069         /*
4070          * There must be enough pages in the subpool for the mapping. If
4071          * the subpool has a minimum size, there may be some global
4072          * reservations already in place (gbl_reserve).
4073          */
4074         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4075         if (gbl_reserve < 0) {
4076                 ret = -ENOSPC;
4077                 goto out_err;
4078         }
4079
4080         /*
4081          * Check enough hugepages are available for the reservation.
4082          * Hand the pages back to the subpool if there are not
4083          */
4084         ret = hugetlb_acct_memory(h, gbl_reserve);
4085         if (ret < 0) {
4086                 /* put back original number of pages, chg */
4087                 (void)hugepage_subpool_put_pages(spool, chg);
4088                 goto out_err;
4089         }
4090
4091         /*
4092          * Account for the reservations made. Shared mappings record regions
4093          * that have reservations as they are shared by multiple VMAs.
4094          * When the last VMA disappears, the region map says how much
4095          * the reservation was and the page cache tells how much of
4096          * the reservation was consumed. Private mappings are per-VMA and
4097          * only the consumed reservations are tracked. When the VMA
4098          * disappears, the original reservation is the VMA size and the
4099          * consumed reservations are stored in the map. Hence, nothing
4100          * else has to be done for private mappings here
4101          */
4102         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4103                 long add = region_add(resv_map, from, to);
4104
4105                 if (unlikely(chg > add)) {
4106                         /*
4107                          * pages in this range were added to the reserve
4108                          * map between region_chg and region_add.  This
4109                          * indicates a race with alloc_huge_page.  Adjust
4110                          * the subpool and reserve counts modified above
4111                          * based on the difference.
4112                          */
4113                         long rsv_adjust;
4114
4115                         rsv_adjust = hugepage_subpool_put_pages(spool,
4116                                                                 chg - add);
4117                         hugetlb_acct_memory(h, -rsv_adjust);
4118                 }
4119         }
4120         return 0;
4121 out_err:
4122         if (!vma || vma->vm_flags & VM_MAYSHARE)
4123                 region_abort(resv_map, from, to);
4124         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4125                 kref_put(&resv_map->refs, resv_map_release);
4126         return ret;
4127 }
4128
4129 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4130                                                                 long freed)
4131 {
4132         struct hstate *h = hstate_inode(inode);
4133         struct resv_map *resv_map = inode_resv_map(inode);
4134         long chg = 0;
4135         struct hugepage_subpool *spool = subpool_inode(inode);
4136         long gbl_reserve;
4137
4138         if (resv_map) {
4139                 chg = region_del(resv_map, start, end);
4140                 /*
4141                  * region_del() can fail in the rare case where a region
4142                  * must be split and another region descriptor can not be
4143                  * allocated.  If end == LONG_MAX, it will not fail.
4144                  */
4145                 if (chg < 0)
4146                         return chg;
4147         }
4148
4149         spin_lock(&inode->i_lock);
4150         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4151         spin_unlock(&inode->i_lock);
4152
4153         /*
4154          * If the subpool has a minimum size, the number of global
4155          * reservations to be released may be adjusted.
4156          */
4157         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4158         hugetlb_acct_memory(h, -gbl_reserve);
4159
4160         return 0;
4161 }
4162
4163 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4164 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4165                                 struct vm_area_struct *vma,
4166                                 unsigned long addr, pgoff_t idx)
4167 {
4168         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4169                                 svma->vm_start;
4170         unsigned long sbase = saddr & PUD_MASK;
4171         unsigned long s_end = sbase + PUD_SIZE;
4172
4173         /* Allow segments to share if only one is marked locked */
4174         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4175         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4176
4177         /*
4178          * match the virtual addresses, permission and the alignment of the
4179          * page table page.
4180          */
4181         if (pmd_index(addr) != pmd_index(saddr) ||
4182             vm_flags != svm_flags ||
4183             sbase < svma->vm_start || svma->vm_end < s_end)
4184                 return 0;
4185
4186         return saddr;
4187 }
4188
4189 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4190 {
4191         unsigned long base = addr & PUD_MASK;
4192         unsigned long end = base + PUD_SIZE;
4193
4194         /*
4195          * check on proper vm_flags and page table alignment
4196          */
4197         if (vma->vm_flags & VM_MAYSHARE &&
4198             vma->vm_start <= base && end <= vma->vm_end)
4199                 return true;
4200         return false;
4201 }
4202
4203 /*
4204  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4205  * and returns the corresponding pte. While this is not necessary for the
4206  * !shared pmd case because we can allocate the pmd later as well, it makes the
4207  * code much cleaner. pmd allocation is essential for the shared case because
4208  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4209  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4210  * bad pmd for sharing.
4211  */
4212 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4213 {
4214         struct vm_area_struct *vma = find_vma(mm, addr);
4215         struct address_space *mapping = vma->vm_file->f_mapping;
4216         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4217                         vma->vm_pgoff;
4218         struct vm_area_struct *svma;
4219         unsigned long saddr;
4220         pte_t *spte = NULL;
4221         pte_t *pte;
4222         spinlock_t *ptl;
4223
4224         if (!vma_shareable(vma, addr))
4225                 return (pte_t *)pmd_alloc(mm, pud, addr);
4226
4227         i_mmap_lock_write(mapping);
4228         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4229                 if (svma == vma)
4230                         continue;
4231
4232                 saddr = page_table_shareable(svma, vma, addr, idx);
4233                 if (saddr) {
4234                         spte = huge_pte_offset(svma->vm_mm, saddr);
4235                         if (spte) {
4236                                 get_page(virt_to_page(spte));
4237                                 break;
4238                         }
4239                 }
4240         }
4241
4242         if (!spte)
4243                 goto out;
4244
4245         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4246         spin_lock(ptl);
4247         if (pud_none(*pud)) {
4248                 pud_populate(mm, pud,
4249                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4250                 mm_inc_nr_pmds(mm);
4251         } else {
4252                 put_page(virt_to_page(spte));
4253         }
4254         spin_unlock(ptl);
4255 out:
4256         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4257         i_mmap_unlock_write(mapping);
4258         return pte;
4259 }
4260
4261 /*
4262  * unmap huge page backed by shared pte.
4263  *
4264  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4265  * indicated by page_count > 1, unmap is achieved by clearing pud and
4266  * decrementing the ref count. If count == 1, the pte page is not shared.
4267  *
4268  * called with page table lock held.
4269  *
4270  * returns: 1 successfully unmapped a shared pte page
4271  *          0 the underlying pte page is not shared, or it is the last user
4272  */
4273 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4274 {
4275         pgd_t *pgd = pgd_offset(mm, *addr);
4276         pud_t *pud = pud_offset(pgd, *addr);
4277
4278         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4279         if (page_count(virt_to_page(ptep)) == 1)
4280                 return 0;
4281
4282         pud_clear(pud);
4283         put_page(virt_to_page(ptep));
4284         mm_dec_nr_pmds(mm);
4285         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4286         return 1;
4287 }
4288 #define want_pmd_share()        (1)
4289 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4290 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4291 {
4292         return NULL;
4293 }
4294
4295 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4296 {
4297         return 0;
4298 }
4299 #define want_pmd_share()        (0)
4300 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4301
4302 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4303 pte_t *huge_pte_alloc(struct mm_struct *mm,
4304                         unsigned long addr, unsigned long sz)
4305 {
4306         pgd_t *pgd;
4307         pud_t *pud;
4308         pte_t *pte = NULL;
4309
4310         pgd = pgd_offset(mm, addr);
4311         pud = pud_alloc(mm, pgd, addr);
4312         if (pud) {
4313                 if (sz == PUD_SIZE) {
4314                         pte = (pte_t *)pud;
4315                 } else {
4316                         BUG_ON(sz != PMD_SIZE);
4317                         if (want_pmd_share() && pud_none(*pud))
4318                                 pte = huge_pmd_share(mm, addr, pud);
4319                         else
4320                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4321                 }
4322         }
4323         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4324
4325         return pte;
4326 }
4327
4328 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4329 {
4330         pgd_t *pgd;
4331         pud_t *pud;
4332         pmd_t *pmd = NULL;
4333
4334         pgd = pgd_offset(mm, addr);
4335         if (pgd_present(*pgd)) {
4336                 pud = pud_offset(pgd, addr);
4337                 if (pud_present(*pud)) {
4338                         if (pud_huge(*pud))
4339                                 return (pte_t *)pud;
4340                         pmd = pmd_offset(pud, addr);
4341                 }
4342         }
4343         return (pte_t *) pmd;
4344 }
4345
4346 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4347
4348 /*
4349  * These functions are overwritable if your architecture needs its own
4350  * behavior.
4351  */
4352 struct page * __weak
4353 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4354                               int write)
4355 {
4356         return ERR_PTR(-EINVAL);
4357 }
4358
4359 struct page * __weak
4360 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4361                 pmd_t *pmd, int flags)
4362 {
4363         struct page *page = NULL;
4364         spinlock_t *ptl;
4365 retry:
4366         ptl = pmd_lockptr(mm, pmd);
4367         spin_lock(ptl);
4368         /*
4369          * make sure that the address range covered by this pmd is not
4370          * unmapped from other threads.
4371          */
4372         if (!pmd_huge(*pmd))
4373                 goto out;
4374         if (pmd_present(*pmd)) {
4375                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4376                 if (flags & FOLL_GET)
4377                         get_page(page);
4378         } else {
4379                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4380                         spin_unlock(ptl);
4381                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4382                         goto retry;
4383                 }
4384                 /*
4385                  * hwpoisoned entry is treated as no_page_table in
4386                  * follow_page_mask().
4387                  */
4388         }
4389 out:
4390         spin_unlock(ptl);
4391         return page;
4392 }
4393
4394 struct page * __weak
4395 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4396                 pud_t *pud, int flags)
4397 {
4398         if (flags & FOLL_GET)
4399                 return NULL;
4400
4401         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4402 }
4403
4404 #ifdef CONFIG_MEMORY_FAILURE
4405
4406 /*
4407  * This function is called from memory failure code.
4408  */
4409 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4410 {
4411         struct hstate *h = page_hstate(hpage);
4412         int nid = page_to_nid(hpage);
4413         int ret = -EBUSY;
4414
4415         spin_lock(&hugetlb_lock);
4416         /*
4417          * Just checking !page_huge_active is not enough, because that could be
4418          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4419          */
4420         if (!page_huge_active(hpage) && !page_count(hpage)) {
4421                 /*
4422                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4423                  * but dangling hpage->lru can trigger list-debug warnings
4424                  * (this happens when we call unpoison_memory() on it),
4425                  * so let it point to itself with list_del_init().
4426                  */
4427                 list_del_init(&hpage->lru);
4428                 set_page_refcounted(hpage);
4429                 h->free_huge_pages--;
4430                 h->free_huge_pages_node[nid]--;
4431                 ret = 0;
4432         }
4433         spin_unlock(&hugetlb_lock);
4434         return ret;
4435 }
4436 #endif
4437
4438 bool isolate_huge_page(struct page *page, struct list_head *list)
4439 {
4440         bool ret = true;
4441
4442         VM_BUG_ON_PAGE(!PageHead(page), page);
4443         spin_lock(&hugetlb_lock);
4444         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4445                 ret = false;
4446                 goto unlock;
4447         }
4448         clear_page_huge_active(page);
4449         list_move_tail(&page->lru, list);
4450 unlock:
4451         spin_unlock(&hugetlb_lock);
4452         return ret;
4453 }
4454
4455 void putback_active_hugepage(struct page *page)
4456 {
4457         VM_BUG_ON_PAGE(!PageHead(page), page);
4458         spin_lock(&hugetlb_lock);
4459         set_page_huge_active(page);
4460         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4461         spin_unlock(&hugetlb_lock);
4462         put_page(page);
4463 }