ALSA: hda/realtek: Fix mute and mic-mute LEDs for HP Envy X360 13-ay0xxx
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61                                 1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66         return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99                 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104         if (spool->count)
105                 return false;
106         if (spool->max_hpages != -1)
107                 return spool->used_hpages == 0;
108         if (spool->min_hpages != -1)
109                 return spool->rsv_hpages == spool->min_hpages;
110
111         return true;
112 }
113
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115                                                 unsigned long irq_flags)
116 {
117         spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119         /* If no pages are used, and no other handles to the subpool
120          * remain, give up any reservations based on minimum size and
121          * free the subpool */
122         if (subpool_is_free(spool)) {
123                 if (spool->min_hpages != -1)
124                         hugetlb_acct_memory(spool->hstate,
125                                                 -spool->min_hpages);
126                 kfree(spool);
127         }
128 }
129
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131                                                 long min_hpages)
132 {
133         struct hugepage_subpool *spool;
134
135         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136         if (!spool)
137                 return NULL;
138
139         spin_lock_init(&spool->lock);
140         spool->count = 1;
141         spool->max_hpages = max_hpages;
142         spool->hstate = h;
143         spool->min_hpages = min_hpages;
144
145         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146                 kfree(spool);
147                 return NULL;
148         }
149         spool->rsv_hpages = min_hpages;
150
151         return spool;
152 }
153
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156         unsigned long flags;
157
158         spin_lock_irqsave(&spool->lock, flags);
159         BUG_ON(!spool->count);
160         spool->count--;
161         unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173                                       long delta)
174 {
175         long ret = delta;
176
177         if (!spool)
178                 return ret;
179
180         spin_lock_irq(&spool->lock);
181
182         if (spool->max_hpages != -1) {          /* maximum size accounting */
183                 if ((spool->used_hpages + delta) <= spool->max_hpages)
184                         spool->used_hpages += delta;
185                 else {
186                         ret = -ENOMEM;
187                         goto unlock_ret;
188                 }
189         }
190
191         /* minimum size accounting */
192         if (spool->min_hpages != -1 && spool->rsv_hpages) {
193                 if (delta > spool->rsv_hpages) {
194                         /*
195                          * Asking for more reserves than those already taken on
196                          * behalf of subpool.  Return difference.
197                          */
198                         ret = delta - spool->rsv_hpages;
199                         spool->rsv_hpages = 0;
200                 } else {
201                         ret = 0;        /* reserves already accounted for */
202                         spool->rsv_hpages -= delta;
203                 }
204         }
205
206 unlock_ret:
207         spin_unlock_irq(&spool->lock);
208         return ret;
209 }
210
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218                                        long delta)
219 {
220         long ret = delta;
221         unsigned long flags;
222
223         if (!spool)
224                 return delta;
225
226         spin_lock_irqsave(&spool->lock, flags);
227
228         if (spool->max_hpages != -1)            /* maximum size accounting */
229                 spool->used_hpages -= delta;
230
231          /* minimum size accounting */
232         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233                 if (spool->rsv_hpages + delta <= spool->min_hpages)
234                         ret = 0;
235                 else
236                         ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238                 spool->rsv_hpages += delta;
239                 if (spool->rsv_hpages > spool->min_hpages)
240                         spool->rsv_hpages = spool->min_hpages;
241         }
242
243         /*
244          * If hugetlbfs_put_super couldn't free spool due to an outstanding
245          * quota reference, free it now.
246          */
247         unlock_or_release_subpool(spool, flags);
248
249         return ret;
250 }
251
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254         return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259         return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267         if (__vma_shareable_lock(vma)) {
268                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270                 down_read(&vma_lock->rw_sema);
271         } else if (__vma_private_lock(vma)) {
272                 struct resv_map *resv_map = vma_resv_map(vma);
273
274                 down_read(&resv_map->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         } else if (__vma_private_lock(vma)) {
285                 struct resv_map *resv_map = vma_resv_map(vma);
286
287                 up_read(&resv_map->rw_sema);
288         }
289 }
290
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293         if (__vma_shareable_lock(vma)) {
294                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296                 down_write(&vma_lock->rw_sema);
297         } else if (__vma_private_lock(vma)) {
298                 struct resv_map *resv_map = vma_resv_map(vma);
299
300                 down_write(&resv_map->rw_sema);
301         }
302 }
303
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306         if (__vma_shareable_lock(vma)) {
307                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309                 up_write(&vma_lock->rw_sema);
310         } else if (__vma_private_lock(vma)) {
311                 struct resv_map *resv_map = vma_resv_map(vma);
312
313                 up_write(&resv_map->rw_sema);
314         }
315 }
316
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320         if (__vma_shareable_lock(vma)) {
321                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323                 return down_write_trylock(&vma_lock->rw_sema);
324         } else if (__vma_private_lock(vma)) {
325                 struct resv_map *resv_map = vma_resv_map(vma);
326
327                 return down_write_trylock(&resv_map->rw_sema);
328         }
329
330         return 1;
331 }
332
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335         if (__vma_shareable_lock(vma)) {
336                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338                 lockdep_assert_held(&vma_lock->rw_sema);
339         } else if (__vma_private_lock(vma)) {
340                 struct resv_map *resv_map = vma_resv_map(vma);
341
342                 lockdep_assert_held(&resv_map->rw_sema);
343         }
344 }
345
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348         struct hugetlb_vma_lock *vma_lock = container_of(kref,
349                         struct hugetlb_vma_lock, refs);
350
351         kfree(vma_lock);
352 }
353
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356         struct vm_area_struct *vma = vma_lock->vma;
357
358         /*
359          * vma_lock structure may or not be released as a result of put,
360          * it certainly will no longer be attached to vma so clear pointer.
361          * Semaphore synchronizes access to vma_lock->vma field.
362          */
363         vma_lock->vma = NULL;
364         vma->vm_private_data = NULL;
365         up_write(&vma_lock->rw_sema);
366         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371         if (__vma_shareable_lock(vma)) {
372                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374                 __hugetlb_vma_unlock_write_put(vma_lock);
375         } else if (__vma_private_lock(vma)) {
376                 struct resv_map *resv_map = vma_resv_map(vma);
377
378                 /* no free for anon vmas, but still need to unlock */
379                 up_write(&resv_map->rw_sema);
380         }
381 }
382
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385         /*
386          * Only present in sharable vmas.
387          */
388         if (!vma || !__vma_shareable_lock(vma))
389                 return;
390
391         if (vma->vm_private_data) {
392                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394                 down_write(&vma_lock->rw_sema);
395                 __hugetlb_vma_unlock_write_put(vma_lock);
396         }
397 }
398
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401         struct hugetlb_vma_lock *vma_lock;
402
403         /* Only establish in (flags) sharable vmas */
404         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405                 return;
406
407         /* Should never get here with non-NULL vm_private_data */
408         if (vma->vm_private_data)
409                 return;
410
411         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412         if (!vma_lock) {
413                 /*
414                  * If we can not allocate structure, then vma can not
415                  * participate in pmd sharing.  This is only a possible
416                  * performance enhancement and memory saving issue.
417                  * However, the lock is also used to synchronize page
418                  * faults with truncation.  If the lock is not present,
419                  * unlikely races could leave pages in a file past i_size
420                  * until the file is removed.  Warn in the unlikely case of
421                  * allocation failure.
422                  */
423                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424                 return;
425         }
426
427         kref_init(&vma_lock->refs);
428         init_rwsem(&vma_lock->rw_sema);
429         vma_lock->vma = vma;
430         vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439         struct file_region *nrg;
440
441         VM_BUG_ON(resv->region_cache_count <= 0);
442
443         resv->region_cache_count--;
444         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445         list_del(&nrg->link);
446
447         nrg->from = from;
448         nrg->to = to;
449
450         return nrg;
451 }
452
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454                                               struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457         nrg->reservation_counter = rg->reservation_counter;
458         nrg->css = rg->css;
459         if (rg->css)
460                 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466                                                 struct hstate *h,
467                                                 struct resv_map *resv,
468                                                 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471         if (h_cg) {
472                 nrg->reservation_counter =
473                         &h_cg->rsvd_hugepage[hstate_index(h)];
474                 nrg->css = &h_cg->css;
475                 /*
476                  * The caller will hold exactly one h_cg->css reference for the
477                  * whole contiguous reservation region. But this area might be
478                  * scattered when there are already some file_regions reside in
479                  * it. As a result, many file_regions may share only one css
480                  * reference. In order to ensure that one file_region must hold
481                  * exactly one h_cg->css reference, we should do css_get for
482                  * each file_region and leave the reference held by caller
483                  * untouched.
484                  */
485                 css_get(&h_cg->css);
486                 if (!resv->pages_per_hpage)
487                         resv->pages_per_hpage = pages_per_huge_page(h);
488                 /* pages_per_hpage should be the same for all entries in
489                  * a resv_map.
490                  */
491                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492         } else {
493                 nrg->reservation_counter = NULL;
494                 nrg->css = NULL;
495         }
496 #endif
497 }
498
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502         if (rg->css)
503                 css_put(rg->css);
504 #endif
505 }
506
507 static bool has_same_uncharge_info(struct file_region *rg,
508                                    struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511         return rg->reservation_counter == org->reservation_counter &&
512                rg->css == org->css;
513
514 #else
515         return true;
516 #endif
517 }
518
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521         struct file_region *nrg, *prg;
522
523         prg = list_prev_entry(rg, link);
524         if (&prg->link != &resv->regions && prg->to == rg->from &&
525             has_same_uncharge_info(prg, rg)) {
526                 prg->to = rg->to;
527
528                 list_del(&rg->link);
529                 put_uncharge_info(rg);
530                 kfree(rg);
531
532                 rg = prg;
533         }
534
535         nrg = list_next_entry(rg, link);
536         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537             has_same_uncharge_info(nrg, rg)) {
538                 nrg->from = rg->from;
539
540                 list_del(&rg->link);
541                 put_uncharge_info(rg);
542                 kfree(rg);
543         }
544 }
545
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
549                      long *regions_needed)
550 {
551         struct file_region *nrg;
552
553         if (!regions_needed) {
554                 nrg = get_file_region_entry_from_cache(map, from, to);
555                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556                 list_add(&nrg->link, rg);
557                 coalesce_file_region(map, nrg);
558         } else
559                 *regions_needed += 1;
560
561         return to - from;
562 }
563
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573                                      struct hugetlb_cgroup *h_cg,
574                                      struct hstate *h, long *regions_needed)
575 {
576         long add = 0;
577         struct list_head *head = &resv->regions;
578         long last_accounted_offset = f;
579         struct file_region *iter, *trg = NULL;
580         struct list_head *rg = NULL;
581
582         if (regions_needed)
583                 *regions_needed = 0;
584
585         /* In this loop, we essentially handle an entry for the range
586          * [last_accounted_offset, iter->from), at every iteration, with some
587          * bounds checking.
588          */
589         list_for_each_entry_safe(iter, trg, head, link) {
590                 /* Skip irrelevant regions that start before our range. */
591                 if (iter->from < f) {
592                         /* If this region ends after the last accounted offset,
593                          * then we need to update last_accounted_offset.
594                          */
595                         if (iter->to > last_accounted_offset)
596                                 last_accounted_offset = iter->to;
597                         continue;
598                 }
599
600                 /* When we find a region that starts beyond our range, we've
601                  * finished.
602                  */
603                 if (iter->from >= t) {
604                         rg = iter->link.prev;
605                         break;
606                 }
607
608                 /* Add an entry for last_accounted_offset -> iter->from, and
609                  * update last_accounted_offset.
610                  */
611                 if (iter->from > last_accounted_offset)
612                         add += hugetlb_resv_map_add(resv, iter->link.prev,
613                                                     last_accounted_offset,
614                                                     iter->from, h, h_cg,
615                                                     regions_needed);
616
617                 last_accounted_offset = iter->to;
618         }
619
620         /* Handle the case where our range extends beyond
621          * last_accounted_offset.
622          */
623         if (!rg)
624                 rg = head->prev;
625         if (last_accounted_offset < t)
626                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627                                             t, h, h_cg, regions_needed);
628
629         return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635                                         int regions_needed)
636         __must_hold(&resv->lock)
637 {
638         LIST_HEAD(allocated_regions);
639         int to_allocate = 0, i = 0;
640         struct file_region *trg = NULL, *rg = NULL;
641
642         VM_BUG_ON(regions_needed < 0);
643
644         /*
645          * Check for sufficient descriptors in the cache to accommodate
646          * the number of in progress add operations plus regions_needed.
647          *
648          * This is a while loop because when we drop the lock, some other call
649          * to region_add or region_del may have consumed some region_entries,
650          * so we keep looping here until we finally have enough entries for
651          * (adds_in_progress + regions_needed).
652          */
653         while (resv->region_cache_count <
654                (resv->adds_in_progress + regions_needed)) {
655                 to_allocate = resv->adds_in_progress + regions_needed -
656                               resv->region_cache_count;
657
658                 /* At this point, we should have enough entries in the cache
659                  * for all the existing adds_in_progress. We should only be
660                  * needing to allocate for regions_needed.
661                  */
662                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664                 spin_unlock(&resv->lock);
665                 for (i = 0; i < to_allocate; i++) {
666                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667                         if (!trg)
668                                 goto out_of_memory;
669                         list_add(&trg->link, &allocated_regions);
670                 }
671
672                 spin_lock(&resv->lock);
673
674                 list_splice(&allocated_regions, &resv->region_cache);
675                 resv->region_cache_count += to_allocate;
676         }
677
678         return 0;
679
680 out_of_memory:
681         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682                 list_del(&rg->link);
683                 kfree(rg);
684         }
685         return -ENOMEM;
686 }
687
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706                        long in_regions_needed, struct hstate *h,
707                        struct hugetlb_cgroup *h_cg)
708 {
709         long add = 0, actual_regions_needed = 0;
710
711         spin_lock(&resv->lock);
712 retry:
713
714         /* Count how many regions are actually needed to execute this add. */
715         add_reservation_in_range(resv, f, t, NULL, NULL,
716                                  &actual_regions_needed);
717
718         /*
719          * Check for sufficient descriptors in the cache to accommodate
720          * this add operation. Note that actual_regions_needed may be greater
721          * than in_regions_needed, as the resv_map may have been modified since
722          * the region_chg call. In this case, we need to make sure that we
723          * allocate extra entries, such that we have enough for all the
724          * existing adds_in_progress, plus the excess needed for this
725          * operation.
726          */
727         if (actual_regions_needed > in_regions_needed &&
728             resv->region_cache_count <
729                     resv->adds_in_progress +
730                             (actual_regions_needed - in_regions_needed)) {
731                 /* region_add operation of range 1 should never need to
732                  * allocate file_region entries.
733                  */
734                 VM_BUG_ON(t - f <= 1);
735
736                 if (allocate_file_region_entries(
737                             resv, actual_regions_needed - in_regions_needed)) {
738                         return -ENOMEM;
739                 }
740
741                 goto retry;
742         }
743
744         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746         resv->adds_in_progress -= in_regions_needed;
747
748         spin_unlock(&resv->lock);
749         return add;
750 }
751
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773                        long *out_regions_needed)
774 {
775         long chg = 0;
776
777         spin_lock(&resv->lock);
778
779         /* Count how many hugepages in this range are NOT represented. */
780         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781                                        out_regions_needed);
782
783         if (*out_regions_needed == 0)
784                 *out_regions_needed = 1;
785
786         if (allocate_file_region_entries(resv, *out_regions_needed))
787                 return -ENOMEM;
788
789         resv->adds_in_progress += *out_regions_needed;
790
791         spin_unlock(&resv->lock);
792         return chg;
793 }
794
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809                          long regions_needed)
810 {
811         spin_lock(&resv->lock);
812         VM_BUG_ON(!resv->region_cache_count);
813         resv->adds_in_progress -= regions_needed;
814         spin_unlock(&resv->lock);
815 }
816
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833         struct list_head *head = &resv->regions;
834         struct file_region *rg, *trg;
835         struct file_region *nrg = NULL;
836         long del = 0;
837
838 retry:
839         spin_lock(&resv->lock);
840         list_for_each_entry_safe(rg, trg, head, link) {
841                 /*
842                  * Skip regions before the range to be deleted.  file_region
843                  * ranges are normally of the form [from, to).  However, there
844                  * may be a "placeholder" entry in the map which is of the form
845                  * (from, to) with from == to.  Check for placeholder entries
846                  * at the beginning of the range to be deleted.
847                  */
848                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849                         continue;
850
851                 if (rg->from >= t)
852                         break;
853
854                 if (f > rg->from && t < rg->to) { /* Must split region */
855                         /*
856                          * Check for an entry in the cache before dropping
857                          * lock and attempting allocation.
858                          */
859                         if (!nrg &&
860                             resv->region_cache_count > resv->adds_in_progress) {
861                                 nrg = list_first_entry(&resv->region_cache,
862                                                         struct file_region,
863                                                         link);
864                                 list_del(&nrg->link);
865                                 resv->region_cache_count--;
866                         }
867
868                         if (!nrg) {
869                                 spin_unlock(&resv->lock);
870                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871                                 if (!nrg)
872                                         return -ENOMEM;
873                                 goto retry;
874                         }
875
876                         del += t - f;
877                         hugetlb_cgroup_uncharge_file_region(
878                                 resv, rg, t - f, false);
879
880                         /* New entry for end of split region */
881                         nrg->from = t;
882                         nrg->to = rg->to;
883
884                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886                         INIT_LIST_HEAD(&nrg->link);
887
888                         /* Original entry is trimmed */
889                         rg->to = f;
890
891                         list_add(&nrg->link, &rg->link);
892                         nrg = NULL;
893                         break;
894                 }
895
896                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897                         del += rg->to - rg->from;
898                         hugetlb_cgroup_uncharge_file_region(resv, rg,
899                                                             rg->to - rg->from, true);
900                         list_del(&rg->link);
901                         kfree(rg);
902                         continue;
903                 }
904
905                 if (f <= rg->from) {    /* Trim beginning of region */
906                         hugetlb_cgroup_uncharge_file_region(resv, rg,
907                                                             t - rg->from, false);
908
909                         del += t - rg->from;
910                         rg->from = t;
911                 } else {                /* Trim end of region */
912                         hugetlb_cgroup_uncharge_file_region(resv, rg,
913                                                             rg->to - f, false);
914
915                         del += rg->to - f;
916                         rg->to = f;
917                 }
918         }
919
920         spin_unlock(&resv->lock);
921         kfree(nrg);
922         return del;
923 }
924
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936         struct hugepage_subpool *spool = subpool_inode(inode);
937         long rsv_adjust;
938         bool reserved = false;
939
940         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941         if (rsv_adjust > 0) {
942                 struct hstate *h = hstate_inode(inode);
943
944                 if (!hugetlb_acct_memory(h, 1))
945                         reserved = true;
946         } else if (!rsv_adjust) {
947                 reserved = true;
948         }
949
950         if (!reserved)
951                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960         struct list_head *head = &resv->regions;
961         struct file_region *rg;
962         long chg = 0;
963
964         spin_lock(&resv->lock);
965         /* Locate each segment we overlap with, and count that overlap. */
966         list_for_each_entry(rg, head, link) {
967                 long seg_from;
968                 long seg_to;
969
970                 if (rg->to <= f)
971                         continue;
972                 if (rg->from >= t)
973                         break;
974
975                 seg_from = max(rg->from, f);
976                 seg_to = min(rg->to, t);
977
978                 chg += seg_to - seg_from;
979         }
980         spin_unlock(&resv->lock);
981
982         return chg;
983 }
984
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, in pagecache page units; huge pages here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990                         struct vm_area_struct *vma, unsigned long address)
991 {
992         return ((address - vma->vm_start) >> huge_page_shift(h)) +
993                         (vma->vm_pgoff >> huge_page_order(h));
994 }
995
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997                                      unsigned long address)
998 {
999         return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003 /**
1004  * vma_kernel_pagesize - Page size granularity for this VMA.
1005  * @vma: The user mapping.
1006  *
1007  * Folios in this VMA will be aligned to, and at least the size of the
1008  * number of bytes returned by this function.
1009  *
1010  * Return: The default size of the folios allocated when backing a VMA.
1011  */
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014         if (vma->vm_ops && vma->vm_ops->pagesize)
1015                 return vma->vm_ops->pagesize(vma);
1016         return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020 /*
1021  * Return the page size being used by the MMU to back a VMA. In the majority
1022  * of cases, the page size used by the kernel matches the MMU size. On
1023  * architectures where it differs, an architecture-specific 'strong'
1024  * version of this symbol is required.
1025  */
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028         return vma_kernel_pagesize(vma);
1029 }
1030
1031 /*
1032  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1033  * bits of the reservation map pointer, which are always clear due to
1034  * alignment.
1035  */
1036 #define HPAGE_RESV_OWNER    (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040 /*
1041  * These helpers are used to track how many pages are reserved for
1042  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043  * is guaranteed to have their future faults succeed.
1044  *
1045  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046  * the reserve counters are updated with the hugetlb_lock held. It is safe
1047  * to reset the VMA at fork() time as it is not in use yet and there is no
1048  * chance of the global counters getting corrupted as a result of the values.
1049  *
1050  * The private mapping reservation is represented in a subtly different
1051  * manner to a shared mapping.  A shared mapping has a region map associated
1052  * with the underlying file, this region map represents the backing file
1053  * pages which have ever had a reservation assigned which this persists even
1054  * after the page is instantiated.  A private mapping has a region map
1055  * associated with the original mmap which is attached to all VMAs which
1056  * reference it, this region map represents those offsets which have consumed
1057  * reservation ie. where pages have been instantiated.
1058  */
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061         return (unsigned long)vma->vm_private_data;
1062 }
1063
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065                                                         unsigned long value)
1066 {
1067         vma->vm_private_data = (void *)value;
1068 }
1069
1070 static void
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072                                           struct hugetlb_cgroup *h_cg,
1073                                           struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076         if (!h_cg || !h) {
1077                 resv_map->reservation_counter = NULL;
1078                 resv_map->pages_per_hpage = 0;
1079                 resv_map->css = NULL;
1080         } else {
1081                 resv_map->reservation_counter =
1082                         &h_cg->rsvd_hugepage[hstate_index(h)];
1083                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084                 resv_map->css = &h_cg->css;
1085         }
1086 #endif
1087 }
1088
1089 struct resv_map *resv_map_alloc(void)
1090 {
1091         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094         if (!resv_map || !rg) {
1095                 kfree(resv_map);
1096                 kfree(rg);
1097                 return NULL;
1098         }
1099
1100         kref_init(&resv_map->refs);
1101         spin_lock_init(&resv_map->lock);
1102         INIT_LIST_HEAD(&resv_map->regions);
1103         init_rwsem(&resv_map->rw_sema);
1104
1105         resv_map->adds_in_progress = 0;
1106         /*
1107          * Initialize these to 0. On shared mappings, 0's here indicate these
1108          * fields don't do cgroup accounting. On private mappings, these will be
1109          * re-initialized to the proper values, to indicate that hugetlb cgroup
1110          * reservations are to be un-charged from here.
1111          */
1112         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114         INIT_LIST_HEAD(&resv_map->region_cache);
1115         list_add(&rg->link, &resv_map->region_cache);
1116         resv_map->region_cache_count = 1;
1117
1118         return resv_map;
1119 }
1120
1121 void resv_map_release(struct kref *ref)
1122 {
1123         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124         struct list_head *head = &resv_map->region_cache;
1125         struct file_region *rg, *trg;
1126
1127         /* Clear out any active regions before we release the map. */
1128         region_del(resv_map, 0, LONG_MAX);
1129
1130         /* ... and any entries left in the cache */
1131         list_for_each_entry_safe(rg, trg, head, link) {
1132                 list_del(&rg->link);
1133                 kfree(rg);
1134         }
1135
1136         VM_BUG_ON(resv_map->adds_in_progress);
1137
1138         kfree(resv_map);
1139 }
1140
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143         /*
1144          * At inode evict time, i_mapping may not point to the original
1145          * address space within the inode.  This original address space
1146          * contains the pointer to the resv_map.  So, always use the
1147          * address space embedded within the inode.
1148          * The VERY common case is inode->mapping == &inode->i_data but,
1149          * this may not be true for device special inodes.
1150          */
1151         return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         if (vma->vm_flags & VM_MAYSHARE) {
1158                 struct address_space *mapping = vma->vm_file->f_mapping;
1159                 struct inode *inode = mapping->host;
1160
1161                 return inode_resv_map(inode);
1162
1163         } else {
1164                 return (struct resv_map *)(get_vma_private_data(vma) &
1165                                                         ~HPAGE_RESV_MASK);
1166         }
1167 }
1168
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174         set_vma_private_data(vma, (unsigned long)map);
1175 }
1176
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189         return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191
1192 bool __vma_private_lock(struct vm_area_struct *vma)
1193 {
1194         return !(vma->vm_flags & VM_MAYSHARE) &&
1195                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197 }
1198
1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200 {
1201         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202         /*
1203          * Clear vm_private_data
1204          * - For shared mappings this is a per-vma semaphore that may be
1205          *   allocated in a subsequent call to hugetlb_vm_op_open.
1206          *   Before clearing, make sure pointer is not associated with vma
1207          *   as this will leak the structure.  This is the case when called
1208          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209          *   been called to allocate a new structure.
1210          * - For MAP_PRIVATE mappings, this is the reserve map which does
1211          *   not apply to children.  Faults generated by the children are
1212          *   not guaranteed to succeed, even if read-only.
1213          */
1214         if (vma->vm_flags & VM_MAYSHARE) {
1215                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216
1217                 if (vma_lock && vma_lock->vma != vma)
1218                         vma->vm_private_data = NULL;
1219         } else
1220                 vma->vm_private_data = NULL;
1221 }
1222
1223 /*
1224  * Reset and decrement one ref on hugepage private reservation.
1225  * Called with mm->mmap_lock writer semaphore held.
1226  * This function should be only used by move_vma() and operate on
1227  * same sized vma. It should never come here with last ref on the
1228  * reservation.
1229  */
1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231 {
1232         /*
1233          * Clear the old hugetlb private page reservation.
1234          * It has already been transferred to new_vma.
1235          *
1236          * During a mremap() operation of a hugetlb vma we call move_vma()
1237          * which copies vma into new_vma and unmaps vma. After the copy
1238          * operation both new_vma and vma share a reference to the resv_map
1239          * struct, and at that point vma is about to be unmapped. We don't
1240          * want to return the reservation to the pool at unmap of vma because
1241          * the reservation still lives on in new_vma, so simply decrement the
1242          * ref here and remove the resv_map reference from this vma.
1243          */
1244         struct resv_map *reservations = vma_resv_map(vma);
1245
1246         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248                 kref_put(&reservations->refs, resv_map_release);
1249         }
1250
1251         hugetlb_dup_vma_private(vma);
1252 }
1253
1254 /* Returns true if the VMA has associated reserve pages */
1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256 {
1257         if (vma->vm_flags & VM_NORESERVE) {
1258                 /*
1259                  * This address is already reserved by other process(chg == 0),
1260                  * so, we should decrement reserved count. Without decrementing,
1261                  * reserve count remains after releasing inode, because this
1262                  * allocated page will go into page cache and is regarded as
1263                  * coming from reserved pool in releasing step.  Currently, we
1264                  * don't have any other solution to deal with this situation
1265                  * properly, so add work-around here.
1266                  */
1267                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268                         return true;
1269                 else
1270                         return false;
1271         }
1272
1273         /* Shared mappings always use reserves */
1274         if (vma->vm_flags & VM_MAYSHARE) {
1275                 /*
1276                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1277                  * be a region map for all pages.  The only situation where
1278                  * there is no region map is if a hole was punched via
1279                  * fallocate.  In this case, there really are no reserves to
1280                  * use.  This situation is indicated if chg != 0.
1281                  */
1282                 if (chg)
1283                         return false;
1284                 else
1285                         return true;
1286         }
1287
1288         /*
1289          * Only the process that called mmap() has reserves for
1290          * private mappings.
1291          */
1292         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293                 /*
1294                  * Like the shared case above, a hole punch or truncate
1295                  * could have been performed on the private mapping.
1296                  * Examine the value of chg to determine if reserves
1297                  * actually exist or were previously consumed.
1298                  * Very Subtle - The value of chg comes from a previous
1299                  * call to vma_needs_reserves().  The reserve map for
1300                  * private mappings has different (opposite) semantics
1301                  * than that of shared mappings.  vma_needs_reserves()
1302                  * has already taken this difference in semantics into
1303                  * account.  Therefore, the meaning of chg is the same
1304                  * as in the shared case above.  Code could easily be
1305                  * combined, but keeping it separate draws attention to
1306                  * subtle differences.
1307                  */
1308                 if (chg)
1309                         return false;
1310                 else
1311                         return true;
1312         }
1313
1314         return false;
1315 }
1316
1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318 {
1319         int nid = folio_nid(folio);
1320
1321         lockdep_assert_held(&hugetlb_lock);
1322         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323
1324         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325         h->free_huge_pages++;
1326         h->free_huge_pages_node[nid]++;
1327         folio_set_hugetlb_freed(folio);
1328 }
1329
1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331                                                                 int nid)
1332 {
1333         struct folio *folio;
1334         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335
1336         lockdep_assert_held(&hugetlb_lock);
1337         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338                 if (pin && !folio_is_longterm_pinnable(folio))
1339                         continue;
1340
1341                 if (folio_test_hwpoison(folio))
1342                         continue;
1343
1344                 list_move(&folio->lru, &h->hugepage_activelist);
1345                 folio_ref_unfreeze(folio, 1);
1346                 folio_clear_hugetlb_freed(folio);
1347                 h->free_huge_pages--;
1348                 h->free_huge_pages_node[nid]--;
1349                 return folio;
1350         }
1351
1352         return NULL;
1353 }
1354
1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356                                                         int nid, nodemask_t *nmask)
1357 {
1358         unsigned int cpuset_mems_cookie;
1359         struct zonelist *zonelist;
1360         struct zone *zone;
1361         struct zoneref *z;
1362         int node = NUMA_NO_NODE;
1363
1364         zonelist = node_zonelist(nid, gfp_mask);
1365
1366 retry_cpuset:
1367         cpuset_mems_cookie = read_mems_allowed_begin();
1368         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369                 struct folio *folio;
1370
1371                 if (!cpuset_zone_allowed(zone, gfp_mask))
1372                         continue;
1373                 /*
1374                  * no need to ask again on the same node. Pool is node rather than
1375                  * zone aware
1376                  */
1377                 if (zone_to_nid(zone) == node)
1378                         continue;
1379                 node = zone_to_nid(zone);
1380
1381                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1382                 if (folio)
1383                         return folio;
1384         }
1385         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386                 goto retry_cpuset;
1387
1388         return NULL;
1389 }
1390
1391 static unsigned long available_huge_pages(struct hstate *h)
1392 {
1393         return h->free_huge_pages - h->resv_huge_pages;
1394 }
1395
1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397                                 struct vm_area_struct *vma,
1398                                 unsigned long address, int avoid_reserve,
1399                                 long chg)
1400 {
1401         struct folio *folio = NULL;
1402         struct mempolicy *mpol;
1403         gfp_t gfp_mask;
1404         nodemask_t *nodemask;
1405         int nid;
1406
1407         /*
1408          * A child process with MAP_PRIVATE mappings created by their parent
1409          * have no page reserves. This check ensures that reservations are
1410          * not "stolen". The child may still get SIGKILLed
1411          */
1412         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413                 goto err;
1414
1415         /* If reserves cannot be used, ensure enough pages are in the pool */
1416         if (avoid_reserve && !available_huge_pages(h))
1417                 goto err;
1418
1419         gfp_mask = htlb_alloc_mask(h);
1420         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421
1422         if (mpol_is_preferred_many(mpol)) {
1423                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424                                                         nid, nodemask);
1425
1426                 /* Fallback to all nodes if page==NULL */
1427                 nodemask = NULL;
1428         }
1429
1430         if (!folio)
1431                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432                                                         nid, nodemask);
1433
1434         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435                 folio_set_hugetlb_restore_reserve(folio);
1436                 h->resv_huge_pages--;
1437         }
1438
1439         mpol_cond_put(mpol);
1440         return folio;
1441
1442 err:
1443         return NULL;
1444 }
1445
1446 /*
1447  * common helper functions for hstate_next_node_to_{alloc|free}.
1448  * We may have allocated or freed a huge page based on a different
1449  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450  * be outside of *nodes_allowed.  Ensure that we use an allowed
1451  * node for alloc or free.
1452  */
1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454 {
1455         nid = next_node_in(nid, *nodes_allowed);
1456         VM_BUG_ON(nid >= MAX_NUMNODES);
1457
1458         return nid;
1459 }
1460
1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462 {
1463         if (!node_isset(nid, *nodes_allowed))
1464                 nid = next_node_allowed(nid, nodes_allowed);
1465         return nid;
1466 }
1467
1468 /*
1469  * returns the previously saved node ["this node"] from which to
1470  * allocate a persistent huge page for the pool and advance the
1471  * next node from which to allocate, handling wrap at end of node
1472  * mask.
1473  */
1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475                                         nodemask_t *nodes_allowed)
1476 {
1477         int nid;
1478
1479         VM_BUG_ON(!nodes_allowed);
1480
1481         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483
1484         return nid;
1485 }
1486
1487 /*
1488  * helper for remove_pool_huge_page() - return the previously saved
1489  * node ["this node"] from which to free a huge page.  Advance the
1490  * next node id whether or not we find a free huge page to free so
1491  * that the next attempt to free addresses the next node.
1492  */
1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494 {
1495         int nid;
1496
1497         VM_BUG_ON(!nodes_allowed);
1498
1499         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501
1502         return nid;
1503 }
1504
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1506         for (nr_nodes = nodes_weight(*mask);                            \
1507                 nr_nodes > 0 &&                                         \
1508                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1509                 nr_nodes--)
1510
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1512         for (nr_nodes = nodes_weight(*mask);                            \
1513                 nr_nodes > 0 &&                                         \
1514                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1515                 nr_nodes--)
1516
1517 /* used to demote non-gigantic_huge pages as well */
1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519                                         unsigned int order, bool demote)
1520 {
1521         int i;
1522         int nr_pages = 1 << order;
1523         struct page *p;
1524
1525         atomic_set(&folio->_entire_mapcount, 0);
1526         atomic_set(&folio->_nr_pages_mapped, 0);
1527         atomic_set(&folio->_pincount, 0);
1528
1529         for (i = 1; i < nr_pages; i++) {
1530                 p = folio_page(folio, i);
1531                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532                 p->mapping = NULL;
1533                 clear_compound_head(p);
1534                 if (!demote)
1535                         set_page_refcounted(p);
1536         }
1537
1538         __folio_clear_head(folio);
1539 }
1540
1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542                                         unsigned int order)
1543 {
1544         __destroy_compound_gigantic_folio(folio, order, true);
1545 }
1546
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1549                                         unsigned int order)
1550 {
1551         __destroy_compound_gigantic_folio(folio, order, false);
1552 }
1553
1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 {
1556         /*
1557          * If the page isn't allocated using the cma allocator,
1558          * cma_release() returns false.
1559          */
1560 #ifdef CONFIG_CMA
1561         int nid = folio_nid(folio);
1562
1563         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564                 return;
1565 #endif
1566
1567         free_contig_range(folio_pfn(folio), 1 << order);
1568 }
1569
1570 #ifdef CONFIG_CONTIG_ALLOC
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572                 int nid, nodemask_t *nodemask)
1573 {
1574         struct page *page;
1575         unsigned long nr_pages = pages_per_huge_page(h);
1576         if (nid == NUMA_NO_NODE)
1577                 nid = numa_mem_id();
1578
1579 #ifdef CONFIG_CMA
1580         {
1581                 int node;
1582
1583                 if (hugetlb_cma[nid]) {
1584                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585                                         huge_page_order(h), true);
1586                         if (page)
1587                                 return page_folio(page);
1588                 }
1589
1590                 if (!(gfp_mask & __GFP_THISNODE)) {
1591                         for_each_node_mask(node, *nodemask) {
1592                                 if (node == nid || !hugetlb_cma[node])
1593                                         continue;
1594
1595                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1596                                                 huge_page_order(h), true);
1597                                 if (page)
1598                                         return page_folio(page);
1599                         }
1600                 }
1601         }
1602 #endif
1603
1604         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605         return page ? page_folio(page) : NULL;
1606 }
1607
1608 #else /* !CONFIG_CONTIG_ALLOC */
1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610                                         int nid, nodemask_t *nodemask)
1611 {
1612         return NULL;
1613 }
1614 #endif /* CONFIG_CONTIG_ALLOC */
1615
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618                                         int nid, nodemask_t *nodemask)
1619 {
1620         return NULL;
1621 }
1622 static inline void free_gigantic_folio(struct folio *folio,
1623                                                 unsigned int order) { }
1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625                                                 unsigned int order) { }
1626 #endif
1627
1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629                                                 struct folio *folio)
1630 {
1631         lockdep_assert_held(&hugetlb_lock);
1632
1633         folio_clear_hugetlb(folio);
1634 }
1635
1636 /*
1637  * Remove hugetlb folio from lists.
1638  * If vmemmap exists for the folio, update dtor so that the folio appears
1639  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1640  * to update dtor.
1641  *
1642  * A reference is held on the folio, except in the case of demote.
1643  *
1644  * Must be called with hugetlb lock held.
1645  */
1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647                                                         bool adjust_surplus,
1648                                                         bool demote)
1649 {
1650         int nid = folio_nid(folio);
1651
1652         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654
1655         lockdep_assert_held(&hugetlb_lock);
1656         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657                 return;
1658
1659         list_del(&folio->lru);
1660
1661         if (folio_test_hugetlb_freed(folio)) {
1662                 h->free_huge_pages--;
1663                 h->free_huge_pages_node[nid]--;
1664         }
1665         if (adjust_surplus) {
1666                 h->surplus_huge_pages--;
1667                 h->surplus_huge_pages_node[nid]--;
1668         }
1669
1670         /*
1671          * We can only clear the hugetlb destructor after allocating vmemmap
1672          * pages.  Otherwise, someone (memory error handling) may try to write
1673          * to tail struct pages.
1674          */
1675         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676                 __clear_hugetlb_destructor(h, folio);
1677
1678          /*
1679           * In the case of demote we do not ref count the page as it will soon
1680           * be turned into a page of smaller size.
1681          */
1682         if (!demote)
1683                 folio_ref_unfreeze(folio, 1);
1684
1685         h->nr_huge_pages--;
1686         h->nr_huge_pages_node[nid]--;
1687 }
1688
1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690                                                         bool adjust_surplus)
1691 {
1692         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693 }
1694
1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696                                                         bool adjust_surplus)
1697 {
1698         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699 }
1700
1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702                              bool adjust_surplus)
1703 {
1704         int zeroed;
1705         int nid = folio_nid(folio);
1706
1707         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708
1709         lockdep_assert_held(&hugetlb_lock);
1710
1711         INIT_LIST_HEAD(&folio->lru);
1712         h->nr_huge_pages++;
1713         h->nr_huge_pages_node[nid]++;
1714
1715         if (adjust_surplus) {
1716                 h->surplus_huge_pages++;
1717                 h->surplus_huge_pages_node[nid]++;
1718         }
1719
1720         folio_set_hugetlb(folio);
1721         folio_change_private(folio, NULL);
1722         /*
1723          * We have to set hugetlb_vmemmap_optimized again as above
1724          * folio_change_private(folio, NULL) cleared it.
1725          */
1726         folio_set_hugetlb_vmemmap_optimized(folio);
1727
1728         /*
1729          * This folio is about to be managed by the hugetlb allocator and
1730          * should have no users.  Drop our reference, and check for others
1731          * just in case.
1732          */
1733         zeroed = folio_put_testzero(folio);
1734         if (unlikely(!zeroed))
1735                 /*
1736                  * It is VERY unlikely soneone else has taken a ref
1737                  * on the folio.  In this case, we simply return as
1738                  * free_huge_folio() will be called when this other ref
1739                  * is dropped.
1740                  */
1741                 return;
1742
1743         arch_clear_hugepage_flags(&folio->page);
1744         enqueue_hugetlb_folio(h, folio);
1745 }
1746
1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748                                                 struct folio *folio)
1749 {
1750         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1751
1752         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1753                 return;
1754
1755         /*
1756          * If we don't know which subpages are hwpoisoned, we can't free
1757          * the hugepage, so it's leaked intentionally.
1758          */
1759         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1760                 return;
1761
1762         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1763                 spin_lock_irq(&hugetlb_lock);
1764                 /*
1765                  * If we cannot allocate vmemmap pages, just refuse to free the
1766                  * page and put the page back on the hugetlb free list and treat
1767                  * as a surplus page.
1768                  */
1769                 add_hugetlb_folio(h, folio, true);
1770                 spin_unlock_irq(&hugetlb_lock);
1771                 return;
1772         }
1773
1774         /*
1775          * Move PageHWPoison flag from head page to the raw error pages,
1776          * which makes any healthy subpages reusable.
1777          */
1778         if (unlikely(folio_test_hwpoison(folio)))
1779                 folio_clear_hugetlb_hwpoison(folio);
1780
1781         /*
1782          * If vmemmap pages were allocated above, then we need to clear the
1783          * hugetlb destructor under the hugetlb lock.
1784          */
1785         if (clear_dtor) {
1786                 spin_lock_irq(&hugetlb_lock);
1787                 __clear_hugetlb_destructor(h, folio);
1788                 spin_unlock_irq(&hugetlb_lock);
1789         }
1790
1791         /*
1792          * Non-gigantic pages demoted from CMA allocated gigantic pages
1793          * need to be given back to CMA in free_gigantic_folio.
1794          */
1795         if (hstate_is_gigantic(h) ||
1796             hugetlb_cma_folio(folio, huge_page_order(h))) {
1797                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1798                 free_gigantic_folio(folio, huge_page_order(h));
1799         } else {
1800                 __free_pages(&folio->page, huge_page_order(h));
1801         }
1802 }
1803
1804 /*
1805  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1806  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1807  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1808  * the vmemmap pages.
1809  *
1810  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1811  * freed and frees them one-by-one. As the page->mapping pointer is going
1812  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1813  * structure of a lockless linked list of huge pages to be freed.
1814  */
1815 static LLIST_HEAD(hpage_freelist);
1816
1817 static void free_hpage_workfn(struct work_struct *work)
1818 {
1819         struct llist_node *node;
1820
1821         node = llist_del_all(&hpage_freelist);
1822
1823         while (node) {
1824                 struct page *page;
1825                 struct hstate *h;
1826
1827                 page = container_of((struct address_space **)node,
1828                                      struct page, mapping);
1829                 node = node->next;
1830                 page->mapping = NULL;
1831                 /*
1832                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1833                  * folio_hstate() is going to trigger because a previous call to
1834                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1835                  * not use folio_hstate() directly.
1836                  */
1837                 h = size_to_hstate(page_size(page));
1838
1839                 __update_and_free_hugetlb_folio(h, page_folio(page));
1840
1841                 cond_resched();
1842         }
1843 }
1844 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1845
1846 static inline void flush_free_hpage_work(struct hstate *h)
1847 {
1848         if (hugetlb_vmemmap_optimizable(h))
1849                 flush_work(&free_hpage_work);
1850 }
1851
1852 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1853                                  bool atomic)
1854 {
1855         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1856                 __update_and_free_hugetlb_folio(h, folio);
1857                 return;
1858         }
1859
1860         /*
1861          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1862          *
1863          * Only call schedule_work() if hpage_freelist is previously
1864          * empty. Otherwise, schedule_work() had been called but the workfn
1865          * hasn't retrieved the list yet.
1866          */
1867         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1868                 schedule_work(&free_hpage_work);
1869 }
1870
1871 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1872 {
1873         struct page *page, *t_page;
1874         struct folio *folio;
1875
1876         list_for_each_entry_safe(page, t_page, list, lru) {
1877                 folio = page_folio(page);
1878                 update_and_free_hugetlb_folio(h, folio, false);
1879                 cond_resched();
1880         }
1881 }
1882
1883 struct hstate *size_to_hstate(unsigned long size)
1884 {
1885         struct hstate *h;
1886
1887         for_each_hstate(h) {
1888                 if (huge_page_size(h) == size)
1889                         return h;
1890         }
1891         return NULL;
1892 }
1893
1894 void free_huge_folio(struct folio *folio)
1895 {
1896         /*
1897          * Can't pass hstate in here because it is called from the
1898          * compound page destructor.
1899          */
1900         struct hstate *h = folio_hstate(folio);
1901         int nid = folio_nid(folio);
1902         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1903         bool restore_reserve;
1904         unsigned long flags;
1905
1906         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1907         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1908
1909         hugetlb_set_folio_subpool(folio, NULL);
1910         if (folio_test_anon(folio))
1911                 __ClearPageAnonExclusive(&folio->page);
1912         folio->mapping = NULL;
1913         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1914         folio_clear_hugetlb_restore_reserve(folio);
1915
1916         /*
1917          * If HPageRestoreReserve was set on page, page allocation consumed a
1918          * reservation.  If the page was associated with a subpool, there
1919          * would have been a page reserved in the subpool before allocation
1920          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1921          * reservation, do not call hugepage_subpool_put_pages() as this will
1922          * remove the reserved page from the subpool.
1923          */
1924         if (!restore_reserve) {
1925                 /*
1926                  * A return code of zero implies that the subpool will be
1927                  * under its minimum size if the reservation is not restored
1928                  * after page is free.  Therefore, force restore_reserve
1929                  * operation.
1930                  */
1931                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1932                         restore_reserve = true;
1933         }
1934
1935         spin_lock_irqsave(&hugetlb_lock, flags);
1936         folio_clear_hugetlb_migratable(folio);
1937         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1938                                      pages_per_huge_page(h), folio);
1939         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1940                                           pages_per_huge_page(h), folio);
1941         if (restore_reserve)
1942                 h->resv_huge_pages++;
1943
1944         if (folio_test_hugetlb_temporary(folio)) {
1945                 remove_hugetlb_folio(h, folio, false);
1946                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1947                 update_and_free_hugetlb_folio(h, folio, true);
1948         } else if (h->surplus_huge_pages_node[nid]) {
1949                 /* remove the page from active list */
1950                 remove_hugetlb_folio(h, folio, true);
1951                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1952                 update_and_free_hugetlb_folio(h, folio, true);
1953         } else {
1954                 arch_clear_hugepage_flags(&folio->page);
1955                 enqueue_hugetlb_folio(h, folio);
1956                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1957         }
1958 }
1959
1960 /*
1961  * Must be called with the hugetlb lock held
1962  */
1963 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1964 {
1965         lockdep_assert_held(&hugetlb_lock);
1966         h->nr_huge_pages++;
1967         h->nr_huge_pages_node[nid]++;
1968 }
1969
1970 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1971 {
1972         hugetlb_vmemmap_optimize(h, &folio->page);
1973         INIT_LIST_HEAD(&folio->lru);
1974         folio_set_hugetlb(folio);
1975         hugetlb_set_folio_subpool(folio, NULL);
1976         set_hugetlb_cgroup(folio, NULL);
1977         set_hugetlb_cgroup_rsvd(folio, NULL);
1978 }
1979
1980 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1981 {
1982         __prep_new_hugetlb_folio(h, folio);
1983         spin_lock_irq(&hugetlb_lock);
1984         __prep_account_new_huge_page(h, nid);
1985         spin_unlock_irq(&hugetlb_lock);
1986 }
1987
1988 static bool __prep_compound_gigantic_folio(struct folio *folio,
1989                                         unsigned int order, bool demote)
1990 {
1991         int i, j;
1992         int nr_pages = 1 << order;
1993         struct page *p;
1994
1995         __folio_clear_reserved(folio);
1996         for (i = 0; i < nr_pages; i++) {
1997                 p = folio_page(folio, i);
1998
1999                 /*
2000                  * For gigantic hugepages allocated through bootmem at
2001                  * boot, it's safer to be consistent with the not-gigantic
2002                  * hugepages and clear the PG_reserved bit from all tail pages
2003                  * too.  Otherwise drivers using get_user_pages() to access tail
2004                  * pages may get the reference counting wrong if they see
2005                  * PG_reserved set on a tail page (despite the head page not
2006                  * having PG_reserved set).  Enforcing this consistency between
2007                  * head and tail pages allows drivers to optimize away a check
2008                  * on the head page when they need know if put_page() is needed
2009                  * after get_user_pages().
2010                  */
2011                 if (i != 0)     /* head page cleared above */
2012                         __ClearPageReserved(p);
2013                 /*
2014                  * Subtle and very unlikely
2015                  *
2016                  * Gigantic 'page allocators' such as memblock or cma will
2017                  * return a set of pages with each page ref counted.  We need
2018                  * to turn this set of pages into a compound page with tail
2019                  * page ref counts set to zero.  Code such as speculative page
2020                  * cache adding could take a ref on a 'to be' tail page.
2021                  * We need to respect any increased ref count, and only set
2022                  * the ref count to zero if count is currently 1.  If count
2023                  * is not 1, we return an error.  An error return indicates
2024                  * the set of pages can not be converted to a gigantic page.
2025                  * The caller who allocated the pages should then discard the
2026                  * pages using the appropriate free interface.
2027                  *
2028                  * In the case of demote, the ref count will be zero.
2029                  */
2030                 if (!demote) {
2031                         if (!page_ref_freeze(p, 1)) {
2032                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2033                                 goto out_error;
2034                         }
2035                 } else {
2036                         VM_BUG_ON_PAGE(page_count(p), p);
2037                 }
2038                 if (i != 0)
2039                         set_compound_head(p, &folio->page);
2040         }
2041         __folio_set_head(folio);
2042         /* we rely on prep_new_hugetlb_folio to set the destructor */
2043         folio_set_order(folio, order);
2044         atomic_set(&folio->_entire_mapcount, -1);
2045         atomic_set(&folio->_nr_pages_mapped, 0);
2046         atomic_set(&folio->_pincount, 0);
2047         return true;
2048
2049 out_error:
2050         /* undo page modifications made above */
2051         for (j = 0; j < i; j++) {
2052                 p = folio_page(folio, j);
2053                 if (j != 0)
2054                         clear_compound_head(p);
2055                 set_page_refcounted(p);
2056         }
2057         /* need to clear PG_reserved on remaining tail pages  */
2058         for (; j < nr_pages; j++) {
2059                 p = folio_page(folio, j);
2060                 __ClearPageReserved(p);
2061         }
2062         return false;
2063 }
2064
2065 static bool prep_compound_gigantic_folio(struct folio *folio,
2066                                                         unsigned int order)
2067 {
2068         return __prep_compound_gigantic_folio(folio, order, false);
2069 }
2070
2071 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2072                                                         unsigned int order)
2073 {
2074         return __prep_compound_gigantic_folio(folio, order, true);
2075 }
2076
2077 /*
2078  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2079  * transparent huge pages.  See the PageTransHuge() documentation for more
2080  * details.
2081  */
2082 int PageHuge(struct page *page)
2083 {
2084         struct folio *folio;
2085
2086         if (!PageCompound(page))
2087                 return 0;
2088         folio = page_folio(page);
2089         return folio_test_hugetlb(folio);
2090 }
2091 EXPORT_SYMBOL_GPL(PageHuge);
2092
2093 /*
2094  * Find and lock address space (mapping) in write mode.
2095  *
2096  * Upon entry, the page is locked which means that page_mapping() is
2097  * stable.  Due to locking order, we can only trylock_write.  If we can
2098  * not get the lock, simply return NULL to caller.
2099  */
2100 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2101 {
2102         struct address_space *mapping = page_mapping(hpage);
2103
2104         if (!mapping)
2105                 return mapping;
2106
2107         if (i_mmap_trylock_write(mapping))
2108                 return mapping;
2109
2110         return NULL;
2111 }
2112
2113 pgoff_t hugetlb_basepage_index(struct page *page)
2114 {
2115         struct page *page_head = compound_head(page);
2116         pgoff_t index = page_index(page_head);
2117         unsigned long compound_idx;
2118
2119         if (compound_order(page_head) > MAX_ORDER)
2120                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2121         else
2122                 compound_idx = page - page_head;
2123
2124         return (index << compound_order(page_head)) + compound_idx;
2125 }
2126
2127 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2128                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2129                 nodemask_t *node_alloc_noretry)
2130 {
2131         int order = huge_page_order(h);
2132         struct page *page;
2133         bool alloc_try_hard = true;
2134         bool retry = true;
2135
2136         /*
2137          * By default we always try hard to allocate the page with
2138          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2139          * a loop (to adjust global huge page counts) and previous allocation
2140          * failed, do not continue to try hard on the same node.  Use the
2141          * node_alloc_noretry bitmap to manage this state information.
2142          */
2143         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2144                 alloc_try_hard = false;
2145         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2146         if (alloc_try_hard)
2147                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2148         if (nid == NUMA_NO_NODE)
2149                 nid = numa_mem_id();
2150 retry:
2151         page = __alloc_pages(gfp_mask, order, nid, nmask);
2152
2153         /* Freeze head page */
2154         if (page && !page_ref_freeze(page, 1)) {
2155                 __free_pages(page, order);
2156                 if (retry) {    /* retry once */
2157                         retry = false;
2158                         goto retry;
2159                 }
2160                 /* WOW!  twice in a row. */
2161                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2162                 page = NULL;
2163         }
2164
2165         /*
2166          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2167          * indicates an overall state change.  Clear bit so that we resume
2168          * normal 'try hard' allocations.
2169          */
2170         if (node_alloc_noretry && page && !alloc_try_hard)
2171                 node_clear(nid, *node_alloc_noretry);
2172
2173         /*
2174          * If we tried hard to get a page but failed, set bit so that
2175          * subsequent attempts will not try as hard until there is an
2176          * overall state change.
2177          */
2178         if (node_alloc_noretry && !page && alloc_try_hard)
2179                 node_set(nid, *node_alloc_noretry);
2180
2181         if (!page) {
2182                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2183                 return NULL;
2184         }
2185
2186         __count_vm_event(HTLB_BUDDY_PGALLOC);
2187         return page_folio(page);
2188 }
2189
2190 /*
2191  * Common helper to allocate a fresh hugetlb page. All specific allocators
2192  * should use this function to get new hugetlb pages
2193  *
2194  * Note that returned page is 'frozen':  ref count of head page and all tail
2195  * pages is zero.
2196  */
2197 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2198                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199                 nodemask_t *node_alloc_noretry)
2200 {
2201         struct folio *folio;
2202         bool retry = false;
2203
2204 retry:
2205         if (hstate_is_gigantic(h))
2206                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2207         else
2208                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2209                                 nid, nmask, node_alloc_noretry);
2210         if (!folio)
2211                 return NULL;
2212         if (hstate_is_gigantic(h)) {
2213                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2214                         /*
2215                          * Rare failure to convert pages to compound page.
2216                          * Free pages and try again - ONCE!
2217                          */
2218                         free_gigantic_folio(folio, huge_page_order(h));
2219                         if (!retry) {
2220                                 retry = true;
2221                                 goto retry;
2222                         }
2223                         return NULL;
2224                 }
2225         }
2226         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2227
2228         return folio;
2229 }
2230
2231 /*
2232  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2233  * manner.
2234  */
2235 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2236                                 nodemask_t *node_alloc_noretry)
2237 {
2238         struct folio *folio;
2239         int nr_nodes, node;
2240         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2241
2242         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2243                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2244                                         nodes_allowed, node_alloc_noretry);
2245                 if (folio) {
2246                         free_huge_folio(folio); /* free it into the hugepage allocator */
2247                         return 1;
2248                 }
2249         }
2250
2251         return 0;
2252 }
2253
2254 /*
2255  * Remove huge page from pool from next node to free.  Attempt to keep
2256  * persistent huge pages more or less balanced over allowed nodes.
2257  * This routine only 'removes' the hugetlb page.  The caller must make
2258  * an additional call to free the page to low level allocators.
2259  * Called with hugetlb_lock locked.
2260  */
2261 static struct page *remove_pool_huge_page(struct hstate *h,
2262                                                 nodemask_t *nodes_allowed,
2263                                                  bool acct_surplus)
2264 {
2265         int nr_nodes, node;
2266         struct page *page = NULL;
2267         struct folio *folio;
2268
2269         lockdep_assert_held(&hugetlb_lock);
2270         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2271                 /*
2272                  * If we're returning unused surplus pages, only examine
2273                  * nodes with surplus pages.
2274                  */
2275                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2276                     !list_empty(&h->hugepage_freelists[node])) {
2277                         page = list_entry(h->hugepage_freelists[node].next,
2278                                           struct page, lru);
2279                         folio = page_folio(page);
2280                         remove_hugetlb_folio(h, folio, acct_surplus);
2281                         break;
2282                 }
2283         }
2284
2285         return page;
2286 }
2287
2288 /*
2289  * Dissolve a given free hugepage into free buddy pages. This function does
2290  * nothing for in-use hugepages and non-hugepages.
2291  * This function returns values like below:
2292  *
2293  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2294  *           when the system is under memory pressure and the feature of
2295  *           freeing unused vmemmap pages associated with each hugetlb page
2296  *           is enabled.
2297  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2298  *           (allocated or reserved.)
2299  *       0:  successfully dissolved free hugepages or the page is not a
2300  *           hugepage (considered as already dissolved)
2301  */
2302 int dissolve_free_huge_page(struct page *page)
2303 {
2304         int rc = -EBUSY;
2305         struct folio *folio = page_folio(page);
2306
2307 retry:
2308         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2309         if (!folio_test_hugetlb(folio))
2310                 return 0;
2311
2312         spin_lock_irq(&hugetlb_lock);
2313         if (!folio_test_hugetlb(folio)) {
2314                 rc = 0;
2315                 goto out;
2316         }
2317
2318         if (!folio_ref_count(folio)) {
2319                 struct hstate *h = folio_hstate(folio);
2320                 if (!available_huge_pages(h))
2321                         goto out;
2322
2323                 /*
2324                  * We should make sure that the page is already on the free list
2325                  * when it is dissolved.
2326                  */
2327                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2328                         spin_unlock_irq(&hugetlb_lock);
2329                         cond_resched();
2330
2331                         /*
2332                          * Theoretically, we should return -EBUSY when we
2333                          * encounter this race. In fact, we have a chance
2334                          * to successfully dissolve the page if we do a
2335                          * retry. Because the race window is quite small.
2336                          * If we seize this opportunity, it is an optimization
2337                          * for increasing the success rate of dissolving page.
2338                          */
2339                         goto retry;
2340                 }
2341
2342                 remove_hugetlb_folio(h, folio, false);
2343                 h->max_huge_pages--;
2344                 spin_unlock_irq(&hugetlb_lock);
2345
2346                 /*
2347                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2348                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2349                  * free the page if it can not allocate required vmemmap.  We
2350                  * need to adjust max_huge_pages if the page is not freed.
2351                  * Attempt to allocate vmemmmap here so that we can take
2352                  * appropriate action on failure.
2353                  */
2354                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2355                 if (!rc) {
2356                         update_and_free_hugetlb_folio(h, folio, false);
2357                 } else {
2358                         spin_lock_irq(&hugetlb_lock);
2359                         add_hugetlb_folio(h, folio, false);
2360                         h->max_huge_pages++;
2361                         spin_unlock_irq(&hugetlb_lock);
2362                 }
2363
2364                 return rc;
2365         }
2366 out:
2367         spin_unlock_irq(&hugetlb_lock);
2368         return rc;
2369 }
2370
2371 /*
2372  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2373  * make specified memory blocks removable from the system.
2374  * Note that this will dissolve a free gigantic hugepage completely, if any
2375  * part of it lies within the given range.
2376  * Also note that if dissolve_free_huge_page() returns with an error, all
2377  * free hugepages that were dissolved before that error are lost.
2378  */
2379 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2380 {
2381         unsigned long pfn;
2382         struct page *page;
2383         int rc = 0;
2384         unsigned int order;
2385         struct hstate *h;
2386
2387         if (!hugepages_supported())
2388                 return rc;
2389
2390         order = huge_page_order(&default_hstate);
2391         for_each_hstate(h)
2392                 order = min(order, huge_page_order(h));
2393
2394         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2395                 page = pfn_to_page(pfn);
2396                 rc = dissolve_free_huge_page(page);
2397                 if (rc)
2398                         break;
2399         }
2400
2401         return rc;
2402 }
2403
2404 /*
2405  * Allocates a fresh surplus page from the page allocator.
2406  */
2407 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2408                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2409 {
2410         struct folio *folio = NULL;
2411
2412         if (hstate_is_gigantic(h))
2413                 return NULL;
2414
2415         spin_lock_irq(&hugetlb_lock);
2416         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2417                 goto out_unlock;
2418         spin_unlock_irq(&hugetlb_lock);
2419
2420         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2421         if (!folio)
2422                 return NULL;
2423
2424         spin_lock_irq(&hugetlb_lock);
2425         /*
2426          * We could have raced with the pool size change.
2427          * Double check that and simply deallocate the new page
2428          * if we would end up overcommiting the surpluses. Abuse
2429          * temporary page to workaround the nasty free_huge_folio
2430          * codeflow
2431          */
2432         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2433                 folio_set_hugetlb_temporary(folio);
2434                 spin_unlock_irq(&hugetlb_lock);
2435                 free_huge_folio(folio);
2436                 return NULL;
2437         }
2438
2439         h->surplus_huge_pages++;
2440         h->surplus_huge_pages_node[folio_nid(folio)]++;
2441
2442 out_unlock:
2443         spin_unlock_irq(&hugetlb_lock);
2444
2445         return folio;
2446 }
2447
2448 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2449                                      int nid, nodemask_t *nmask)
2450 {
2451         struct folio *folio;
2452
2453         if (hstate_is_gigantic(h))
2454                 return NULL;
2455
2456         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2457         if (!folio)
2458                 return NULL;
2459
2460         /* fresh huge pages are frozen */
2461         folio_ref_unfreeze(folio, 1);
2462         /*
2463          * We do not account these pages as surplus because they are only
2464          * temporary and will be released properly on the last reference
2465          */
2466         folio_set_hugetlb_temporary(folio);
2467
2468         return folio;
2469 }
2470
2471 /*
2472  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2473  */
2474 static
2475 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2476                 struct vm_area_struct *vma, unsigned long addr)
2477 {
2478         struct folio *folio = NULL;
2479         struct mempolicy *mpol;
2480         gfp_t gfp_mask = htlb_alloc_mask(h);
2481         int nid;
2482         nodemask_t *nodemask;
2483
2484         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2485         if (mpol_is_preferred_many(mpol)) {
2486                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2487
2488                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2489                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2490
2491                 /* Fallback to all nodes if page==NULL */
2492                 nodemask = NULL;
2493         }
2494
2495         if (!folio)
2496                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2497         mpol_cond_put(mpol);
2498         return folio;
2499 }
2500
2501 /* folio migration callback function */
2502 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2503                 nodemask_t *nmask, gfp_t gfp_mask)
2504 {
2505         spin_lock_irq(&hugetlb_lock);
2506         if (available_huge_pages(h)) {
2507                 struct folio *folio;
2508
2509                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2510                                                 preferred_nid, nmask);
2511                 if (folio) {
2512                         spin_unlock_irq(&hugetlb_lock);
2513                         return folio;
2514                 }
2515         }
2516         spin_unlock_irq(&hugetlb_lock);
2517
2518         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2519 }
2520
2521 /* mempolicy aware migration callback */
2522 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2523                 unsigned long address)
2524 {
2525         struct mempolicy *mpol;
2526         nodemask_t *nodemask;
2527         struct folio *folio;
2528         gfp_t gfp_mask;
2529         int node;
2530
2531         gfp_mask = htlb_alloc_mask(h);
2532         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2533         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2534         mpol_cond_put(mpol);
2535
2536         return folio;
2537 }
2538
2539 /*
2540  * Increase the hugetlb pool such that it can accommodate a reservation
2541  * of size 'delta'.
2542  */
2543 static int gather_surplus_pages(struct hstate *h, long delta)
2544         __must_hold(&hugetlb_lock)
2545 {
2546         LIST_HEAD(surplus_list);
2547         struct folio *folio, *tmp;
2548         int ret;
2549         long i;
2550         long needed, allocated;
2551         bool alloc_ok = true;
2552
2553         lockdep_assert_held(&hugetlb_lock);
2554         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2555         if (needed <= 0) {
2556                 h->resv_huge_pages += delta;
2557                 return 0;
2558         }
2559
2560         allocated = 0;
2561
2562         ret = -ENOMEM;
2563 retry:
2564         spin_unlock_irq(&hugetlb_lock);
2565         for (i = 0; i < needed; i++) {
2566                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2567                                 NUMA_NO_NODE, NULL);
2568                 if (!folio) {
2569                         alloc_ok = false;
2570                         break;
2571                 }
2572                 list_add(&folio->lru, &surplus_list);
2573                 cond_resched();
2574         }
2575         allocated += i;
2576
2577         /*
2578          * After retaking hugetlb_lock, we need to recalculate 'needed'
2579          * because either resv_huge_pages or free_huge_pages may have changed.
2580          */
2581         spin_lock_irq(&hugetlb_lock);
2582         needed = (h->resv_huge_pages + delta) -
2583                         (h->free_huge_pages + allocated);
2584         if (needed > 0) {
2585                 if (alloc_ok)
2586                         goto retry;
2587                 /*
2588                  * We were not able to allocate enough pages to
2589                  * satisfy the entire reservation so we free what
2590                  * we've allocated so far.
2591                  */
2592                 goto free;
2593         }
2594         /*
2595          * The surplus_list now contains _at_least_ the number of extra pages
2596          * needed to accommodate the reservation.  Add the appropriate number
2597          * of pages to the hugetlb pool and free the extras back to the buddy
2598          * allocator.  Commit the entire reservation here to prevent another
2599          * process from stealing the pages as they are added to the pool but
2600          * before they are reserved.
2601          */
2602         needed += allocated;
2603         h->resv_huge_pages += delta;
2604         ret = 0;
2605
2606         /* Free the needed pages to the hugetlb pool */
2607         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2608                 if ((--needed) < 0)
2609                         break;
2610                 /* Add the page to the hugetlb allocator */
2611                 enqueue_hugetlb_folio(h, folio);
2612         }
2613 free:
2614         spin_unlock_irq(&hugetlb_lock);
2615
2616         /*
2617          * Free unnecessary surplus pages to the buddy allocator.
2618          * Pages have no ref count, call free_huge_folio directly.
2619          */
2620         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2621                 free_huge_folio(folio);
2622         spin_lock_irq(&hugetlb_lock);
2623
2624         return ret;
2625 }
2626
2627 /*
2628  * This routine has two main purposes:
2629  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2630  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2631  *    to the associated reservation map.
2632  * 2) Free any unused surplus pages that may have been allocated to satisfy
2633  *    the reservation.  As many as unused_resv_pages may be freed.
2634  */
2635 static void return_unused_surplus_pages(struct hstate *h,
2636                                         unsigned long unused_resv_pages)
2637 {
2638         unsigned long nr_pages;
2639         struct page *page;
2640         LIST_HEAD(page_list);
2641
2642         lockdep_assert_held(&hugetlb_lock);
2643         /* Uncommit the reservation */
2644         h->resv_huge_pages -= unused_resv_pages;
2645
2646         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2647                 goto out;
2648
2649         /*
2650          * Part (or even all) of the reservation could have been backed
2651          * by pre-allocated pages. Only free surplus pages.
2652          */
2653         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2654
2655         /*
2656          * We want to release as many surplus pages as possible, spread
2657          * evenly across all nodes with memory. Iterate across these nodes
2658          * until we can no longer free unreserved surplus pages. This occurs
2659          * when the nodes with surplus pages have no free pages.
2660          * remove_pool_huge_page() will balance the freed pages across the
2661          * on-line nodes with memory and will handle the hstate accounting.
2662          */
2663         while (nr_pages--) {
2664                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2665                 if (!page)
2666                         goto out;
2667
2668                 list_add(&page->lru, &page_list);
2669         }
2670
2671 out:
2672         spin_unlock_irq(&hugetlb_lock);
2673         update_and_free_pages_bulk(h, &page_list);
2674         spin_lock_irq(&hugetlb_lock);
2675 }
2676
2677
2678 /*
2679  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2680  * are used by the huge page allocation routines to manage reservations.
2681  *
2682  * vma_needs_reservation is called to determine if the huge page at addr
2683  * within the vma has an associated reservation.  If a reservation is
2684  * needed, the value 1 is returned.  The caller is then responsible for
2685  * managing the global reservation and subpool usage counts.  After
2686  * the huge page has been allocated, vma_commit_reservation is called
2687  * to add the page to the reservation map.  If the page allocation fails,
2688  * the reservation must be ended instead of committed.  vma_end_reservation
2689  * is called in such cases.
2690  *
2691  * In the normal case, vma_commit_reservation returns the same value
2692  * as the preceding vma_needs_reservation call.  The only time this
2693  * is not the case is if a reserve map was changed between calls.  It
2694  * is the responsibility of the caller to notice the difference and
2695  * take appropriate action.
2696  *
2697  * vma_add_reservation is used in error paths where a reservation must
2698  * be restored when a newly allocated huge page must be freed.  It is
2699  * to be called after calling vma_needs_reservation to determine if a
2700  * reservation exists.
2701  *
2702  * vma_del_reservation is used in error paths where an entry in the reserve
2703  * map was created during huge page allocation and must be removed.  It is to
2704  * be called after calling vma_needs_reservation to determine if a reservation
2705  * exists.
2706  */
2707 enum vma_resv_mode {
2708         VMA_NEEDS_RESV,
2709         VMA_COMMIT_RESV,
2710         VMA_END_RESV,
2711         VMA_ADD_RESV,
2712         VMA_DEL_RESV,
2713 };
2714 static long __vma_reservation_common(struct hstate *h,
2715                                 struct vm_area_struct *vma, unsigned long addr,
2716                                 enum vma_resv_mode mode)
2717 {
2718         struct resv_map *resv;
2719         pgoff_t idx;
2720         long ret;
2721         long dummy_out_regions_needed;
2722
2723         resv = vma_resv_map(vma);
2724         if (!resv)
2725                 return 1;
2726
2727         idx = vma_hugecache_offset(h, vma, addr);
2728         switch (mode) {
2729         case VMA_NEEDS_RESV:
2730                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2731                 /* We assume that vma_reservation_* routines always operate on
2732                  * 1 page, and that adding to resv map a 1 page entry can only
2733                  * ever require 1 region.
2734                  */
2735                 VM_BUG_ON(dummy_out_regions_needed != 1);
2736                 break;
2737         case VMA_COMMIT_RESV:
2738                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739                 /* region_add calls of range 1 should never fail. */
2740                 VM_BUG_ON(ret < 0);
2741                 break;
2742         case VMA_END_RESV:
2743                 region_abort(resv, idx, idx + 1, 1);
2744                 ret = 0;
2745                 break;
2746         case VMA_ADD_RESV:
2747                 if (vma->vm_flags & VM_MAYSHARE) {
2748                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2749                         /* region_add calls of range 1 should never fail. */
2750                         VM_BUG_ON(ret < 0);
2751                 } else {
2752                         region_abort(resv, idx, idx + 1, 1);
2753                         ret = region_del(resv, idx, idx + 1);
2754                 }
2755                 break;
2756         case VMA_DEL_RESV:
2757                 if (vma->vm_flags & VM_MAYSHARE) {
2758                         region_abort(resv, idx, idx + 1, 1);
2759                         ret = region_del(resv, idx, idx + 1);
2760                 } else {
2761                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2762                         /* region_add calls of range 1 should never fail. */
2763                         VM_BUG_ON(ret < 0);
2764                 }
2765                 break;
2766         default:
2767                 BUG();
2768         }
2769
2770         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2771                 return ret;
2772         /*
2773          * We know private mapping must have HPAGE_RESV_OWNER set.
2774          *
2775          * In most cases, reserves always exist for private mappings.
2776          * However, a file associated with mapping could have been
2777          * hole punched or truncated after reserves were consumed.
2778          * As subsequent fault on such a range will not use reserves.
2779          * Subtle - The reserve map for private mappings has the
2780          * opposite meaning than that of shared mappings.  If NO
2781          * entry is in the reserve map, it means a reservation exists.
2782          * If an entry exists in the reserve map, it means the
2783          * reservation has already been consumed.  As a result, the
2784          * return value of this routine is the opposite of the
2785          * value returned from reserve map manipulation routines above.
2786          */
2787         if (ret > 0)
2788                 return 0;
2789         if (ret == 0)
2790                 return 1;
2791         return ret;
2792 }
2793
2794 static long vma_needs_reservation(struct hstate *h,
2795                         struct vm_area_struct *vma, unsigned long addr)
2796 {
2797         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2798 }
2799
2800 static long vma_commit_reservation(struct hstate *h,
2801                         struct vm_area_struct *vma, unsigned long addr)
2802 {
2803         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2804 }
2805
2806 static void vma_end_reservation(struct hstate *h,
2807                         struct vm_area_struct *vma, unsigned long addr)
2808 {
2809         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2810 }
2811
2812 static long vma_add_reservation(struct hstate *h,
2813                         struct vm_area_struct *vma, unsigned long addr)
2814 {
2815         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2816 }
2817
2818 static long vma_del_reservation(struct hstate *h,
2819                         struct vm_area_struct *vma, unsigned long addr)
2820 {
2821         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2822 }
2823
2824 /*
2825  * This routine is called to restore reservation information on error paths.
2826  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2827  * and the hugetlb mutex should remain held when calling this routine.
2828  *
2829  * It handles two specific cases:
2830  * 1) A reservation was in place and the folio consumed the reservation.
2831  *    hugetlb_restore_reserve is set in the folio.
2832  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2833  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2834  *
2835  * In case 1, free_huge_folio later in the error path will increment the
2836  * global reserve count.  But, free_huge_folio does not have enough context
2837  * to adjust the reservation map.  This case deals primarily with private
2838  * mappings.  Adjust the reserve map here to be consistent with global
2839  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2840  * reserve map indicates there is a reservation present.
2841  *
2842  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2843  */
2844 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2845                         unsigned long address, struct folio *folio)
2846 {
2847         long rc = vma_needs_reservation(h, vma, address);
2848
2849         if (folio_test_hugetlb_restore_reserve(folio)) {
2850                 if (unlikely(rc < 0))
2851                         /*
2852                          * Rare out of memory condition in reserve map
2853                          * manipulation.  Clear hugetlb_restore_reserve so
2854                          * that global reserve count will not be incremented
2855                          * by free_huge_folio.  This will make it appear
2856                          * as though the reservation for this folio was
2857                          * consumed.  This may prevent the task from
2858                          * faulting in the folio at a later time.  This
2859                          * is better than inconsistent global huge page
2860                          * accounting of reserve counts.
2861                          */
2862                         folio_clear_hugetlb_restore_reserve(folio);
2863                 else if (rc)
2864                         (void)vma_add_reservation(h, vma, address);
2865                 else
2866                         vma_end_reservation(h, vma, address);
2867         } else {
2868                 if (!rc) {
2869                         /*
2870                          * This indicates there is an entry in the reserve map
2871                          * not added by alloc_hugetlb_folio.  We know it was added
2872                          * before the alloc_hugetlb_folio call, otherwise
2873                          * hugetlb_restore_reserve would be set on the folio.
2874                          * Remove the entry so that a subsequent allocation
2875                          * does not consume a reservation.
2876                          */
2877                         rc = vma_del_reservation(h, vma, address);
2878                         if (rc < 0)
2879                                 /*
2880                                  * VERY rare out of memory condition.  Since
2881                                  * we can not delete the entry, set
2882                                  * hugetlb_restore_reserve so that the reserve
2883                                  * count will be incremented when the folio
2884                                  * is freed.  This reserve will be consumed
2885                                  * on a subsequent allocation.
2886                                  */
2887                                 folio_set_hugetlb_restore_reserve(folio);
2888                 } else if (rc < 0) {
2889                         /*
2890                          * Rare out of memory condition from
2891                          * vma_needs_reservation call.  Memory allocation is
2892                          * only attempted if a new entry is needed.  Therefore,
2893                          * this implies there is not an entry in the
2894                          * reserve map.
2895                          *
2896                          * For shared mappings, no entry in the map indicates
2897                          * no reservation.  We are done.
2898                          */
2899                         if (!(vma->vm_flags & VM_MAYSHARE))
2900                                 /*
2901                                  * For private mappings, no entry indicates
2902                                  * a reservation is present.  Since we can
2903                                  * not add an entry, set hugetlb_restore_reserve
2904                                  * on the folio so reserve count will be
2905                                  * incremented when freed.  This reserve will
2906                                  * be consumed on a subsequent allocation.
2907                                  */
2908                                 folio_set_hugetlb_restore_reserve(folio);
2909                 } else
2910                         /*
2911                          * No reservation present, do nothing
2912                          */
2913                          vma_end_reservation(h, vma, address);
2914         }
2915 }
2916
2917 /*
2918  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2919  * the old one
2920  * @h: struct hstate old page belongs to
2921  * @old_folio: Old folio to dissolve
2922  * @list: List to isolate the page in case we need to
2923  * Returns 0 on success, otherwise negated error.
2924  */
2925 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2926                         struct folio *old_folio, struct list_head *list)
2927 {
2928         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2929         int nid = folio_nid(old_folio);
2930         struct folio *new_folio;
2931         int ret = 0;
2932
2933         /*
2934          * Before dissolving the folio, we need to allocate a new one for the
2935          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2936          * by doing everything but actually updating counters and adding to
2937          * the pool.  This simplifies and let us do most of the processing
2938          * under the lock.
2939          */
2940         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2941         if (!new_folio)
2942                 return -ENOMEM;
2943         __prep_new_hugetlb_folio(h, new_folio);
2944
2945 retry:
2946         spin_lock_irq(&hugetlb_lock);
2947         if (!folio_test_hugetlb(old_folio)) {
2948                 /*
2949                  * Freed from under us. Drop new_folio too.
2950                  */
2951                 goto free_new;
2952         } else if (folio_ref_count(old_folio)) {
2953                 bool isolated;
2954
2955                 /*
2956                  * Someone has grabbed the folio, try to isolate it here.
2957                  * Fail with -EBUSY if not possible.
2958                  */
2959                 spin_unlock_irq(&hugetlb_lock);
2960                 isolated = isolate_hugetlb(old_folio, list);
2961                 ret = isolated ? 0 : -EBUSY;
2962                 spin_lock_irq(&hugetlb_lock);
2963                 goto free_new;
2964         } else if (!folio_test_hugetlb_freed(old_folio)) {
2965                 /*
2966                  * Folio's refcount is 0 but it has not been enqueued in the
2967                  * freelist yet. Race window is small, so we can succeed here if
2968                  * we retry.
2969                  */
2970                 spin_unlock_irq(&hugetlb_lock);
2971                 cond_resched();
2972                 goto retry;
2973         } else {
2974                 /*
2975                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2976                  * the freelist and decrease the counters. These will be
2977                  * incremented again when calling __prep_account_new_huge_page()
2978                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2979                  * remain stable since this happens under the lock.
2980                  */
2981                 remove_hugetlb_folio(h, old_folio, false);
2982
2983                 /*
2984                  * Ref count on new_folio is already zero as it was dropped
2985                  * earlier.  It can be directly added to the pool free list.
2986                  */
2987                 __prep_account_new_huge_page(h, nid);
2988                 enqueue_hugetlb_folio(h, new_folio);
2989
2990                 /*
2991                  * Folio has been replaced, we can safely free the old one.
2992                  */
2993                 spin_unlock_irq(&hugetlb_lock);
2994                 update_and_free_hugetlb_folio(h, old_folio, false);
2995         }
2996
2997         return ret;
2998
2999 free_new:
3000         spin_unlock_irq(&hugetlb_lock);
3001         /* Folio has a zero ref count, but needs a ref to be freed */
3002         folio_ref_unfreeze(new_folio, 1);
3003         update_and_free_hugetlb_folio(h, new_folio, false);
3004
3005         return ret;
3006 }
3007
3008 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3009 {
3010         struct hstate *h;
3011         struct folio *folio = page_folio(page);
3012         int ret = -EBUSY;
3013
3014         /*
3015          * The page might have been dissolved from under our feet, so make sure
3016          * to carefully check the state under the lock.
3017          * Return success when racing as if we dissolved the page ourselves.
3018          */
3019         spin_lock_irq(&hugetlb_lock);
3020         if (folio_test_hugetlb(folio)) {
3021                 h = folio_hstate(folio);
3022         } else {
3023                 spin_unlock_irq(&hugetlb_lock);
3024                 return 0;
3025         }
3026         spin_unlock_irq(&hugetlb_lock);
3027
3028         /*
3029          * Fence off gigantic pages as there is a cyclic dependency between
3030          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3031          * of bailing out right away without further retrying.
3032          */
3033         if (hstate_is_gigantic(h))
3034                 return -ENOMEM;
3035
3036         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3037                 ret = 0;
3038         else if (!folio_ref_count(folio))
3039                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3040
3041         return ret;
3042 }
3043
3044 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3045                                     unsigned long addr, int avoid_reserve)
3046 {
3047         struct hugepage_subpool *spool = subpool_vma(vma);
3048         struct hstate *h = hstate_vma(vma);
3049         struct folio *folio;
3050         long map_chg, map_commit;
3051         long gbl_chg;
3052         int ret, idx;
3053         struct hugetlb_cgroup *h_cg = NULL;
3054         bool deferred_reserve;
3055
3056         idx = hstate_index(h);
3057         /*
3058          * Examine the region/reserve map to determine if the process
3059          * has a reservation for the page to be allocated.  A return
3060          * code of zero indicates a reservation exists (no change).
3061          */
3062         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3063         if (map_chg < 0)
3064                 return ERR_PTR(-ENOMEM);
3065
3066         /*
3067          * Processes that did not create the mapping will have no
3068          * reserves as indicated by the region/reserve map. Check
3069          * that the allocation will not exceed the subpool limit.
3070          * Allocations for MAP_NORESERVE mappings also need to be
3071          * checked against any subpool limit.
3072          */
3073         if (map_chg || avoid_reserve) {
3074                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3075                 if (gbl_chg < 0) {
3076                         vma_end_reservation(h, vma, addr);
3077                         return ERR_PTR(-ENOSPC);
3078                 }
3079
3080                 /*
3081                  * Even though there was no reservation in the region/reserve
3082                  * map, there could be reservations associated with the
3083                  * subpool that can be used.  This would be indicated if the
3084                  * return value of hugepage_subpool_get_pages() is zero.
3085                  * However, if avoid_reserve is specified we still avoid even
3086                  * the subpool reservations.
3087                  */
3088                 if (avoid_reserve)
3089                         gbl_chg = 1;
3090         }
3091
3092         /* If this allocation is not consuming a reservation, charge it now.
3093          */
3094         deferred_reserve = map_chg || avoid_reserve;
3095         if (deferred_reserve) {
3096                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3097                         idx, pages_per_huge_page(h), &h_cg);
3098                 if (ret)
3099                         goto out_subpool_put;
3100         }
3101
3102         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3103         if (ret)
3104                 goto out_uncharge_cgroup_reservation;
3105
3106         spin_lock_irq(&hugetlb_lock);
3107         /*
3108          * glb_chg is passed to indicate whether or not a page must be taken
3109          * from the global free pool (global change).  gbl_chg == 0 indicates
3110          * a reservation exists for the allocation.
3111          */
3112         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3113         if (!folio) {
3114                 spin_unlock_irq(&hugetlb_lock);
3115                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3116                 if (!folio)
3117                         goto out_uncharge_cgroup;
3118                 spin_lock_irq(&hugetlb_lock);
3119                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3120                         folio_set_hugetlb_restore_reserve(folio);
3121                         h->resv_huge_pages--;
3122                 }
3123                 list_add(&folio->lru, &h->hugepage_activelist);
3124                 folio_ref_unfreeze(folio, 1);
3125                 /* Fall through */
3126         }
3127
3128         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3129         /* If allocation is not consuming a reservation, also store the
3130          * hugetlb_cgroup pointer on the page.
3131          */
3132         if (deferred_reserve) {
3133                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3134                                                   h_cg, folio);
3135         }
3136
3137         spin_unlock_irq(&hugetlb_lock);
3138
3139         hugetlb_set_folio_subpool(folio, spool);
3140
3141         map_commit = vma_commit_reservation(h, vma, addr);
3142         if (unlikely(map_chg > map_commit)) {
3143                 /*
3144                  * The page was added to the reservation map between
3145                  * vma_needs_reservation and vma_commit_reservation.
3146                  * This indicates a race with hugetlb_reserve_pages.
3147                  * Adjust for the subpool count incremented above AND
3148                  * in hugetlb_reserve_pages for the same page.  Also,
3149                  * the reservation count added in hugetlb_reserve_pages
3150                  * no longer applies.
3151                  */
3152                 long rsv_adjust;
3153
3154                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3155                 hugetlb_acct_memory(h, -rsv_adjust);
3156                 if (deferred_reserve)
3157                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3158                                         pages_per_huge_page(h), folio);
3159         }
3160         return folio;
3161
3162 out_uncharge_cgroup:
3163         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3164 out_uncharge_cgroup_reservation:
3165         if (deferred_reserve)
3166                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3167                                                     h_cg);
3168 out_subpool_put:
3169         if (map_chg || avoid_reserve)
3170                 hugepage_subpool_put_pages(spool, 1);
3171         vma_end_reservation(h, vma, addr);
3172         return ERR_PTR(-ENOSPC);
3173 }
3174
3175 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3176         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3177 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3178 {
3179         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3180         int nr_nodes, node;
3181
3182         /* do node specific alloc */
3183         if (nid != NUMA_NO_NODE) {
3184                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3185                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3186                 if (!m)
3187                         return 0;
3188                 goto found;
3189         }
3190         /* allocate from next node when distributing huge pages */
3191         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3192                 m = memblock_alloc_try_nid_raw(
3193                                 huge_page_size(h), huge_page_size(h),
3194                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3195                 /*
3196                  * Use the beginning of the huge page to store the
3197                  * huge_bootmem_page struct (until gather_bootmem
3198                  * puts them into the mem_map).
3199                  */
3200                 if (!m)
3201                         return 0;
3202                 goto found;
3203         }
3204
3205 found:
3206         /* Put them into a private list first because mem_map is not up yet */
3207         INIT_LIST_HEAD(&m->list);
3208         list_add(&m->list, &huge_boot_pages);
3209         m->hstate = h;
3210         return 1;
3211 }
3212
3213 /*
3214  * Put bootmem huge pages into the standard lists after mem_map is up.
3215  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3216  */
3217 static void __init gather_bootmem_prealloc(void)
3218 {
3219         struct huge_bootmem_page *m;
3220
3221         list_for_each_entry(m, &huge_boot_pages, list) {
3222                 struct page *page = virt_to_page(m);
3223                 struct folio *folio = page_folio(page);
3224                 struct hstate *h = m->hstate;
3225
3226                 VM_BUG_ON(!hstate_is_gigantic(h));
3227                 WARN_ON(folio_ref_count(folio) != 1);
3228                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3229                         WARN_ON(folio_test_reserved(folio));
3230                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3231                         free_huge_folio(folio); /* add to the hugepage allocator */
3232                 } else {
3233                         /* VERY unlikely inflated ref count on a tail page */
3234                         free_gigantic_folio(folio, huge_page_order(h));
3235                 }
3236
3237                 /*
3238                  * We need to restore the 'stolen' pages to totalram_pages
3239                  * in order to fix confusing memory reports from free(1) and
3240                  * other side-effects, like CommitLimit going negative.
3241                  */
3242                 adjust_managed_page_count(page, pages_per_huge_page(h));
3243                 cond_resched();
3244         }
3245 }
3246 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3247 {
3248         unsigned long i;
3249         char buf[32];
3250
3251         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3252                 if (hstate_is_gigantic(h)) {
3253                         if (!alloc_bootmem_huge_page(h, nid))
3254                                 break;
3255                 } else {
3256                         struct folio *folio;
3257                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3258
3259                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3260                                         &node_states[N_MEMORY], NULL);
3261                         if (!folio)
3262                                 break;
3263                         free_huge_folio(folio); /* free it into the hugepage allocator */
3264                 }
3265                 cond_resched();
3266         }
3267         if (i == h->max_huge_pages_node[nid])
3268                 return;
3269
3270         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3271         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3272                 h->max_huge_pages_node[nid], buf, nid, i);
3273         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3274         h->max_huge_pages_node[nid] = i;
3275 }
3276
3277 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3278 {
3279         unsigned long i;
3280         nodemask_t *node_alloc_noretry;
3281         bool node_specific_alloc = false;
3282
3283         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3284         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3285                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3286                 return;
3287         }
3288
3289         /* do node specific alloc */
3290         for_each_online_node(i) {
3291                 if (h->max_huge_pages_node[i] > 0) {
3292                         hugetlb_hstate_alloc_pages_onenode(h, i);
3293                         node_specific_alloc = true;
3294                 }
3295         }
3296
3297         if (node_specific_alloc)
3298                 return;
3299
3300         /* below will do all node balanced alloc */
3301         if (!hstate_is_gigantic(h)) {
3302                 /*
3303                  * Bit mask controlling how hard we retry per-node allocations.
3304                  * Ignore errors as lower level routines can deal with
3305                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3306                  * time, we are likely in bigger trouble.
3307                  */
3308                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3309                                                 GFP_KERNEL);
3310         } else {
3311                 /* allocations done at boot time */
3312                 node_alloc_noretry = NULL;
3313         }
3314
3315         /* bit mask controlling how hard we retry per-node allocations */
3316         if (node_alloc_noretry)
3317                 nodes_clear(*node_alloc_noretry);
3318
3319         for (i = 0; i < h->max_huge_pages; ++i) {
3320                 if (hstate_is_gigantic(h)) {
3321                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3322                                 break;
3323                 } else if (!alloc_pool_huge_page(h,
3324                                          &node_states[N_MEMORY],
3325                                          node_alloc_noretry))
3326                         break;
3327                 cond_resched();
3328         }
3329         if (i < h->max_huge_pages) {
3330                 char buf[32];
3331
3332                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3333                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3334                         h->max_huge_pages, buf, i);
3335                 h->max_huge_pages = i;
3336         }
3337         kfree(node_alloc_noretry);
3338 }
3339
3340 static void __init hugetlb_init_hstates(void)
3341 {
3342         struct hstate *h, *h2;
3343
3344         for_each_hstate(h) {
3345                 /* oversize hugepages were init'ed in early boot */
3346                 if (!hstate_is_gigantic(h))
3347                         hugetlb_hstate_alloc_pages(h);
3348
3349                 /*
3350                  * Set demote order for each hstate.  Note that
3351                  * h->demote_order is initially 0.
3352                  * - We can not demote gigantic pages if runtime freeing
3353                  *   is not supported, so skip this.
3354                  * - If CMA allocation is possible, we can not demote
3355                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3356                  */
3357                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3358                         continue;
3359                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3360                         continue;
3361                 for_each_hstate(h2) {
3362                         if (h2 == h)
3363                                 continue;
3364                         if (h2->order < h->order &&
3365                             h2->order > h->demote_order)
3366                                 h->demote_order = h2->order;
3367                 }
3368         }
3369 }
3370
3371 static void __init report_hugepages(void)
3372 {
3373         struct hstate *h;
3374
3375         for_each_hstate(h) {
3376                 char buf[32];
3377
3378                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3379                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3380                         buf, h->free_huge_pages);
3381                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3382                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3383         }
3384 }
3385
3386 #ifdef CONFIG_HIGHMEM
3387 static void try_to_free_low(struct hstate *h, unsigned long count,
3388                                                 nodemask_t *nodes_allowed)
3389 {
3390         int i;
3391         LIST_HEAD(page_list);
3392
3393         lockdep_assert_held(&hugetlb_lock);
3394         if (hstate_is_gigantic(h))
3395                 return;
3396
3397         /*
3398          * Collect pages to be freed on a list, and free after dropping lock
3399          */
3400         for_each_node_mask(i, *nodes_allowed) {
3401                 struct page *page, *next;
3402                 struct list_head *freel = &h->hugepage_freelists[i];
3403                 list_for_each_entry_safe(page, next, freel, lru) {
3404                         if (count >= h->nr_huge_pages)
3405                                 goto out;
3406                         if (PageHighMem(page))
3407                                 continue;
3408                         remove_hugetlb_folio(h, page_folio(page), false);
3409                         list_add(&page->lru, &page_list);
3410                 }
3411         }
3412
3413 out:
3414         spin_unlock_irq(&hugetlb_lock);
3415         update_and_free_pages_bulk(h, &page_list);
3416         spin_lock_irq(&hugetlb_lock);
3417 }
3418 #else
3419 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3420                                                 nodemask_t *nodes_allowed)
3421 {
3422 }
3423 #endif
3424
3425 /*
3426  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3427  * balanced by operating on them in a round-robin fashion.
3428  * Returns 1 if an adjustment was made.
3429  */
3430 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3431                                 int delta)
3432 {
3433         int nr_nodes, node;
3434
3435         lockdep_assert_held(&hugetlb_lock);
3436         VM_BUG_ON(delta != -1 && delta != 1);
3437
3438         if (delta < 0) {
3439                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3440                         if (h->surplus_huge_pages_node[node])
3441                                 goto found;
3442                 }
3443         } else {
3444                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3445                         if (h->surplus_huge_pages_node[node] <
3446                                         h->nr_huge_pages_node[node])
3447                                 goto found;
3448                 }
3449         }
3450         return 0;
3451
3452 found:
3453         h->surplus_huge_pages += delta;
3454         h->surplus_huge_pages_node[node] += delta;
3455         return 1;
3456 }
3457
3458 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3459 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3460                               nodemask_t *nodes_allowed)
3461 {
3462         unsigned long min_count, ret;
3463         struct page *page;
3464         LIST_HEAD(page_list);
3465         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3466
3467         /*
3468          * Bit mask controlling how hard we retry per-node allocations.
3469          * If we can not allocate the bit mask, do not attempt to allocate
3470          * the requested huge pages.
3471          */
3472         if (node_alloc_noretry)
3473                 nodes_clear(*node_alloc_noretry);
3474         else
3475                 return -ENOMEM;
3476
3477         /*
3478          * resize_lock mutex prevents concurrent adjustments to number of
3479          * pages in hstate via the proc/sysfs interfaces.
3480          */
3481         mutex_lock(&h->resize_lock);
3482         flush_free_hpage_work(h);
3483         spin_lock_irq(&hugetlb_lock);
3484
3485         /*
3486          * Check for a node specific request.
3487          * Changing node specific huge page count may require a corresponding
3488          * change to the global count.  In any case, the passed node mask
3489          * (nodes_allowed) will restrict alloc/free to the specified node.
3490          */
3491         if (nid != NUMA_NO_NODE) {
3492                 unsigned long old_count = count;
3493
3494                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3495                 /*
3496                  * User may have specified a large count value which caused the
3497                  * above calculation to overflow.  In this case, they wanted
3498                  * to allocate as many huge pages as possible.  Set count to
3499                  * largest possible value to align with their intention.
3500                  */
3501                 if (count < old_count)
3502                         count = ULONG_MAX;
3503         }
3504
3505         /*
3506          * Gigantic pages runtime allocation depend on the capability for large
3507          * page range allocation.
3508          * If the system does not provide this feature, return an error when
3509          * the user tries to allocate gigantic pages but let the user free the
3510          * boottime allocated gigantic pages.
3511          */
3512         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3513                 if (count > persistent_huge_pages(h)) {
3514                         spin_unlock_irq(&hugetlb_lock);
3515                         mutex_unlock(&h->resize_lock);
3516                         NODEMASK_FREE(node_alloc_noretry);
3517                         return -EINVAL;
3518                 }
3519                 /* Fall through to decrease pool */
3520         }
3521
3522         /*
3523          * Increase the pool size
3524          * First take pages out of surplus state.  Then make up the
3525          * remaining difference by allocating fresh huge pages.
3526          *
3527          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3528          * to convert a surplus huge page to a normal huge page. That is
3529          * not critical, though, it just means the overall size of the
3530          * pool might be one hugepage larger than it needs to be, but
3531          * within all the constraints specified by the sysctls.
3532          */
3533         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3534                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3535                         break;
3536         }
3537
3538         while (count > persistent_huge_pages(h)) {
3539                 /*
3540                  * If this allocation races such that we no longer need the
3541                  * page, free_huge_folio will handle it by freeing the page
3542                  * and reducing the surplus.
3543                  */
3544                 spin_unlock_irq(&hugetlb_lock);
3545
3546                 /* yield cpu to avoid soft lockup */
3547                 cond_resched();
3548
3549                 ret = alloc_pool_huge_page(h, nodes_allowed,
3550                                                 node_alloc_noretry);
3551                 spin_lock_irq(&hugetlb_lock);
3552                 if (!ret)
3553                         goto out;
3554
3555                 /* Bail for signals. Probably ctrl-c from user */
3556                 if (signal_pending(current))
3557                         goto out;
3558         }
3559
3560         /*
3561          * Decrease the pool size
3562          * First return free pages to the buddy allocator (being careful
3563          * to keep enough around to satisfy reservations).  Then place
3564          * pages into surplus state as needed so the pool will shrink
3565          * to the desired size as pages become free.
3566          *
3567          * By placing pages into the surplus state independent of the
3568          * overcommit value, we are allowing the surplus pool size to
3569          * exceed overcommit. There are few sane options here. Since
3570          * alloc_surplus_hugetlb_folio() is checking the global counter,
3571          * though, we'll note that we're not allowed to exceed surplus
3572          * and won't grow the pool anywhere else. Not until one of the
3573          * sysctls are changed, or the surplus pages go out of use.
3574          */
3575         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3576         min_count = max(count, min_count);
3577         try_to_free_low(h, min_count, nodes_allowed);
3578
3579         /*
3580          * Collect pages to be removed on list without dropping lock
3581          */
3582         while (min_count < persistent_huge_pages(h)) {
3583                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3584                 if (!page)
3585                         break;
3586
3587                 list_add(&page->lru, &page_list);
3588         }
3589         /* free the pages after dropping lock */
3590         spin_unlock_irq(&hugetlb_lock);
3591         update_and_free_pages_bulk(h, &page_list);
3592         flush_free_hpage_work(h);
3593         spin_lock_irq(&hugetlb_lock);
3594
3595         while (count < persistent_huge_pages(h)) {
3596                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3597                         break;
3598         }
3599 out:
3600         h->max_huge_pages = persistent_huge_pages(h);
3601         spin_unlock_irq(&hugetlb_lock);
3602         mutex_unlock(&h->resize_lock);
3603
3604         NODEMASK_FREE(node_alloc_noretry);
3605
3606         return 0;
3607 }
3608
3609 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3610 {
3611         int i, nid = folio_nid(folio);
3612         struct hstate *target_hstate;
3613         struct page *subpage;
3614         struct folio *inner_folio;
3615         int rc = 0;
3616
3617         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3618
3619         remove_hugetlb_folio_for_demote(h, folio, false);
3620         spin_unlock_irq(&hugetlb_lock);
3621
3622         rc = hugetlb_vmemmap_restore(h, &folio->page);
3623         if (rc) {
3624                 /* Allocation of vmemmmap failed, we can not demote folio */
3625                 spin_lock_irq(&hugetlb_lock);
3626                 folio_ref_unfreeze(folio, 1);
3627                 add_hugetlb_folio(h, folio, false);
3628                 return rc;
3629         }
3630
3631         /*
3632          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3633          * sizes as it will not ref count folios.
3634          */
3635         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3636
3637         /*
3638          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3639          * Without the mutex, pages added to target hstate could be marked
3640          * as surplus.
3641          *
3642          * Note that we already hold h->resize_lock.  To prevent deadlock,
3643          * use the convention of always taking larger size hstate mutex first.
3644          */
3645         mutex_lock(&target_hstate->resize_lock);
3646         for (i = 0; i < pages_per_huge_page(h);
3647                                 i += pages_per_huge_page(target_hstate)) {
3648                 subpage = folio_page(folio, i);
3649                 inner_folio = page_folio(subpage);
3650                 if (hstate_is_gigantic(target_hstate))
3651                         prep_compound_gigantic_folio_for_demote(inner_folio,
3652                                                         target_hstate->order);
3653                 else
3654                         prep_compound_page(subpage, target_hstate->order);
3655                 folio_change_private(inner_folio, NULL);
3656                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3657                 free_huge_folio(inner_folio);
3658         }
3659         mutex_unlock(&target_hstate->resize_lock);
3660
3661         spin_lock_irq(&hugetlb_lock);
3662
3663         /*
3664          * Not absolutely necessary, but for consistency update max_huge_pages
3665          * based on pool changes for the demoted page.
3666          */
3667         h->max_huge_pages--;
3668         target_hstate->max_huge_pages +=
3669                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3670
3671         return rc;
3672 }
3673
3674 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3675         __must_hold(&hugetlb_lock)
3676 {
3677         int nr_nodes, node;
3678         struct folio *folio;
3679
3680         lockdep_assert_held(&hugetlb_lock);
3681
3682         /* We should never get here if no demote order */
3683         if (!h->demote_order) {
3684                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3685                 return -EINVAL;         /* internal error */
3686         }
3687
3688         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3689                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3690                         if (folio_test_hwpoison(folio))
3691                                 continue;
3692                         return demote_free_hugetlb_folio(h, folio);
3693                 }
3694         }
3695
3696         /*
3697          * Only way to get here is if all pages on free lists are poisoned.
3698          * Return -EBUSY so that caller will not retry.
3699          */
3700         return -EBUSY;
3701 }
3702
3703 #define HSTATE_ATTR_RO(_name) \
3704         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3705
3706 #define HSTATE_ATTR_WO(_name) \
3707         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3708
3709 #define HSTATE_ATTR(_name) \
3710         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3711
3712 static struct kobject *hugepages_kobj;
3713 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3714
3715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3716
3717 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3718 {
3719         int i;
3720
3721         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3722                 if (hstate_kobjs[i] == kobj) {
3723                         if (nidp)
3724                                 *nidp = NUMA_NO_NODE;
3725                         return &hstates[i];
3726                 }
3727
3728         return kobj_to_node_hstate(kobj, nidp);
3729 }
3730
3731 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3732                                         struct kobj_attribute *attr, char *buf)
3733 {
3734         struct hstate *h;
3735         unsigned long nr_huge_pages;
3736         int nid;
3737
3738         h = kobj_to_hstate(kobj, &nid);
3739         if (nid == NUMA_NO_NODE)
3740                 nr_huge_pages = h->nr_huge_pages;
3741         else
3742                 nr_huge_pages = h->nr_huge_pages_node[nid];
3743
3744         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3745 }
3746
3747 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3748                                            struct hstate *h, int nid,
3749                                            unsigned long count, size_t len)
3750 {
3751         int err;
3752         nodemask_t nodes_allowed, *n_mask;
3753
3754         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3755                 return -EINVAL;
3756
3757         if (nid == NUMA_NO_NODE) {
3758                 /*
3759                  * global hstate attribute
3760                  */
3761                 if (!(obey_mempolicy &&
3762                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3763                         n_mask = &node_states[N_MEMORY];
3764                 else
3765                         n_mask = &nodes_allowed;
3766         } else {
3767                 /*
3768                  * Node specific request.  count adjustment happens in
3769                  * set_max_huge_pages() after acquiring hugetlb_lock.
3770                  */
3771                 init_nodemask_of_node(&nodes_allowed, nid);
3772                 n_mask = &nodes_allowed;
3773         }
3774
3775         err = set_max_huge_pages(h, count, nid, n_mask);
3776
3777         return err ? err : len;
3778 }
3779
3780 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3781                                          struct kobject *kobj, const char *buf,
3782                                          size_t len)
3783 {
3784         struct hstate *h;
3785         unsigned long count;
3786         int nid;
3787         int err;
3788
3789         err = kstrtoul(buf, 10, &count);
3790         if (err)
3791                 return err;
3792
3793         h = kobj_to_hstate(kobj, &nid);
3794         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3795 }
3796
3797 static ssize_t nr_hugepages_show(struct kobject *kobj,
3798                                        struct kobj_attribute *attr, char *buf)
3799 {
3800         return nr_hugepages_show_common(kobj, attr, buf);
3801 }
3802
3803 static ssize_t nr_hugepages_store(struct kobject *kobj,
3804                struct kobj_attribute *attr, const char *buf, size_t len)
3805 {
3806         return nr_hugepages_store_common(false, kobj, buf, len);
3807 }
3808 HSTATE_ATTR(nr_hugepages);
3809
3810 #ifdef CONFIG_NUMA
3811
3812 /*
3813  * hstate attribute for optionally mempolicy-based constraint on persistent
3814  * huge page alloc/free.
3815  */
3816 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3817                                            struct kobj_attribute *attr,
3818                                            char *buf)
3819 {
3820         return nr_hugepages_show_common(kobj, attr, buf);
3821 }
3822
3823 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3824                struct kobj_attribute *attr, const char *buf, size_t len)
3825 {
3826         return nr_hugepages_store_common(true, kobj, buf, len);
3827 }
3828 HSTATE_ATTR(nr_hugepages_mempolicy);
3829 #endif
3830
3831
3832 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3833                                         struct kobj_attribute *attr, char *buf)
3834 {
3835         struct hstate *h = kobj_to_hstate(kobj, NULL);
3836         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3837 }
3838
3839 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3840                 struct kobj_attribute *attr, const char *buf, size_t count)
3841 {
3842         int err;
3843         unsigned long input;
3844         struct hstate *h = kobj_to_hstate(kobj, NULL);
3845
3846         if (hstate_is_gigantic(h))
3847                 return -EINVAL;
3848
3849         err = kstrtoul(buf, 10, &input);
3850         if (err)
3851                 return err;
3852
3853         spin_lock_irq(&hugetlb_lock);
3854         h->nr_overcommit_huge_pages = input;
3855         spin_unlock_irq(&hugetlb_lock);
3856
3857         return count;
3858 }
3859 HSTATE_ATTR(nr_overcommit_hugepages);
3860
3861 static ssize_t free_hugepages_show(struct kobject *kobj,
3862                                         struct kobj_attribute *attr, char *buf)
3863 {
3864         struct hstate *h;
3865         unsigned long free_huge_pages;
3866         int nid;
3867
3868         h = kobj_to_hstate(kobj, &nid);
3869         if (nid == NUMA_NO_NODE)
3870                 free_huge_pages = h->free_huge_pages;
3871         else
3872                 free_huge_pages = h->free_huge_pages_node[nid];
3873
3874         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3875 }
3876 HSTATE_ATTR_RO(free_hugepages);
3877
3878 static ssize_t resv_hugepages_show(struct kobject *kobj,
3879                                         struct kobj_attribute *attr, char *buf)
3880 {
3881         struct hstate *h = kobj_to_hstate(kobj, NULL);
3882         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3883 }
3884 HSTATE_ATTR_RO(resv_hugepages);
3885
3886 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3887                                         struct kobj_attribute *attr, char *buf)
3888 {
3889         struct hstate *h;
3890         unsigned long surplus_huge_pages;
3891         int nid;
3892
3893         h = kobj_to_hstate(kobj, &nid);
3894         if (nid == NUMA_NO_NODE)
3895                 surplus_huge_pages = h->surplus_huge_pages;
3896         else
3897                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3898
3899         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3900 }
3901 HSTATE_ATTR_RO(surplus_hugepages);
3902
3903 static ssize_t demote_store(struct kobject *kobj,
3904                struct kobj_attribute *attr, const char *buf, size_t len)
3905 {
3906         unsigned long nr_demote;
3907         unsigned long nr_available;
3908         nodemask_t nodes_allowed, *n_mask;
3909         struct hstate *h;
3910         int err;
3911         int nid;
3912
3913         err = kstrtoul(buf, 10, &nr_demote);
3914         if (err)
3915                 return err;
3916         h = kobj_to_hstate(kobj, &nid);
3917
3918         if (nid != NUMA_NO_NODE) {
3919                 init_nodemask_of_node(&nodes_allowed, nid);
3920                 n_mask = &nodes_allowed;
3921         } else {
3922                 n_mask = &node_states[N_MEMORY];
3923         }
3924
3925         /* Synchronize with other sysfs operations modifying huge pages */
3926         mutex_lock(&h->resize_lock);
3927         spin_lock_irq(&hugetlb_lock);
3928
3929         while (nr_demote) {
3930                 /*
3931                  * Check for available pages to demote each time thorough the
3932                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3933                  */
3934                 if (nid != NUMA_NO_NODE)
3935                         nr_available = h->free_huge_pages_node[nid];
3936                 else
3937                         nr_available = h->free_huge_pages;
3938                 nr_available -= h->resv_huge_pages;
3939                 if (!nr_available)
3940                         break;
3941
3942                 err = demote_pool_huge_page(h, n_mask);
3943                 if (err)
3944                         break;
3945
3946                 nr_demote--;
3947         }
3948
3949         spin_unlock_irq(&hugetlb_lock);
3950         mutex_unlock(&h->resize_lock);
3951
3952         if (err)
3953                 return err;
3954         return len;
3955 }
3956 HSTATE_ATTR_WO(demote);
3957
3958 static ssize_t demote_size_show(struct kobject *kobj,
3959                                         struct kobj_attribute *attr, char *buf)
3960 {
3961         struct hstate *h = kobj_to_hstate(kobj, NULL);
3962         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3963
3964         return sysfs_emit(buf, "%lukB\n", demote_size);
3965 }
3966
3967 static ssize_t demote_size_store(struct kobject *kobj,
3968                                         struct kobj_attribute *attr,
3969                                         const char *buf, size_t count)
3970 {
3971         struct hstate *h, *demote_hstate;
3972         unsigned long demote_size;
3973         unsigned int demote_order;
3974
3975         demote_size = (unsigned long)memparse(buf, NULL);
3976
3977         demote_hstate = size_to_hstate(demote_size);
3978         if (!demote_hstate)
3979                 return -EINVAL;
3980         demote_order = demote_hstate->order;
3981         if (demote_order < HUGETLB_PAGE_ORDER)
3982                 return -EINVAL;
3983
3984         /* demote order must be smaller than hstate order */
3985         h = kobj_to_hstate(kobj, NULL);
3986         if (demote_order >= h->order)
3987                 return -EINVAL;
3988
3989         /* resize_lock synchronizes access to demote size and writes */
3990         mutex_lock(&h->resize_lock);
3991         h->demote_order = demote_order;
3992         mutex_unlock(&h->resize_lock);
3993
3994         return count;
3995 }
3996 HSTATE_ATTR(demote_size);
3997
3998 static struct attribute *hstate_attrs[] = {
3999         &nr_hugepages_attr.attr,
4000         &nr_overcommit_hugepages_attr.attr,
4001         &free_hugepages_attr.attr,
4002         &resv_hugepages_attr.attr,
4003         &surplus_hugepages_attr.attr,
4004 #ifdef CONFIG_NUMA
4005         &nr_hugepages_mempolicy_attr.attr,
4006 #endif
4007         NULL,
4008 };
4009
4010 static const struct attribute_group hstate_attr_group = {
4011         .attrs = hstate_attrs,
4012 };
4013
4014 static struct attribute *hstate_demote_attrs[] = {
4015         &demote_size_attr.attr,
4016         &demote_attr.attr,
4017         NULL,
4018 };
4019
4020 static const struct attribute_group hstate_demote_attr_group = {
4021         .attrs = hstate_demote_attrs,
4022 };
4023
4024 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4025                                     struct kobject **hstate_kobjs,
4026                                     const struct attribute_group *hstate_attr_group)
4027 {
4028         int retval;
4029         int hi = hstate_index(h);
4030
4031         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4032         if (!hstate_kobjs[hi])
4033                 return -ENOMEM;
4034
4035         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4036         if (retval) {
4037                 kobject_put(hstate_kobjs[hi]);
4038                 hstate_kobjs[hi] = NULL;
4039                 return retval;
4040         }
4041
4042         if (h->demote_order) {
4043                 retval = sysfs_create_group(hstate_kobjs[hi],
4044                                             &hstate_demote_attr_group);
4045                 if (retval) {
4046                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4047                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4048                         kobject_put(hstate_kobjs[hi]);
4049                         hstate_kobjs[hi] = NULL;
4050                         return retval;
4051                 }
4052         }
4053
4054         return 0;
4055 }
4056
4057 #ifdef CONFIG_NUMA
4058 static bool hugetlb_sysfs_initialized __ro_after_init;
4059
4060 /*
4061  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4062  * with node devices in node_devices[] using a parallel array.  The array
4063  * index of a node device or _hstate == node id.
4064  * This is here to avoid any static dependency of the node device driver, in
4065  * the base kernel, on the hugetlb module.
4066  */
4067 struct node_hstate {
4068         struct kobject          *hugepages_kobj;
4069         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4070 };
4071 static struct node_hstate node_hstates[MAX_NUMNODES];
4072
4073 /*
4074  * A subset of global hstate attributes for node devices
4075  */
4076 static struct attribute *per_node_hstate_attrs[] = {
4077         &nr_hugepages_attr.attr,
4078         &free_hugepages_attr.attr,
4079         &surplus_hugepages_attr.attr,
4080         NULL,
4081 };
4082
4083 static const struct attribute_group per_node_hstate_attr_group = {
4084         .attrs = per_node_hstate_attrs,
4085 };
4086
4087 /*
4088  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4089  * Returns node id via non-NULL nidp.
4090  */
4091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4092 {
4093         int nid;
4094
4095         for (nid = 0; nid < nr_node_ids; nid++) {
4096                 struct node_hstate *nhs = &node_hstates[nid];
4097                 int i;
4098                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4099                         if (nhs->hstate_kobjs[i] == kobj) {
4100                                 if (nidp)
4101                                         *nidp = nid;
4102                                 return &hstates[i];
4103                         }
4104         }
4105
4106         BUG();
4107         return NULL;
4108 }
4109
4110 /*
4111  * Unregister hstate attributes from a single node device.
4112  * No-op if no hstate attributes attached.
4113  */
4114 void hugetlb_unregister_node(struct node *node)
4115 {
4116         struct hstate *h;
4117         struct node_hstate *nhs = &node_hstates[node->dev.id];
4118
4119         if (!nhs->hugepages_kobj)
4120                 return;         /* no hstate attributes */
4121
4122         for_each_hstate(h) {
4123                 int idx = hstate_index(h);
4124                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4125
4126                 if (!hstate_kobj)
4127                         continue;
4128                 if (h->demote_order)
4129                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4130                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4131                 kobject_put(hstate_kobj);
4132                 nhs->hstate_kobjs[idx] = NULL;
4133         }
4134
4135         kobject_put(nhs->hugepages_kobj);
4136         nhs->hugepages_kobj = NULL;
4137 }
4138
4139
4140 /*
4141  * Register hstate attributes for a single node device.
4142  * No-op if attributes already registered.
4143  */
4144 void hugetlb_register_node(struct node *node)
4145 {
4146         struct hstate *h;
4147         struct node_hstate *nhs = &node_hstates[node->dev.id];
4148         int err;
4149
4150         if (!hugetlb_sysfs_initialized)
4151                 return;
4152
4153         if (nhs->hugepages_kobj)
4154                 return;         /* already allocated */
4155
4156         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4157                                                         &node->dev.kobj);
4158         if (!nhs->hugepages_kobj)
4159                 return;
4160
4161         for_each_hstate(h) {
4162                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4163                                                 nhs->hstate_kobjs,
4164                                                 &per_node_hstate_attr_group);
4165                 if (err) {
4166                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4167                                 h->name, node->dev.id);
4168                         hugetlb_unregister_node(node);
4169                         break;
4170                 }
4171         }
4172 }
4173
4174 /*
4175  * hugetlb init time:  register hstate attributes for all registered node
4176  * devices of nodes that have memory.  All on-line nodes should have
4177  * registered their associated device by this time.
4178  */
4179 static void __init hugetlb_register_all_nodes(void)
4180 {
4181         int nid;
4182
4183         for_each_online_node(nid)
4184                 hugetlb_register_node(node_devices[nid]);
4185 }
4186 #else   /* !CONFIG_NUMA */
4187
4188 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4189 {
4190         BUG();
4191         if (nidp)
4192                 *nidp = -1;
4193         return NULL;
4194 }
4195
4196 static void hugetlb_register_all_nodes(void) { }
4197
4198 #endif
4199
4200 #ifdef CONFIG_CMA
4201 static void __init hugetlb_cma_check(void);
4202 #else
4203 static inline __init void hugetlb_cma_check(void)
4204 {
4205 }
4206 #endif
4207
4208 static void __init hugetlb_sysfs_init(void)
4209 {
4210         struct hstate *h;
4211         int err;
4212
4213         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4214         if (!hugepages_kobj)
4215                 return;
4216
4217         for_each_hstate(h) {
4218                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4219                                          hstate_kobjs, &hstate_attr_group);
4220                 if (err)
4221                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4222         }
4223
4224 #ifdef CONFIG_NUMA
4225         hugetlb_sysfs_initialized = true;
4226 #endif
4227         hugetlb_register_all_nodes();
4228 }
4229
4230 #ifdef CONFIG_SYSCTL
4231 static void hugetlb_sysctl_init(void);
4232 #else
4233 static inline void hugetlb_sysctl_init(void) { }
4234 #endif
4235
4236 static int __init hugetlb_init(void)
4237 {
4238         int i;
4239
4240         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4241                         __NR_HPAGEFLAGS);
4242
4243         if (!hugepages_supported()) {
4244                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4245                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4246                 return 0;
4247         }
4248
4249         /*
4250          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4251          * architectures depend on setup being done here.
4252          */
4253         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4254         if (!parsed_default_hugepagesz) {
4255                 /*
4256                  * If we did not parse a default huge page size, set
4257                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4258                  * number of huge pages for this default size was implicitly
4259                  * specified, set that here as well.
4260                  * Note that the implicit setting will overwrite an explicit
4261                  * setting.  A warning will be printed in this case.
4262                  */
4263                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4264                 if (default_hstate_max_huge_pages) {
4265                         if (default_hstate.max_huge_pages) {
4266                                 char buf[32];
4267
4268                                 string_get_size(huge_page_size(&default_hstate),
4269                                         1, STRING_UNITS_2, buf, 32);
4270                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4271                                         default_hstate.max_huge_pages, buf);
4272                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4273                                         default_hstate_max_huge_pages);
4274                         }
4275                         default_hstate.max_huge_pages =
4276                                 default_hstate_max_huge_pages;
4277
4278                         for_each_online_node(i)
4279                                 default_hstate.max_huge_pages_node[i] =
4280                                         default_hugepages_in_node[i];
4281                 }
4282         }
4283
4284         hugetlb_cma_check();
4285         hugetlb_init_hstates();
4286         gather_bootmem_prealloc();
4287         report_hugepages();
4288
4289         hugetlb_sysfs_init();
4290         hugetlb_cgroup_file_init();
4291         hugetlb_sysctl_init();
4292
4293 #ifdef CONFIG_SMP
4294         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4295 #else
4296         num_fault_mutexes = 1;
4297 #endif
4298         hugetlb_fault_mutex_table =
4299                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4300                               GFP_KERNEL);
4301         BUG_ON(!hugetlb_fault_mutex_table);
4302
4303         for (i = 0; i < num_fault_mutexes; i++)
4304                 mutex_init(&hugetlb_fault_mutex_table[i]);
4305         return 0;
4306 }
4307 subsys_initcall(hugetlb_init);
4308
4309 /* Overwritten by architectures with more huge page sizes */
4310 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4311 {
4312         return size == HPAGE_SIZE;
4313 }
4314
4315 void __init hugetlb_add_hstate(unsigned int order)
4316 {
4317         struct hstate *h;
4318         unsigned long i;
4319
4320         if (size_to_hstate(PAGE_SIZE << order)) {
4321                 return;
4322         }
4323         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4324         BUG_ON(order == 0);
4325         h = &hstates[hugetlb_max_hstate++];
4326         mutex_init(&h->resize_lock);
4327         h->order = order;
4328         h->mask = ~(huge_page_size(h) - 1);
4329         for (i = 0; i < MAX_NUMNODES; ++i)
4330                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4331         INIT_LIST_HEAD(&h->hugepage_activelist);
4332         h->next_nid_to_alloc = first_memory_node;
4333         h->next_nid_to_free = first_memory_node;
4334         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4335                                         huge_page_size(h)/SZ_1K);
4336
4337         parsed_hstate = h;
4338 }
4339
4340 bool __init __weak hugetlb_node_alloc_supported(void)
4341 {
4342         return true;
4343 }
4344
4345 static void __init hugepages_clear_pages_in_node(void)
4346 {
4347         if (!hugetlb_max_hstate) {
4348                 default_hstate_max_huge_pages = 0;
4349                 memset(default_hugepages_in_node, 0,
4350                         sizeof(default_hugepages_in_node));
4351         } else {
4352                 parsed_hstate->max_huge_pages = 0;
4353                 memset(parsed_hstate->max_huge_pages_node, 0,
4354                         sizeof(parsed_hstate->max_huge_pages_node));
4355         }
4356 }
4357
4358 /*
4359  * hugepages command line processing
4360  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4361  * specification.  If not, ignore the hugepages value.  hugepages can also
4362  * be the first huge page command line  option in which case it implicitly
4363  * specifies the number of huge pages for the default size.
4364  */
4365 static int __init hugepages_setup(char *s)
4366 {
4367         unsigned long *mhp;
4368         static unsigned long *last_mhp;
4369         int node = NUMA_NO_NODE;
4370         int count;
4371         unsigned long tmp;
4372         char *p = s;
4373
4374         if (!parsed_valid_hugepagesz) {
4375                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4376                 parsed_valid_hugepagesz = true;
4377                 return 1;
4378         }
4379
4380         /*
4381          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4382          * yet, so this hugepages= parameter goes to the "default hstate".
4383          * Otherwise, it goes with the previously parsed hugepagesz or
4384          * default_hugepagesz.
4385          */
4386         else if (!hugetlb_max_hstate)
4387                 mhp = &default_hstate_max_huge_pages;
4388         else
4389                 mhp = &parsed_hstate->max_huge_pages;
4390
4391         if (mhp == last_mhp) {
4392                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4393                 return 1;
4394         }
4395
4396         while (*p) {
4397                 count = 0;
4398                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4399                         goto invalid;
4400                 /* Parameter is node format */
4401                 if (p[count] == ':') {
4402                         if (!hugetlb_node_alloc_supported()) {
4403                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4404                                 return 1;
4405                         }
4406                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4407                                 goto invalid;
4408                         node = array_index_nospec(tmp, MAX_NUMNODES);
4409                         p += count + 1;
4410                         /* Parse hugepages */
4411                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4412                                 goto invalid;
4413                         if (!hugetlb_max_hstate)
4414                                 default_hugepages_in_node[node] = tmp;
4415                         else
4416                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4417                         *mhp += tmp;
4418                         /* Go to parse next node*/
4419                         if (p[count] == ',')
4420                                 p += count + 1;
4421                         else
4422                                 break;
4423                 } else {
4424                         if (p != s)
4425                                 goto invalid;
4426                         *mhp = tmp;
4427                         break;
4428                 }
4429         }
4430
4431         /*
4432          * Global state is always initialized later in hugetlb_init.
4433          * But we need to allocate gigantic hstates here early to still
4434          * use the bootmem allocator.
4435          */
4436         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4437                 hugetlb_hstate_alloc_pages(parsed_hstate);
4438
4439         last_mhp = mhp;
4440
4441         return 1;
4442
4443 invalid:
4444         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4445         hugepages_clear_pages_in_node();
4446         return 1;
4447 }
4448 __setup("hugepages=", hugepages_setup);
4449
4450 /*
4451  * hugepagesz command line processing
4452  * A specific huge page size can only be specified once with hugepagesz.
4453  * hugepagesz is followed by hugepages on the command line.  The global
4454  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4455  * hugepagesz argument was valid.
4456  */
4457 static int __init hugepagesz_setup(char *s)
4458 {
4459         unsigned long size;
4460         struct hstate *h;
4461
4462         parsed_valid_hugepagesz = false;
4463         size = (unsigned long)memparse(s, NULL);
4464
4465         if (!arch_hugetlb_valid_size(size)) {
4466                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4467                 return 1;
4468         }
4469
4470         h = size_to_hstate(size);
4471         if (h) {
4472                 /*
4473                  * hstate for this size already exists.  This is normally
4474                  * an error, but is allowed if the existing hstate is the
4475                  * default hstate.  More specifically, it is only allowed if
4476                  * the number of huge pages for the default hstate was not
4477                  * previously specified.
4478                  */
4479                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4480                     default_hstate.max_huge_pages) {
4481                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4482                         return 1;
4483                 }
4484
4485                 /*
4486                  * No need to call hugetlb_add_hstate() as hstate already
4487                  * exists.  But, do set parsed_hstate so that a following
4488                  * hugepages= parameter will be applied to this hstate.
4489                  */
4490                 parsed_hstate = h;
4491                 parsed_valid_hugepagesz = true;
4492                 return 1;
4493         }
4494
4495         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4496         parsed_valid_hugepagesz = true;
4497         return 1;
4498 }
4499 __setup("hugepagesz=", hugepagesz_setup);
4500
4501 /*
4502  * default_hugepagesz command line input
4503  * Only one instance of default_hugepagesz allowed on command line.
4504  */
4505 static int __init default_hugepagesz_setup(char *s)
4506 {
4507         unsigned long size;
4508         int i;
4509
4510         parsed_valid_hugepagesz = false;
4511         if (parsed_default_hugepagesz) {
4512                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4513                 return 1;
4514         }
4515
4516         size = (unsigned long)memparse(s, NULL);
4517
4518         if (!arch_hugetlb_valid_size(size)) {
4519                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4520                 return 1;
4521         }
4522
4523         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4524         parsed_valid_hugepagesz = true;
4525         parsed_default_hugepagesz = true;
4526         default_hstate_idx = hstate_index(size_to_hstate(size));
4527
4528         /*
4529          * The number of default huge pages (for this size) could have been
4530          * specified as the first hugetlb parameter: hugepages=X.  If so,
4531          * then default_hstate_max_huge_pages is set.  If the default huge
4532          * page size is gigantic (> MAX_ORDER), then the pages must be
4533          * allocated here from bootmem allocator.
4534          */
4535         if (default_hstate_max_huge_pages) {
4536                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4537                 for_each_online_node(i)
4538                         default_hstate.max_huge_pages_node[i] =
4539                                 default_hugepages_in_node[i];
4540                 if (hstate_is_gigantic(&default_hstate))
4541                         hugetlb_hstate_alloc_pages(&default_hstate);
4542                 default_hstate_max_huge_pages = 0;
4543         }
4544
4545         return 1;
4546 }
4547 __setup("default_hugepagesz=", default_hugepagesz_setup);
4548
4549 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4550 {
4551 #ifdef CONFIG_NUMA
4552         struct mempolicy *mpol = get_task_policy(current);
4553
4554         /*
4555          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4556          * (from policy_nodemask) specifically for hugetlb case
4557          */
4558         if (mpol->mode == MPOL_BIND &&
4559                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4560                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4561                 return &mpol->nodes;
4562 #endif
4563         return NULL;
4564 }
4565
4566 static unsigned int allowed_mems_nr(struct hstate *h)
4567 {
4568         int node;
4569         unsigned int nr = 0;
4570         nodemask_t *mbind_nodemask;
4571         unsigned int *array = h->free_huge_pages_node;
4572         gfp_t gfp_mask = htlb_alloc_mask(h);
4573
4574         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4575         for_each_node_mask(node, cpuset_current_mems_allowed) {
4576                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4577                         nr += array[node];
4578         }
4579
4580         return nr;
4581 }
4582
4583 #ifdef CONFIG_SYSCTL
4584 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4585                                           void *buffer, size_t *length,
4586                                           loff_t *ppos, unsigned long *out)
4587 {
4588         struct ctl_table dup_table;
4589
4590         /*
4591          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4592          * can duplicate the @table and alter the duplicate of it.
4593          */
4594         dup_table = *table;
4595         dup_table.data = out;
4596
4597         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4598 }
4599
4600 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4601                          struct ctl_table *table, int write,
4602                          void *buffer, size_t *length, loff_t *ppos)
4603 {
4604         struct hstate *h = &default_hstate;
4605         unsigned long tmp = h->max_huge_pages;
4606         int ret;
4607
4608         if (!hugepages_supported())
4609                 return -EOPNOTSUPP;
4610
4611         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4612                                              &tmp);
4613         if (ret)
4614                 goto out;
4615
4616         if (write)
4617                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4618                                                   NUMA_NO_NODE, tmp, *length);
4619 out:
4620         return ret;
4621 }
4622
4623 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4624                           void *buffer, size_t *length, loff_t *ppos)
4625 {
4626
4627         return hugetlb_sysctl_handler_common(false, table, write,
4628                                                         buffer, length, ppos);
4629 }
4630
4631 #ifdef CONFIG_NUMA
4632 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4633                           void *buffer, size_t *length, loff_t *ppos)
4634 {
4635         return hugetlb_sysctl_handler_common(true, table, write,
4636                                                         buffer, length, ppos);
4637 }
4638 #endif /* CONFIG_NUMA */
4639
4640 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4641                 void *buffer, size_t *length, loff_t *ppos)
4642 {
4643         struct hstate *h = &default_hstate;
4644         unsigned long tmp;
4645         int ret;
4646
4647         if (!hugepages_supported())
4648                 return -EOPNOTSUPP;
4649
4650         tmp = h->nr_overcommit_huge_pages;
4651
4652         if (write && hstate_is_gigantic(h))
4653                 return -EINVAL;
4654
4655         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4656                                              &tmp);
4657         if (ret)
4658                 goto out;
4659
4660         if (write) {
4661                 spin_lock_irq(&hugetlb_lock);
4662                 h->nr_overcommit_huge_pages = tmp;
4663                 spin_unlock_irq(&hugetlb_lock);
4664         }
4665 out:
4666         return ret;
4667 }
4668
4669 static struct ctl_table hugetlb_table[] = {
4670         {
4671                 .procname       = "nr_hugepages",
4672                 .data           = NULL,
4673                 .maxlen         = sizeof(unsigned long),
4674                 .mode           = 0644,
4675                 .proc_handler   = hugetlb_sysctl_handler,
4676         },
4677 #ifdef CONFIG_NUMA
4678         {
4679                 .procname       = "nr_hugepages_mempolicy",
4680                 .data           = NULL,
4681                 .maxlen         = sizeof(unsigned long),
4682                 .mode           = 0644,
4683                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4684         },
4685 #endif
4686         {
4687                 .procname       = "hugetlb_shm_group",
4688                 .data           = &sysctl_hugetlb_shm_group,
4689                 .maxlen         = sizeof(gid_t),
4690                 .mode           = 0644,
4691                 .proc_handler   = proc_dointvec,
4692         },
4693         {
4694                 .procname       = "nr_overcommit_hugepages",
4695                 .data           = NULL,
4696                 .maxlen         = sizeof(unsigned long),
4697                 .mode           = 0644,
4698                 .proc_handler   = hugetlb_overcommit_handler,
4699         },
4700         { }
4701 };
4702
4703 static void hugetlb_sysctl_init(void)
4704 {
4705         register_sysctl_init("vm", hugetlb_table);
4706 }
4707 #endif /* CONFIG_SYSCTL */
4708
4709 void hugetlb_report_meminfo(struct seq_file *m)
4710 {
4711         struct hstate *h;
4712         unsigned long total = 0;
4713
4714         if (!hugepages_supported())
4715                 return;
4716
4717         for_each_hstate(h) {
4718                 unsigned long count = h->nr_huge_pages;
4719
4720                 total += huge_page_size(h) * count;
4721
4722                 if (h == &default_hstate)
4723                         seq_printf(m,
4724                                    "HugePages_Total:   %5lu\n"
4725                                    "HugePages_Free:    %5lu\n"
4726                                    "HugePages_Rsvd:    %5lu\n"
4727                                    "HugePages_Surp:    %5lu\n"
4728                                    "Hugepagesize:   %8lu kB\n",
4729                                    count,
4730                                    h->free_huge_pages,
4731                                    h->resv_huge_pages,
4732                                    h->surplus_huge_pages,
4733                                    huge_page_size(h) / SZ_1K);
4734         }
4735
4736         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4737 }
4738
4739 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4740 {
4741         struct hstate *h = &default_hstate;
4742
4743         if (!hugepages_supported())
4744                 return 0;
4745
4746         return sysfs_emit_at(buf, len,
4747                              "Node %d HugePages_Total: %5u\n"
4748                              "Node %d HugePages_Free:  %5u\n"
4749                              "Node %d HugePages_Surp:  %5u\n",
4750                              nid, h->nr_huge_pages_node[nid],
4751                              nid, h->free_huge_pages_node[nid],
4752                              nid, h->surplus_huge_pages_node[nid]);
4753 }
4754
4755 void hugetlb_show_meminfo_node(int nid)
4756 {
4757         struct hstate *h;
4758
4759         if (!hugepages_supported())
4760                 return;
4761
4762         for_each_hstate(h)
4763                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4764                         nid,
4765                         h->nr_huge_pages_node[nid],
4766                         h->free_huge_pages_node[nid],
4767                         h->surplus_huge_pages_node[nid],
4768                         huge_page_size(h) / SZ_1K);
4769 }
4770
4771 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4772 {
4773         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4774                    K(atomic_long_read(&mm->hugetlb_usage)));
4775 }
4776
4777 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4778 unsigned long hugetlb_total_pages(void)
4779 {
4780         struct hstate *h;
4781         unsigned long nr_total_pages = 0;
4782
4783         for_each_hstate(h)
4784                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4785         return nr_total_pages;
4786 }
4787
4788 static int hugetlb_acct_memory(struct hstate *h, long delta)
4789 {
4790         int ret = -ENOMEM;
4791
4792         if (!delta)
4793                 return 0;
4794
4795         spin_lock_irq(&hugetlb_lock);
4796         /*
4797          * When cpuset is configured, it breaks the strict hugetlb page
4798          * reservation as the accounting is done on a global variable. Such
4799          * reservation is completely rubbish in the presence of cpuset because
4800          * the reservation is not checked against page availability for the
4801          * current cpuset. Application can still potentially OOM'ed by kernel
4802          * with lack of free htlb page in cpuset that the task is in.
4803          * Attempt to enforce strict accounting with cpuset is almost
4804          * impossible (or too ugly) because cpuset is too fluid that
4805          * task or memory node can be dynamically moved between cpusets.
4806          *
4807          * The change of semantics for shared hugetlb mapping with cpuset is
4808          * undesirable. However, in order to preserve some of the semantics,
4809          * we fall back to check against current free page availability as
4810          * a best attempt and hopefully to minimize the impact of changing
4811          * semantics that cpuset has.
4812          *
4813          * Apart from cpuset, we also have memory policy mechanism that
4814          * also determines from which node the kernel will allocate memory
4815          * in a NUMA system. So similar to cpuset, we also should consider
4816          * the memory policy of the current task. Similar to the description
4817          * above.
4818          */
4819         if (delta > 0) {
4820                 if (gather_surplus_pages(h, delta) < 0)
4821                         goto out;
4822
4823                 if (delta > allowed_mems_nr(h)) {
4824                         return_unused_surplus_pages(h, delta);
4825                         goto out;
4826                 }
4827         }
4828
4829         ret = 0;
4830         if (delta < 0)
4831                 return_unused_surplus_pages(h, (unsigned long) -delta);
4832
4833 out:
4834         spin_unlock_irq(&hugetlb_lock);
4835         return ret;
4836 }
4837
4838 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4839 {
4840         struct resv_map *resv = vma_resv_map(vma);
4841
4842         /*
4843          * HPAGE_RESV_OWNER indicates a private mapping.
4844          * This new VMA should share its siblings reservation map if present.
4845          * The VMA will only ever have a valid reservation map pointer where
4846          * it is being copied for another still existing VMA.  As that VMA
4847          * has a reference to the reservation map it cannot disappear until
4848          * after this open call completes.  It is therefore safe to take a
4849          * new reference here without additional locking.
4850          */
4851         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4852                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4853                 kref_get(&resv->refs);
4854         }
4855
4856         /*
4857          * vma_lock structure for sharable mappings is vma specific.
4858          * Clear old pointer (if copied via vm_area_dup) and allocate
4859          * new structure.  Before clearing, make sure vma_lock is not
4860          * for this vma.
4861          */
4862         if (vma->vm_flags & VM_MAYSHARE) {
4863                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4864
4865                 if (vma_lock) {
4866                         if (vma_lock->vma != vma) {
4867                                 vma->vm_private_data = NULL;
4868                                 hugetlb_vma_lock_alloc(vma);
4869                         } else
4870                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4871                 } else
4872                         hugetlb_vma_lock_alloc(vma);
4873         }
4874 }
4875
4876 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4877 {
4878         struct hstate *h = hstate_vma(vma);
4879         struct resv_map *resv;
4880         struct hugepage_subpool *spool = subpool_vma(vma);
4881         unsigned long reserve, start, end;
4882         long gbl_reserve;
4883
4884         hugetlb_vma_lock_free(vma);
4885
4886         resv = vma_resv_map(vma);
4887         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4888                 return;
4889
4890         start = vma_hugecache_offset(h, vma, vma->vm_start);
4891         end = vma_hugecache_offset(h, vma, vma->vm_end);
4892
4893         reserve = (end - start) - region_count(resv, start, end);
4894         hugetlb_cgroup_uncharge_counter(resv, start, end);
4895         if (reserve) {
4896                 /*
4897                  * Decrement reserve counts.  The global reserve count may be
4898                  * adjusted if the subpool has a minimum size.
4899                  */
4900                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4901                 hugetlb_acct_memory(h, -gbl_reserve);
4902         }
4903
4904         kref_put(&resv->refs, resv_map_release);
4905 }
4906
4907 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4908 {
4909         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4910                 return -EINVAL;
4911
4912         /*
4913          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4914          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4915          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4916          */
4917         if (addr & ~PUD_MASK) {
4918                 /*
4919                  * hugetlb_vm_op_split is called right before we attempt to
4920                  * split the VMA. We will need to unshare PMDs in the old and
4921                  * new VMAs, so let's unshare before we split.
4922                  */
4923                 unsigned long floor = addr & PUD_MASK;
4924                 unsigned long ceil = floor + PUD_SIZE;
4925
4926                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4927                         hugetlb_unshare_pmds(vma, floor, ceil);
4928         }
4929
4930         return 0;
4931 }
4932
4933 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4934 {
4935         return huge_page_size(hstate_vma(vma));
4936 }
4937
4938 /*
4939  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4940  * handle_mm_fault() to try to instantiate regular-sized pages in the
4941  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4942  * this far.
4943  */
4944 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4945 {
4946         BUG();
4947         return 0;
4948 }
4949
4950 /*
4951  * When a new function is introduced to vm_operations_struct and added
4952  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4953  * This is because under System V memory model, mappings created via
4954  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4955  * their original vm_ops are overwritten with shm_vm_ops.
4956  */
4957 const struct vm_operations_struct hugetlb_vm_ops = {
4958         .fault = hugetlb_vm_op_fault,
4959         .open = hugetlb_vm_op_open,
4960         .close = hugetlb_vm_op_close,
4961         .may_split = hugetlb_vm_op_split,
4962         .pagesize = hugetlb_vm_op_pagesize,
4963 };
4964
4965 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4966                                 int writable)
4967 {
4968         pte_t entry;
4969         unsigned int shift = huge_page_shift(hstate_vma(vma));
4970
4971         if (writable) {
4972                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4973                                          vma->vm_page_prot)));
4974         } else {
4975                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4976                                            vma->vm_page_prot));
4977         }
4978         entry = pte_mkyoung(entry);
4979         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4980
4981         return entry;
4982 }
4983
4984 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4985                                    unsigned long address, pte_t *ptep)
4986 {
4987         pte_t entry;
4988
4989         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4990         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4991                 update_mmu_cache(vma, address, ptep);
4992 }
4993
4994 bool is_hugetlb_entry_migration(pte_t pte)
4995 {
4996         swp_entry_t swp;
4997
4998         if (huge_pte_none(pte) || pte_present(pte))
4999                 return false;
5000         swp = pte_to_swp_entry(pte);
5001         if (is_migration_entry(swp))
5002                 return true;
5003         else
5004                 return false;
5005 }
5006
5007 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5008 {
5009         swp_entry_t swp;
5010
5011         if (huge_pte_none(pte) || pte_present(pte))
5012                 return false;
5013         swp = pte_to_swp_entry(pte);
5014         if (is_hwpoison_entry(swp))
5015                 return true;
5016         else
5017                 return false;
5018 }
5019
5020 static void
5021 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5022                       struct folio *new_folio, pte_t old, unsigned long sz)
5023 {
5024         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5025
5026         __folio_mark_uptodate(new_folio);
5027         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5028         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5029                 newpte = huge_pte_mkuffd_wp(newpte);
5030         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5031         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5032         folio_set_hugetlb_migratable(new_folio);
5033 }
5034
5035 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5036                             struct vm_area_struct *dst_vma,
5037                             struct vm_area_struct *src_vma)
5038 {
5039         pte_t *src_pte, *dst_pte, entry;
5040         struct folio *pte_folio;
5041         unsigned long addr;
5042         bool cow = is_cow_mapping(src_vma->vm_flags);
5043         struct hstate *h = hstate_vma(src_vma);
5044         unsigned long sz = huge_page_size(h);
5045         unsigned long npages = pages_per_huge_page(h);
5046         struct mmu_notifier_range range;
5047         unsigned long last_addr_mask;
5048         int ret = 0;
5049
5050         if (cow) {
5051                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5052                                         src_vma->vm_start,
5053                                         src_vma->vm_end);
5054                 mmu_notifier_invalidate_range_start(&range);
5055                 vma_assert_write_locked(src_vma);
5056                 raw_write_seqcount_begin(&src->write_protect_seq);
5057         } else {
5058                 /*
5059                  * For shared mappings the vma lock must be held before
5060                  * calling hugetlb_walk() in the src vma. Otherwise, the
5061                  * returned ptep could go away if part of a shared pmd and
5062                  * another thread calls huge_pmd_unshare.
5063                  */
5064                 hugetlb_vma_lock_read(src_vma);
5065         }
5066
5067         last_addr_mask = hugetlb_mask_last_page(h);
5068         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5069                 spinlock_t *src_ptl, *dst_ptl;
5070                 src_pte = hugetlb_walk(src_vma, addr, sz);
5071                 if (!src_pte) {
5072                         addr |= last_addr_mask;
5073                         continue;
5074                 }
5075                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5076                 if (!dst_pte) {
5077                         ret = -ENOMEM;
5078                         break;
5079                 }
5080
5081                 /*
5082                  * If the pagetables are shared don't copy or take references.
5083                  *
5084                  * dst_pte == src_pte is the common case of src/dest sharing.
5085                  * However, src could have 'unshared' and dst shares with
5086                  * another vma. So page_count of ptep page is checked instead
5087                  * to reliably determine whether pte is shared.
5088                  */
5089                 if (page_count(virt_to_page(dst_pte)) > 1) {
5090                         addr |= last_addr_mask;
5091                         continue;
5092                 }
5093
5094                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5095                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5096                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5097                 entry = huge_ptep_get(src_pte);
5098 again:
5099                 if (huge_pte_none(entry)) {
5100                         /*
5101                          * Skip if src entry none.
5102                          */
5103                         ;
5104                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5105                         if (!userfaultfd_wp(dst_vma))
5106                                 entry = huge_pte_clear_uffd_wp(entry);
5107                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5108                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5109                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5110                         bool uffd_wp = pte_swp_uffd_wp(entry);
5111
5112                         if (!is_readable_migration_entry(swp_entry) && cow) {
5113                                 /*
5114                                  * COW mappings require pages in both
5115                                  * parent and child to be set to read.
5116                                  */
5117                                 swp_entry = make_readable_migration_entry(
5118                                                         swp_offset(swp_entry));
5119                                 entry = swp_entry_to_pte(swp_entry);
5120                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5121                                         entry = pte_swp_mkuffd_wp(entry);
5122                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5123                         }
5124                         if (!userfaultfd_wp(dst_vma))
5125                                 entry = huge_pte_clear_uffd_wp(entry);
5126                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5127                 } else if (unlikely(is_pte_marker(entry))) {
5128                         pte_marker marker = copy_pte_marker(
5129                                 pte_to_swp_entry(entry), dst_vma);
5130
5131                         if (marker)
5132                                 set_huge_pte_at(dst, addr, dst_pte,
5133                                                 make_pte_marker(marker), sz);
5134                 } else {
5135                         entry = huge_ptep_get(src_pte);
5136                         pte_folio = page_folio(pte_page(entry));
5137                         folio_get(pte_folio);
5138
5139                         /*
5140                          * Failing to duplicate the anon rmap is a rare case
5141                          * where we see pinned hugetlb pages while they're
5142                          * prone to COW. We need to do the COW earlier during
5143                          * fork.
5144                          *
5145                          * When pre-allocating the page or copying data, we
5146                          * need to be without the pgtable locks since we could
5147                          * sleep during the process.
5148                          */
5149                         if (!folio_test_anon(pte_folio)) {
5150                                 page_dup_file_rmap(&pte_folio->page, true);
5151                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5152                                                           true, src_vma)) {
5153                                 pte_t src_pte_old = entry;
5154                                 struct folio *new_folio;
5155
5156                                 spin_unlock(src_ptl);
5157                                 spin_unlock(dst_ptl);
5158                                 /* Do not use reserve as it's private owned */
5159                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5160                                 if (IS_ERR(new_folio)) {
5161                                         folio_put(pte_folio);
5162                                         ret = PTR_ERR(new_folio);
5163                                         break;
5164                                 }
5165                                 ret = copy_user_large_folio(new_folio,
5166                                                             pte_folio,
5167                                                             addr, dst_vma);
5168                                 folio_put(pte_folio);
5169                                 if (ret) {
5170                                         folio_put(new_folio);
5171                                         break;
5172                                 }
5173
5174                                 /* Install the new hugetlb folio if src pte stable */
5175                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5176                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5177                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5178                                 entry = huge_ptep_get(src_pte);
5179                                 if (!pte_same(src_pte_old, entry)) {
5180                                         restore_reserve_on_error(h, dst_vma, addr,
5181                                                                 new_folio);
5182                                         folio_put(new_folio);
5183                                         /* huge_ptep of dst_pte won't change as in child */
5184                                         goto again;
5185                                 }
5186                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5187                                                       new_folio, src_pte_old, sz);
5188                                 spin_unlock(src_ptl);
5189                                 spin_unlock(dst_ptl);
5190                                 continue;
5191                         }
5192
5193                         if (cow) {
5194                                 /*
5195                                  * No need to notify as we are downgrading page
5196                                  * table protection not changing it to point
5197                                  * to a new page.
5198                                  *
5199                                  * See Documentation/mm/mmu_notifier.rst
5200                                  */
5201                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5202                                 entry = huge_pte_wrprotect(entry);
5203                         }
5204
5205                         if (!userfaultfd_wp(dst_vma))
5206                                 entry = huge_pte_clear_uffd_wp(entry);
5207
5208                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5209                         hugetlb_count_add(npages, dst);
5210                 }
5211                 spin_unlock(src_ptl);
5212                 spin_unlock(dst_ptl);
5213         }
5214
5215         if (cow) {
5216                 raw_write_seqcount_end(&src->write_protect_seq);
5217                 mmu_notifier_invalidate_range_end(&range);
5218         } else {
5219                 hugetlb_vma_unlock_read(src_vma);
5220         }
5221
5222         return ret;
5223 }
5224
5225 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5226                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5227                           unsigned long sz)
5228 {
5229         struct hstate *h = hstate_vma(vma);
5230         struct mm_struct *mm = vma->vm_mm;
5231         spinlock_t *src_ptl, *dst_ptl;
5232         pte_t pte;
5233
5234         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5235         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5236
5237         /*
5238          * We don't have to worry about the ordering of src and dst ptlocks
5239          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5240          */
5241         if (src_ptl != dst_ptl)
5242                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5243
5244         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5245         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5246
5247         if (src_ptl != dst_ptl)
5248                 spin_unlock(src_ptl);
5249         spin_unlock(dst_ptl);
5250 }
5251
5252 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5253                              struct vm_area_struct *new_vma,
5254                              unsigned long old_addr, unsigned long new_addr,
5255                              unsigned long len)
5256 {
5257         struct hstate *h = hstate_vma(vma);
5258         struct address_space *mapping = vma->vm_file->f_mapping;
5259         unsigned long sz = huge_page_size(h);
5260         struct mm_struct *mm = vma->vm_mm;
5261         unsigned long old_end = old_addr + len;
5262         unsigned long last_addr_mask;
5263         pte_t *src_pte, *dst_pte;
5264         struct mmu_notifier_range range;
5265         bool shared_pmd = false;
5266
5267         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5268                                 old_end);
5269         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5270         /*
5271          * In case of shared PMDs, we should cover the maximum possible
5272          * range.
5273          */
5274         flush_cache_range(vma, range.start, range.end);
5275
5276         mmu_notifier_invalidate_range_start(&range);
5277         last_addr_mask = hugetlb_mask_last_page(h);
5278         /* Prevent race with file truncation */
5279         hugetlb_vma_lock_write(vma);
5280         i_mmap_lock_write(mapping);
5281         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5282                 src_pte = hugetlb_walk(vma, old_addr, sz);
5283                 if (!src_pte) {
5284                         old_addr |= last_addr_mask;
5285                         new_addr |= last_addr_mask;
5286                         continue;
5287                 }
5288                 if (huge_pte_none(huge_ptep_get(src_pte)))
5289                         continue;
5290
5291                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5292                         shared_pmd = true;
5293                         old_addr |= last_addr_mask;
5294                         new_addr |= last_addr_mask;
5295                         continue;
5296                 }
5297
5298                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5299                 if (!dst_pte)
5300                         break;
5301
5302                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5303         }
5304
5305         if (shared_pmd)
5306                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5307         else
5308                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5309         mmu_notifier_invalidate_range_end(&range);
5310         i_mmap_unlock_write(mapping);
5311         hugetlb_vma_unlock_write(vma);
5312
5313         return len + old_addr - old_end;
5314 }
5315
5316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5317                             unsigned long start, unsigned long end,
5318                             struct page *ref_page, zap_flags_t zap_flags)
5319 {
5320         struct mm_struct *mm = vma->vm_mm;
5321         unsigned long address;
5322         pte_t *ptep;
5323         pte_t pte;
5324         spinlock_t *ptl;
5325         struct page *page;
5326         struct hstate *h = hstate_vma(vma);
5327         unsigned long sz = huge_page_size(h);
5328         unsigned long last_addr_mask;
5329         bool force_flush = false;
5330
5331         WARN_ON(!is_vm_hugetlb_page(vma));
5332         BUG_ON(start & ~huge_page_mask(h));
5333         BUG_ON(end & ~huge_page_mask(h));
5334
5335         /*
5336          * This is a hugetlb vma, all the pte entries should point
5337          * to huge page.
5338          */
5339         tlb_change_page_size(tlb, sz);
5340         tlb_start_vma(tlb, vma);
5341
5342         last_addr_mask = hugetlb_mask_last_page(h);
5343         address = start;
5344         for (; address < end; address += sz) {
5345                 ptep = hugetlb_walk(vma, address, sz);
5346                 if (!ptep) {
5347                         address |= last_addr_mask;
5348                         continue;
5349                 }
5350
5351                 ptl = huge_pte_lock(h, mm, ptep);
5352                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5353                         spin_unlock(ptl);
5354                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5355                         force_flush = true;
5356                         address |= last_addr_mask;
5357                         continue;
5358                 }
5359
5360                 pte = huge_ptep_get(ptep);
5361                 if (huge_pte_none(pte)) {
5362                         spin_unlock(ptl);
5363                         continue;
5364                 }
5365
5366                 /*
5367                  * Migrating hugepage or HWPoisoned hugepage is already
5368                  * unmapped and its refcount is dropped, so just clear pte here.
5369                  */
5370                 if (unlikely(!pte_present(pte))) {
5371                         /*
5372                          * If the pte was wr-protected by uffd-wp in any of the
5373                          * swap forms, meanwhile the caller does not want to
5374                          * drop the uffd-wp bit in this zap, then replace the
5375                          * pte with a marker.
5376                          */
5377                         if (pte_swp_uffd_wp_any(pte) &&
5378                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5379                                 set_huge_pte_at(mm, address, ptep,
5380                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5381                                                 sz);
5382                         else
5383                                 huge_pte_clear(mm, address, ptep, sz);
5384                         spin_unlock(ptl);
5385                         continue;
5386                 }
5387
5388                 page = pte_page(pte);
5389                 /*
5390                  * If a reference page is supplied, it is because a specific
5391                  * page is being unmapped, not a range. Ensure the page we
5392                  * are about to unmap is the actual page of interest.
5393                  */
5394                 if (ref_page) {
5395                         if (page != ref_page) {
5396                                 spin_unlock(ptl);
5397                                 continue;
5398                         }
5399                         /*
5400                          * Mark the VMA as having unmapped its page so that
5401                          * future faults in this VMA will fail rather than
5402                          * looking like data was lost
5403                          */
5404                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5405                 }
5406
5407                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5408                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5409                 if (huge_pte_dirty(pte))
5410                         set_page_dirty(page);
5411                 /* Leave a uffd-wp pte marker if needed */
5412                 if (huge_pte_uffd_wp(pte) &&
5413                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5414                         set_huge_pte_at(mm, address, ptep,
5415                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5416                                         sz);
5417                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5418                 page_remove_rmap(page, vma, true);
5419
5420                 spin_unlock(ptl);
5421                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5422                 /*
5423                  * Bail out after unmapping reference page if supplied
5424                  */
5425                 if (ref_page)
5426                         break;
5427         }
5428         tlb_end_vma(tlb, vma);
5429
5430         /*
5431          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5432          * could defer the flush until now, since by holding i_mmap_rwsem we
5433          * guaranteed that the last refernece would not be dropped. But we must
5434          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5435          * dropped and the last reference to the shared PMDs page might be
5436          * dropped as well.
5437          *
5438          * In theory we could defer the freeing of the PMD pages as well, but
5439          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5440          * detect sharing, so we cannot defer the release of the page either.
5441          * Instead, do flush now.
5442          */
5443         if (force_flush)
5444                 tlb_flush_mmu_tlbonly(tlb);
5445 }
5446
5447 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5448                          unsigned long *start, unsigned long *end)
5449 {
5450         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5451                 return;
5452
5453         adjust_range_if_pmd_sharing_possible(vma, start, end);
5454         hugetlb_vma_lock_write(vma);
5455         if (vma->vm_file)
5456                 i_mmap_lock_write(vma->vm_file->f_mapping);
5457 }
5458
5459 void __hugetlb_zap_end(struct vm_area_struct *vma,
5460                        struct zap_details *details)
5461 {
5462         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5463
5464         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5465                 return;
5466
5467         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5468                 /*
5469                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5470                  * When the vma_lock is freed, this makes the vma ineligible
5471                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5472                  * pmd sharing.  This is important as page tables for this
5473                  * unmapped range will be asynchrously deleted.  If the page
5474                  * tables are shared, there will be issues when accessed by
5475                  * someone else.
5476                  */
5477                 __hugetlb_vma_unlock_write_free(vma);
5478         } else {
5479                 hugetlb_vma_unlock_write(vma);
5480         }
5481
5482         if (vma->vm_file)
5483                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5484 }
5485
5486 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5487                           unsigned long end, struct page *ref_page,
5488                           zap_flags_t zap_flags)
5489 {
5490         struct mmu_notifier_range range;
5491         struct mmu_gather tlb;
5492
5493         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5494                                 start, end);
5495         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5496         mmu_notifier_invalidate_range_start(&range);
5497         tlb_gather_mmu(&tlb, vma->vm_mm);
5498
5499         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5500
5501         mmu_notifier_invalidate_range_end(&range);
5502         tlb_finish_mmu(&tlb);
5503 }
5504
5505 /*
5506  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5507  * mapping it owns the reserve page for. The intention is to unmap the page
5508  * from other VMAs and let the children be SIGKILLed if they are faulting the
5509  * same region.
5510  */
5511 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5512                               struct page *page, unsigned long address)
5513 {
5514         struct hstate *h = hstate_vma(vma);
5515         struct vm_area_struct *iter_vma;
5516         struct address_space *mapping;
5517         pgoff_t pgoff;
5518
5519         /*
5520          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5521          * from page cache lookup which is in HPAGE_SIZE units.
5522          */
5523         address = address & huge_page_mask(h);
5524         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5525                         vma->vm_pgoff;
5526         mapping = vma->vm_file->f_mapping;
5527
5528         /*
5529          * Take the mapping lock for the duration of the table walk. As
5530          * this mapping should be shared between all the VMAs,
5531          * __unmap_hugepage_range() is called as the lock is already held
5532          */
5533         i_mmap_lock_write(mapping);
5534         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5535                 /* Do not unmap the current VMA */
5536                 if (iter_vma == vma)
5537                         continue;
5538
5539                 /*
5540                  * Shared VMAs have their own reserves and do not affect
5541                  * MAP_PRIVATE accounting but it is possible that a shared
5542                  * VMA is using the same page so check and skip such VMAs.
5543                  */
5544                 if (iter_vma->vm_flags & VM_MAYSHARE)
5545                         continue;
5546
5547                 /*
5548                  * Unmap the page from other VMAs without their own reserves.
5549                  * They get marked to be SIGKILLed if they fault in these
5550                  * areas. This is because a future no-page fault on this VMA
5551                  * could insert a zeroed page instead of the data existing
5552                  * from the time of fork. This would look like data corruption
5553                  */
5554                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5555                         unmap_hugepage_range(iter_vma, address,
5556                                              address + huge_page_size(h), page, 0);
5557         }
5558         i_mmap_unlock_write(mapping);
5559 }
5560
5561 /*
5562  * hugetlb_wp() should be called with page lock of the original hugepage held.
5563  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5564  * cannot race with other handlers or page migration.
5565  * Keep the pte_same checks anyway to make transition from the mutex easier.
5566  */
5567 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5568                        unsigned long address, pte_t *ptep, unsigned int flags,
5569                        struct folio *pagecache_folio, spinlock_t *ptl)
5570 {
5571         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5572         pte_t pte = huge_ptep_get(ptep);
5573         struct hstate *h = hstate_vma(vma);
5574         struct folio *old_folio;
5575         struct folio *new_folio;
5576         int outside_reserve = 0;
5577         vm_fault_t ret = 0;
5578         unsigned long haddr = address & huge_page_mask(h);
5579         struct mmu_notifier_range range;
5580
5581         /*
5582          * Never handle CoW for uffd-wp protected pages.  It should be only
5583          * handled when the uffd-wp protection is removed.
5584          *
5585          * Note that only the CoW optimization path (in hugetlb_no_page())
5586          * can trigger this, because hugetlb_fault() will always resolve
5587          * uffd-wp bit first.
5588          */
5589         if (!unshare && huge_pte_uffd_wp(pte))
5590                 return 0;
5591
5592         /*
5593          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5594          * PTE mapped R/O such as maybe_mkwrite() would do.
5595          */
5596         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5597                 return VM_FAULT_SIGSEGV;
5598
5599         /* Let's take out MAP_SHARED mappings first. */
5600         if (vma->vm_flags & VM_MAYSHARE) {
5601                 set_huge_ptep_writable(vma, haddr, ptep);
5602                 return 0;
5603         }
5604
5605         old_folio = page_folio(pte_page(pte));
5606
5607         delayacct_wpcopy_start();
5608
5609 retry_avoidcopy:
5610         /*
5611          * If no-one else is actually using this page, we're the exclusive
5612          * owner and can reuse this page.
5613          */
5614         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5615                 if (!PageAnonExclusive(&old_folio->page))
5616                         page_move_anon_rmap(&old_folio->page, vma);
5617                 if (likely(!unshare))
5618                         set_huge_ptep_writable(vma, haddr, ptep);
5619
5620                 delayacct_wpcopy_end();
5621                 return 0;
5622         }
5623         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5624                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5625
5626         /*
5627          * If the process that created a MAP_PRIVATE mapping is about to
5628          * perform a COW due to a shared page count, attempt to satisfy
5629          * the allocation without using the existing reserves. The pagecache
5630          * page is used to determine if the reserve at this address was
5631          * consumed or not. If reserves were used, a partial faulted mapping
5632          * at the time of fork() could consume its reserves on COW instead
5633          * of the full address range.
5634          */
5635         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5636                         old_folio != pagecache_folio)
5637                 outside_reserve = 1;
5638
5639         folio_get(old_folio);
5640
5641         /*
5642          * Drop page table lock as buddy allocator may be called. It will
5643          * be acquired again before returning to the caller, as expected.
5644          */
5645         spin_unlock(ptl);
5646         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5647
5648         if (IS_ERR(new_folio)) {
5649                 /*
5650                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5651                  * it is due to references held by a child and an insufficient
5652                  * huge page pool. To guarantee the original mappers
5653                  * reliability, unmap the page from child processes. The child
5654                  * may get SIGKILLed if it later faults.
5655                  */
5656                 if (outside_reserve) {
5657                         struct address_space *mapping = vma->vm_file->f_mapping;
5658                         pgoff_t idx;
5659                         u32 hash;
5660
5661                         folio_put(old_folio);
5662                         /*
5663                          * Drop hugetlb_fault_mutex and vma_lock before
5664                          * unmapping.  unmapping needs to hold vma_lock
5665                          * in write mode.  Dropping vma_lock in read mode
5666                          * here is OK as COW mappings do not interact with
5667                          * PMD sharing.
5668                          *
5669                          * Reacquire both after unmap operation.
5670                          */
5671                         idx = vma_hugecache_offset(h, vma, haddr);
5672                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5673                         hugetlb_vma_unlock_read(vma);
5674                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5675
5676                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5677
5678                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5679                         hugetlb_vma_lock_read(vma);
5680                         spin_lock(ptl);
5681                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5682                         if (likely(ptep &&
5683                                    pte_same(huge_ptep_get(ptep), pte)))
5684                                 goto retry_avoidcopy;
5685                         /*
5686                          * race occurs while re-acquiring page table
5687                          * lock, and our job is done.
5688                          */
5689                         delayacct_wpcopy_end();
5690                         return 0;
5691                 }
5692
5693                 ret = vmf_error(PTR_ERR(new_folio));
5694                 goto out_release_old;
5695         }
5696
5697         /*
5698          * When the original hugepage is shared one, it does not have
5699          * anon_vma prepared.
5700          */
5701         if (unlikely(anon_vma_prepare(vma))) {
5702                 ret = VM_FAULT_OOM;
5703                 goto out_release_all;
5704         }
5705
5706         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5707                 ret = VM_FAULT_HWPOISON_LARGE;
5708                 goto out_release_all;
5709         }
5710         __folio_mark_uptodate(new_folio);
5711
5712         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5713                                 haddr + huge_page_size(h));
5714         mmu_notifier_invalidate_range_start(&range);
5715
5716         /*
5717          * Retake the page table lock to check for racing updates
5718          * before the page tables are altered
5719          */
5720         spin_lock(ptl);
5721         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5722         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5723                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5724
5725                 /* Break COW or unshare */
5726                 huge_ptep_clear_flush(vma, haddr, ptep);
5727                 page_remove_rmap(&old_folio->page, vma, true);
5728                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5729                 if (huge_pte_uffd_wp(pte))
5730                         newpte = huge_pte_mkuffd_wp(newpte);
5731                 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5732                 folio_set_hugetlb_migratable(new_folio);
5733                 /* Make the old page be freed below */
5734                 new_folio = old_folio;
5735         }
5736         spin_unlock(ptl);
5737         mmu_notifier_invalidate_range_end(&range);
5738 out_release_all:
5739         /*
5740          * No restore in case of successful pagetable update (Break COW or
5741          * unshare)
5742          */
5743         if (new_folio != old_folio)
5744                 restore_reserve_on_error(h, vma, haddr, new_folio);
5745         folio_put(new_folio);
5746 out_release_old:
5747         folio_put(old_folio);
5748
5749         spin_lock(ptl); /* Caller expects lock to be held */
5750
5751         delayacct_wpcopy_end();
5752         return ret;
5753 }
5754
5755 /*
5756  * Return whether there is a pagecache page to back given address within VMA.
5757  */
5758 static bool hugetlbfs_pagecache_present(struct hstate *h,
5759                         struct vm_area_struct *vma, unsigned long address)
5760 {
5761         struct address_space *mapping = vma->vm_file->f_mapping;
5762         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5763         struct folio *folio;
5764
5765         folio = filemap_get_folio(mapping, idx);
5766         if (IS_ERR(folio))
5767                 return false;
5768         folio_put(folio);
5769         return true;
5770 }
5771
5772 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5773                            pgoff_t idx)
5774 {
5775         struct inode *inode = mapping->host;
5776         struct hstate *h = hstate_inode(inode);
5777         int err;
5778
5779         __folio_set_locked(folio);
5780         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5781
5782         if (unlikely(err)) {
5783                 __folio_clear_locked(folio);
5784                 return err;
5785         }
5786         folio_clear_hugetlb_restore_reserve(folio);
5787
5788         /*
5789          * mark folio dirty so that it will not be removed from cache/file
5790          * by non-hugetlbfs specific code paths.
5791          */
5792         folio_mark_dirty(folio);
5793
5794         spin_lock(&inode->i_lock);
5795         inode->i_blocks += blocks_per_huge_page(h);
5796         spin_unlock(&inode->i_lock);
5797         return 0;
5798 }
5799
5800 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5801                                                   struct address_space *mapping,
5802                                                   pgoff_t idx,
5803                                                   unsigned int flags,
5804                                                   unsigned long haddr,
5805                                                   unsigned long addr,
5806                                                   unsigned long reason)
5807 {
5808         u32 hash;
5809         struct vm_fault vmf = {
5810                 .vma = vma,
5811                 .address = haddr,
5812                 .real_address = addr,
5813                 .flags = flags,
5814
5815                 /*
5816                  * Hard to debug if it ends up being
5817                  * used by a callee that assumes
5818                  * something about the other
5819                  * uninitialized fields... same as in
5820                  * memory.c
5821                  */
5822         };
5823
5824         /*
5825          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5826          * userfault. Also mmap_lock could be dropped due to handling
5827          * userfault, any vma operation should be careful from here.
5828          */
5829         hugetlb_vma_unlock_read(vma);
5830         hash = hugetlb_fault_mutex_hash(mapping, idx);
5831         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5832         return handle_userfault(&vmf, reason);
5833 }
5834
5835 /*
5836  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5837  * false if pte changed or is changing.
5838  */
5839 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5840                                pte_t *ptep, pte_t old_pte)
5841 {
5842         spinlock_t *ptl;
5843         bool same;
5844
5845         ptl = huge_pte_lock(h, mm, ptep);
5846         same = pte_same(huge_ptep_get(ptep), old_pte);
5847         spin_unlock(ptl);
5848
5849         return same;
5850 }
5851
5852 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5853                         struct vm_area_struct *vma,
5854                         struct address_space *mapping, pgoff_t idx,
5855                         unsigned long address, pte_t *ptep,
5856                         pte_t old_pte, unsigned int flags)
5857 {
5858         struct hstate *h = hstate_vma(vma);
5859         vm_fault_t ret = VM_FAULT_SIGBUS;
5860         int anon_rmap = 0;
5861         unsigned long size;
5862         struct folio *folio;
5863         pte_t new_pte;
5864         spinlock_t *ptl;
5865         unsigned long haddr = address & huge_page_mask(h);
5866         bool new_folio, new_pagecache_folio = false;
5867         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5868
5869         /*
5870          * Currently, we are forced to kill the process in the event the
5871          * original mapper has unmapped pages from the child due to a failed
5872          * COW/unsharing. Warn that such a situation has occurred as it may not
5873          * be obvious.
5874          */
5875         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5876                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5877                            current->pid);
5878                 goto out;
5879         }
5880
5881         /*
5882          * Use page lock to guard against racing truncation
5883          * before we get page_table_lock.
5884          */
5885         new_folio = false;
5886         folio = filemap_lock_folio(mapping, idx);
5887         if (IS_ERR(folio)) {
5888                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5889                 if (idx >= size)
5890                         goto out;
5891                 /* Check for page in userfault range */
5892                 if (userfaultfd_missing(vma)) {
5893                         /*
5894                          * Since hugetlb_no_page() was examining pte
5895                          * without pgtable lock, we need to re-test under
5896                          * lock because the pte may not be stable and could
5897                          * have changed from under us.  Try to detect
5898                          * either changed or during-changing ptes and retry
5899                          * properly when needed.
5900                          *
5901                          * Note that userfaultfd is actually fine with
5902                          * false positives (e.g. caused by pte changed),
5903                          * but not wrong logical events (e.g. caused by
5904                          * reading a pte during changing).  The latter can
5905                          * confuse the userspace, so the strictness is very
5906                          * much preferred.  E.g., MISSING event should
5907                          * never happen on the page after UFFDIO_COPY has
5908                          * correctly installed the page and returned.
5909                          */
5910                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5911                                 ret = 0;
5912                                 goto out;
5913                         }
5914
5915                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5916                                                         haddr, address,
5917                                                         VM_UFFD_MISSING);
5918                 }
5919
5920                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5921                 if (IS_ERR(folio)) {
5922                         /*
5923                          * Returning error will result in faulting task being
5924                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5925                          * tasks from racing to fault in the same page which
5926                          * could result in false unable to allocate errors.
5927                          * Page migration does not take the fault mutex, but
5928                          * does a clear then write of pte's under page table
5929                          * lock.  Page fault code could race with migration,
5930                          * notice the clear pte and try to allocate a page
5931                          * here.  Before returning error, get ptl and make
5932                          * sure there really is no pte entry.
5933                          */
5934                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5935                                 ret = vmf_error(PTR_ERR(folio));
5936                         else
5937                                 ret = 0;
5938                         goto out;
5939                 }
5940                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5941                 __folio_mark_uptodate(folio);
5942                 new_folio = true;
5943
5944                 if (vma->vm_flags & VM_MAYSHARE) {
5945                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5946                         if (err) {
5947                                 /*
5948                                  * err can't be -EEXIST which implies someone
5949                                  * else consumed the reservation since hugetlb
5950                                  * fault mutex is held when add a hugetlb page
5951                                  * to the page cache. So it's safe to call
5952                                  * restore_reserve_on_error() here.
5953                                  */
5954                                 restore_reserve_on_error(h, vma, haddr, folio);
5955                                 folio_put(folio);
5956                                 goto out;
5957                         }
5958                         new_pagecache_folio = true;
5959                 } else {
5960                         folio_lock(folio);
5961                         if (unlikely(anon_vma_prepare(vma))) {
5962                                 ret = VM_FAULT_OOM;
5963                                 goto backout_unlocked;
5964                         }
5965                         anon_rmap = 1;
5966                 }
5967         } else {
5968                 /*
5969                  * If memory error occurs between mmap() and fault, some process
5970                  * don't have hwpoisoned swap entry for errored virtual address.
5971                  * So we need to block hugepage fault by PG_hwpoison bit check.
5972                  */
5973                 if (unlikely(folio_test_hwpoison(folio))) {
5974                         ret = VM_FAULT_HWPOISON_LARGE |
5975                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5976                         goto backout_unlocked;
5977                 }
5978
5979                 /* Check for page in userfault range. */
5980                 if (userfaultfd_minor(vma)) {
5981                         folio_unlock(folio);
5982                         folio_put(folio);
5983                         /* See comment in userfaultfd_missing() block above */
5984                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5985                                 ret = 0;
5986                                 goto out;
5987                         }
5988                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5989                                                         haddr, address,
5990                                                         VM_UFFD_MINOR);
5991                 }
5992         }
5993
5994         /*
5995          * If we are going to COW a private mapping later, we examine the
5996          * pending reservations for this page now. This will ensure that
5997          * any allocations necessary to record that reservation occur outside
5998          * the spinlock.
5999          */
6000         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6001                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6002                         ret = VM_FAULT_OOM;
6003                         goto backout_unlocked;
6004                 }
6005                 /* Just decrements count, does not deallocate */
6006                 vma_end_reservation(h, vma, haddr);
6007         }
6008
6009         ptl = huge_pte_lock(h, mm, ptep);
6010         ret = 0;
6011         /* If pte changed from under us, retry */
6012         if (!pte_same(huge_ptep_get(ptep), old_pte))
6013                 goto backout;
6014
6015         if (anon_rmap)
6016                 hugepage_add_new_anon_rmap(folio, vma, haddr);
6017         else
6018                 page_dup_file_rmap(&folio->page, true);
6019         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6020                                 && (vma->vm_flags & VM_SHARED)));
6021         /*
6022          * If this pte was previously wr-protected, keep it wr-protected even
6023          * if populated.
6024          */
6025         if (unlikely(pte_marker_uffd_wp(old_pte)))
6026                 new_pte = huge_pte_mkuffd_wp(new_pte);
6027         set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6028
6029         hugetlb_count_add(pages_per_huge_page(h), mm);
6030         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6031                 /* Optimization, do the COW without a second fault */
6032                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6033         }
6034
6035         spin_unlock(ptl);
6036
6037         /*
6038          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6039          * found in the pagecache may not have hugetlb_migratable if they have
6040          * been isolated for migration.
6041          */
6042         if (new_folio)
6043                 folio_set_hugetlb_migratable(folio);
6044
6045         folio_unlock(folio);
6046 out:
6047         hugetlb_vma_unlock_read(vma);
6048         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6049         return ret;
6050
6051 backout:
6052         spin_unlock(ptl);
6053 backout_unlocked:
6054         if (new_folio && !new_pagecache_folio)
6055                 restore_reserve_on_error(h, vma, haddr, folio);
6056
6057         folio_unlock(folio);
6058         folio_put(folio);
6059         goto out;
6060 }
6061
6062 #ifdef CONFIG_SMP
6063 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6064 {
6065         unsigned long key[2];
6066         u32 hash;
6067
6068         key[0] = (unsigned long) mapping;
6069         key[1] = idx;
6070
6071         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6072
6073         return hash & (num_fault_mutexes - 1);
6074 }
6075 #else
6076 /*
6077  * For uniprocessor systems we always use a single mutex, so just
6078  * return 0 and avoid the hashing overhead.
6079  */
6080 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6081 {
6082         return 0;
6083 }
6084 #endif
6085
6086 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6087                         unsigned long address, unsigned int flags)
6088 {
6089         pte_t *ptep, entry;
6090         spinlock_t *ptl;
6091         vm_fault_t ret;
6092         u32 hash;
6093         pgoff_t idx;
6094         struct folio *folio = NULL;
6095         struct folio *pagecache_folio = NULL;
6096         struct hstate *h = hstate_vma(vma);
6097         struct address_space *mapping;
6098         int need_wait_lock = 0;
6099         unsigned long haddr = address & huge_page_mask(h);
6100
6101         /* TODO: Handle faults under the VMA lock */
6102         if (flags & FAULT_FLAG_VMA_LOCK) {
6103                 vma_end_read(vma);
6104                 return VM_FAULT_RETRY;
6105         }
6106
6107         /*
6108          * Serialize hugepage allocation and instantiation, so that we don't
6109          * get spurious allocation failures if two CPUs race to instantiate
6110          * the same page in the page cache.
6111          */
6112         mapping = vma->vm_file->f_mapping;
6113         idx = vma_hugecache_offset(h, vma, haddr);
6114         hash = hugetlb_fault_mutex_hash(mapping, idx);
6115         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6116
6117         /*
6118          * Acquire vma lock before calling huge_pte_alloc and hold
6119          * until finished with ptep.  This prevents huge_pmd_unshare from
6120          * being called elsewhere and making the ptep no longer valid.
6121          */
6122         hugetlb_vma_lock_read(vma);
6123         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6124         if (!ptep) {
6125                 hugetlb_vma_unlock_read(vma);
6126                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6127                 return VM_FAULT_OOM;
6128         }
6129
6130         entry = huge_ptep_get(ptep);
6131         if (huge_pte_none_mostly(entry)) {
6132                 if (is_pte_marker(entry)) {
6133                         pte_marker marker =
6134                                 pte_marker_get(pte_to_swp_entry(entry));
6135
6136                         if (marker & PTE_MARKER_POISONED) {
6137                                 ret = VM_FAULT_HWPOISON_LARGE;
6138                                 goto out_mutex;
6139                         }
6140                 }
6141
6142                 /*
6143                  * Other PTE markers should be handled the same way as none PTE.
6144                  *
6145                  * hugetlb_no_page will drop vma lock and hugetlb fault
6146                  * mutex internally, which make us return immediately.
6147                  */
6148                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6149                                       entry, flags);
6150         }
6151
6152         ret = 0;
6153
6154         /*
6155          * entry could be a migration/hwpoison entry at this point, so this
6156          * check prevents the kernel from going below assuming that we have
6157          * an active hugepage in pagecache. This goto expects the 2nd page
6158          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6159          * properly handle it.
6160          */
6161         if (!pte_present(entry)) {
6162                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6163                         /*
6164                          * Release the hugetlb fault lock now, but retain
6165                          * the vma lock, because it is needed to guard the
6166                          * huge_pte_lockptr() later in
6167                          * migration_entry_wait_huge(). The vma lock will
6168                          * be released there.
6169                          */
6170                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6171                         migration_entry_wait_huge(vma, ptep);
6172                         return 0;
6173                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6174                         ret = VM_FAULT_HWPOISON_LARGE |
6175                             VM_FAULT_SET_HINDEX(hstate_index(h));
6176                 goto out_mutex;
6177         }
6178
6179         /*
6180          * If we are going to COW/unshare the mapping later, we examine the
6181          * pending reservations for this page now. This will ensure that any
6182          * allocations necessary to record that reservation occur outside the
6183          * spinlock. Also lookup the pagecache page now as it is used to
6184          * determine if a reservation has been consumed.
6185          */
6186         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6187             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6188                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6189                         ret = VM_FAULT_OOM;
6190                         goto out_mutex;
6191                 }
6192                 /* Just decrements count, does not deallocate */
6193                 vma_end_reservation(h, vma, haddr);
6194
6195                 pagecache_folio = filemap_lock_folio(mapping, idx);
6196                 if (IS_ERR(pagecache_folio))
6197                         pagecache_folio = NULL;
6198         }
6199
6200         ptl = huge_pte_lock(h, mm, ptep);
6201
6202         /* Check for a racing update before calling hugetlb_wp() */
6203         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6204                 goto out_ptl;
6205
6206         /* Handle userfault-wp first, before trying to lock more pages */
6207         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6208             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6209                 struct vm_fault vmf = {
6210                         .vma = vma,
6211                         .address = haddr,
6212                         .real_address = address,
6213                         .flags = flags,
6214                 };
6215
6216                 spin_unlock(ptl);
6217                 if (pagecache_folio) {
6218                         folio_unlock(pagecache_folio);
6219                         folio_put(pagecache_folio);
6220                 }
6221                 hugetlb_vma_unlock_read(vma);
6222                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6223                 return handle_userfault(&vmf, VM_UFFD_WP);
6224         }
6225
6226         /*
6227          * hugetlb_wp() requires page locks of pte_page(entry) and
6228          * pagecache_folio, so here we need take the former one
6229          * when folio != pagecache_folio or !pagecache_folio.
6230          */
6231         folio = page_folio(pte_page(entry));
6232         if (folio != pagecache_folio)
6233                 if (!folio_trylock(folio)) {
6234                         need_wait_lock = 1;
6235                         goto out_ptl;
6236                 }
6237
6238         folio_get(folio);
6239
6240         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6241                 if (!huge_pte_write(entry)) {
6242                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6243                                          pagecache_folio, ptl);
6244                         goto out_put_page;
6245                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6246                         entry = huge_pte_mkdirty(entry);
6247                 }
6248         }
6249         entry = pte_mkyoung(entry);
6250         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6251                                                 flags & FAULT_FLAG_WRITE))
6252                 update_mmu_cache(vma, haddr, ptep);
6253 out_put_page:
6254         if (folio != pagecache_folio)
6255                 folio_unlock(folio);
6256         folio_put(folio);
6257 out_ptl:
6258         spin_unlock(ptl);
6259
6260         if (pagecache_folio) {
6261                 folio_unlock(pagecache_folio);
6262                 folio_put(pagecache_folio);
6263         }
6264 out_mutex:
6265         hugetlb_vma_unlock_read(vma);
6266         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6267         /*
6268          * Generally it's safe to hold refcount during waiting page lock. But
6269          * here we just wait to defer the next page fault to avoid busy loop and
6270          * the page is not used after unlocked before returning from the current
6271          * page fault. So we are safe from accessing freed page, even if we wait
6272          * here without taking refcount.
6273          */
6274         if (need_wait_lock)
6275                 folio_wait_locked(folio);
6276         return ret;
6277 }
6278
6279 #ifdef CONFIG_USERFAULTFD
6280 /*
6281  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6282  * with modifications for hugetlb pages.
6283  */
6284 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6285                              struct vm_area_struct *dst_vma,
6286                              unsigned long dst_addr,
6287                              unsigned long src_addr,
6288                              uffd_flags_t flags,
6289                              struct folio **foliop)
6290 {
6291         struct mm_struct *dst_mm = dst_vma->vm_mm;
6292         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6293         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6294         struct hstate *h = hstate_vma(dst_vma);
6295         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6296         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6297         unsigned long size;
6298         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6299         pte_t _dst_pte;
6300         spinlock_t *ptl;
6301         int ret = -ENOMEM;
6302         struct folio *folio;
6303         int writable;
6304         bool folio_in_pagecache = false;
6305
6306         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6307                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6308
6309                 /* Don't overwrite any existing PTEs (even markers) */
6310                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6311                         spin_unlock(ptl);
6312                         return -EEXIST;
6313                 }
6314
6315                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6316                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6317                                 huge_page_size(h));
6318
6319                 /* No need to invalidate - it was non-present before */
6320                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6321
6322                 spin_unlock(ptl);
6323                 return 0;
6324         }
6325
6326         if (is_continue) {
6327                 ret = -EFAULT;
6328                 folio = filemap_lock_folio(mapping, idx);
6329                 if (IS_ERR(folio))
6330                         goto out;
6331                 folio_in_pagecache = true;
6332         } else if (!*foliop) {
6333                 /* If a folio already exists, then it's UFFDIO_COPY for
6334                  * a non-missing case. Return -EEXIST.
6335                  */
6336                 if (vm_shared &&
6337                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6338                         ret = -EEXIST;
6339                         goto out;
6340                 }
6341
6342                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343                 if (IS_ERR(folio)) {
6344                         ret = -ENOMEM;
6345                         goto out;
6346                 }
6347
6348                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6349                                            false);
6350
6351                 /* fallback to copy_from_user outside mmap_lock */
6352                 if (unlikely(ret)) {
6353                         ret = -ENOENT;
6354                         /* Free the allocated folio which may have
6355                          * consumed a reservation.
6356                          */
6357                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6358                         folio_put(folio);
6359
6360                         /* Allocate a temporary folio to hold the copied
6361                          * contents.
6362                          */
6363                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6364                         if (!folio) {
6365                                 ret = -ENOMEM;
6366                                 goto out;
6367                         }
6368                         *foliop = folio;
6369                         /* Set the outparam foliop and return to the caller to
6370                          * copy the contents outside the lock. Don't free the
6371                          * folio.
6372                          */
6373                         goto out;
6374                 }
6375         } else {
6376                 if (vm_shared &&
6377                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6378                         folio_put(*foliop);
6379                         ret = -EEXIST;
6380                         *foliop = NULL;
6381                         goto out;
6382                 }
6383
6384                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6385                 if (IS_ERR(folio)) {
6386                         folio_put(*foliop);
6387                         ret = -ENOMEM;
6388                         *foliop = NULL;
6389                         goto out;
6390                 }
6391                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6392                 folio_put(*foliop);
6393                 *foliop = NULL;
6394                 if (ret) {
6395                         folio_put(folio);
6396                         goto out;
6397                 }
6398         }
6399
6400         /*
6401          * The memory barrier inside __folio_mark_uptodate makes sure that
6402          * preceding stores to the page contents become visible before
6403          * the set_pte_at() write.
6404          */
6405         __folio_mark_uptodate(folio);
6406
6407         /* Add shared, newly allocated pages to the page cache. */
6408         if (vm_shared && !is_continue) {
6409                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6410                 ret = -EFAULT;
6411                 if (idx >= size)
6412                         goto out_release_nounlock;
6413
6414                 /*
6415                  * Serialization between remove_inode_hugepages() and
6416                  * hugetlb_add_to_page_cache() below happens through the
6417                  * hugetlb_fault_mutex_table that here must be hold by
6418                  * the caller.
6419                  */
6420                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6421                 if (ret)
6422                         goto out_release_nounlock;
6423                 folio_in_pagecache = true;
6424         }
6425
6426         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6427
6428         ret = -EIO;
6429         if (folio_test_hwpoison(folio))
6430                 goto out_release_unlock;
6431
6432         /*
6433          * We allow to overwrite a pte marker: consider when both MISSING|WP
6434          * registered, we firstly wr-protect a none pte which has no page cache
6435          * page backing it, then access the page.
6436          */
6437         ret = -EEXIST;
6438         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6439                 goto out_release_unlock;
6440
6441         if (folio_in_pagecache)
6442                 page_dup_file_rmap(&folio->page, true);
6443         else
6444                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6445
6446         /*
6447          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6448          * with wp flag set, don't set pte write bit.
6449          */
6450         if (wp_enabled || (is_continue && !vm_shared))
6451                 writable = 0;
6452         else
6453                 writable = dst_vma->vm_flags & VM_WRITE;
6454
6455         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6456         /*
6457          * Always mark UFFDIO_COPY page dirty; note that this may not be
6458          * extremely important for hugetlbfs for now since swapping is not
6459          * supported, but we should still be clear in that this page cannot be
6460          * thrown away at will, even if write bit not set.
6461          */
6462         _dst_pte = huge_pte_mkdirty(_dst_pte);
6463         _dst_pte = pte_mkyoung(_dst_pte);
6464
6465         if (wp_enabled)
6466                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6467
6468         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6469
6470         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6471
6472         /* No need to invalidate - it was non-present before */
6473         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6474
6475         spin_unlock(ptl);
6476         if (!is_continue)
6477                 folio_set_hugetlb_migratable(folio);
6478         if (vm_shared || is_continue)
6479                 folio_unlock(folio);
6480         ret = 0;
6481 out:
6482         return ret;
6483 out_release_unlock:
6484         spin_unlock(ptl);
6485         if (vm_shared || is_continue)
6486                 folio_unlock(folio);
6487 out_release_nounlock:
6488         if (!folio_in_pagecache)
6489                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6490         folio_put(folio);
6491         goto out;
6492 }
6493 #endif /* CONFIG_USERFAULTFD */
6494
6495 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6496                                       unsigned long address, unsigned int flags,
6497                                       unsigned int *page_mask)
6498 {
6499         struct hstate *h = hstate_vma(vma);
6500         struct mm_struct *mm = vma->vm_mm;
6501         unsigned long haddr = address & huge_page_mask(h);
6502         struct page *page = NULL;
6503         spinlock_t *ptl;
6504         pte_t *pte, entry;
6505         int ret;
6506
6507         hugetlb_vma_lock_read(vma);
6508         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6509         if (!pte)
6510                 goto out_unlock;
6511
6512         ptl = huge_pte_lock(h, mm, pte);
6513         entry = huge_ptep_get(pte);
6514         if (pte_present(entry)) {
6515                 page = pte_page(entry);
6516
6517                 if (!huge_pte_write(entry)) {
6518                         if (flags & FOLL_WRITE) {
6519                                 page = NULL;
6520                                 goto out;
6521                         }
6522
6523                         if (gup_must_unshare(vma, flags, page)) {
6524                                 /* Tell the caller to do unsharing */
6525                                 page = ERR_PTR(-EMLINK);
6526                                 goto out;
6527                         }
6528                 }
6529
6530                 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6531
6532                 /*
6533                  * Note that page may be a sub-page, and with vmemmap
6534                  * optimizations the page struct may be read only.
6535                  * try_grab_page() will increase the ref count on the
6536                  * head page, so this will be OK.
6537                  *
6538                  * try_grab_page() should always be able to get the page here,
6539                  * because we hold the ptl lock and have verified pte_present().
6540                  */
6541                 ret = try_grab_page(page, flags);
6542
6543                 if (WARN_ON_ONCE(ret)) {
6544                         page = ERR_PTR(ret);
6545                         goto out;
6546                 }
6547
6548                 *page_mask = (1U << huge_page_order(h)) - 1;
6549         }
6550 out:
6551         spin_unlock(ptl);
6552 out_unlock:
6553         hugetlb_vma_unlock_read(vma);
6554
6555         /*
6556          * Fixup retval for dump requests: if pagecache doesn't exist,
6557          * don't try to allocate a new page but just skip it.
6558          */
6559         if (!page && (flags & FOLL_DUMP) &&
6560             !hugetlbfs_pagecache_present(h, vma, address))
6561                 page = ERR_PTR(-EFAULT);
6562
6563         return page;
6564 }
6565
6566 long hugetlb_change_protection(struct vm_area_struct *vma,
6567                 unsigned long address, unsigned long end,
6568                 pgprot_t newprot, unsigned long cp_flags)
6569 {
6570         struct mm_struct *mm = vma->vm_mm;
6571         unsigned long start = address;
6572         pte_t *ptep;
6573         pte_t pte;
6574         struct hstate *h = hstate_vma(vma);
6575         long pages = 0, psize = huge_page_size(h);
6576         bool shared_pmd = false;
6577         struct mmu_notifier_range range;
6578         unsigned long last_addr_mask;
6579         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6580         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6581
6582         /*
6583          * In the case of shared PMDs, the area to flush could be beyond
6584          * start/end.  Set range.start/range.end to cover the maximum possible
6585          * range if PMD sharing is possible.
6586          */
6587         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6588                                 0, mm, start, end);
6589         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6590
6591         BUG_ON(address >= end);
6592         flush_cache_range(vma, range.start, range.end);
6593
6594         mmu_notifier_invalidate_range_start(&range);
6595         hugetlb_vma_lock_write(vma);
6596         i_mmap_lock_write(vma->vm_file->f_mapping);
6597         last_addr_mask = hugetlb_mask_last_page(h);
6598         for (; address < end; address += psize) {
6599                 spinlock_t *ptl;
6600                 ptep = hugetlb_walk(vma, address, psize);
6601                 if (!ptep) {
6602                         if (!uffd_wp) {
6603                                 address |= last_addr_mask;
6604                                 continue;
6605                         }
6606                         /*
6607                          * Userfaultfd wr-protect requires pgtable
6608                          * pre-allocations to install pte markers.
6609                          */
6610                         ptep = huge_pte_alloc(mm, vma, address, psize);
6611                         if (!ptep) {
6612                                 pages = -ENOMEM;
6613                                 break;
6614                         }
6615                 }
6616                 ptl = huge_pte_lock(h, mm, ptep);
6617                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6618                         /*
6619                          * When uffd-wp is enabled on the vma, unshare
6620                          * shouldn't happen at all.  Warn about it if it
6621                          * happened due to some reason.
6622                          */
6623                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6624                         pages++;
6625                         spin_unlock(ptl);
6626                         shared_pmd = true;
6627                         address |= last_addr_mask;
6628                         continue;
6629                 }
6630                 pte = huge_ptep_get(ptep);
6631                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6632                         /* Nothing to do. */
6633                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6634                         swp_entry_t entry = pte_to_swp_entry(pte);
6635                         struct page *page = pfn_swap_entry_to_page(entry);
6636                         pte_t newpte = pte;
6637
6638                         if (is_writable_migration_entry(entry)) {
6639                                 if (PageAnon(page))
6640                                         entry = make_readable_exclusive_migration_entry(
6641                                                                 swp_offset(entry));
6642                                 else
6643                                         entry = make_readable_migration_entry(
6644                                                                 swp_offset(entry));
6645                                 newpte = swp_entry_to_pte(entry);
6646                                 pages++;
6647                         }
6648
6649                         if (uffd_wp)
6650                                 newpte = pte_swp_mkuffd_wp(newpte);
6651                         else if (uffd_wp_resolve)
6652                                 newpte = pte_swp_clear_uffd_wp(newpte);
6653                         if (!pte_same(pte, newpte))
6654                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6655                 } else if (unlikely(is_pte_marker(pte))) {
6656                         /* No other markers apply for now. */
6657                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6658                         if (uffd_wp_resolve)
6659                                 /* Safe to modify directly (non-present->none). */
6660                                 huge_pte_clear(mm, address, ptep, psize);
6661                 } else if (!huge_pte_none(pte)) {
6662                         pte_t old_pte;
6663                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6664
6665                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6666                         pte = huge_pte_modify(old_pte, newprot);
6667                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6668                         if (uffd_wp)
6669                                 pte = huge_pte_mkuffd_wp(pte);
6670                         else if (uffd_wp_resolve)
6671                                 pte = huge_pte_clear_uffd_wp(pte);
6672                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6673                         pages++;
6674                 } else {
6675                         /* None pte */
6676                         if (unlikely(uffd_wp))
6677                                 /* Safe to modify directly (none->non-present). */
6678                                 set_huge_pte_at(mm, address, ptep,
6679                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6680                                                 psize);
6681                 }
6682                 spin_unlock(ptl);
6683         }
6684         /*
6685          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6686          * may have cleared our pud entry and done put_page on the page table:
6687          * once we release i_mmap_rwsem, another task can do the final put_page
6688          * and that page table be reused and filled with junk.  If we actually
6689          * did unshare a page of pmds, flush the range corresponding to the pud.
6690          */
6691         if (shared_pmd)
6692                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6693         else
6694                 flush_hugetlb_tlb_range(vma, start, end);
6695         /*
6696          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6697          * downgrading page table protection not changing it to point to a new
6698          * page.
6699          *
6700          * See Documentation/mm/mmu_notifier.rst
6701          */
6702         i_mmap_unlock_write(vma->vm_file->f_mapping);
6703         hugetlb_vma_unlock_write(vma);
6704         mmu_notifier_invalidate_range_end(&range);
6705
6706         return pages > 0 ? (pages << h->order) : pages;
6707 }
6708
6709 /* Return true if reservation was successful, false otherwise.  */
6710 bool hugetlb_reserve_pages(struct inode *inode,
6711                                         long from, long to,
6712                                         struct vm_area_struct *vma,
6713                                         vm_flags_t vm_flags)
6714 {
6715         long chg = -1, add = -1;
6716         struct hstate *h = hstate_inode(inode);
6717         struct hugepage_subpool *spool = subpool_inode(inode);
6718         struct resv_map *resv_map;
6719         struct hugetlb_cgroup *h_cg = NULL;
6720         long gbl_reserve, regions_needed = 0;
6721
6722         /* This should never happen */
6723         if (from > to) {
6724                 VM_WARN(1, "%s called with a negative range\n", __func__);
6725                 return false;
6726         }
6727
6728         /*
6729          * vma specific semaphore used for pmd sharing and fault/truncation
6730          * synchronization
6731          */
6732         hugetlb_vma_lock_alloc(vma);
6733
6734         /*
6735          * Only apply hugepage reservation if asked. At fault time, an
6736          * attempt will be made for VM_NORESERVE to allocate a page
6737          * without using reserves
6738          */
6739         if (vm_flags & VM_NORESERVE)
6740                 return true;
6741
6742         /*
6743          * Shared mappings base their reservation on the number of pages that
6744          * are already allocated on behalf of the file. Private mappings need
6745          * to reserve the full area even if read-only as mprotect() may be
6746          * called to make the mapping read-write. Assume !vma is a shm mapping
6747          */
6748         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6749                 /*
6750                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6751                  * called for inodes for which resv_maps were created (see
6752                  * hugetlbfs_get_inode).
6753                  */
6754                 resv_map = inode_resv_map(inode);
6755
6756                 chg = region_chg(resv_map, from, to, &regions_needed);
6757         } else {
6758                 /* Private mapping. */
6759                 resv_map = resv_map_alloc();
6760                 if (!resv_map)
6761                         goto out_err;
6762
6763                 chg = to - from;
6764
6765                 set_vma_resv_map(vma, resv_map);
6766                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6767         }
6768
6769         if (chg < 0)
6770                 goto out_err;
6771
6772         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6773                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6774                 goto out_err;
6775
6776         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6777                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6778                  * of the resv_map.
6779                  */
6780                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6781         }
6782
6783         /*
6784          * There must be enough pages in the subpool for the mapping. If
6785          * the subpool has a minimum size, there may be some global
6786          * reservations already in place (gbl_reserve).
6787          */
6788         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6789         if (gbl_reserve < 0)
6790                 goto out_uncharge_cgroup;
6791
6792         /*
6793          * Check enough hugepages are available for the reservation.
6794          * Hand the pages back to the subpool if there are not
6795          */
6796         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6797                 goto out_put_pages;
6798
6799         /*
6800          * Account for the reservations made. Shared mappings record regions
6801          * that have reservations as they are shared by multiple VMAs.
6802          * When the last VMA disappears, the region map says how much
6803          * the reservation was and the page cache tells how much of
6804          * the reservation was consumed. Private mappings are per-VMA and
6805          * only the consumed reservations are tracked. When the VMA
6806          * disappears, the original reservation is the VMA size and the
6807          * consumed reservations are stored in the map. Hence, nothing
6808          * else has to be done for private mappings here
6809          */
6810         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6811                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6812
6813                 if (unlikely(add < 0)) {
6814                         hugetlb_acct_memory(h, -gbl_reserve);
6815                         goto out_put_pages;
6816                 } else if (unlikely(chg > add)) {
6817                         /*
6818                          * pages in this range were added to the reserve
6819                          * map between region_chg and region_add.  This
6820                          * indicates a race with alloc_hugetlb_folio.  Adjust
6821                          * the subpool and reserve counts modified above
6822                          * based on the difference.
6823                          */
6824                         long rsv_adjust;
6825
6826                         /*
6827                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6828                          * reference to h_cg->css. See comment below for detail.
6829                          */
6830                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6831                                 hstate_index(h),
6832                                 (chg - add) * pages_per_huge_page(h), h_cg);
6833
6834                         rsv_adjust = hugepage_subpool_put_pages(spool,
6835                                                                 chg - add);
6836                         hugetlb_acct_memory(h, -rsv_adjust);
6837                 } else if (h_cg) {
6838                         /*
6839                          * The file_regions will hold their own reference to
6840                          * h_cg->css. So we should release the reference held
6841                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6842                          * done.
6843                          */
6844                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6845                 }
6846         }
6847         return true;
6848
6849 out_put_pages:
6850         /* put back original number of pages, chg */
6851         (void)hugepage_subpool_put_pages(spool, chg);
6852 out_uncharge_cgroup:
6853         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6854                                             chg * pages_per_huge_page(h), h_cg);
6855 out_err:
6856         hugetlb_vma_lock_free(vma);
6857         if (!vma || vma->vm_flags & VM_MAYSHARE)
6858                 /* Only call region_abort if the region_chg succeeded but the
6859                  * region_add failed or didn't run.
6860                  */
6861                 if (chg >= 0 && add < 0)
6862                         region_abort(resv_map, from, to, regions_needed);
6863         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6864                 kref_put(&resv_map->refs, resv_map_release);
6865                 set_vma_resv_map(vma, NULL);
6866         }
6867         return false;
6868 }
6869
6870 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6871                                                                 long freed)
6872 {
6873         struct hstate *h = hstate_inode(inode);
6874         struct resv_map *resv_map = inode_resv_map(inode);
6875         long chg = 0;
6876         struct hugepage_subpool *spool = subpool_inode(inode);
6877         long gbl_reserve;
6878
6879         /*
6880          * Since this routine can be called in the evict inode path for all
6881          * hugetlbfs inodes, resv_map could be NULL.
6882          */
6883         if (resv_map) {
6884                 chg = region_del(resv_map, start, end);
6885                 /*
6886                  * region_del() can fail in the rare case where a region
6887                  * must be split and another region descriptor can not be
6888                  * allocated.  If end == LONG_MAX, it will not fail.
6889                  */
6890                 if (chg < 0)
6891                         return chg;
6892         }
6893
6894         spin_lock(&inode->i_lock);
6895         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6896         spin_unlock(&inode->i_lock);
6897
6898         /*
6899          * If the subpool has a minimum size, the number of global
6900          * reservations to be released may be adjusted.
6901          *
6902          * Note that !resv_map implies freed == 0. So (chg - freed)
6903          * won't go negative.
6904          */
6905         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6906         hugetlb_acct_memory(h, -gbl_reserve);
6907
6908         return 0;
6909 }
6910
6911 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6912 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6913                                 struct vm_area_struct *vma,
6914                                 unsigned long addr, pgoff_t idx)
6915 {
6916         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6917                                 svma->vm_start;
6918         unsigned long sbase = saddr & PUD_MASK;
6919         unsigned long s_end = sbase + PUD_SIZE;
6920
6921         /* Allow segments to share if only one is marked locked */
6922         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6923         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6924
6925         /*
6926          * match the virtual addresses, permission and the alignment of the
6927          * page table page.
6928          *
6929          * Also, vma_lock (vm_private_data) is required for sharing.
6930          */
6931         if (pmd_index(addr) != pmd_index(saddr) ||
6932             vm_flags != svm_flags ||
6933             !range_in_vma(svma, sbase, s_end) ||
6934             !svma->vm_private_data)
6935                 return 0;
6936
6937         return saddr;
6938 }
6939
6940 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6941 {
6942         unsigned long start = addr & PUD_MASK;
6943         unsigned long end = start + PUD_SIZE;
6944
6945 #ifdef CONFIG_USERFAULTFD
6946         if (uffd_disable_huge_pmd_share(vma))
6947                 return false;
6948 #endif
6949         /*
6950          * check on proper vm_flags and page table alignment
6951          */
6952         if (!(vma->vm_flags & VM_MAYSHARE))
6953                 return false;
6954         if (!vma->vm_private_data)      /* vma lock required for sharing */
6955                 return false;
6956         if (!range_in_vma(vma, start, end))
6957                 return false;
6958         return true;
6959 }
6960
6961 /*
6962  * Determine if start,end range within vma could be mapped by shared pmd.
6963  * If yes, adjust start and end to cover range associated with possible
6964  * shared pmd mappings.
6965  */
6966 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6967                                 unsigned long *start, unsigned long *end)
6968 {
6969         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6970                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6971
6972         /*
6973          * vma needs to span at least one aligned PUD size, and the range
6974          * must be at least partially within in.
6975          */
6976         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6977                 (*end <= v_start) || (*start >= v_end))
6978                 return;
6979
6980         /* Extend the range to be PUD aligned for a worst case scenario */
6981         if (*start > v_start)
6982                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6983
6984         if (*end < v_end)
6985                 *end = ALIGN(*end, PUD_SIZE);
6986 }
6987
6988 /*
6989  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6990  * and returns the corresponding pte. While this is not necessary for the
6991  * !shared pmd case because we can allocate the pmd later as well, it makes the
6992  * code much cleaner. pmd allocation is essential for the shared case because
6993  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6994  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6995  * bad pmd for sharing.
6996  */
6997 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6998                       unsigned long addr, pud_t *pud)
6999 {
7000         struct address_space *mapping = vma->vm_file->f_mapping;
7001         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7002                         vma->vm_pgoff;
7003         struct vm_area_struct *svma;
7004         unsigned long saddr;
7005         pte_t *spte = NULL;
7006         pte_t *pte;
7007
7008         i_mmap_lock_read(mapping);
7009         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7010                 if (svma == vma)
7011                         continue;
7012
7013                 saddr = page_table_shareable(svma, vma, addr, idx);
7014                 if (saddr) {
7015                         spte = hugetlb_walk(svma, saddr,
7016                                             vma_mmu_pagesize(svma));
7017                         if (spte) {
7018                                 get_page(virt_to_page(spte));
7019                                 break;
7020                         }
7021                 }
7022         }
7023
7024         if (!spte)
7025                 goto out;
7026
7027         spin_lock(&mm->page_table_lock);
7028         if (pud_none(*pud)) {
7029                 pud_populate(mm, pud,
7030                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7031                 mm_inc_nr_pmds(mm);
7032         } else {
7033                 put_page(virt_to_page(spte));
7034         }
7035         spin_unlock(&mm->page_table_lock);
7036 out:
7037         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038         i_mmap_unlock_read(mapping);
7039         return pte;
7040 }
7041
7042 /*
7043  * unmap huge page backed by shared pte.
7044  *
7045  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7046  * indicated by page_count > 1, unmap is achieved by clearing pud and
7047  * decrementing the ref count. If count == 1, the pte page is not shared.
7048  *
7049  * Called with page table lock held.
7050  *
7051  * returns: 1 successfully unmapped a shared pte page
7052  *          0 the underlying pte page is not shared, or it is the last user
7053  */
7054 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7055                                         unsigned long addr, pte_t *ptep)
7056 {
7057         pgd_t *pgd = pgd_offset(mm, addr);
7058         p4d_t *p4d = p4d_offset(pgd, addr);
7059         pud_t *pud = pud_offset(p4d, addr);
7060
7061         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7062         hugetlb_vma_assert_locked(vma);
7063         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7064         if (page_count(virt_to_page(ptep)) == 1)
7065                 return 0;
7066
7067         pud_clear(pud);
7068         put_page(virt_to_page(ptep));
7069         mm_dec_nr_pmds(mm);
7070         return 1;
7071 }
7072
7073 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7074
7075 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7076                       unsigned long addr, pud_t *pud)
7077 {
7078         return NULL;
7079 }
7080
7081 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7082                                 unsigned long addr, pte_t *ptep)
7083 {
7084         return 0;
7085 }
7086
7087 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7088                                 unsigned long *start, unsigned long *end)
7089 {
7090 }
7091
7092 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7093 {
7094         return false;
7095 }
7096 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7097
7098 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7099 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7100                         unsigned long addr, unsigned long sz)
7101 {
7102         pgd_t *pgd;
7103         p4d_t *p4d;
7104         pud_t *pud;
7105         pte_t *pte = NULL;
7106
7107         pgd = pgd_offset(mm, addr);
7108         p4d = p4d_alloc(mm, pgd, addr);
7109         if (!p4d)
7110                 return NULL;
7111         pud = pud_alloc(mm, p4d, addr);
7112         if (pud) {
7113                 if (sz == PUD_SIZE) {
7114                         pte = (pte_t *)pud;
7115                 } else {
7116                         BUG_ON(sz != PMD_SIZE);
7117                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7118                                 pte = huge_pmd_share(mm, vma, addr, pud);
7119                         else
7120                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7121                 }
7122         }
7123
7124         if (pte) {
7125                 pte_t pteval = ptep_get_lockless(pte);
7126
7127                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7128         }
7129
7130         return pte;
7131 }
7132
7133 /*
7134  * huge_pte_offset() - Walk the page table to resolve the hugepage
7135  * entry at address @addr
7136  *
7137  * Return: Pointer to page table entry (PUD or PMD) for
7138  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7139  * size @sz doesn't match the hugepage size at this level of the page
7140  * table.
7141  */
7142 pte_t *huge_pte_offset(struct mm_struct *mm,
7143                        unsigned long addr, unsigned long sz)
7144 {
7145         pgd_t *pgd;
7146         p4d_t *p4d;
7147         pud_t *pud;
7148         pmd_t *pmd;
7149
7150         pgd = pgd_offset(mm, addr);
7151         if (!pgd_present(*pgd))
7152                 return NULL;
7153         p4d = p4d_offset(pgd, addr);
7154         if (!p4d_present(*p4d))
7155                 return NULL;
7156
7157         pud = pud_offset(p4d, addr);
7158         if (sz == PUD_SIZE)
7159                 /* must be pud huge, non-present or none */
7160                 return (pte_t *)pud;
7161         if (!pud_present(*pud))
7162                 return NULL;
7163         /* must have a valid entry and size to go further */
7164
7165         pmd = pmd_offset(pud, addr);
7166         /* must be pmd huge, non-present or none */
7167         return (pte_t *)pmd;
7168 }
7169
7170 /*
7171  * Return a mask that can be used to update an address to the last huge
7172  * page in a page table page mapping size.  Used to skip non-present
7173  * page table entries when linearly scanning address ranges.  Architectures
7174  * with unique huge page to page table relationships can define their own
7175  * version of this routine.
7176  */
7177 unsigned long hugetlb_mask_last_page(struct hstate *h)
7178 {
7179         unsigned long hp_size = huge_page_size(h);
7180
7181         if (hp_size == PUD_SIZE)
7182                 return P4D_SIZE - PUD_SIZE;
7183         else if (hp_size == PMD_SIZE)
7184                 return PUD_SIZE - PMD_SIZE;
7185         else
7186                 return 0UL;
7187 }
7188
7189 #else
7190
7191 /* See description above.  Architectures can provide their own version. */
7192 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7193 {
7194 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7195         if (huge_page_size(h) == PMD_SIZE)
7196                 return PUD_SIZE - PMD_SIZE;
7197 #endif
7198         return 0UL;
7199 }
7200
7201 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7202
7203 /*
7204  * These functions are overwritable if your architecture needs its own
7205  * behavior.
7206  */
7207 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7208 {
7209         bool ret = true;
7210
7211         spin_lock_irq(&hugetlb_lock);
7212         if (!folio_test_hugetlb(folio) ||
7213             !folio_test_hugetlb_migratable(folio) ||
7214             !folio_try_get(folio)) {
7215                 ret = false;
7216                 goto unlock;
7217         }
7218         folio_clear_hugetlb_migratable(folio);
7219         list_move_tail(&folio->lru, list);
7220 unlock:
7221         spin_unlock_irq(&hugetlb_lock);
7222         return ret;
7223 }
7224
7225 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7226 {
7227         int ret = 0;
7228
7229         *hugetlb = false;
7230         spin_lock_irq(&hugetlb_lock);
7231         if (folio_test_hugetlb(folio)) {
7232                 *hugetlb = true;
7233                 if (folio_test_hugetlb_freed(folio))
7234                         ret = 0;
7235                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7236                         ret = folio_try_get(folio);
7237                 else
7238                         ret = -EBUSY;
7239         }
7240         spin_unlock_irq(&hugetlb_lock);
7241         return ret;
7242 }
7243
7244 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7245                                 bool *migratable_cleared)
7246 {
7247         int ret;
7248
7249         spin_lock_irq(&hugetlb_lock);
7250         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7251         spin_unlock_irq(&hugetlb_lock);
7252         return ret;
7253 }
7254
7255 void folio_putback_active_hugetlb(struct folio *folio)
7256 {
7257         spin_lock_irq(&hugetlb_lock);
7258         folio_set_hugetlb_migratable(folio);
7259         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7260         spin_unlock_irq(&hugetlb_lock);
7261         folio_put(folio);
7262 }
7263
7264 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7265 {
7266         struct hstate *h = folio_hstate(old_folio);
7267
7268         hugetlb_cgroup_migrate(old_folio, new_folio);
7269         set_page_owner_migrate_reason(&new_folio->page, reason);
7270
7271         /*
7272          * transfer temporary state of the new hugetlb folio. This is
7273          * reverse to other transitions because the newpage is going to
7274          * be final while the old one will be freed so it takes over
7275          * the temporary status.
7276          *
7277          * Also note that we have to transfer the per-node surplus state
7278          * here as well otherwise the global surplus count will not match
7279          * the per-node's.
7280          */
7281         if (folio_test_hugetlb_temporary(new_folio)) {
7282                 int old_nid = folio_nid(old_folio);
7283                 int new_nid = folio_nid(new_folio);
7284
7285                 folio_set_hugetlb_temporary(old_folio);
7286                 folio_clear_hugetlb_temporary(new_folio);
7287
7288
7289                 /*
7290                  * There is no need to transfer the per-node surplus state
7291                  * when we do not cross the node.
7292                  */
7293                 if (new_nid == old_nid)
7294                         return;
7295                 spin_lock_irq(&hugetlb_lock);
7296                 if (h->surplus_huge_pages_node[old_nid]) {
7297                         h->surplus_huge_pages_node[old_nid]--;
7298                         h->surplus_huge_pages_node[new_nid]++;
7299                 }
7300                 spin_unlock_irq(&hugetlb_lock);
7301         }
7302 }
7303
7304 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7305                                    unsigned long start,
7306                                    unsigned long end)
7307 {
7308         struct hstate *h = hstate_vma(vma);
7309         unsigned long sz = huge_page_size(h);
7310         struct mm_struct *mm = vma->vm_mm;
7311         struct mmu_notifier_range range;
7312         unsigned long address;
7313         spinlock_t *ptl;
7314         pte_t *ptep;
7315
7316         if (!(vma->vm_flags & VM_MAYSHARE))
7317                 return;
7318
7319         if (start >= end)
7320                 return;
7321
7322         flush_cache_range(vma, start, end);
7323         /*
7324          * No need to call adjust_range_if_pmd_sharing_possible(), because
7325          * we have already done the PUD_SIZE alignment.
7326          */
7327         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7328                                 start, end);
7329         mmu_notifier_invalidate_range_start(&range);
7330         hugetlb_vma_lock_write(vma);
7331         i_mmap_lock_write(vma->vm_file->f_mapping);
7332         for (address = start; address < end; address += PUD_SIZE) {
7333                 ptep = hugetlb_walk(vma, address, sz);
7334                 if (!ptep)
7335                         continue;
7336                 ptl = huge_pte_lock(h, mm, ptep);
7337                 huge_pmd_unshare(mm, vma, address, ptep);
7338                 spin_unlock(ptl);
7339         }
7340         flush_hugetlb_tlb_range(vma, start, end);
7341         i_mmap_unlock_write(vma->vm_file->f_mapping);
7342         hugetlb_vma_unlock_write(vma);
7343         /*
7344          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7345          * Documentation/mm/mmu_notifier.rst.
7346          */
7347         mmu_notifier_invalidate_range_end(&range);
7348 }
7349
7350 /*
7351  * This function will unconditionally remove all the shared pmd pgtable entries
7352  * within the specific vma for a hugetlbfs memory range.
7353  */
7354 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7355 {
7356         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7357                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7358 }
7359
7360 #ifdef CONFIG_CMA
7361 static bool cma_reserve_called __initdata;
7362
7363 static int __init cmdline_parse_hugetlb_cma(char *p)
7364 {
7365         int nid, count = 0;
7366         unsigned long tmp;
7367         char *s = p;
7368
7369         while (*s) {
7370                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7371                         break;
7372
7373                 if (s[count] == ':') {
7374                         if (tmp >= MAX_NUMNODES)
7375                                 break;
7376                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7377
7378                         s += count + 1;
7379                         tmp = memparse(s, &s);
7380                         hugetlb_cma_size_in_node[nid] = tmp;
7381                         hugetlb_cma_size += tmp;
7382
7383                         /*
7384                          * Skip the separator if have one, otherwise
7385                          * break the parsing.
7386                          */
7387                         if (*s == ',')
7388                                 s++;
7389                         else
7390                                 break;
7391                 } else {
7392                         hugetlb_cma_size = memparse(p, &p);
7393                         break;
7394                 }
7395         }
7396
7397         return 0;
7398 }
7399
7400 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7401
7402 void __init hugetlb_cma_reserve(int order)
7403 {
7404         unsigned long size, reserved, per_node;
7405         bool node_specific_cma_alloc = false;
7406         int nid;
7407
7408         cma_reserve_called = true;
7409
7410         if (!hugetlb_cma_size)
7411                 return;
7412
7413         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7414                 if (hugetlb_cma_size_in_node[nid] == 0)
7415                         continue;
7416
7417                 if (!node_online(nid)) {
7418                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7419                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7420                         hugetlb_cma_size_in_node[nid] = 0;
7421                         continue;
7422                 }
7423
7424                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7425                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7426                                 nid, (PAGE_SIZE << order) / SZ_1M);
7427                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7428                         hugetlb_cma_size_in_node[nid] = 0;
7429                 } else {
7430                         node_specific_cma_alloc = true;
7431                 }
7432         }
7433
7434         /* Validate the CMA size again in case some invalid nodes specified. */
7435         if (!hugetlb_cma_size)
7436                 return;
7437
7438         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7439                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7440                         (PAGE_SIZE << order) / SZ_1M);
7441                 hugetlb_cma_size = 0;
7442                 return;
7443         }
7444
7445         if (!node_specific_cma_alloc) {
7446                 /*
7447                  * If 3 GB area is requested on a machine with 4 numa nodes,
7448                  * let's allocate 1 GB on first three nodes and ignore the last one.
7449                  */
7450                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7451                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7452                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7453         }
7454
7455         reserved = 0;
7456         for_each_online_node(nid) {
7457                 int res;
7458                 char name[CMA_MAX_NAME];
7459
7460                 if (node_specific_cma_alloc) {
7461                         if (hugetlb_cma_size_in_node[nid] == 0)
7462                                 continue;
7463
7464                         size = hugetlb_cma_size_in_node[nid];
7465                 } else {
7466                         size = min(per_node, hugetlb_cma_size - reserved);
7467                 }
7468
7469                 size = round_up(size, PAGE_SIZE << order);
7470
7471                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7472                 /*
7473                  * Note that 'order per bit' is based on smallest size that
7474                  * may be returned to CMA allocator in the case of
7475                  * huge page demotion.
7476                  */
7477                 res = cma_declare_contiguous_nid(0, size, 0,
7478                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7479                                                  0, false, name,
7480                                                  &hugetlb_cma[nid], nid);
7481                 if (res) {
7482                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7483                                 res, nid);
7484                         continue;
7485                 }
7486
7487                 reserved += size;
7488                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7489                         size / SZ_1M, nid);
7490
7491                 if (reserved >= hugetlb_cma_size)
7492                         break;
7493         }
7494
7495         if (!reserved)
7496                 /*
7497                  * hugetlb_cma_size is used to determine if allocations from
7498                  * cma are possible.  Set to zero if no cma regions are set up.
7499                  */
7500                 hugetlb_cma_size = 0;
7501 }
7502
7503 static void __init hugetlb_cma_check(void)
7504 {
7505         if (!hugetlb_cma_size || cma_reserve_called)
7506                 return;
7507
7508         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7509 }
7510
7511 #endif /* CONFIG_CMA */