parisc: fix mmap_base calculation when stack grows upwards
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61                                 1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66         return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99                 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104         if (spool->count)
105                 return false;
106         if (spool->max_hpages != -1)
107                 return spool->used_hpages == 0;
108         if (spool->min_hpages != -1)
109                 return spool->rsv_hpages == spool->min_hpages;
110
111         return true;
112 }
113
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115                                                 unsigned long irq_flags)
116 {
117         spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119         /* If no pages are used, and no other handles to the subpool
120          * remain, give up any reservations based on minimum size and
121          * free the subpool */
122         if (subpool_is_free(spool)) {
123                 if (spool->min_hpages != -1)
124                         hugetlb_acct_memory(spool->hstate,
125                                                 -spool->min_hpages);
126                 kfree(spool);
127         }
128 }
129
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131                                                 long min_hpages)
132 {
133         struct hugepage_subpool *spool;
134
135         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136         if (!spool)
137                 return NULL;
138
139         spin_lock_init(&spool->lock);
140         spool->count = 1;
141         spool->max_hpages = max_hpages;
142         spool->hstate = h;
143         spool->min_hpages = min_hpages;
144
145         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146                 kfree(spool);
147                 return NULL;
148         }
149         spool->rsv_hpages = min_hpages;
150
151         return spool;
152 }
153
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156         unsigned long flags;
157
158         spin_lock_irqsave(&spool->lock, flags);
159         BUG_ON(!spool->count);
160         spool->count--;
161         unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173                                       long delta)
174 {
175         long ret = delta;
176
177         if (!spool)
178                 return ret;
179
180         spin_lock_irq(&spool->lock);
181
182         if (spool->max_hpages != -1) {          /* maximum size accounting */
183                 if ((spool->used_hpages + delta) <= spool->max_hpages)
184                         spool->used_hpages += delta;
185                 else {
186                         ret = -ENOMEM;
187                         goto unlock_ret;
188                 }
189         }
190
191         /* minimum size accounting */
192         if (spool->min_hpages != -1 && spool->rsv_hpages) {
193                 if (delta > spool->rsv_hpages) {
194                         /*
195                          * Asking for more reserves than those already taken on
196                          * behalf of subpool.  Return difference.
197                          */
198                         ret = delta - spool->rsv_hpages;
199                         spool->rsv_hpages = 0;
200                 } else {
201                         ret = 0;        /* reserves already accounted for */
202                         spool->rsv_hpages -= delta;
203                 }
204         }
205
206 unlock_ret:
207         spin_unlock_irq(&spool->lock);
208         return ret;
209 }
210
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218                                        long delta)
219 {
220         long ret = delta;
221         unsigned long flags;
222
223         if (!spool)
224                 return delta;
225
226         spin_lock_irqsave(&spool->lock, flags);
227
228         if (spool->max_hpages != -1)            /* maximum size accounting */
229                 spool->used_hpages -= delta;
230
231          /* minimum size accounting */
232         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233                 if (spool->rsv_hpages + delta <= spool->min_hpages)
234                         ret = 0;
235                 else
236                         ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238                 spool->rsv_hpages += delta;
239                 if (spool->rsv_hpages > spool->min_hpages)
240                         spool->rsv_hpages = spool->min_hpages;
241         }
242
243         /*
244          * If hugetlbfs_put_super couldn't free spool due to an outstanding
245          * quota reference, free it now.
246          */
247         unlock_or_release_subpool(spool, flags);
248
249         return ret;
250 }
251
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254         return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259         return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267         if (__vma_shareable_lock(vma)) {
268                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270                 down_read(&vma_lock->rw_sema);
271         } else if (__vma_private_lock(vma)) {
272                 struct resv_map *resv_map = vma_resv_map(vma);
273
274                 down_read(&resv_map->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         } else if (__vma_private_lock(vma)) {
285                 struct resv_map *resv_map = vma_resv_map(vma);
286
287                 up_read(&resv_map->rw_sema);
288         }
289 }
290
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293         if (__vma_shareable_lock(vma)) {
294                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296                 down_write(&vma_lock->rw_sema);
297         } else if (__vma_private_lock(vma)) {
298                 struct resv_map *resv_map = vma_resv_map(vma);
299
300                 down_write(&resv_map->rw_sema);
301         }
302 }
303
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306         if (__vma_shareable_lock(vma)) {
307                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309                 up_write(&vma_lock->rw_sema);
310         } else if (__vma_private_lock(vma)) {
311                 struct resv_map *resv_map = vma_resv_map(vma);
312
313                 up_write(&resv_map->rw_sema);
314         }
315 }
316
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320         if (__vma_shareable_lock(vma)) {
321                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323                 return down_write_trylock(&vma_lock->rw_sema);
324         } else if (__vma_private_lock(vma)) {
325                 struct resv_map *resv_map = vma_resv_map(vma);
326
327                 return down_write_trylock(&resv_map->rw_sema);
328         }
329
330         return 1;
331 }
332
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335         if (__vma_shareable_lock(vma)) {
336                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338                 lockdep_assert_held(&vma_lock->rw_sema);
339         } else if (__vma_private_lock(vma)) {
340                 struct resv_map *resv_map = vma_resv_map(vma);
341
342                 lockdep_assert_held(&resv_map->rw_sema);
343         }
344 }
345
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348         struct hugetlb_vma_lock *vma_lock = container_of(kref,
349                         struct hugetlb_vma_lock, refs);
350
351         kfree(vma_lock);
352 }
353
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356         struct vm_area_struct *vma = vma_lock->vma;
357
358         /*
359          * vma_lock structure may or not be released as a result of put,
360          * it certainly will no longer be attached to vma so clear pointer.
361          * Semaphore synchronizes access to vma_lock->vma field.
362          */
363         vma_lock->vma = NULL;
364         vma->vm_private_data = NULL;
365         up_write(&vma_lock->rw_sema);
366         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371         if (__vma_shareable_lock(vma)) {
372                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374                 __hugetlb_vma_unlock_write_put(vma_lock);
375         } else if (__vma_private_lock(vma)) {
376                 struct resv_map *resv_map = vma_resv_map(vma);
377
378                 /* no free for anon vmas, but still need to unlock */
379                 up_write(&resv_map->rw_sema);
380         }
381 }
382
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385         /*
386          * Only present in sharable vmas.
387          */
388         if (!vma || !__vma_shareable_lock(vma))
389                 return;
390
391         if (vma->vm_private_data) {
392                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394                 down_write(&vma_lock->rw_sema);
395                 __hugetlb_vma_unlock_write_put(vma_lock);
396         }
397 }
398
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401         struct hugetlb_vma_lock *vma_lock;
402
403         /* Only establish in (flags) sharable vmas */
404         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405                 return;
406
407         /* Should never get here with non-NULL vm_private_data */
408         if (vma->vm_private_data)
409                 return;
410
411         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412         if (!vma_lock) {
413                 /*
414                  * If we can not allocate structure, then vma can not
415                  * participate in pmd sharing.  This is only a possible
416                  * performance enhancement and memory saving issue.
417                  * However, the lock is also used to synchronize page
418                  * faults with truncation.  If the lock is not present,
419                  * unlikely races could leave pages in a file past i_size
420                  * until the file is removed.  Warn in the unlikely case of
421                  * allocation failure.
422                  */
423                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424                 return;
425         }
426
427         kref_init(&vma_lock->refs);
428         init_rwsem(&vma_lock->rw_sema);
429         vma_lock->vma = vma;
430         vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439         struct file_region *nrg;
440
441         VM_BUG_ON(resv->region_cache_count <= 0);
442
443         resv->region_cache_count--;
444         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445         list_del(&nrg->link);
446
447         nrg->from = from;
448         nrg->to = to;
449
450         return nrg;
451 }
452
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454                                               struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457         nrg->reservation_counter = rg->reservation_counter;
458         nrg->css = rg->css;
459         if (rg->css)
460                 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466                                                 struct hstate *h,
467                                                 struct resv_map *resv,
468                                                 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471         if (h_cg) {
472                 nrg->reservation_counter =
473                         &h_cg->rsvd_hugepage[hstate_index(h)];
474                 nrg->css = &h_cg->css;
475                 /*
476                  * The caller will hold exactly one h_cg->css reference for the
477                  * whole contiguous reservation region. But this area might be
478                  * scattered when there are already some file_regions reside in
479                  * it. As a result, many file_regions may share only one css
480                  * reference. In order to ensure that one file_region must hold
481                  * exactly one h_cg->css reference, we should do css_get for
482                  * each file_region and leave the reference held by caller
483                  * untouched.
484                  */
485                 css_get(&h_cg->css);
486                 if (!resv->pages_per_hpage)
487                         resv->pages_per_hpage = pages_per_huge_page(h);
488                 /* pages_per_hpage should be the same for all entries in
489                  * a resv_map.
490                  */
491                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492         } else {
493                 nrg->reservation_counter = NULL;
494                 nrg->css = NULL;
495         }
496 #endif
497 }
498
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502         if (rg->css)
503                 css_put(rg->css);
504 #endif
505 }
506
507 static bool has_same_uncharge_info(struct file_region *rg,
508                                    struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511         return rg->reservation_counter == org->reservation_counter &&
512                rg->css == org->css;
513
514 #else
515         return true;
516 #endif
517 }
518
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521         struct file_region *nrg, *prg;
522
523         prg = list_prev_entry(rg, link);
524         if (&prg->link != &resv->regions && prg->to == rg->from &&
525             has_same_uncharge_info(prg, rg)) {
526                 prg->to = rg->to;
527
528                 list_del(&rg->link);
529                 put_uncharge_info(rg);
530                 kfree(rg);
531
532                 rg = prg;
533         }
534
535         nrg = list_next_entry(rg, link);
536         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537             has_same_uncharge_info(nrg, rg)) {
538                 nrg->from = rg->from;
539
540                 list_del(&rg->link);
541                 put_uncharge_info(rg);
542                 kfree(rg);
543         }
544 }
545
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
549                      long *regions_needed)
550 {
551         struct file_region *nrg;
552
553         if (!regions_needed) {
554                 nrg = get_file_region_entry_from_cache(map, from, to);
555                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556                 list_add(&nrg->link, rg);
557                 coalesce_file_region(map, nrg);
558         } else
559                 *regions_needed += 1;
560
561         return to - from;
562 }
563
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573                                      struct hugetlb_cgroup *h_cg,
574                                      struct hstate *h, long *regions_needed)
575 {
576         long add = 0;
577         struct list_head *head = &resv->regions;
578         long last_accounted_offset = f;
579         struct file_region *iter, *trg = NULL;
580         struct list_head *rg = NULL;
581
582         if (regions_needed)
583                 *regions_needed = 0;
584
585         /* In this loop, we essentially handle an entry for the range
586          * [last_accounted_offset, iter->from), at every iteration, with some
587          * bounds checking.
588          */
589         list_for_each_entry_safe(iter, trg, head, link) {
590                 /* Skip irrelevant regions that start before our range. */
591                 if (iter->from < f) {
592                         /* If this region ends after the last accounted offset,
593                          * then we need to update last_accounted_offset.
594                          */
595                         if (iter->to > last_accounted_offset)
596                                 last_accounted_offset = iter->to;
597                         continue;
598                 }
599
600                 /* When we find a region that starts beyond our range, we've
601                  * finished.
602                  */
603                 if (iter->from >= t) {
604                         rg = iter->link.prev;
605                         break;
606                 }
607
608                 /* Add an entry for last_accounted_offset -> iter->from, and
609                  * update last_accounted_offset.
610                  */
611                 if (iter->from > last_accounted_offset)
612                         add += hugetlb_resv_map_add(resv, iter->link.prev,
613                                                     last_accounted_offset,
614                                                     iter->from, h, h_cg,
615                                                     regions_needed);
616
617                 last_accounted_offset = iter->to;
618         }
619
620         /* Handle the case where our range extends beyond
621          * last_accounted_offset.
622          */
623         if (!rg)
624                 rg = head->prev;
625         if (last_accounted_offset < t)
626                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627                                             t, h, h_cg, regions_needed);
628
629         return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635                                         int regions_needed)
636         __must_hold(&resv->lock)
637 {
638         LIST_HEAD(allocated_regions);
639         int to_allocate = 0, i = 0;
640         struct file_region *trg = NULL, *rg = NULL;
641
642         VM_BUG_ON(regions_needed < 0);
643
644         /*
645          * Check for sufficient descriptors in the cache to accommodate
646          * the number of in progress add operations plus regions_needed.
647          *
648          * This is a while loop because when we drop the lock, some other call
649          * to region_add or region_del may have consumed some region_entries,
650          * so we keep looping here until we finally have enough entries for
651          * (adds_in_progress + regions_needed).
652          */
653         while (resv->region_cache_count <
654                (resv->adds_in_progress + regions_needed)) {
655                 to_allocate = resv->adds_in_progress + regions_needed -
656                               resv->region_cache_count;
657
658                 /* At this point, we should have enough entries in the cache
659                  * for all the existing adds_in_progress. We should only be
660                  * needing to allocate for regions_needed.
661                  */
662                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664                 spin_unlock(&resv->lock);
665                 for (i = 0; i < to_allocate; i++) {
666                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667                         if (!trg)
668                                 goto out_of_memory;
669                         list_add(&trg->link, &allocated_regions);
670                 }
671
672                 spin_lock(&resv->lock);
673
674                 list_splice(&allocated_regions, &resv->region_cache);
675                 resv->region_cache_count += to_allocate;
676         }
677
678         return 0;
679
680 out_of_memory:
681         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682                 list_del(&rg->link);
683                 kfree(rg);
684         }
685         return -ENOMEM;
686 }
687
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706                        long in_regions_needed, struct hstate *h,
707                        struct hugetlb_cgroup *h_cg)
708 {
709         long add = 0, actual_regions_needed = 0;
710
711         spin_lock(&resv->lock);
712 retry:
713
714         /* Count how many regions are actually needed to execute this add. */
715         add_reservation_in_range(resv, f, t, NULL, NULL,
716                                  &actual_regions_needed);
717
718         /*
719          * Check for sufficient descriptors in the cache to accommodate
720          * this add operation. Note that actual_regions_needed may be greater
721          * than in_regions_needed, as the resv_map may have been modified since
722          * the region_chg call. In this case, we need to make sure that we
723          * allocate extra entries, such that we have enough for all the
724          * existing adds_in_progress, plus the excess needed for this
725          * operation.
726          */
727         if (actual_regions_needed > in_regions_needed &&
728             resv->region_cache_count <
729                     resv->adds_in_progress +
730                             (actual_regions_needed - in_regions_needed)) {
731                 /* region_add operation of range 1 should never need to
732                  * allocate file_region entries.
733                  */
734                 VM_BUG_ON(t - f <= 1);
735
736                 if (allocate_file_region_entries(
737                             resv, actual_regions_needed - in_regions_needed)) {
738                         return -ENOMEM;
739                 }
740
741                 goto retry;
742         }
743
744         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746         resv->adds_in_progress -= in_regions_needed;
747
748         spin_unlock(&resv->lock);
749         return add;
750 }
751
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773                        long *out_regions_needed)
774 {
775         long chg = 0;
776
777         spin_lock(&resv->lock);
778
779         /* Count how many hugepages in this range are NOT represented. */
780         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781                                        out_regions_needed);
782
783         if (*out_regions_needed == 0)
784                 *out_regions_needed = 1;
785
786         if (allocate_file_region_entries(resv, *out_regions_needed))
787                 return -ENOMEM;
788
789         resv->adds_in_progress += *out_regions_needed;
790
791         spin_unlock(&resv->lock);
792         return chg;
793 }
794
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809                          long regions_needed)
810 {
811         spin_lock(&resv->lock);
812         VM_BUG_ON(!resv->region_cache_count);
813         resv->adds_in_progress -= regions_needed;
814         spin_unlock(&resv->lock);
815 }
816
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833         struct list_head *head = &resv->regions;
834         struct file_region *rg, *trg;
835         struct file_region *nrg = NULL;
836         long del = 0;
837
838 retry:
839         spin_lock(&resv->lock);
840         list_for_each_entry_safe(rg, trg, head, link) {
841                 /*
842                  * Skip regions before the range to be deleted.  file_region
843                  * ranges are normally of the form [from, to).  However, there
844                  * may be a "placeholder" entry in the map which is of the form
845                  * (from, to) with from == to.  Check for placeholder entries
846                  * at the beginning of the range to be deleted.
847                  */
848                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849                         continue;
850
851                 if (rg->from >= t)
852                         break;
853
854                 if (f > rg->from && t < rg->to) { /* Must split region */
855                         /*
856                          * Check for an entry in the cache before dropping
857                          * lock and attempting allocation.
858                          */
859                         if (!nrg &&
860                             resv->region_cache_count > resv->adds_in_progress) {
861                                 nrg = list_first_entry(&resv->region_cache,
862                                                         struct file_region,
863                                                         link);
864                                 list_del(&nrg->link);
865                                 resv->region_cache_count--;
866                         }
867
868                         if (!nrg) {
869                                 spin_unlock(&resv->lock);
870                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871                                 if (!nrg)
872                                         return -ENOMEM;
873                                 goto retry;
874                         }
875
876                         del += t - f;
877                         hugetlb_cgroup_uncharge_file_region(
878                                 resv, rg, t - f, false);
879
880                         /* New entry for end of split region */
881                         nrg->from = t;
882                         nrg->to = rg->to;
883
884                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886                         INIT_LIST_HEAD(&nrg->link);
887
888                         /* Original entry is trimmed */
889                         rg->to = f;
890
891                         list_add(&nrg->link, &rg->link);
892                         nrg = NULL;
893                         break;
894                 }
895
896                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897                         del += rg->to - rg->from;
898                         hugetlb_cgroup_uncharge_file_region(resv, rg,
899                                                             rg->to - rg->from, true);
900                         list_del(&rg->link);
901                         kfree(rg);
902                         continue;
903                 }
904
905                 if (f <= rg->from) {    /* Trim beginning of region */
906                         hugetlb_cgroup_uncharge_file_region(resv, rg,
907                                                             t - rg->from, false);
908
909                         del += t - rg->from;
910                         rg->from = t;
911                 } else {                /* Trim end of region */
912                         hugetlb_cgroup_uncharge_file_region(resv, rg,
913                                                             rg->to - f, false);
914
915                         del += rg->to - f;
916                         rg->to = f;
917                 }
918         }
919
920         spin_unlock(&resv->lock);
921         kfree(nrg);
922         return del;
923 }
924
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936         struct hugepage_subpool *spool = subpool_inode(inode);
937         long rsv_adjust;
938         bool reserved = false;
939
940         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941         if (rsv_adjust > 0) {
942                 struct hstate *h = hstate_inode(inode);
943
944                 if (!hugetlb_acct_memory(h, 1))
945                         reserved = true;
946         } else if (!rsv_adjust) {
947                 reserved = true;
948         }
949
950         if (!reserved)
951                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960         struct list_head *head = &resv->regions;
961         struct file_region *rg;
962         long chg = 0;
963
964         spin_lock(&resv->lock);
965         /* Locate each segment we overlap with, and count that overlap. */
966         list_for_each_entry(rg, head, link) {
967                 long seg_from;
968                 long seg_to;
969
970                 if (rg->to <= f)
971                         continue;
972                 if (rg->from >= t)
973                         break;
974
975                 seg_from = max(rg->from, f);
976                 seg_to = min(rg->to, t);
977
978                 chg += seg_to - seg_from;
979         }
980         spin_unlock(&resv->lock);
981
982         return chg;
983 }
984
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, in pagecache page units; huge pages here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990                         struct vm_area_struct *vma, unsigned long address)
991 {
992         return ((address - vma->vm_start) >> huge_page_shift(h)) +
993                         (vma->vm_pgoff >> huge_page_order(h));
994 }
995
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997                                      unsigned long address)
998 {
999         return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003 /**
1004  * vma_kernel_pagesize - Page size granularity for this VMA.
1005  * @vma: The user mapping.
1006  *
1007  * Folios in this VMA will be aligned to, and at least the size of the
1008  * number of bytes returned by this function.
1009  *
1010  * Return: The default size of the folios allocated when backing a VMA.
1011  */
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014         if (vma->vm_ops && vma->vm_ops->pagesize)
1015                 return vma->vm_ops->pagesize(vma);
1016         return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020 /*
1021  * Return the page size being used by the MMU to back a VMA. In the majority
1022  * of cases, the page size used by the kernel matches the MMU size. On
1023  * architectures where it differs, an architecture-specific 'strong'
1024  * version of this symbol is required.
1025  */
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028         return vma_kernel_pagesize(vma);
1029 }
1030
1031 /*
1032  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1033  * bits of the reservation map pointer, which are always clear due to
1034  * alignment.
1035  */
1036 #define HPAGE_RESV_OWNER    (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040 /*
1041  * These helpers are used to track how many pages are reserved for
1042  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043  * is guaranteed to have their future faults succeed.
1044  *
1045  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046  * the reserve counters are updated with the hugetlb_lock held. It is safe
1047  * to reset the VMA at fork() time as it is not in use yet and there is no
1048  * chance of the global counters getting corrupted as a result of the values.
1049  *
1050  * The private mapping reservation is represented in a subtly different
1051  * manner to a shared mapping.  A shared mapping has a region map associated
1052  * with the underlying file, this region map represents the backing file
1053  * pages which have ever had a reservation assigned which this persists even
1054  * after the page is instantiated.  A private mapping has a region map
1055  * associated with the original mmap which is attached to all VMAs which
1056  * reference it, this region map represents those offsets which have consumed
1057  * reservation ie. where pages have been instantiated.
1058  */
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061         return (unsigned long)vma->vm_private_data;
1062 }
1063
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065                                                         unsigned long value)
1066 {
1067         vma->vm_private_data = (void *)value;
1068 }
1069
1070 static void
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072                                           struct hugetlb_cgroup *h_cg,
1073                                           struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076         if (!h_cg || !h) {
1077                 resv_map->reservation_counter = NULL;
1078                 resv_map->pages_per_hpage = 0;
1079                 resv_map->css = NULL;
1080         } else {
1081                 resv_map->reservation_counter =
1082                         &h_cg->rsvd_hugepage[hstate_index(h)];
1083                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084                 resv_map->css = &h_cg->css;
1085         }
1086 #endif
1087 }
1088
1089 struct resv_map *resv_map_alloc(void)
1090 {
1091         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094         if (!resv_map || !rg) {
1095                 kfree(resv_map);
1096                 kfree(rg);
1097                 return NULL;
1098         }
1099
1100         kref_init(&resv_map->refs);
1101         spin_lock_init(&resv_map->lock);
1102         INIT_LIST_HEAD(&resv_map->regions);
1103         init_rwsem(&resv_map->rw_sema);
1104
1105         resv_map->adds_in_progress = 0;
1106         /*
1107          * Initialize these to 0. On shared mappings, 0's here indicate these
1108          * fields don't do cgroup accounting. On private mappings, these will be
1109          * re-initialized to the proper values, to indicate that hugetlb cgroup
1110          * reservations are to be un-charged from here.
1111          */
1112         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114         INIT_LIST_HEAD(&resv_map->region_cache);
1115         list_add(&rg->link, &resv_map->region_cache);
1116         resv_map->region_cache_count = 1;
1117
1118         return resv_map;
1119 }
1120
1121 void resv_map_release(struct kref *ref)
1122 {
1123         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124         struct list_head *head = &resv_map->region_cache;
1125         struct file_region *rg, *trg;
1126
1127         /* Clear out any active regions before we release the map. */
1128         region_del(resv_map, 0, LONG_MAX);
1129
1130         /* ... and any entries left in the cache */
1131         list_for_each_entry_safe(rg, trg, head, link) {
1132                 list_del(&rg->link);
1133                 kfree(rg);
1134         }
1135
1136         VM_BUG_ON(resv_map->adds_in_progress);
1137
1138         kfree(resv_map);
1139 }
1140
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143         /*
1144          * At inode evict time, i_mapping may not point to the original
1145          * address space within the inode.  This original address space
1146          * contains the pointer to the resv_map.  So, always use the
1147          * address space embedded within the inode.
1148          * The VERY common case is inode->mapping == &inode->i_data but,
1149          * this may not be true for device special inodes.
1150          */
1151         return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         if (vma->vm_flags & VM_MAYSHARE) {
1158                 struct address_space *mapping = vma->vm_file->f_mapping;
1159                 struct inode *inode = mapping->host;
1160
1161                 return inode_resv_map(inode);
1162
1163         } else {
1164                 return (struct resv_map *)(get_vma_private_data(vma) &
1165                                                         ~HPAGE_RESV_MASK);
1166         }
1167 }
1168
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174         set_vma_private_data(vma, (unsigned long)map);
1175 }
1176
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189         return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191
1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193 {
1194         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195         /*
1196          * Clear vm_private_data
1197          * - For shared mappings this is a per-vma semaphore that may be
1198          *   allocated in a subsequent call to hugetlb_vm_op_open.
1199          *   Before clearing, make sure pointer is not associated with vma
1200          *   as this will leak the structure.  This is the case when called
1201          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202          *   been called to allocate a new structure.
1203          * - For MAP_PRIVATE mappings, this is the reserve map which does
1204          *   not apply to children.  Faults generated by the children are
1205          *   not guaranteed to succeed, even if read-only.
1206          */
1207         if (vma->vm_flags & VM_MAYSHARE) {
1208                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209
1210                 if (vma_lock && vma_lock->vma != vma)
1211                         vma->vm_private_data = NULL;
1212         } else
1213                 vma->vm_private_data = NULL;
1214 }
1215
1216 /*
1217  * Reset and decrement one ref on hugepage private reservation.
1218  * Called with mm->mmap_lock writer semaphore held.
1219  * This function should be only used by move_vma() and operate on
1220  * same sized vma. It should never come here with last ref on the
1221  * reservation.
1222  */
1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224 {
1225         /*
1226          * Clear the old hugetlb private page reservation.
1227          * It has already been transferred to new_vma.
1228          *
1229          * During a mremap() operation of a hugetlb vma we call move_vma()
1230          * which copies vma into new_vma and unmaps vma. After the copy
1231          * operation both new_vma and vma share a reference to the resv_map
1232          * struct, and at that point vma is about to be unmapped. We don't
1233          * want to return the reservation to the pool at unmap of vma because
1234          * the reservation still lives on in new_vma, so simply decrement the
1235          * ref here and remove the resv_map reference from this vma.
1236          */
1237         struct resv_map *reservations = vma_resv_map(vma);
1238
1239         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241                 kref_put(&reservations->refs, resv_map_release);
1242         }
1243
1244         hugetlb_dup_vma_private(vma);
1245 }
1246
1247 /* Returns true if the VMA has associated reserve pages */
1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249 {
1250         if (vma->vm_flags & VM_NORESERVE) {
1251                 /*
1252                  * This address is already reserved by other process(chg == 0),
1253                  * so, we should decrement reserved count. Without decrementing,
1254                  * reserve count remains after releasing inode, because this
1255                  * allocated page will go into page cache and is regarded as
1256                  * coming from reserved pool in releasing step.  Currently, we
1257                  * don't have any other solution to deal with this situation
1258                  * properly, so add work-around here.
1259                  */
1260                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261                         return true;
1262                 else
1263                         return false;
1264         }
1265
1266         /* Shared mappings always use reserves */
1267         if (vma->vm_flags & VM_MAYSHARE) {
1268                 /*
1269                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1270                  * be a region map for all pages.  The only situation where
1271                  * there is no region map is if a hole was punched via
1272                  * fallocate.  In this case, there really are no reserves to
1273                  * use.  This situation is indicated if chg != 0.
1274                  */
1275                 if (chg)
1276                         return false;
1277                 else
1278                         return true;
1279         }
1280
1281         /*
1282          * Only the process that called mmap() has reserves for
1283          * private mappings.
1284          */
1285         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286                 /*
1287                  * Like the shared case above, a hole punch or truncate
1288                  * could have been performed on the private mapping.
1289                  * Examine the value of chg to determine if reserves
1290                  * actually exist or were previously consumed.
1291                  * Very Subtle - The value of chg comes from a previous
1292                  * call to vma_needs_reserves().  The reserve map for
1293                  * private mappings has different (opposite) semantics
1294                  * than that of shared mappings.  vma_needs_reserves()
1295                  * has already taken this difference in semantics into
1296                  * account.  Therefore, the meaning of chg is the same
1297                  * as in the shared case above.  Code could easily be
1298                  * combined, but keeping it separate draws attention to
1299                  * subtle differences.
1300                  */
1301                 if (chg)
1302                         return false;
1303                 else
1304                         return true;
1305         }
1306
1307         return false;
1308 }
1309
1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311 {
1312         int nid = folio_nid(folio);
1313
1314         lockdep_assert_held(&hugetlb_lock);
1315         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316
1317         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318         h->free_huge_pages++;
1319         h->free_huge_pages_node[nid]++;
1320         folio_set_hugetlb_freed(folio);
1321 }
1322
1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324                                                                 int nid)
1325 {
1326         struct folio *folio;
1327         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328
1329         lockdep_assert_held(&hugetlb_lock);
1330         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331                 if (pin && !folio_is_longterm_pinnable(folio))
1332                         continue;
1333
1334                 if (folio_test_hwpoison(folio))
1335                         continue;
1336
1337                 list_move(&folio->lru, &h->hugepage_activelist);
1338                 folio_ref_unfreeze(folio, 1);
1339                 folio_clear_hugetlb_freed(folio);
1340                 h->free_huge_pages--;
1341                 h->free_huge_pages_node[nid]--;
1342                 return folio;
1343         }
1344
1345         return NULL;
1346 }
1347
1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349                                                         int nid, nodemask_t *nmask)
1350 {
1351         unsigned int cpuset_mems_cookie;
1352         struct zonelist *zonelist;
1353         struct zone *zone;
1354         struct zoneref *z;
1355         int node = NUMA_NO_NODE;
1356
1357         zonelist = node_zonelist(nid, gfp_mask);
1358
1359 retry_cpuset:
1360         cpuset_mems_cookie = read_mems_allowed_begin();
1361         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362                 struct folio *folio;
1363
1364                 if (!cpuset_zone_allowed(zone, gfp_mask))
1365                         continue;
1366                 /*
1367                  * no need to ask again on the same node. Pool is node rather than
1368                  * zone aware
1369                  */
1370                 if (zone_to_nid(zone) == node)
1371                         continue;
1372                 node = zone_to_nid(zone);
1373
1374                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1375                 if (folio)
1376                         return folio;
1377         }
1378         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379                 goto retry_cpuset;
1380
1381         return NULL;
1382 }
1383
1384 static unsigned long available_huge_pages(struct hstate *h)
1385 {
1386         return h->free_huge_pages - h->resv_huge_pages;
1387 }
1388
1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390                                 struct vm_area_struct *vma,
1391                                 unsigned long address, int avoid_reserve,
1392                                 long chg)
1393 {
1394         struct folio *folio = NULL;
1395         struct mempolicy *mpol;
1396         gfp_t gfp_mask;
1397         nodemask_t *nodemask;
1398         int nid;
1399
1400         /*
1401          * A child process with MAP_PRIVATE mappings created by their parent
1402          * have no page reserves. This check ensures that reservations are
1403          * not "stolen". The child may still get SIGKILLed
1404          */
1405         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1406                 goto err;
1407
1408         /* If reserves cannot be used, ensure enough pages are in the pool */
1409         if (avoid_reserve && !available_huge_pages(h))
1410                 goto err;
1411
1412         gfp_mask = htlb_alloc_mask(h);
1413         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414
1415         if (mpol_is_preferred_many(mpol)) {
1416                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417                                                         nid, nodemask);
1418
1419                 /* Fallback to all nodes if page==NULL */
1420                 nodemask = NULL;
1421         }
1422
1423         if (!folio)
1424                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425                                                         nid, nodemask);
1426
1427         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428                 folio_set_hugetlb_restore_reserve(folio);
1429                 h->resv_huge_pages--;
1430         }
1431
1432         mpol_cond_put(mpol);
1433         return folio;
1434
1435 err:
1436         return NULL;
1437 }
1438
1439 /*
1440  * common helper functions for hstate_next_node_to_{alloc|free}.
1441  * We may have allocated or freed a huge page based on a different
1442  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443  * be outside of *nodes_allowed.  Ensure that we use an allowed
1444  * node for alloc or free.
1445  */
1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447 {
1448         nid = next_node_in(nid, *nodes_allowed);
1449         VM_BUG_ON(nid >= MAX_NUMNODES);
1450
1451         return nid;
1452 }
1453
1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455 {
1456         if (!node_isset(nid, *nodes_allowed))
1457                 nid = next_node_allowed(nid, nodes_allowed);
1458         return nid;
1459 }
1460
1461 /*
1462  * returns the previously saved node ["this node"] from which to
1463  * allocate a persistent huge page for the pool and advance the
1464  * next node from which to allocate, handling wrap at end of node
1465  * mask.
1466  */
1467 static int hstate_next_node_to_alloc(struct hstate *h,
1468                                         nodemask_t *nodes_allowed)
1469 {
1470         int nid;
1471
1472         VM_BUG_ON(!nodes_allowed);
1473
1474         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476
1477         return nid;
1478 }
1479
1480 /*
1481  * helper for remove_pool_huge_page() - return the previously saved
1482  * node ["this node"] from which to free a huge page.  Advance the
1483  * next node id whether or not we find a free huge page to free so
1484  * that the next attempt to free addresses the next node.
1485  */
1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487 {
1488         int nid;
1489
1490         VM_BUG_ON(!nodes_allowed);
1491
1492         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494
1495         return nid;
1496 }
1497
1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1499         for (nr_nodes = nodes_weight(*mask);                            \
1500                 nr_nodes > 0 &&                                         \
1501                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1502                 nr_nodes--)
1503
1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1505         for (nr_nodes = nodes_weight(*mask);                            \
1506                 nr_nodes > 0 &&                                         \
1507                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1508                 nr_nodes--)
1509
1510 /* used to demote non-gigantic_huge pages as well */
1511 static void __destroy_compound_gigantic_folio(struct folio *folio,
1512                                         unsigned int order, bool demote)
1513 {
1514         int i;
1515         int nr_pages = 1 << order;
1516         struct page *p;
1517
1518         atomic_set(&folio->_entire_mapcount, 0);
1519         atomic_set(&folio->_nr_pages_mapped, 0);
1520         atomic_set(&folio->_pincount, 0);
1521
1522         for (i = 1; i < nr_pages; i++) {
1523                 p = folio_page(folio, i);
1524                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525                 p->mapping = NULL;
1526                 clear_compound_head(p);
1527                 if (!demote)
1528                         set_page_refcounted(p);
1529         }
1530
1531         __folio_clear_head(folio);
1532 }
1533
1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535                                         unsigned int order)
1536 {
1537         __destroy_compound_gigantic_folio(folio, order, true);
1538 }
1539
1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541 static void destroy_compound_gigantic_folio(struct folio *folio,
1542                                         unsigned int order)
1543 {
1544         __destroy_compound_gigantic_folio(folio, order, false);
1545 }
1546
1547 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548 {
1549         /*
1550          * If the page isn't allocated using the cma allocator,
1551          * cma_release() returns false.
1552          */
1553 #ifdef CONFIG_CMA
1554         int nid = folio_nid(folio);
1555
1556         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557                 return;
1558 #endif
1559
1560         free_contig_range(folio_pfn(folio), 1 << order);
1561 }
1562
1563 #ifdef CONFIG_CONTIG_ALLOC
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565                 int nid, nodemask_t *nodemask)
1566 {
1567         struct page *page;
1568         unsigned long nr_pages = pages_per_huge_page(h);
1569         if (nid == NUMA_NO_NODE)
1570                 nid = numa_mem_id();
1571
1572 #ifdef CONFIG_CMA
1573         {
1574                 int node;
1575
1576                 if (hugetlb_cma[nid]) {
1577                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578                                         huge_page_order(h), true);
1579                         if (page)
1580                                 return page_folio(page);
1581                 }
1582
1583                 if (!(gfp_mask & __GFP_THISNODE)) {
1584                         for_each_node_mask(node, *nodemask) {
1585                                 if (node == nid || !hugetlb_cma[node])
1586                                         continue;
1587
1588                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1589                                                 huge_page_order(h), true);
1590                                 if (page)
1591                                         return page_folio(page);
1592                         }
1593                 }
1594         }
1595 #endif
1596
1597         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598         return page ? page_folio(page) : NULL;
1599 }
1600
1601 #else /* !CONFIG_CONTIG_ALLOC */
1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603                                         int nid, nodemask_t *nodemask)
1604 {
1605         return NULL;
1606 }
1607 #endif /* CONFIG_CONTIG_ALLOC */
1608
1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611                                         int nid, nodemask_t *nodemask)
1612 {
1613         return NULL;
1614 }
1615 static inline void free_gigantic_folio(struct folio *folio,
1616                                                 unsigned int order) { }
1617 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618                                                 unsigned int order) { }
1619 #endif
1620
1621 static inline void __clear_hugetlb_destructor(struct hstate *h,
1622                                                 struct folio *folio)
1623 {
1624         lockdep_assert_held(&hugetlb_lock);
1625
1626         folio_clear_hugetlb(folio);
1627 }
1628
1629 /*
1630  * Remove hugetlb folio from lists.
1631  * If vmemmap exists for the folio, update dtor so that the folio appears
1632  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1633  * to update dtor.
1634  *
1635  * A reference is held on the folio, except in the case of demote.
1636  *
1637  * Must be called with hugetlb lock held.
1638  */
1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640                                                         bool adjust_surplus,
1641                                                         bool demote)
1642 {
1643         int nid = folio_nid(folio);
1644
1645         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647
1648         lockdep_assert_held(&hugetlb_lock);
1649         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650                 return;
1651
1652         list_del(&folio->lru);
1653
1654         if (folio_test_hugetlb_freed(folio)) {
1655                 h->free_huge_pages--;
1656                 h->free_huge_pages_node[nid]--;
1657         }
1658         if (adjust_surplus) {
1659                 h->surplus_huge_pages--;
1660                 h->surplus_huge_pages_node[nid]--;
1661         }
1662
1663         /*
1664          * We can only clear the hugetlb destructor after allocating vmemmap
1665          * pages.  Otherwise, someone (memory error handling) may try to write
1666          * to tail struct pages.
1667          */
1668         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669                 __clear_hugetlb_destructor(h, folio);
1670
1671          /*
1672           * In the case of demote we do not ref count the page as it will soon
1673           * be turned into a page of smaller size.
1674          */
1675         if (!demote)
1676                 folio_ref_unfreeze(folio, 1);
1677
1678         h->nr_huge_pages--;
1679         h->nr_huge_pages_node[nid]--;
1680 }
1681
1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683                                                         bool adjust_surplus)
1684 {
1685         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686 }
1687
1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689                                                         bool adjust_surplus)
1690 {
1691         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692 }
1693
1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695                              bool adjust_surplus)
1696 {
1697         int zeroed;
1698         int nid = folio_nid(folio);
1699
1700         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701
1702         lockdep_assert_held(&hugetlb_lock);
1703
1704         INIT_LIST_HEAD(&folio->lru);
1705         h->nr_huge_pages++;
1706         h->nr_huge_pages_node[nid]++;
1707
1708         if (adjust_surplus) {
1709                 h->surplus_huge_pages++;
1710                 h->surplus_huge_pages_node[nid]++;
1711         }
1712
1713         folio_set_hugetlb(folio);
1714         folio_change_private(folio, NULL);
1715         /*
1716          * We have to set hugetlb_vmemmap_optimized again as above
1717          * folio_change_private(folio, NULL) cleared it.
1718          */
1719         folio_set_hugetlb_vmemmap_optimized(folio);
1720
1721         /*
1722          * This folio is about to be managed by the hugetlb allocator and
1723          * should have no users.  Drop our reference, and check for others
1724          * just in case.
1725          */
1726         zeroed = folio_put_testzero(folio);
1727         if (unlikely(!zeroed))
1728                 /*
1729                  * It is VERY unlikely soneone else has taken a ref
1730                  * on the folio.  In this case, we simply return as
1731                  * free_huge_folio() will be called when this other ref
1732                  * is dropped.
1733                  */
1734                 return;
1735
1736         arch_clear_hugepage_flags(&folio->page);
1737         enqueue_hugetlb_folio(h, folio);
1738 }
1739
1740 static void __update_and_free_hugetlb_folio(struct hstate *h,
1741                                                 struct folio *folio)
1742 {
1743         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744
1745         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746                 return;
1747
1748         /*
1749          * If we don't know which subpages are hwpoisoned, we can't free
1750          * the hugepage, so it's leaked intentionally.
1751          */
1752         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753                 return;
1754
1755         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1756                 spin_lock_irq(&hugetlb_lock);
1757                 /*
1758                  * If we cannot allocate vmemmap pages, just refuse to free the
1759                  * page and put the page back on the hugetlb free list and treat
1760                  * as a surplus page.
1761                  */
1762                 add_hugetlb_folio(h, folio, true);
1763                 spin_unlock_irq(&hugetlb_lock);
1764                 return;
1765         }
1766
1767         /*
1768          * Move PageHWPoison flag from head page to the raw error pages,
1769          * which makes any healthy subpages reusable.
1770          */
1771         if (unlikely(folio_test_hwpoison(folio)))
1772                 folio_clear_hugetlb_hwpoison(folio);
1773
1774         /*
1775          * If vmemmap pages were allocated above, then we need to clear the
1776          * hugetlb destructor under the hugetlb lock.
1777          */
1778         if (clear_dtor) {
1779                 spin_lock_irq(&hugetlb_lock);
1780                 __clear_hugetlb_destructor(h, folio);
1781                 spin_unlock_irq(&hugetlb_lock);
1782         }
1783
1784         /*
1785          * Non-gigantic pages demoted from CMA allocated gigantic pages
1786          * need to be given back to CMA in free_gigantic_folio.
1787          */
1788         if (hstate_is_gigantic(h) ||
1789             hugetlb_cma_folio(folio, huge_page_order(h))) {
1790                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1791                 free_gigantic_folio(folio, huge_page_order(h));
1792         } else {
1793                 __free_pages(&folio->page, huge_page_order(h));
1794         }
1795 }
1796
1797 /*
1798  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1799  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1800  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1801  * the vmemmap pages.
1802  *
1803  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1804  * freed and frees them one-by-one. As the page->mapping pointer is going
1805  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1806  * structure of a lockless linked list of huge pages to be freed.
1807  */
1808 static LLIST_HEAD(hpage_freelist);
1809
1810 static void free_hpage_workfn(struct work_struct *work)
1811 {
1812         struct llist_node *node;
1813
1814         node = llist_del_all(&hpage_freelist);
1815
1816         while (node) {
1817                 struct page *page;
1818                 struct hstate *h;
1819
1820                 page = container_of((struct address_space **)node,
1821                                      struct page, mapping);
1822                 node = node->next;
1823                 page->mapping = NULL;
1824                 /*
1825                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1826                  * folio_hstate() is going to trigger because a previous call to
1827                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1828                  * not use folio_hstate() directly.
1829                  */
1830                 h = size_to_hstate(page_size(page));
1831
1832                 __update_and_free_hugetlb_folio(h, page_folio(page));
1833
1834                 cond_resched();
1835         }
1836 }
1837 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1838
1839 static inline void flush_free_hpage_work(struct hstate *h)
1840 {
1841         if (hugetlb_vmemmap_optimizable(h))
1842                 flush_work(&free_hpage_work);
1843 }
1844
1845 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1846                                  bool atomic)
1847 {
1848         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1849                 __update_and_free_hugetlb_folio(h, folio);
1850                 return;
1851         }
1852
1853         /*
1854          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1855          *
1856          * Only call schedule_work() if hpage_freelist is previously
1857          * empty. Otherwise, schedule_work() had been called but the workfn
1858          * hasn't retrieved the list yet.
1859          */
1860         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1861                 schedule_work(&free_hpage_work);
1862 }
1863
1864 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1865 {
1866         struct page *page, *t_page;
1867         struct folio *folio;
1868
1869         list_for_each_entry_safe(page, t_page, list, lru) {
1870                 folio = page_folio(page);
1871                 update_and_free_hugetlb_folio(h, folio, false);
1872                 cond_resched();
1873         }
1874 }
1875
1876 struct hstate *size_to_hstate(unsigned long size)
1877 {
1878         struct hstate *h;
1879
1880         for_each_hstate(h) {
1881                 if (huge_page_size(h) == size)
1882                         return h;
1883         }
1884         return NULL;
1885 }
1886
1887 void free_huge_folio(struct folio *folio)
1888 {
1889         /*
1890          * Can't pass hstate in here because it is called from the
1891          * compound page destructor.
1892          */
1893         struct hstate *h = folio_hstate(folio);
1894         int nid = folio_nid(folio);
1895         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1896         bool restore_reserve;
1897         unsigned long flags;
1898
1899         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1900         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1901
1902         hugetlb_set_folio_subpool(folio, NULL);
1903         if (folio_test_anon(folio))
1904                 __ClearPageAnonExclusive(&folio->page);
1905         folio->mapping = NULL;
1906         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1907         folio_clear_hugetlb_restore_reserve(folio);
1908
1909         /*
1910          * If HPageRestoreReserve was set on page, page allocation consumed a
1911          * reservation.  If the page was associated with a subpool, there
1912          * would have been a page reserved in the subpool before allocation
1913          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1914          * reservation, do not call hugepage_subpool_put_pages() as this will
1915          * remove the reserved page from the subpool.
1916          */
1917         if (!restore_reserve) {
1918                 /*
1919                  * A return code of zero implies that the subpool will be
1920                  * under its minimum size if the reservation is not restored
1921                  * after page is free.  Therefore, force restore_reserve
1922                  * operation.
1923                  */
1924                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1925                         restore_reserve = true;
1926         }
1927
1928         spin_lock_irqsave(&hugetlb_lock, flags);
1929         folio_clear_hugetlb_migratable(folio);
1930         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1931                                      pages_per_huge_page(h), folio);
1932         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1933                                           pages_per_huge_page(h), folio);
1934         if (restore_reserve)
1935                 h->resv_huge_pages++;
1936
1937         if (folio_test_hugetlb_temporary(folio)) {
1938                 remove_hugetlb_folio(h, folio, false);
1939                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1940                 update_and_free_hugetlb_folio(h, folio, true);
1941         } else if (h->surplus_huge_pages_node[nid]) {
1942                 /* remove the page from active list */
1943                 remove_hugetlb_folio(h, folio, true);
1944                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1945                 update_and_free_hugetlb_folio(h, folio, true);
1946         } else {
1947                 arch_clear_hugepage_flags(&folio->page);
1948                 enqueue_hugetlb_folio(h, folio);
1949                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1950         }
1951 }
1952
1953 /*
1954  * Must be called with the hugetlb lock held
1955  */
1956 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1957 {
1958         lockdep_assert_held(&hugetlb_lock);
1959         h->nr_huge_pages++;
1960         h->nr_huge_pages_node[nid]++;
1961 }
1962
1963 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1964 {
1965         hugetlb_vmemmap_optimize(h, &folio->page);
1966         INIT_LIST_HEAD(&folio->lru);
1967         folio_set_hugetlb(folio);
1968         hugetlb_set_folio_subpool(folio, NULL);
1969         set_hugetlb_cgroup(folio, NULL);
1970         set_hugetlb_cgroup_rsvd(folio, NULL);
1971 }
1972
1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1974 {
1975         __prep_new_hugetlb_folio(h, folio);
1976         spin_lock_irq(&hugetlb_lock);
1977         __prep_account_new_huge_page(h, nid);
1978         spin_unlock_irq(&hugetlb_lock);
1979 }
1980
1981 static bool __prep_compound_gigantic_folio(struct folio *folio,
1982                                         unsigned int order, bool demote)
1983 {
1984         int i, j;
1985         int nr_pages = 1 << order;
1986         struct page *p;
1987
1988         __folio_clear_reserved(folio);
1989         for (i = 0; i < nr_pages; i++) {
1990                 p = folio_page(folio, i);
1991
1992                 /*
1993                  * For gigantic hugepages allocated through bootmem at
1994                  * boot, it's safer to be consistent with the not-gigantic
1995                  * hugepages and clear the PG_reserved bit from all tail pages
1996                  * too.  Otherwise drivers using get_user_pages() to access tail
1997                  * pages may get the reference counting wrong if they see
1998                  * PG_reserved set on a tail page (despite the head page not
1999                  * having PG_reserved set).  Enforcing this consistency between
2000                  * head and tail pages allows drivers to optimize away a check
2001                  * on the head page when they need know if put_page() is needed
2002                  * after get_user_pages().
2003                  */
2004                 if (i != 0)     /* head page cleared above */
2005                         __ClearPageReserved(p);
2006                 /*
2007                  * Subtle and very unlikely
2008                  *
2009                  * Gigantic 'page allocators' such as memblock or cma will
2010                  * return a set of pages with each page ref counted.  We need
2011                  * to turn this set of pages into a compound page with tail
2012                  * page ref counts set to zero.  Code such as speculative page
2013                  * cache adding could take a ref on a 'to be' tail page.
2014                  * We need to respect any increased ref count, and only set
2015                  * the ref count to zero if count is currently 1.  If count
2016                  * is not 1, we return an error.  An error return indicates
2017                  * the set of pages can not be converted to a gigantic page.
2018                  * The caller who allocated the pages should then discard the
2019                  * pages using the appropriate free interface.
2020                  *
2021                  * In the case of demote, the ref count will be zero.
2022                  */
2023                 if (!demote) {
2024                         if (!page_ref_freeze(p, 1)) {
2025                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2026                                 goto out_error;
2027                         }
2028                 } else {
2029                         VM_BUG_ON_PAGE(page_count(p), p);
2030                 }
2031                 if (i != 0)
2032                         set_compound_head(p, &folio->page);
2033         }
2034         __folio_set_head(folio);
2035         /* we rely on prep_new_hugetlb_folio to set the destructor */
2036         folio_set_order(folio, order);
2037         atomic_set(&folio->_entire_mapcount, -1);
2038         atomic_set(&folio->_nr_pages_mapped, 0);
2039         atomic_set(&folio->_pincount, 0);
2040         return true;
2041
2042 out_error:
2043         /* undo page modifications made above */
2044         for (j = 0; j < i; j++) {
2045                 p = folio_page(folio, j);
2046                 if (j != 0)
2047                         clear_compound_head(p);
2048                 set_page_refcounted(p);
2049         }
2050         /* need to clear PG_reserved on remaining tail pages  */
2051         for (; j < nr_pages; j++) {
2052                 p = folio_page(folio, j);
2053                 __ClearPageReserved(p);
2054         }
2055         return false;
2056 }
2057
2058 static bool prep_compound_gigantic_folio(struct folio *folio,
2059                                                         unsigned int order)
2060 {
2061         return __prep_compound_gigantic_folio(folio, order, false);
2062 }
2063
2064 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2065                                                         unsigned int order)
2066 {
2067         return __prep_compound_gigantic_folio(folio, order, true);
2068 }
2069
2070 /*
2071  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2072  * transparent huge pages.  See the PageTransHuge() documentation for more
2073  * details.
2074  */
2075 int PageHuge(struct page *page)
2076 {
2077         struct folio *folio;
2078
2079         if (!PageCompound(page))
2080                 return 0;
2081         folio = page_folio(page);
2082         return folio_test_hugetlb(folio);
2083 }
2084 EXPORT_SYMBOL_GPL(PageHuge);
2085
2086 /*
2087  * Find and lock address space (mapping) in write mode.
2088  *
2089  * Upon entry, the page is locked which means that page_mapping() is
2090  * stable.  Due to locking order, we can only trylock_write.  If we can
2091  * not get the lock, simply return NULL to caller.
2092  */
2093 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2094 {
2095         struct address_space *mapping = page_mapping(hpage);
2096
2097         if (!mapping)
2098                 return mapping;
2099
2100         if (i_mmap_trylock_write(mapping))
2101                 return mapping;
2102
2103         return NULL;
2104 }
2105
2106 pgoff_t hugetlb_basepage_index(struct page *page)
2107 {
2108         struct page *page_head = compound_head(page);
2109         pgoff_t index = page_index(page_head);
2110         unsigned long compound_idx;
2111
2112         if (compound_order(page_head) > MAX_ORDER)
2113                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2114         else
2115                 compound_idx = page - page_head;
2116
2117         return (index << compound_order(page_head)) + compound_idx;
2118 }
2119
2120 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2121                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2122                 nodemask_t *node_alloc_noretry)
2123 {
2124         int order = huge_page_order(h);
2125         struct page *page;
2126         bool alloc_try_hard = true;
2127         bool retry = true;
2128
2129         /*
2130          * By default we always try hard to allocate the page with
2131          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2132          * a loop (to adjust global huge page counts) and previous allocation
2133          * failed, do not continue to try hard on the same node.  Use the
2134          * node_alloc_noretry bitmap to manage this state information.
2135          */
2136         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2137                 alloc_try_hard = false;
2138         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2139         if (alloc_try_hard)
2140                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2141         if (nid == NUMA_NO_NODE)
2142                 nid = numa_mem_id();
2143 retry:
2144         page = __alloc_pages(gfp_mask, order, nid, nmask);
2145
2146         /* Freeze head page */
2147         if (page && !page_ref_freeze(page, 1)) {
2148                 __free_pages(page, order);
2149                 if (retry) {    /* retry once */
2150                         retry = false;
2151                         goto retry;
2152                 }
2153                 /* WOW!  twice in a row. */
2154                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2155                 page = NULL;
2156         }
2157
2158         /*
2159          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2160          * indicates an overall state change.  Clear bit so that we resume
2161          * normal 'try hard' allocations.
2162          */
2163         if (node_alloc_noretry && page && !alloc_try_hard)
2164                 node_clear(nid, *node_alloc_noretry);
2165
2166         /*
2167          * If we tried hard to get a page but failed, set bit so that
2168          * subsequent attempts will not try as hard until there is an
2169          * overall state change.
2170          */
2171         if (node_alloc_noretry && !page && alloc_try_hard)
2172                 node_set(nid, *node_alloc_noretry);
2173
2174         if (!page) {
2175                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2176                 return NULL;
2177         }
2178
2179         __count_vm_event(HTLB_BUDDY_PGALLOC);
2180         return page_folio(page);
2181 }
2182
2183 /*
2184  * Common helper to allocate a fresh hugetlb page. All specific allocators
2185  * should use this function to get new hugetlb pages
2186  *
2187  * Note that returned page is 'frozen':  ref count of head page and all tail
2188  * pages is zero.
2189  */
2190 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2191                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2192                 nodemask_t *node_alloc_noretry)
2193 {
2194         struct folio *folio;
2195         bool retry = false;
2196
2197 retry:
2198         if (hstate_is_gigantic(h))
2199                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2200         else
2201                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2202                                 nid, nmask, node_alloc_noretry);
2203         if (!folio)
2204                 return NULL;
2205         if (hstate_is_gigantic(h)) {
2206                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2207                         /*
2208                          * Rare failure to convert pages to compound page.
2209                          * Free pages and try again - ONCE!
2210                          */
2211                         free_gigantic_folio(folio, huge_page_order(h));
2212                         if (!retry) {
2213                                 retry = true;
2214                                 goto retry;
2215                         }
2216                         return NULL;
2217                 }
2218         }
2219         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2220
2221         return folio;
2222 }
2223
2224 /*
2225  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2226  * manner.
2227  */
2228 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2229                                 nodemask_t *node_alloc_noretry)
2230 {
2231         struct folio *folio;
2232         int nr_nodes, node;
2233         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2234
2235         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2236                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2237                                         nodes_allowed, node_alloc_noretry);
2238                 if (folio) {
2239                         free_huge_folio(folio); /* free it into the hugepage allocator */
2240                         return 1;
2241                 }
2242         }
2243
2244         return 0;
2245 }
2246
2247 /*
2248  * Remove huge page from pool from next node to free.  Attempt to keep
2249  * persistent huge pages more or less balanced over allowed nodes.
2250  * This routine only 'removes' the hugetlb page.  The caller must make
2251  * an additional call to free the page to low level allocators.
2252  * Called with hugetlb_lock locked.
2253  */
2254 static struct page *remove_pool_huge_page(struct hstate *h,
2255                                                 nodemask_t *nodes_allowed,
2256                                                  bool acct_surplus)
2257 {
2258         int nr_nodes, node;
2259         struct page *page = NULL;
2260         struct folio *folio;
2261
2262         lockdep_assert_held(&hugetlb_lock);
2263         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264                 /*
2265                  * If we're returning unused surplus pages, only examine
2266                  * nodes with surplus pages.
2267                  */
2268                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2269                     !list_empty(&h->hugepage_freelists[node])) {
2270                         page = list_entry(h->hugepage_freelists[node].next,
2271                                           struct page, lru);
2272                         folio = page_folio(page);
2273                         remove_hugetlb_folio(h, folio, acct_surplus);
2274                         break;
2275                 }
2276         }
2277
2278         return page;
2279 }
2280
2281 /*
2282  * Dissolve a given free hugepage into free buddy pages. This function does
2283  * nothing for in-use hugepages and non-hugepages.
2284  * This function returns values like below:
2285  *
2286  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2287  *           when the system is under memory pressure and the feature of
2288  *           freeing unused vmemmap pages associated with each hugetlb page
2289  *           is enabled.
2290  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2291  *           (allocated or reserved.)
2292  *       0:  successfully dissolved free hugepages or the page is not a
2293  *           hugepage (considered as already dissolved)
2294  */
2295 int dissolve_free_huge_page(struct page *page)
2296 {
2297         int rc = -EBUSY;
2298         struct folio *folio = page_folio(page);
2299
2300 retry:
2301         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2302         if (!folio_test_hugetlb(folio))
2303                 return 0;
2304
2305         spin_lock_irq(&hugetlb_lock);
2306         if (!folio_test_hugetlb(folio)) {
2307                 rc = 0;
2308                 goto out;
2309         }
2310
2311         if (!folio_ref_count(folio)) {
2312                 struct hstate *h = folio_hstate(folio);
2313                 if (!available_huge_pages(h))
2314                         goto out;
2315
2316                 /*
2317                  * We should make sure that the page is already on the free list
2318                  * when it is dissolved.
2319                  */
2320                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2321                         spin_unlock_irq(&hugetlb_lock);
2322                         cond_resched();
2323
2324                         /*
2325                          * Theoretically, we should return -EBUSY when we
2326                          * encounter this race. In fact, we have a chance
2327                          * to successfully dissolve the page if we do a
2328                          * retry. Because the race window is quite small.
2329                          * If we seize this opportunity, it is an optimization
2330                          * for increasing the success rate of dissolving page.
2331                          */
2332                         goto retry;
2333                 }
2334
2335                 remove_hugetlb_folio(h, folio, false);
2336                 h->max_huge_pages--;
2337                 spin_unlock_irq(&hugetlb_lock);
2338
2339                 /*
2340                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2341                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2342                  * free the page if it can not allocate required vmemmap.  We
2343                  * need to adjust max_huge_pages if the page is not freed.
2344                  * Attempt to allocate vmemmmap here so that we can take
2345                  * appropriate action on failure.
2346                  */
2347                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2348                 if (!rc) {
2349                         update_and_free_hugetlb_folio(h, folio, false);
2350                 } else {
2351                         spin_lock_irq(&hugetlb_lock);
2352                         add_hugetlb_folio(h, folio, false);
2353                         h->max_huge_pages++;
2354                         spin_unlock_irq(&hugetlb_lock);
2355                 }
2356
2357                 return rc;
2358         }
2359 out:
2360         spin_unlock_irq(&hugetlb_lock);
2361         return rc;
2362 }
2363
2364 /*
2365  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2366  * make specified memory blocks removable from the system.
2367  * Note that this will dissolve a free gigantic hugepage completely, if any
2368  * part of it lies within the given range.
2369  * Also note that if dissolve_free_huge_page() returns with an error, all
2370  * free hugepages that were dissolved before that error are lost.
2371  */
2372 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2373 {
2374         unsigned long pfn;
2375         struct page *page;
2376         int rc = 0;
2377         unsigned int order;
2378         struct hstate *h;
2379
2380         if (!hugepages_supported())
2381                 return rc;
2382
2383         order = huge_page_order(&default_hstate);
2384         for_each_hstate(h)
2385                 order = min(order, huge_page_order(h));
2386
2387         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2388                 page = pfn_to_page(pfn);
2389                 rc = dissolve_free_huge_page(page);
2390                 if (rc)
2391                         break;
2392         }
2393
2394         return rc;
2395 }
2396
2397 /*
2398  * Allocates a fresh surplus page from the page allocator.
2399  */
2400 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2401                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2402 {
2403         struct folio *folio = NULL;
2404
2405         if (hstate_is_gigantic(h))
2406                 return NULL;
2407
2408         spin_lock_irq(&hugetlb_lock);
2409         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2410                 goto out_unlock;
2411         spin_unlock_irq(&hugetlb_lock);
2412
2413         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2414         if (!folio)
2415                 return NULL;
2416
2417         spin_lock_irq(&hugetlb_lock);
2418         /*
2419          * We could have raced with the pool size change.
2420          * Double check that and simply deallocate the new page
2421          * if we would end up overcommiting the surpluses. Abuse
2422          * temporary page to workaround the nasty free_huge_folio
2423          * codeflow
2424          */
2425         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2426                 folio_set_hugetlb_temporary(folio);
2427                 spin_unlock_irq(&hugetlb_lock);
2428                 free_huge_folio(folio);
2429                 return NULL;
2430         }
2431
2432         h->surplus_huge_pages++;
2433         h->surplus_huge_pages_node[folio_nid(folio)]++;
2434
2435 out_unlock:
2436         spin_unlock_irq(&hugetlb_lock);
2437
2438         return folio;
2439 }
2440
2441 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2442                                      int nid, nodemask_t *nmask)
2443 {
2444         struct folio *folio;
2445
2446         if (hstate_is_gigantic(h))
2447                 return NULL;
2448
2449         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2450         if (!folio)
2451                 return NULL;
2452
2453         /* fresh huge pages are frozen */
2454         folio_ref_unfreeze(folio, 1);
2455         /*
2456          * We do not account these pages as surplus because they are only
2457          * temporary and will be released properly on the last reference
2458          */
2459         folio_set_hugetlb_temporary(folio);
2460
2461         return folio;
2462 }
2463
2464 /*
2465  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2466  */
2467 static
2468 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2469                 struct vm_area_struct *vma, unsigned long addr)
2470 {
2471         struct folio *folio = NULL;
2472         struct mempolicy *mpol;
2473         gfp_t gfp_mask = htlb_alloc_mask(h);
2474         int nid;
2475         nodemask_t *nodemask;
2476
2477         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2478         if (mpol_is_preferred_many(mpol)) {
2479                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2480
2481                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2482                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2483
2484                 /* Fallback to all nodes if page==NULL */
2485                 nodemask = NULL;
2486         }
2487
2488         if (!folio)
2489                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2490         mpol_cond_put(mpol);
2491         return folio;
2492 }
2493
2494 /* folio migration callback function */
2495 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2496                 nodemask_t *nmask, gfp_t gfp_mask)
2497 {
2498         spin_lock_irq(&hugetlb_lock);
2499         if (available_huge_pages(h)) {
2500                 struct folio *folio;
2501
2502                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2503                                                 preferred_nid, nmask);
2504                 if (folio) {
2505                         spin_unlock_irq(&hugetlb_lock);
2506                         return folio;
2507                 }
2508         }
2509         spin_unlock_irq(&hugetlb_lock);
2510
2511         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2512 }
2513
2514 /* mempolicy aware migration callback */
2515 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2516                 unsigned long address)
2517 {
2518         struct mempolicy *mpol;
2519         nodemask_t *nodemask;
2520         struct folio *folio;
2521         gfp_t gfp_mask;
2522         int node;
2523
2524         gfp_mask = htlb_alloc_mask(h);
2525         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2526         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2527         mpol_cond_put(mpol);
2528
2529         return folio;
2530 }
2531
2532 /*
2533  * Increase the hugetlb pool such that it can accommodate a reservation
2534  * of size 'delta'.
2535  */
2536 static int gather_surplus_pages(struct hstate *h, long delta)
2537         __must_hold(&hugetlb_lock)
2538 {
2539         LIST_HEAD(surplus_list);
2540         struct folio *folio, *tmp;
2541         int ret;
2542         long i;
2543         long needed, allocated;
2544         bool alloc_ok = true;
2545
2546         lockdep_assert_held(&hugetlb_lock);
2547         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2548         if (needed <= 0) {
2549                 h->resv_huge_pages += delta;
2550                 return 0;
2551         }
2552
2553         allocated = 0;
2554
2555         ret = -ENOMEM;
2556 retry:
2557         spin_unlock_irq(&hugetlb_lock);
2558         for (i = 0; i < needed; i++) {
2559                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2560                                 NUMA_NO_NODE, NULL);
2561                 if (!folio) {
2562                         alloc_ok = false;
2563                         break;
2564                 }
2565                 list_add(&folio->lru, &surplus_list);
2566                 cond_resched();
2567         }
2568         allocated += i;
2569
2570         /*
2571          * After retaking hugetlb_lock, we need to recalculate 'needed'
2572          * because either resv_huge_pages or free_huge_pages may have changed.
2573          */
2574         spin_lock_irq(&hugetlb_lock);
2575         needed = (h->resv_huge_pages + delta) -
2576                         (h->free_huge_pages + allocated);
2577         if (needed > 0) {
2578                 if (alloc_ok)
2579                         goto retry;
2580                 /*
2581                  * We were not able to allocate enough pages to
2582                  * satisfy the entire reservation so we free what
2583                  * we've allocated so far.
2584                  */
2585                 goto free;
2586         }
2587         /*
2588          * The surplus_list now contains _at_least_ the number of extra pages
2589          * needed to accommodate the reservation.  Add the appropriate number
2590          * of pages to the hugetlb pool and free the extras back to the buddy
2591          * allocator.  Commit the entire reservation here to prevent another
2592          * process from stealing the pages as they are added to the pool but
2593          * before they are reserved.
2594          */
2595         needed += allocated;
2596         h->resv_huge_pages += delta;
2597         ret = 0;
2598
2599         /* Free the needed pages to the hugetlb pool */
2600         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2601                 if ((--needed) < 0)
2602                         break;
2603                 /* Add the page to the hugetlb allocator */
2604                 enqueue_hugetlb_folio(h, folio);
2605         }
2606 free:
2607         spin_unlock_irq(&hugetlb_lock);
2608
2609         /*
2610          * Free unnecessary surplus pages to the buddy allocator.
2611          * Pages have no ref count, call free_huge_folio directly.
2612          */
2613         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2614                 free_huge_folio(folio);
2615         spin_lock_irq(&hugetlb_lock);
2616
2617         return ret;
2618 }
2619
2620 /*
2621  * This routine has two main purposes:
2622  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2623  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2624  *    to the associated reservation map.
2625  * 2) Free any unused surplus pages that may have been allocated to satisfy
2626  *    the reservation.  As many as unused_resv_pages may be freed.
2627  */
2628 static void return_unused_surplus_pages(struct hstate *h,
2629                                         unsigned long unused_resv_pages)
2630 {
2631         unsigned long nr_pages;
2632         struct page *page;
2633         LIST_HEAD(page_list);
2634
2635         lockdep_assert_held(&hugetlb_lock);
2636         /* Uncommit the reservation */
2637         h->resv_huge_pages -= unused_resv_pages;
2638
2639         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2640                 goto out;
2641
2642         /*
2643          * Part (or even all) of the reservation could have been backed
2644          * by pre-allocated pages. Only free surplus pages.
2645          */
2646         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2647
2648         /*
2649          * We want to release as many surplus pages as possible, spread
2650          * evenly across all nodes with memory. Iterate across these nodes
2651          * until we can no longer free unreserved surplus pages. This occurs
2652          * when the nodes with surplus pages have no free pages.
2653          * remove_pool_huge_page() will balance the freed pages across the
2654          * on-line nodes with memory and will handle the hstate accounting.
2655          */
2656         while (nr_pages--) {
2657                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2658                 if (!page)
2659                         goto out;
2660
2661                 list_add(&page->lru, &page_list);
2662         }
2663
2664 out:
2665         spin_unlock_irq(&hugetlb_lock);
2666         update_and_free_pages_bulk(h, &page_list);
2667         spin_lock_irq(&hugetlb_lock);
2668 }
2669
2670
2671 /*
2672  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2673  * are used by the huge page allocation routines to manage reservations.
2674  *
2675  * vma_needs_reservation is called to determine if the huge page at addr
2676  * within the vma has an associated reservation.  If a reservation is
2677  * needed, the value 1 is returned.  The caller is then responsible for
2678  * managing the global reservation and subpool usage counts.  After
2679  * the huge page has been allocated, vma_commit_reservation is called
2680  * to add the page to the reservation map.  If the page allocation fails,
2681  * the reservation must be ended instead of committed.  vma_end_reservation
2682  * is called in such cases.
2683  *
2684  * In the normal case, vma_commit_reservation returns the same value
2685  * as the preceding vma_needs_reservation call.  The only time this
2686  * is not the case is if a reserve map was changed between calls.  It
2687  * is the responsibility of the caller to notice the difference and
2688  * take appropriate action.
2689  *
2690  * vma_add_reservation is used in error paths where a reservation must
2691  * be restored when a newly allocated huge page must be freed.  It is
2692  * to be called after calling vma_needs_reservation to determine if a
2693  * reservation exists.
2694  *
2695  * vma_del_reservation is used in error paths where an entry in the reserve
2696  * map was created during huge page allocation and must be removed.  It is to
2697  * be called after calling vma_needs_reservation to determine if a reservation
2698  * exists.
2699  */
2700 enum vma_resv_mode {
2701         VMA_NEEDS_RESV,
2702         VMA_COMMIT_RESV,
2703         VMA_END_RESV,
2704         VMA_ADD_RESV,
2705         VMA_DEL_RESV,
2706 };
2707 static long __vma_reservation_common(struct hstate *h,
2708                                 struct vm_area_struct *vma, unsigned long addr,
2709                                 enum vma_resv_mode mode)
2710 {
2711         struct resv_map *resv;
2712         pgoff_t idx;
2713         long ret;
2714         long dummy_out_regions_needed;
2715
2716         resv = vma_resv_map(vma);
2717         if (!resv)
2718                 return 1;
2719
2720         idx = vma_hugecache_offset(h, vma, addr);
2721         switch (mode) {
2722         case VMA_NEEDS_RESV:
2723                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2724                 /* We assume that vma_reservation_* routines always operate on
2725                  * 1 page, and that adding to resv map a 1 page entry can only
2726                  * ever require 1 region.
2727                  */
2728                 VM_BUG_ON(dummy_out_regions_needed != 1);
2729                 break;
2730         case VMA_COMMIT_RESV:
2731                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732                 /* region_add calls of range 1 should never fail. */
2733                 VM_BUG_ON(ret < 0);
2734                 break;
2735         case VMA_END_RESV:
2736                 region_abort(resv, idx, idx + 1, 1);
2737                 ret = 0;
2738                 break;
2739         case VMA_ADD_RESV:
2740                 if (vma->vm_flags & VM_MAYSHARE) {
2741                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742                         /* region_add calls of range 1 should never fail. */
2743                         VM_BUG_ON(ret < 0);
2744                 } else {
2745                         region_abort(resv, idx, idx + 1, 1);
2746                         ret = region_del(resv, idx, idx + 1);
2747                 }
2748                 break;
2749         case VMA_DEL_RESV:
2750                 if (vma->vm_flags & VM_MAYSHARE) {
2751                         region_abort(resv, idx, idx + 1, 1);
2752                         ret = region_del(resv, idx, idx + 1);
2753                 } else {
2754                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2755                         /* region_add calls of range 1 should never fail. */
2756                         VM_BUG_ON(ret < 0);
2757                 }
2758                 break;
2759         default:
2760                 BUG();
2761         }
2762
2763         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2764                 return ret;
2765         /*
2766          * We know private mapping must have HPAGE_RESV_OWNER set.
2767          *
2768          * In most cases, reserves always exist for private mappings.
2769          * However, a file associated with mapping could have been
2770          * hole punched or truncated after reserves were consumed.
2771          * As subsequent fault on such a range will not use reserves.
2772          * Subtle - The reserve map for private mappings has the
2773          * opposite meaning than that of shared mappings.  If NO
2774          * entry is in the reserve map, it means a reservation exists.
2775          * If an entry exists in the reserve map, it means the
2776          * reservation has already been consumed.  As a result, the
2777          * return value of this routine is the opposite of the
2778          * value returned from reserve map manipulation routines above.
2779          */
2780         if (ret > 0)
2781                 return 0;
2782         if (ret == 0)
2783                 return 1;
2784         return ret;
2785 }
2786
2787 static long vma_needs_reservation(struct hstate *h,
2788                         struct vm_area_struct *vma, unsigned long addr)
2789 {
2790         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2791 }
2792
2793 static long vma_commit_reservation(struct hstate *h,
2794                         struct vm_area_struct *vma, unsigned long addr)
2795 {
2796         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2797 }
2798
2799 static void vma_end_reservation(struct hstate *h,
2800                         struct vm_area_struct *vma, unsigned long addr)
2801 {
2802         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2803 }
2804
2805 static long vma_add_reservation(struct hstate *h,
2806                         struct vm_area_struct *vma, unsigned long addr)
2807 {
2808         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2809 }
2810
2811 static long vma_del_reservation(struct hstate *h,
2812                         struct vm_area_struct *vma, unsigned long addr)
2813 {
2814         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2815 }
2816
2817 /*
2818  * This routine is called to restore reservation information on error paths.
2819  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2820  * and the hugetlb mutex should remain held when calling this routine.
2821  *
2822  * It handles two specific cases:
2823  * 1) A reservation was in place and the folio consumed the reservation.
2824  *    hugetlb_restore_reserve is set in the folio.
2825  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2826  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2827  *
2828  * In case 1, free_huge_folio later in the error path will increment the
2829  * global reserve count.  But, free_huge_folio does not have enough context
2830  * to adjust the reservation map.  This case deals primarily with private
2831  * mappings.  Adjust the reserve map here to be consistent with global
2832  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2833  * reserve map indicates there is a reservation present.
2834  *
2835  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2836  */
2837 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2838                         unsigned long address, struct folio *folio)
2839 {
2840         long rc = vma_needs_reservation(h, vma, address);
2841
2842         if (folio_test_hugetlb_restore_reserve(folio)) {
2843                 if (unlikely(rc < 0))
2844                         /*
2845                          * Rare out of memory condition in reserve map
2846                          * manipulation.  Clear hugetlb_restore_reserve so
2847                          * that global reserve count will not be incremented
2848                          * by free_huge_folio.  This will make it appear
2849                          * as though the reservation for this folio was
2850                          * consumed.  This may prevent the task from
2851                          * faulting in the folio at a later time.  This
2852                          * is better than inconsistent global huge page
2853                          * accounting of reserve counts.
2854                          */
2855                         folio_clear_hugetlb_restore_reserve(folio);
2856                 else if (rc)
2857                         (void)vma_add_reservation(h, vma, address);
2858                 else
2859                         vma_end_reservation(h, vma, address);
2860         } else {
2861                 if (!rc) {
2862                         /*
2863                          * This indicates there is an entry in the reserve map
2864                          * not added by alloc_hugetlb_folio.  We know it was added
2865                          * before the alloc_hugetlb_folio call, otherwise
2866                          * hugetlb_restore_reserve would be set on the folio.
2867                          * Remove the entry so that a subsequent allocation
2868                          * does not consume a reservation.
2869                          */
2870                         rc = vma_del_reservation(h, vma, address);
2871                         if (rc < 0)
2872                                 /*
2873                                  * VERY rare out of memory condition.  Since
2874                                  * we can not delete the entry, set
2875                                  * hugetlb_restore_reserve so that the reserve
2876                                  * count will be incremented when the folio
2877                                  * is freed.  This reserve will be consumed
2878                                  * on a subsequent allocation.
2879                                  */
2880                                 folio_set_hugetlb_restore_reserve(folio);
2881                 } else if (rc < 0) {
2882                         /*
2883                          * Rare out of memory condition from
2884                          * vma_needs_reservation call.  Memory allocation is
2885                          * only attempted if a new entry is needed.  Therefore,
2886                          * this implies there is not an entry in the
2887                          * reserve map.
2888                          *
2889                          * For shared mappings, no entry in the map indicates
2890                          * no reservation.  We are done.
2891                          */
2892                         if (!(vma->vm_flags & VM_MAYSHARE))
2893                                 /*
2894                                  * For private mappings, no entry indicates
2895                                  * a reservation is present.  Since we can
2896                                  * not add an entry, set hugetlb_restore_reserve
2897                                  * on the folio so reserve count will be
2898                                  * incremented when freed.  This reserve will
2899                                  * be consumed on a subsequent allocation.
2900                                  */
2901                                 folio_set_hugetlb_restore_reserve(folio);
2902                 } else
2903                         /*
2904                          * No reservation present, do nothing
2905                          */
2906                          vma_end_reservation(h, vma, address);
2907         }
2908 }
2909
2910 /*
2911  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2912  * the old one
2913  * @h: struct hstate old page belongs to
2914  * @old_folio: Old folio to dissolve
2915  * @list: List to isolate the page in case we need to
2916  * Returns 0 on success, otherwise negated error.
2917  */
2918 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2919                         struct folio *old_folio, struct list_head *list)
2920 {
2921         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2922         int nid = folio_nid(old_folio);
2923         struct folio *new_folio;
2924         int ret = 0;
2925
2926         /*
2927          * Before dissolving the folio, we need to allocate a new one for the
2928          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2929          * by doing everything but actually updating counters and adding to
2930          * the pool.  This simplifies and let us do most of the processing
2931          * under the lock.
2932          */
2933         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2934         if (!new_folio)
2935                 return -ENOMEM;
2936         __prep_new_hugetlb_folio(h, new_folio);
2937
2938 retry:
2939         spin_lock_irq(&hugetlb_lock);
2940         if (!folio_test_hugetlb(old_folio)) {
2941                 /*
2942                  * Freed from under us. Drop new_folio too.
2943                  */
2944                 goto free_new;
2945         } else if (folio_ref_count(old_folio)) {
2946                 bool isolated;
2947
2948                 /*
2949                  * Someone has grabbed the folio, try to isolate it here.
2950                  * Fail with -EBUSY if not possible.
2951                  */
2952                 spin_unlock_irq(&hugetlb_lock);
2953                 isolated = isolate_hugetlb(old_folio, list);
2954                 ret = isolated ? 0 : -EBUSY;
2955                 spin_lock_irq(&hugetlb_lock);
2956                 goto free_new;
2957         } else if (!folio_test_hugetlb_freed(old_folio)) {
2958                 /*
2959                  * Folio's refcount is 0 but it has not been enqueued in the
2960                  * freelist yet. Race window is small, so we can succeed here if
2961                  * we retry.
2962                  */
2963                 spin_unlock_irq(&hugetlb_lock);
2964                 cond_resched();
2965                 goto retry;
2966         } else {
2967                 /*
2968                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2969                  * the freelist and decrease the counters. These will be
2970                  * incremented again when calling __prep_account_new_huge_page()
2971                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2972                  * remain stable since this happens under the lock.
2973                  */
2974                 remove_hugetlb_folio(h, old_folio, false);
2975
2976                 /*
2977                  * Ref count on new_folio is already zero as it was dropped
2978                  * earlier.  It can be directly added to the pool free list.
2979                  */
2980                 __prep_account_new_huge_page(h, nid);
2981                 enqueue_hugetlb_folio(h, new_folio);
2982
2983                 /*
2984                  * Folio has been replaced, we can safely free the old one.
2985                  */
2986                 spin_unlock_irq(&hugetlb_lock);
2987                 update_and_free_hugetlb_folio(h, old_folio, false);
2988         }
2989
2990         return ret;
2991
2992 free_new:
2993         spin_unlock_irq(&hugetlb_lock);
2994         /* Folio has a zero ref count, but needs a ref to be freed */
2995         folio_ref_unfreeze(new_folio, 1);
2996         update_and_free_hugetlb_folio(h, new_folio, false);
2997
2998         return ret;
2999 }
3000
3001 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3002 {
3003         struct hstate *h;
3004         struct folio *folio = page_folio(page);
3005         int ret = -EBUSY;
3006
3007         /*
3008          * The page might have been dissolved from under our feet, so make sure
3009          * to carefully check the state under the lock.
3010          * Return success when racing as if we dissolved the page ourselves.
3011          */
3012         spin_lock_irq(&hugetlb_lock);
3013         if (folio_test_hugetlb(folio)) {
3014                 h = folio_hstate(folio);
3015         } else {
3016                 spin_unlock_irq(&hugetlb_lock);
3017                 return 0;
3018         }
3019         spin_unlock_irq(&hugetlb_lock);
3020
3021         /*
3022          * Fence off gigantic pages as there is a cyclic dependency between
3023          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3024          * of bailing out right away without further retrying.
3025          */
3026         if (hstate_is_gigantic(h))
3027                 return -ENOMEM;
3028
3029         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3030                 ret = 0;
3031         else if (!folio_ref_count(folio))
3032                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3033
3034         return ret;
3035 }
3036
3037 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3038                                     unsigned long addr, int avoid_reserve)
3039 {
3040         struct hugepage_subpool *spool = subpool_vma(vma);
3041         struct hstate *h = hstate_vma(vma);
3042         struct folio *folio;
3043         long map_chg, map_commit;
3044         long gbl_chg;
3045         int ret, idx;
3046         struct hugetlb_cgroup *h_cg = NULL;
3047         bool deferred_reserve;
3048
3049         idx = hstate_index(h);
3050         /*
3051          * Examine the region/reserve map to determine if the process
3052          * has a reservation for the page to be allocated.  A return
3053          * code of zero indicates a reservation exists (no change).
3054          */
3055         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3056         if (map_chg < 0)
3057                 return ERR_PTR(-ENOMEM);
3058
3059         /*
3060          * Processes that did not create the mapping will have no
3061          * reserves as indicated by the region/reserve map. Check
3062          * that the allocation will not exceed the subpool limit.
3063          * Allocations for MAP_NORESERVE mappings also need to be
3064          * checked against any subpool limit.
3065          */
3066         if (map_chg || avoid_reserve) {
3067                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3068                 if (gbl_chg < 0) {
3069                         vma_end_reservation(h, vma, addr);
3070                         return ERR_PTR(-ENOSPC);
3071                 }
3072
3073                 /*
3074                  * Even though there was no reservation in the region/reserve
3075                  * map, there could be reservations associated with the
3076                  * subpool that can be used.  This would be indicated if the
3077                  * return value of hugepage_subpool_get_pages() is zero.
3078                  * However, if avoid_reserve is specified we still avoid even
3079                  * the subpool reservations.
3080                  */
3081                 if (avoid_reserve)
3082                         gbl_chg = 1;
3083         }
3084
3085         /* If this allocation is not consuming a reservation, charge it now.
3086          */
3087         deferred_reserve = map_chg || avoid_reserve;
3088         if (deferred_reserve) {
3089                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3090                         idx, pages_per_huge_page(h), &h_cg);
3091                 if (ret)
3092                         goto out_subpool_put;
3093         }
3094
3095         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3096         if (ret)
3097                 goto out_uncharge_cgroup_reservation;
3098
3099         spin_lock_irq(&hugetlb_lock);
3100         /*
3101          * glb_chg is passed to indicate whether or not a page must be taken
3102          * from the global free pool (global change).  gbl_chg == 0 indicates
3103          * a reservation exists for the allocation.
3104          */
3105         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3106         if (!folio) {
3107                 spin_unlock_irq(&hugetlb_lock);
3108                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3109                 if (!folio)
3110                         goto out_uncharge_cgroup;
3111                 spin_lock_irq(&hugetlb_lock);
3112                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3113                         folio_set_hugetlb_restore_reserve(folio);
3114                         h->resv_huge_pages--;
3115                 }
3116                 list_add(&folio->lru, &h->hugepage_activelist);
3117                 folio_ref_unfreeze(folio, 1);
3118                 /* Fall through */
3119         }
3120
3121         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3122         /* If allocation is not consuming a reservation, also store the
3123          * hugetlb_cgroup pointer on the page.
3124          */
3125         if (deferred_reserve) {
3126                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3127                                                   h_cg, folio);
3128         }
3129
3130         spin_unlock_irq(&hugetlb_lock);
3131
3132         hugetlb_set_folio_subpool(folio, spool);
3133
3134         map_commit = vma_commit_reservation(h, vma, addr);
3135         if (unlikely(map_chg > map_commit)) {
3136                 /*
3137                  * The page was added to the reservation map between
3138                  * vma_needs_reservation and vma_commit_reservation.
3139                  * This indicates a race with hugetlb_reserve_pages.
3140                  * Adjust for the subpool count incremented above AND
3141                  * in hugetlb_reserve_pages for the same page.  Also,
3142                  * the reservation count added in hugetlb_reserve_pages
3143                  * no longer applies.
3144                  */
3145                 long rsv_adjust;
3146
3147                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3148                 hugetlb_acct_memory(h, -rsv_adjust);
3149                 if (deferred_reserve)
3150                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3151                                         pages_per_huge_page(h), folio);
3152         }
3153         return folio;
3154
3155 out_uncharge_cgroup:
3156         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3157 out_uncharge_cgroup_reservation:
3158         if (deferred_reserve)
3159                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3160                                                     h_cg);
3161 out_subpool_put:
3162         if (map_chg || avoid_reserve)
3163                 hugepage_subpool_put_pages(spool, 1);
3164         vma_end_reservation(h, vma, addr);
3165         return ERR_PTR(-ENOSPC);
3166 }
3167
3168 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3169         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3170 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3171 {
3172         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3173         int nr_nodes, node;
3174
3175         /* do node specific alloc */
3176         if (nid != NUMA_NO_NODE) {
3177                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3178                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3179                 if (!m)
3180                         return 0;
3181                 goto found;
3182         }
3183         /* allocate from next node when distributing huge pages */
3184         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3185                 m = memblock_alloc_try_nid_raw(
3186                                 huge_page_size(h), huge_page_size(h),
3187                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3188                 /*
3189                  * Use the beginning of the huge page to store the
3190                  * huge_bootmem_page struct (until gather_bootmem
3191                  * puts them into the mem_map).
3192                  */
3193                 if (!m)
3194                         return 0;
3195                 goto found;
3196         }
3197
3198 found:
3199         /* Put them into a private list first because mem_map is not up yet */
3200         INIT_LIST_HEAD(&m->list);
3201         list_add(&m->list, &huge_boot_pages);
3202         m->hstate = h;
3203         return 1;
3204 }
3205
3206 /*
3207  * Put bootmem huge pages into the standard lists after mem_map is up.
3208  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3209  */
3210 static void __init gather_bootmem_prealloc(void)
3211 {
3212         struct huge_bootmem_page *m;
3213
3214         list_for_each_entry(m, &huge_boot_pages, list) {
3215                 struct page *page = virt_to_page(m);
3216                 struct folio *folio = page_folio(page);
3217                 struct hstate *h = m->hstate;
3218
3219                 VM_BUG_ON(!hstate_is_gigantic(h));
3220                 WARN_ON(folio_ref_count(folio) != 1);
3221                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3222                         WARN_ON(folio_test_reserved(folio));
3223                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3224                         free_huge_folio(folio); /* add to the hugepage allocator */
3225                 } else {
3226                         /* VERY unlikely inflated ref count on a tail page */
3227                         free_gigantic_folio(folio, huge_page_order(h));
3228                 }
3229
3230                 /*
3231                  * We need to restore the 'stolen' pages to totalram_pages
3232                  * in order to fix confusing memory reports from free(1) and
3233                  * other side-effects, like CommitLimit going negative.
3234                  */
3235                 adjust_managed_page_count(page, pages_per_huge_page(h));
3236                 cond_resched();
3237         }
3238 }
3239 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3240 {
3241         unsigned long i;
3242         char buf[32];
3243
3244         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3245                 if (hstate_is_gigantic(h)) {
3246                         if (!alloc_bootmem_huge_page(h, nid))
3247                                 break;
3248                 } else {
3249                         struct folio *folio;
3250                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3251
3252                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3253                                         &node_states[N_MEMORY], NULL);
3254                         if (!folio)
3255                                 break;
3256                         free_huge_folio(folio); /* free it into the hugepage allocator */
3257                 }
3258                 cond_resched();
3259         }
3260         if (i == h->max_huge_pages_node[nid])
3261                 return;
3262
3263         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3264         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3265                 h->max_huge_pages_node[nid], buf, nid, i);
3266         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3267         h->max_huge_pages_node[nid] = i;
3268 }
3269
3270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3271 {
3272         unsigned long i;
3273         nodemask_t *node_alloc_noretry;
3274         bool node_specific_alloc = false;
3275
3276         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3277         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3278                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3279                 return;
3280         }
3281
3282         /* do node specific alloc */
3283         for_each_online_node(i) {
3284                 if (h->max_huge_pages_node[i] > 0) {
3285                         hugetlb_hstate_alloc_pages_onenode(h, i);
3286                         node_specific_alloc = true;
3287                 }
3288         }
3289
3290         if (node_specific_alloc)
3291                 return;
3292
3293         /* below will do all node balanced alloc */
3294         if (!hstate_is_gigantic(h)) {
3295                 /*
3296                  * Bit mask controlling how hard we retry per-node allocations.
3297                  * Ignore errors as lower level routines can deal with
3298                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3299                  * time, we are likely in bigger trouble.
3300                  */
3301                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3302                                                 GFP_KERNEL);
3303         } else {
3304                 /* allocations done at boot time */
3305                 node_alloc_noretry = NULL;
3306         }
3307
3308         /* bit mask controlling how hard we retry per-node allocations */
3309         if (node_alloc_noretry)
3310                 nodes_clear(*node_alloc_noretry);
3311
3312         for (i = 0; i < h->max_huge_pages; ++i) {
3313                 if (hstate_is_gigantic(h)) {
3314                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3315                                 break;
3316                 } else if (!alloc_pool_huge_page(h,
3317                                          &node_states[N_MEMORY],
3318                                          node_alloc_noretry))
3319                         break;
3320                 cond_resched();
3321         }
3322         if (i < h->max_huge_pages) {
3323                 char buf[32];
3324
3325                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3326                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3327                         h->max_huge_pages, buf, i);
3328                 h->max_huge_pages = i;
3329         }
3330         kfree(node_alloc_noretry);
3331 }
3332
3333 static void __init hugetlb_init_hstates(void)
3334 {
3335         struct hstate *h, *h2;
3336
3337         for_each_hstate(h) {
3338                 /* oversize hugepages were init'ed in early boot */
3339                 if (!hstate_is_gigantic(h))
3340                         hugetlb_hstate_alloc_pages(h);
3341
3342                 /*
3343                  * Set demote order for each hstate.  Note that
3344                  * h->demote_order is initially 0.
3345                  * - We can not demote gigantic pages if runtime freeing
3346                  *   is not supported, so skip this.
3347                  * - If CMA allocation is possible, we can not demote
3348                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3349                  */
3350                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3351                         continue;
3352                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3353                         continue;
3354                 for_each_hstate(h2) {
3355                         if (h2 == h)
3356                                 continue;
3357                         if (h2->order < h->order &&
3358                             h2->order > h->demote_order)
3359                                 h->demote_order = h2->order;
3360                 }
3361         }
3362 }
3363
3364 static void __init report_hugepages(void)
3365 {
3366         struct hstate *h;
3367
3368         for_each_hstate(h) {
3369                 char buf[32];
3370
3371                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3372                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3373                         buf, h->free_huge_pages);
3374                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3375                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3376         }
3377 }
3378
3379 #ifdef CONFIG_HIGHMEM
3380 static void try_to_free_low(struct hstate *h, unsigned long count,
3381                                                 nodemask_t *nodes_allowed)
3382 {
3383         int i;
3384         LIST_HEAD(page_list);
3385
3386         lockdep_assert_held(&hugetlb_lock);
3387         if (hstate_is_gigantic(h))
3388                 return;
3389
3390         /*
3391          * Collect pages to be freed on a list, and free after dropping lock
3392          */
3393         for_each_node_mask(i, *nodes_allowed) {
3394                 struct page *page, *next;
3395                 struct list_head *freel = &h->hugepage_freelists[i];
3396                 list_for_each_entry_safe(page, next, freel, lru) {
3397                         if (count >= h->nr_huge_pages)
3398                                 goto out;
3399                         if (PageHighMem(page))
3400                                 continue;
3401                         remove_hugetlb_folio(h, page_folio(page), false);
3402                         list_add(&page->lru, &page_list);
3403                 }
3404         }
3405
3406 out:
3407         spin_unlock_irq(&hugetlb_lock);
3408         update_and_free_pages_bulk(h, &page_list);
3409         spin_lock_irq(&hugetlb_lock);
3410 }
3411 #else
3412 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3413                                                 nodemask_t *nodes_allowed)
3414 {
3415 }
3416 #endif
3417
3418 /*
3419  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3420  * balanced by operating on them in a round-robin fashion.
3421  * Returns 1 if an adjustment was made.
3422  */
3423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3424                                 int delta)
3425 {
3426         int nr_nodes, node;
3427
3428         lockdep_assert_held(&hugetlb_lock);
3429         VM_BUG_ON(delta != -1 && delta != 1);
3430
3431         if (delta < 0) {
3432                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3433                         if (h->surplus_huge_pages_node[node])
3434                                 goto found;
3435                 }
3436         } else {
3437                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3438                         if (h->surplus_huge_pages_node[node] <
3439                                         h->nr_huge_pages_node[node])
3440                                 goto found;
3441                 }
3442         }
3443         return 0;
3444
3445 found:
3446         h->surplus_huge_pages += delta;
3447         h->surplus_huge_pages_node[node] += delta;
3448         return 1;
3449 }
3450
3451 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3452 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3453                               nodemask_t *nodes_allowed)
3454 {
3455         unsigned long min_count, ret;
3456         struct page *page;
3457         LIST_HEAD(page_list);
3458         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3459
3460         /*
3461          * Bit mask controlling how hard we retry per-node allocations.
3462          * If we can not allocate the bit mask, do not attempt to allocate
3463          * the requested huge pages.
3464          */
3465         if (node_alloc_noretry)
3466                 nodes_clear(*node_alloc_noretry);
3467         else
3468                 return -ENOMEM;
3469
3470         /*
3471          * resize_lock mutex prevents concurrent adjustments to number of
3472          * pages in hstate via the proc/sysfs interfaces.
3473          */
3474         mutex_lock(&h->resize_lock);
3475         flush_free_hpage_work(h);
3476         spin_lock_irq(&hugetlb_lock);
3477
3478         /*
3479          * Check for a node specific request.
3480          * Changing node specific huge page count may require a corresponding
3481          * change to the global count.  In any case, the passed node mask
3482          * (nodes_allowed) will restrict alloc/free to the specified node.
3483          */
3484         if (nid != NUMA_NO_NODE) {
3485                 unsigned long old_count = count;
3486
3487                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3488                 /*
3489                  * User may have specified a large count value which caused the
3490                  * above calculation to overflow.  In this case, they wanted
3491                  * to allocate as many huge pages as possible.  Set count to
3492                  * largest possible value to align with their intention.
3493                  */
3494                 if (count < old_count)
3495                         count = ULONG_MAX;
3496         }
3497
3498         /*
3499          * Gigantic pages runtime allocation depend on the capability for large
3500          * page range allocation.
3501          * If the system does not provide this feature, return an error when
3502          * the user tries to allocate gigantic pages but let the user free the
3503          * boottime allocated gigantic pages.
3504          */
3505         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3506                 if (count > persistent_huge_pages(h)) {
3507                         spin_unlock_irq(&hugetlb_lock);
3508                         mutex_unlock(&h->resize_lock);
3509                         NODEMASK_FREE(node_alloc_noretry);
3510                         return -EINVAL;
3511                 }
3512                 /* Fall through to decrease pool */
3513         }
3514
3515         /*
3516          * Increase the pool size
3517          * First take pages out of surplus state.  Then make up the
3518          * remaining difference by allocating fresh huge pages.
3519          *
3520          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3521          * to convert a surplus huge page to a normal huge page. That is
3522          * not critical, though, it just means the overall size of the
3523          * pool might be one hugepage larger than it needs to be, but
3524          * within all the constraints specified by the sysctls.
3525          */
3526         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3527                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3528                         break;
3529         }
3530
3531         while (count > persistent_huge_pages(h)) {
3532                 /*
3533                  * If this allocation races such that we no longer need the
3534                  * page, free_huge_folio will handle it by freeing the page
3535                  * and reducing the surplus.
3536                  */
3537                 spin_unlock_irq(&hugetlb_lock);
3538
3539                 /* yield cpu to avoid soft lockup */
3540                 cond_resched();
3541
3542                 ret = alloc_pool_huge_page(h, nodes_allowed,
3543                                                 node_alloc_noretry);
3544                 spin_lock_irq(&hugetlb_lock);
3545                 if (!ret)
3546                         goto out;
3547
3548                 /* Bail for signals. Probably ctrl-c from user */
3549                 if (signal_pending(current))
3550                         goto out;
3551         }
3552
3553         /*
3554          * Decrease the pool size
3555          * First return free pages to the buddy allocator (being careful
3556          * to keep enough around to satisfy reservations).  Then place
3557          * pages into surplus state as needed so the pool will shrink
3558          * to the desired size as pages become free.
3559          *
3560          * By placing pages into the surplus state independent of the
3561          * overcommit value, we are allowing the surplus pool size to
3562          * exceed overcommit. There are few sane options here. Since
3563          * alloc_surplus_hugetlb_folio() is checking the global counter,
3564          * though, we'll note that we're not allowed to exceed surplus
3565          * and won't grow the pool anywhere else. Not until one of the
3566          * sysctls are changed, or the surplus pages go out of use.
3567          */
3568         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3569         min_count = max(count, min_count);
3570         try_to_free_low(h, min_count, nodes_allowed);
3571
3572         /*
3573          * Collect pages to be removed on list without dropping lock
3574          */
3575         while (min_count < persistent_huge_pages(h)) {
3576                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3577                 if (!page)
3578                         break;
3579
3580                 list_add(&page->lru, &page_list);
3581         }
3582         /* free the pages after dropping lock */
3583         spin_unlock_irq(&hugetlb_lock);
3584         update_and_free_pages_bulk(h, &page_list);
3585         flush_free_hpage_work(h);
3586         spin_lock_irq(&hugetlb_lock);
3587
3588         while (count < persistent_huge_pages(h)) {
3589                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3590                         break;
3591         }
3592 out:
3593         h->max_huge_pages = persistent_huge_pages(h);
3594         spin_unlock_irq(&hugetlb_lock);
3595         mutex_unlock(&h->resize_lock);
3596
3597         NODEMASK_FREE(node_alloc_noretry);
3598
3599         return 0;
3600 }
3601
3602 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3603 {
3604         int i, nid = folio_nid(folio);
3605         struct hstate *target_hstate;
3606         struct page *subpage;
3607         struct folio *inner_folio;
3608         int rc = 0;
3609
3610         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3611
3612         remove_hugetlb_folio_for_demote(h, folio, false);
3613         spin_unlock_irq(&hugetlb_lock);
3614
3615         rc = hugetlb_vmemmap_restore(h, &folio->page);
3616         if (rc) {
3617                 /* Allocation of vmemmmap failed, we can not demote folio */
3618                 spin_lock_irq(&hugetlb_lock);
3619                 folio_ref_unfreeze(folio, 1);
3620                 add_hugetlb_folio(h, folio, false);
3621                 return rc;
3622         }
3623
3624         /*
3625          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3626          * sizes as it will not ref count folios.
3627          */
3628         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3629
3630         /*
3631          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3632          * Without the mutex, pages added to target hstate could be marked
3633          * as surplus.
3634          *
3635          * Note that we already hold h->resize_lock.  To prevent deadlock,
3636          * use the convention of always taking larger size hstate mutex first.
3637          */
3638         mutex_lock(&target_hstate->resize_lock);
3639         for (i = 0; i < pages_per_huge_page(h);
3640                                 i += pages_per_huge_page(target_hstate)) {
3641                 subpage = folio_page(folio, i);
3642                 inner_folio = page_folio(subpage);
3643                 if (hstate_is_gigantic(target_hstate))
3644                         prep_compound_gigantic_folio_for_demote(inner_folio,
3645                                                         target_hstate->order);
3646                 else
3647                         prep_compound_page(subpage, target_hstate->order);
3648                 folio_change_private(inner_folio, NULL);
3649                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3650                 free_huge_folio(inner_folio);
3651         }
3652         mutex_unlock(&target_hstate->resize_lock);
3653
3654         spin_lock_irq(&hugetlb_lock);
3655
3656         /*
3657          * Not absolutely necessary, but for consistency update max_huge_pages
3658          * based on pool changes for the demoted page.
3659          */
3660         h->max_huge_pages--;
3661         target_hstate->max_huge_pages +=
3662                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3663
3664         return rc;
3665 }
3666
3667 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3668         __must_hold(&hugetlb_lock)
3669 {
3670         int nr_nodes, node;
3671         struct folio *folio;
3672
3673         lockdep_assert_held(&hugetlb_lock);
3674
3675         /* We should never get here if no demote order */
3676         if (!h->demote_order) {
3677                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3678                 return -EINVAL;         /* internal error */
3679         }
3680
3681         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3682                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3683                         if (folio_test_hwpoison(folio))
3684                                 continue;
3685                         return demote_free_hugetlb_folio(h, folio);
3686                 }
3687         }
3688
3689         /*
3690          * Only way to get here is if all pages on free lists are poisoned.
3691          * Return -EBUSY so that caller will not retry.
3692          */
3693         return -EBUSY;
3694 }
3695
3696 #define HSTATE_ATTR_RO(_name) \
3697         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3698
3699 #define HSTATE_ATTR_WO(_name) \
3700         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3701
3702 #define HSTATE_ATTR(_name) \
3703         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3704
3705 static struct kobject *hugepages_kobj;
3706 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3707
3708 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3709
3710 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3711 {
3712         int i;
3713
3714         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3715                 if (hstate_kobjs[i] == kobj) {
3716                         if (nidp)
3717                                 *nidp = NUMA_NO_NODE;
3718                         return &hstates[i];
3719                 }
3720
3721         return kobj_to_node_hstate(kobj, nidp);
3722 }
3723
3724 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3725                                         struct kobj_attribute *attr, char *buf)
3726 {
3727         struct hstate *h;
3728         unsigned long nr_huge_pages;
3729         int nid;
3730
3731         h = kobj_to_hstate(kobj, &nid);
3732         if (nid == NUMA_NO_NODE)
3733                 nr_huge_pages = h->nr_huge_pages;
3734         else
3735                 nr_huge_pages = h->nr_huge_pages_node[nid];
3736
3737         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3738 }
3739
3740 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3741                                            struct hstate *h, int nid,
3742                                            unsigned long count, size_t len)
3743 {
3744         int err;
3745         nodemask_t nodes_allowed, *n_mask;
3746
3747         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3748                 return -EINVAL;
3749
3750         if (nid == NUMA_NO_NODE) {
3751                 /*
3752                  * global hstate attribute
3753                  */
3754                 if (!(obey_mempolicy &&
3755                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3756                         n_mask = &node_states[N_MEMORY];
3757                 else
3758                         n_mask = &nodes_allowed;
3759         } else {
3760                 /*
3761                  * Node specific request.  count adjustment happens in
3762                  * set_max_huge_pages() after acquiring hugetlb_lock.
3763                  */
3764                 init_nodemask_of_node(&nodes_allowed, nid);
3765                 n_mask = &nodes_allowed;
3766         }
3767
3768         err = set_max_huge_pages(h, count, nid, n_mask);
3769
3770         return err ? err : len;
3771 }
3772
3773 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3774                                          struct kobject *kobj, const char *buf,
3775                                          size_t len)
3776 {
3777         struct hstate *h;
3778         unsigned long count;
3779         int nid;
3780         int err;
3781
3782         err = kstrtoul(buf, 10, &count);
3783         if (err)
3784                 return err;
3785
3786         h = kobj_to_hstate(kobj, &nid);
3787         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3788 }
3789
3790 static ssize_t nr_hugepages_show(struct kobject *kobj,
3791                                        struct kobj_attribute *attr, char *buf)
3792 {
3793         return nr_hugepages_show_common(kobj, attr, buf);
3794 }
3795
3796 static ssize_t nr_hugepages_store(struct kobject *kobj,
3797                struct kobj_attribute *attr, const char *buf, size_t len)
3798 {
3799         return nr_hugepages_store_common(false, kobj, buf, len);
3800 }
3801 HSTATE_ATTR(nr_hugepages);
3802
3803 #ifdef CONFIG_NUMA
3804
3805 /*
3806  * hstate attribute for optionally mempolicy-based constraint on persistent
3807  * huge page alloc/free.
3808  */
3809 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3810                                            struct kobj_attribute *attr,
3811                                            char *buf)
3812 {
3813         return nr_hugepages_show_common(kobj, attr, buf);
3814 }
3815
3816 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3817                struct kobj_attribute *attr, const char *buf, size_t len)
3818 {
3819         return nr_hugepages_store_common(true, kobj, buf, len);
3820 }
3821 HSTATE_ATTR(nr_hugepages_mempolicy);
3822 #endif
3823
3824
3825 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3826                                         struct kobj_attribute *attr, char *buf)
3827 {
3828         struct hstate *h = kobj_to_hstate(kobj, NULL);
3829         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3830 }
3831
3832 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3833                 struct kobj_attribute *attr, const char *buf, size_t count)
3834 {
3835         int err;
3836         unsigned long input;
3837         struct hstate *h = kobj_to_hstate(kobj, NULL);
3838
3839         if (hstate_is_gigantic(h))
3840                 return -EINVAL;
3841
3842         err = kstrtoul(buf, 10, &input);
3843         if (err)
3844                 return err;
3845
3846         spin_lock_irq(&hugetlb_lock);
3847         h->nr_overcommit_huge_pages = input;
3848         spin_unlock_irq(&hugetlb_lock);
3849
3850         return count;
3851 }
3852 HSTATE_ATTR(nr_overcommit_hugepages);
3853
3854 static ssize_t free_hugepages_show(struct kobject *kobj,
3855                                         struct kobj_attribute *attr, char *buf)
3856 {
3857         struct hstate *h;
3858         unsigned long free_huge_pages;
3859         int nid;
3860
3861         h = kobj_to_hstate(kobj, &nid);
3862         if (nid == NUMA_NO_NODE)
3863                 free_huge_pages = h->free_huge_pages;
3864         else
3865                 free_huge_pages = h->free_huge_pages_node[nid];
3866
3867         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3868 }
3869 HSTATE_ATTR_RO(free_hugepages);
3870
3871 static ssize_t resv_hugepages_show(struct kobject *kobj,
3872                                         struct kobj_attribute *attr, char *buf)
3873 {
3874         struct hstate *h = kobj_to_hstate(kobj, NULL);
3875         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3876 }
3877 HSTATE_ATTR_RO(resv_hugepages);
3878
3879 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3880                                         struct kobj_attribute *attr, char *buf)
3881 {
3882         struct hstate *h;
3883         unsigned long surplus_huge_pages;
3884         int nid;
3885
3886         h = kobj_to_hstate(kobj, &nid);
3887         if (nid == NUMA_NO_NODE)
3888                 surplus_huge_pages = h->surplus_huge_pages;
3889         else
3890                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3891
3892         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3893 }
3894 HSTATE_ATTR_RO(surplus_hugepages);
3895
3896 static ssize_t demote_store(struct kobject *kobj,
3897                struct kobj_attribute *attr, const char *buf, size_t len)
3898 {
3899         unsigned long nr_demote;
3900         unsigned long nr_available;
3901         nodemask_t nodes_allowed, *n_mask;
3902         struct hstate *h;
3903         int err;
3904         int nid;
3905
3906         err = kstrtoul(buf, 10, &nr_demote);
3907         if (err)
3908                 return err;
3909         h = kobj_to_hstate(kobj, &nid);
3910
3911         if (nid != NUMA_NO_NODE) {
3912                 init_nodemask_of_node(&nodes_allowed, nid);
3913                 n_mask = &nodes_allowed;
3914         } else {
3915                 n_mask = &node_states[N_MEMORY];
3916         }
3917
3918         /* Synchronize with other sysfs operations modifying huge pages */
3919         mutex_lock(&h->resize_lock);
3920         spin_lock_irq(&hugetlb_lock);
3921
3922         while (nr_demote) {
3923                 /*
3924                  * Check for available pages to demote each time thorough the
3925                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3926                  */
3927                 if (nid != NUMA_NO_NODE)
3928                         nr_available = h->free_huge_pages_node[nid];
3929                 else
3930                         nr_available = h->free_huge_pages;
3931                 nr_available -= h->resv_huge_pages;
3932                 if (!nr_available)
3933                         break;
3934
3935                 err = demote_pool_huge_page(h, n_mask);
3936                 if (err)
3937                         break;
3938
3939                 nr_demote--;
3940         }
3941
3942         spin_unlock_irq(&hugetlb_lock);
3943         mutex_unlock(&h->resize_lock);
3944
3945         if (err)
3946                 return err;
3947         return len;
3948 }
3949 HSTATE_ATTR_WO(demote);
3950
3951 static ssize_t demote_size_show(struct kobject *kobj,
3952                                         struct kobj_attribute *attr, char *buf)
3953 {
3954         struct hstate *h = kobj_to_hstate(kobj, NULL);
3955         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3956
3957         return sysfs_emit(buf, "%lukB\n", demote_size);
3958 }
3959
3960 static ssize_t demote_size_store(struct kobject *kobj,
3961                                         struct kobj_attribute *attr,
3962                                         const char *buf, size_t count)
3963 {
3964         struct hstate *h, *demote_hstate;
3965         unsigned long demote_size;
3966         unsigned int demote_order;
3967
3968         demote_size = (unsigned long)memparse(buf, NULL);
3969
3970         demote_hstate = size_to_hstate(demote_size);
3971         if (!demote_hstate)
3972                 return -EINVAL;
3973         demote_order = demote_hstate->order;
3974         if (demote_order < HUGETLB_PAGE_ORDER)
3975                 return -EINVAL;
3976
3977         /* demote order must be smaller than hstate order */
3978         h = kobj_to_hstate(kobj, NULL);
3979         if (demote_order >= h->order)
3980                 return -EINVAL;
3981
3982         /* resize_lock synchronizes access to demote size and writes */
3983         mutex_lock(&h->resize_lock);
3984         h->demote_order = demote_order;
3985         mutex_unlock(&h->resize_lock);
3986
3987         return count;
3988 }
3989 HSTATE_ATTR(demote_size);
3990
3991 static struct attribute *hstate_attrs[] = {
3992         &nr_hugepages_attr.attr,
3993         &nr_overcommit_hugepages_attr.attr,
3994         &free_hugepages_attr.attr,
3995         &resv_hugepages_attr.attr,
3996         &surplus_hugepages_attr.attr,
3997 #ifdef CONFIG_NUMA
3998         &nr_hugepages_mempolicy_attr.attr,
3999 #endif
4000         NULL,
4001 };
4002
4003 static const struct attribute_group hstate_attr_group = {
4004         .attrs = hstate_attrs,
4005 };
4006
4007 static struct attribute *hstate_demote_attrs[] = {
4008         &demote_size_attr.attr,
4009         &demote_attr.attr,
4010         NULL,
4011 };
4012
4013 static const struct attribute_group hstate_demote_attr_group = {
4014         .attrs = hstate_demote_attrs,
4015 };
4016
4017 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4018                                     struct kobject **hstate_kobjs,
4019                                     const struct attribute_group *hstate_attr_group)
4020 {
4021         int retval;
4022         int hi = hstate_index(h);
4023
4024         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4025         if (!hstate_kobjs[hi])
4026                 return -ENOMEM;
4027
4028         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4029         if (retval) {
4030                 kobject_put(hstate_kobjs[hi]);
4031                 hstate_kobjs[hi] = NULL;
4032                 return retval;
4033         }
4034
4035         if (h->demote_order) {
4036                 retval = sysfs_create_group(hstate_kobjs[hi],
4037                                             &hstate_demote_attr_group);
4038                 if (retval) {
4039                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4040                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4041                         kobject_put(hstate_kobjs[hi]);
4042                         hstate_kobjs[hi] = NULL;
4043                         return retval;
4044                 }
4045         }
4046
4047         return 0;
4048 }
4049
4050 #ifdef CONFIG_NUMA
4051 static bool hugetlb_sysfs_initialized __ro_after_init;
4052
4053 /*
4054  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4055  * with node devices in node_devices[] using a parallel array.  The array
4056  * index of a node device or _hstate == node id.
4057  * This is here to avoid any static dependency of the node device driver, in
4058  * the base kernel, on the hugetlb module.
4059  */
4060 struct node_hstate {
4061         struct kobject          *hugepages_kobj;
4062         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4063 };
4064 static struct node_hstate node_hstates[MAX_NUMNODES];
4065
4066 /*
4067  * A subset of global hstate attributes for node devices
4068  */
4069 static struct attribute *per_node_hstate_attrs[] = {
4070         &nr_hugepages_attr.attr,
4071         &free_hugepages_attr.attr,
4072         &surplus_hugepages_attr.attr,
4073         NULL,
4074 };
4075
4076 static const struct attribute_group per_node_hstate_attr_group = {
4077         .attrs = per_node_hstate_attrs,
4078 };
4079
4080 /*
4081  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4082  * Returns node id via non-NULL nidp.
4083  */
4084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4085 {
4086         int nid;
4087
4088         for (nid = 0; nid < nr_node_ids; nid++) {
4089                 struct node_hstate *nhs = &node_hstates[nid];
4090                 int i;
4091                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4092                         if (nhs->hstate_kobjs[i] == kobj) {
4093                                 if (nidp)
4094                                         *nidp = nid;
4095                                 return &hstates[i];
4096                         }
4097         }
4098
4099         BUG();
4100         return NULL;
4101 }
4102
4103 /*
4104  * Unregister hstate attributes from a single node device.
4105  * No-op if no hstate attributes attached.
4106  */
4107 void hugetlb_unregister_node(struct node *node)
4108 {
4109         struct hstate *h;
4110         struct node_hstate *nhs = &node_hstates[node->dev.id];
4111
4112         if (!nhs->hugepages_kobj)
4113                 return;         /* no hstate attributes */
4114
4115         for_each_hstate(h) {
4116                 int idx = hstate_index(h);
4117                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4118
4119                 if (!hstate_kobj)
4120                         continue;
4121                 if (h->demote_order)
4122                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4123                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4124                 kobject_put(hstate_kobj);
4125                 nhs->hstate_kobjs[idx] = NULL;
4126         }
4127
4128         kobject_put(nhs->hugepages_kobj);
4129         nhs->hugepages_kobj = NULL;
4130 }
4131
4132
4133 /*
4134  * Register hstate attributes for a single node device.
4135  * No-op if attributes already registered.
4136  */
4137 void hugetlb_register_node(struct node *node)
4138 {
4139         struct hstate *h;
4140         struct node_hstate *nhs = &node_hstates[node->dev.id];
4141         int err;
4142
4143         if (!hugetlb_sysfs_initialized)
4144                 return;
4145
4146         if (nhs->hugepages_kobj)
4147                 return;         /* already allocated */
4148
4149         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4150                                                         &node->dev.kobj);
4151         if (!nhs->hugepages_kobj)
4152                 return;
4153
4154         for_each_hstate(h) {
4155                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4156                                                 nhs->hstate_kobjs,
4157                                                 &per_node_hstate_attr_group);
4158                 if (err) {
4159                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4160                                 h->name, node->dev.id);
4161                         hugetlb_unregister_node(node);
4162                         break;
4163                 }
4164         }
4165 }
4166
4167 /*
4168  * hugetlb init time:  register hstate attributes for all registered node
4169  * devices of nodes that have memory.  All on-line nodes should have
4170  * registered their associated device by this time.
4171  */
4172 static void __init hugetlb_register_all_nodes(void)
4173 {
4174         int nid;
4175
4176         for_each_online_node(nid)
4177                 hugetlb_register_node(node_devices[nid]);
4178 }
4179 #else   /* !CONFIG_NUMA */
4180
4181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4182 {
4183         BUG();
4184         if (nidp)
4185                 *nidp = -1;
4186         return NULL;
4187 }
4188
4189 static void hugetlb_register_all_nodes(void) { }
4190
4191 #endif
4192
4193 #ifdef CONFIG_CMA
4194 static void __init hugetlb_cma_check(void);
4195 #else
4196 static inline __init void hugetlb_cma_check(void)
4197 {
4198 }
4199 #endif
4200
4201 static void __init hugetlb_sysfs_init(void)
4202 {
4203         struct hstate *h;
4204         int err;
4205
4206         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4207         if (!hugepages_kobj)
4208                 return;
4209
4210         for_each_hstate(h) {
4211                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4212                                          hstate_kobjs, &hstate_attr_group);
4213                 if (err)
4214                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4215         }
4216
4217 #ifdef CONFIG_NUMA
4218         hugetlb_sysfs_initialized = true;
4219 #endif
4220         hugetlb_register_all_nodes();
4221 }
4222
4223 #ifdef CONFIG_SYSCTL
4224 static void hugetlb_sysctl_init(void);
4225 #else
4226 static inline void hugetlb_sysctl_init(void) { }
4227 #endif
4228
4229 static int __init hugetlb_init(void)
4230 {
4231         int i;
4232
4233         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4234                         __NR_HPAGEFLAGS);
4235
4236         if (!hugepages_supported()) {
4237                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4238                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4239                 return 0;
4240         }
4241
4242         /*
4243          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4244          * architectures depend on setup being done here.
4245          */
4246         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4247         if (!parsed_default_hugepagesz) {
4248                 /*
4249                  * If we did not parse a default huge page size, set
4250                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4251                  * number of huge pages for this default size was implicitly
4252                  * specified, set that here as well.
4253                  * Note that the implicit setting will overwrite an explicit
4254                  * setting.  A warning will be printed in this case.
4255                  */
4256                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4257                 if (default_hstate_max_huge_pages) {
4258                         if (default_hstate.max_huge_pages) {
4259                                 char buf[32];
4260
4261                                 string_get_size(huge_page_size(&default_hstate),
4262                                         1, STRING_UNITS_2, buf, 32);
4263                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4264                                         default_hstate.max_huge_pages, buf);
4265                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4266                                         default_hstate_max_huge_pages);
4267                         }
4268                         default_hstate.max_huge_pages =
4269                                 default_hstate_max_huge_pages;
4270
4271                         for_each_online_node(i)
4272                                 default_hstate.max_huge_pages_node[i] =
4273                                         default_hugepages_in_node[i];
4274                 }
4275         }
4276
4277         hugetlb_cma_check();
4278         hugetlb_init_hstates();
4279         gather_bootmem_prealloc();
4280         report_hugepages();
4281
4282         hugetlb_sysfs_init();
4283         hugetlb_cgroup_file_init();
4284         hugetlb_sysctl_init();
4285
4286 #ifdef CONFIG_SMP
4287         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4288 #else
4289         num_fault_mutexes = 1;
4290 #endif
4291         hugetlb_fault_mutex_table =
4292                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4293                               GFP_KERNEL);
4294         BUG_ON(!hugetlb_fault_mutex_table);
4295
4296         for (i = 0; i < num_fault_mutexes; i++)
4297                 mutex_init(&hugetlb_fault_mutex_table[i]);
4298         return 0;
4299 }
4300 subsys_initcall(hugetlb_init);
4301
4302 /* Overwritten by architectures with more huge page sizes */
4303 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4304 {
4305         return size == HPAGE_SIZE;
4306 }
4307
4308 void __init hugetlb_add_hstate(unsigned int order)
4309 {
4310         struct hstate *h;
4311         unsigned long i;
4312
4313         if (size_to_hstate(PAGE_SIZE << order)) {
4314                 return;
4315         }
4316         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4317         BUG_ON(order == 0);
4318         h = &hstates[hugetlb_max_hstate++];
4319         mutex_init(&h->resize_lock);
4320         h->order = order;
4321         h->mask = ~(huge_page_size(h) - 1);
4322         for (i = 0; i < MAX_NUMNODES; ++i)
4323                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4324         INIT_LIST_HEAD(&h->hugepage_activelist);
4325         h->next_nid_to_alloc = first_memory_node;
4326         h->next_nid_to_free = first_memory_node;
4327         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4328                                         huge_page_size(h)/SZ_1K);
4329
4330         parsed_hstate = h;
4331 }
4332
4333 bool __init __weak hugetlb_node_alloc_supported(void)
4334 {
4335         return true;
4336 }
4337
4338 static void __init hugepages_clear_pages_in_node(void)
4339 {
4340         if (!hugetlb_max_hstate) {
4341                 default_hstate_max_huge_pages = 0;
4342                 memset(default_hugepages_in_node, 0,
4343                         sizeof(default_hugepages_in_node));
4344         } else {
4345                 parsed_hstate->max_huge_pages = 0;
4346                 memset(parsed_hstate->max_huge_pages_node, 0,
4347                         sizeof(parsed_hstate->max_huge_pages_node));
4348         }
4349 }
4350
4351 /*
4352  * hugepages command line processing
4353  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4354  * specification.  If not, ignore the hugepages value.  hugepages can also
4355  * be the first huge page command line  option in which case it implicitly
4356  * specifies the number of huge pages for the default size.
4357  */
4358 static int __init hugepages_setup(char *s)
4359 {
4360         unsigned long *mhp;
4361         static unsigned long *last_mhp;
4362         int node = NUMA_NO_NODE;
4363         int count;
4364         unsigned long tmp;
4365         char *p = s;
4366
4367         if (!parsed_valid_hugepagesz) {
4368                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4369                 parsed_valid_hugepagesz = true;
4370                 return 1;
4371         }
4372
4373         /*
4374          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4375          * yet, so this hugepages= parameter goes to the "default hstate".
4376          * Otherwise, it goes with the previously parsed hugepagesz or
4377          * default_hugepagesz.
4378          */
4379         else if (!hugetlb_max_hstate)
4380                 mhp = &default_hstate_max_huge_pages;
4381         else
4382                 mhp = &parsed_hstate->max_huge_pages;
4383
4384         if (mhp == last_mhp) {
4385                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4386                 return 1;
4387         }
4388
4389         while (*p) {
4390                 count = 0;
4391                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4392                         goto invalid;
4393                 /* Parameter is node format */
4394                 if (p[count] == ':') {
4395                         if (!hugetlb_node_alloc_supported()) {
4396                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4397                                 return 1;
4398                         }
4399                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4400                                 goto invalid;
4401                         node = array_index_nospec(tmp, MAX_NUMNODES);
4402                         p += count + 1;
4403                         /* Parse hugepages */
4404                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4405                                 goto invalid;
4406                         if (!hugetlb_max_hstate)
4407                                 default_hugepages_in_node[node] = tmp;
4408                         else
4409                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4410                         *mhp += tmp;
4411                         /* Go to parse next node*/
4412                         if (p[count] == ',')
4413                                 p += count + 1;
4414                         else
4415                                 break;
4416                 } else {
4417                         if (p != s)
4418                                 goto invalid;
4419                         *mhp = tmp;
4420                         break;
4421                 }
4422         }
4423
4424         /*
4425          * Global state is always initialized later in hugetlb_init.
4426          * But we need to allocate gigantic hstates here early to still
4427          * use the bootmem allocator.
4428          */
4429         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4430                 hugetlb_hstate_alloc_pages(parsed_hstate);
4431
4432         last_mhp = mhp;
4433
4434         return 1;
4435
4436 invalid:
4437         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4438         hugepages_clear_pages_in_node();
4439         return 1;
4440 }
4441 __setup("hugepages=", hugepages_setup);
4442
4443 /*
4444  * hugepagesz command line processing
4445  * A specific huge page size can only be specified once with hugepagesz.
4446  * hugepagesz is followed by hugepages on the command line.  The global
4447  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4448  * hugepagesz argument was valid.
4449  */
4450 static int __init hugepagesz_setup(char *s)
4451 {
4452         unsigned long size;
4453         struct hstate *h;
4454
4455         parsed_valid_hugepagesz = false;
4456         size = (unsigned long)memparse(s, NULL);
4457
4458         if (!arch_hugetlb_valid_size(size)) {
4459                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4460                 return 1;
4461         }
4462
4463         h = size_to_hstate(size);
4464         if (h) {
4465                 /*
4466                  * hstate for this size already exists.  This is normally
4467                  * an error, but is allowed if the existing hstate is the
4468                  * default hstate.  More specifically, it is only allowed if
4469                  * the number of huge pages for the default hstate was not
4470                  * previously specified.
4471                  */
4472                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4473                     default_hstate.max_huge_pages) {
4474                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4475                         return 1;
4476                 }
4477
4478                 /*
4479                  * No need to call hugetlb_add_hstate() as hstate already
4480                  * exists.  But, do set parsed_hstate so that a following
4481                  * hugepages= parameter will be applied to this hstate.
4482                  */
4483                 parsed_hstate = h;
4484                 parsed_valid_hugepagesz = true;
4485                 return 1;
4486         }
4487
4488         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4489         parsed_valid_hugepagesz = true;
4490         return 1;
4491 }
4492 __setup("hugepagesz=", hugepagesz_setup);
4493
4494 /*
4495  * default_hugepagesz command line input
4496  * Only one instance of default_hugepagesz allowed on command line.
4497  */
4498 static int __init default_hugepagesz_setup(char *s)
4499 {
4500         unsigned long size;
4501         int i;
4502
4503         parsed_valid_hugepagesz = false;
4504         if (parsed_default_hugepagesz) {
4505                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4506                 return 1;
4507         }
4508
4509         size = (unsigned long)memparse(s, NULL);
4510
4511         if (!arch_hugetlb_valid_size(size)) {
4512                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4513                 return 1;
4514         }
4515
4516         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4517         parsed_valid_hugepagesz = true;
4518         parsed_default_hugepagesz = true;
4519         default_hstate_idx = hstate_index(size_to_hstate(size));
4520
4521         /*
4522          * The number of default huge pages (for this size) could have been
4523          * specified as the first hugetlb parameter: hugepages=X.  If so,
4524          * then default_hstate_max_huge_pages is set.  If the default huge
4525          * page size is gigantic (> MAX_ORDER), then the pages must be
4526          * allocated here from bootmem allocator.
4527          */
4528         if (default_hstate_max_huge_pages) {
4529                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4530                 for_each_online_node(i)
4531                         default_hstate.max_huge_pages_node[i] =
4532                                 default_hugepages_in_node[i];
4533                 if (hstate_is_gigantic(&default_hstate))
4534                         hugetlb_hstate_alloc_pages(&default_hstate);
4535                 default_hstate_max_huge_pages = 0;
4536         }
4537
4538         return 1;
4539 }
4540 __setup("default_hugepagesz=", default_hugepagesz_setup);
4541
4542 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4543 {
4544 #ifdef CONFIG_NUMA
4545         struct mempolicy *mpol = get_task_policy(current);
4546
4547         /*
4548          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4549          * (from policy_nodemask) specifically for hugetlb case
4550          */
4551         if (mpol->mode == MPOL_BIND &&
4552                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4553                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4554                 return &mpol->nodes;
4555 #endif
4556         return NULL;
4557 }
4558
4559 static unsigned int allowed_mems_nr(struct hstate *h)
4560 {
4561         int node;
4562         unsigned int nr = 0;
4563         nodemask_t *mbind_nodemask;
4564         unsigned int *array = h->free_huge_pages_node;
4565         gfp_t gfp_mask = htlb_alloc_mask(h);
4566
4567         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4568         for_each_node_mask(node, cpuset_current_mems_allowed) {
4569                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4570                         nr += array[node];
4571         }
4572
4573         return nr;
4574 }
4575
4576 #ifdef CONFIG_SYSCTL
4577 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4578                                           void *buffer, size_t *length,
4579                                           loff_t *ppos, unsigned long *out)
4580 {
4581         struct ctl_table dup_table;
4582
4583         /*
4584          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4585          * can duplicate the @table and alter the duplicate of it.
4586          */
4587         dup_table = *table;
4588         dup_table.data = out;
4589
4590         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4591 }
4592
4593 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4594                          struct ctl_table *table, int write,
4595                          void *buffer, size_t *length, loff_t *ppos)
4596 {
4597         struct hstate *h = &default_hstate;
4598         unsigned long tmp = h->max_huge_pages;
4599         int ret;
4600
4601         if (!hugepages_supported())
4602                 return -EOPNOTSUPP;
4603
4604         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4605                                              &tmp);
4606         if (ret)
4607                 goto out;
4608
4609         if (write)
4610                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4611                                                   NUMA_NO_NODE, tmp, *length);
4612 out:
4613         return ret;
4614 }
4615
4616 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4617                           void *buffer, size_t *length, loff_t *ppos)
4618 {
4619
4620         return hugetlb_sysctl_handler_common(false, table, write,
4621                                                         buffer, length, ppos);
4622 }
4623
4624 #ifdef CONFIG_NUMA
4625 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4626                           void *buffer, size_t *length, loff_t *ppos)
4627 {
4628         return hugetlb_sysctl_handler_common(true, table, write,
4629                                                         buffer, length, ppos);
4630 }
4631 #endif /* CONFIG_NUMA */
4632
4633 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4634                 void *buffer, size_t *length, loff_t *ppos)
4635 {
4636         struct hstate *h = &default_hstate;
4637         unsigned long tmp;
4638         int ret;
4639
4640         if (!hugepages_supported())
4641                 return -EOPNOTSUPP;
4642
4643         tmp = h->nr_overcommit_huge_pages;
4644
4645         if (write && hstate_is_gigantic(h))
4646                 return -EINVAL;
4647
4648         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4649                                              &tmp);
4650         if (ret)
4651                 goto out;
4652
4653         if (write) {
4654                 spin_lock_irq(&hugetlb_lock);
4655                 h->nr_overcommit_huge_pages = tmp;
4656                 spin_unlock_irq(&hugetlb_lock);
4657         }
4658 out:
4659         return ret;
4660 }
4661
4662 static struct ctl_table hugetlb_table[] = {
4663         {
4664                 .procname       = "nr_hugepages",
4665                 .data           = NULL,
4666                 .maxlen         = sizeof(unsigned long),
4667                 .mode           = 0644,
4668                 .proc_handler   = hugetlb_sysctl_handler,
4669         },
4670 #ifdef CONFIG_NUMA
4671         {
4672                 .procname       = "nr_hugepages_mempolicy",
4673                 .data           = NULL,
4674                 .maxlen         = sizeof(unsigned long),
4675                 .mode           = 0644,
4676                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4677         },
4678 #endif
4679         {
4680                 .procname       = "hugetlb_shm_group",
4681                 .data           = &sysctl_hugetlb_shm_group,
4682                 .maxlen         = sizeof(gid_t),
4683                 .mode           = 0644,
4684                 .proc_handler   = proc_dointvec,
4685         },
4686         {
4687                 .procname       = "nr_overcommit_hugepages",
4688                 .data           = NULL,
4689                 .maxlen         = sizeof(unsigned long),
4690                 .mode           = 0644,
4691                 .proc_handler   = hugetlb_overcommit_handler,
4692         },
4693         { }
4694 };
4695
4696 static void hugetlb_sysctl_init(void)
4697 {
4698         register_sysctl_init("vm", hugetlb_table);
4699 }
4700 #endif /* CONFIG_SYSCTL */
4701
4702 void hugetlb_report_meminfo(struct seq_file *m)
4703 {
4704         struct hstate *h;
4705         unsigned long total = 0;
4706
4707         if (!hugepages_supported())
4708                 return;
4709
4710         for_each_hstate(h) {
4711                 unsigned long count = h->nr_huge_pages;
4712
4713                 total += huge_page_size(h) * count;
4714
4715                 if (h == &default_hstate)
4716                         seq_printf(m,
4717                                    "HugePages_Total:   %5lu\n"
4718                                    "HugePages_Free:    %5lu\n"
4719                                    "HugePages_Rsvd:    %5lu\n"
4720                                    "HugePages_Surp:    %5lu\n"
4721                                    "Hugepagesize:   %8lu kB\n",
4722                                    count,
4723                                    h->free_huge_pages,
4724                                    h->resv_huge_pages,
4725                                    h->surplus_huge_pages,
4726                                    huge_page_size(h) / SZ_1K);
4727         }
4728
4729         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4730 }
4731
4732 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4733 {
4734         struct hstate *h = &default_hstate;
4735
4736         if (!hugepages_supported())
4737                 return 0;
4738
4739         return sysfs_emit_at(buf, len,
4740                              "Node %d HugePages_Total: %5u\n"
4741                              "Node %d HugePages_Free:  %5u\n"
4742                              "Node %d HugePages_Surp:  %5u\n",
4743                              nid, h->nr_huge_pages_node[nid],
4744                              nid, h->free_huge_pages_node[nid],
4745                              nid, h->surplus_huge_pages_node[nid]);
4746 }
4747
4748 void hugetlb_show_meminfo_node(int nid)
4749 {
4750         struct hstate *h;
4751
4752         if (!hugepages_supported())
4753                 return;
4754
4755         for_each_hstate(h)
4756                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4757                         nid,
4758                         h->nr_huge_pages_node[nid],
4759                         h->free_huge_pages_node[nid],
4760                         h->surplus_huge_pages_node[nid],
4761                         huge_page_size(h) / SZ_1K);
4762 }
4763
4764 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4765 {
4766         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4767                    K(atomic_long_read(&mm->hugetlb_usage)));
4768 }
4769
4770 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4771 unsigned long hugetlb_total_pages(void)
4772 {
4773         struct hstate *h;
4774         unsigned long nr_total_pages = 0;
4775
4776         for_each_hstate(h)
4777                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4778         return nr_total_pages;
4779 }
4780
4781 static int hugetlb_acct_memory(struct hstate *h, long delta)
4782 {
4783         int ret = -ENOMEM;
4784
4785         if (!delta)
4786                 return 0;
4787
4788         spin_lock_irq(&hugetlb_lock);
4789         /*
4790          * When cpuset is configured, it breaks the strict hugetlb page
4791          * reservation as the accounting is done on a global variable. Such
4792          * reservation is completely rubbish in the presence of cpuset because
4793          * the reservation is not checked against page availability for the
4794          * current cpuset. Application can still potentially OOM'ed by kernel
4795          * with lack of free htlb page in cpuset that the task is in.
4796          * Attempt to enforce strict accounting with cpuset is almost
4797          * impossible (or too ugly) because cpuset is too fluid that
4798          * task or memory node can be dynamically moved between cpusets.
4799          *
4800          * The change of semantics for shared hugetlb mapping with cpuset is
4801          * undesirable. However, in order to preserve some of the semantics,
4802          * we fall back to check against current free page availability as
4803          * a best attempt and hopefully to minimize the impact of changing
4804          * semantics that cpuset has.
4805          *
4806          * Apart from cpuset, we also have memory policy mechanism that
4807          * also determines from which node the kernel will allocate memory
4808          * in a NUMA system. So similar to cpuset, we also should consider
4809          * the memory policy of the current task. Similar to the description
4810          * above.
4811          */
4812         if (delta > 0) {
4813                 if (gather_surplus_pages(h, delta) < 0)
4814                         goto out;
4815
4816                 if (delta > allowed_mems_nr(h)) {
4817                         return_unused_surplus_pages(h, delta);
4818                         goto out;
4819                 }
4820         }
4821
4822         ret = 0;
4823         if (delta < 0)
4824                 return_unused_surplus_pages(h, (unsigned long) -delta);
4825
4826 out:
4827         spin_unlock_irq(&hugetlb_lock);
4828         return ret;
4829 }
4830
4831 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4832 {
4833         struct resv_map *resv = vma_resv_map(vma);
4834
4835         /*
4836          * HPAGE_RESV_OWNER indicates a private mapping.
4837          * This new VMA should share its siblings reservation map if present.
4838          * The VMA will only ever have a valid reservation map pointer where
4839          * it is being copied for another still existing VMA.  As that VMA
4840          * has a reference to the reservation map it cannot disappear until
4841          * after this open call completes.  It is therefore safe to take a
4842          * new reference here without additional locking.
4843          */
4844         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4845                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4846                 kref_get(&resv->refs);
4847         }
4848
4849         /*
4850          * vma_lock structure for sharable mappings is vma specific.
4851          * Clear old pointer (if copied via vm_area_dup) and allocate
4852          * new structure.  Before clearing, make sure vma_lock is not
4853          * for this vma.
4854          */
4855         if (vma->vm_flags & VM_MAYSHARE) {
4856                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4857
4858                 if (vma_lock) {
4859                         if (vma_lock->vma != vma) {
4860                                 vma->vm_private_data = NULL;
4861                                 hugetlb_vma_lock_alloc(vma);
4862                         } else
4863                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4864                 } else
4865                         hugetlb_vma_lock_alloc(vma);
4866         }
4867 }
4868
4869 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4870 {
4871         struct hstate *h = hstate_vma(vma);
4872         struct resv_map *resv;
4873         struct hugepage_subpool *spool = subpool_vma(vma);
4874         unsigned long reserve, start, end;
4875         long gbl_reserve;
4876
4877         hugetlb_vma_lock_free(vma);
4878
4879         resv = vma_resv_map(vma);
4880         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4881                 return;
4882
4883         start = vma_hugecache_offset(h, vma, vma->vm_start);
4884         end = vma_hugecache_offset(h, vma, vma->vm_end);
4885
4886         reserve = (end - start) - region_count(resv, start, end);
4887         hugetlb_cgroup_uncharge_counter(resv, start, end);
4888         if (reserve) {
4889                 /*
4890                  * Decrement reserve counts.  The global reserve count may be
4891                  * adjusted if the subpool has a minimum size.
4892                  */
4893                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4894                 hugetlb_acct_memory(h, -gbl_reserve);
4895         }
4896
4897         kref_put(&resv->refs, resv_map_release);
4898 }
4899
4900 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4901 {
4902         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4903                 return -EINVAL;
4904
4905         /*
4906          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4907          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4908          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4909          */
4910         if (addr & ~PUD_MASK) {
4911                 /*
4912                  * hugetlb_vm_op_split is called right before we attempt to
4913                  * split the VMA. We will need to unshare PMDs in the old and
4914                  * new VMAs, so let's unshare before we split.
4915                  */
4916                 unsigned long floor = addr & PUD_MASK;
4917                 unsigned long ceil = floor + PUD_SIZE;
4918
4919                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4920                         hugetlb_unshare_pmds(vma, floor, ceil);
4921         }
4922
4923         return 0;
4924 }
4925
4926 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4927 {
4928         return huge_page_size(hstate_vma(vma));
4929 }
4930
4931 /*
4932  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4933  * handle_mm_fault() to try to instantiate regular-sized pages in the
4934  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4935  * this far.
4936  */
4937 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4938 {
4939         BUG();
4940         return 0;
4941 }
4942
4943 /*
4944  * When a new function is introduced to vm_operations_struct and added
4945  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4946  * This is because under System V memory model, mappings created via
4947  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4948  * their original vm_ops are overwritten with shm_vm_ops.
4949  */
4950 const struct vm_operations_struct hugetlb_vm_ops = {
4951         .fault = hugetlb_vm_op_fault,
4952         .open = hugetlb_vm_op_open,
4953         .close = hugetlb_vm_op_close,
4954         .may_split = hugetlb_vm_op_split,
4955         .pagesize = hugetlb_vm_op_pagesize,
4956 };
4957
4958 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4959                                 int writable)
4960 {
4961         pte_t entry;
4962         unsigned int shift = huge_page_shift(hstate_vma(vma));
4963
4964         if (writable) {
4965                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4966                                          vma->vm_page_prot)));
4967         } else {
4968                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4969                                            vma->vm_page_prot));
4970         }
4971         entry = pte_mkyoung(entry);
4972         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4973
4974         return entry;
4975 }
4976
4977 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4978                                    unsigned long address, pte_t *ptep)
4979 {
4980         pte_t entry;
4981
4982         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4983         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4984                 update_mmu_cache(vma, address, ptep);
4985 }
4986
4987 bool is_hugetlb_entry_migration(pte_t pte)
4988 {
4989         swp_entry_t swp;
4990
4991         if (huge_pte_none(pte) || pte_present(pte))
4992                 return false;
4993         swp = pte_to_swp_entry(pte);
4994         if (is_migration_entry(swp))
4995                 return true;
4996         else
4997                 return false;
4998 }
4999
5000 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5001 {
5002         swp_entry_t swp;
5003
5004         if (huge_pte_none(pte) || pte_present(pte))
5005                 return false;
5006         swp = pte_to_swp_entry(pte);
5007         if (is_hwpoison_entry(swp))
5008                 return true;
5009         else
5010                 return false;
5011 }
5012
5013 static void
5014 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5015                       struct folio *new_folio, pte_t old, unsigned long sz)
5016 {
5017         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5018
5019         __folio_mark_uptodate(new_folio);
5020         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5021         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5022                 newpte = huge_pte_mkuffd_wp(newpte);
5023         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5024         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5025         folio_set_hugetlb_migratable(new_folio);
5026 }
5027
5028 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5029                             struct vm_area_struct *dst_vma,
5030                             struct vm_area_struct *src_vma)
5031 {
5032         pte_t *src_pte, *dst_pte, entry;
5033         struct folio *pte_folio;
5034         unsigned long addr;
5035         bool cow = is_cow_mapping(src_vma->vm_flags);
5036         struct hstate *h = hstate_vma(src_vma);
5037         unsigned long sz = huge_page_size(h);
5038         unsigned long npages = pages_per_huge_page(h);
5039         struct mmu_notifier_range range;
5040         unsigned long last_addr_mask;
5041         int ret = 0;
5042
5043         if (cow) {
5044                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5045                                         src_vma->vm_start,
5046                                         src_vma->vm_end);
5047                 mmu_notifier_invalidate_range_start(&range);
5048                 vma_assert_write_locked(src_vma);
5049                 raw_write_seqcount_begin(&src->write_protect_seq);
5050         } else {
5051                 /*
5052                  * For shared mappings the vma lock must be held before
5053                  * calling hugetlb_walk() in the src vma. Otherwise, the
5054                  * returned ptep could go away if part of a shared pmd and
5055                  * another thread calls huge_pmd_unshare.
5056                  */
5057                 hugetlb_vma_lock_read(src_vma);
5058         }
5059
5060         last_addr_mask = hugetlb_mask_last_page(h);
5061         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5062                 spinlock_t *src_ptl, *dst_ptl;
5063                 src_pte = hugetlb_walk(src_vma, addr, sz);
5064                 if (!src_pte) {
5065                         addr |= last_addr_mask;
5066                         continue;
5067                 }
5068                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5069                 if (!dst_pte) {
5070                         ret = -ENOMEM;
5071                         break;
5072                 }
5073
5074                 /*
5075                  * If the pagetables are shared don't copy or take references.
5076                  *
5077                  * dst_pte == src_pte is the common case of src/dest sharing.
5078                  * However, src could have 'unshared' and dst shares with
5079                  * another vma. So page_count of ptep page is checked instead
5080                  * to reliably determine whether pte is shared.
5081                  */
5082                 if (page_count(virt_to_page(dst_pte)) > 1) {
5083                         addr |= last_addr_mask;
5084                         continue;
5085                 }
5086
5087                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5088                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5089                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5090                 entry = huge_ptep_get(src_pte);
5091 again:
5092                 if (huge_pte_none(entry)) {
5093                         /*
5094                          * Skip if src entry none.
5095                          */
5096                         ;
5097                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5098                         if (!userfaultfd_wp(dst_vma))
5099                                 entry = huge_pte_clear_uffd_wp(entry);
5100                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5101                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5102                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5103                         bool uffd_wp = pte_swp_uffd_wp(entry);
5104
5105                         if (!is_readable_migration_entry(swp_entry) && cow) {
5106                                 /*
5107                                  * COW mappings require pages in both
5108                                  * parent and child to be set to read.
5109                                  */
5110                                 swp_entry = make_readable_migration_entry(
5111                                                         swp_offset(swp_entry));
5112                                 entry = swp_entry_to_pte(swp_entry);
5113                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5114                                         entry = pte_swp_mkuffd_wp(entry);
5115                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5116                         }
5117                         if (!userfaultfd_wp(dst_vma))
5118                                 entry = huge_pte_clear_uffd_wp(entry);
5119                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5120                 } else if (unlikely(is_pte_marker(entry))) {
5121                         pte_marker marker = copy_pte_marker(
5122                                 pte_to_swp_entry(entry), dst_vma);
5123
5124                         if (marker)
5125                                 set_huge_pte_at(dst, addr, dst_pte,
5126                                                 make_pte_marker(marker), sz);
5127                 } else {
5128                         entry = huge_ptep_get(src_pte);
5129                         pte_folio = page_folio(pte_page(entry));
5130                         folio_get(pte_folio);
5131
5132                         /*
5133                          * Failing to duplicate the anon rmap is a rare case
5134                          * where we see pinned hugetlb pages while they're
5135                          * prone to COW. We need to do the COW earlier during
5136                          * fork.
5137                          *
5138                          * When pre-allocating the page or copying data, we
5139                          * need to be without the pgtable locks since we could
5140                          * sleep during the process.
5141                          */
5142                         if (!folio_test_anon(pte_folio)) {
5143                                 page_dup_file_rmap(&pte_folio->page, true);
5144                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5145                                                           true, src_vma)) {
5146                                 pte_t src_pte_old = entry;
5147                                 struct folio *new_folio;
5148
5149                                 spin_unlock(src_ptl);
5150                                 spin_unlock(dst_ptl);
5151                                 /* Do not use reserve as it's private owned */
5152                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5153                                 if (IS_ERR(new_folio)) {
5154                                         folio_put(pte_folio);
5155                                         ret = PTR_ERR(new_folio);
5156                                         break;
5157                                 }
5158                                 ret = copy_user_large_folio(new_folio,
5159                                                             pte_folio,
5160                                                             addr, dst_vma);
5161                                 folio_put(pte_folio);
5162                                 if (ret) {
5163                                         folio_put(new_folio);
5164                                         break;
5165                                 }
5166
5167                                 /* Install the new hugetlb folio if src pte stable */
5168                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5169                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5170                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5171                                 entry = huge_ptep_get(src_pte);
5172                                 if (!pte_same(src_pte_old, entry)) {
5173                                         restore_reserve_on_error(h, dst_vma, addr,
5174                                                                 new_folio);
5175                                         folio_put(new_folio);
5176                                         /* huge_ptep of dst_pte won't change as in child */
5177                                         goto again;
5178                                 }
5179                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5180                                                       new_folio, src_pte_old, sz);
5181                                 spin_unlock(src_ptl);
5182                                 spin_unlock(dst_ptl);
5183                                 continue;
5184                         }
5185
5186                         if (cow) {
5187                                 /*
5188                                  * No need to notify as we are downgrading page
5189                                  * table protection not changing it to point
5190                                  * to a new page.
5191                                  *
5192                                  * See Documentation/mm/mmu_notifier.rst
5193                                  */
5194                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5195                                 entry = huge_pte_wrprotect(entry);
5196                         }
5197
5198                         if (!userfaultfd_wp(dst_vma))
5199                                 entry = huge_pte_clear_uffd_wp(entry);
5200
5201                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5202                         hugetlb_count_add(npages, dst);
5203                 }
5204                 spin_unlock(src_ptl);
5205                 spin_unlock(dst_ptl);
5206         }
5207
5208         if (cow) {
5209                 raw_write_seqcount_end(&src->write_protect_seq);
5210                 mmu_notifier_invalidate_range_end(&range);
5211         } else {
5212                 hugetlb_vma_unlock_read(src_vma);
5213         }
5214
5215         return ret;
5216 }
5217
5218 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5219                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5220                           unsigned long sz)
5221 {
5222         struct hstate *h = hstate_vma(vma);
5223         struct mm_struct *mm = vma->vm_mm;
5224         spinlock_t *src_ptl, *dst_ptl;
5225         pte_t pte;
5226
5227         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5228         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5229
5230         /*
5231          * We don't have to worry about the ordering of src and dst ptlocks
5232          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5233          */
5234         if (src_ptl != dst_ptl)
5235                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5236
5237         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5238         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5239
5240         if (src_ptl != dst_ptl)
5241                 spin_unlock(src_ptl);
5242         spin_unlock(dst_ptl);
5243 }
5244
5245 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5246                              struct vm_area_struct *new_vma,
5247                              unsigned long old_addr, unsigned long new_addr,
5248                              unsigned long len)
5249 {
5250         struct hstate *h = hstate_vma(vma);
5251         struct address_space *mapping = vma->vm_file->f_mapping;
5252         unsigned long sz = huge_page_size(h);
5253         struct mm_struct *mm = vma->vm_mm;
5254         unsigned long old_end = old_addr + len;
5255         unsigned long last_addr_mask;
5256         pte_t *src_pte, *dst_pte;
5257         struct mmu_notifier_range range;
5258         bool shared_pmd = false;
5259
5260         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5261                                 old_end);
5262         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5263         /*
5264          * In case of shared PMDs, we should cover the maximum possible
5265          * range.
5266          */
5267         flush_cache_range(vma, range.start, range.end);
5268
5269         mmu_notifier_invalidate_range_start(&range);
5270         last_addr_mask = hugetlb_mask_last_page(h);
5271         /* Prevent race with file truncation */
5272         hugetlb_vma_lock_write(vma);
5273         i_mmap_lock_write(mapping);
5274         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5275                 src_pte = hugetlb_walk(vma, old_addr, sz);
5276                 if (!src_pte) {
5277                         old_addr |= last_addr_mask;
5278                         new_addr |= last_addr_mask;
5279                         continue;
5280                 }
5281                 if (huge_pte_none(huge_ptep_get(src_pte)))
5282                         continue;
5283
5284                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5285                         shared_pmd = true;
5286                         old_addr |= last_addr_mask;
5287                         new_addr |= last_addr_mask;
5288                         continue;
5289                 }
5290
5291                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5292                 if (!dst_pte)
5293                         break;
5294
5295                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5296         }
5297
5298         if (shared_pmd)
5299                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5300         else
5301                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5302         mmu_notifier_invalidate_range_end(&range);
5303         i_mmap_unlock_write(mapping);
5304         hugetlb_vma_unlock_write(vma);
5305
5306         return len + old_addr - old_end;
5307 }
5308
5309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5310                             unsigned long start, unsigned long end,
5311                             struct page *ref_page, zap_flags_t zap_flags)
5312 {
5313         struct mm_struct *mm = vma->vm_mm;
5314         unsigned long address;
5315         pte_t *ptep;
5316         pte_t pte;
5317         spinlock_t *ptl;
5318         struct page *page;
5319         struct hstate *h = hstate_vma(vma);
5320         unsigned long sz = huge_page_size(h);
5321         unsigned long last_addr_mask;
5322         bool force_flush = false;
5323
5324         WARN_ON(!is_vm_hugetlb_page(vma));
5325         BUG_ON(start & ~huge_page_mask(h));
5326         BUG_ON(end & ~huge_page_mask(h));
5327
5328         /*
5329          * This is a hugetlb vma, all the pte entries should point
5330          * to huge page.
5331          */
5332         tlb_change_page_size(tlb, sz);
5333         tlb_start_vma(tlb, vma);
5334
5335         last_addr_mask = hugetlb_mask_last_page(h);
5336         address = start;
5337         for (; address < end; address += sz) {
5338                 ptep = hugetlb_walk(vma, address, sz);
5339                 if (!ptep) {
5340                         address |= last_addr_mask;
5341                         continue;
5342                 }
5343
5344                 ptl = huge_pte_lock(h, mm, ptep);
5345                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5346                         spin_unlock(ptl);
5347                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5348                         force_flush = true;
5349                         address |= last_addr_mask;
5350                         continue;
5351                 }
5352
5353                 pte = huge_ptep_get(ptep);
5354                 if (huge_pte_none(pte)) {
5355                         spin_unlock(ptl);
5356                         continue;
5357                 }
5358
5359                 /*
5360                  * Migrating hugepage or HWPoisoned hugepage is already
5361                  * unmapped and its refcount is dropped, so just clear pte here.
5362                  */
5363                 if (unlikely(!pte_present(pte))) {
5364                         /*
5365                          * If the pte was wr-protected by uffd-wp in any of the
5366                          * swap forms, meanwhile the caller does not want to
5367                          * drop the uffd-wp bit in this zap, then replace the
5368                          * pte with a marker.
5369                          */
5370                         if (pte_swp_uffd_wp_any(pte) &&
5371                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5372                                 set_huge_pte_at(mm, address, ptep,
5373                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5374                                                 sz);
5375                         else
5376                                 huge_pte_clear(mm, address, ptep, sz);
5377                         spin_unlock(ptl);
5378                         continue;
5379                 }
5380
5381                 page = pte_page(pte);
5382                 /*
5383                  * If a reference page is supplied, it is because a specific
5384                  * page is being unmapped, not a range. Ensure the page we
5385                  * are about to unmap is the actual page of interest.
5386                  */
5387                 if (ref_page) {
5388                         if (page != ref_page) {
5389                                 spin_unlock(ptl);
5390                                 continue;
5391                         }
5392                         /*
5393                          * Mark the VMA as having unmapped its page so that
5394                          * future faults in this VMA will fail rather than
5395                          * looking like data was lost
5396                          */
5397                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5398                 }
5399
5400                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5401                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5402                 if (huge_pte_dirty(pte))
5403                         set_page_dirty(page);
5404                 /* Leave a uffd-wp pte marker if needed */
5405                 if (huge_pte_uffd_wp(pte) &&
5406                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5407                         set_huge_pte_at(mm, address, ptep,
5408                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5409                                         sz);
5410                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5411                 page_remove_rmap(page, vma, true);
5412
5413                 spin_unlock(ptl);
5414                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5415                 /*
5416                  * Bail out after unmapping reference page if supplied
5417                  */
5418                 if (ref_page)
5419                         break;
5420         }
5421         tlb_end_vma(tlb, vma);
5422
5423         /*
5424          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5425          * could defer the flush until now, since by holding i_mmap_rwsem we
5426          * guaranteed that the last refernece would not be dropped. But we must
5427          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5428          * dropped and the last reference to the shared PMDs page might be
5429          * dropped as well.
5430          *
5431          * In theory we could defer the freeing of the PMD pages as well, but
5432          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5433          * detect sharing, so we cannot defer the release of the page either.
5434          * Instead, do flush now.
5435          */
5436         if (force_flush)
5437                 tlb_flush_mmu_tlbonly(tlb);
5438 }
5439
5440 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5441                          unsigned long *start, unsigned long *end)
5442 {
5443         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5444                 return;
5445
5446         adjust_range_if_pmd_sharing_possible(vma, start, end);
5447         hugetlb_vma_lock_write(vma);
5448         if (vma->vm_file)
5449                 i_mmap_lock_write(vma->vm_file->f_mapping);
5450 }
5451
5452 void __hugetlb_zap_end(struct vm_area_struct *vma,
5453                        struct zap_details *details)
5454 {
5455         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5456
5457         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5458                 return;
5459
5460         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5461                 /*
5462                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5463                  * When the vma_lock is freed, this makes the vma ineligible
5464                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5465                  * pmd sharing.  This is important as page tables for this
5466                  * unmapped range will be asynchrously deleted.  If the page
5467                  * tables are shared, there will be issues when accessed by
5468                  * someone else.
5469                  */
5470                 __hugetlb_vma_unlock_write_free(vma);
5471         } else {
5472                 hugetlb_vma_unlock_write(vma);
5473         }
5474
5475         if (vma->vm_file)
5476                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5477 }
5478
5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480                           unsigned long end, struct page *ref_page,
5481                           zap_flags_t zap_flags)
5482 {
5483         struct mmu_notifier_range range;
5484         struct mmu_gather tlb;
5485
5486         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5487                                 start, end);
5488         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489         mmu_notifier_invalidate_range_start(&range);
5490         tlb_gather_mmu(&tlb, vma->vm_mm);
5491
5492         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5493
5494         mmu_notifier_invalidate_range_end(&range);
5495         tlb_finish_mmu(&tlb);
5496 }
5497
5498 /*
5499  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500  * mapping it owns the reserve page for. The intention is to unmap the page
5501  * from other VMAs and let the children be SIGKILLed if they are faulting the
5502  * same region.
5503  */
5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505                               struct page *page, unsigned long address)
5506 {
5507         struct hstate *h = hstate_vma(vma);
5508         struct vm_area_struct *iter_vma;
5509         struct address_space *mapping;
5510         pgoff_t pgoff;
5511
5512         /*
5513          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514          * from page cache lookup which is in HPAGE_SIZE units.
5515          */
5516         address = address & huge_page_mask(h);
5517         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5518                         vma->vm_pgoff;
5519         mapping = vma->vm_file->f_mapping;
5520
5521         /*
5522          * Take the mapping lock for the duration of the table walk. As
5523          * this mapping should be shared between all the VMAs,
5524          * __unmap_hugepage_range() is called as the lock is already held
5525          */
5526         i_mmap_lock_write(mapping);
5527         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528                 /* Do not unmap the current VMA */
5529                 if (iter_vma == vma)
5530                         continue;
5531
5532                 /*
5533                  * Shared VMAs have their own reserves and do not affect
5534                  * MAP_PRIVATE accounting but it is possible that a shared
5535                  * VMA is using the same page so check and skip such VMAs.
5536                  */
5537                 if (iter_vma->vm_flags & VM_MAYSHARE)
5538                         continue;
5539
5540                 /*
5541                  * Unmap the page from other VMAs without their own reserves.
5542                  * They get marked to be SIGKILLed if they fault in these
5543                  * areas. This is because a future no-page fault on this VMA
5544                  * could insert a zeroed page instead of the data existing
5545                  * from the time of fork. This would look like data corruption
5546                  */
5547                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548                         unmap_hugepage_range(iter_vma, address,
5549                                              address + huge_page_size(h), page, 0);
5550         }
5551         i_mmap_unlock_write(mapping);
5552 }
5553
5554 /*
5555  * hugetlb_wp() should be called with page lock of the original hugepage held.
5556  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557  * cannot race with other handlers or page migration.
5558  * Keep the pte_same checks anyway to make transition from the mutex easier.
5559  */
5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561                        unsigned long address, pte_t *ptep, unsigned int flags,
5562                        struct folio *pagecache_folio, spinlock_t *ptl)
5563 {
5564         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565         pte_t pte = huge_ptep_get(ptep);
5566         struct hstate *h = hstate_vma(vma);
5567         struct folio *old_folio;
5568         struct folio *new_folio;
5569         int outside_reserve = 0;
5570         vm_fault_t ret = 0;
5571         unsigned long haddr = address & huge_page_mask(h);
5572         struct mmu_notifier_range range;
5573
5574         /*
5575          * Never handle CoW for uffd-wp protected pages.  It should be only
5576          * handled when the uffd-wp protection is removed.
5577          *
5578          * Note that only the CoW optimization path (in hugetlb_no_page())
5579          * can trigger this, because hugetlb_fault() will always resolve
5580          * uffd-wp bit first.
5581          */
5582         if (!unshare && huge_pte_uffd_wp(pte))
5583                 return 0;
5584
5585         /*
5586          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587          * PTE mapped R/O such as maybe_mkwrite() would do.
5588          */
5589         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590                 return VM_FAULT_SIGSEGV;
5591
5592         /* Let's take out MAP_SHARED mappings first. */
5593         if (vma->vm_flags & VM_MAYSHARE) {
5594                 set_huge_ptep_writable(vma, haddr, ptep);
5595                 return 0;
5596         }
5597
5598         old_folio = page_folio(pte_page(pte));
5599
5600         delayacct_wpcopy_start();
5601
5602 retry_avoidcopy:
5603         /*
5604          * If no-one else is actually using this page, we're the exclusive
5605          * owner and can reuse this page.
5606          */
5607         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608                 if (!PageAnonExclusive(&old_folio->page))
5609                         page_move_anon_rmap(&old_folio->page, vma);
5610                 if (likely(!unshare))
5611                         set_huge_ptep_writable(vma, haddr, ptep);
5612
5613                 delayacct_wpcopy_end();
5614                 return 0;
5615         }
5616         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5618
5619         /*
5620          * If the process that created a MAP_PRIVATE mapping is about to
5621          * perform a COW due to a shared page count, attempt to satisfy
5622          * the allocation without using the existing reserves. The pagecache
5623          * page is used to determine if the reserve at this address was
5624          * consumed or not. If reserves were used, a partial faulted mapping
5625          * at the time of fork() could consume its reserves on COW instead
5626          * of the full address range.
5627          */
5628         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629                         old_folio != pagecache_folio)
5630                 outside_reserve = 1;
5631
5632         folio_get(old_folio);
5633
5634         /*
5635          * Drop page table lock as buddy allocator may be called. It will
5636          * be acquired again before returning to the caller, as expected.
5637          */
5638         spin_unlock(ptl);
5639         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5640
5641         if (IS_ERR(new_folio)) {
5642                 /*
5643                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5644                  * it is due to references held by a child and an insufficient
5645                  * huge page pool. To guarantee the original mappers
5646                  * reliability, unmap the page from child processes. The child
5647                  * may get SIGKILLed if it later faults.
5648                  */
5649                 if (outside_reserve) {
5650                         struct address_space *mapping = vma->vm_file->f_mapping;
5651                         pgoff_t idx;
5652                         u32 hash;
5653
5654                         folio_put(old_folio);
5655                         /*
5656                          * Drop hugetlb_fault_mutex and vma_lock before
5657                          * unmapping.  unmapping needs to hold vma_lock
5658                          * in write mode.  Dropping vma_lock in read mode
5659                          * here is OK as COW mappings do not interact with
5660                          * PMD sharing.
5661                          *
5662                          * Reacquire both after unmap operation.
5663                          */
5664                         idx = vma_hugecache_offset(h, vma, haddr);
5665                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5666                         hugetlb_vma_unlock_read(vma);
5667                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5668
5669                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5670
5671                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672                         hugetlb_vma_lock_read(vma);
5673                         spin_lock(ptl);
5674                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5675                         if (likely(ptep &&
5676                                    pte_same(huge_ptep_get(ptep), pte)))
5677                                 goto retry_avoidcopy;
5678                         /*
5679                          * race occurs while re-acquiring page table
5680                          * lock, and our job is done.
5681                          */
5682                         delayacct_wpcopy_end();
5683                         return 0;
5684                 }
5685
5686                 ret = vmf_error(PTR_ERR(new_folio));
5687                 goto out_release_old;
5688         }
5689
5690         /*
5691          * When the original hugepage is shared one, it does not have
5692          * anon_vma prepared.
5693          */
5694         if (unlikely(anon_vma_prepare(vma))) {
5695                 ret = VM_FAULT_OOM;
5696                 goto out_release_all;
5697         }
5698
5699         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700                 ret = VM_FAULT_HWPOISON_LARGE;
5701                 goto out_release_all;
5702         }
5703         __folio_mark_uptodate(new_folio);
5704
5705         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706                                 haddr + huge_page_size(h));
5707         mmu_notifier_invalidate_range_start(&range);
5708
5709         /*
5710          * Retake the page table lock to check for racing updates
5711          * before the page tables are altered
5712          */
5713         spin_lock(ptl);
5714         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5717
5718                 /* Break COW or unshare */
5719                 huge_ptep_clear_flush(vma, haddr, ptep);
5720                 page_remove_rmap(&old_folio->page, vma, true);
5721                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5722                 if (huge_pte_uffd_wp(pte))
5723                         newpte = huge_pte_mkuffd_wp(newpte);
5724                 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5725                 folio_set_hugetlb_migratable(new_folio);
5726                 /* Make the old page be freed below */
5727                 new_folio = old_folio;
5728         }
5729         spin_unlock(ptl);
5730         mmu_notifier_invalidate_range_end(&range);
5731 out_release_all:
5732         /*
5733          * No restore in case of successful pagetable update (Break COW or
5734          * unshare)
5735          */
5736         if (new_folio != old_folio)
5737                 restore_reserve_on_error(h, vma, haddr, new_folio);
5738         folio_put(new_folio);
5739 out_release_old:
5740         folio_put(old_folio);
5741
5742         spin_lock(ptl); /* Caller expects lock to be held */
5743
5744         delayacct_wpcopy_end();
5745         return ret;
5746 }
5747
5748 /*
5749  * Return whether there is a pagecache page to back given address within VMA.
5750  */
5751 static bool hugetlbfs_pagecache_present(struct hstate *h,
5752                         struct vm_area_struct *vma, unsigned long address)
5753 {
5754         struct address_space *mapping = vma->vm_file->f_mapping;
5755         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5756         struct folio *folio;
5757
5758         folio = filemap_get_folio(mapping, idx);
5759         if (IS_ERR(folio))
5760                 return false;
5761         folio_put(folio);
5762         return true;
5763 }
5764
5765 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5766                            pgoff_t idx)
5767 {
5768         struct inode *inode = mapping->host;
5769         struct hstate *h = hstate_inode(inode);
5770         int err;
5771
5772         __folio_set_locked(folio);
5773         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5774
5775         if (unlikely(err)) {
5776                 __folio_clear_locked(folio);
5777                 return err;
5778         }
5779         folio_clear_hugetlb_restore_reserve(folio);
5780
5781         /*
5782          * mark folio dirty so that it will not be removed from cache/file
5783          * by non-hugetlbfs specific code paths.
5784          */
5785         folio_mark_dirty(folio);
5786
5787         spin_lock(&inode->i_lock);
5788         inode->i_blocks += blocks_per_huge_page(h);
5789         spin_unlock(&inode->i_lock);
5790         return 0;
5791 }
5792
5793 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5794                                                   struct address_space *mapping,
5795                                                   pgoff_t idx,
5796                                                   unsigned int flags,
5797                                                   unsigned long haddr,
5798                                                   unsigned long addr,
5799                                                   unsigned long reason)
5800 {
5801         u32 hash;
5802         struct vm_fault vmf = {
5803                 .vma = vma,
5804                 .address = haddr,
5805                 .real_address = addr,
5806                 .flags = flags,
5807
5808                 /*
5809                  * Hard to debug if it ends up being
5810                  * used by a callee that assumes
5811                  * something about the other
5812                  * uninitialized fields... same as in
5813                  * memory.c
5814                  */
5815         };
5816
5817         /*
5818          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5819          * userfault. Also mmap_lock could be dropped due to handling
5820          * userfault, any vma operation should be careful from here.
5821          */
5822         hugetlb_vma_unlock_read(vma);
5823         hash = hugetlb_fault_mutex_hash(mapping, idx);
5824         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5825         return handle_userfault(&vmf, reason);
5826 }
5827
5828 /*
5829  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5830  * false if pte changed or is changing.
5831  */
5832 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5833                                pte_t *ptep, pte_t old_pte)
5834 {
5835         spinlock_t *ptl;
5836         bool same;
5837
5838         ptl = huge_pte_lock(h, mm, ptep);
5839         same = pte_same(huge_ptep_get(ptep), old_pte);
5840         spin_unlock(ptl);
5841
5842         return same;
5843 }
5844
5845 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5846                         struct vm_area_struct *vma,
5847                         struct address_space *mapping, pgoff_t idx,
5848                         unsigned long address, pte_t *ptep,
5849                         pte_t old_pte, unsigned int flags)
5850 {
5851         struct hstate *h = hstate_vma(vma);
5852         vm_fault_t ret = VM_FAULT_SIGBUS;
5853         int anon_rmap = 0;
5854         unsigned long size;
5855         struct folio *folio;
5856         pte_t new_pte;
5857         spinlock_t *ptl;
5858         unsigned long haddr = address & huge_page_mask(h);
5859         bool new_folio, new_pagecache_folio = false;
5860         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5861
5862         /*
5863          * Currently, we are forced to kill the process in the event the
5864          * original mapper has unmapped pages from the child due to a failed
5865          * COW/unsharing. Warn that such a situation has occurred as it may not
5866          * be obvious.
5867          */
5868         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5869                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5870                            current->pid);
5871                 goto out;
5872         }
5873
5874         /*
5875          * Use page lock to guard against racing truncation
5876          * before we get page_table_lock.
5877          */
5878         new_folio = false;
5879         folio = filemap_lock_folio(mapping, idx);
5880         if (IS_ERR(folio)) {
5881                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5882                 if (idx >= size)
5883                         goto out;
5884                 /* Check for page in userfault range */
5885                 if (userfaultfd_missing(vma)) {
5886                         /*
5887                          * Since hugetlb_no_page() was examining pte
5888                          * without pgtable lock, we need to re-test under
5889                          * lock because the pte may not be stable and could
5890                          * have changed from under us.  Try to detect
5891                          * either changed or during-changing ptes and retry
5892                          * properly when needed.
5893                          *
5894                          * Note that userfaultfd is actually fine with
5895                          * false positives (e.g. caused by pte changed),
5896                          * but not wrong logical events (e.g. caused by
5897                          * reading a pte during changing).  The latter can
5898                          * confuse the userspace, so the strictness is very
5899                          * much preferred.  E.g., MISSING event should
5900                          * never happen on the page after UFFDIO_COPY has
5901                          * correctly installed the page and returned.
5902                          */
5903                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5904                                 ret = 0;
5905                                 goto out;
5906                         }
5907
5908                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5909                                                         haddr, address,
5910                                                         VM_UFFD_MISSING);
5911                 }
5912
5913                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5914                 if (IS_ERR(folio)) {
5915                         /*
5916                          * Returning error will result in faulting task being
5917                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5918                          * tasks from racing to fault in the same page which
5919                          * could result in false unable to allocate errors.
5920                          * Page migration does not take the fault mutex, but
5921                          * does a clear then write of pte's under page table
5922                          * lock.  Page fault code could race with migration,
5923                          * notice the clear pte and try to allocate a page
5924                          * here.  Before returning error, get ptl and make
5925                          * sure there really is no pte entry.
5926                          */
5927                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5928                                 ret = vmf_error(PTR_ERR(folio));
5929                         else
5930                                 ret = 0;
5931                         goto out;
5932                 }
5933                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5934                 __folio_mark_uptodate(folio);
5935                 new_folio = true;
5936
5937                 if (vma->vm_flags & VM_MAYSHARE) {
5938                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5939                         if (err) {
5940                                 /*
5941                                  * err can't be -EEXIST which implies someone
5942                                  * else consumed the reservation since hugetlb
5943                                  * fault mutex is held when add a hugetlb page
5944                                  * to the page cache. So it's safe to call
5945                                  * restore_reserve_on_error() here.
5946                                  */
5947                                 restore_reserve_on_error(h, vma, haddr, folio);
5948                                 folio_put(folio);
5949                                 goto out;
5950                         }
5951                         new_pagecache_folio = true;
5952                 } else {
5953                         folio_lock(folio);
5954                         if (unlikely(anon_vma_prepare(vma))) {
5955                                 ret = VM_FAULT_OOM;
5956                                 goto backout_unlocked;
5957                         }
5958                         anon_rmap = 1;
5959                 }
5960         } else {
5961                 /*
5962                  * If memory error occurs between mmap() and fault, some process
5963                  * don't have hwpoisoned swap entry for errored virtual address.
5964                  * So we need to block hugepage fault by PG_hwpoison bit check.
5965                  */
5966                 if (unlikely(folio_test_hwpoison(folio))) {
5967                         ret = VM_FAULT_HWPOISON_LARGE |
5968                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5969                         goto backout_unlocked;
5970                 }
5971
5972                 /* Check for page in userfault range. */
5973                 if (userfaultfd_minor(vma)) {
5974                         folio_unlock(folio);
5975                         folio_put(folio);
5976                         /* See comment in userfaultfd_missing() block above */
5977                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5978                                 ret = 0;
5979                                 goto out;
5980                         }
5981                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5982                                                         haddr, address,
5983                                                         VM_UFFD_MINOR);
5984                 }
5985         }
5986
5987         /*
5988          * If we are going to COW a private mapping later, we examine the
5989          * pending reservations for this page now. This will ensure that
5990          * any allocations necessary to record that reservation occur outside
5991          * the spinlock.
5992          */
5993         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5994                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5995                         ret = VM_FAULT_OOM;
5996                         goto backout_unlocked;
5997                 }
5998                 /* Just decrements count, does not deallocate */
5999                 vma_end_reservation(h, vma, haddr);
6000         }
6001
6002         ptl = huge_pte_lock(h, mm, ptep);
6003         ret = 0;
6004         /* If pte changed from under us, retry */
6005         if (!pte_same(huge_ptep_get(ptep), old_pte))
6006                 goto backout;
6007
6008         if (anon_rmap)
6009                 hugepage_add_new_anon_rmap(folio, vma, haddr);
6010         else
6011                 page_dup_file_rmap(&folio->page, true);
6012         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6013                                 && (vma->vm_flags & VM_SHARED)));
6014         /*
6015          * If this pte was previously wr-protected, keep it wr-protected even
6016          * if populated.
6017          */
6018         if (unlikely(pte_marker_uffd_wp(old_pte)))
6019                 new_pte = huge_pte_mkuffd_wp(new_pte);
6020         set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6021
6022         hugetlb_count_add(pages_per_huge_page(h), mm);
6023         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6024                 /* Optimization, do the COW without a second fault */
6025                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6026         }
6027
6028         spin_unlock(ptl);
6029
6030         /*
6031          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6032          * found in the pagecache may not have hugetlb_migratable if they have
6033          * been isolated for migration.
6034          */
6035         if (new_folio)
6036                 folio_set_hugetlb_migratable(folio);
6037
6038         folio_unlock(folio);
6039 out:
6040         hugetlb_vma_unlock_read(vma);
6041         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6042         return ret;
6043
6044 backout:
6045         spin_unlock(ptl);
6046 backout_unlocked:
6047         if (new_folio && !new_pagecache_folio)
6048                 restore_reserve_on_error(h, vma, haddr, folio);
6049
6050         folio_unlock(folio);
6051         folio_put(folio);
6052         goto out;
6053 }
6054
6055 #ifdef CONFIG_SMP
6056 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6057 {
6058         unsigned long key[2];
6059         u32 hash;
6060
6061         key[0] = (unsigned long) mapping;
6062         key[1] = idx;
6063
6064         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6065
6066         return hash & (num_fault_mutexes - 1);
6067 }
6068 #else
6069 /*
6070  * For uniprocessor systems we always use a single mutex, so just
6071  * return 0 and avoid the hashing overhead.
6072  */
6073 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6074 {
6075         return 0;
6076 }
6077 #endif
6078
6079 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6080                         unsigned long address, unsigned int flags)
6081 {
6082         pte_t *ptep, entry;
6083         spinlock_t *ptl;
6084         vm_fault_t ret;
6085         u32 hash;
6086         pgoff_t idx;
6087         struct folio *folio = NULL;
6088         struct folio *pagecache_folio = NULL;
6089         struct hstate *h = hstate_vma(vma);
6090         struct address_space *mapping;
6091         int need_wait_lock = 0;
6092         unsigned long haddr = address & huge_page_mask(h);
6093
6094         /* TODO: Handle faults under the VMA lock */
6095         if (flags & FAULT_FLAG_VMA_LOCK) {
6096                 vma_end_read(vma);
6097                 return VM_FAULT_RETRY;
6098         }
6099
6100         /*
6101          * Serialize hugepage allocation and instantiation, so that we don't
6102          * get spurious allocation failures if two CPUs race to instantiate
6103          * the same page in the page cache.
6104          */
6105         mapping = vma->vm_file->f_mapping;
6106         idx = vma_hugecache_offset(h, vma, haddr);
6107         hash = hugetlb_fault_mutex_hash(mapping, idx);
6108         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6109
6110         /*
6111          * Acquire vma lock before calling huge_pte_alloc and hold
6112          * until finished with ptep.  This prevents huge_pmd_unshare from
6113          * being called elsewhere and making the ptep no longer valid.
6114          */
6115         hugetlb_vma_lock_read(vma);
6116         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6117         if (!ptep) {
6118                 hugetlb_vma_unlock_read(vma);
6119                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6120                 return VM_FAULT_OOM;
6121         }
6122
6123         entry = huge_ptep_get(ptep);
6124         if (huge_pte_none_mostly(entry)) {
6125                 if (is_pte_marker(entry)) {
6126                         pte_marker marker =
6127                                 pte_marker_get(pte_to_swp_entry(entry));
6128
6129                         if (marker & PTE_MARKER_POISONED) {
6130                                 ret = VM_FAULT_HWPOISON_LARGE;
6131                                 goto out_mutex;
6132                         }
6133                 }
6134
6135                 /*
6136                  * Other PTE markers should be handled the same way as none PTE.
6137                  *
6138                  * hugetlb_no_page will drop vma lock and hugetlb fault
6139                  * mutex internally, which make us return immediately.
6140                  */
6141                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6142                                       entry, flags);
6143         }
6144
6145         ret = 0;
6146
6147         /*
6148          * entry could be a migration/hwpoison entry at this point, so this
6149          * check prevents the kernel from going below assuming that we have
6150          * an active hugepage in pagecache. This goto expects the 2nd page
6151          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6152          * properly handle it.
6153          */
6154         if (!pte_present(entry)) {
6155                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6156                         /*
6157                          * Release the hugetlb fault lock now, but retain
6158                          * the vma lock, because it is needed to guard the
6159                          * huge_pte_lockptr() later in
6160                          * migration_entry_wait_huge(). The vma lock will
6161                          * be released there.
6162                          */
6163                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6164                         migration_entry_wait_huge(vma, ptep);
6165                         return 0;
6166                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6167                         ret = VM_FAULT_HWPOISON_LARGE |
6168                             VM_FAULT_SET_HINDEX(hstate_index(h));
6169                 goto out_mutex;
6170         }
6171
6172         /*
6173          * If we are going to COW/unshare the mapping later, we examine the
6174          * pending reservations for this page now. This will ensure that any
6175          * allocations necessary to record that reservation occur outside the
6176          * spinlock. Also lookup the pagecache page now as it is used to
6177          * determine if a reservation has been consumed.
6178          */
6179         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6180             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6181                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6182                         ret = VM_FAULT_OOM;
6183                         goto out_mutex;
6184                 }
6185                 /* Just decrements count, does not deallocate */
6186                 vma_end_reservation(h, vma, haddr);
6187
6188                 pagecache_folio = filemap_lock_folio(mapping, idx);
6189                 if (IS_ERR(pagecache_folio))
6190                         pagecache_folio = NULL;
6191         }
6192
6193         ptl = huge_pte_lock(h, mm, ptep);
6194
6195         /* Check for a racing update before calling hugetlb_wp() */
6196         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6197                 goto out_ptl;
6198
6199         /* Handle userfault-wp first, before trying to lock more pages */
6200         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6201             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6202                 struct vm_fault vmf = {
6203                         .vma = vma,
6204                         .address = haddr,
6205                         .real_address = address,
6206                         .flags = flags,
6207                 };
6208
6209                 spin_unlock(ptl);
6210                 if (pagecache_folio) {
6211                         folio_unlock(pagecache_folio);
6212                         folio_put(pagecache_folio);
6213                 }
6214                 hugetlb_vma_unlock_read(vma);
6215                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6216                 return handle_userfault(&vmf, VM_UFFD_WP);
6217         }
6218
6219         /*
6220          * hugetlb_wp() requires page locks of pte_page(entry) and
6221          * pagecache_folio, so here we need take the former one
6222          * when folio != pagecache_folio or !pagecache_folio.
6223          */
6224         folio = page_folio(pte_page(entry));
6225         if (folio != pagecache_folio)
6226                 if (!folio_trylock(folio)) {
6227                         need_wait_lock = 1;
6228                         goto out_ptl;
6229                 }
6230
6231         folio_get(folio);
6232
6233         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6234                 if (!huge_pte_write(entry)) {
6235                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6236                                          pagecache_folio, ptl);
6237                         goto out_put_page;
6238                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6239                         entry = huge_pte_mkdirty(entry);
6240                 }
6241         }
6242         entry = pte_mkyoung(entry);
6243         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6244                                                 flags & FAULT_FLAG_WRITE))
6245                 update_mmu_cache(vma, haddr, ptep);
6246 out_put_page:
6247         if (folio != pagecache_folio)
6248                 folio_unlock(folio);
6249         folio_put(folio);
6250 out_ptl:
6251         spin_unlock(ptl);
6252
6253         if (pagecache_folio) {
6254                 folio_unlock(pagecache_folio);
6255                 folio_put(pagecache_folio);
6256         }
6257 out_mutex:
6258         hugetlb_vma_unlock_read(vma);
6259         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6260         /*
6261          * Generally it's safe to hold refcount during waiting page lock. But
6262          * here we just wait to defer the next page fault to avoid busy loop and
6263          * the page is not used after unlocked before returning from the current
6264          * page fault. So we are safe from accessing freed page, even if we wait
6265          * here without taking refcount.
6266          */
6267         if (need_wait_lock)
6268                 folio_wait_locked(folio);
6269         return ret;
6270 }
6271
6272 #ifdef CONFIG_USERFAULTFD
6273 /*
6274  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6275  * with modifications for hugetlb pages.
6276  */
6277 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6278                              struct vm_area_struct *dst_vma,
6279                              unsigned long dst_addr,
6280                              unsigned long src_addr,
6281                              uffd_flags_t flags,
6282                              struct folio **foliop)
6283 {
6284         struct mm_struct *dst_mm = dst_vma->vm_mm;
6285         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6286         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6287         struct hstate *h = hstate_vma(dst_vma);
6288         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6289         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6290         unsigned long size;
6291         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6292         pte_t _dst_pte;
6293         spinlock_t *ptl;
6294         int ret = -ENOMEM;
6295         struct folio *folio;
6296         int writable;
6297         bool folio_in_pagecache = false;
6298
6299         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6300                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6301
6302                 /* Don't overwrite any existing PTEs (even markers) */
6303                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6304                         spin_unlock(ptl);
6305                         return -EEXIST;
6306                 }
6307
6308                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6309                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6310                                 huge_page_size(h));
6311
6312                 /* No need to invalidate - it was non-present before */
6313                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6314
6315                 spin_unlock(ptl);
6316                 return 0;
6317         }
6318
6319         if (is_continue) {
6320                 ret = -EFAULT;
6321                 folio = filemap_lock_folio(mapping, idx);
6322                 if (IS_ERR(folio))
6323                         goto out;
6324                 folio_in_pagecache = true;
6325         } else if (!*foliop) {
6326                 /* If a folio already exists, then it's UFFDIO_COPY for
6327                  * a non-missing case. Return -EEXIST.
6328                  */
6329                 if (vm_shared &&
6330                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6331                         ret = -EEXIST;
6332                         goto out;
6333                 }
6334
6335                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6336                 if (IS_ERR(folio)) {
6337                         ret = -ENOMEM;
6338                         goto out;
6339                 }
6340
6341                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6342                                            false);
6343
6344                 /* fallback to copy_from_user outside mmap_lock */
6345                 if (unlikely(ret)) {
6346                         ret = -ENOENT;
6347                         /* Free the allocated folio which may have
6348                          * consumed a reservation.
6349                          */
6350                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6351                         folio_put(folio);
6352
6353                         /* Allocate a temporary folio to hold the copied
6354                          * contents.
6355                          */
6356                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6357                         if (!folio) {
6358                                 ret = -ENOMEM;
6359                                 goto out;
6360                         }
6361                         *foliop = folio;
6362                         /* Set the outparam foliop and return to the caller to
6363                          * copy the contents outside the lock. Don't free the
6364                          * folio.
6365                          */
6366                         goto out;
6367                 }
6368         } else {
6369                 if (vm_shared &&
6370                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6371                         folio_put(*foliop);
6372                         ret = -EEXIST;
6373                         *foliop = NULL;
6374                         goto out;
6375                 }
6376
6377                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6378                 if (IS_ERR(folio)) {
6379                         folio_put(*foliop);
6380                         ret = -ENOMEM;
6381                         *foliop = NULL;
6382                         goto out;
6383                 }
6384                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6385                 folio_put(*foliop);
6386                 *foliop = NULL;
6387                 if (ret) {
6388                         folio_put(folio);
6389                         goto out;
6390                 }
6391         }
6392
6393         /*
6394          * The memory barrier inside __folio_mark_uptodate makes sure that
6395          * preceding stores to the page contents become visible before
6396          * the set_pte_at() write.
6397          */
6398         __folio_mark_uptodate(folio);
6399
6400         /* Add shared, newly allocated pages to the page cache. */
6401         if (vm_shared && !is_continue) {
6402                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6403                 ret = -EFAULT;
6404                 if (idx >= size)
6405                         goto out_release_nounlock;
6406
6407                 /*
6408                  * Serialization between remove_inode_hugepages() and
6409                  * hugetlb_add_to_page_cache() below happens through the
6410                  * hugetlb_fault_mutex_table that here must be hold by
6411                  * the caller.
6412                  */
6413                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6414                 if (ret)
6415                         goto out_release_nounlock;
6416                 folio_in_pagecache = true;
6417         }
6418
6419         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6420
6421         ret = -EIO;
6422         if (folio_test_hwpoison(folio))
6423                 goto out_release_unlock;
6424
6425         /*
6426          * We allow to overwrite a pte marker: consider when both MISSING|WP
6427          * registered, we firstly wr-protect a none pte which has no page cache
6428          * page backing it, then access the page.
6429          */
6430         ret = -EEXIST;
6431         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6432                 goto out_release_unlock;
6433
6434         if (folio_in_pagecache)
6435                 page_dup_file_rmap(&folio->page, true);
6436         else
6437                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6438
6439         /*
6440          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6441          * with wp flag set, don't set pte write bit.
6442          */
6443         if (wp_enabled || (is_continue && !vm_shared))
6444                 writable = 0;
6445         else
6446                 writable = dst_vma->vm_flags & VM_WRITE;
6447
6448         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6449         /*
6450          * Always mark UFFDIO_COPY page dirty; note that this may not be
6451          * extremely important for hugetlbfs for now since swapping is not
6452          * supported, but we should still be clear in that this page cannot be
6453          * thrown away at will, even if write bit not set.
6454          */
6455         _dst_pte = huge_pte_mkdirty(_dst_pte);
6456         _dst_pte = pte_mkyoung(_dst_pte);
6457
6458         if (wp_enabled)
6459                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6460
6461         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6462
6463         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6464
6465         /* No need to invalidate - it was non-present before */
6466         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6467
6468         spin_unlock(ptl);
6469         if (!is_continue)
6470                 folio_set_hugetlb_migratable(folio);
6471         if (vm_shared || is_continue)
6472                 folio_unlock(folio);
6473         ret = 0;
6474 out:
6475         return ret;
6476 out_release_unlock:
6477         spin_unlock(ptl);
6478         if (vm_shared || is_continue)
6479                 folio_unlock(folio);
6480 out_release_nounlock:
6481         if (!folio_in_pagecache)
6482                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6483         folio_put(folio);
6484         goto out;
6485 }
6486 #endif /* CONFIG_USERFAULTFD */
6487
6488 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6489                                       unsigned long address, unsigned int flags,
6490                                       unsigned int *page_mask)
6491 {
6492         struct hstate *h = hstate_vma(vma);
6493         struct mm_struct *mm = vma->vm_mm;
6494         unsigned long haddr = address & huge_page_mask(h);
6495         struct page *page = NULL;
6496         spinlock_t *ptl;
6497         pte_t *pte, entry;
6498         int ret;
6499
6500         hugetlb_vma_lock_read(vma);
6501         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6502         if (!pte)
6503                 goto out_unlock;
6504
6505         ptl = huge_pte_lock(h, mm, pte);
6506         entry = huge_ptep_get(pte);
6507         if (pte_present(entry)) {
6508                 page = pte_page(entry);
6509
6510                 if (!huge_pte_write(entry)) {
6511                         if (flags & FOLL_WRITE) {
6512                                 page = NULL;
6513                                 goto out;
6514                         }
6515
6516                         if (gup_must_unshare(vma, flags, page)) {
6517                                 /* Tell the caller to do unsharing */
6518                                 page = ERR_PTR(-EMLINK);
6519                                 goto out;
6520                         }
6521                 }
6522
6523                 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6524
6525                 /*
6526                  * Note that page may be a sub-page, and with vmemmap
6527                  * optimizations the page struct may be read only.
6528                  * try_grab_page() will increase the ref count on the
6529                  * head page, so this will be OK.
6530                  *
6531                  * try_grab_page() should always be able to get the page here,
6532                  * because we hold the ptl lock and have verified pte_present().
6533                  */
6534                 ret = try_grab_page(page, flags);
6535
6536                 if (WARN_ON_ONCE(ret)) {
6537                         page = ERR_PTR(ret);
6538                         goto out;
6539                 }
6540
6541                 *page_mask = (1U << huge_page_order(h)) - 1;
6542         }
6543 out:
6544         spin_unlock(ptl);
6545 out_unlock:
6546         hugetlb_vma_unlock_read(vma);
6547
6548         /*
6549          * Fixup retval for dump requests: if pagecache doesn't exist,
6550          * don't try to allocate a new page but just skip it.
6551          */
6552         if (!page && (flags & FOLL_DUMP) &&
6553             !hugetlbfs_pagecache_present(h, vma, address))
6554                 page = ERR_PTR(-EFAULT);
6555
6556         return page;
6557 }
6558
6559 long hugetlb_change_protection(struct vm_area_struct *vma,
6560                 unsigned long address, unsigned long end,
6561                 pgprot_t newprot, unsigned long cp_flags)
6562 {
6563         struct mm_struct *mm = vma->vm_mm;
6564         unsigned long start = address;
6565         pte_t *ptep;
6566         pte_t pte;
6567         struct hstate *h = hstate_vma(vma);
6568         long pages = 0, psize = huge_page_size(h);
6569         bool shared_pmd = false;
6570         struct mmu_notifier_range range;
6571         unsigned long last_addr_mask;
6572         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6573         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6574
6575         /*
6576          * In the case of shared PMDs, the area to flush could be beyond
6577          * start/end.  Set range.start/range.end to cover the maximum possible
6578          * range if PMD sharing is possible.
6579          */
6580         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6581                                 0, mm, start, end);
6582         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6583
6584         BUG_ON(address >= end);
6585         flush_cache_range(vma, range.start, range.end);
6586
6587         mmu_notifier_invalidate_range_start(&range);
6588         hugetlb_vma_lock_write(vma);
6589         i_mmap_lock_write(vma->vm_file->f_mapping);
6590         last_addr_mask = hugetlb_mask_last_page(h);
6591         for (; address < end; address += psize) {
6592                 spinlock_t *ptl;
6593                 ptep = hugetlb_walk(vma, address, psize);
6594                 if (!ptep) {
6595                         if (!uffd_wp) {
6596                                 address |= last_addr_mask;
6597                                 continue;
6598                         }
6599                         /*
6600                          * Userfaultfd wr-protect requires pgtable
6601                          * pre-allocations to install pte markers.
6602                          */
6603                         ptep = huge_pte_alloc(mm, vma, address, psize);
6604                         if (!ptep) {
6605                                 pages = -ENOMEM;
6606                                 break;
6607                         }
6608                 }
6609                 ptl = huge_pte_lock(h, mm, ptep);
6610                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6611                         /*
6612                          * When uffd-wp is enabled on the vma, unshare
6613                          * shouldn't happen at all.  Warn about it if it
6614                          * happened due to some reason.
6615                          */
6616                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6617                         pages++;
6618                         spin_unlock(ptl);
6619                         shared_pmd = true;
6620                         address |= last_addr_mask;
6621                         continue;
6622                 }
6623                 pte = huge_ptep_get(ptep);
6624                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6625                         /* Nothing to do. */
6626                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6627                         swp_entry_t entry = pte_to_swp_entry(pte);
6628                         struct page *page = pfn_swap_entry_to_page(entry);
6629                         pte_t newpte = pte;
6630
6631                         if (is_writable_migration_entry(entry)) {
6632                                 if (PageAnon(page))
6633                                         entry = make_readable_exclusive_migration_entry(
6634                                                                 swp_offset(entry));
6635                                 else
6636                                         entry = make_readable_migration_entry(
6637                                                                 swp_offset(entry));
6638                                 newpte = swp_entry_to_pte(entry);
6639                                 pages++;
6640                         }
6641
6642                         if (uffd_wp)
6643                                 newpte = pte_swp_mkuffd_wp(newpte);
6644                         else if (uffd_wp_resolve)
6645                                 newpte = pte_swp_clear_uffd_wp(newpte);
6646                         if (!pte_same(pte, newpte))
6647                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6648                 } else if (unlikely(is_pte_marker(pte))) {
6649                         /* No other markers apply for now. */
6650                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6651                         if (uffd_wp_resolve)
6652                                 /* Safe to modify directly (non-present->none). */
6653                                 huge_pte_clear(mm, address, ptep, psize);
6654                 } else if (!huge_pte_none(pte)) {
6655                         pte_t old_pte;
6656                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6657
6658                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6659                         pte = huge_pte_modify(old_pte, newprot);
6660                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6661                         if (uffd_wp)
6662                                 pte = huge_pte_mkuffd_wp(pte);
6663                         else if (uffd_wp_resolve)
6664                                 pte = huge_pte_clear_uffd_wp(pte);
6665                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6666                         pages++;
6667                 } else {
6668                         /* None pte */
6669                         if (unlikely(uffd_wp))
6670                                 /* Safe to modify directly (none->non-present). */
6671                                 set_huge_pte_at(mm, address, ptep,
6672                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6673                                                 psize);
6674                 }
6675                 spin_unlock(ptl);
6676         }
6677         /*
6678          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6679          * may have cleared our pud entry and done put_page on the page table:
6680          * once we release i_mmap_rwsem, another task can do the final put_page
6681          * and that page table be reused and filled with junk.  If we actually
6682          * did unshare a page of pmds, flush the range corresponding to the pud.
6683          */
6684         if (shared_pmd)
6685                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6686         else
6687                 flush_hugetlb_tlb_range(vma, start, end);
6688         /*
6689          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6690          * downgrading page table protection not changing it to point to a new
6691          * page.
6692          *
6693          * See Documentation/mm/mmu_notifier.rst
6694          */
6695         i_mmap_unlock_write(vma->vm_file->f_mapping);
6696         hugetlb_vma_unlock_write(vma);
6697         mmu_notifier_invalidate_range_end(&range);
6698
6699         return pages > 0 ? (pages << h->order) : pages;
6700 }
6701
6702 /* Return true if reservation was successful, false otherwise.  */
6703 bool hugetlb_reserve_pages(struct inode *inode,
6704                                         long from, long to,
6705                                         struct vm_area_struct *vma,
6706                                         vm_flags_t vm_flags)
6707 {
6708         long chg = -1, add = -1;
6709         struct hstate *h = hstate_inode(inode);
6710         struct hugepage_subpool *spool = subpool_inode(inode);
6711         struct resv_map *resv_map;
6712         struct hugetlb_cgroup *h_cg = NULL;
6713         long gbl_reserve, regions_needed = 0;
6714
6715         /* This should never happen */
6716         if (from > to) {
6717                 VM_WARN(1, "%s called with a negative range\n", __func__);
6718                 return false;
6719         }
6720
6721         /*
6722          * vma specific semaphore used for pmd sharing and fault/truncation
6723          * synchronization
6724          */
6725         hugetlb_vma_lock_alloc(vma);
6726
6727         /*
6728          * Only apply hugepage reservation if asked. At fault time, an
6729          * attempt will be made for VM_NORESERVE to allocate a page
6730          * without using reserves
6731          */
6732         if (vm_flags & VM_NORESERVE)
6733                 return true;
6734
6735         /*
6736          * Shared mappings base their reservation on the number of pages that
6737          * are already allocated on behalf of the file. Private mappings need
6738          * to reserve the full area even if read-only as mprotect() may be
6739          * called to make the mapping read-write. Assume !vma is a shm mapping
6740          */
6741         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6742                 /*
6743                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6744                  * called for inodes for which resv_maps were created (see
6745                  * hugetlbfs_get_inode).
6746                  */
6747                 resv_map = inode_resv_map(inode);
6748
6749                 chg = region_chg(resv_map, from, to, &regions_needed);
6750         } else {
6751                 /* Private mapping. */
6752                 resv_map = resv_map_alloc();
6753                 if (!resv_map)
6754                         goto out_err;
6755
6756                 chg = to - from;
6757
6758                 set_vma_resv_map(vma, resv_map);
6759                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6760         }
6761
6762         if (chg < 0)
6763                 goto out_err;
6764
6765         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6766                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6767                 goto out_err;
6768
6769         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6770                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6771                  * of the resv_map.
6772                  */
6773                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6774         }
6775
6776         /*
6777          * There must be enough pages in the subpool for the mapping. If
6778          * the subpool has a minimum size, there may be some global
6779          * reservations already in place (gbl_reserve).
6780          */
6781         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6782         if (gbl_reserve < 0)
6783                 goto out_uncharge_cgroup;
6784
6785         /*
6786          * Check enough hugepages are available for the reservation.
6787          * Hand the pages back to the subpool if there are not
6788          */
6789         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6790                 goto out_put_pages;
6791
6792         /*
6793          * Account for the reservations made. Shared mappings record regions
6794          * that have reservations as they are shared by multiple VMAs.
6795          * When the last VMA disappears, the region map says how much
6796          * the reservation was and the page cache tells how much of
6797          * the reservation was consumed. Private mappings are per-VMA and
6798          * only the consumed reservations are tracked. When the VMA
6799          * disappears, the original reservation is the VMA size and the
6800          * consumed reservations are stored in the map. Hence, nothing
6801          * else has to be done for private mappings here
6802          */
6803         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6804                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6805
6806                 if (unlikely(add < 0)) {
6807                         hugetlb_acct_memory(h, -gbl_reserve);
6808                         goto out_put_pages;
6809                 } else if (unlikely(chg > add)) {
6810                         /*
6811                          * pages in this range were added to the reserve
6812                          * map between region_chg and region_add.  This
6813                          * indicates a race with alloc_hugetlb_folio.  Adjust
6814                          * the subpool and reserve counts modified above
6815                          * based on the difference.
6816                          */
6817                         long rsv_adjust;
6818
6819                         /*
6820                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6821                          * reference to h_cg->css. See comment below for detail.
6822                          */
6823                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6824                                 hstate_index(h),
6825                                 (chg - add) * pages_per_huge_page(h), h_cg);
6826
6827                         rsv_adjust = hugepage_subpool_put_pages(spool,
6828                                                                 chg - add);
6829                         hugetlb_acct_memory(h, -rsv_adjust);
6830                 } else if (h_cg) {
6831                         /*
6832                          * The file_regions will hold their own reference to
6833                          * h_cg->css. So we should release the reference held
6834                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6835                          * done.
6836                          */
6837                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6838                 }
6839         }
6840         return true;
6841
6842 out_put_pages:
6843         /* put back original number of pages, chg */
6844         (void)hugepage_subpool_put_pages(spool, chg);
6845 out_uncharge_cgroup:
6846         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6847                                             chg * pages_per_huge_page(h), h_cg);
6848 out_err:
6849         hugetlb_vma_lock_free(vma);
6850         if (!vma || vma->vm_flags & VM_MAYSHARE)
6851                 /* Only call region_abort if the region_chg succeeded but the
6852                  * region_add failed or didn't run.
6853                  */
6854                 if (chg >= 0 && add < 0)
6855                         region_abort(resv_map, from, to, regions_needed);
6856         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6857                 kref_put(&resv_map->refs, resv_map_release);
6858                 set_vma_resv_map(vma, NULL);
6859         }
6860         return false;
6861 }
6862
6863 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6864                                                                 long freed)
6865 {
6866         struct hstate *h = hstate_inode(inode);
6867         struct resv_map *resv_map = inode_resv_map(inode);
6868         long chg = 0;
6869         struct hugepage_subpool *spool = subpool_inode(inode);
6870         long gbl_reserve;
6871
6872         /*
6873          * Since this routine can be called in the evict inode path for all
6874          * hugetlbfs inodes, resv_map could be NULL.
6875          */
6876         if (resv_map) {
6877                 chg = region_del(resv_map, start, end);
6878                 /*
6879                  * region_del() can fail in the rare case where a region
6880                  * must be split and another region descriptor can not be
6881                  * allocated.  If end == LONG_MAX, it will not fail.
6882                  */
6883                 if (chg < 0)
6884                         return chg;
6885         }
6886
6887         spin_lock(&inode->i_lock);
6888         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6889         spin_unlock(&inode->i_lock);
6890
6891         /*
6892          * If the subpool has a minimum size, the number of global
6893          * reservations to be released may be adjusted.
6894          *
6895          * Note that !resv_map implies freed == 0. So (chg - freed)
6896          * won't go negative.
6897          */
6898         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6899         hugetlb_acct_memory(h, -gbl_reserve);
6900
6901         return 0;
6902 }
6903
6904 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6905 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6906                                 struct vm_area_struct *vma,
6907                                 unsigned long addr, pgoff_t idx)
6908 {
6909         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6910                                 svma->vm_start;
6911         unsigned long sbase = saddr & PUD_MASK;
6912         unsigned long s_end = sbase + PUD_SIZE;
6913
6914         /* Allow segments to share if only one is marked locked */
6915         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6916         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6917
6918         /*
6919          * match the virtual addresses, permission and the alignment of the
6920          * page table page.
6921          *
6922          * Also, vma_lock (vm_private_data) is required for sharing.
6923          */
6924         if (pmd_index(addr) != pmd_index(saddr) ||
6925             vm_flags != svm_flags ||
6926             !range_in_vma(svma, sbase, s_end) ||
6927             !svma->vm_private_data)
6928                 return 0;
6929
6930         return saddr;
6931 }
6932
6933 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6934 {
6935         unsigned long start = addr & PUD_MASK;
6936         unsigned long end = start + PUD_SIZE;
6937
6938 #ifdef CONFIG_USERFAULTFD
6939         if (uffd_disable_huge_pmd_share(vma))
6940                 return false;
6941 #endif
6942         /*
6943          * check on proper vm_flags and page table alignment
6944          */
6945         if (!(vma->vm_flags & VM_MAYSHARE))
6946                 return false;
6947         if (!vma->vm_private_data)      /* vma lock required for sharing */
6948                 return false;
6949         if (!range_in_vma(vma, start, end))
6950                 return false;
6951         return true;
6952 }
6953
6954 /*
6955  * Determine if start,end range within vma could be mapped by shared pmd.
6956  * If yes, adjust start and end to cover range associated with possible
6957  * shared pmd mappings.
6958  */
6959 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6960                                 unsigned long *start, unsigned long *end)
6961 {
6962         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6963                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6964
6965         /*
6966          * vma needs to span at least one aligned PUD size, and the range
6967          * must be at least partially within in.
6968          */
6969         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6970                 (*end <= v_start) || (*start >= v_end))
6971                 return;
6972
6973         /* Extend the range to be PUD aligned for a worst case scenario */
6974         if (*start > v_start)
6975                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6976
6977         if (*end < v_end)
6978                 *end = ALIGN(*end, PUD_SIZE);
6979 }
6980
6981 /*
6982  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6983  * and returns the corresponding pte. While this is not necessary for the
6984  * !shared pmd case because we can allocate the pmd later as well, it makes the
6985  * code much cleaner. pmd allocation is essential for the shared case because
6986  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6987  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6988  * bad pmd for sharing.
6989  */
6990 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6991                       unsigned long addr, pud_t *pud)
6992 {
6993         struct address_space *mapping = vma->vm_file->f_mapping;
6994         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6995                         vma->vm_pgoff;
6996         struct vm_area_struct *svma;
6997         unsigned long saddr;
6998         pte_t *spte = NULL;
6999         pte_t *pte;
7000
7001         i_mmap_lock_read(mapping);
7002         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7003                 if (svma == vma)
7004                         continue;
7005
7006                 saddr = page_table_shareable(svma, vma, addr, idx);
7007                 if (saddr) {
7008                         spte = hugetlb_walk(svma, saddr,
7009                                             vma_mmu_pagesize(svma));
7010                         if (spte) {
7011                                 get_page(virt_to_page(spte));
7012                                 break;
7013                         }
7014                 }
7015         }
7016
7017         if (!spte)
7018                 goto out;
7019
7020         spin_lock(&mm->page_table_lock);
7021         if (pud_none(*pud)) {
7022                 pud_populate(mm, pud,
7023                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7024                 mm_inc_nr_pmds(mm);
7025         } else {
7026                 put_page(virt_to_page(spte));
7027         }
7028         spin_unlock(&mm->page_table_lock);
7029 out:
7030         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7031         i_mmap_unlock_read(mapping);
7032         return pte;
7033 }
7034
7035 /*
7036  * unmap huge page backed by shared pte.
7037  *
7038  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7039  * indicated by page_count > 1, unmap is achieved by clearing pud and
7040  * decrementing the ref count. If count == 1, the pte page is not shared.
7041  *
7042  * Called with page table lock held.
7043  *
7044  * returns: 1 successfully unmapped a shared pte page
7045  *          0 the underlying pte page is not shared, or it is the last user
7046  */
7047 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7048                                         unsigned long addr, pte_t *ptep)
7049 {
7050         pgd_t *pgd = pgd_offset(mm, addr);
7051         p4d_t *p4d = p4d_offset(pgd, addr);
7052         pud_t *pud = pud_offset(p4d, addr);
7053
7054         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7055         hugetlb_vma_assert_locked(vma);
7056         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7057         if (page_count(virt_to_page(ptep)) == 1)
7058                 return 0;
7059
7060         pud_clear(pud);
7061         put_page(virt_to_page(ptep));
7062         mm_dec_nr_pmds(mm);
7063         return 1;
7064 }
7065
7066 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7067
7068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7069                       unsigned long addr, pud_t *pud)
7070 {
7071         return NULL;
7072 }
7073
7074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7075                                 unsigned long addr, pte_t *ptep)
7076 {
7077         return 0;
7078 }
7079
7080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7081                                 unsigned long *start, unsigned long *end)
7082 {
7083 }
7084
7085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7086 {
7087         return false;
7088 }
7089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7090
7091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7093                         unsigned long addr, unsigned long sz)
7094 {
7095         pgd_t *pgd;
7096         p4d_t *p4d;
7097         pud_t *pud;
7098         pte_t *pte = NULL;
7099
7100         pgd = pgd_offset(mm, addr);
7101         p4d = p4d_alloc(mm, pgd, addr);
7102         if (!p4d)
7103                 return NULL;
7104         pud = pud_alloc(mm, p4d, addr);
7105         if (pud) {
7106                 if (sz == PUD_SIZE) {
7107                         pte = (pte_t *)pud;
7108                 } else {
7109                         BUG_ON(sz != PMD_SIZE);
7110                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7111                                 pte = huge_pmd_share(mm, vma, addr, pud);
7112                         else
7113                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7114                 }
7115         }
7116
7117         if (pte) {
7118                 pte_t pteval = ptep_get_lockless(pte);
7119
7120                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7121         }
7122
7123         return pte;
7124 }
7125
7126 /*
7127  * huge_pte_offset() - Walk the page table to resolve the hugepage
7128  * entry at address @addr
7129  *
7130  * Return: Pointer to page table entry (PUD or PMD) for
7131  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7132  * size @sz doesn't match the hugepage size at this level of the page
7133  * table.
7134  */
7135 pte_t *huge_pte_offset(struct mm_struct *mm,
7136                        unsigned long addr, unsigned long sz)
7137 {
7138         pgd_t *pgd;
7139         p4d_t *p4d;
7140         pud_t *pud;
7141         pmd_t *pmd;
7142
7143         pgd = pgd_offset(mm, addr);
7144         if (!pgd_present(*pgd))
7145                 return NULL;
7146         p4d = p4d_offset(pgd, addr);
7147         if (!p4d_present(*p4d))
7148                 return NULL;
7149
7150         pud = pud_offset(p4d, addr);
7151         if (sz == PUD_SIZE)
7152                 /* must be pud huge, non-present or none */
7153                 return (pte_t *)pud;
7154         if (!pud_present(*pud))
7155                 return NULL;
7156         /* must have a valid entry and size to go further */
7157
7158         pmd = pmd_offset(pud, addr);
7159         /* must be pmd huge, non-present or none */
7160         return (pte_t *)pmd;
7161 }
7162
7163 /*
7164  * Return a mask that can be used to update an address to the last huge
7165  * page in a page table page mapping size.  Used to skip non-present
7166  * page table entries when linearly scanning address ranges.  Architectures
7167  * with unique huge page to page table relationships can define their own
7168  * version of this routine.
7169  */
7170 unsigned long hugetlb_mask_last_page(struct hstate *h)
7171 {
7172         unsigned long hp_size = huge_page_size(h);
7173
7174         if (hp_size == PUD_SIZE)
7175                 return P4D_SIZE - PUD_SIZE;
7176         else if (hp_size == PMD_SIZE)
7177                 return PUD_SIZE - PMD_SIZE;
7178         else
7179                 return 0UL;
7180 }
7181
7182 #else
7183
7184 /* See description above.  Architectures can provide their own version. */
7185 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7186 {
7187 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7188         if (huge_page_size(h) == PMD_SIZE)
7189                 return PUD_SIZE - PMD_SIZE;
7190 #endif
7191         return 0UL;
7192 }
7193
7194 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7195
7196 /*
7197  * These functions are overwritable if your architecture needs its own
7198  * behavior.
7199  */
7200 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7201 {
7202         bool ret = true;
7203
7204         spin_lock_irq(&hugetlb_lock);
7205         if (!folio_test_hugetlb(folio) ||
7206             !folio_test_hugetlb_migratable(folio) ||
7207             !folio_try_get(folio)) {
7208                 ret = false;
7209                 goto unlock;
7210         }
7211         folio_clear_hugetlb_migratable(folio);
7212         list_move_tail(&folio->lru, list);
7213 unlock:
7214         spin_unlock_irq(&hugetlb_lock);
7215         return ret;
7216 }
7217
7218 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7219 {
7220         int ret = 0;
7221
7222         *hugetlb = false;
7223         spin_lock_irq(&hugetlb_lock);
7224         if (folio_test_hugetlb(folio)) {
7225                 *hugetlb = true;
7226                 if (folio_test_hugetlb_freed(folio))
7227                         ret = 0;
7228                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7229                         ret = folio_try_get(folio);
7230                 else
7231                         ret = -EBUSY;
7232         }
7233         spin_unlock_irq(&hugetlb_lock);
7234         return ret;
7235 }
7236
7237 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7238                                 bool *migratable_cleared)
7239 {
7240         int ret;
7241
7242         spin_lock_irq(&hugetlb_lock);
7243         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7244         spin_unlock_irq(&hugetlb_lock);
7245         return ret;
7246 }
7247
7248 void folio_putback_active_hugetlb(struct folio *folio)
7249 {
7250         spin_lock_irq(&hugetlb_lock);
7251         folio_set_hugetlb_migratable(folio);
7252         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7253         spin_unlock_irq(&hugetlb_lock);
7254         folio_put(folio);
7255 }
7256
7257 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7258 {
7259         struct hstate *h = folio_hstate(old_folio);
7260
7261         hugetlb_cgroup_migrate(old_folio, new_folio);
7262         set_page_owner_migrate_reason(&new_folio->page, reason);
7263
7264         /*
7265          * transfer temporary state of the new hugetlb folio. This is
7266          * reverse to other transitions because the newpage is going to
7267          * be final while the old one will be freed so it takes over
7268          * the temporary status.
7269          *
7270          * Also note that we have to transfer the per-node surplus state
7271          * here as well otherwise the global surplus count will not match
7272          * the per-node's.
7273          */
7274         if (folio_test_hugetlb_temporary(new_folio)) {
7275                 int old_nid = folio_nid(old_folio);
7276                 int new_nid = folio_nid(new_folio);
7277
7278                 folio_set_hugetlb_temporary(old_folio);
7279                 folio_clear_hugetlb_temporary(new_folio);
7280
7281
7282                 /*
7283                  * There is no need to transfer the per-node surplus state
7284                  * when we do not cross the node.
7285                  */
7286                 if (new_nid == old_nid)
7287                         return;
7288                 spin_lock_irq(&hugetlb_lock);
7289                 if (h->surplus_huge_pages_node[old_nid]) {
7290                         h->surplus_huge_pages_node[old_nid]--;
7291                         h->surplus_huge_pages_node[new_nid]++;
7292                 }
7293                 spin_unlock_irq(&hugetlb_lock);
7294         }
7295 }
7296
7297 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7298                                    unsigned long start,
7299                                    unsigned long end)
7300 {
7301         struct hstate *h = hstate_vma(vma);
7302         unsigned long sz = huge_page_size(h);
7303         struct mm_struct *mm = vma->vm_mm;
7304         struct mmu_notifier_range range;
7305         unsigned long address;
7306         spinlock_t *ptl;
7307         pte_t *ptep;
7308
7309         if (!(vma->vm_flags & VM_MAYSHARE))
7310                 return;
7311
7312         if (start >= end)
7313                 return;
7314
7315         flush_cache_range(vma, start, end);
7316         /*
7317          * No need to call adjust_range_if_pmd_sharing_possible(), because
7318          * we have already done the PUD_SIZE alignment.
7319          */
7320         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7321                                 start, end);
7322         mmu_notifier_invalidate_range_start(&range);
7323         hugetlb_vma_lock_write(vma);
7324         i_mmap_lock_write(vma->vm_file->f_mapping);
7325         for (address = start; address < end; address += PUD_SIZE) {
7326                 ptep = hugetlb_walk(vma, address, sz);
7327                 if (!ptep)
7328                         continue;
7329                 ptl = huge_pte_lock(h, mm, ptep);
7330                 huge_pmd_unshare(mm, vma, address, ptep);
7331                 spin_unlock(ptl);
7332         }
7333         flush_hugetlb_tlb_range(vma, start, end);
7334         i_mmap_unlock_write(vma->vm_file->f_mapping);
7335         hugetlb_vma_unlock_write(vma);
7336         /*
7337          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7338          * Documentation/mm/mmu_notifier.rst.
7339          */
7340         mmu_notifier_invalidate_range_end(&range);
7341 }
7342
7343 /*
7344  * This function will unconditionally remove all the shared pmd pgtable entries
7345  * within the specific vma for a hugetlbfs memory range.
7346  */
7347 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7348 {
7349         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7350                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7351 }
7352
7353 #ifdef CONFIG_CMA
7354 static bool cma_reserve_called __initdata;
7355
7356 static int __init cmdline_parse_hugetlb_cma(char *p)
7357 {
7358         int nid, count = 0;
7359         unsigned long tmp;
7360         char *s = p;
7361
7362         while (*s) {
7363                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7364                         break;
7365
7366                 if (s[count] == ':') {
7367                         if (tmp >= MAX_NUMNODES)
7368                                 break;
7369                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7370
7371                         s += count + 1;
7372                         tmp = memparse(s, &s);
7373                         hugetlb_cma_size_in_node[nid] = tmp;
7374                         hugetlb_cma_size += tmp;
7375
7376                         /*
7377                          * Skip the separator if have one, otherwise
7378                          * break the parsing.
7379                          */
7380                         if (*s == ',')
7381                                 s++;
7382                         else
7383                                 break;
7384                 } else {
7385                         hugetlb_cma_size = memparse(p, &p);
7386                         break;
7387                 }
7388         }
7389
7390         return 0;
7391 }
7392
7393 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7394
7395 void __init hugetlb_cma_reserve(int order)
7396 {
7397         unsigned long size, reserved, per_node;
7398         bool node_specific_cma_alloc = false;
7399         int nid;
7400
7401         cma_reserve_called = true;
7402
7403         if (!hugetlb_cma_size)
7404                 return;
7405
7406         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7407                 if (hugetlb_cma_size_in_node[nid] == 0)
7408                         continue;
7409
7410                 if (!node_online(nid)) {
7411                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7412                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7413                         hugetlb_cma_size_in_node[nid] = 0;
7414                         continue;
7415                 }
7416
7417                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7418                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7419                                 nid, (PAGE_SIZE << order) / SZ_1M);
7420                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7421                         hugetlb_cma_size_in_node[nid] = 0;
7422                 } else {
7423                         node_specific_cma_alloc = true;
7424                 }
7425         }
7426
7427         /* Validate the CMA size again in case some invalid nodes specified. */
7428         if (!hugetlb_cma_size)
7429                 return;
7430
7431         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7432                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7433                         (PAGE_SIZE << order) / SZ_1M);
7434                 hugetlb_cma_size = 0;
7435                 return;
7436         }
7437
7438         if (!node_specific_cma_alloc) {
7439                 /*
7440                  * If 3 GB area is requested on a machine with 4 numa nodes,
7441                  * let's allocate 1 GB on first three nodes and ignore the last one.
7442                  */
7443                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7444                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7445                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7446         }
7447
7448         reserved = 0;
7449         for_each_online_node(nid) {
7450                 int res;
7451                 char name[CMA_MAX_NAME];
7452
7453                 if (node_specific_cma_alloc) {
7454                         if (hugetlb_cma_size_in_node[nid] == 0)
7455                                 continue;
7456
7457                         size = hugetlb_cma_size_in_node[nid];
7458                 } else {
7459                         size = min(per_node, hugetlb_cma_size - reserved);
7460                 }
7461
7462                 size = round_up(size, PAGE_SIZE << order);
7463
7464                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7465                 /*
7466                  * Note that 'order per bit' is based on smallest size that
7467                  * may be returned to CMA allocator in the case of
7468                  * huge page demotion.
7469                  */
7470                 res = cma_declare_contiguous_nid(0, size, 0,
7471                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7472                                                  0, false, name,
7473                                                  &hugetlb_cma[nid], nid);
7474                 if (res) {
7475                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7476                                 res, nid);
7477                         continue;
7478                 }
7479
7480                 reserved += size;
7481                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7482                         size / SZ_1M, nid);
7483
7484                 if (reserved >= hugetlb_cma_size)
7485                         break;
7486         }
7487
7488         if (!reserved)
7489                 /*
7490                  * hugetlb_cma_size is used to determine if allocations from
7491                  * cma are possible.  Set to zero if no cma regions are set up.
7492                  */
7493                 hugetlb_cma_size = 0;
7494 }
7495
7496 static void __init hugetlb_cma_check(void)
7497 {
7498         if (!hugetlb_cma_size || cma_reserve_called)
7499                 return;
7500
7501         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7502 }
7503
7504 #endif /* CONFIG_CMA */