1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
40 #include <asm/pgalloc.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
49 #include "hugetlb_vmemmap.h"
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
69 static unsigned long hugetlb_cma_size __initdata;
71 __initdata LIST_HEAD(huge_boot_pages);
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
84 DEFINE_SPINLOCK(hugetlb_lock);
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 struct hugepage_subpool *spool;
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
139 spin_lock_init(&spool->lock);
141 spool->max_hpages = max_hpages;
143 spool->min_hpages = min_hpages;
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
149 spool->rsv_hpages = min_hpages;
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
161 unlock_or_release_subpool(spool, flags);
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
180 spin_lock_irq(&spool->lock);
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
207 spin_unlock_irq(&spool->lock);
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
226 spin_lock_irqsave(&spool->lock, flags);
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
247 unlock_or_release_subpool(spool, flags);
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 return HUGETLBFS_SB(inode->i_sb)->spool;
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 return subpool_inode(file_inode(vma->vm_file));
263 * hugetlb vma_lock helper routines
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
274 down_read(&resv_map->rw_sema);
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
287 up_read(&resv_map->rw_sema);
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
300 down_write(&resv_map->rw_sema);
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
313 up_write(&resv_map->rw_sema);
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
327 return down_write_trylock(&resv_map->rw_sema);
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
342 lockdep_assert_held(&resv_map->rw_sema);
346 void hugetlb_vma_lock_release(struct kref *kref)
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 struct vm_area_struct *vma = vma_lock->vma;
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386 * Only present in sharable vmas.
388 if (!vma || !__vma_shareable_lock(vma))
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 struct hugetlb_vma_lock *vma_lock;
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
430 vma->vm_private_data = vma_lock;
433 /* Helper that removes a struct file_region from the resv_map cache and returns
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 struct file_region *nrg;
441 VM_BUG_ON(resv->region_cache_count <= 0);
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
456 #ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 struct resv_map *resv,
468 struct file_region *nrg)
470 #ifdef CONFIG_CGROUP_HUGETLB
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 nrg->reservation_counter = NULL;
499 static void put_uncharge_info(struct file_region *rg)
501 #ifdef CONFIG_CGROUP_HUGETLB
507 static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
510 #ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 struct file_region *nrg, *prg;
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
529 put_uncharge_info(rg);
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
541 put_uncharge_info(rg);
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
551 struct file_region *nrg;
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
559 *regions_needed += 1;
565 * Must be called with resv->lock held.
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
600 /* When we find a region that starts beyond our range, we've
603 if (iter->from >= t) {
604 rg = iter->link.prev;
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
617 last_accounted_offset = iter->to;
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634 static int allocate_file_region_entries(struct resv_map *resv,
636 __must_hold(&resv->lock)
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
642 VM_BUG_ON(regions_needed < 0);
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 list_add(&trg->link, &allocated_regions);
672 spin_lock(&resv->lock);
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
696 * regions_needed is the out value provided by a previous call to region_chg.
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
705 static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
709 long add = 0, actual_regions_needed = 0;
711 spin_lock(&resv->lock);
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
734 VM_BUG_ON(t - f <= 1);
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 resv->adds_in_progress -= in_regions_needed;
748 spin_unlock(&resv->lock);
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
772 static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
777 spin_lock(&resv->lock);
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
786 if (allocate_file_region_entries(resv, *out_regions_needed))
789 resv->adds_in_progress += *out_regions_needed;
791 spin_unlock(&resv->lock);
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
808 static void region_abort(struct resv_map *resv, long f, long t,
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
831 static long region_del(struct resv_map *resv, long f, long t)
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
854 if (f > rg->from && t < rg->to) { /* Must split region */
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
864 list_del(&nrg->link);
865 resv->region_cache_count--;
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
880 /* New entry for end of split region */
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 INIT_LIST_HEAD(&nrg->link);
888 /* Original entry is trimmed */
891 list_add(&nrg->link, &rg->link);
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
920 spin_unlock(&resv->lock);
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
934 void hugetlb_fix_reserve_counts(struct inode *inode)
936 struct hugepage_subpool *spool = subpool_inode(inode);
938 bool reserved = false;
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
944 if (!hugetlb_acct_memory(h, 1))
946 } else if (!rsv_adjust) {
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
958 static long region_count(struct resv_map *resv, long f, long t)
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
978 chg += seg_to - seg_from;
980 spin_unlock(&resv->lock);
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 unsigned long address)
999 return vma_hugecache_offset(hstate_vma(vma), vma, address);
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1010 * Return: The default size of the folios allocated when backing a VMA.
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1014 if (vma->vm_ops && vma->vm_ops->pagesize)
1015 return vma->vm_ops->pagesize(vma);
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1028 return vma_kernel_pagesize(vma);
1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1036 #define HPAGE_RESV_OWNER (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping. A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated. A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1061 return (unsigned long)vma->vm_private_data;
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 unsigned long value)
1067 vma->vm_private_data = (void *)value;
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 struct hugetlb_cgroup *h_cg,
1075 #ifdef CONFIG_CGROUP_HUGETLB
1077 resv_map->reservation_counter = NULL;
1078 resv_map->pages_per_hpage = 0;
1079 resv_map->css = NULL;
1081 resv_map->reservation_counter =
1082 &h_cg->rsvd_hugepage[hstate_index(h)];
1083 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 resv_map->css = &h_cg->css;
1089 struct resv_map *resv_map_alloc(void)
1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1094 if (!resv_map || !rg) {
1100 kref_init(&resv_map->refs);
1101 spin_lock_init(&resv_map->lock);
1102 INIT_LIST_HEAD(&resv_map->regions);
1103 init_rwsem(&resv_map->rw_sema);
1105 resv_map->adds_in_progress = 0;
1107 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 * fields don't do cgroup accounting. On private mappings, these will be
1109 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 * reservations are to be un-charged from here.
1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1114 INIT_LIST_HEAD(&resv_map->region_cache);
1115 list_add(&rg->link, &resv_map->region_cache);
1116 resv_map->region_cache_count = 1;
1121 void resv_map_release(struct kref *ref)
1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 struct list_head *head = &resv_map->region_cache;
1125 struct file_region *rg, *trg;
1127 /* Clear out any active regions before we release the map. */
1128 region_del(resv_map, 0, LONG_MAX);
1130 /* ... and any entries left in the cache */
1131 list_for_each_entry_safe(rg, trg, head, link) {
1132 list_del(&rg->link);
1136 VM_BUG_ON(resv_map->adds_in_progress);
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1144 * At inode evict time, i_mapping may not point to the original
1145 * address space within the inode. This original address space
1146 * contains the pointer to the resv_map. So, always use the
1147 * address space embedded within the inode.
1148 * The VERY common case is inode->mapping == &inode->i_data but,
1149 * this may not be true for device special inodes.
1151 return (struct resv_map *)(&inode->i_data)->private_data;
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 struct address_space *mapping = vma->vm_file->f_mapping;
1159 struct inode *inode = mapping->host;
1161 return inode_resv_map(inode);
1164 return (struct resv_map *)(get_vma_private_data(vma) &
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174 set_vma_private_data(vma, (unsigned long)map);
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1189 return (get_vma_private_data(vma) & flag) != 0;
1192 bool __vma_private_lock(struct vm_area_struct *vma)
1194 return !(vma->vm_flags & VM_MAYSHARE) &&
1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1203 * Clear vm_private_data
1204 * - For shared mappings this is a per-vma semaphore that may be
1205 * allocated in a subsequent call to hugetlb_vm_op_open.
1206 * Before clearing, make sure pointer is not associated with vma
1207 * as this will leak the structure. This is the case when called
1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209 * been called to allocate a new structure.
1210 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211 * not apply to children. Faults generated by the children are
1212 * not guaranteed to succeed, even if read-only.
1214 if (vma->vm_flags & VM_MAYSHARE) {
1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1217 if (vma_lock && vma_lock->vma != vma)
1218 vma->vm_private_data = NULL;
1220 vma->vm_private_data = NULL;
1224 * Reset and decrement one ref on hugepage private reservation.
1225 * Called with mm->mmap_lock writer semaphore held.
1226 * This function should be only used by move_vma() and operate on
1227 * same sized vma. It should never come here with last ref on the
1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1233 * Clear the old hugetlb private page reservation.
1234 * It has already been transferred to new_vma.
1236 * During a mremap() operation of a hugetlb vma we call move_vma()
1237 * which copies vma into new_vma and unmaps vma. After the copy
1238 * operation both new_vma and vma share a reference to the resv_map
1239 * struct, and at that point vma is about to be unmapped. We don't
1240 * want to return the reservation to the pool at unmap of vma because
1241 * the reservation still lives on in new_vma, so simply decrement the
1242 * ref here and remove the resv_map reference from this vma.
1244 struct resv_map *reservations = vma_resv_map(vma);
1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248 kref_put(&reservations->refs, resv_map_release);
1251 hugetlb_dup_vma_private(vma);
1254 /* Returns true if the VMA has associated reserve pages */
1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1257 if (vma->vm_flags & VM_NORESERVE) {
1259 * This address is already reserved by other process(chg == 0),
1260 * so, we should decrement reserved count. Without decrementing,
1261 * reserve count remains after releasing inode, because this
1262 * allocated page will go into page cache and is regarded as
1263 * coming from reserved pool in releasing step. Currently, we
1264 * don't have any other solution to deal with this situation
1265 * properly, so add work-around here.
1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1273 /* Shared mappings always use reserves */
1274 if (vma->vm_flags & VM_MAYSHARE) {
1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1277 * be a region map for all pages. The only situation where
1278 * there is no region map is if a hole was punched via
1279 * fallocate. In this case, there really are no reserves to
1280 * use. This situation is indicated if chg != 0.
1289 * Only the process that called mmap() has reserves for
1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1294 * Like the shared case above, a hole punch or truncate
1295 * could have been performed on the private mapping.
1296 * Examine the value of chg to determine if reserves
1297 * actually exist or were previously consumed.
1298 * Very Subtle - The value of chg comes from a previous
1299 * call to vma_needs_reserves(). The reserve map for
1300 * private mappings has different (opposite) semantics
1301 * than that of shared mappings. vma_needs_reserves()
1302 * has already taken this difference in semantics into
1303 * account. Therefore, the meaning of chg is the same
1304 * as in the shared case above. Code could easily be
1305 * combined, but keeping it separate draws attention to
1306 * subtle differences.
1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1319 int nid = folio_nid(folio);
1321 lockdep_assert_held(&hugetlb_lock);
1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1324 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325 h->free_huge_pages++;
1326 h->free_huge_pages_node[nid]++;
1327 folio_set_hugetlb_freed(folio);
1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1333 struct folio *folio;
1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1336 lockdep_assert_held(&hugetlb_lock);
1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338 if (pin && !folio_is_longterm_pinnable(folio))
1341 if (folio_test_hwpoison(folio))
1344 list_move(&folio->lru, &h->hugepage_activelist);
1345 folio_ref_unfreeze(folio, 1);
1346 folio_clear_hugetlb_freed(folio);
1347 h->free_huge_pages--;
1348 h->free_huge_pages_node[nid]--;
1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nmask)
1358 unsigned int cpuset_mems_cookie;
1359 struct zonelist *zonelist;
1362 int node = NUMA_NO_NODE;
1364 zonelist = node_zonelist(nid, gfp_mask);
1367 cpuset_mems_cookie = read_mems_allowed_begin();
1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369 struct folio *folio;
1371 if (!cpuset_zone_allowed(zone, gfp_mask))
1374 * no need to ask again on the same node. Pool is node rather than
1377 if (zone_to_nid(zone) == node)
1379 node = zone_to_nid(zone);
1381 folio = dequeue_hugetlb_folio_node_exact(h, node);
1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1391 static unsigned long available_huge_pages(struct hstate *h)
1393 return h->free_huge_pages - h->resv_huge_pages;
1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397 struct vm_area_struct *vma,
1398 unsigned long address, int avoid_reserve,
1401 struct folio *folio = NULL;
1402 struct mempolicy *mpol;
1404 nodemask_t *nodemask;
1408 * A child process with MAP_PRIVATE mappings created by their parent
1409 * have no page reserves. This check ensures that reservations are
1410 * not "stolen". The child may still get SIGKILLed
1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1415 /* If reserves cannot be used, ensure enough pages are in the pool */
1416 if (avoid_reserve && !available_huge_pages(h))
1419 gfp_mask = htlb_alloc_mask(h);
1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1422 if (mpol_is_preferred_many(mpol)) {
1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 /* Fallback to all nodes if page==NULL */
1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435 folio_set_hugetlb_restore_reserve(folio);
1436 h->resv_huge_pages--;
1439 mpol_cond_put(mpol);
1447 * common helper functions for hstate_next_node_to_{alloc|free}.
1448 * We may have allocated or freed a huge page based on a different
1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450 * be outside of *nodes_allowed. Ensure that we use an allowed
1451 * node for alloc or free.
1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1455 nid = next_node_in(nid, *nodes_allowed);
1456 VM_BUG_ON(nid >= MAX_NUMNODES);
1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1463 if (!node_isset(nid, *nodes_allowed))
1464 nid = next_node_allowed(nid, nodes_allowed);
1469 * returns the previously saved node ["this node"] from which to
1470 * allocate a persistent huge page for the pool and advance the
1471 * next node from which to allocate, handling wrap at end of node
1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475 nodemask_t *nodes_allowed)
1479 VM_BUG_ON(!nodes_allowed);
1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1488 * helper for remove_pool_huge_page() - return the previously saved
1489 * node ["this node"] from which to free a huge page. Advance the
1490 * next node id whether or not we find a free huge page to free so
1491 * that the next attempt to free addresses the next node.
1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1497 VM_BUG_ON(!nodes_allowed);
1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1512 for (nr_nodes = nodes_weight(*mask); \
1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1517 /* used to demote non-gigantic_huge pages as well */
1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519 unsigned int order, bool demote)
1522 int nr_pages = 1 << order;
1525 atomic_set(&folio->_entire_mapcount, 0);
1526 atomic_set(&folio->_nr_pages_mapped, 0);
1527 atomic_set(&folio->_pincount, 0);
1529 for (i = 1; i < nr_pages; i++) {
1530 p = folio_page(folio, i);
1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1533 clear_compound_head(p);
1535 set_page_refcounted(p);
1538 __folio_clear_head(folio);
1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1544 __destroy_compound_gigantic_folio(folio, order, true);
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1551 __destroy_compound_gigantic_folio(folio, order, false);
1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1557 * If the page isn't allocated using the cma allocator,
1558 * cma_release() returns false.
1561 int nid = folio_nid(folio);
1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1567 free_contig_range(folio_pfn(folio), 1 << order);
1570 #ifdef CONFIG_CONTIG_ALLOC
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 int nid, nodemask_t *nodemask)
1575 unsigned long nr_pages = pages_per_huge_page(h);
1576 if (nid == NUMA_NO_NODE)
1577 nid = numa_mem_id();
1583 if (hugetlb_cma[nid]) {
1584 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585 huge_page_order(h), true);
1587 return page_folio(page);
1590 if (!(gfp_mask & __GFP_THISNODE)) {
1591 for_each_node_mask(node, *nodemask) {
1592 if (node == nid || !hugetlb_cma[node])
1595 page = cma_alloc(hugetlb_cma[node], nr_pages,
1596 huge_page_order(h), true);
1598 return page_folio(page);
1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605 return page ? page_folio(page) : NULL;
1608 #else /* !CONFIG_CONTIG_ALLOC */
1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610 int nid, nodemask_t *nodemask)
1614 #endif /* CONFIG_CONTIG_ALLOC */
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618 int nid, nodemask_t *nodemask)
1622 static inline void free_gigantic_folio(struct folio *folio,
1623 unsigned int order) { }
1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625 unsigned int order) { }
1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629 struct folio *folio)
1631 lockdep_assert_held(&hugetlb_lock);
1633 folio_clear_hugetlb(folio);
1637 * Remove hugetlb folio from lists.
1638 * If vmemmap exists for the folio, update dtor so that the folio appears
1639 * as just a compound page. Otherwise, wait until after allocating vmemmap
1642 * A reference is held on the folio, except in the case of demote.
1644 * Must be called with hugetlb lock held.
1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus,
1650 int nid = folio_nid(folio);
1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1655 lockdep_assert_held(&hugetlb_lock);
1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1659 list_del(&folio->lru);
1661 if (folio_test_hugetlb_freed(folio)) {
1662 h->free_huge_pages--;
1663 h->free_huge_pages_node[nid]--;
1665 if (adjust_surplus) {
1666 h->surplus_huge_pages--;
1667 h->surplus_huge_pages_node[nid]--;
1671 * We can only clear the hugetlb destructor after allocating vmemmap
1672 * pages. Otherwise, someone (memory error handling) may try to write
1673 * to tail struct pages.
1675 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676 __clear_hugetlb_destructor(h, folio);
1679 * In the case of demote we do not ref count the page as it will soon
1680 * be turned into a page of smaller size.
1683 folio_ref_unfreeze(folio, 1);
1686 h->nr_huge_pages_node[nid]--;
1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702 bool adjust_surplus)
1705 int nid = folio_nid(folio);
1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1709 lockdep_assert_held(&hugetlb_lock);
1711 INIT_LIST_HEAD(&folio->lru);
1713 h->nr_huge_pages_node[nid]++;
1715 if (adjust_surplus) {
1716 h->surplus_huge_pages++;
1717 h->surplus_huge_pages_node[nid]++;
1720 folio_set_hugetlb(folio);
1721 folio_change_private(folio, NULL);
1723 * We have to set hugetlb_vmemmap_optimized again as above
1724 * folio_change_private(folio, NULL) cleared it.
1726 folio_set_hugetlb_vmemmap_optimized(folio);
1729 * This folio is about to be managed by the hugetlb allocator and
1730 * should have no users. Drop our reference, and check for others
1733 zeroed = folio_put_testzero(folio);
1734 if (unlikely(!zeroed))
1736 * It is VERY unlikely soneone else has taken a ref
1737 * on the folio. In this case, we simply return as
1738 * free_huge_folio() will be called when this other ref
1743 arch_clear_hugepage_flags(&folio->page);
1744 enqueue_hugetlb_folio(h, folio);
1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748 struct folio *folio)
1750 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1752 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1756 * If we don't know which subpages are hwpoisoned, we can't free
1757 * the hugepage, so it's leaked intentionally.
1759 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1762 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1763 spin_lock_irq(&hugetlb_lock);
1765 * If we cannot allocate vmemmap pages, just refuse to free the
1766 * page and put the page back on the hugetlb free list and treat
1767 * as a surplus page.
1769 add_hugetlb_folio(h, folio, true);
1770 spin_unlock_irq(&hugetlb_lock);
1775 * Move PageHWPoison flag from head page to the raw error pages,
1776 * which makes any healthy subpages reusable.
1778 if (unlikely(folio_test_hwpoison(folio)))
1779 folio_clear_hugetlb_hwpoison(folio);
1782 * If vmemmap pages were allocated above, then we need to clear the
1783 * hugetlb destructor under the hugetlb lock.
1786 spin_lock_irq(&hugetlb_lock);
1787 __clear_hugetlb_destructor(h, folio);
1788 spin_unlock_irq(&hugetlb_lock);
1792 * Non-gigantic pages demoted from CMA allocated gigantic pages
1793 * need to be given back to CMA in free_gigantic_folio.
1795 if (hstate_is_gigantic(h) ||
1796 hugetlb_cma_folio(folio, huge_page_order(h))) {
1797 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1798 free_gigantic_folio(folio, huge_page_order(h));
1800 __free_pages(&folio->page, huge_page_order(h));
1805 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1806 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1807 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1808 * the vmemmap pages.
1810 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1811 * freed and frees them one-by-one. As the page->mapping pointer is going
1812 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1813 * structure of a lockless linked list of huge pages to be freed.
1815 static LLIST_HEAD(hpage_freelist);
1817 static void free_hpage_workfn(struct work_struct *work)
1819 struct llist_node *node;
1821 node = llist_del_all(&hpage_freelist);
1827 page = container_of((struct address_space **)node,
1828 struct page, mapping);
1830 page->mapping = NULL;
1832 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1833 * folio_hstate() is going to trigger because a previous call to
1834 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1835 * not use folio_hstate() directly.
1837 h = size_to_hstate(page_size(page));
1839 __update_and_free_hugetlb_folio(h, page_folio(page));
1844 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1846 static inline void flush_free_hpage_work(struct hstate *h)
1848 if (hugetlb_vmemmap_optimizable(h))
1849 flush_work(&free_hpage_work);
1852 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1855 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1856 __update_and_free_hugetlb_folio(h, folio);
1861 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1863 * Only call schedule_work() if hpage_freelist is previously
1864 * empty. Otherwise, schedule_work() had been called but the workfn
1865 * hasn't retrieved the list yet.
1867 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1868 schedule_work(&free_hpage_work);
1871 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1873 struct page *page, *t_page;
1874 struct folio *folio;
1876 list_for_each_entry_safe(page, t_page, list, lru) {
1877 folio = page_folio(page);
1878 update_and_free_hugetlb_folio(h, folio, false);
1883 struct hstate *size_to_hstate(unsigned long size)
1887 for_each_hstate(h) {
1888 if (huge_page_size(h) == size)
1894 void free_huge_folio(struct folio *folio)
1897 * Can't pass hstate in here because it is called from the
1898 * compound page destructor.
1900 struct hstate *h = folio_hstate(folio);
1901 int nid = folio_nid(folio);
1902 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1903 bool restore_reserve;
1904 unsigned long flags;
1906 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1907 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1909 hugetlb_set_folio_subpool(folio, NULL);
1910 if (folio_test_anon(folio))
1911 __ClearPageAnonExclusive(&folio->page);
1912 folio->mapping = NULL;
1913 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1914 folio_clear_hugetlb_restore_reserve(folio);
1917 * If HPageRestoreReserve was set on page, page allocation consumed a
1918 * reservation. If the page was associated with a subpool, there
1919 * would have been a page reserved in the subpool before allocation
1920 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1921 * reservation, do not call hugepage_subpool_put_pages() as this will
1922 * remove the reserved page from the subpool.
1924 if (!restore_reserve) {
1926 * A return code of zero implies that the subpool will be
1927 * under its minimum size if the reservation is not restored
1928 * after page is free. Therefore, force restore_reserve
1931 if (hugepage_subpool_put_pages(spool, 1) == 0)
1932 restore_reserve = true;
1935 spin_lock_irqsave(&hugetlb_lock, flags);
1936 folio_clear_hugetlb_migratable(folio);
1937 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1938 pages_per_huge_page(h), folio);
1939 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1940 pages_per_huge_page(h), folio);
1941 if (restore_reserve)
1942 h->resv_huge_pages++;
1944 if (folio_test_hugetlb_temporary(folio)) {
1945 remove_hugetlb_folio(h, folio, false);
1946 spin_unlock_irqrestore(&hugetlb_lock, flags);
1947 update_and_free_hugetlb_folio(h, folio, true);
1948 } else if (h->surplus_huge_pages_node[nid]) {
1949 /* remove the page from active list */
1950 remove_hugetlb_folio(h, folio, true);
1951 spin_unlock_irqrestore(&hugetlb_lock, flags);
1952 update_and_free_hugetlb_folio(h, folio, true);
1954 arch_clear_hugepage_flags(&folio->page);
1955 enqueue_hugetlb_folio(h, folio);
1956 spin_unlock_irqrestore(&hugetlb_lock, flags);
1961 * Must be called with the hugetlb lock held
1963 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1965 lockdep_assert_held(&hugetlb_lock);
1967 h->nr_huge_pages_node[nid]++;
1970 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1972 hugetlb_vmemmap_optimize(h, &folio->page);
1973 INIT_LIST_HEAD(&folio->lru);
1974 folio_set_hugetlb(folio);
1975 hugetlb_set_folio_subpool(folio, NULL);
1976 set_hugetlb_cgroup(folio, NULL);
1977 set_hugetlb_cgroup_rsvd(folio, NULL);
1980 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1982 __prep_new_hugetlb_folio(h, folio);
1983 spin_lock_irq(&hugetlb_lock);
1984 __prep_account_new_huge_page(h, nid);
1985 spin_unlock_irq(&hugetlb_lock);
1988 static bool __prep_compound_gigantic_folio(struct folio *folio,
1989 unsigned int order, bool demote)
1992 int nr_pages = 1 << order;
1995 __folio_clear_reserved(folio);
1996 for (i = 0; i < nr_pages; i++) {
1997 p = folio_page(folio, i);
2000 * For gigantic hugepages allocated through bootmem at
2001 * boot, it's safer to be consistent with the not-gigantic
2002 * hugepages and clear the PG_reserved bit from all tail pages
2003 * too. Otherwise drivers using get_user_pages() to access tail
2004 * pages may get the reference counting wrong if they see
2005 * PG_reserved set on a tail page (despite the head page not
2006 * having PG_reserved set). Enforcing this consistency between
2007 * head and tail pages allows drivers to optimize away a check
2008 * on the head page when they need know if put_page() is needed
2009 * after get_user_pages().
2011 if (i != 0) /* head page cleared above */
2012 __ClearPageReserved(p);
2014 * Subtle and very unlikely
2016 * Gigantic 'page allocators' such as memblock or cma will
2017 * return a set of pages with each page ref counted. We need
2018 * to turn this set of pages into a compound page with tail
2019 * page ref counts set to zero. Code such as speculative page
2020 * cache adding could take a ref on a 'to be' tail page.
2021 * We need to respect any increased ref count, and only set
2022 * the ref count to zero if count is currently 1. If count
2023 * is not 1, we return an error. An error return indicates
2024 * the set of pages can not be converted to a gigantic page.
2025 * The caller who allocated the pages should then discard the
2026 * pages using the appropriate free interface.
2028 * In the case of demote, the ref count will be zero.
2031 if (!page_ref_freeze(p, 1)) {
2032 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2036 VM_BUG_ON_PAGE(page_count(p), p);
2039 set_compound_head(p, &folio->page);
2041 __folio_set_head(folio);
2042 /* we rely on prep_new_hugetlb_folio to set the destructor */
2043 folio_set_order(folio, order);
2044 atomic_set(&folio->_entire_mapcount, -1);
2045 atomic_set(&folio->_nr_pages_mapped, 0);
2046 atomic_set(&folio->_pincount, 0);
2050 /* undo page modifications made above */
2051 for (j = 0; j < i; j++) {
2052 p = folio_page(folio, j);
2054 clear_compound_head(p);
2055 set_page_refcounted(p);
2057 /* need to clear PG_reserved on remaining tail pages */
2058 for (; j < nr_pages; j++) {
2059 p = folio_page(folio, j);
2060 __ClearPageReserved(p);
2065 static bool prep_compound_gigantic_folio(struct folio *folio,
2068 return __prep_compound_gigantic_folio(folio, order, false);
2071 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2074 return __prep_compound_gigantic_folio(folio, order, true);
2078 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2079 * transparent huge pages. See the PageTransHuge() documentation for more
2082 int PageHuge(struct page *page)
2084 struct folio *folio;
2086 if (!PageCompound(page))
2088 folio = page_folio(page);
2089 return folio_test_hugetlb(folio);
2091 EXPORT_SYMBOL_GPL(PageHuge);
2094 * Find and lock address space (mapping) in write mode.
2096 * Upon entry, the page is locked which means that page_mapping() is
2097 * stable. Due to locking order, we can only trylock_write. If we can
2098 * not get the lock, simply return NULL to caller.
2100 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2102 struct address_space *mapping = page_mapping(hpage);
2107 if (i_mmap_trylock_write(mapping))
2113 pgoff_t hugetlb_basepage_index(struct page *page)
2115 struct page *page_head = compound_head(page);
2116 pgoff_t index = page_index(page_head);
2117 unsigned long compound_idx;
2119 if (compound_order(page_head) > MAX_ORDER)
2120 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2122 compound_idx = page - page_head;
2124 return (index << compound_order(page_head)) + compound_idx;
2127 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2128 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2129 nodemask_t *node_alloc_noretry)
2131 int order = huge_page_order(h);
2133 bool alloc_try_hard = true;
2137 * By default we always try hard to allocate the page with
2138 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2139 * a loop (to adjust global huge page counts) and previous allocation
2140 * failed, do not continue to try hard on the same node. Use the
2141 * node_alloc_noretry bitmap to manage this state information.
2143 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2144 alloc_try_hard = false;
2145 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2147 gfp_mask |= __GFP_RETRY_MAYFAIL;
2148 if (nid == NUMA_NO_NODE)
2149 nid = numa_mem_id();
2151 page = __alloc_pages(gfp_mask, order, nid, nmask);
2153 /* Freeze head page */
2154 if (page && !page_ref_freeze(page, 1)) {
2155 __free_pages(page, order);
2156 if (retry) { /* retry once */
2160 /* WOW! twice in a row. */
2161 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2166 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2167 * indicates an overall state change. Clear bit so that we resume
2168 * normal 'try hard' allocations.
2170 if (node_alloc_noretry && page && !alloc_try_hard)
2171 node_clear(nid, *node_alloc_noretry);
2174 * If we tried hard to get a page but failed, set bit so that
2175 * subsequent attempts will not try as hard until there is an
2176 * overall state change.
2178 if (node_alloc_noretry && !page && alloc_try_hard)
2179 node_set(nid, *node_alloc_noretry);
2182 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2186 __count_vm_event(HTLB_BUDDY_PGALLOC);
2187 return page_folio(page);
2191 * Common helper to allocate a fresh hugetlb page. All specific allocators
2192 * should use this function to get new hugetlb pages
2194 * Note that returned page is 'frozen': ref count of head page and all tail
2197 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2198 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199 nodemask_t *node_alloc_noretry)
2201 struct folio *folio;
2205 if (hstate_is_gigantic(h))
2206 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2208 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2209 nid, nmask, node_alloc_noretry);
2212 if (hstate_is_gigantic(h)) {
2213 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2215 * Rare failure to convert pages to compound page.
2216 * Free pages and try again - ONCE!
2218 free_gigantic_folio(folio, huge_page_order(h));
2226 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2232 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2235 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2236 nodemask_t *node_alloc_noretry)
2238 struct folio *folio;
2240 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2242 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2243 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2244 nodes_allowed, node_alloc_noretry);
2246 free_huge_folio(folio); /* free it into the hugepage allocator */
2255 * Remove huge page from pool from next node to free. Attempt to keep
2256 * persistent huge pages more or less balanced over allowed nodes.
2257 * This routine only 'removes' the hugetlb page. The caller must make
2258 * an additional call to free the page to low level allocators.
2259 * Called with hugetlb_lock locked.
2261 static struct page *remove_pool_huge_page(struct hstate *h,
2262 nodemask_t *nodes_allowed,
2266 struct page *page = NULL;
2267 struct folio *folio;
2269 lockdep_assert_held(&hugetlb_lock);
2270 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2272 * If we're returning unused surplus pages, only examine
2273 * nodes with surplus pages.
2275 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2276 !list_empty(&h->hugepage_freelists[node])) {
2277 page = list_entry(h->hugepage_freelists[node].next,
2279 folio = page_folio(page);
2280 remove_hugetlb_folio(h, folio, acct_surplus);
2289 * Dissolve a given free hugepage into free buddy pages. This function does
2290 * nothing for in-use hugepages and non-hugepages.
2291 * This function returns values like below:
2293 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2294 * when the system is under memory pressure and the feature of
2295 * freeing unused vmemmap pages associated with each hugetlb page
2297 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2298 * (allocated or reserved.)
2299 * 0: successfully dissolved free hugepages or the page is not a
2300 * hugepage (considered as already dissolved)
2302 int dissolve_free_huge_page(struct page *page)
2305 struct folio *folio = page_folio(page);
2308 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2309 if (!folio_test_hugetlb(folio))
2312 spin_lock_irq(&hugetlb_lock);
2313 if (!folio_test_hugetlb(folio)) {
2318 if (!folio_ref_count(folio)) {
2319 struct hstate *h = folio_hstate(folio);
2320 if (!available_huge_pages(h))
2324 * We should make sure that the page is already on the free list
2325 * when it is dissolved.
2327 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2328 spin_unlock_irq(&hugetlb_lock);
2332 * Theoretically, we should return -EBUSY when we
2333 * encounter this race. In fact, we have a chance
2334 * to successfully dissolve the page if we do a
2335 * retry. Because the race window is quite small.
2336 * If we seize this opportunity, it is an optimization
2337 * for increasing the success rate of dissolving page.
2342 remove_hugetlb_folio(h, folio, false);
2343 h->max_huge_pages--;
2344 spin_unlock_irq(&hugetlb_lock);
2347 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2348 * before freeing the page. update_and_free_hugtlb_folio will fail to
2349 * free the page if it can not allocate required vmemmap. We
2350 * need to adjust max_huge_pages if the page is not freed.
2351 * Attempt to allocate vmemmmap here so that we can take
2352 * appropriate action on failure.
2354 rc = hugetlb_vmemmap_restore(h, &folio->page);
2356 update_and_free_hugetlb_folio(h, folio, false);
2358 spin_lock_irq(&hugetlb_lock);
2359 add_hugetlb_folio(h, folio, false);
2360 h->max_huge_pages++;
2361 spin_unlock_irq(&hugetlb_lock);
2367 spin_unlock_irq(&hugetlb_lock);
2372 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2373 * make specified memory blocks removable from the system.
2374 * Note that this will dissolve a free gigantic hugepage completely, if any
2375 * part of it lies within the given range.
2376 * Also note that if dissolve_free_huge_page() returns with an error, all
2377 * free hugepages that were dissolved before that error are lost.
2379 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2387 if (!hugepages_supported())
2390 order = huge_page_order(&default_hstate);
2392 order = min(order, huge_page_order(h));
2394 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2395 page = pfn_to_page(pfn);
2396 rc = dissolve_free_huge_page(page);
2405 * Allocates a fresh surplus page from the page allocator.
2407 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2408 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2410 struct folio *folio = NULL;
2412 if (hstate_is_gigantic(h))
2415 spin_lock_irq(&hugetlb_lock);
2416 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2418 spin_unlock_irq(&hugetlb_lock);
2420 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2424 spin_lock_irq(&hugetlb_lock);
2426 * We could have raced with the pool size change.
2427 * Double check that and simply deallocate the new page
2428 * if we would end up overcommiting the surpluses. Abuse
2429 * temporary page to workaround the nasty free_huge_folio
2432 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2433 folio_set_hugetlb_temporary(folio);
2434 spin_unlock_irq(&hugetlb_lock);
2435 free_huge_folio(folio);
2439 h->surplus_huge_pages++;
2440 h->surplus_huge_pages_node[folio_nid(folio)]++;
2443 spin_unlock_irq(&hugetlb_lock);
2448 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2449 int nid, nodemask_t *nmask)
2451 struct folio *folio;
2453 if (hstate_is_gigantic(h))
2456 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2460 /* fresh huge pages are frozen */
2461 folio_ref_unfreeze(folio, 1);
2463 * We do not account these pages as surplus because they are only
2464 * temporary and will be released properly on the last reference
2466 folio_set_hugetlb_temporary(folio);
2472 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2475 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2476 struct vm_area_struct *vma, unsigned long addr)
2478 struct folio *folio = NULL;
2479 struct mempolicy *mpol;
2480 gfp_t gfp_mask = htlb_alloc_mask(h);
2482 nodemask_t *nodemask;
2484 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2485 if (mpol_is_preferred_many(mpol)) {
2486 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2488 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2489 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2491 /* Fallback to all nodes if page==NULL */
2496 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2497 mpol_cond_put(mpol);
2501 /* folio migration callback function */
2502 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2503 nodemask_t *nmask, gfp_t gfp_mask)
2505 spin_lock_irq(&hugetlb_lock);
2506 if (available_huge_pages(h)) {
2507 struct folio *folio;
2509 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2510 preferred_nid, nmask);
2512 spin_unlock_irq(&hugetlb_lock);
2516 spin_unlock_irq(&hugetlb_lock);
2518 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2521 /* mempolicy aware migration callback */
2522 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2523 unsigned long address)
2525 struct mempolicy *mpol;
2526 nodemask_t *nodemask;
2527 struct folio *folio;
2531 gfp_mask = htlb_alloc_mask(h);
2532 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2533 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2534 mpol_cond_put(mpol);
2540 * Increase the hugetlb pool such that it can accommodate a reservation
2543 static int gather_surplus_pages(struct hstate *h, long delta)
2544 __must_hold(&hugetlb_lock)
2546 LIST_HEAD(surplus_list);
2547 struct folio *folio, *tmp;
2550 long needed, allocated;
2551 bool alloc_ok = true;
2553 lockdep_assert_held(&hugetlb_lock);
2554 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2556 h->resv_huge_pages += delta;
2564 spin_unlock_irq(&hugetlb_lock);
2565 for (i = 0; i < needed; i++) {
2566 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2567 NUMA_NO_NODE, NULL);
2572 list_add(&folio->lru, &surplus_list);
2578 * After retaking hugetlb_lock, we need to recalculate 'needed'
2579 * because either resv_huge_pages or free_huge_pages may have changed.
2581 spin_lock_irq(&hugetlb_lock);
2582 needed = (h->resv_huge_pages + delta) -
2583 (h->free_huge_pages + allocated);
2588 * We were not able to allocate enough pages to
2589 * satisfy the entire reservation so we free what
2590 * we've allocated so far.
2595 * The surplus_list now contains _at_least_ the number of extra pages
2596 * needed to accommodate the reservation. Add the appropriate number
2597 * of pages to the hugetlb pool and free the extras back to the buddy
2598 * allocator. Commit the entire reservation here to prevent another
2599 * process from stealing the pages as they are added to the pool but
2600 * before they are reserved.
2602 needed += allocated;
2603 h->resv_huge_pages += delta;
2606 /* Free the needed pages to the hugetlb pool */
2607 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2610 /* Add the page to the hugetlb allocator */
2611 enqueue_hugetlb_folio(h, folio);
2614 spin_unlock_irq(&hugetlb_lock);
2617 * Free unnecessary surplus pages to the buddy allocator.
2618 * Pages have no ref count, call free_huge_folio directly.
2620 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2621 free_huge_folio(folio);
2622 spin_lock_irq(&hugetlb_lock);
2628 * This routine has two main purposes:
2629 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2630 * in unused_resv_pages. This corresponds to the prior adjustments made
2631 * to the associated reservation map.
2632 * 2) Free any unused surplus pages that may have been allocated to satisfy
2633 * the reservation. As many as unused_resv_pages may be freed.
2635 static void return_unused_surplus_pages(struct hstate *h,
2636 unsigned long unused_resv_pages)
2638 unsigned long nr_pages;
2640 LIST_HEAD(page_list);
2642 lockdep_assert_held(&hugetlb_lock);
2643 /* Uncommit the reservation */
2644 h->resv_huge_pages -= unused_resv_pages;
2646 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2650 * Part (or even all) of the reservation could have been backed
2651 * by pre-allocated pages. Only free surplus pages.
2653 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2656 * We want to release as many surplus pages as possible, spread
2657 * evenly across all nodes with memory. Iterate across these nodes
2658 * until we can no longer free unreserved surplus pages. This occurs
2659 * when the nodes with surplus pages have no free pages.
2660 * remove_pool_huge_page() will balance the freed pages across the
2661 * on-line nodes with memory and will handle the hstate accounting.
2663 while (nr_pages--) {
2664 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2668 list_add(&page->lru, &page_list);
2672 spin_unlock_irq(&hugetlb_lock);
2673 update_and_free_pages_bulk(h, &page_list);
2674 spin_lock_irq(&hugetlb_lock);
2679 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2680 * are used by the huge page allocation routines to manage reservations.
2682 * vma_needs_reservation is called to determine if the huge page at addr
2683 * within the vma has an associated reservation. If a reservation is
2684 * needed, the value 1 is returned. The caller is then responsible for
2685 * managing the global reservation and subpool usage counts. After
2686 * the huge page has been allocated, vma_commit_reservation is called
2687 * to add the page to the reservation map. If the page allocation fails,
2688 * the reservation must be ended instead of committed. vma_end_reservation
2689 * is called in such cases.
2691 * In the normal case, vma_commit_reservation returns the same value
2692 * as the preceding vma_needs_reservation call. The only time this
2693 * is not the case is if a reserve map was changed between calls. It
2694 * is the responsibility of the caller to notice the difference and
2695 * take appropriate action.
2697 * vma_add_reservation is used in error paths where a reservation must
2698 * be restored when a newly allocated huge page must be freed. It is
2699 * to be called after calling vma_needs_reservation to determine if a
2700 * reservation exists.
2702 * vma_del_reservation is used in error paths where an entry in the reserve
2703 * map was created during huge page allocation and must be removed. It is to
2704 * be called after calling vma_needs_reservation to determine if a reservation
2707 enum vma_resv_mode {
2714 static long __vma_reservation_common(struct hstate *h,
2715 struct vm_area_struct *vma, unsigned long addr,
2716 enum vma_resv_mode mode)
2718 struct resv_map *resv;
2721 long dummy_out_regions_needed;
2723 resv = vma_resv_map(vma);
2727 idx = vma_hugecache_offset(h, vma, addr);
2729 case VMA_NEEDS_RESV:
2730 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2731 /* We assume that vma_reservation_* routines always operate on
2732 * 1 page, and that adding to resv map a 1 page entry can only
2733 * ever require 1 region.
2735 VM_BUG_ON(dummy_out_regions_needed != 1);
2737 case VMA_COMMIT_RESV:
2738 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739 /* region_add calls of range 1 should never fail. */
2743 region_abort(resv, idx, idx + 1, 1);
2747 if (vma->vm_flags & VM_MAYSHARE) {
2748 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2749 /* region_add calls of range 1 should never fail. */
2752 region_abort(resv, idx, idx + 1, 1);
2753 ret = region_del(resv, idx, idx + 1);
2757 if (vma->vm_flags & VM_MAYSHARE) {
2758 region_abort(resv, idx, idx + 1, 1);
2759 ret = region_del(resv, idx, idx + 1);
2761 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2762 /* region_add calls of range 1 should never fail. */
2770 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2773 * We know private mapping must have HPAGE_RESV_OWNER set.
2775 * In most cases, reserves always exist for private mappings.
2776 * However, a file associated with mapping could have been
2777 * hole punched or truncated after reserves were consumed.
2778 * As subsequent fault on such a range will not use reserves.
2779 * Subtle - The reserve map for private mappings has the
2780 * opposite meaning than that of shared mappings. If NO
2781 * entry is in the reserve map, it means a reservation exists.
2782 * If an entry exists in the reserve map, it means the
2783 * reservation has already been consumed. As a result, the
2784 * return value of this routine is the opposite of the
2785 * value returned from reserve map manipulation routines above.
2794 static long vma_needs_reservation(struct hstate *h,
2795 struct vm_area_struct *vma, unsigned long addr)
2797 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2800 static long vma_commit_reservation(struct hstate *h,
2801 struct vm_area_struct *vma, unsigned long addr)
2803 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2806 static void vma_end_reservation(struct hstate *h,
2807 struct vm_area_struct *vma, unsigned long addr)
2809 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2812 static long vma_add_reservation(struct hstate *h,
2813 struct vm_area_struct *vma, unsigned long addr)
2815 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2818 static long vma_del_reservation(struct hstate *h,
2819 struct vm_area_struct *vma, unsigned long addr)
2821 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2825 * This routine is called to restore reservation information on error paths.
2826 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2827 * and the hugetlb mutex should remain held when calling this routine.
2829 * It handles two specific cases:
2830 * 1) A reservation was in place and the folio consumed the reservation.
2831 * hugetlb_restore_reserve is set in the folio.
2832 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2833 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2835 * In case 1, free_huge_folio later in the error path will increment the
2836 * global reserve count. But, free_huge_folio does not have enough context
2837 * to adjust the reservation map. This case deals primarily with private
2838 * mappings. Adjust the reserve map here to be consistent with global
2839 * reserve count adjustments to be made by free_huge_folio. Make sure the
2840 * reserve map indicates there is a reservation present.
2842 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2844 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2845 unsigned long address, struct folio *folio)
2847 long rc = vma_needs_reservation(h, vma, address);
2849 if (folio_test_hugetlb_restore_reserve(folio)) {
2850 if (unlikely(rc < 0))
2852 * Rare out of memory condition in reserve map
2853 * manipulation. Clear hugetlb_restore_reserve so
2854 * that global reserve count will not be incremented
2855 * by free_huge_folio. This will make it appear
2856 * as though the reservation for this folio was
2857 * consumed. This may prevent the task from
2858 * faulting in the folio at a later time. This
2859 * is better than inconsistent global huge page
2860 * accounting of reserve counts.
2862 folio_clear_hugetlb_restore_reserve(folio);
2864 (void)vma_add_reservation(h, vma, address);
2866 vma_end_reservation(h, vma, address);
2870 * This indicates there is an entry in the reserve map
2871 * not added by alloc_hugetlb_folio. We know it was added
2872 * before the alloc_hugetlb_folio call, otherwise
2873 * hugetlb_restore_reserve would be set on the folio.
2874 * Remove the entry so that a subsequent allocation
2875 * does not consume a reservation.
2877 rc = vma_del_reservation(h, vma, address);
2880 * VERY rare out of memory condition. Since
2881 * we can not delete the entry, set
2882 * hugetlb_restore_reserve so that the reserve
2883 * count will be incremented when the folio
2884 * is freed. This reserve will be consumed
2885 * on a subsequent allocation.
2887 folio_set_hugetlb_restore_reserve(folio);
2888 } else if (rc < 0) {
2890 * Rare out of memory condition from
2891 * vma_needs_reservation call. Memory allocation is
2892 * only attempted if a new entry is needed. Therefore,
2893 * this implies there is not an entry in the
2896 * For shared mappings, no entry in the map indicates
2897 * no reservation. We are done.
2899 if (!(vma->vm_flags & VM_MAYSHARE))
2901 * For private mappings, no entry indicates
2902 * a reservation is present. Since we can
2903 * not add an entry, set hugetlb_restore_reserve
2904 * on the folio so reserve count will be
2905 * incremented when freed. This reserve will
2906 * be consumed on a subsequent allocation.
2908 folio_set_hugetlb_restore_reserve(folio);
2911 * No reservation present, do nothing
2913 vma_end_reservation(h, vma, address);
2918 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2920 * @h: struct hstate old page belongs to
2921 * @old_folio: Old folio to dissolve
2922 * @list: List to isolate the page in case we need to
2923 * Returns 0 on success, otherwise negated error.
2925 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2926 struct folio *old_folio, struct list_head *list)
2928 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2929 int nid = folio_nid(old_folio);
2930 struct folio *new_folio;
2934 * Before dissolving the folio, we need to allocate a new one for the
2935 * pool to remain stable. Here, we allocate the folio and 'prep' it
2936 * by doing everything but actually updating counters and adding to
2937 * the pool. This simplifies and let us do most of the processing
2940 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2943 __prep_new_hugetlb_folio(h, new_folio);
2946 spin_lock_irq(&hugetlb_lock);
2947 if (!folio_test_hugetlb(old_folio)) {
2949 * Freed from under us. Drop new_folio too.
2952 } else if (folio_ref_count(old_folio)) {
2956 * Someone has grabbed the folio, try to isolate it here.
2957 * Fail with -EBUSY if not possible.
2959 spin_unlock_irq(&hugetlb_lock);
2960 isolated = isolate_hugetlb(old_folio, list);
2961 ret = isolated ? 0 : -EBUSY;
2962 spin_lock_irq(&hugetlb_lock);
2964 } else if (!folio_test_hugetlb_freed(old_folio)) {
2966 * Folio's refcount is 0 but it has not been enqueued in the
2967 * freelist yet. Race window is small, so we can succeed here if
2970 spin_unlock_irq(&hugetlb_lock);
2975 * Ok, old_folio is still a genuine free hugepage. Remove it from
2976 * the freelist and decrease the counters. These will be
2977 * incremented again when calling __prep_account_new_huge_page()
2978 * and enqueue_hugetlb_folio() for new_folio. The counters will
2979 * remain stable since this happens under the lock.
2981 remove_hugetlb_folio(h, old_folio, false);
2984 * Ref count on new_folio is already zero as it was dropped
2985 * earlier. It can be directly added to the pool free list.
2987 __prep_account_new_huge_page(h, nid);
2988 enqueue_hugetlb_folio(h, new_folio);
2991 * Folio has been replaced, we can safely free the old one.
2993 spin_unlock_irq(&hugetlb_lock);
2994 update_and_free_hugetlb_folio(h, old_folio, false);
3000 spin_unlock_irq(&hugetlb_lock);
3001 /* Folio has a zero ref count, but needs a ref to be freed */
3002 folio_ref_unfreeze(new_folio, 1);
3003 update_and_free_hugetlb_folio(h, new_folio, false);
3008 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3011 struct folio *folio = page_folio(page);
3015 * The page might have been dissolved from under our feet, so make sure
3016 * to carefully check the state under the lock.
3017 * Return success when racing as if we dissolved the page ourselves.
3019 spin_lock_irq(&hugetlb_lock);
3020 if (folio_test_hugetlb(folio)) {
3021 h = folio_hstate(folio);
3023 spin_unlock_irq(&hugetlb_lock);
3026 spin_unlock_irq(&hugetlb_lock);
3029 * Fence off gigantic pages as there is a cyclic dependency between
3030 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3031 * of bailing out right away without further retrying.
3033 if (hstate_is_gigantic(h))
3036 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3038 else if (!folio_ref_count(folio))
3039 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3044 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3045 unsigned long addr, int avoid_reserve)
3047 struct hugepage_subpool *spool = subpool_vma(vma);
3048 struct hstate *h = hstate_vma(vma);
3049 struct folio *folio;
3050 long map_chg, map_commit;
3053 struct hugetlb_cgroup *h_cg = NULL;
3054 bool deferred_reserve;
3056 idx = hstate_index(h);
3058 * Examine the region/reserve map to determine if the process
3059 * has a reservation for the page to be allocated. A return
3060 * code of zero indicates a reservation exists (no change).
3062 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3064 return ERR_PTR(-ENOMEM);
3067 * Processes that did not create the mapping will have no
3068 * reserves as indicated by the region/reserve map. Check
3069 * that the allocation will not exceed the subpool limit.
3070 * Allocations for MAP_NORESERVE mappings also need to be
3071 * checked against any subpool limit.
3073 if (map_chg || avoid_reserve) {
3074 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3076 vma_end_reservation(h, vma, addr);
3077 return ERR_PTR(-ENOSPC);
3081 * Even though there was no reservation in the region/reserve
3082 * map, there could be reservations associated with the
3083 * subpool that can be used. This would be indicated if the
3084 * return value of hugepage_subpool_get_pages() is zero.
3085 * However, if avoid_reserve is specified we still avoid even
3086 * the subpool reservations.
3092 /* If this allocation is not consuming a reservation, charge it now.
3094 deferred_reserve = map_chg || avoid_reserve;
3095 if (deferred_reserve) {
3096 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3097 idx, pages_per_huge_page(h), &h_cg);
3099 goto out_subpool_put;
3102 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3104 goto out_uncharge_cgroup_reservation;
3106 spin_lock_irq(&hugetlb_lock);
3108 * glb_chg is passed to indicate whether or not a page must be taken
3109 * from the global free pool (global change). gbl_chg == 0 indicates
3110 * a reservation exists for the allocation.
3112 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3114 spin_unlock_irq(&hugetlb_lock);
3115 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3117 goto out_uncharge_cgroup;
3118 spin_lock_irq(&hugetlb_lock);
3119 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3120 folio_set_hugetlb_restore_reserve(folio);
3121 h->resv_huge_pages--;
3123 list_add(&folio->lru, &h->hugepage_activelist);
3124 folio_ref_unfreeze(folio, 1);
3128 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3129 /* If allocation is not consuming a reservation, also store the
3130 * hugetlb_cgroup pointer on the page.
3132 if (deferred_reserve) {
3133 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3137 spin_unlock_irq(&hugetlb_lock);
3139 hugetlb_set_folio_subpool(folio, spool);
3141 map_commit = vma_commit_reservation(h, vma, addr);
3142 if (unlikely(map_chg > map_commit)) {
3144 * The page was added to the reservation map between
3145 * vma_needs_reservation and vma_commit_reservation.
3146 * This indicates a race with hugetlb_reserve_pages.
3147 * Adjust for the subpool count incremented above AND
3148 * in hugetlb_reserve_pages for the same page. Also,
3149 * the reservation count added in hugetlb_reserve_pages
3150 * no longer applies.
3154 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3155 hugetlb_acct_memory(h, -rsv_adjust);
3156 if (deferred_reserve)
3157 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3158 pages_per_huge_page(h), folio);
3162 out_uncharge_cgroup:
3163 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3164 out_uncharge_cgroup_reservation:
3165 if (deferred_reserve)
3166 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3169 if (map_chg || avoid_reserve)
3170 hugepage_subpool_put_pages(spool, 1);
3171 vma_end_reservation(h, vma, addr);
3172 return ERR_PTR(-ENOSPC);
3175 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3176 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3177 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3179 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3182 /* do node specific alloc */
3183 if (nid != NUMA_NO_NODE) {
3184 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3185 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3190 /* allocate from next node when distributing huge pages */
3191 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3192 m = memblock_alloc_try_nid_raw(
3193 huge_page_size(h), huge_page_size(h),
3194 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3196 * Use the beginning of the huge page to store the
3197 * huge_bootmem_page struct (until gather_bootmem
3198 * puts them into the mem_map).
3206 /* Put them into a private list first because mem_map is not up yet */
3207 INIT_LIST_HEAD(&m->list);
3208 list_add(&m->list, &huge_boot_pages);
3214 * Put bootmem huge pages into the standard lists after mem_map is up.
3215 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3217 static void __init gather_bootmem_prealloc(void)
3219 struct huge_bootmem_page *m;
3221 list_for_each_entry(m, &huge_boot_pages, list) {
3222 struct page *page = virt_to_page(m);
3223 struct folio *folio = page_folio(page);
3224 struct hstate *h = m->hstate;
3226 VM_BUG_ON(!hstate_is_gigantic(h));
3227 WARN_ON(folio_ref_count(folio) != 1);
3228 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3229 WARN_ON(folio_test_reserved(folio));
3230 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3231 free_huge_folio(folio); /* add to the hugepage allocator */
3233 /* VERY unlikely inflated ref count on a tail page */
3234 free_gigantic_folio(folio, huge_page_order(h));
3238 * We need to restore the 'stolen' pages to totalram_pages
3239 * in order to fix confusing memory reports from free(1) and
3240 * other side-effects, like CommitLimit going negative.
3242 adjust_managed_page_count(page, pages_per_huge_page(h));
3246 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3251 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3252 if (hstate_is_gigantic(h)) {
3253 if (!alloc_bootmem_huge_page(h, nid))
3256 struct folio *folio;
3257 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3259 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3260 &node_states[N_MEMORY], NULL);
3263 free_huge_folio(folio); /* free it into the hugepage allocator */
3267 if (i == h->max_huge_pages_node[nid])
3270 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3271 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3272 h->max_huge_pages_node[nid], buf, nid, i);
3273 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3274 h->max_huge_pages_node[nid] = i;
3277 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3280 nodemask_t *node_alloc_noretry;
3281 bool node_specific_alloc = false;
3283 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3284 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3285 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3289 /* do node specific alloc */
3290 for_each_online_node(i) {
3291 if (h->max_huge_pages_node[i] > 0) {
3292 hugetlb_hstate_alloc_pages_onenode(h, i);
3293 node_specific_alloc = true;
3297 if (node_specific_alloc)
3300 /* below will do all node balanced alloc */
3301 if (!hstate_is_gigantic(h)) {
3303 * Bit mask controlling how hard we retry per-node allocations.
3304 * Ignore errors as lower level routines can deal with
3305 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3306 * time, we are likely in bigger trouble.
3308 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3311 /* allocations done at boot time */
3312 node_alloc_noretry = NULL;
3315 /* bit mask controlling how hard we retry per-node allocations */
3316 if (node_alloc_noretry)
3317 nodes_clear(*node_alloc_noretry);
3319 for (i = 0; i < h->max_huge_pages; ++i) {
3320 if (hstate_is_gigantic(h)) {
3321 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3323 } else if (!alloc_pool_huge_page(h,
3324 &node_states[N_MEMORY],
3325 node_alloc_noretry))
3329 if (i < h->max_huge_pages) {
3332 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3333 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3334 h->max_huge_pages, buf, i);
3335 h->max_huge_pages = i;
3337 kfree(node_alloc_noretry);
3340 static void __init hugetlb_init_hstates(void)
3342 struct hstate *h, *h2;
3344 for_each_hstate(h) {
3345 /* oversize hugepages were init'ed in early boot */
3346 if (!hstate_is_gigantic(h))
3347 hugetlb_hstate_alloc_pages(h);
3350 * Set demote order for each hstate. Note that
3351 * h->demote_order is initially 0.
3352 * - We can not demote gigantic pages if runtime freeing
3353 * is not supported, so skip this.
3354 * - If CMA allocation is possible, we can not demote
3355 * HUGETLB_PAGE_ORDER or smaller size pages.
3357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3359 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3361 for_each_hstate(h2) {
3364 if (h2->order < h->order &&
3365 h2->order > h->demote_order)
3366 h->demote_order = h2->order;
3371 static void __init report_hugepages(void)
3375 for_each_hstate(h) {
3378 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3379 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3380 buf, h->free_huge_pages);
3381 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3382 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3386 #ifdef CONFIG_HIGHMEM
3387 static void try_to_free_low(struct hstate *h, unsigned long count,
3388 nodemask_t *nodes_allowed)
3391 LIST_HEAD(page_list);
3393 lockdep_assert_held(&hugetlb_lock);
3394 if (hstate_is_gigantic(h))
3398 * Collect pages to be freed on a list, and free after dropping lock
3400 for_each_node_mask(i, *nodes_allowed) {
3401 struct page *page, *next;
3402 struct list_head *freel = &h->hugepage_freelists[i];
3403 list_for_each_entry_safe(page, next, freel, lru) {
3404 if (count >= h->nr_huge_pages)
3406 if (PageHighMem(page))
3408 remove_hugetlb_folio(h, page_folio(page), false);
3409 list_add(&page->lru, &page_list);
3414 spin_unlock_irq(&hugetlb_lock);
3415 update_and_free_pages_bulk(h, &page_list);
3416 spin_lock_irq(&hugetlb_lock);
3419 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3420 nodemask_t *nodes_allowed)
3426 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3427 * balanced by operating on them in a round-robin fashion.
3428 * Returns 1 if an adjustment was made.
3430 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3435 lockdep_assert_held(&hugetlb_lock);
3436 VM_BUG_ON(delta != -1 && delta != 1);
3439 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3440 if (h->surplus_huge_pages_node[node])
3444 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3445 if (h->surplus_huge_pages_node[node] <
3446 h->nr_huge_pages_node[node])
3453 h->surplus_huge_pages += delta;
3454 h->surplus_huge_pages_node[node] += delta;
3458 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3459 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3460 nodemask_t *nodes_allowed)
3462 unsigned long min_count, ret;
3464 LIST_HEAD(page_list);
3465 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3468 * Bit mask controlling how hard we retry per-node allocations.
3469 * If we can not allocate the bit mask, do not attempt to allocate
3470 * the requested huge pages.
3472 if (node_alloc_noretry)
3473 nodes_clear(*node_alloc_noretry);
3478 * resize_lock mutex prevents concurrent adjustments to number of
3479 * pages in hstate via the proc/sysfs interfaces.
3481 mutex_lock(&h->resize_lock);
3482 flush_free_hpage_work(h);
3483 spin_lock_irq(&hugetlb_lock);
3486 * Check for a node specific request.
3487 * Changing node specific huge page count may require a corresponding
3488 * change to the global count. In any case, the passed node mask
3489 * (nodes_allowed) will restrict alloc/free to the specified node.
3491 if (nid != NUMA_NO_NODE) {
3492 unsigned long old_count = count;
3494 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3496 * User may have specified a large count value which caused the
3497 * above calculation to overflow. In this case, they wanted
3498 * to allocate as many huge pages as possible. Set count to
3499 * largest possible value to align with their intention.
3501 if (count < old_count)
3506 * Gigantic pages runtime allocation depend on the capability for large
3507 * page range allocation.
3508 * If the system does not provide this feature, return an error when
3509 * the user tries to allocate gigantic pages but let the user free the
3510 * boottime allocated gigantic pages.
3512 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3513 if (count > persistent_huge_pages(h)) {
3514 spin_unlock_irq(&hugetlb_lock);
3515 mutex_unlock(&h->resize_lock);
3516 NODEMASK_FREE(node_alloc_noretry);
3519 /* Fall through to decrease pool */
3523 * Increase the pool size
3524 * First take pages out of surplus state. Then make up the
3525 * remaining difference by allocating fresh huge pages.
3527 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3528 * to convert a surplus huge page to a normal huge page. That is
3529 * not critical, though, it just means the overall size of the
3530 * pool might be one hugepage larger than it needs to be, but
3531 * within all the constraints specified by the sysctls.
3533 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3534 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3538 while (count > persistent_huge_pages(h)) {
3540 * If this allocation races such that we no longer need the
3541 * page, free_huge_folio will handle it by freeing the page
3542 * and reducing the surplus.
3544 spin_unlock_irq(&hugetlb_lock);
3546 /* yield cpu to avoid soft lockup */
3549 ret = alloc_pool_huge_page(h, nodes_allowed,
3550 node_alloc_noretry);
3551 spin_lock_irq(&hugetlb_lock);
3555 /* Bail for signals. Probably ctrl-c from user */
3556 if (signal_pending(current))
3561 * Decrease the pool size
3562 * First return free pages to the buddy allocator (being careful
3563 * to keep enough around to satisfy reservations). Then place
3564 * pages into surplus state as needed so the pool will shrink
3565 * to the desired size as pages become free.
3567 * By placing pages into the surplus state independent of the
3568 * overcommit value, we are allowing the surplus pool size to
3569 * exceed overcommit. There are few sane options here. Since
3570 * alloc_surplus_hugetlb_folio() is checking the global counter,
3571 * though, we'll note that we're not allowed to exceed surplus
3572 * and won't grow the pool anywhere else. Not until one of the
3573 * sysctls are changed, or the surplus pages go out of use.
3575 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3576 min_count = max(count, min_count);
3577 try_to_free_low(h, min_count, nodes_allowed);
3580 * Collect pages to be removed on list without dropping lock
3582 while (min_count < persistent_huge_pages(h)) {
3583 page = remove_pool_huge_page(h, nodes_allowed, 0);
3587 list_add(&page->lru, &page_list);
3589 /* free the pages after dropping lock */
3590 spin_unlock_irq(&hugetlb_lock);
3591 update_and_free_pages_bulk(h, &page_list);
3592 flush_free_hpage_work(h);
3593 spin_lock_irq(&hugetlb_lock);
3595 while (count < persistent_huge_pages(h)) {
3596 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3600 h->max_huge_pages = persistent_huge_pages(h);
3601 spin_unlock_irq(&hugetlb_lock);
3602 mutex_unlock(&h->resize_lock);
3604 NODEMASK_FREE(node_alloc_noretry);
3609 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3611 int i, nid = folio_nid(folio);
3612 struct hstate *target_hstate;
3613 struct page *subpage;
3614 struct folio *inner_folio;
3617 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3619 remove_hugetlb_folio_for_demote(h, folio, false);
3620 spin_unlock_irq(&hugetlb_lock);
3622 rc = hugetlb_vmemmap_restore(h, &folio->page);
3624 /* Allocation of vmemmmap failed, we can not demote folio */
3625 spin_lock_irq(&hugetlb_lock);
3626 folio_ref_unfreeze(folio, 1);
3627 add_hugetlb_folio(h, folio, false);
3632 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3633 * sizes as it will not ref count folios.
3635 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3638 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3639 * Without the mutex, pages added to target hstate could be marked
3642 * Note that we already hold h->resize_lock. To prevent deadlock,
3643 * use the convention of always taking larger size hstate mutex first.
3645 mutex_lock(&target_hstate->resize_lock);
3646 for (i = 0; i < pages_per_huge_page(h);
3647 i += pages_per_huge_page(target_hstate)) {
3648 subpage = folio_page(folio, i);
3649 inner_folio = page_folio(subpage);
3650 if (hstate_is_gigantic(target_hstate))
3651 prep_compound_gigantic_folio_for_demote(inner_folio,
3652 target_hstate->order);
3654 prep_compound_page(subpage, target_hstate->order);
3655 folio_change_private(inner_folio, NULL);
3656 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3657 free_huge_folio(inner_folio);
3659 mutex_unlock(&target_hstate->resize_lock);
3661 spin_lock_irq(&hugetlb_lock);
3664 * Not absolutely necessary, but for consistency update max_huge_pages
3665 * based on pool changes for the demoted page.
3667 h->max_huge_pages--;
3668 target_hstate->max_huge_pages +=
3669 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3674 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3675 __must_hold(&hugetlb_lock)
3678 struct folio *folio;
3680 lockdep_assert_held(&hugetlb_lock);
3682 /* We should never get here if no demote order */
3683 if (!h->demote_order) {
3684 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3685 return -EINVAL; /* internal error */
3688 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3689 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3690 if (folio_test_hwpoison(folio))
3692 return demote_free_hugetlb_folio(h, folio);
3697 * Only way to get here is if all pages on free lists are poisoned.
3698 * Return -EBUSY so that caller will not retry.
3703 #define HSTATE_ATTR_RO(_name) \
3704 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3706 #define HSTATE_ATTR_WO(_name) \
3707 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3709 #define HSTATE_ATTR(_name) \
3710 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3712 static struct kobject *hugepages_kobj;
3713 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3717 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3721 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3722 if (hstate_kobjs[i] == kobj) {
3724 *nidp = NUMA_NO_NODE;
3728 return kobj_to_node_hstate(kobj, nidp);
3731 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3732 struct kobj_attribute *attr, char *buf)
3735 unsigned long nr_huge_pages;
3738 h = kobj_to_hstate(kobj, &nid);
3739 if (nid == NUMA_NO_NODE)
3740 nr_huge_pages = h->nr_huge_pages;
3742 nr_huge_pages = h->nr_huge_pages_node[nid];
3744 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3747 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3748 struct hstate *h, int nid,
3749 unsigned long count, size_t len)
3752 nodemask_t nodes_allowed, *n_mask;
3754 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3757 if (nid == NUMA_NO_NODE) {
3759 * global hstate attribute
3761 if (!(obey_mempolicy &&
3762 init_nodemask_of_mempolicy(&nodes_allowed)))
3763 n_mask = &node_states[N_MEMORY];
3765 n_mask = &nodes_allowed;
3768 * Node specific request. count adjustment happens in
3769 * set_max_huge_pages() after acquiring hugetlb_lock.
3771 init_nodemask_of_node(&nodes_allowed, nid);
3772 n_mask = &nodes_allowed;
3775 err = set_max_huge_pages(h, count, nid, n_mask);
3777 return err ? err : len;
3780 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3781 struct kobject *kobj, const char *buf,
3785 unsigned long count;
3789 err = kstrtoul(buf, 10, &count);
3793 h = kobj_to_hstate(kobj, &nid);
3794 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3797 static ssize_t nr_hugepages_show(struct kobject *kobj,
3798 struct kobj_attribute *attr, char *buf)
3800 return nr_hugepages_show_common(kobj, attr, buf);
3803 static ssize_t nr_hugepages_store(struct kobject *kobj,
3804 struct kobj_attribute *attr, const char *buf, size_t len)
3806 return nr_hugepages_store_common(false, kobj, buf, len);
3808 HSTATE_ATTR(nr_hugepages);
3813 * hstate attribute for optionally mempolicy-based constraint on persistent
3814 * huge page alloc/free.
3816 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3817 struct kobj_attribute *attr,
3820 return nr_hugepages_show_common(kobj, attr, buf);
3823 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3824 struct kobj_attribute *attr, const char *buf, size_t len)
3826 return nr_hugepages_store_common(true, kobj, buf, len);
3828 HSTATE_ATTR(nr_hugepages_mempolicy);
3832 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3833 struct kobj_attribute *attr, char *buf)
3835 struct hstate *h = kobj_to_hstate(kobj, NULL);
3836 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3839 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3840 struct kobj_attribute *attr, const char *buf, size_t count)
3843 unsigned long input;
3844 struct hstate *h = kobj_to_hstate(kobj, NULL);
3846 if (hstate_is_gigantic(h))
3849 err = kstrtoul(buf, 10, &input);
3853 spin_lock_irq(&hugetlb_lock);
3854 h->nr_overcommit_huge_pages = input;
3855 spin_unlock_irq(&hugetlb_lock);
3859 HSTATE_ATTR(nr_overcommit_hugepages);
3861 static ssize_t free_hugepages_show(struct kobject *kobj,
3862 struct kobj_attribute *attr, char *buf)
3865 unsigned long free_huge_pages;
3868 h = kobj_to_hstate(kobj, &nid);
3869 if (nid == NUMA_NO_NODE)
3870 free_huge_pages = h->free_huge_pages;
3872 free_huge_pages = h->free_huge_pages_node[nid];
3874 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3876 HSTATE_ATTR_RO(free_hugepages);
3878 static ssize_t resv_hugepages_show(struct kobject *kobj,
3879 struct kobj_attribute *attr, char *buf)
3881 struct hstate *h = kobj_to_hstate(kobj, NULL);
3882 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3884 HSTATE_ATTR_RO(resv_hugepages);
3886 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3887 struct kobj_attribute *attr, char *buf)
3890 unsigned long surplus_huge_pages;
3893 h = kobj_to_hstate(kobj, &nid);
3894 if (nid == NUMA_NO_NODE)
3895 surplus_huge_pages = h->surplus_huge_pages;
3897 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3899 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3901 HSTATE_ATTR_RO(surplus_hugepages);
3903 static ssize_t demote_store(struct kobject *kobj,
3904 struct kobj_attribute *attr, const char *buf, size_t len)
3906 unsigned long nr_demote;
3907 unsigned long nr_available;
3908 nodemask_t nodes_allowed, *n_mask;
3913 err = kstrtoul(buf, 10, &nr_demote);
3916 h = kobj_to_hstate(kobj, &nid);
3918 if (nid != NUMA_NO_NODE) {
3919 init_nodemask_of_node(&nodes_allowed, nid);
3920 n_mask = &nodes_allowed;
3922 n_mask = &node_states[N_MEMORY];
3925 /* Synchronize with other sysfs operations modifying huge pages */
3926 mutex_lock(&h->resize_lock);
3927 spin_lock_irq(&hugetlb_lock);
3931 * Check for available pages to demote each time thorough the
3932 * loop as demote_pool_huge_page will drop hugetlb_lock.
3934 if (nid != NUMA_NO_NODE)
3935 nr_available = h->free_huge_pages_node[nid];
3937 nr_available = h->free_huge_pages;
3938 nr_available -= h->resv_huge_pages;
3942 err = demote_pool_huge_page(h, n_mask);
3949 spin_unlock_irq(&hugetlb_lock);
3950 mutex_unlock(&h->resize_lock);
3956 HSTATE_ATTR_WO(demote);
3958 static ssize_t demote_size_show(struct kobject *kobj,
3959 struct kobj_attribute *attr, char *buf)
3961 struct hstate *h = kobj_to_hstate(kobj, NULL);
3962 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3964 return sysfs_emit(buf, "%lukB\n", demote_size);
3967 static ssize_t demote_size_store(struct kobject *kobj,
3968 struct kobj_attribute *attr,
3969 const char *buf, size_t count)
3971 struct hstate *h, *demote_hstate;
3972 unsigned long demote_size;
3973 unsigned int demote_order;
3975 demote_size = (unsigned long)memparse(buf, NULL);
3977 demote_hstate = size_to_hstate(demote_size);
3980 demote_order = demote_hstate->order;
3981 if (demote_order < HUGETLB_PAGE_ORDER)
3984 /* demote order must be smaller than hstate order */
3985 h = kobj_to_hstate(kobj, NULL);
3986 if (demote_order >= h->order)
3989 /* resize_lock synchronizes access to demote size and writes */
3990 mutex_lock(&h->resize_lock);
3991 h->demote_order = demote_order;
3992 mutex_unlock(&h->resize_lock);
3996 HSTATE_ATTR(demote_size);
3998 static struct attribute *hstate_attrs[] = {
3999 &nr_hugepages_attr.attr,
4000 &nr_overcommit_hugepages_attr.attr,
4001 &free_hugepages_attr.attr,
4002 &resv_hugepages_attr.attr,
4003 &surplus_hugepages_attr.attr,
4005 &nr_hugepages_mempolicy_attr.attr,
4010 static const struct attribute_group hstate_attr_group = {
4011 .attrs = hstate_attrs,
4014 static struct attribute *hstate_demote_attrs[] = {
4015 &demote_size_attr.attr,
4020 static const struct attribute_group hstate_demote_attr_group = {
4021 .attrs = hstate_demote_attrs,
4024 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4025 struct kobject **hstate_kobjs,
4026 const struct attribute_group *hstate_attr_group)
4029 int hi = hstate_index(h);
4031 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4032 if (!hstate_kobjs[hi])
4035 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4037 kobject_put(hstate_kobjs[hi]);
4038 hstate_kobjs[hi] = NULL;
4042 if (h->demote_order) {
4043 retval = sysfs_create_group(hstate_kobjs[hi],
4044 &hstate_demote_attr_group);
4046 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4047 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4048 kobject_put(hstate_kobjs[hi]);
4049 hstate_kobjs[hi] = NULL;
4058 static bool hugetlb_sysfs_initialized __ro_after_init;
4061 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4062 * with node devices in node_devices[] using a parallel array. The array
4063 * index of a node device or _hstate == node id.
4064 * This is here to avoid any static dependency of the node device driver, in
4065 * the base kernel, on the hugetlb module.
4067 struct node_hstate {
4068 struct kobject *hugepages_kobj;
4069 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4071 static struct node_hstate node_hstates[MAX_NUMNODES];
4074 * A subset of global hstate attributes for node devices
4076 static struct attribute *per_node_hstate_attrs[] = {
4077 &nr_hugepages_attr.attr,
4078 &free_hugepages_attr.attr,
4079 &surplus_hugepages_attr.attr,
4083 static const struct attribute_group per_node_hstate_attr_group = {
4084 .attrs = per_node_hstate_attrs,
4088 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4089 * Returns node id via non-NULL nidp.
4091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4095 for (nid = 0; nid < nr_node_ids; nid++) {
4096 struct node_hstate *nhs = &node_hstates[nid];
4098 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4099 if (nhs->hstate_kobjs[i] == kobj) {
4111 * Unregister hstate attributes from a single node device.
4112 * No-op if no hstate attributes attached.
4114 void hugetlb_unregister_node(struct node *node)
4117 struct node_hstate *nhs = &node_hstates[node->dev.id];
4119 if (!nhs->hugepages_kobj)
4120 return; /* no hstate attributes */
4122 for_each_hstate(h) {
4123 int idx = hstate_index(h);
4124 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4128 if (h->demote_order)
4129 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4130 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4131 kobject_put(hstate_kobj);
4132 nhs->hstate_kobjs[idx] = NULL;
4135 kobject_put(nhs->hugepages_kobj);
4136 nhs->hugepages_kobj = NULL;
4141 * Register hstate attributes for a single node device.
4142 * No-op if attributes already registered.
4144 void hugetlb_register_node(struct node *node)
4147 struct node_hstate *nhs = &node_hstates[node->dev.id];
4150 if (!hugetlb_sysfs_initialized)
4153 if (nhs->hugepages_kobj)
4154 return; /* already allocated */
4156 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4158 if (!nhs->hugepages_kobj)
4161 for_each_hstate(h) {
4162 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4164 &per_node_hstate_attr_group);
4166 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4167 h->name, node->dev.id);
4168 hugetlb_unregister_node(node);
4175 * hugetlb init time: register hstate attributes for all registered node
4176 * devices of nodes that have memory. All on-line nodes should have
4177 * registered their associated device by this time.
4179 static void __init hugetlb_register_all_nodes(void)
4183 for_each_online_node(nid)
4184 hugetlb_register_node(node_devices[nid]);
4186 #else /* !CONFIG_NUMA */
4188 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4196 static void hugetlb_register_all_nodes(void) { }
4201 static void __init hugetlb_cma_check(void);
4203 static inline __init void hugetlb_cma_check(void)
4208 static void __init hugetlb_sysfs_init(void)
4213 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4214 if (!hugepages_kobj)
4217 for_each_hstate(h) {
4218 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4219 hstate_kobjs, &hstate_attr_group);
4221 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4225 hugetlb_sysfs_initialized = true;
4227 hugetlb_register_all_nodes();
4230 #ifdef CONFIG_SYSCTL
4231 static void hugetlb_sysctl_init(void);
4233 static inline void hugetlb_sysctl_init(void) { }
4236 static int __init hugetlb_init(void)
4240 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4243 if (!hugepages_supported()) {
4244 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4245 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4250 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4251 * architectures depend on setup being done here.
4253 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4254 if (!parsed_default_hugepagesz) {
4256 * If we did not parse a default huge page size, set
4257 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4258 * number of huge pages for this default size was implicitly
4259 * specified, set that here as well.
4260 * Note that the implicit setting will overwrite an explicit
4261 * setting. A warning will be printed in this case.
4263 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4264 if (default_hstate_max_huge_pages) {
4265 if (default_hstate.max_huge_pages) {
4268 string_get_size(huge_page_size(&default_hstate),
4269 1, STRING_UNITS_2, buf, 32);
4270 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4271 default_hstate.max_huge_pages, buf);
4272 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4273 default_hstate_max_huge_pages);
4275 default_hstate.max_huge_pages =
4276 default_hstate_max_huge_pages;
4278 for_each_online_node(i)
4279 default_hstate.max_huge_pages_node[i] =
4280 default_hugepages_in_node[i];
4284 hugetlb_cma_check();
4285 hugetlb_init_hstates();
4286 gather_bootmem_prealloc();
4289 hugetlb_sysfs_init();
4290 hugetlb_cgroup_file_init();
4291 hugetlb_sysctl_init();
4294 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4296 num_fault_mutexes = 1;
4298 hugetlb_fault_mutex_table =
4299 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4301 BUG_ON(!hugetlb_fault_mutex_table);
4303 for (i = 0; i < num_fault_mutexes; i++)
4304 mutex_init(&hugetlb_fault_mutex_table[i]);
4307 subsys_initcall(hugetlb_init);
4309 /* Overwritten by architectures with more huge page sizes */
4310 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4312 return size == HPAGE_SIZE;
4315 void __init hugetlb_add_hstate(unsigned int order)
4320 if (size_to_hstate(PAGE_SIZE << order)) {
4323 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4325 h = &hstates[hugetlb_max_hstate++];
4326 mutex_init(&h->resize_lock);
4328 h->mask = ~(huge_page_size(h) - 1);
4329 for (i = 0; i < MAX_NUMNODES; ++i)
4330 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4331 INIT_LIST_HEAD(&h->hugepage_activelist);
4332 h->next_nid_to_alloc = first_memory_node;
4333 h->next_nid_to_free = first_memory_node;
4334 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4335 huge_page_size(h)/SZ_1K);
4340 bool __init __weak hugetlb_node_alloc_supported(void)
4345 static void __init hugepages_clear_pages_in_node(void)
4347 if (!hugetlb_max_hstate) {
4348 default_hstate_max_huge_pages = 0;
4349 memset(default_hugepages_in_node, 0,
4350 sizeof(default_hugepages_in_node));
4352 parsed_hstate->max_huge_pages = 0;
4353 memset(parsed_hstate->max_huge_pages_node, 0,
4354 sizeof(parsed_hstate->max_huge_pages_node));
4359 * hugepages command line processing
4360 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4361 * specification. If not, ignore the hugepages value. hugepages can also
4362 * be the first huge page command line option in which case it implicitly
4363 * specifies the number of huge pages for the default size.
4365 static int __init hugepages_setup(char *s)
4368 static unsigned long *last_mhp;
4369 int node = NUMA_NO_NODE;
4374 if (!parsed_valid_hugepagesz) {
4375 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4376 parsed_valid_hugepagesz = true;
4381 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4382 * yet, so this hugepages= parameter goes to the "default hstate".
4383 * Otherwise, it goes with the previously parsed hugepagesz or
4384 * default_hugepagesz.
4386 else if (!hugetlb_max_hstate)
4387 mhp = &default_hstate_max_huge_pages;
4389 mhp = &parsed_hstate->max_huge_pages;
4391 if (mhp == last_mhp) {
4392 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4398 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4400 /* Parameter is node format */
4401 if (p[count] == ':') {
4402 if (!hugetlb_node_alloc_supported()) {
4403 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4406 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4408 node = array_index_nospec(tmp, MAX_NUMNODES);
4410 /* Parse hugepages */
4411 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4413 if (!hugetlb_max_hstate)
4414 default_hugepages_in_node[node] = tmp;
4416 parsed_hstate->max_huge_pages_node[node] = tmp;
4418 /* Go to parse next node*/
4419 if (p[count] == ',')
4432 * Global state is always initialized later in hugetlb_init.
4433 * But we need to allocate gigantic hstates here early to still
4434 * use the bootmem allocator.
4436 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4437 hugetlb_hstate_alloc_pages(parsed_hstate);
4444 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4445 hugepages_clear_pages_in_node();
4448 __setup("hugepages=", hugepages_setup);
4451 * hugepagesz command line processing
4452 * A specific huge page size can only be specified once with hugepagesz.
4453 * hugepagesz is followed by hugepages on the command line. The global
4454 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4455 * hugepagesz argument was valid.
4457 static int __init hugepagesz_setup(char *s)
4462 parsed_valid_hugepagesz = false;
4463 size = (unsigned long)memparse(s, NULL);
4465 if (!arch_hugetlb_valid_size(size)) {
4466 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4470 h = size_to_hstate(size);
4473 * hstate for this size already exists. This is normally
4474 * an error, but is allowed if the existing hstate is the
4475 * default hstate. More specifically, it is only allowed if
4476 * the number of huge pages for the default hstate was not
4477 * previously specified.
4479 if (!parsed_default_hugepagesz || h != &default_hstate ||
4480 default_hstate.max_huge_pages) {
4481 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4486 * No need to call hugetlb_add_hstate() as hstate already
4487 * exists. But, do set parsed_hstate so that a following
4488 * hugepages= parameter will be applied to this hstate.
4491 parsed_valid_hugepagesz = true;
4495 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4496 parsed_valid_hugepagesz = true;
4499 __setup("hugepagesz=", hugepagesz_setup);
4502 * default_hugepagesz command line input
4503 * Only one instance of default_hugepagesz allowed on command line.
4505 static int __init default_hugepagesz_setup(char *s)
4510 parsed_valid_hugepagesz = false;
4511 if (parsed_default_hugepagesz) {
4512 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4516 size = (unsigned long)memparse(s, NULL);
4518 if (!arch_hugetlb_valid_size(size)) {
4519 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4523 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4524 parsed_valid_hugepagesz = true;
4525 parsed_default_hugepagesz = true;
4526 default_hstate_idx = hstate_index(size_to_hstate(size));
4529 * The number of default huge pages (for this size) could have been
4530 * specified as the first hugetlb parameter: hugepages=X. If so,
4531 * then default_hstate_max_huge_pages is set. If the default huge
4532 * page size is gigantic (> MAX_ORDER), then the pages must be
4533 * allocated here from bootmem allocator.
4535 if (default_hstate_max_huge_pages) {
4536 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4537 for_each_online_node(i)
4538 default_hstate.max_huge_pages_node[i] =
4539 default_hugepages_in_node[i];
4540 if (hstate_is_gigantic(&default_hstate))
4541 hugetlb_hstate_alloc_pages(&default_hstate);
4542 default_hstate_max_huge_pages = 0;
4547 __setup("default_hugepagesz=", default_hugepagesz_setup);
4549 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4552 struct mempolicy *mpol = get_task_policy(current);
4555 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4556 * (from policy_nodemask) specifically for hugetlb case
4558 if (mpol->mode == MPOL_BIND &&
4559 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4560 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4561 return &mpol->nodes;
4566 static unsigned int allowed_mems_nr(struct hstate *h)
4569 unsigned int nr = 0;
4570 nodemask_t *mbind_nodemask;
4571 unsigned int *array = h->free_huge_pages_node;
4572 gfp_t gfp_mask = htlb_alloc_mask(h);
4574 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4575 for_each_node_mask(node, cpuset_current_mems_allowed) {
4576 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4583 #ifdef CONFIG_SYSCTL
4584 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4585 void *buffer, size_t *length,
4586 loff_t *ppos, unsigned long *out)
4588 struct ctl_table dup_table;
4591 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4592 * can duplicate the @table and alter the duplicate of it.
4595 dup_table.data = out;
4597 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4600 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4601 struct ctl_table *table, int write,
4602 void *buffer, size_t *length, loff_t *ppos)
4604 struct hstate *h = &default_hstate;
4605 unsigned long tmp = h->max_huge_pages;
4608 if (!hugepages_supported())
4611 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4617 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4618 NUMA_NO_NODE, tmp, *length);
4623 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4624 void *buffer, size_t *length, loff_t *ppos)
4627 return hugetlb_sysctl_handler_common(false, table, write,
4628 buffer, length, ppos);
4632 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4633 void *buffer, size_t *length, loff_t *ppos)
4635 return hugetlb_sysctl_handler_common(true, table, write,
4636 buffer, length, ppos);
4638 #endif /* CONFIG_NUMA */
4640 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4641 void *buffer, size_t *length, loff_t *ppos)
4643 struct hstate *h = &default_hstate;
4647 if (!hugepages_supported())
4650 tmp = h->nr_overcommit_huge_pages;
4652 if (write && hstate_is_gigantic(h))
4655 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4661 spin_lock_irq(&hugetlb_lock);
4662 h->nr_overcommit_huge_pages = tmp;
4663 spin_unlock_irq(&hugetlb_lock);
4669 static struct ctl_table hugetlb_table[] = {
4671 .procname = "nr_hugepages",
4673 .maxlen = sizeof(unsigned long),
4675 .proc_handler = hugetlb_sysctl_handler,
4679 .procname = "nr_hugepages_mempolicy",
4681 .maxlen = sizeof(unsigned long),
4683 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4687 .procname = "hugetlb_shm_group",
4688 .data = &sysctl_hugetlb_shm_group,
4689 .maxlen = sizeof(gid_t),
4691 .proc_handler = proc_dointvec,
4694 .procname = "nr_overcommit_hugepages",
4696 .maxlen = sizeof(unsigned long),
4698 .proc_handler = hugetlb_overcommit_handler,
4703 static void hugetlb_sysctl_init(void)
4705 register_sysctl_init("vm", hugetlb_table);
4707 #endif /* CONFIG_SYSCTL */
4709 void hugetlb_report_meminfo(struct seq_file *m)
4712 unsigned long total = 0;
4714 if (!hugepages_supported())
4717 for_each_hstate(h) {
4718 unsigned long count = h->nr_huge_pages;
4720 total += huge_page_size(h) * count;
4722 if (h == &default_hstate)
4724 "HugePages_Total: %5lu\n"
4725 "HugePages_Free: %5lu\n"
4726 "HugePages_Rsvd: %5lu\n"
4727 "HugePages_Surp: %5lu\n"
4728 "Hugepagesize: %8lu kB\n",
4732 h->surplus_huge_pages,
4733 huge_page_size(h) / SZ_1K);
4736 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4739 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4741 struct hstate *h = &default_hstate;
4743 if (!hugepages_supported())
4746 return sysfs_emit_at(buf, len,
4747 "Node %d HugePages_Total: %5u\n"
4748 "Node %d HugePages_Free: %5u\n"
4749 "Node %d HugePages_Surp: %5u\n",
4750 nid, h->nr_huge_pages_node[nid],
4751 nid, h->free_huge_pages_node[nid],
4752 nid, h->surplus_huge_pages_node[nid]);
4755 void hugetlb_show_meminfo_node(int nid)
4759 if (!hugepages_supported())
4763 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4765 h->nr_huge_pages_node[nid],
4766 h->free_huge_pages_node[nid],
4767 h->surplus_huge_pages_node[nid],
4768 huge_page_size(h) / SZ_1K);
4771 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4773 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4774 K(atomic_long_read(&mm->hugetlb_usage)));
4777 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4778 unsigned long hugetlb_total_pages(void)
4781 unsigned long nr_total_pages = 0;
4784 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4785 return nr_total_pages;
4788 static int hugetlb_acct_memory(struct hstate *h, long delta)
4795 spin_lock_irq(&hugetlb_lock);
4797 * When cpuset is configured, it breaks the strict hugetlb page
4798 * reservation as the accounting is done on a global variable. Such
4799 * reservation is completely rubbish in the presence of cpuset because
4800 * the reservation is not checked against page availability for the
4801 * current cpuset. Application can still potentially OOM'ed by kernel
4802 * with lack of free htlb page in cpuset that the task is in.
4803 * Attempt to enforce strict accounting with cpuset is almost
4804 * impossible (or too ugly) because cpuset is too fluid that
4805 * task or memory node can be dynamically moved between cpusets.
4807 * The change of semantics for shared hugetlb mapping with cpuset is
4808 * undesirable. However, in order to preserve some of the semantics,
4809 * we fall back to check against current free page availability as
4810 * a best attempt and hopefully to minimize the impact of changing
4811 * semantics that cpuset has.
4813 * Apart from cpuset, we also have memory policy mechanism that
4814 * also determines from which node the kernel will allocate memory
4815 * in a NUMA system. So similar to cpuset, we also should consider
4816 * the memory policy of the current task. Similar to the description
4820 if (gather_surplus_pages(h, delta) < 0)
4823 if (delta > allowed_mems_nr(h)) {
4824 return_unused_surplus_pages(h, delta);
4831 return_unused_surplus_pages(h, (unsigned long) -delta);
4834 spin_unlock_irq(&hugetlb_lock);
4838 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4840 struct resv_map *resv = vma_resv_map(vma);
4843 * HPAGE_RESV_OWNER indicates a private mapping.
4844 * This new VMA should share its siblings reservation map if present.
4845 * The VMA will only ever have a valid reservation map pointer where
4846 * it is being copied for another still existing VMA. As that VMA
4847 * has a reference to the reservation map it cannot disappear until
4848 * after this open call completes. It is therefore safe to take a
4849 * new reference here without additional locking.
4851 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4852 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4853 kref_get(&resv->refs);
4857 * vma_lock structure for sharable mappings is vma specific.
4858 * Clear old pointer (if copied via vm_area_dup) and allocate
4859 * new structure. Before clearing, make sure vma_lock is not
4862 if (vma->vm_flags & VM_MAYSHARE) {
4863 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4866 if (vma_lock->vma != vma) {
4867 vma->vm_private_data = NULL;
4868 hugetlb_vma_lock_alloc(vma);
4870 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4872 hugetlb_vma_lock_alloc(vma);
4876 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4878 struct hstate *h = hstate_vma(vma);
4879 struct resv_map *resv;
4880 struct hugepage_subpool *spool = subpool_vma(vma);
4881 unsigned long reserve, start, end;
4884 hugetlb_vma_lock_free(vma);
4886 resv = vma_resv_map(vma);
4887 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4890 start = vma_hugecache_offset(h, vma, vma->vm_start);
4891 end = vma_hugecache_offset(h, vma, vma->vm_end);
4893 reserve = (end - start) - region_count(resv, start, end);
4894 hugetlb_cgroup_uncharge_counter(resv, start, end);
4897 * Decrement reserve counts. The global reserve count may be
4898 * adjusted if the subpool has a minimum size.
4900 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4901 hugetlb_acct_memory(h, -gbl_reserve);
4904 kref_put(&resv->refs, resv_map_release);
4907 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4909 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4913 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4914 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4915 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4917 if (addr & ~PUD_MASK) {
4919 * hugetlb_vm_op_split is called right before we attempt to
4920 * split the VMA. We will need to unshare PMDs in the old and
4921 * new VMAs, so let's unshare before we split.
4923 unsigned long floor = addr & PUD_MASK;
4924 unsigned long ceil = floor + PUD_SIZE;
4926 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4927 hugetlb_unshare_pmds(vma, floor, ceil);
4933 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4935 return huge_page_size(hstate_vma(vma));
4939 * We cannot handle pagefaults against hugetlb pages at all. They cause
4940 * handle_mm_fault() to try to instantiate regular-sized pages in the
4941 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4944 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4951 * When a new function is introduced to vm_operations_struct and added
4952 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4953 * This is because under System V memory model, mappings created via
4954 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4955 * their original vm_ops are overwritten with shm_vm_ops.
4957 const struct vm_operations_struct hugetlb_vm_ops = {
4958 .fault = hugetlb_vm_op_fault,
4959 .open = hugetlb_vm_op_open,
4960 .close = hugetlb_vm_op_close,
4961 .may_split = hugetlb_vm_op_split,
4962 .pagesize = hugetlb_vm_op_pagesize,
4965 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4969 unsigned int shift = huge_page_shift(hstate_vma(vma));
4972 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4973 vma->vm_page_prot)));
4975 entry = huge_pte_wrprotect(mk_huge_pte(page,
4976 vma->vm_page_prot));
4978 entry = pte_mkyoung(entry);
4979 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4984 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4985 unsigned long address, pte_t *ptep)
4989 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4990 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4991 update_mmu_cache(vma, address, ptep);
4994 bool is_hugetlb_entry_migration(pte_t pte)
4998 if (huge_pte_none(pte) || pte_present(pte))
5000 swp = pte_to_swp_entry(pte);
5001 if (is_migration_entry(swp))
5007 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5011 if (huge_pte_none(pte) || pte_present(pte))
5013 swp = pte_to_swp_entry(pte);
5014 if (is_hwpoison_entry(swp))
5021 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5022 struct folio *new_folio, pte_t old, unsigned long sz)
5024 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5026 __folio_mark_uptodate(new_folio);
5027 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5028 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5029 newpte = huge_pte_mkuffd_wp(newpte);
5030 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5031 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5032 folio_set_hugetlb_migratable(new_folio);
5035 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5036 struct vm_area_struct *dst_vma,
5037 struct vm_area_struct *src_vma)
5039 pte_t *src_pte, *dst_pte, entry;
5040 struct folio *pte_folio;
5042 bool cow = is_cow_mapping(src_vma->vm_flags);
5043 struct hstate *h = hstate_vma(src_vma);
5044 unsigned long sz = huge_page_size(h);
5045 unsigned long npages = pages_per_huge_page(h);
5046 struct mmu_notifier_range range;
5047 unsigned long last_addr_mask;
5051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5054 mmu_notifier_invalidate_range_start(&range);
5055 vma_assert_write_locked(src_vma);
5056 raw_write_seqcount_begin(&src->write_protect_seq);
5059 * For shared mappings the vma lock must be held before
5060 * calling hugetlb_walk() in the src vma. Otherwise, the
5061 * returned ptep could go away if part of a shared pmd and
5062 * another thread calls huge_pmd_unshare.
5064 hugetlb_vma_lock_read(src_vma);
5067 last_addr_mask = hugetlb_mask_last_page(h);
5068 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5069 spinlock_t *src_ptl, *dst_ptl;
5070 src_pte = hugetlb_walk(src_vma, addr, sz);
5072 addr |= last_addr_mask;
5075 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5082 * If the pagetables are shared don't copy or take references.
5084 * dst_pte == src_pte is the common case of src/dest sharing.
5085 * However, src could have 'unshared' and dst shares with
5086 * another vma. So page_count of ptep page is checked instead
5087 * to reliably determine whether pte is shared.
5089 if (page_count(virt_to_page(dst_pte)) > 1) {
5090 addr |= last_addr_mask;
5094 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5095 src_ptl = huge_pte_lockptr(h, src, src_pte);
5096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5097 entry = huge_ptep_get(src_pte);
5099 if (huge_pte_none(entry)) {
5101 * Skip if src entry none.
5104 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5105 if (!userfaultfd_wp(dst_vma))
5106 entry = huge_pte_clear_uffd_wp(entry);
5107 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5108 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5109 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5110 bool uffd_wp = pte_swp_uffd_wp(entry);
5112 if (!is_readable_migration_entry(swp_entry) && cow) {
5114 * COW mappings require pages in both
5115 * parent and child to be set to read.
5117 swp_entry = make_readable_migration_entry(
5118 swp_offset(swp_entry));
5119 entry = swp_entry_to_pte(swp_entry);
5120 if (userfaultfd_wp(src_vma) && uffd_wp)
5121 entry = pte_swp_mkuffd_wp(entry);
5122 set_huge_pte_at(src, addr, src_pte, entry, sz);
5124 if (!userfaultfd_wp(dst_vma))
5125 entry = huge_pte_clear_uffd_wp(entry);
5126 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5127 } else if (unlikely(is_pte_marker(entry))) {
5128 pte_marker marker = copy_pte_marker(
5129 pte_to_swp_entry(entry), dst_vma);
5132 set_huge_pte_at(dst, addr, dst_pte,
5133 make_pte_marker(marker), sz);
5135 entry = huge_ptep_get(src_pte);
5136 pte_folio = page_folio(pte_page(entry));
5137 folio_get(pte_folio);
5140 * Failing to duplicate the anon rmap is a rare case
5141 * where we see pinned hugetlb pages while they're
5142 * prone to COW. We need to do the COW earlier during
5145 * When pre-allocating the page or copying data, we
5146 * need to be without the pgtable locks since we could
5147 * sleep during the process.
5149 if (!folio_test_anon(pte_folio)) {
5150 page_dup_file_rmap(&pte_folio->page, true);
5151 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5153 pte_t src_pte_old = entry;
5154 struct folio *new_folio;
5156 spin_unlock(src_ptl);
5157 spin_unlock(dst_ptl);
5158 /* Do not use reserve as it's private owned */
5159 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5160 if (IS_ERR(new_folio)) {
5161 folio_put(pte_folio);
5162 ret = PTR_ERR(new_folio);
5165 ret = copy_user_large_folio(new_folio,
5168 folio_put(pte_folio);
5170 folio_put(new_folio);
5174 /* Install the new hugetlb folio if src pte stable */
5175 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5176 src_ptl = huge_pte_lockptr(h, src, src_pte);
5177 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5178 entry = huge_ptep_get(src_pte);
5179 if (!pte_same(src_pte_old, entry)) {
5180 restore_reserve_on_error(h, dst_vma, addr,
5182 folio_put(new_folio);
5183 /* huge_ptep of dst_pte won't change as in child */
5186 hugetlb_install_folio(dst_vma, dst_pte, addr,
5187 new_folio, src_pte_old, sz);
5188 spin_unlock(src_ptl);
5189 spin_unlock(dst_ptl);
5195 * No need to notify as we are downgrading page
5196 * table protection not changing it to point
5199 * See Documentation/mm/mmu_notifier.rst
5201 huge_ptep_set_wrprotect(src, addr, src_pte);
5202 entry = huge_pte_wrprotect(entry);
5205 if (!userfaultfd_wp(dst_vma))
5206 entry = huge_pte_clear_uffd_wp(entry);
5208 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5209 hugetlb_count_add(npages, dst);
5211 spin_unlock(src_ptl);
5212 spin_unlock(dst_ptl);
5216 raw_write_seqcount_end(&src->write_protect_seq);
5217 mmu_notifier_invalidate_range_end(&range);
5219 hugetlb_vma_unlock_read(src_vma);
5225 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5226 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5229 struct hstate *h = hstate_vma(vma);
5230 struct mm_struct *mm = vma->vm_mm;
5231 spinlock_t *src_ptl, *dst_ptl;
5234 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5235 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5238 * We don't have to worry about the ordering of src and dst ptlocks
5239 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5241 if (src_ptl != dst_ptl)
5242 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5244 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5245 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5247 if (src_ptl != dst_ptl)
5248 spin_unlock(src_ptl);
5249 spin_unlock(dst_ptl);
5252 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5253 struct vm_area_struct *new_vma,
5254 unsigned long old_addr, unsigned long new_addr,
5257 struct hstate *h = hstate_vma(vma);
5258 struct address_space *mapping = vma->vm_file->f_mapping;
5259 unsigned long sz = huge_page_size(h);
5260 struct mm_struct *mm = vma->vm_mm;
5261 unsigned long old_end = old_addr + len;
5262 unsigned long last_addr_mask;
5263 pte_t *src_pte, *dst_pte;
5264 struct mmu_notifier_range range;
5265 bool shared_pmd = false;
5267 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5269 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5271 * In case of shared PMDs, we should cover the maximum possible
5274 flush_cache_range(vma, range.start, range.end);
5276 mmu_notifier_invalidate_range_start(&range);
5277 last_addr_mask = hugetlb_mask_last_page(h);
5278 /* Prevent race with file truncation */
5279 hugetlb_vma_lock_write(vma);
5280 i_mmap_lock_write(mapping);
5281 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5282 src_pte = hugetlb_walk(vma, old_addr, sz);
5284 old_addr |= last_addr_mask;
5285 new_addr |= last_addr_mask;
5288 if (huge_pte_none(huge_ptep_get(src_pte)))
5291 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5293 old_addr |= last_addr_mask;
5294 new_addr |= last_addr_mask;
5298 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5302 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5306 flush_hugetlb_tlb_range(vma, range.start, range.end);
5308 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5309 mmu_notifier_invalidate_range_end(&range);
5310 i_mmap_unlock_write(mapping);
5311 hugetlb_vma_unlock_write(vma);
5313 return len + old_addr - old_end;
5316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5317 unsigned long start, unsigned long end,
5318 struct page *ref_page, zap_flags_t zap_flags)
5320 struct mm_struct *mm = vma->vm_mm;
5321 unsigned long address;
5326 struct hstate *h = hstate_vma(vma);
5327 unsigned long sz = huge_page_size(h);
5328 unsigned long last_addr_mask;
5329 bool force_flush = false;
5331 WARN_ON(!is_vm_hugetlb_page(vma));
5332 BUG_ON(start & ~huge_page_mask(h));
5333 BUG_ON(end & ~huge_page_mask(h));
5336 * This is a hugetlb vma, all the pte entries should point
5339 tlb_change_page_size(tlb, sz);
5340 tlb_start_vma(tlb, vma);
5342 last_addr_mask = hugetlb_mask_last_page(h);
5344 for (; address < end; address += sz) {
5345 ptep = hugetlb_walk(vma, address, sz);
5347 address |= last_addr_mask;
5351 ptl = huge_pte_lock(h, mm, ptep);
5352 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5354 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5356 address |= last_addr_mask;
5360 pte = huge_ptep_get(ptep);
5361 if (huge_pte_none(pte)) {
5367 * Migrating hugepage or HWPoisoned hugepage is already
5368 * unmapped and its refcount is dropped, so just clear pte here.
5370 if (unlikely(!pte_present(pte))) {
5372 * If the pte was wr-protected by uffd-wp in any of the
5373 * swap forms, meanwhile the caller does not want to
5374 * drop the uffd-wp bit in this zap, then replace the
5375 * pte with a marker.
5377 if (pte_swp_uffd_wp_any(pte) &&
5378 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5379 set_huge_pte_at(mm, address, ptep,
5380 make_pte_marker(PTE_MARKER_UFFD_WP),
5383 huge_pte_clear(mm, address, ptep, sz);
5388 page = pte_page(pte);
5390 * If a reference page is supplied, it is because a specific
5391 * page is being unmapped, not a range. Ensure the page we
5392 * are about to unmap is the actual page of interest.
5395 if (page != ref_page) {
5400 * Mark the VMA as having unmapped its page so that
5401 * future faults in this VMA will fail rather than
5402 * looking like data was lost
5404 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5407 pte = huge_ptep_get_and_clear(mm, address, ptep);
5408 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5409 if (huge_pte_dirty(pte))
5410 set_page_dirty(page);
5411 /* Leave a uffd-wp pte marker if needed */
5412 if (huge_pte_uffd_wp(pte) &&
5413 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5414 set_huge_pte_at(mm, address, ptep,
5415 make_pte_marker(PTE_MARKER_UFFD_WP),
5417 hugetlb_count_sub(pages_per_huge_page(h), mm);
5418 page_remove_rmap(page, vma, true);
5421 tlb_remove_page_size(tlb, page, huge_page_size(h));
5423 * Bail out after unmapping reference page if supplied
5428 tlb_end_vma(tlb, vma);
5431 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5432 * could defer the flush until now, since by holding i_mmap_rwsem we
5433 * guaranteed that the last refernece would not be dropped. But we must
5434 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5435 * dropped and the last reference to the shared PMDs page might be
5438 * In theory we could defer the freeing of the PMD pages as well, but
5439 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5440 * detect sharing, so we cannot defer the release of the page either.
5441 * Instead, do flush now.
5444 tlb_flush_mmu_tlbonly(tlb);
5447 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5448 unsigned long *start, unsigned long *end)
5450 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5453 adjust_range_if_pmd_sharing_possible(vma, start, end);
5454 hugetlb_vma_lock_write(vma);
5456 i_mmap_lock_write(vma->vm_file->f_mapping);
5459 void __hugetlb_zap_end(struct vm_area_struct *vma,
5460 struct zap_details *details)
5462 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5464 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5467 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5469 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5470 * When the vma_lock is freed, this makes the vma ineligible
5471 * for pmd sharing. And, i_mmap_rwsem is required to set up
5472 * pmd sharing. This is important as page tables for this
5473 * unmapped range will be asynchrously deleted. If the page
5474 * tables are shared, there will be issues when accessed by
5477 __hugetlb_vma_unlock_write_free(vma);
5479 hugetlb_vma_unlock_write(vma);
5483 i_mmap_unlock_write(vma->vm_file->f_mapping);
5486 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5487 unsigned long end, struct page *ref_page,
5488 zap_flags_t zap_flags)
5490 struct mmu_notifier_range range;
5491 struct mmu_gather tlb;
5493 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5495 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5496 mmu_notifier_invalidate_range_start(&range);
5497 tlb_gather_mmu(&tlb, vma->vm_mm);
5499 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5501 mmu_notifier_invalidate_range_end(&range);
5502 tlb_finish_mmu(&tlb);
5506 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5507 * mapping it owns the reserve page for. The intention is to unmap the page
5508 * from other VMAs and let the children be SIGKILLed if they are faulting the
5511 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5512 struct page *page, unsigned long address)
5514 struct hstate *h = hstate_vma(vma);
5515 struct vm_area_struct *iter_vma;
5516 struct address_space *mapping;
5520 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5521 * from page cache lookup which is in HPAGE_SIZE units.
5523 address = address & huge_page_mask(h);
5524 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5526 mapping = vma->vm_file->f_mapping;
5529 * Take the mapping lock for the duration of the table walk. As
5530 * this mapping should be shared between all the VMAs,
5531 * __unmap_hugepage_range() is called as the lock is already held
5533 i_mmap_lock_write(mapping);
5534 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5535 /* Do not unmap the current VMA */
5536 if (iter_vma == vma)
5540 * Shared VMAs have their own reserves and do not affect
5541 * MAP_PRIVATE accounting but it is possible that a shared
5542 * VMA is using the same page so check and skip such VMAs.
5544 if (iter_vma->vm_flags & VM_MAYSHARE)
5548 * Unmap the page from other VMAs without their own reserves.
5549 * They get marked to be SIGKILLed if they fault in these
5550 * areas. This is because a future no-page fault on this VMA
5551 * could insert a zeroed page instead of the data existing
5552 * from the time of fork. This would look like data corruption
5554 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5555 unmap_hugepage_range(iter_vma, address,
5556 address + huge_page_size(h), page, 0);
5558 i_mmap_unlock_write(mapping);
5562 * hugetlb_wp() should be called with page lock of the original hugepage held.
5563 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5564 * cannot race with other handlers or page migration.
5565 * Keep the pte_same checks anyway to make transition from the mutex easier.
5567 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5568 unsigned long address, pte_t *ptep, unsigned int flags,
5569 struct folio *pagecache_folio, spinlock_t *ptl)
5571 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5572 pte_t pte = huge_ptep_get(ptep);
5573 struct hstate *h = hstate_vma(vma);
5574 struct folio *old_folio;
5575 struct folio *new_folio;
5576 int outside_reserve = 0;
5578 unsigned long haddr = address & huge_page_mask(h);
5579 struct mmu_notifier_range range;
5582 * Never handle CoW for uffd-wp protected pages. It should be only
5583 * handled when the uffd-wp protection is removed.
5585 * Note that only the CoW optimization path (in hugetlb_no_page())
5586 * can trigger this, because hugetlb_fault() will always resolve
5587 * uffd-wp bit first.
5589 if (!unshare && huge_pte_uffd_wp(pte))
5593 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5594 * PTE mapped R/O such as maybe_mkwrite() would do.
5596 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5597 return VM_FAULT_SIGSEGV;
5599 /* Let's take out MAP_SHARED mappings first. */
5600 if (vma->vm_flags & VM_MAYSHARE) {
5601 set_huge_ptep_writable(vma, haddr, ptep);
5605 old_folio = page_folio(pte_page(pte));
5607 delayacct_wpcopy_start();
5611 * If no-one else is actually using this page, we're the exclusive
5612 * owner and can reuse this page.
5614 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5615 if (!PageAnonExclusive(&old_folio->page))
5616 page_move_anon_rmap(&old_folio->page, vma);
5617 if (likely(!unshare))
5618 set_huge_ptep_writable(vma, haddr, ptep);
5620 delayacct_wpcopy_end();
5623 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5624 PageAnonExclusive(&old_folio->page), &old_folio->page);
5627 * If the process that created a MAP_PRIVATE mapping is about to
5628 * perform a COW due to a shared page count, attempt to satisfy
5629 * the allocation without using the existing reserves. The pagecache
5630 * page is used to determine if the reserve at this address was
5631 * consumed or not. If reserves were used, a partial faulted mapping
5632 * at the time of fork() could consume its reserves on COW instead
5633 * of the full address range.
5635 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5636 old_folio != pagecache_folio)
5637 outside_reserve = 1;
5639 folio_get(old_folio);
5642 * Drop page table lock as buddy allocator may be called. It will
5643 * be acquired again before returning to the caller, as expected.
5646 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5648 if (IS_ERR(new_folio)) {
5650 * If a process owning a MAP_PRIVATE mapping fails to COW,
5651 * it is due to references held by a child and an insufficient
5652 * huge page pool. To guarantee the original mappers
5653 * reliability, unmap the page from child processes. The child
5654 * may get SIGKILLed if it later faults.
5656 if (outside_reserve) {
5657 struct address_space *mapping = vma->vm_file->f_mapping;
5661 folio_put(old_folio);
5663 * Drop hugetlb_fault_mutex and vma_lock before
5664 * unmapping. unmapping needs to hold vma_lock
5665 * in write mode. Dropping vma_lock in read mode
5666 * here is OK as COW mappings do not interact with
5669 * Reacquire both after unmap operation.
5671 idx = vma_hugecache_offset(h, vma, haddr);
5672 hash = hugetlb_fault_mutex_hash(mapping, idx);
5673 hugetlb_vma_unlock_read(vma);
5674 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5676 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5678 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5679 hugetlb_vma_lock_read(vma);
5681 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5683 pte_same(huge_ptep_get(ptep), pte)))
5684 goto retry_avoidcopy;
5686 * race occurs while re-acquiring page table
5687 * lock, and our job is done.
5689 delayacct_wpcopy_end();
5693 ret = vmf_error(PTR_ERR(new_folio));
5694 goto out_release_old;
5698 * When the original hugepage is shared one, it does not have
5699 * anon_vma prepared.
5701 if (unlikely(anon_vma_prepare(vma))) {
5703 goto out_release_all;
5706 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5707 ret = VM_FAULT_HWPOISON_LARGE;
5708 goto out_release_all;
5710 __folio_mark_uptodate(new_folio);
5712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5713 haddr + huge_page_size(h));
5714 mmu_notifier_invalidate_range_start(&range);
5717 * Retake the page table lock to check for racing updates
5718 * before the page tables are altered
5721 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5722 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5723 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5725 /* Break COW or unshare */
5726 huge_ptep_clear_flush(vma, haddr, ptep);
5727 page_remove_rmap(&old_folio->page, vma, true);
5728 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5729 if (huge_pte_uffd_wp(pte))
5730 newpte = huge_pte_mkuffd_wp(newpte);
5731 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5732 folio_set_hugetlb_migratable(new_folio);
5733 /* Make the old page be freed below */
5734 new_folio = old_folio;
5737 mmu_notifier_invalidate_range_end(&range);
5740 * No restore in case of successful pagetable update (Break COW or
5743 if (new_folio != old_folio)
5744 restore_reserve_on_error(h, vma, haddr, new_folio);
5745 folio_put(new_folio);
5747 folio_put(old_folio);
5749 spin_lock(ptl); /* Caller expects lock to be held */
5751 delayacct_wpcopy_end();
5756 * Return whether there is a pagecache page to back given address within VMA.
5758 static bool hugetlbfs_pagecache_present(struct hstate *h,
5759 struct vm_area_struct *vma, unsigned long address)
5761 struct address_space *mapping = vma->vm_file->f_mapping;
5762 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5763 struct folio *folio;
5765 folio = filemap_get_folio(mapping, idx);
5772 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5775 struct inode *inode = mapping->host;
5776 struct hstate *h = hstate_inode(inode);
5779 __folio_set_locked(folio);
5780 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5782 if (unlikely(err)) {
5783 __folio_clear_locked(folio);
5786 folio_clear_hugetlb_restore_reserve(folio);
5789 * mark folio dirty so that it will not be removed from cache/file
5790 * by non-hugetlbfs specific code paths.
5792 folio_mark_dirty(folio);
5794 spin_lock(&inode->i_lock);
5795 inode->i_blocks += blocks_per_huge_page(h);
5796 spin_unlock(&inode->i_lock);
5800 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5801 struct address_space *mapping,
5804 unsigned long haddr,
5806 unsigned long reason)
5809 struct vm_fault vmf = {
5812 .real_address = addr,
5816 * Hard to debug if it ends up being
5817 * used by a callee that assumes
5818 * something about the other
5819 * uninitialized fields... same as in
5825 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5826 * userfault. Also mmap_lock could be dropped due to handling
5827 * userfault, any vma operation should be careful from here.
5829 hugetlb_vma_unlock_read(vma);
5830 hash = hugetlb_fault_mutex_hash(mapping, idx);
5831 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5832 return handle_userfault(&vmf, reason);
5836 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5837 * false if pte changed or is changing.
5839 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5840 pte_t *ptep, pte_t old_pte)
5845 ptl = huge_pte_lock(h, mm, ptep);
5846 same = pte_same(huge_ptep_get(ptep), old_pte);
5852 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5853 struct vm_area_struct *vma,
5854 struct address_space *mapping, pgoff_t idx,
5855 unsigned long address, pte_t *ptep,
5856 pte_t old_pte, unsigned int flags)
5858 struct hstate *h = hstate_vma(vma);
5859 vm_fault_t ret = VM_FAULT_SIGBUS;
5862 struct folio *folio;
5865 unsigned long haddr = address & huge_page_mask(h);
5866 bool new_folio, new_pagecache_folio = false;
5867 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5870 * Currently, we are forced to kill the process in the event the
5871 * original mapper has unmapped pages from the child due to a failed
5872 * COW/unsharing. Warn that such a situation has occurred as it may not
5875 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5876 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5882 * Use page lock to guard against racing truncation
5883 * before we get page_table_lock.
5886 folio = filemap_lock_folio(mapping, idx);
5887 if (IS_ERR(folio)) {
5888 size = i_size_read(mapping->host) >> huge_page_shift(h);
5891 /* Check for page in userfault range */
5892 if (userfaultfd_missing(vma)) {
5894 * Since hugetlb_no_page() was examining pte
5895 * without pgtable lock, we need to re-test under
5896 * lock because the pte may not be stable and could
5897 * have changed from under us. Try to detect
5898 * either changed or during-changing ptes and retry
5899 * properly when needed.
5901 * Note that userfaultfd is actually fine with
5902 * false positives (e.g. caused by pte changed),
5903 * but not wrong logical events (e.g. caused by
5904 * reading a pte during changing). The latter can
5905 * confuse the userspace, so the strictness is very
5906 * much preferred. E.g., MISSING event should
5907 * never happen on the page after UFFDIO_COPY has
5908 * correctly installed the page and returned.
5910 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5915 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5920 folio = alloc_hugetlb_folio(vma, haddr, 0);
5921 if (IS_ERR(folio)) {
5923 * Returning error will result in faulting task being
5924 * sent SIGBUS. The hugetlb fault mutex prevents two
5925 * tasks from racing to fault in the same page which
5926 * could result in false unable to allocate errors.
5927 * Page migration does not take the fault mutex, but
5928 * does a clear then write of pte's under page table
5929 * lock. Page fault code could race with migration,
5930 * notice the clear pte and try to allocate a page
5931 * here. Before returning error, get ptl and make
5932 * sure there really is no pte entry.
5934 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5935 ret = vmf_error(PTR_ERR(folio));
5940 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5941 __folio_mark_uptodate(folio);
5944 if (vma->vm_flags & VM_MAYSHARE) {
5945 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5948 * err can't be -EEXIST which implies someone
5949 * else consumed the reservation since hugetlb
5950 * fault mutex is held when add a hugetlb page
5951 * to the page cache. So it's safe to call
5952 * restore_reserve_on_error() here.
5954 restore_reserve_on_error(h, vma, haddr, folio);
5958 new_pagecache_folio = true;
5961 if (unlikely(anon_vma_prepare(vma))) {
5963 goto backout_unlocked;
5969 * If memory error occurs between mmap() and fault, some process
5970 * don't have hwpoisoned swap entry for errored virtual address.
5971 * So we need to block hugepage fault by PG_hwpoison bit check.
5973 if (unlikely(folio_test_hwpoison(folio))) {
5974 ret = VM_FAULT_HWPOISON_LARGE |
5975 VM_FAULT_SET_HINDEX(hstate_index(h));
5976 goto backout_unlocked;
5979 /* Check for page in userfault range. */
5980 if (userfaultfd_minor(vma)) {
5981 folio_unlock(folio);
5983 /* See comment in userfaultfd_missing() block above */
5984 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5988 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5995 * If we are going to COW a private mapping later, we examine the
5996 * pending reservations for this page now. This will ensure that
5997 * any allocations necessary to record that reservation occur outside
6000 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6001 if (vma_needs_reservation(h, vma, haddr) < 0) {
6003 goto backout_unlocked;
6005 /* Just decrements count, does not deallocate */
6006 vma_end_reservation(h, vma, haddr);
6009 ptl = huge_pte_lock(h, mm, ptep);
6011 /* If pte changed from under us, retry */
6012 if (!pte_same(huge_ptep_get(ptep), old_pte))
6016 hugepage_add_new_anon_rmap(folio, vma, haddr);
6018 page_dup_file_rmap(&folio->page, true);
6019 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6020 && (vma->vm_flags & VM_SHARED)));
6022 * If this pte was previously wr-protected, keep it wr-protected even
6025 if (unlikely(pte_marker_uffd_wp(old_pte)))
6026 new_pte = huge_pte_mkuffd_wp(new_pte);
6027 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6029 hugetlb_count_add(pages_per_huge_page(h), mm);
6030 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6031 /* Optimization, do the COW without a second fault */
6032 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6038 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6039 * found in the pagecache may not have hugetlb_migratable if they have
6040 * been isolated for migration.
6043 folio_set_hugetlb_migratable(folio);
6045 folio_unlock(folio);
6047 hugetlb_vma_unlock_read(vma);
6048 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6054 if (new_folio && !new_pagecache_folio)
6055 restore_reserve_on_error(h, vma, haddr, folio);
6057 folio_unlock(folio);
6063 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6065 unsigned long key[2];
6068 key[0] = (unsigned long) mapping;
6071 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6073 return hash & (num_fault_mutexes - 1);
6077 * For uniprocessor systems we always use a single mutex, so just
6078 * return 0 and avoid the hashing overhead.
6080 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6086 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6087 unsigned long address, unsigned int flags)
6094 struct folio *folio = NULL;
6095 struct folio *pagecache_folio = NULL;
6096 struct hstate *h = hstate_vma(vma);
6097 struct address_space *mapping;
6098 int need_wait_lock = 0;
6099 unsigned long haddr = address & huge_page_mask(h);
6101 /* TODO: Handle faults under the VMA lock */
6102 if (flags & FAULT_FLAG_VMA_LOCK) {
6104 return VM_FAULT_RETRY;
6108 * Serialize hugepage allocation and instantiation, so that we don't
6109 * get spurious allocation failures if two CPUs race to instantiate
6110 * the same page in the page cache.
6112 mapping = vma->vm_file->f_mapping;
6113 idx = vma_hugecache_offset(h, vma, haddr);
6114 hash = hugetlb_fault_mutex_hash(mapping, idx);
6115 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6118 * Acquire vma lock before calling huge_pte_alloc and hold
6119 * until finished with ptep. This prevents huge_pmd_unshare from
6120 * being called elsewhere and making the ptep no longer valid.
6122 hugetlb_vma_lock_read(vma);
6123 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6125 hugetlb_vma_unlock_read(vma);
6126 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6127 return VM_FAULT_OOM;
6130 entry = huge_ptep_get(ptep);
6131 if (huge_pte_none_mostly(entry)) {
6132 if (is_pte_marker(entry)) {
6134 pte_marker_get(pte_to_swp_entry(entry));
6136 if (marker & PTE_MARKER_POISONED) {
6137 ret = VM_FAULT_HWPOISON_LARGE;
6143 * Other PTE markers should be handled the same way as none PTE.
6145 * hugetlb_no_page will drop vma lock and hugetlb fault
6146 * mutex internally, which make us return immediately.
6148 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6155 * entry could be a migration/hwpoison entry at this point, so this
6156 * check prevents the kernel from going below assuming that we have
6157 * an active hugepage in pagecache. This goto expects the 2nd page
6158 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6159 * properly handle it.
6161 if (!pte_present(entry)) {
6162 if (unlikely(is_hugetlb_entry_migration(entry))) {
6164 * Release the hugetlb fault lock now, but retain
6165 * the vma lock, because it is needed to guard the
6166 * huge_pte_lockptr() later in
6167 * migration_entry_wait_huge(). The vma lock will
6168 * be released there.
6170 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6171 migration_entry_wait_huge(vma, ptep);
6173 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6174 ret = VM_FAULT_HWPOISON_LARGE |
6175 VM_FAULT_SET_HINDEX(hstate_index(h));
6180 * If we are going to COW/unshare the mapping later, we examine the
6181 * pending reservations for this page now. This will ensure that any
6182 * allocations necessary to record that reservation occur outside the
6183 * spinlock. Also lookup the pagecache page now as it is used to
6184 * determine if a reservation has been consumed.
6186 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6187 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6188 if (vma_needs_reservation(h, vma, haddr) < 0) {
6192 /* Just decrements count, does not deallocate */
6193 vma_end_reservation(h, vma, haddr);
6195 pagecache_folio = filemap_lock_folio(mapping, idx);
6196 if (IS_ERR(pagecache_folio))
6197 pagecache_folio = NULL;
6200 ptl = huge_pte_lock(h, mm, ptep);
6202 /* Check for a racing update before calling hugetlb_wp() */
6203 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6206 /* Handle userfault-wp first, before trying to lock more pages */
6207 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6208 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6209 struct vm_fault vmf = {
6212 .real_address = address,
6217 if (pagecache_folio) {
6218 folio_unlock(pagecache_folio);
6219 folio_put(pagecache_folio);
6221 hugetlb_vma_unlock_read(vma);
6222 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6223 return handle_userfault(&vmf, VM_UFFD_WP);
6227 * hugetlb_wp() requires page locks of pte_page(entry) and
6228 * pagecache_folio, so here we need take the former one
6229 * when folio != pagecache_folio or !pagecache_folio.
6231 folio = page_folio(pte_page(entry));
6232 if (folio != pagecache_folio)
6233 if (!folio_trylock(folio)) {
6240 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6241 if (!huge_pte_write(entry)) {
6242 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6243 pagecache_folio, ptl);
6245 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6246 entry = huge_pte_mkdirty(entry);
6249 entry = pte_mkyoung(entry);
6250 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6251 flags & FAULT_FLAG_WRITE))
6252 update_mmu_cache(vma, haddr, ptep);
6254 if (folio != pagecache_folio)
6255 folio_unlock(folio);
6260 if (pagecache_folio) {
6261 folio_unlock(pagecache_folio);
6262 folio_put(pagecache_folio);
6265 hugetlb_vma_unlock_read(vma);
6266 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6268 * Generally it's safe to hold refcount during waiting page lock. But
6269 * here we just wait to defer the next page fault to avoid busy loop and
6270 * the page is not used after unlocked before returning from the current
6271 * page fault. So we are safe from accessing freed page, even if we wait
6272 * here without taking refcount.
6275 folio_wait_locked(folio);
6279 #ifdef CONFIG_USERFAULTFD
6281 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6282 * with modifications for hugetlb pages.
6284 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6285 struct vm_area_struct *dst_vma,
6286 unsigned long dst_addr,
6287 unsigned long src_addr,
6289 struct folio **foliop)
6291 struct mm_struct *dst_mm = dst_vma->vm_mm;
6292 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6293 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6294 struct hstate *h = hstate_vma(dst_vma);
6295 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6296 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6298 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6302 struct folio *folio;
6304 bool folio_in_pagecache = false;
6306 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6307 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6309 /* Don't overwrite any existing PTEs (even markers) */
6310 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6315 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6316 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6319 /* No need to invalidate - it was non-present before */
6320 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6328 folio = filemap_lock_folio(mapping, idx);
6331 folio_in_pagecache = true;
6332 } else if (!*foliop) {
6333 /* If a folio already exists, then it's UFFDIO_COPY for
6334 * a non-missing case. Return -EEXIST.
6337 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6342 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343 if (IS_ERR(folio)) {
6348 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6351 /* fallback to copy_from_user outside mmap_lock */
6352 if (unlikely(ret)) {
6354 /* Free the allocated folio which may have
6355 * consumed a reservation.
6357 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6360 /* Allocate a temporary folio to hold the copied
6363 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6369 /* Set the outparam foliop and return to the caller to
6370 * copy the contents outside the lock. Don't free the
6377 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6384 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6385 if (IS_ERR(folio)) {
6391 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6401 * The memory barrier inside __folio_mark_uptodate makes sure that
6402 * preceding stores to the page contents become visible before
6403 * the set_pte_at() write.
6405 __folio_mark_uptodate(folio);
6407 /* Add shared, newly allocated pages to the page cache. */
6408 if (vm_shared && !is_continue) {
6409 size = i_size_read(mapping->host) >> huge_page_shift(h);
6412 goto out_release_nounlock;
6415 * Serialization between remove_inode_hugepages() and
6416 * hugetlb_add_to_page_cache() below happens through the
6417 * hugetlb_fault_mutex_table that here must be hold by
6420 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6422 goto out_release_nounlock;
6423 folio_in_pagecache = true;
6426 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6429 if (folio_test_hwpoison(folio))
6430 goto out_release_unlock;
6433 * We allow to overwrite a pte marker: consider when both MISSING|WP
6434 * registered, we firstly wr-protect a none pte which has no page cache
6435 * page backing it, then access the page.
6438 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6439 goto out_release_unlock;
6441 if (folio_in_pagecache)
6442 page_dup_file_rmap(&folio->page, true);
6444 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6447 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6448 * with wp flag set, don't set pte write bit.
6450 if (wp_enabled || (is_continue && !vm_shared))
6453 writable = dst_vma->vm_flags & VM_WRITE;
6455 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6457 * Always mark UFFDIO_COPY page dirty; note that this may not be
6458 * extremely important for hugetlbfs for now since swapping is not
6459 * supported, but we should still be clear in that this page cannot be
6460 * thrown away at will, even if write bit not set.
6462 _dst_pte = huge_pte_mkdirty(_dst_pte);
6463 _dst_pte = pte_mkyoung(_dst_pte);
6466 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6468 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6470 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6472 /* No need to invalidate - it was non-present before */
6473 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6477 folio_set_hugetlb_migratable(folio);
6478 if (vm_shared || is_continue)
6479 folio_unlock(folio);
6485 if (vm_shared || is_continue)
6486 folio_unlock(folio);
6487 out_release_nounlock:
6488 if (!folio_in_pagecache)
6489 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6493 #endif /* CONFIG_USERFAULTFD */
6495 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6496 unsigned long address, unsigned int flags,
6497 unsigned int *page_mask)
6499 struct hstate *h = hstate_vma(vma);
6500 struct mm_struct *mm = vma->vm_mm;
6501 unsigned long haddr = address & huge_page_mask(h);
6502 struct page *page = NULL;
6507 hugetlb_vma_lock_read(vma);
6508 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6512 ptl = huge_pte_lock(h, mm, pte);
6513 entry = huge_ptep_get(pte);
6514 if (pte_present(entry)) {
6515 page = pte_page(entry);
6517 if (!huge_pte_write(entry)) {
6518 if (flags & FOLL_WRITE) {
6523 if (gup_must_unshare(vma, flags, page)) {
6524 /* Tell the caller to do unsharing */
6525 page = ERR_PTR(-EMLINK);
6530 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6533 * Note that page may be a sub-page, and with vmemmap
6534 * optimizations the page struct may be read only.
6535 * try_grab_page() will increase the ref count on the
6536 * head page, so this will be OK.
6538 * try_grab_page() should always be able to get the page here,
6539 * because we hold the ptl lock and have verified pte_present().
6541 ret = try_grab_page(page, flags);
6543 if (WARN_ON_ONCE(ret)) {
6544 page = ERR_PTR(ret);
6548 *page_mask = (1U << huge_page_order(h)) - 1;
6553 hugetlb_vma_unlock_read(vma);
6556 * Fixup retval for dump requests: if pagecache doesn't exist,
6557 * don't try to allocate a new page but just skip it.
6559 if (!page && (flags & FOLL_DUMP) &&
6560 !hugetlbfs_pagecache_present(h, vma, address))
6561 page = ERR_PTR(-EFAULT);
6566 long hugetlb_change_protection(struct vm_area_struct *vma,
6567 unsigned long address, unsigned long end,
6568 pgprot_t newprot, unsigned long cp_flags)
6570 struct mm_struct *mm = vma->vm_mm;
6571 unsigned long start = address;
6574 struct hstate *h = hstate_vma(vma);
6575 long pages = 0, psize = huge_page_size(h);
6576 bool shared_pmd = false;
6577 struct mmu_notifier_range range;
6578 unsigned long last_addr_mask;
6579 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6580 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6583 * In the case of shared PMDs, the area to flush could be beyond
6584 * start/end. Set range.start/range.end to cover the maximum possible
6585 * range if PMD sharing is possible.
6587 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6589 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6591 BUG_ON(address >= end);
6592 flush_cache_range(vma, range.start, range.end);
6594 mmu_notifier_invalidate_range_start(&range);
6595 hugetlb_vma_lock_write(vma);
6596 i_mmap_lock_write(vma->vm_file->f_mapping);
6597 last_addr_mask = hugetlb_mask_last_page(h);
6598 for (; address < end; address += psize) {
6600 ptep = hugetlb_walk(vma, address, psize);
6603 address |= last_addr_mask;
6607 * Userfaultfd wr-protect requires pgtable
6608 * pre-allocations to install pte markers.
6610 ptep = huge_pte_alloc(mm, vma, address, psize);
6616 ptl = huge_pte_lock(h, mm, ptep);
6617 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6619 * When uffd-wp is enabled on the vma, unshare
6620 * shouldn't happen at all. Warn about it if it
6621 * happened due to some reason.
6623 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6627 address |= last_addr_mask;
6630 pte = huge_ptep_get(ptep);
6631 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6632 /* Nothing to do. */
6633 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6634 swp_entry_t entry = pte_to_swp_entry(pte);
6635 struct page *page = pfn_swap_entry_to_page(entry);
6638 if (is_writable_migration_entry(entry)) {
6640 entry = make_readable_exclusive_migration_entry(
6643 entry = make_readable_migration_entry(
6645 newpte = swp_entry_to_pte(entry);
6650 newpte = pte_swp_mkuffd_wp(newpte);
6651 else if (uffd_wp_resolve)
6652 newpte = pte_swp_clear_uffd_wp(newpte);
6653 if (!pte_same(pte, newpte))
6654 set_huge_pte_at(mm, address, ptep, newpte, psize);
6655 } else if (unlikely(is_pte_marker(pte))) {
6656 /* No other markers apply for now. */
6657 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6658 if (uffd_wp_resolve)
6659 /* Safe to modify directly (non-present->none). */
6660 huge_pte_clear(mm, address, ptep, psize);
6661 } else if (!huge_pte_none(pte)) {
6663 unsigned int shift = huge_page_shift(hstate_vma(vma));
6665 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6666 pte = huge_pte_modify(old_pte, newprot);
6667 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6669 pte = huge_pte_mkuffd_wp(pte);
6670 else if (uffd_wp_resolve)
6671 pte = huge_pte_clear_uffd_wp(pte);
6672 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6676 if (unlikely(uffd_wp))
6677 /* Safe to modify directly (none->non-present). */
6678 set_huge_pte_at(mm, address, ptep,
6679 make_pte_marker(PTE_MARKER_UFFD_WP),
6685 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6686 * may have cleared our pud entry and done put_page on the page table:
6687 * once we release i_mmap_rwsem, another task can do the final put_page
6688 * and that page table be reused and filled with junk. If we actually
6689 * did unshare a page of pmds, flush the range corresponding to the pud.
6692 flush_hugetlb_tlb_range(vma, range.start, range.end);
6694 flush_hugetlb_tlb_range(vma, start, end);
6696 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6697 * downgrading page table protection not changing it to point to a new
6700 * See Documentation/mm/mmu_notifier.rst
6702 i_mmap_unlock_write(vma->vm_file->f_mapping);
6703 hugetlb_vma_unlock_write(vma);
6704 mmu_notifier_invalidate_range_end(&range);
6706 return pages > 0 ? (pages << h->order) : pages;
6709 /* Return true if reservation was successful, false otherwise. */
6710 bool hugetlb_reserve_pages(struct inode *inode,
6712 struct vm_area_struct *vma,
6713 vm_flags_t vm_flags)
6715 long chg = -1, add = -1;
6716 struct hstate *h = hstate_inode(inode);
6717 struct hugepage_subpool *spool = subpool_inode(inode);
6718 struct resv_map *resv_map;
6719 struct hugetlb_cgroup *h_cg = NULL;
6720 long gbl_reserve, regions_needed = 0;
6722 /* This should never happen */
6724 VM_WARN(1, "%s called with a negative range\n", __func__);
6729 * vma specific semaphore used for pmd sharing and fault/truncation
6732 hugetlb_vma_lock_alloc(vma);
6735 * Only apply hugepage reservation if asked. At fault time, an
6736 * attempt will be made for VM_NORESERVE to allocate a page
6737 * without using reserves
6739 if (vm_flags & VM_NORESERVE)
6743 * Shared mappings base their reservation on the number of pages that
6744 * are already allocated on behalf of the file. Private mappings need
6745 * to reserve the full area even if read-only as mprotect() may be
6746 * called to make the mapping read-write. Assume !vma is a shm mapping
6748 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6750 * resv_map can not be NULL as hugetlb_reserve_pages is only
6751 * called for inodes for which resv_maps were created (see
6752 * hugetlbfs_get_inode).
6754 resv_map = inode_resv_map(inode);
6756 chg = region_chg(resv_map, from, to, ®ions_needed);
6758 /* Private mapping. */
6759 resv_map = resv_map_alloc();
6765 set_vma_resv_map(vma, resv_map);
6766 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6772 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6773 chg * pages_per_huge_page(h), &h_cg) < 0)
6776 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6777 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6780 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6784 * There must be enough pages in the subpool for the mapping. If
6785 * the subpool has a minimum size, there may be some global
6786 * reservations already in place (gbl_reserve).
6788 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6789 if (gbl_reserve < 0)
6790 goto out_uncharge_cgroup;
6793 * Check enough hugepages are available for the reservation.
6794 * Hand the pages back to the subpool if there are not
6796 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6800 * Account for the reservations made. Shared mappings record regions
6801 * that have reservations as they are shared by multiple VMAs.
6802 * When the last VMA disappears, the region map says how much
6803 * the reservation was and the page cache tells how much of
6804 * the reservation was consumed. Private mappings are per-VMA and
6805 * only the consumed reservations are tracked. When the VMA
6806 * disappears, the original reservation is the VMA size and the
6807 * consumed reservations are stored in the map. Hence, nothing
6808 * else has to be done for private mappings here
6810 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6811 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6813 if (unlikely(add < 0)) {
6814 hugetlb_acct_memory(h, -gbl_reserve);
6816 } else if (unlikely(chg > add)) {
6818 * pages in this range were added to the reserve
6819 * map between region_chg and region_add. This
6820 * indicates a race with alloc_hugetlb_folio. Adjust
6821 * the subpool and reserve counts modified above
6822 * based on the difference.
6827 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6828 * reference to h_cg->css. See comment below for detail.
6830 hugetlb_cgroup_uncharge_cgroup_rsvd(
6832 (chg - add) * pages_per_huge_page(h), h_cg);
6834 rsv_adjust = hugepage_subpool_put_pages(spool,
6836 hugetlb_acct_memory(h, -rsv_adjust);
6839 * The file_regions will hold their own reference to
6840 * h_cg->css. So we should release the reference held
6841 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6844 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6850 /* put back original number of pages, chg */
6851 (void)hugepage_subpool_put_pages(spool, chg);
6852 out_uncharge_cgroup:
6853 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6854 chg * pages_per_huge_page(h), h_cg);
6856 hugetlb_vma_lock_free(vma);
6857 if (!vma || vma->vm_flags & VM_MAYSHARE)
6858 /* Only call region_abort if the region_chg succeeded but the
6859 * region_add failed or didn't run.
6861 if (chg >= 0 && add < 0)
6862 region_abort(resv_map, from, to, regions_needed);
6863 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6864 kref_put(&resv_map->refs, resv_map_release);
6865 set_vma_resv_map(vma, NULL);
6870 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6873 struct hstate *h = hstate_inode(inode);
6874 struct resv_map *resv_map = inode_resv_map(inode);
6876 struct hugepage_subpool *spool = subpool_inode(inode);
6880 * Since this routine can be called in the evict inode path for all
6881 * hugetlbfs inodes, resv_map could be NULL.
6884 chg = region_del(resv_map, start, end);
6886 * region_del() can fail in the rare case where a region
6887 * must be split and another region descriptor can not be
6888 * allocated. If end == LONG_MAX, it will not fail.
6894 spin_lock(&inode->i_lock);
6895 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6896 spin_unlock(&inode->i_lock);
6899 * If the subpool has a minimum size, the number of global
6900 * reservations to be released may be adjusted.
6902 * Note that !resv_map implies freed == 0. So (chg - freed)
6903 * won't go negative.
6905 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6906 hugetlb_acct_memory(h, -gbl_reserve);
6911 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6912 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6913 struct vm_area_struct *vma,
6914 unsigned long addr, pgoff_t idx)
6916 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6918 unsigned long sbase = saddr & PUD_MASK;
6919 unsigned long s_end = sbase + PUD_SIZE;
6921 /* Allow segments to share if only one is marked locked */
6922 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6923 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6926 * match the virtual addresses, permission and the alignment of the
6929 * Also, vma_lock (vm_private_data) is required for sharing.
6931 if (pmd_index(addr) != pmd_index(saddr) ||
6932 vm_flags != svm_flags ||
6933 !range_in_vma(svma, sbase, s_end) ||
6934 !svma->vm_private_data)
6940 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6942 unsigned long start = addr & PUD_MASK;
6943 unsigned long end = start + PUD_SIZE;
6945 #ifdef CONFIG_USERFAULTFD
6946 if (uffd_disable_huge_pmd_share(vma))
6950 * check on proper vm_flags and page table alignment
6952 if (!(vma->vm_flags & VM_MAYSHARE))
6954 if (!vma->vm_private_data) /* vma lock required for sharing */
6956 if (!range_in_vma(vma, start, end))
6962 * Determine if start,end range within vma could be mapped by shared pmd.
6963 * If yes, adjust start and end to cover range associated with possible
6964 * shared pmd mappings.
6966 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6967 unsigned long *start, unsigned long *end)
6969 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6970 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6973 * vma needs to span at least one aligned PUD size, and the range
6974 * must be at least partially within in.
6976 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6977 (*end <= v_start) || (*start >= v_end))
6980 /* Extend the range to be PUD aligned for a worst case scenario */
6981 if (*start > v_start)
6982 *start = ALIGN_DOWN(*start, PUD_SIZE);
6985 *end = ALIGN(*end, PUD_SIZE);
6989 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6990 * and returns the corresponding pte. While this is not necessary for the
6991 * !shared pmd case because we can allocate the pmd later as well, it makes the
6992 * code much cleaner. pmd allocation is essential for the shared case because
6993 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6994 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6995 * bad pmd for sharing.
6997 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6998 unsigned long addr, pud_t *pud)
7000 struct address_space *mapping = vma->vm_file->f_mapping;
7001 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7003 struct vm_area_struct *svma;
7004 unsigned long saddr;
7008 i_mmap_lock_read(mapping);
7009 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7013 saddr = page_table_shareable(svma, vma, addr, idx);
7015 spte = hugetlb_walk(svma, saddr,
7016 vma_mmu_pagesize(svma));
7018 get_page(virt_to_page(spte));
7027 spin_lock(&mm->page_table_lock);
7028 if (pud_none(*pud)) {
7029 pud_populate(mm, pud,
7030 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7033 put_page(virt_to_page(spte));
7035 spin_unlock(&mm->page_table_lock);
7037 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038 i_mmap_unlock_read(mapping);
7043 * unmap huge page backed by shared pte.
7045 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7046 * indicated by page_count > 1, unmap is achieved by clearing pud and
7047 * decrementing the ref count. If count == 1, the pte page is not shared.
7049 * Called with page table lock held.
7051 * returns: 1 successfully unmapped a shared pte page
7052 * 0 the underlying pte page is not shared, or it is the last user
7054 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7055 unsigned long addr, pte_t *ptep)
7057 pgd_t *pgd = pgd_offset(mm, addr);
7058 p4d_t *p4d = p4d_offset(pgd, addr);
7059 pud_t *pud = pud_offset(p4d, addr);
7061 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7062 hugetlb_vma_assert_locked(vma);
7063 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7064 if (page_count(virt_to_page(ptep)) == 1)
7068 put_page(virt_to_page(ptep));
7073 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7075 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7076 unsigned long addr, pud_t *pud)
7081 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7082 unsigned long addr, pte_t *ptep)
7087 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7088 unsigned long *start, unsigned long *end)
7092 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7096 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7098 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7099 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7100 unsigned long addr, unsigned long sz)
7107 pgd = pgd_offset(mm, addr);
7108 p4d = p4d_alloc(mm, pgd, addr);
7111 pud = pud_alloc(mm, p4d, addr);
7113 if (sz == PUD_SIZE) {
7116 BUG_ON(sz != PMD_SIZE);
7117 if (want_pmd_share(vma, addr) && pud_none(*pud))
7118 pte = huge_pmd_share(mm, vma, addr, pud);
7120 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7125 pte_t pteval = ptep_get_lockless(pte);
7127 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7134 * huge_pte_offset() - Walk the page table to resolve the hugepage
7135 * entry at address @addr
7137 * Return: Pointer to page table entry (PUD or PMD) for
7138 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7139 * size @sz doesn't match the hugepage size at this level of the page
7142 pte_t *huge_pte_offset(struct mm_struct *mm,
7143 unsigned long addr, unsigned long sz)
7150 pgd = pgd_offset(mm, addr);
7151 if (!pgd_present(*pgd))
7153 p4d = p4d_offset(pgd, addr);
7154 if (!p4d_present(*p4d))
7157 pud = pud_offset(p4d, addr);
7159 /* must be pud huge, non-present or none */
7160 return (pte_t *)pud;
7161 if (!pud_present(*pud))
7163 /* must have a valid entry and size to go further */
7165 pmd = pmd_offset(pud, addr);
7166 /* must be pmd huge, non-present or none */
7167 return (pte_t *)pmd;
7171 * Return a mask that can be used to update an address to the last huge
7172 * page in a page table page mapping size. Used to skip non-present
7173 * page table entries when linearly scanning address ranges. Architectures
7174 * with unique huge page to page table relationships can define their own
7175 * version of this routine.
7177 unsigned long hugetlb_mask_last_page(struct hstate *h)
7179 unsigned long hp_size = huge_page_size(h);
7181 if (hp_size == PUD_SIZE)
7182 return P4D_SIZE - PUD_SIZE;
7183 else if (hp_size == PMD_SIZE)
7184 return PUD_SIZE - PMD_SIZE;
7191 /* See description above. Architectures can provide their own version. */
7192 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7194 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7195 if (huge_page_size(h) == PMD_SIZE)
7196 return PUD_SIZE - PMD_SIZE;
7201 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7204 * These functions are overwritable if your architecture needs its own
7207 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7211 spin_lock_irq(&hugetlb_lock);
7212 if (!folio_test_hugetlb(folio) ||
7213 !folio_test_hugetlb_migratable(folio) ||
7214 !folio_try_get(folio)) {
7218 folio_clear_hugetlb_migratable(folio);
7219 list_move_tail(&folio->lru, list);
7221 spin_unlock_irq(&hugetlb_lock);
7225 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7230 spin_lock_irq(&hugetlb_lock);
7231 if (folio_test_hugetlb(folio)) {
7233 if (folio_test_hugetlb_freed(folio))
7235 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7236 ret = folio_try_get(folio);
7240 spin_unlock_irq(&hugetlb_lock);
7244 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7245 bool *migratable_cleared)
7249 spin_lock_irq(&hugetlb_lock);
7250 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7251 spin_unlock_irq(&hugetlb_lock);
7255 void folio_putback_active_hugetlb(struct folio *folio)
7257 spin_lock_irq(&hugetlb_lock);
7258 folio_set_hugetlb_migratable(folio);
7259 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7260 spin_unlock_irq(&hugetlb_lock);
7264 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7266 struct hstate *h = folio_hstate(old_folio);
7268 hugetlb_cgroup_migrate(old_folio, new_folio);
7269 set_page_owner_migrate_reason(&new_folio->page, reason);
7272 * transfer temporary state of the new hugetlb folio. This is
7273 * reverse to other transitions because the newpage is going to
7274 * be final while the old one will be freed so it takes over
7275 * the temporary status.
7277 * Also note that we have to transfer the per-node surplus state
7278 * here as well otherwise the global surplus count will not match
7281 if (folio_test_hugetlb_temporary(new_folio)) {
7282 int old_nid = folio_nid(old_folio);
7283 int new_nid = folio_nid(new_folio);
7285 folio_set_hugetlb_temporary(old_folio);
7286 folio_clear_hugetlb_temporary(new_folio);
7290 * There is no need to transfer the per-node surplus state
7291 * when we do not cross the node.
7293 if (new_nid == old_nid)
7295 spin_lock_irq(&hugetlb_lock);
7296 if (h->surplus_huge_pages_node[old_nid]) {
7297 h->surplus_huge_pages_node[old_nid]--;
7298 h->surplus_huge_pages_node[new_nid]++;
7300 spin_unlock_irq(&hugetlb_lock);
7304 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7305 unsigned long start,
7308 struct hstate *h = hstate_vma(vma);
7309 unsigned long sz = huge_page_size(h);
7310 struct mm_struct *mm = vma->vm_mm;
7311 struct mmu_notifier_range range;
7312 unsigned long address;
7316 if (!(vma->vm_flags & VM_MAYSHARE))
7322 flush_cache_range(vma, start, end);
7324 * No need to call adjust_range_if_pmd_sharing_possible(), because
7325 * we have already done the PUD_SIZE alignment.
7327 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7329 mmu_notifier_invalidate_range_start(&range);
7330 hugetlb_vma_lock_write(vma);
7331 i_mmap_lock_write(vma->vm_file->f_mapping);
7332 for (address = start; address < end; address += PUD_SIZE) {
7333 ptep = hugetlb_walk(vma, address, sz);
7336 ptl = huge_pte_lock(h, mm, ptep);
7337 huge_pmd_unshare(mm, vma, address, ptep);
7340 flush_hugetlb_tlb_range(vma, start, end);
7341 i_mmap_unlock_write(vma->vm_file->f_mapping);
7342 hugetlb_vma_unlock_write(vma);
7344 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7345 * Documentation/mm/mmu_notifier.rst.
7347 mmu_notifier_invalidate_range_end(&range);
7351 * This function will unconditionally remove all the shared pmd pgtable entries
7352 * within the specific vma for a hugetlbfs memory range.
7354 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7356 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7357 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7361 static bool cma_reserve_called __initdata;
7363 static int __init cmdline_parse_hugetlb_cma(char *p)
7370 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7373 if (s[count] == ':') {
7374 if (tmp >= MAX_NUMNODES)
7376 nid = array_index_nospec(tmp, MAX_NUMNODES);
7379 tmp = memparse(s, &s);
7380 hugetlb_cma_size_in_node[nid] = tmp;
7381 hugetlb_cma_size += tmp;
7384 * Skip the separator if have one, otherwise
7385 * break the parsing.
7392 hugetlb_cma_size = memparse(p, &p);
7400 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7402 void __init hugetlb_cma_reserve(int order)
7404 unsigned long size, reserved, per_node;
7405 bool node_specific_cma_alloc = false;
7408 cma_reserve_called = true;
7410 if (!hugetlb_cma_size)
7413 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7414 if (hugetlb_cma_size_in_node[nid] == 0)
7417 if (!node_online(nid)) {
7418 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7419 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7420 hugetlb_cma_size_in_node[nid] = 0;
7424 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7425 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7426 nid, (PAGE_SIZE << order) / SZ_1M);
7427 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7428 hugetlb_cma_size_in_node[nid] = 0;
7430 node_specific_cma_alloc = true;
7434 /* Validate the CMA size again in case some invalid nodes specified. */
7435 if (!hugetlb_cma_size)
7438 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7439 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7440 (PAGE_SIZE << order) / SZ_1M);
7441 hugetlb_cma_size = 0;
7445 if (!node_specific_cma_alloc) {
7447 * If 3 GB area is requested on a machine with 4 numa nodes,
7448 * let's allocate 1 GB on first three nodes and ignore the last one.
7450 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7451 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7452 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7456 for_each_online_node(nid) {
7458 char name[CMA_MAX_NAME];
7460 if (node_specific_cma_alloc) {
7461 if (hugetlb_cma_size_in_node[nid] == 0)
7464 size = hugetlb_cma_size_in_node[nid];
7466 size = min(per_node, hugetlb_cma_size - reserved);
7469 size = round_up(size, PAGE_SIZE << order);
7471 snprintf(name, sizeof(name), "hugetlb%d", nid);
7473 * Note that 'order per bit' is based on smallest size that
7474 * may be returned to CMA allocator in the case of
7475 * huge page demotion.
7477 res = cma_declare_contiguous_nid(0, size, 0,
7478 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7480 &hugetlb_cma[nid], nid);
7482 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7488 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7491 if (reserved >= hugetlb_cma_size)
7497 * hugetlb_cma_size is used to determine if allocations from
7498 * cma are possible. Set to zero if no cma regions are set up.
7500 hugetlb_cma_size = 0;
7503 static void __init hugetlb_cma_check(void)
7505 if (!hugetlb_cma_size || cma_reserve_called)
7508 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7511 #endif /* CONFIG_CMA */