mm, hugetlb: grab a page_table_lock after page_cache_release
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation_mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448         if (vma->vm_flags & VM_NORESERVE) {
449                 /*
450                  * This address is already reserved by other process(chg == 0),
451                  * so, we should decrement reserved count. Without decrementing,
452                  * reserve count remains after releasing inode, because this
453                  * allocated page will go into page cache and is regarded as
454                  * coming from reserved pool in releasing step.  Currently, we
455                  * don't have any other solution to deal with this situation
456                  * properly, so add work-around here.
457                  */
458                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459                         return 1;
460                 else
461                         return 0;
462         }
463
464         /* Shared mappings always use reserves */
465         if (vma->vm_flags & VM_MAYSHARE)
466                 return 1;
467
468         /*
469          * Only the process that called mmap() has reserves for
470          * private mappings.
471          */
472         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473                 return 1;
474
475         return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480         int i;
481         struct hstate *h = page_hstate(src);
482         struct page *dst_base = dst;
483         struct page *src_base = src;
484
485         for (i = 0; i < pages_per_huge_page(h); ) {
486                 cond_resched();
487                 copy_highpage(dst, src);
488
489                 i++;
490                 dst = mem_map_next(dst, dst_base, i);
491                 src = mem_map_next(src, src_base, i);
492         }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497         int i;
498         struct hstate *h = page_hstate(src);
499
500         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501                 copy_gigantic_page(dst, src);
502                 return;
503         }
504
505         might_sleep();
506         for (i = 0; i < pages_per_huge_page(h); i++) {
507                 cond_resched();
508                 copy_highpage(dst + i, src + i);
509         }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514         int nid = page_to_nid(page);
515         list_move(&page->lru, &h->hugepage_freelists[nid]);
516         h->free_huge_pages++;
517         h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522         struct page *page;
523
524         if (list_empty(&h->hugepage_freelists[nid]))
525                 return NULL;
526         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527         list_move(&page->lru, &h->hugepage_activelist);
528         set_page_refcounted(page);
529         h->free_huge_pages--;
530         h->free_huge_pages_node[nid]--;
531         return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535                                 struct vm_area_struct *vma,
536                                 unsigned long address, int avoid_reserve,
537                                 long chg)
538 {
539         struct page *page = NULL;
540         struct mempolicy *mpol;
541         nodemask_t *nodemask;
542         struct zonelist *zonelist;
543         struct zone *zone;
544         struct zoneref *z;
545         unsigned int cpuset_mems_cookie;
546
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma, chg) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560 retry_cpuset:
561         cpuset_mems_cookie = get_mems_allowed();
562         zonelist = huge_zonelist(vma, address,
563                                         htlb_alloc_mask, &mpol, &nodemask);
564
565         for_each_zone_zonelist_nodemask(zone, z, zonelist,
566                                                 MAX_NR_ZONES - 1, nodemask) {
567                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
569                         if (page) {
570                                 if (avoid_reserve)
571                                         break;
572                                 if (!vma_has_reserves(vma, chg))
573                                         break;
574
575                                 h->resv_huge_pages--;
576                                 break;
577                         }
578                 }
579         }
580
581         mpol_cond_put(mpol);
582         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
583                 goto retry_cpuset;
584         return page;
585
586 err:
587         return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592         int i;
593
594         VM_BUG_ON(h->order >= MAX_ORDER);
595
596         h->nr_huge_pages--;
597         h->nr_huge_pages_node[page_to_nid(page)]--;
598         for (i = 0; i < pages_per_huge_page(h); i++) {
599                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600                                 1 << PG_referenced | 1 << PG_dirty |
601                                 1 << PG_active | 1 << PG_reserved |
602                                 1 << PG_private | 1 << PG_writeback);
603         }
604         VM_BUG_ON(hugetlb_cgroup_from_page(page));
605         set_compound_page_dtor(page, NULL);
606         set_page_refcounted(page);
607         arch_release_hugepage(page);
608         __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613         struct hstate *h;
614
615         for_each_hstate(h) {
616                 if (huge_page_size(h) == size)
617                         return h;
618         }
619         return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624         /*
625          * Can't pass hstate in here because it is called from the
626          * compound page destructor.
627          */
628         struct hstate *h = page_hstate(page);
629         int nid = page_to_nid(page);
630         struct hugepage_subpool *spool =
631                 (struct hugepage_subpool *)page_private(page);
632
633         set_page_private(page, 0);
634         page->mapping = NULL;
635         BUG_ON(page_count(page));
636         BUG_ON(page_mapcount(page));
637
638         spin_lock(&hugetlb_lock);
639         hugetlb_cgroup_uncharge_page(hstate_index(h),
640                                      pages_per_huge_page(h), page);
641         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
642                 /* remove the page from active list */
643                 list_del(&page->lru);
644                 update_and_free_page(h, page);
645                 h->surplus_huge_pages--;
646                 h->surplus_huge_pages_node[nid]--;
647         } else {
648                 arch_clear_hugepage_flags(page);
649                 enqueue_huge_page(h, page);
650         }
651         spin_unlock(&hugetlb_lock);
652         hugepage_subpool_put_pages(spool, 1);
653 }
654
655 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
656 {
657         INIT_LIST_HEAD(&page->lru);
658         set_compound_page_dtor(page, free_huge_page);
659         spin_lock(&hugetlb_lock);
660         set_hugetlb_cgroup(page, NULL);
661         h->nr_huge_pages++;
662         h->nr_huge_pages_node[nid]++;
663         spin_unlock(&hugetlb_lock);
664         put_page(page); /* free it into the hugepage allocator */
665 }
666
667 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668 {
669         int i;
670         int nr_pages = 1 << order;
671         struct page *p = page + 1;
672
673         /* we rely on prep_new_huge_page to set the destructor */
674         set_compound_order(page, order);
675         __SetPageHead(page);
676         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677                 __SetPageTail(p);
678                 set_page_count(p, 0);
679                 p->first_page = page;
680         }
681 }
682
683 /*
684  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685  * transparent huge pages.  See the PageTransHuge() documentation for more
686  * details.
687  */
688 int PageHuge(struct page *page)
689 {
690         compound_page_dtor *dtor;
691
692         if (!PageCompound(page))
693                 return 0;
694
695         page = compound_head(page);
696         dtor = get_compound_page_dtor(page);
697
698         return dtor == free_huge_page;
699 }
700 EXPORT_SYMBOL_GPL(PageHuge);
701
702 pgoff_t __basepage_index(struct page *page)
703 {
704         struct page *page_head = compound_head(page);
705         pgoff_t index = page_index(page_head);
706         unsigned long compound_idx;
707
708         if (!PageHuge(page_head))
709                 return page_index(page);
710
711         if (compound_order(page_head) >= MAX_ORDER)
712                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
713         else
714                 compound_idx = page - page_head;
715
716         return (index << compound_order(page_head)) + compound_idx;
717 }
718
719 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
720 {
721         struct page *page;
722
723         if (h->order >= MAX_ORDER)
724                 return NULL;
725
726         page = alloc_pages_exact_node(nid,
727                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
728                                                 __GFP_REPEAT|__GFP_NOWARN,
729                 huge_page_order(h));
730         if (page) {
731                 if (arch_prepare_hugepage(page)) {
732                         __free_pages(page, huge_page_order(h));
733                         return NULL;
734                 }
735                 prep_new_huge_page(h, page, nid);
736         }
737
738         return page;
739 }
740
741 /*
742  * common helper functions for hstate_next_node_to_{alloc|free}.
743  * We may have allocated or freed a huge page based on a different
744  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
745  * be outside of *nodes_allowed.  Ensure that we use an allowed
746  * node for alloc or free.
747  */
748 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
749 {
750         nid = next_node(nid, *nodes_allowed);
751         if (nid == MAX_NUMNODES)
752                 nid = first_node(*nodes_allowed);
753         VM_BUG_ON(nid >= MAX_NUMNODES);
754
755         return nid;
756 }
757
758 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760         if (!node_isset(nid, *nodes_allowed))
761                 nid = next_node_allowed(nid, nodes_allowed);
762         return nid;
763 }
764
765 /*
766  * returns the previously saved node ["this node"] from which to
767  * allocate a persistent huge page for the pool and advance the
768  * next node from which to allocate, handling wrap at end of node
769  * mask.
770  */
771 static int hstate_next_node_to_alloc(struct hstate *h,
772                                         nodemask_t *nodes_allowed)
773 {
774         int nid;
775
776         VM_BUG_ON(!nodes_allowed);
777
778         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
779         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
780
781         return nid;
782 }
783
784 /*
785  * helper for free_pool_huge_page() - return the previously saved
786  * node ["this node"] from which to free a huge page.  Advance the
787  * next node id whether or not we find a free huge page to free so
788  * that the next attempt to free addresses the next node.
789  */
790 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
791 {
792         int nid;
793
794         VM_BUG_ON(!nodes_allowed);
795
796         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
797         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
798
799         return nid;
800 }
801
802 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
803         for (nr_nodes = nodes_weight(*mask);                            \
804                 nr_nodes > 0 &&                                         \
805                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
806                 nr_nodes--)
807
808 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
809         for (nr_nodes = nodes_weight(*mask);                            \
810                 nr_nodes > 0 &&                                         \
811                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
812                 nr_nodes--)
813
814 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816         struct page *page;
817         int nr_nodes, node;
818         int ret = 0;
819
820         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
821                 page = alloc_fresh_huge_page_node(h, node);
822                 if (page) {
823                         ret = 1;
824                         break;
825                 }
826         }
827
828         if (ret)
829                 count_vm_event(HTLB_BUDDY_PGALLOC);
830         else
831                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
833         return ret;
834 }
835
836 /*
837  * Free huge page from pool from next node to free.
838  * Attempt to keep persistent huge pages more or less
839  * balanced over allowed nodes.
840  * Called with hugetlb_lock locked.
841  */
842 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
843                                                          bool acct_surplus)
844 {
845         int nr_nodes, node;
846         int ret = 0;
847
848         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
849                 /*
850                  * If we're returning unused surplus pages, only examine
851                  * nodes with surplus pages.
852                  */
853                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
854                     !list_empty(&h->hugepage_freelists[node])) {
855                         struct page *page =
856                                 list_entry(h->hugepage_freelists[node].next,
857                                           struct page, lru);
858                         list_del(&page->lru);
859                         h->free_huge_pages--;
860                         h->free_huge_pages_node[node]--;
861                         if (acct_surplus) {
862                                 h->surplus_huge_pages--;
863                                 h->surplus_huge_pages_node[node]--;
864                         }
865                         update_and_free_page(h, page);
866                         ret = 1;
867                         break;
868                 }
869         }
870
871         return ret;
872 }
873
874 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
875 {
876         struct page *page;
877         unsigned int r_nid;
878
879         if (h->order >= MAX_ORDER)
880                 return NULL;
881
882         /*
883          * Assume we will successfully allocate the surplus page to
884          * prevent racing processes from causing the surplus to exceed
885          * overcommit
886          *
887          * This however introduces a different race, where a process B
888          * tries to grow the static hugepage pool while alloc_pages() is
889          * called by process A. B will only examine the per-node
890          * counters in determining if surplus huge pages can be
891          * converted to normal huge pages in adjust_pool_surplus(). A
892          * won't be able to increment the per-node counter, until the
893          * lock is dropped by B, but B doesn't drop hugetlb_lock until
894          * no more huge pages can be converted from surplus to normal
895          * state (and doesn't try to convert again). Thus, we have a
896          * case where a surplus huge page exists, the pool is grown, and
897          * the surplus huge page still exists after, even though it
898          * should just have been converted to a normal huge page. This
899          * does not leak memory, though, as the hugepage will be freed
900          * once it is out of use. It also does not allow the counters to
901          * go out of whack in adjust_pool_surplus() as we don't modify
902          * the node values until we've gotten the hugepage and only the
903          * per-node value is checked there.
904          */
905         spin_lock(&hugetlb_lock);
906         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
907                 spin_unlock(&hugetlb_lock);
908                 return NULL;
909         } else {
910                 h->nr_huge_pages++;
911                 h->surplus_huge_pages++;
912         }
913         spin_unlock(&hugetlb_lock);
914
915         if (nid == NUMA_NO_NODE)
916                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
917                                    __GFP_REPEAT|__GFP_NOWARN,
918                                    huge_page_order(h));
919         else
920                 page = alloc_pages_exact_node(nid,
921                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
922                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
923
924         if (page && arch_prepare_hugepage(page)) {
925                 __free_pages(page, huge_page_order(h));
926                 page = NULL;
927         }
928
929         spin_lock(&hugetlb_lock);
930         if (page) {
931                 INIT_LIST_HEAD(&page->lru);
932                 r_nid = page_to_nid(page);
933                 set_compound_page_dtor(page, free_huge_page);
934                 set_hugetlb_cgroup(page, NULL);
935                 /*
936                  * We incremented the global counters already
937                  */
938                 h->nr_huge_pages_node[r_nid]++;
939                 h->surplus_huge_pages_node[r_nid]++;
940                 __count_vm_event(HTLB_BUDDY_PGALLOC);
941         } else {
942                 h->nr_huge_pages--;
943                 h->surplus_huge_pages--;
944                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
945         }
946         spin_unlock(&hugetlb_lock);
947
948         return page;
949 }
950
951 /*
952  * This allocation function is useful in the context where vma is irrelevant.
953  * E.g. soft-offlining uses this function because it only cares physical
954  * address of error page.
955  */
956 struct page *alloc_huge_page_node(struct hstate *h, int nid)
957 {
958         struct page *page = NULL;
959
960         spin_lock(&hugetlb_lock);
961         if (h->free_huge_pages - h->resv_huge_pages > 0)
962                 page = dequeue_huge_page_node(h, nid);
963         spin_unlock(&hugetlb_lock);
964
965         if (!page)
966                 page = alloc_buddy_huge_page(h, nid);
967
968         return page;
969 }
970
971 /*
972  * Increase the hugetlb pool such that it can accommodate a reservation
973  * of size 'delta'.
974  */
975 static int gather_surplus_pages(struct hstate *h, int delta)
976 {
977         struct list_head surplus_list;
978         struct page *page, *tmp;
979         int ret, i;
980         int needed, allocated;
981         bool alloc_ok = true;
982
983         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
984         if (needed <= 0) {
985                 h->resv_huge_pages += delta;
986                 return 0;
987         }
988
989         allocated = 0;
990         INIT_LIST_HEAD(&surplus_list);
991
992         ret = -ENOMEM;
993 retry:
994         spin_unlock(&hugetlb_lock);
995         for (i = 0; i < needed; i++) {
996                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
997                 if (!page) {
998                         alloc_ok = false;
999                         break;
1000                 }
1001                 list_add(&page->lru, &surplus_list);
1002         }
1003         allocated += i;
1004
1005         /*
1006          * After retaking hugetlb_lock, we need to recalculate 'needed'
1007          * because either resv_huge_pages or free_huge_pages may have changed.
1008          */
1009         spin_lock(&hugetlb_lock);
1010         needed = (h->resv_huge_pages + delta) -
1011                         (h->free_huge_pages + allocated);
1012         if (needed > 0) {
1013                 if (alloc_ok)
1014                         goto retry;
1015                 /*
1016                  * We were not able to allocate enough pages to
1017                  * satisfy the entire reservation so we free what
1018                  * we've allocated so far.
1019                  */
1020                 goto free;
1021         }
1022         /*
1023          * The surplus_list now contains _at_least_ the number of extra pages
1024          * needed to accommodate the reservation.  Add the appropriate number
1025          * of pages to the hugetlb pool and free the extras back to the buddy
1026          * allocator.  Commit the entire reservation here to prevent another
1027          * process from stealing the pages as they are added to the pool but
1028          * before they are reserved.
1029          */
1030         needed += allocated;
1031         h->resv_huge_pages += delta;
1032         ret = 0;
1033
1034         /* Free the needed pages to the hugetlb pool */
1035         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1036                 if ((--needed) < 0)
1037                         break;
1038                 /*
1039                  * This page is now managed by the hugetlb allocator and has
1040                  * no users -- drop the buddy allocator's reference.
1041                  */
1042                 put_page_testzero(page);
1043                 VM_BUG_ON(page_count(page));
1044                 enqueue_huge_page(h, page);
1045         }
1046 free:
1047         spin_unlock(&hugetlb_lock);
1048
1049         /* Free unnecessary surplus pages to the buddy allocator */
1050         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1051                 put_page(page);
1052         spin_lock(&hugetlb_lock);
1053
1054         return ret;
1055 }
1056
1057 /*
1058  * When releasing a hugetlb pool reservation, any surplus pages that were
1059  * allocated to satisfy the reservation must be explicitly freed if they were
1060  * never used.
1061  * Called with hugetlb_lock held.
1062  */
1063 static void return_unused_surplus_pages(struct hstate *h,
1064                                         unsigned long unused_resv_pages)
1065 {
1066         unsigned long nr_pages;
1067
1068         /* Uncommit the reservation */
1069         h->resv_huge_pages -= unused_resv_pages;
1070
1071         /* Cannot return gigantic pages currently */
1072         if (h->order >= MAX_ORDER)
1073                 return;
1074
1075         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1076
1077         /*
1078          * We want to release as many surplus pages as possible, spread
1079          * evenly across all nodes with memory. Iterate across these nodes
1080          * until we can no longer free unreserved surplus pages. This occurs
1081          * when the nodes with surplus pages have no free pages.
1082          * free_pool_huge_page() will balance the the freed pages across the
1083          * on-line nodes with memory and will handle the hstate accounting.
1084          */
1085         while (nr_pages--) {
1086                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1087                         break;
1088         }
1089 }
1090
1091 /*
1092  * Determine if the huge page at addr within the vma has an associated
1093  * reservation.  Where it does not we will need to logically increase
1094  * reservation and actually increase subpool usage before an allocation
1095  * can occur.  Where any new reservation would be required the
1096  * reservation change is prepared, but not committed.  Once the page
1097  * has been allocated from the subpool and instantiated the change should
1098  * be committed via vma_commit_reservation.  No action is required on
1099  * failure.
1100  */
1101 static long vma_needs_reservation(struct hstate *h,
1102                         struct vm_area_struct *vma, unsigned long addr)
1103 {
1104         struct address_space *mapping = vma->vm_file->f_mapping;
1105         struct inode *inode = mapping->host;
1106
1107         if (vma->vm_flags & VM_MAYSHARE) {
1108                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109                 return region_chg(&inode->i_mapping->private_list,
1110                                                         idx, idx + 1);
1111
1112         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1113                 return 1;
1114
1115         } else  {
1116                 long err;
1117                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1118                 struct resv_map *resv = vma_resv_map(vma);
1119
1120                 err = region_chg(&resv->regions, idx, idx + 1);
1121                 if (err < 0)
1122                         return err;
1123                 return 0;
1124         }
1125 }
1126 static void vma_commit_reservation(struct hstate *h,
1127                         struct vm_area_struct *vma, unsigned long addr)
1128 {
1129         struct address_space *mapping = vma->vm_file->f_mapping;
1130         struct inode *inode = mapping->host;
1131
1132         if (vma->vm_flags & VM_MAYSHARE) {
1133                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1134                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1135
1136         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1137                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1138                 struct resv_map *resv = vma_resv_map(vma);
1139
1140                 /* Mark this page used in the map. */
1141                 region_add(&resv->regions, idx, idx + 1);
1142         }
1143 }
1144
1145 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1146                                     unsigned long addr, int avoid_reserve)
1147 {
1148         struct hugepage_subpool *spool = subpool_vma(vma);
1149         struct hstate *h = hstate_vma(vma);
1150         struct page *page;
1151         long chg;
1152         int ret, idx;
1153         struct hugetlb_cgroup *h_cg;
1154
1155         idx = hstate_index(h);
1156         /*
1157          * Processes that did not create the mapping will have no
1158          * reserves and will not have accounted against subpool
1159          * limit. Check that the subpool limit can be made before
1160          * satisfying the allocation MAP_NORESERVE mappings may also
1161          * need pages and subpool limit allocated allocated if no reserve
1162          * mapping overlaps.
1163          */
1164         chg = vma_needs_reservation(h, vma, addr);
1165         if (chg < 0)
1166                 return ERR_PTR(-ENOMEM);
1167         if (chg || avoid_reserve)
1168                 if (hugepage_subpool_get_pages(spool, 1))
1169                         return ERR_PTR(-ENOSPC);
1170
1171         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1172         if (ret) {
1173                 if (chg || avoid_reserve)
1174                         hugepage_subpool_put_pages(spool, 1);
1175                 return ERR_PTR(-ENOSPC);
1176         }
1177         spin_lock(&hugetlb_lock);
1178         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1179         if (!page) {
1180                 spin_unlock(&hugetlb_lock);
1181                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1182                 if (!page) {
1183                         hugetlb_cgroup_uncharge_cgroup(idx,
1184                                                        pages_per_huge_page(h),
1185                                                        h_cg);
1186                         if (chg || avoid_reserve)
1187                                 hugepage_subpool_put_pages(spool, 1);
1188                         return ERR_PTR(-ENOSPC);
1189                 }
1190                 spin_lock(&hugetlb_lock);
1191                 list_move(&page->lru, &h->hugepage_activelist);
1192                 /* Fall through */
1193         }
1194         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1195         spin_unlock(&hugetlb_lock);
1196
1197         set_page_private(page, (unsigned long)spool);
1198
1199         vma_commit_reservation(h, vma, addr);
1200         return page;
1201 }
1202
1203 int __weak alloc_bootmem_huge_page(struct hstate *h)
1204 {
1205         struct huge_bootmem_page *m;
1206         int nr_nodes, node;
1207
1208         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1209                 void *addr;
1210
1211                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1212                                 huge_page_size(h), huge_page_size(h), 0);
1213
1214                 if (addr) {
1215                         /*
1216                          * Use the beginning of the huge page to store the
1217                          * huge_bootmem_page struct (until gather_bootmem
1218                          * puts them into the mem_map).
1219                          */
1220                         m = addr;
1221                         goto found;
1222                 }
1223         }
1224         return 0;
1225
1226 found:
1227         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1228         /* Put them into a private list first because mem_map is not up yet */
1229         list_add(&m->list, &huge_boot_pages);
1230         m->hstate = h;
1231         return 1;
1232 }
1233
1234 static void prep_compound_huge_page(struct page *page, int order)
1235 {
1236         if (unlikely(order > (MAX_ORDER - 1)))
1237                 prep_compound_gigantic_page(page, order);
1238         else
1239                 prep_compound_page(page, order);
1240 }
1241
1242 /* Put bootmem huge pages into the standard lists after mem_map is up */
1243 static void __init gather_bootmem_prealloc(void)
1244 {
1245         struct huge_bootmem_page *m;
1246
1247         list_for_each_entry(m, &huge_boot_pages, list) {
1248                 struct hstate *h = m->hstate;
1249                 struct page *page;
1250
1251 #ifdef CONFIG_HIGHMEM
1252                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1253                 free_bootmem_late((unsigned long)m,
1254                                   sizeof(struct huge_bootmem_page));
1255 #else
1256                 page = virt_to_page(m);
1257 #endif
1258                 __ClearPageReserved(page);
1259                 WARN_ON(page_count(page) != 1);
1260                 prep_compound_huge_page(page, h->order);
1261                 prep_new_huge_page(h, page, page_to_nid(page));
1262                 /*
1263                  * If we had gigantic hugepages allocated at boot time, we need
1264                  * to restore the 'stolen' pages to totalram_pages in order to
1265                  * fix confusing memory reports from free(1) and another
1266                  * side-effects, like CommitLimit going negative.
1267                  */
1268                 if (h->order > (MAX_ORDER - 1))
1269                         adjust_managed_page_count(page, 1 << h->order);
1270         }
1271 }
1272
1273 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1274 {
1275         unsigned long i;
1276
1277         for (i = 0; i < h->max_huge_pages; ++i) {
1278                 if (h->order >= MAX_ORDER) {
1279                         if (!alloc_bootmem_huge_page(h))
1280                                 break;
1281                 } else if (!alloc_fresh_huge_page(h,
1282                                          &node_states[N_MEMORY]))
1283                         break;
1284         }
1285         h->max_huge_pages = i;
1286 }
1287
1288 static void __init hugetlb_init_hstates(void)
1289 {
1290         struct hstate *h;
1291
1292         for_each_hstate(h) {
1293                 /* oversize hugepages were init'ed in early boot */
1294                 if (h->order < MAX_ORDER)
1295                         hugetlb_hstate_alloc_pages(h);
1296         }
1297 }
1298
1299 static char * __init memfmt(char *buf, unsigned long n)
1300 {
1301         if (n >= (1UL << 30))
1302                 sprintf(buf, "%lu GB", n >> 30);
1303         else if (n >= (1UL << 20))
1304                 sprintf(buf, "%lu MB", n >> 20);
1305         else
1306                 sprintf(buf, "%lu KB", n >> 10);
1307         return buf;
1308 }
1309
1310 static void __init report_hugepages(void)
1311 {
1312         struct hstate *h;
1313
1314         for_each_hstate(h) {
1315                 char buf[32];
1316                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1317                         memfmt(buf, huge_page_size(h)),
1318                         h->free_huge_pages);
1319         }
1320 }
1321
1322 #ifdef CONFIG_HIGHMEM
1323 static void try_to_free_low(struct hstate *h, unsigned long count,
1324                                                 nodemask_t *nodes_allowed)
1325 {
1326         int i;
1327
1328         if (h->order >= MAX_ORDER)
1329                 return;
1330
1331         for_each_node_mask(i, *nodes_allowed) {
1332                 struct page *page, *next;
1333                 struct list_head *freel = &h->hugepage_freelists[i];
1334                 list_for_each_entry_safe(page, next, freel, lru) {
1335                         if (count >= h->nr_huge_pages)
1336                                 return;
1337                         if (PageHighMem(page))
1338                                 continue;
1339                         list_del(&page->lru);
1340                         update_and_free_page(h, page);
1341                         h->free_huge_pages--;
1342                         h->free_huge_pages_node[page_to_nid(page)]--;
1343                 }
1344         }
1345 }
1346 #else
1347 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1348                                                 nodemask_t *nodes_allowed)
1349 {
1350 }
1351 #endif
1352
1353 /*
1354  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1355  * balanced by operating on them in a round-robin fashion.
1356  * Returns 1 if an adjustment was made.
1357  */
1358 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1359                                 int delta)
1360 {
1361         int nr_nodes, node;
1362
1363         VM_BUG_ON(delta != -1 && delta != 1);
1364
1365         if (delta < 0) {
1366                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1367                         if (h->surplus_huge_pages_node[node])
1368                                 goto found;
1369                 }
1370         } else {
1371                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1372                         if (h->surplus_huge_pages_node[node] <
1373                                         h->nr_huge_pages_node[node])
1374                                 goto found;
1375                 }
1376         }
1377         return 0;
1378
1379 found:
1380         h->surplus_huge_pages += delta;
1381         h->surplus_huge_pages_node[node] += delta;
1382         return 1;
1383 }
1384
1385 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1386 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1387                                                 nodemask_t *nodes_allowed)
1388 {
1389         unsigned long min_count, ret;
1390
1391         if (h->order >= MAX_ORDER)
1392                 return h->max_huge_pages;
1393
1394         /*
1395          * Increase the pool size
1396          * First take pages out of surplus state.  Then make up the
1397          * remaining difference by allocating fresh huge pages.
1398          *
1399          * We might race with alloc_buddy_huge_page() here and be unable
1400          * to convert a surplus huge page to a normal huge page. That is
1401          * not critical, though, it just means the overall size of the
1402          * pool might be one hugepage larger than it needs to be, but
1403          * within all the constraints specified by the sysctls.
1404          */
1405         spin_lock(&hugetlb_lock);
1406         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1407                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1408                         break;
1409         }
1410
1411         while (count > persistent_huge_pages(h)) {
1412                 /*
1413                  * If this allocation races such that we no longer need the
1414                  * page, free_huge_page will handle it by freeing the page
1415                  * and reducing the surplus.
1416                  */
1417                 spin_unlock(&hugetlb_lock);
1418                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1419                 spin_lock(&hugetlb_lock);
1420                 if (!ret)
1421                         goto out;
1422
1423                 /* Bail for signals. Probably ctrl-c from user */
1424                 if (signal_pending(current))
1425                         goto out;
1426         }
1427
1428         /*
1429          * Decrease the pool size
1430          * First return free pages to the buddy allocator (being careful
1431          * to keep enough around to satisfy reservations).  Then place
1432          * pages into surplus state as needed so the pool will shrink
1433          * to the desired size as pages become free.
1434          *
1435          * By placing pages into the surplus state independent of the
1436          * overcommit value, we are allowing the surplus pool size to
1437          * exceed overcommit. There are few sane options here. Since
1438          * alloc_buddy_huge_page() is checking the global counter,
1439          * though, we'll note that we're not allowed to exceed surplus
1440          * and won't grow the pool anywhere else. Not until one of the
1441          * sysctls are changed, or the surplus pages go out of use.
1442          */
1443         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1444         min_count = max(count, min_count);
1445         try_to_free_low(h, min_count, nodes_allowed);
1446         while (min_count < persistent_huge_pages(h)) {
1447                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1448                         break;
1449         }
1450         while (count < persistent_huge_pages(h)) {
1451                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1452                         break;
1453         }
1454 out:
1455         ret = persistent_huge_pages(h);
1456         spin_unlock(&hugetlb_lock);
1457         return ret;
1458 }
1459
1460 #define HSTATE_ATTR_RO(_name) \
1461         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1462
1463 #define HSTATE_ATTR(_name) \
1464         static struct kobj_attribute _name##_attr = \
1465                 __ATTR(_name, 0644, _name##_show, _name##_store)
1466
1467 static struct kobject *hugepages_kobj;
1468 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1469
1470 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1471
1472 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1473 {
1474         int i;
1475
1476         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1477                 if (hstate_kobjs[i] == kobj) {
1478                         if (nidp)
1479                                 *nidp = NUMA_NO_NODE;
1480                         return &hstates[i];
1481                 }
1482
1483         return kobj_to_node_hstate(kobj, nidp);
1484 }
1485
1486 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1487                                         struct kobj_attribute *attr, char *buf)
1488 {
1489         struct hstate *h;
1490         unsigned long nr_huge_pages;
1491         int nid;
1492
1493         h = kobj_to_hstate(kobj, &nid);
1494         if (nid == NUMA_NO_NODE)
1495                 nr_huge_pages = h->nr_huge_pages;
1496         else
1497                 nr_huge_pages = h->nr_huge_pages_node[nid];
1498
1499         return sprintf(buf, "%lu\n", nr_huge_pages);
1500 }
1501
1502 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1503                         struct kobject *kobj, struct kobj_attribute *attr,
1504                         const char *buf, size_t len)
1505 {
1506         int err;
1507         int nid;
1508         unsigned long count;
1509         struct hstate *h;
1510         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1511
1512         err = kstrtoul(buf, 10, &count);
1513         if (err)
1514                 goto out;
1515
1516         h = kobj_to_hstate(kobj, &nid);
1517         if (h->order >= MAX_ORDER) {
1518                 err = -EINVAL;
1519                 goto out;
1520         }
1521
1522         if (nid == NUMA_NO_NODE) {
1523                 /*
1524                  * global hstate attribute
1525                  */
1526                 if (!(obey_mempolicy &&
1527                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1528                         NODEMASK_FREE(nodes_allowed);
1529                         nodes_allowed = &node_states[N_MEMORY];
1530                 }
1531         } else if (nodes_allowed) {
1532                 /*
1533                  * per node hstate attribute: adjust count to global,
1534                  * but restrict alloc/free to the specified node.
1535                  */
1536                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1537                 init_nodemask_of_node(nodes_allowed, nid);
1538         } else
1539                 nodes_allowed = &node_states[N_MEMORY];
1540
1541         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1542
1543         if (nodes_allowed != &node_states[N_MEMORY])
1544                 NODEMASK_FREE(nodes_allowed);
1545
1546         return len;
1547 out:
1548         NODEMASK_FREE(nodes_allowed);
1549         return err;
1550 }
1551
1552 static ssize_t nr_hugepages_show(struct kobject *kobj,
1553                                        struct kobj_attribute *attr, char *buf)
1554 {
1555         return nr_hugepages_show_common(kobj, attr, buf);
1556 }
1557
1558 static ssize_t nr_hugepages_store(struct kobject *kobj,
1559                struct kobj_attribute *attr, const char *buf, size_t len)
1560 {
1561         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1562 }
1563 HSTATE_ATTR(nr_hugepages);
1564
1565 #ifdef CONFIG_NUMA
1566
1567 /*
1568  * hstate attribute for optionally mempolicy-based constraint on persistent
1569  * huge page alloc/free.
1570  */
1571 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1572                                        struct kobj_attribute *attr, char *buf)
1573 {
1574         return nr_hugepages_show_common(kobj, attr, buf);
1575 }
1576
1577 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1578                struct kobj_attribute *attr, const char *buf, size_t len)
1579 {
1580         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1581 }
1582 HSTATE_ATTR(nr_hugepages_mempolicy);
1583 #endif
1584
1585
1586 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1587                                         struct kobj_attribute *attr, char *buf)
1588 {
1589         struct hstate *h = kobj_to_hstate(kobj, NULL);
1590         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1591 }
1592
1593 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1594                 struct kobj_attribute *attr, const char *buf, size_t count)
1595 {
1596         int err;
1597         unsigned long input;
1598         struct hstate *h = kobj_to_hstate(kobj, NULL);
1599
1600         if (h->order >= MAX_ORDER)
1601                 return -EINVAL;
1602
1603         err = kstrtoul(buf, 10, &input);
1604         if (err)
1605                 return err;
1606
1607         spin_lock(&hugetlb_lock);
1608         h->nr_overcommit_huge_pages = input;
1609         spin_unlock(&hugetlb_lock);
1610
1611         return count;
1612 }
1613 HSTATE_ATTR(nr_overcommit_hugepages);
1614
1615 static ssize_t free_hugepages_show(struct kobject *kobj,
1616                                         struct kobj_attribute *attr, char *buf)
1617 {
1618         struct hstate *h;
1619         unsigned long free_huge_pages;
1620         int nid;
1621
1622         h = kobj_to_hstate(kobj, &nid);
1623         if (nid == NUMA_NO_NODE)
1624                 free_huge_pages = h->free_huge_pages;
1625         else
1626                 free_huge_pages = h->free_huge_pages_node[nid];
1627
1628         return sprintf(buf, "%lu\n", free_huge_pages);
1629 }
1630 HSTATE_ATTR_RO(free_hugepages);
1631
1632 static ssize_t resv_hugepages_show(struct kobject *kobj,
1633                                         struct kobj_attribute *attr, char *buf)
1634 {
1635         struct hstate *h = kobj_to_hstate(kobj, NULL);
1636         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1637 }
1638 HSTATE_ATTR_RO(resv_hugepages);
1639
1640 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1641                                         struct kobj_attribute *attr, char *buf)
1642 {
1643         struct hstate *h;
1644         unsigned long surplus_huge_pages;
1645         int nid;
1646
1647         h = kobj_to_hstate(kobj, &nid);
1648         if (nid == NUMA_NO_NODE)
1649                 surplus_huge_pages = h->surplus_huge_pages;
1650         else
1651                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1652
1653         return sprintf(buf, "%lu\n", surplus_huge_pages);
1654 }
1655 HSTATE_ATTR_RO(surplus_hugepages);
1656
1657 static struct attribute *hstate_attrs[] = {
1658         &nr_hugepages_attr.attr,
1659         &nr_overcommit_hugepages_attr.attr,
1660         &free_hugepages_attr.attr,
1661         &resv_hugepages_attr.attr,
1662         &surplus_hugepages_attr.attr,
1663 #ifdef CONFIG_NUMA
1664         &nr_hugepages_mempolicy_attr.attr,
1665 #endif
1666         NULL,
1667 };
1668
1669 static struct attribute_group hstate_attr_group = {
1670         .attrs = hstate_attrs,
1671 };
1672
1673 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1674                                     struct kobject **hstate_kobjs,
1675                                     struct attribute_group *hstate_attr_group)
1676 {
1677         int retval;
1678         int hi = hstate_index(h);
1679
1680         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1681         if (!hstate_kobjs[hi])
1682                 return -ENOMEM;
1683
1684         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1685         if (retval)
1686                 kobject_put(hstate_kobjs[hi]);
1687
1688         return retval;
1689 }
1690
1691 static void __init hugetlb_sysfs_init(void)
1692 {
1693         struct hstate *h;
1694         int err;
1695
1696         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1697         if (!hugepages_kobj)
1698                 return;
1699
1700         for_each_hstate(h) {
1701                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1702                                          hstate_kobjs, &hstate_attr_group);
1703                 if (err)
1704                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1705         }
1706 }
1707
1708 #ifdef CONFIG_NUMA
1709
1710 /*
1711  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1712  * with node devices in node_devices[] using a parallel array.  The array
1713  * index of a node device or _hstate == node id.
1714  * This is here to avoid any static dependency of the node device driver, in
1715  * the base kernel, on the hugetlb module.
1716  */
1717 struct node_hstate {
1718         struct kobject          *hugepages_kobj;
1719         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1720 };
1721 struct node_hstate node_hstates[MAX_NUMNODES];
1722
1723 /*
1724  * A subset of global hstate attributes for node devices
1725  */
1726 static struct attribute *per_node_hstate_attrs[] = {
1727         &nr_hugepages_attr.attr,
1728         &free_hugepages_attr.attr,
1729         &surplus_hugepages_attr.attr,
1730         NULL,
1731 };
1732
1733 static struct attribute_group per_node_hstate_attr_group = {
1734         .attrs = per_node_hstate_attrs,
1735 };
1736
1737 /*
1738  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1739  * Returns node id via non-NULL nidp.
1740  */
1741 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1742 {
1743         int nid;
1744
1745         for (nid = 0; nid < nr_node_ids; nid++) {
1746                 struct node_hstate *nhs = &node_hstates[nid];
1747                 int i;
1748                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1749                         if (nhs->hstate_kobjs[i] == kobj) {
1750                                 if (nidp)
1751                                         *nidp = nid;
1752                                 return &hstates[i];
1753                         }
1754         }
1755
1756         BUG();
1757         return NULL;
1758 }
1759
1760 /*
1761  * Unregister hstate attributes from a single node device.
1762  * No-op if no hstate attributes attached.
1763  */
1764 static void hugetlb_unregister_node(struct node *node)
1765 {
1766         struct hstate *h;
1767         struct node_hstate *nhs = &node_hstates[node->dev.id];
1768
1769         if (!nhs->hugepages_kobj)
1770                 return;         /* no hstate attributes */
1771
1772         for_each_hstate(h) {
1773                 int idx = hstate_index(h);
1774                 if (nhs->hstate_kobjs[idx]) {
1775                         kobject_put(nhs->hstate_kobjs[idx]);
1776                         nhs->hstate_kobjs[idx] = NULL;
1777                 }
1778         }
1779
1780         kobject_put(nhs->hugepages_kobj);
1781         nhs->hugepages_kobj = NULL;
1782 }
1783
1784 /*
1785  * hugetlb module exit:  unregister hstate attributes from node devices
1786  * that have them.
1787  */
1788 static void hugetlb_unregister_all_nodes(void)
1789 {
1790         int nid;
1791
1792         /*
1793          * disable node device registrations.
1794          */
1795         register_hugetlbfs_with_node(NULL, NULL);
1796
1797         /*
1798          * remove hstate attributes from any nodes that have them.
1799          */
1800         for (nid = 0; nid < nr_node_ids; nid++)
1801                 hugetlb_unregister_node(node_devices[nid]);
1802 }
1803
1804 /*
1805  * Register hstate attributes for a single node device.
1806  * No-op if attributes already registered.
1807  */
1808 static void hugetlb_register_node(struct node *node)
1809 {
1810         struct hstate *h;
1811         struct node_hstate *nhs = &node_hstates[node->dev.id];
1812         int err;
1813
1814         if (nhs->hugepages_kobj)
1815                 return;         /* already allocated */
1816
1817         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1818                                                         &node->dev.kobj);
1819         if (!nhs->hugepages_kobj)
1820                 return;
1821
1822         for_each_hstate(h) {
1823                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1824                                                 nhs->hstate_kobjs,
1825                                                 &per_node_hstate_attr_group);
1826                 if (err) {
1827                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1828                                 h->name, node->dev.id);
1829                         hugetlb_unregister_node(node);
1830                         break;
1831                 }
1832         }
1833 }
1834
1835 /*
1836  * hugetlb init time:  register hstate attributes for all registered node
1837  * devices of nodes that have memory.  All on-line nodes should have
1838  * registered their associated device by this time.
1839  */
1840 static void hugetlb_register_all_nodes(void)
1841 {
1842         int nid;
1843
1844         for_each_node_state(nid, N_MEMORY) {
1845                 struct node *node = node_devices[nid];
1846                 if (node->dev.id == nid)
1847                         hugetlb_register_node(node);
1848         }
1849
1850         /*
1851          * Let the node device driver know we're here so it can
1852          * [un]register hstate attributes on node hotplug.
1853          */
1854         register_hugetlbfs_with_node(hugetlb_register_node,
1855                                      hugetlb_unregister_node);
1856 }
1857 #else   /* !CONFIG_NUMA */
1858
1859 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1860 {
1861         BUG();
1862         if (nidp)
1863                 *nidp = -1;
1864         return NULL;
1865 }
1866
1867 static void hugetlb_unregister_all_nodes(void) { }
1868
1869 static void hugetlb_register_all_nodes(void) { }
1870
1871 #endif
1872
1873 static void __exit hugetlb_exit(void)
1874 {
1875         struct hstate *h;
1876
1877         hugetlb_unregister_all_nodes();
1878
1879         for_each_hstate(h) {
1880                 kobject_put(hstate_kobjs[hstate_index(h)]);
1881         }
1882
1883         kobject_put(hugepages_kobj);
1884 }
1885 module_exit(hugetlb_exit);
1886
1887 static int __init hugetlb_init(void)
1888 {
1889         /* Some platform decide whether they support huge pages at boot
1890          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1891          * there is no such support
1892          */
1893         if (HPAGE_SHIFT == 0)
1894                 return 0;
1895
1896         if (!size_to_hstate(default_hstate_size)) {
1897                 default_hstate_size = HPAGE_SIZE;
1898                 if (!size_to_hstate(default_hstate_size))
1899                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1900         }
1901         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1902         if (default_hstate_max_huge_pages)
1903                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1904
1905         hugetlb_init_hstates();
1906         gather_bootmem_prealloc();
1907         report_hugepages();
1908
1909         hugetlb_sysfs_init();
1910         hugetlb_register_all_nodes();
1911         hugetlb_cgroup_file_init();
1912
1913         return 0;
1914 }
1915 module_init(hugetlb_init);
1916
1917 /* Should be called on processing a hugepagesz=... option */
1918 void __init hugetlb_add_hstate(unsigned order)
1919 {
1920         struct hstate *h;
1921         unsigned long i;
1922
1923         if (size_to_hstate(PAGE_SIZE << order)) {
1924                 pr_warning("hugepagesz= specified twice, ignoring\n");
1925                 return;
1926         }
1927         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1928         BUG_ON(order == 0);
1929         h = &hstates[hugetlb_max_hstate++];
1930         h->order = order;
1931         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1932         h->nr_huge_pages = 0;
1933         h->free_huge_pages = 0;
1934         for (i = 0; i < MAX_NUMNODES; ++i)
1935                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1936         INIT_LIST_HEAD(&h->hugepage_activelist);
1937         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1938         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1939         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1940                                         huge_page_size(h)/1024);
1941
1942         parsed_hstate = h;
1943 }
1944
1945 static int __init hugetlb_nrpages_setup(char *s)
1946 {
1947         unsigned long *mhp;
1948         static unsigned long *last_mhp;
1949
1950         /*
1951          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1952          * so this hugepages= parameter goes to the "default hstate".
1953          */
1954         if (!hugetlb_max_hstate)
1955                 mhp = &default_hstate_max_huge_pages;
1956         else
1957                 mhp = &parsed_hstate->max_huge_pages;
1958
1959         if (mhp == last_mhp) {
1960                 pr_warning("hugepages= specified twice without "
1961                            "interleaving hugepagesz=, ignoring\n");
1962                 return 1;
1963         }
1964
1965         if (sscanf(s, "%lu", mhp) <= 0)
1966                 *mhp = 0;
1967
1968         /*
1969          * Global state is always initialized later in hugetlb_init.
1970          * But we need to allocate >= MAX_ORDER hstates here early to still
1971          * use the bootmem allocator.
1972          */
1973         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1974                 hugetlb_hstate_alloc_pages(parsed_hstate);
1975
1976         last_mhp = mhp;
1977
1978         return 1;
1979 }
1980 __setup("hugepages=", hugetlb_nrpages_setup);
1981
1982 static int __init hugetlb_default_setup(char *s)
1983 {
1984         default_hstate_size = memparse(s, &s);
1985         return 1;
1986 }
1987 __setup("default_hugepagesz=", hugetlb_default_setup);
1988
1989 static unsigned int cpuset_mems_nr(unsigned int *array)
1990 {
1991         int node;
1992         unsigned int nr = 0;
1993
1994         for_each_node_mask(node, cpuset_current_mems_allowed)
1995                 nr += array[node];
1996
1997         return nr;
1998 }
1999
2000 #ifdef CONFIG_SYSCTL
2001 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2002                          struct ctl_table *table, int write,
2003                          void __user *buffer, size_t *length, loff_t *ppos)
2004 {
2005         struct hstate *h = &default_hstate;
2006         unsigned long tmp;
2007         int ret;
2008
2009         tmp = h->max_huge_pages;
2010
2011         if (write && h->order >= MAX_ORDER)
2012                 return -EINVAL;
2013
2014         table->data = &tmp;
2015         table->maxlen = sizeof(unsigned long);
2016         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2017         if (ret)
2018                 goto out;
2019
2020         if (write) {
2021                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2022                                                 GFP_KERNEL | __GFP_NORETRY);
2023                 if (!(obey_mempolicy &&
2024                                init_nodemask_of_mempolicy(nodes_allowed))) {
2025                         NODEMASK_FREE(nodes_allowed);
2026                         nodes_allowed = &node_states[N_MEMORY];
2027                 }
2028                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2029
2030                 if (nodes_allowed != &node_states[N_MEMORY])
2031                         NODEMASK_FREE(nodes_allowed);
2032         }
2033 out:
2034         return ret;
2035 }
2036
2037 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2038                           void __user *buffer, size_t *length, loff_t *ppos)
2039 {
2040
2041         return hugetlb_sysctl_handler_common(false, table, write,
2042                                                         buffer, length, ppos);
2043 }
2044
2045 #ifdef CONFIG_NUMA
2046 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2047                           void __user *buffer, size_t *length, loff_t *ppos)
2048 {
2049         return hugetlb_sysctl_handler_common(true, table, write,
2050                                                         buffer, length, ppos);
2051 }
2052 #endif /* CONFIG_NUMA */
2053
2054 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2055                         void __user *buffer,
2056                         size_t *length, loff_t *ppos)
2057 {
2058         proc_dointvec(table, write, buffer, length, ppos);
2059         if (hugepages_treat_as_movable)
2060                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2061         else
2062                 htlb_alloc_mask = GFP_HIGHUSER;
2063         return 0;
2064 }
2065
2066 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2067                         void __user *buffer,
2068                         size_t *length, loff_t *ppos)
2069 {
2070         struct hstate *h = &default_hstate;
2071         unsigned long tmp;
2072         int ret;
2073
2074         tmp = h->nr_overcommit_huge_pages;
2075
2076         if (write && h->order >= MAX_ORDER)
2077                 return -EINVAL;
2078
2079         table->data = &tmp;
2080         table->maxlen = sizeof(unsigned long);
2081         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082         if (ret)
2083                 goto out;
2084
2085         if (write) {
2086                 spin_lock(&hugetlb_lock);
2087                 h->nr_overcommit_huge_pages = tmp;
2088                 spin_unlock(&hugetlb_lock);
2089         }
2090 out:
2091         return ret;
2092 }
2093
2094 #endif /* CONFIG_SYSCTL */
2095
2096 void hugetlb_report_meminfo(struct seq_file *m)
2097 {
2098         struct hstate *h = &default_hstate;
2099         seq_printf(m,
2100                         "HugePages_Total:   %5lu\n"
2101                         "HugePages_Free:    %5lu\n"
2102                         "HugePages_Rsvd:    %5lu\n"
2103                         "HugePages_Surp:    %5lu\n"
2104                         "Hugepagesize:   %8lu kB\n",
2105                         h->nr_huge_pages,
2106                         h->free_huge_pages,
2107                         h->resv_huge_pages,
2108                         h->surplus_huge_pages,
2109                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2110 }
2111
2112 int hugetlb_report_node_meminfo(int nid, char *buf)
2113 {
2114         struct hstate *h = &default_hstate;
2115         return sprintf(buf,
2116                 "Node %d HugePages_Total: %5u\n"
2117                 "Node %d HugePages_Free:  %5u\n"
2118                 "Node %d HugePages_Surp:  %5u\n",
2119                 nid, h->nr_huge_pages_node[nid],
2120                 nid, h->free_huge_pages_node[nid],
2121                 nid, h->surplus_huge_pages_node[nid]);
2122 }
2123
2124 void hugetlb_show_meminfo(void)
2125 {
2126         struct hstate *h;
2127         int nid;
2128
2129         for_each_node_state(nid, N_MEMORY)
2130                 for_each_hstate(h)
2131                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2132                                 nid,
2133                                 h->nr_huge_pages_node[nid],
2134                                 h->free_huge_pages_node[nid],
2135                                 h->surplus_huge_pages_node[nid],
2136                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2137 }
2138
2139 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2140 unsigned long hugetlb_total_pages(void)
2141 {
2142         struct hstate *h;
2143         unsigned long nr_total_pages = 0;
2144
2145         for_each_hstate(h)
2146                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2147         return nr_total_pages;
2148 }
2149
2150 static int hugetlb_acct_memory(struct hstate *h, long delta)
2151 {
2152         int ret = -ENOMEM;
2153
2154         spin_lock(&hugetlb_lock);
2155         /*
2156          * When cpuset is configured, it breaks the strict hugetlb page
2157          * reservation as the accounting is done on a global variable. Such
2158          * reservation is completely rubbish in the presence of cpuset because
2159          * the reservation is not checked against page availability for the
2160          * current cpuset. Application can still potentially OOM'ed by kernel
2161          * with lack of free htlb page in cpuset that the task is in.
2162          * Attempt to enforce strict accounting with cpuset is almost
2163          * impossible (or too ugly) because cpuset is too fluid that
2164          * task or memory node can be dynamically moved between cpusets.
2165          *
2166          * The change of semantics for shared hugetlb mapping with cpuset is
2167          * undesirable. However, in order to preserve some of the semantics,
2168          * we fall back to check against current free page availability as
2169          * a best attempt and hopefully to minimize the impact of changing
2170          * semantics that cpuset has.
2171          */
2172         if (delta > 0) {
2173                 if (gather_surplus_pages(h, delta) < 0)
2174                         goto out;
2175
2176                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2177                         return_unused_surplus_pages(h, delta);
2178                         goto out;
2179                 }
2180         }
2181
2182         ret = 0;
2183         if (delta < 0)
2184                 return_unused_surplus_pages(h, (unsigned long) -delta);
2185
2186 out:
2187         spin_unlock(&hugetlb_lock);
2188         return ret;
2189 }
2190
2191 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2192 {
2193         struct resv_map *resv = vma_resv_map(vma);
2194
2195         /*
2196          * This new VMA should share its siblings reservation map if present.
2197          * The VMA will only ever have a valid reservation map pointer where
2198          * it is being copied for another still existing VMA.  As that VMA
2199          * has a reference to the reservation map it cannot disappear until
2200          * after this open call completes.  It is therefore safe to take a
2201          * new reference here without additional locking.
2202          */
2203         if (resv)
2204                 kref_get(&resv->refs);
2205 }
2206
2207 static void resv_map_put(struct vm_area_struct *vma)
2208 {
2209         struct resv_map *resv = vma_resv_map(vma);
2210
2211         if (!resv)
2212                 return;
2213         kref_put(&resv->refs, resv_map_release);
2214 }
2215
2216 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2217 {
2218         struct hstate *h = hstate_vma(vma);
2219         struct resv_map *resv = vma_resv_map(vma);
2220         struct hugepage_subpool *spool = subpool_vma(vma);
2221         unsigned long reserve;
2222         unsigned long start;
2223         unsigned long end;
2224
2225         if (resv) {
2226                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2227                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2228
2229                 reserve = (end - start) -
2230                         region_count(&resv->regions, start, end);
2231
2232                 resv_map_put(vma);
2233
2234                 if (reserve) {
2235                         hugetlb_acct_memory(h, -reserve);
2236                         hugepage_subpool_put_pages(spool, reserve);
2237                 }
2238         }
2239 }
2240
2241 /*
2242  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2243  * handle_mm_fault() to try to instantiate regular-sized pages in the
2244  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2245  * this far.
2246  */
2247 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2248 {
2249         BUG();
2250         return 0;
2251 }
2252
2253 const struct vm_operations_struct hugetlb_vm_ops = {
2254         .fault = hugetlb_vm_op_fault,
2255         .open = hugetlb_vm_op_open,
2256         .close = hugetlb_vm_op_close,
2257 };
2258
2259 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2260                                 int writable)
2261 {
2262         pte_t entry;
2263
2264         if (writable) {
2265                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2266                                          vma->vm_page_prot)));
2267         } else {
2268                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2269                                            vma->vm_page_prot));
2270         }
2271         entry = pte_mkyoung(entry);
2272         entry = pte_mkhuge(entry);
2273         entry = arch_make_huge_pte(entry, vma, page, writable);
2274
2275         return entry;
2276 }
2277
2278 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2279                                    unsigned long address, pte_t *ptep)
2280 {
2281         pte_t entry;
2282
2283         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2284         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2285                 update_mmu_cache(vma, address, ptep);
2286 }
2287
2288
2289 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2290                             struct vm_area_struct *vma)
2291 {
2292         pte_t *src_pte, *dst_pte, entry;
2293         struct page *ptepage;
2294         unsigned long addr;
2295         int cow;
2296         struct hstate *h = hstate_vma(vma);
2297         unsigned long sz = huge_page_size(h);
2298
2299         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2300
2301         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2302                 src_pte = huge_pte_offset(src, addr);
2303                 if (!src_pte)
2304                         continue;
2305                 dst_pte = huge_pte_alloc(dst, addr, sz);
2306                 if (!dst_pte)
2307                         goto nomem;
2308
2309                 /* If the pagetables are shared don't copy or take references */
2310                 if (dst_pte == src_pte)
2311                         continue;
2312
2313                 spin_lock(&dst->page_table_lock);
2314                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2315                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2316                         if (cow)
2317                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2318                         entry = huge_ptep_get(src_pte);
2319                         ptepage = pte_page(entry);
2320                         get_page(ptepage);
2321                         page_dup_rmap(ptepage);
2322                         set_huge_pte_at(dst, addr, dst_pte, entry);
2323                 }
2324                 spin_unlock(&src->page_table_lock);
2325                 spin_unlock(&dst->page_table_lock);
2326         }
2327         return 0;
2328
2329 nomem:
2330         return -ENOMEM;
2331 }
2332
2333 static int is_hugetlb_entry_migration(pte_t pte)
2334 {
2335         swp_entry_t swp;
2336
2337         if (huge_pte_none(pte) || pte_present(pte))
2338                 return 0;
2339         swp = pte_to_swp_entry(pte);
2340         if (non_swap_entry(swp) && is_migration_entry(swp))
2341                 return 1;
2342         else
2343                 return 0;
2344 }
2345
2346 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2347 {
2348         swp_entry_t swp;
2349
2350         if (huge_pte_none(pte) || pte_present(pte))
2351                 return 0;
2352         swp = pte_to_swp_entry(pte);
2353         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2354                 return 1;
2355         else
2356                 return 0;
2357 }
2358
2359 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2360                             unsigned long start, unsigned long end,
2361                             struct page *ref_page)
2362 {
2363         int force_flush = 0;
2364         struct mm_struct *mm = vma->vm_mm;
2365         unsigned long address;
2366         pte_t *ptep;
2367         pte_t pte;
2368         struct page *page;
2369         struct hstate *h = hstate_vma(vma);
2370         unsigned long sz = huge_page_size(h);
2371         const unsigned long mmun_start = start; /* For mmu_notifiers */
2372         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2373
2374         WARN_ON(!is_vm_hugetlb_page(vma));
2375         BUG_ON(start & ~huge_page_mask(h));
2376         BUG_ON(end & ~huge_page_mask(h));
2377
2378         tlb_start_vma(tlb, vma);
2379         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2380 again:
2381         spin_lock(&mm->page_table_lock);
2382         for (address = start; address < end; address += sz) {
2383                 ptep = huge_pte_offset(mm, address);
2384                 if (!ptep)
2385                         continue;
2386
2387                 if (huge_pmd_unshare(mm, &address, ptep))
2388                         continue;
2389
2390                 pte = huge_ptep_get(ptep);
2391                 if (huge_pte_none(pte))
2392                         continue;
2393
2394                 /*
2395                  * HWPoisoned hugepage is already unmapped and dropped reference
2396                  */
2397                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2398                         huge_pte_clear(mm, address, ptep);
2399                         continue;
2400                 }
2401
2402                 page = pte_page(pte);
2403                 /*
2404                  * If a reference page is supplied, it is because a specific
2405                  * page is being unmapped, not a range. Ensure the page we
2406                  * are about to unmap is the actual page of interest.
2407                  */
2408                 if (ref_page) {
2409                         if (page != ref_page)
2410                                 continue;
2411
2412                         /*
2413                          * Mark the VMA as having unmapped its page so that
2414                          * future faults in this VMA will fail rather than
2415                          * looking like data was lost
2416                          */
2417                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2418                 }
2419
2420                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2421                 tlb_remove_tlb_entry(tlb, ptep, address);
2422                 if (huge_pte_dirty(pte))
2423                         set_page_dirty(page);
2424
2425                 page_remove_rmap(page);
2426                 force_flush = !__tlb_remove_page(tlb, page);
2427                 if (force_flush)
2428                         break;
2429                 /* Bail out after unmapping reference page if supplied */
2430                 if (ref_page)
2431                         break;
2432         }
2433         spin_unlock(&mm->page_table_lock);
2434         /*
2435          * mmu_gather ran out of room to batch pages, we break out of
2436          * the PTE lock to avoid doing the potential expensive TLB invalidate
2437          * and page-free while holding it.
2438          */
2439         if (force_flush) {
2440                 force_flush = 0;
2441                 tlb_flush_mmu(tlb);
2442                 if (address < end && !ref_page)
2443                         goto again;
2444         }
2445         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2446         tlb_end_vma(tlb, vma);
2447 }
2448
2449 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2450                           struct vm_area_struct *vma, unsigned long start,
2451                           unsigned long end, struct page *ref_page)
2452 {
2453         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2454
2455         /*
2456          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2457          * test will fail on a vma being torn down, and not grab a page table
2458          * on its way out.  We're lucky that the flag has such an appropriate
2459          * name, and can in fact be safely cleared here. We could clear it
2460          * before the __unmap_hugepage_range above, but all that's necessary
2461          * is to clear it before releasing the i_mmap_mutex. This works
2462          * because in the context this is called, the VMA is about to be
2463          * destroyed and the i_mmap_mutex is held.
2464          */
2465         vma->vm_flags &= ~VM_MAYSHARE;
2466 }
2467
2468 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2469                           unsigned long end, struct page *ref_page)
2470 {
2471         struct mm_struct *mm;
2472         struct mmu_gather tlb;
2473
2474         mm = vma->vm_mm;
2475
2476         tlb_gather_mmu(&tlb, mm, start, end);
2477         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2478         tlb_finish_mmu(&tlb, start, end);
2479 }
2480
2481 /*
2482  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2483  * mappping it owns the reserve page for. The intention is to unmap the page
2484  * from other VMAs and let the children be SIGKILLed if they are faulting the
2485  * same region.
2486  */
2487 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2488                                 struct page *page, unsigned long address)
2489 {
2490         struct hstate *h = hstate_vma(vma);
2491         struct vm_area_struct *iter_vma;
2492         struct address_space *mapping;
2493         pgoff_t pgoff;
2494
2495         /*
2496          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2497          * from page cache lookup which is in HPAGE_SIZE units.
2498          */
2499         address = address & huge_page_mask(h);
2500         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2501                         vma->vm_pgoff;
2502         mapping = file_inode(vma->vm_file)->i_mapping;
2503
2504         /*
2505          * Take the mapping lock for the duration of the table walk. As
2506          * this mapping should be shared between all the VMAs,
2507          * __unmap_hugepage_range() is called as the lock is already held
2508          */
2509         mutex_lock(&mapping->i_mmap_mutex);
2510         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2511                 /* Do not unmap the current VMA */
2512                 if (iter_vma == vma)
2513                         continue;
2514
2515                 /*
2516                  * Unmap the page from other VMAs without their own reserves.
2517                  * They get marked to be SIGKILLed if they fault in these
2518                  * areas. This is because a future no-page fault on this VMA
2519                  * could insert a zeroed page instead of the data existing
2520                  * from the time of fork. This would look like data corruption
2521                  */
2522                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2523                         unmap_hugepage_range(iter_vma, address,
2524                                              address + huge_page_size(h), page);
2525         }
2526         mutex_unlock(&mapping->i_mmap_mutex);
2527
2528         return 1;
2529 }
2530
2531 /*
2532  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2533  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2534  * cannot race with other handlers or page migration.
2535  * Keep the pte_same checks anyway to make transition from the mutex easier.
2536  */
2537 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2538                         unsigned long address, pte_t *ptep, pte_t pte,
2539                         struct page *pagecache_page)
2540 {
2541         struct hstate *h = hstate_vma(vma);
2542         struct page *old_page, *new_page;
2543         int outside_reserve = 0;
2544         unsigned long mmun_start;       /* For mmu_notifiers */
2545         unsigned long mmun_end;         /* For mmu_notifiers */
2546
2547         old_page = pte_page(pte);
2548
2549 retry_avoidcopy:
2550         /* If no-one else is actually using this page, avoid the copy
2551          * and just make the page writable */
2552         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2553                 page_move_anon_rmap(old_page, vma, address);
2554                 set_huge_ptep_writable(vma, address, ptep);
2555                 return 0;
2556         }
2557
2558         /*
2559          * If the process that created a MAP_PRIVATE mapping is about to
2560          * perform a COW due to a shared page count, attempt to satisfy
2561          * the allocation without using the existing reserves. The pagecache
2562          * page is used to determine if the reserve at this address was
2563          * consumed or not. If reserves were used, a partial faulted mapping
2564          * at the time of fork() could consume its reserves on COW instead
2565          * of the full address range.
2566          */
2567         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2568                         old_page != pagecache_page)
2569                 outside_reserve = 1;
2570
2571         page_cache_get(old_page);
2572
2573         /* Drop page_table_lock as buddy allocator may be called */
2574         spin_unlock(&mm->page_table_lock);
2575         new_page = alloc_huge_page(vma, address, outside_reserve);
2576
2577         if (IS_ERR(new_page)) {
2578                 long err = PTR_ERR(new_page);
2579                 page_cache_release(old_page);
2580
2581                 /*
2582                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2583                  * it is due to references held by a child and an insufficient
2584                  * huge page pool. To guarantee the original mappers
2585                  * reliability, unmap the page from child processes. The child
2586                  * may get SIGKILLed if it later faults.
2587                  */
2588                 if (outside_reserve) {
2589                         BUG_ON(huge_pte_none(pte));
2590                         if (unmap_ref_private(mm, vma, old_page, address)) {
2591                                 BUG_ON(huge_pte_none(pte));
2592                                 spin_lock(&mm->page_table_lock);
2593                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2594                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2595                                         goto retry_avoidcopy;
2596                                 /*
2597                                  * race occurs while re-acquiring page_table_lock, and
2598                                  * our job is done.
2599                                  */
2600                                 return 0;
2601                         }
2602                         WARN_ON_ONCE(1);
2603                 }
2604
2605                 /* Caller expects lock to be held */
2606                 spin_lock(&mm->page_table_lock);
2607                 if (err == -ENOMEM)
2608                         return VM_FAULT_OOM;
2609                 else
2610                         return VM_FAULT_SIGBUS;
2611         }
2612
2613         /*
2614          * When the original hugepage is shared one, it does not have
2615          * anon_vma prepared.
2616          */
2617         if (unlikely(anon_vma_prepare(vma))) {
2618                 page_cache_release(new_page);
2619                 page_cache_release(old_page);
2620                 /* Caller expects lock to be held */
2621                 spin_lock(&mm->page_table_lock);
2622                 return VM_FAULT_OOM;
2623         }
2624
2625         copy_user_huge_page(new_page, old_page, address, vma,
2626                             pages_per_huge_page(h));
2627         __SetPageUptodate(new_page);
2628
2629         mmun_start = address & huge_page_mask(h);
2630         mmun_end = mmun_start + huge_page_size(h);
2631         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2632         /*
2633          * Retake the page_table_lock to check for racing updates
2634          * before the page tables are altered
2635          */
2636         spin_lock(&mm->page_table_lock);
2637         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2638         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2639                 /* Break COW */
2640                 huge_ptep_clear_flush(vma, address, ptep);
2641                 set_huge_pte_at(mm, address, ptep,
2642                                 make_huge_pte(vma, new_page, 1));
2643                 page_remove_rmap(old_page);
2644                 hugepage_add_new_anon_rmap(new_page, vma, address);
2645                 /* Make the old page be freed below */
2646                 new_page = old_page;
2647         }
2648         spin_unlock(&mm->page_table_lock);
2649         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2650         page_cache_release(new_page);
2651         page_cache_release(old_page);
2652
2653         /* Caller expects lock to be held */
2654         spin_lock(&mm->page_table_lock);
2655         return 0;
2656 }
2657
2658 /* Return the pagecache page at a given address within a VMA */
2659 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2660                         struct vm_area_struct *vma, unsigned long address)
2661 {
2662         struct address_space *mapping;
2663         pgoff_t idx;
2664
2665         mapping = vma->vm_file->f_mapping;
2666         idx = vma_hugecache_offset(h, vma, address);
2667
2668         return find_lock_page(mapping, idx);
2669 }
2670
2671 /*
2672  * Return whether there is a pagecache page to back given address within VMA.
2673  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2674  */
2675 static bool hugetlbfs_pagecache_present(struct hstate *h,
2676                         struct vm_area_struct *vma, unsigned long address)
2677 {
2678         struct address_space *mapping;
2679         pgoff_t idx;
2680         struct page *page;
2681
2682         mapping = vma->vm_file->f_mapping;
2683         idx = vma_hugecache_offset(h, vma, address);
2684
2685         page = find_get_page(mapping, idx);
2686         if (page)
2687                 put_page(page);
2688         return page != NULL;
2689 }
2690
2691 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2692                         unsigned long address, pte_t *ptep, unsigned int flags)
2693 {
2694         struct hstate *h = hstate_vma(vma);
2695         int ret = VM_FAULT_SIGBUS;
2696         int anon_rmap = 0;
2697         pgoff_t idx;
2698         unsigned long size;
2699         struct page *page;
2700         struct address_space *mapping;
2701         pte_t new_pte;
2702
2703         /*
2704          * Currently, we are forced to kill the process in the event the
2705          * original mapper has unmapped pages from the child due to a failed
2706          * COW. Warn that such a situation has occurred as it may not be obvious
2707          */
2708         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2709                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2710                            current->pid);
2711                 return ret;
2712         }
2713
2714         mapping = vma->vm_file->f_mapping;
2715         idx = vma_hugecache_offset(h, vma, address);
2716
2717         /*
2718          * Use page lock to guard against racing truncation
2719          * before we get page_table_lock.
2720          */
2721 retry:
2722         page = find_lock_page(mapping, idx);
2723         if (!page) {
2724                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2725                 if (idx >= size)
2726                         goto out;
2727                 page = alloc_huge_page(vma, address, 0);
2728                 if (IS_ERR(page)) {
2729                         ret = PTR_ERR(page);
2730                         if (ret == -ENOMEM)
2731                                 ret = VM_FAULT_OOM;
2732                         else
2733                                 ret = VM_FAULT_SIGBUS;
2734                         goto out;
2735                 }
2736                 clear_huge_page(page, address, pages_per_huge_page(h));
2737                 __SetPageUptodate(page);
2738
2739                 if (vma->vm_flags & VM_MAYSHARE) {
2740                         int err;
2741                         struct inode *inode = mapping->host;
2742
2743                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2744                         if (err) {
2745                                 put_page(page);
2746                                 if (err == -EEXIST)
2747                                         goto retry;
2748                                 goto out;
2749                         }
2750
2751                         spin_lock(&inode->i_lock);
2752                         inode->i_blocks += blocks_per_huge_page(h);
2753                         spin_unlock(&inode->i_lock);
2754                 } else {
2755                         lock_page(page);
2756                         if (unlikely(anon_vma_prepare(vma))) {
2757                                 ret = VM_FAULT_OOM;
2758                                 goto backout_unlocked;
2759                         }
2760                         anon_rmap = 1;
2761                 }
2762         } else {
2763                 /*
2764                  * If memory error occurs between mmap() and fault, some process
2765                  * don't have hwpoisoned swap entry for errored virtual address.
2766                  * So we need to block hugepage fault by PG_hwpoison bit check.
2767                  */
2768                 if (unlikely(PageHWPoison(page))) {
2769                         ret = VM_FAULT_HWPOISON |
2770                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2771                         goto backout_unlocked;
2772                 }
2773         }
2774
2775         /*
2776          * If we are going to COW a private mapping later, we examine the
2777          * pending reservations for this page now. This will ensure that
2778          * any allocations necessary to record that reservation occur outside
2779          * the spinlock.
2780          */
2781         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2782                 if (vma_needs_reservation(h, vma, address) < 0) {
2783                         ret = VM_FAULT_OOM;
2784                         goto backout_unlocked;
2785                 }
2786
2787         spin_lock(&mm->page_table_lock);
2788         size = i_size_read(mapping->host) >> huge_page_shift(h);
2789         if (idx >= size)
2790                 goto backout;
2791
2792         ret = 0;
2793         if (!huge_pte_none(huge_ptep_get(ptep)))
2794                 goto backout;
2795
2796         if (anon_rmap)
2797                 hugepage_add_new_anon_rmap(page, vma, address);
2798         else
2799                 page_dup_rmap(page);
2800         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2801                                 && (vma->vm_flags & VM_SHARED)));
2802         set_huge_pte_at(mm, address, ptep, new_pte);
2803
2804         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2805                 /* Optimization, do the COW without a second fault */
2806                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2807         }
2808
2809         spin_unlock(&mm->page_table_lock);
2810         unlock_page(page);
2811 out:
2812         return ret;
2813
2814 backout:
2815         spin_unlock(&mm->page_table_lock);
2816 backout_unlocked:
2817         unlock_page(page);
2818         put_page(page);
2819         goto out;
2820 }
2821
2822 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2823                         unsigned long address, unsigned int flags)
2824 {
2825         pte_t *ptep;
2826         pte_t entry;
2827         int ret;
2828         struct page *page = NULL;
2829         struct page *pagecache_page = NULL;
2830         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2831         struct hstate *h = hstate_vma(vma);
2832
2833         address &= huge_page_mask(h);
2834
2835         ptep = huge_pte_offset(mm, address);
2836         if (ptep) {
2837                 entry = huge_ptep_get(ptep);
2838                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2839                         migration_entry_wait_huge(mm, ptep);
2840                         return 0;
2841                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2842                         return VM_FAULT_HWPOISON_LARGE |
2843                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2844         }
2845
2846         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2847         if (!ptep)
2848                 return VM_FAULT_OOM;
2849
2850         /*
2851          * Serialize hugepage allocation and instantiation, so that we don't
2852          * get spurious allocation failures if two CPUs race to instantiate
2853          * the same page in the page cache.
2854          */
2855         mutex_lock(&hugetlb_instantiation_mutex);
2856         entry = huge_ptep_get(ptep);
2857         if (huge_pte_none(entry)) {
2858                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2859                 goto out_mutex;
2860         }
2861
2862         ret = 0;
2863
2864         /*
2865          * If we are going to COW the mapping later, we examine the pending
2866          * reservations for this page now. This will ensure that any
2867          * allocations necessary to record that reservation occur outside the
2868          * spinlock. For private mappings, we also lookup the pagecache
2869          * page now as it is used to determine if a reservation has been
2870          * consumed.
2871          */
2872         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2873                 if (vma_needs_reservation(h, vma, address) < 0) {
2874                         ret = VM_FAULT_OOM;
2875                         goto out_mutex;
2876                 }
2877
2878                 if (!(vma->vm_flags & VM_MAYSHARE))
2879                         pagecache_page = hugetlbfs_pagecache_page(h,
2880                                                                 vma, address);
2881         }
2882
2883         /*
2884          * hugetlb_cow() requires page locks of pte_page(entry) and
2885          * pagecache_page, so here we need take the former one
2886          * when page != pagecache_page or !pagecache_page.
2887          * Note that locking order is always pagecache_page -> page,
2888          * so no worry about deadlock.
2889          */
2890         page = pte_page(entry);
2891         get_page(page);
2892         if (page != pagecache_page)
2893                 lock_page(page);
2894
2895         spin_lock(&mm->page_table_lock);
2896         /* Check for a racing update before calling hugetlb_cow */
2897         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2898                 goto out_page_table_lock;
2899
2900
2901         if (flags & FAULT_FLAG_WRITE) {
2902                 if (!huge_pte_write(entry)) {
2903                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2904                                                         pagecache_page);
2905                         goto out_page_table_lock;
2906                 }
2907                 entry = huge_pte_mkdirty(entry);
2908         }
2909         entry = pte_mkyoung(entry);
2910         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2911                                                 flags & FAULT_FLAG_WRITE))
2912                 update_mmu_cache(vma, address, ptep);
2913
2914 out_page_table_lock:
2915         spin_unlock(&mm->page_table_lock);
2916
2917         if (pagecache_page) {
2918                 unlock_page(pagecache_page);
2919                 put_page(pagecache_page);
2920         }
2921         if (page != pagecache_page)
2922                 unlock_page(page);
2923         put_page(page);
2924
2925 out_mutex:
2926         mutex_unlock(&hugetlb_instantiation_mutex);
2927
2928         return ret;
2929 }
2930
2931 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2932                          struct page **pages, struct vm_area_struct **vmas,
2933                          unsigned long *position, unsigned long *nr_pages,
2934                          long i, unsigned int flags)
2935 {
2936         unsigned long pfn_offset;
2937         unsigned long vaddr = *position;
2938         unsigned long remainder = *nr_pages;
2939         struct hstate *h = hstate_vma(vma);
2940
2941         spin_lock(&mm->page_table_lock);
2942         while (vaddr < vma->vm_end && remainder) {
2943                 pte_t *pte;
2944                 int absent;
2945                 struct page *page;
2946
2947                 /*
2948                  * Some archs (sparc64, sh*) have multiple pte_ts to
2949                  * each hugepage.  We have to make sure we get the
2950                  * first, for the page indexing below to work.
2951                  */
2952                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2953                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2954
2955                 /*
2956                  * When coredumping, it suits get_dump_page if we just return
2957                  * an error where there's an empty slot with no huge pagecache
2958                  * to back it.  This way, we avoid allocating a hugepage, and
2959                  * the sparse dumpfile avoids allocating disk blocks, but its
2960                  * huge holes still show up with zeroes where they need to be.
2961                  */
2962                 if (absent && (flags & FOLL_DUMP) &&
2963                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2964                         remainder = 0;
2965                         break;
2966                 }
2967
2968                 /*
2969                  * We need call hugetlb_fault for both hugepages under migration
2970                  * (in which case hugetlb_fault waits for the migration,) and
2971                  * hwpoisoned hugepages (in which case we need to prevent the
2972                  * caller from accessing to them.) In order to do this, we use
2973                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2974                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2975                  * both cases, and because we can't follow correct pages
2976                  * directly from any kind of swap entries.
2977                  */
2978                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2979                     ((flags & FOLL_WRITE) &&
2980                       !huge_pte_write(huge_ptep_get(pte)))) {
2981                         int ret;
2982
2983                         spin_unlock(&mm->page_table_lock);
2984                         ret = hugetlb_fault(mm, vma, vaddr,
2985                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2986                         spin_lock(&mm->page_table_lock);
2987                         if (!(ret & VM_FAULT_ERROR))
2988                                 continue;
2989
2990                         remainder = 0;
2991                         break;
2992                 }
2993
2994                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2995                 page = pte_page(huge_ptep_get(pte));
2996 same_page:
2997                 if (pages) {
2998                         pages[i] = mem_map_offset(page, pfn_offset);
2999                         get_page(pages[i]);
3000                 }
3001
3002                 if (vmas)
3003                         vmas[i] = vma;
3004
3005                 vaddr += PAGE_SIZE;
3006                 ++pfn_offset;
3007                 --remainder;
3008                 ++i;
3009                 if (vaddr < vma->vm_end && remainder &&
3010                                 pfn_offset < pages_per_huge_page(h)) {
3011                         /*
3012                          * We use pfn_offset to avoid touching the pageframes
3013                          * of this compound page.
3014                          */
3015                         goto same_page;
3016                 }
3017         }
3018         spin_unlock(&mm->page_table_lock);
3019         *nr_pages = remainder;
3020         *position = vaddr;
3021
3022         return i ? i : -EFAULT;
3023 }
3024
3025 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3026                 unsigned long address, unsigned long end, pgprot_t newprot)
3027 {
3028         struct mm_struct *mm = vma->vm_mm;
3029         unsigned long start = address;
3030         pte_t *ptep;
3031         pte_t pte;
3032         struct hstate *h = hstate_vma(vma);
3033         unsigned long pages = 0;
3034
3035         BUG_ON(address >= end);
3036         flush_cache_range(vma, address, end);
3037
3038         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3039         spin_lock(&mm->page_table_lock);
3040         for (; address < end; address += huge_page_size(h)) {
3041                 ptep = huge_pte_offset(mm, address);
3042                 if (!ptep)
3043                         continue;
3044                 if (huge_pmd_unshare(mm, &address, ptep)) {
3045                         pages++;
3046                         continue;
3047                 }
3048                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3049                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3050                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3051                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3052                         set_huge_pte_at(mm, address, ptep, pte);
3053                         pages++;
3054                 }
3055         }
3056         spin_unlock(&mm->page_table_lock);
3057         /*
3058          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3059          * may have cleared our pud entry and done put_page on the page table:
3060          * once we release i_mmap_mutex, another task can do the final put_page
3061          * and that page table be reused and filled with junk.
3062          */
3063         flush_tlb_range(vma, start, end);
3064         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3065
3066         return pages << h->order;
3067 }
3068
3069 int hugetlb_reserve_pages(struct inode *inode,
3070                                         long from, long to,
3071                                         struct vm_area_struct *vma,
3072                                         vm_flags_t vm_flags)
3073 {
3074         long ret, chg;
3075         struct hstate *h = hstate_inode(inode);
3076         struct hugepage_subpool *spool = subpool_inode(inode);
3077
3078         /*
3079          * Only apply hugepage reservation if asked. At fault time, an
3080          * attempt will be made for VM_NORESERVE to allocate a page
3081          * without using reserves
3082          */
3083         if (vm_flags & VM_NORESERVE)
3084                 return 0;
3085
3086         /*
3087          * Shared mappings base their reservation on the number of pages that
3088          * are already allocated on behalf of the file. Private mappings need
3089          * to reserve the full area even if read-only as mprotect() may be
3090          * called to make the mapping read-write. Assume !vma is a shm mapping
3091          */
3092         if (!vma || vma->vm_flags & VM_MAYSHARE)
3093                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3094         else {
3095                 struct resv_map *resv_map = resv_map_alloc();
3096                 if (!resv_map)
3097                         return -ENOMEM;
3098
3099                 chg = to - from;
3100
3101                 set_vma_resv_map(vma, resv_map);
3102                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3103         }
3104
3105         if (chg < 0) {
3106                 ret = chg;
3107                 goto out_err;
3108         }
3109
3110         /* There must be enough pages in the subpool for the mapping */
3111         if (hugepage_subpool_get_pages(spool, chg)) {
3112                 ret = -ENOSPC;
3113                 goto out_err;
3114         }
3115
3116         /*
3117          * Check enough hugepages are available for the reservation.
3118          * Hand the pages back to the subpool if there are not
3119          */
3120         ret = hugetlb_acct_memory(h, chg);
3121         if (ret < 0) {
3122                 hugepage_subpool_put_pages(spool, chg);
3123                 goto out_err;
3124         }
3125
3126         /*
3127          * Account for the reservations made. Shared mappings record regions
3128          * that have reservations as they are shared by multiple VMAs.
3129          * When the last VMA disappears, the region map says how much
3130          * the reservation was and the page cache tells how much of
3131          * the reservation was consumed. Private mappings are per-VMA and
3132          * only the consumed reservations are tracked. When the VMA
3133          * disappears, the original reservation is the VMA size and the
3134          * consumed reservations are stored in the map. Hence, nothing
3135          * else has to be done for private mappings here
3136          */
3137         if (!vma || vma->vm_flags & VM_MAYSHARE)
3138                 region_add(&inode->i_mapping->private_list, from, to);
3139         return 0;
3140 out_err:
3141         if (vma)
3142                 resv_map_put(vma);
3143         return ret;
3144 }
3145
3146 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3147 {
3148         struct hstate *h = hstate_inode(inode);
3149         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3150         struct hugepage_subpool *spool = subpool_inode(inode);
3151
3152         spin_lock(&inode->i_lock);
3153         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3154         spin_unlock(&inode->i_lock);
3155
3156         hugepage_subpool_put_pages(spool, (chg - freed));
3157         hugetlb_acct_memory(h, -(chg - freed));
3158 }
3159
3160 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3161 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3162                                 struct vm_area_struct *vma,
3163                                 unsigned long addr, pgoff_t idx)
3164 {
3165         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3166                                 svma->vm_start;
3167         unsigned long sbase = saddr & PUD_MASK;
3168         unsigned long s_end = sbase + PUD_SIZE;
3169
3170         /* Allow segments to share if only one is marked locked */
3171         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3172         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3173
3174         /*
3175          * match the virtual addresses, permission and the alignment of the
3176          * page table page.
3177          */
3178         if (pmd_index(addr) != pmd_index(saddr) ||
3179             vm_flags != svm_flags ||
3180             sbase < svma->vm_start || svma->vm_end < s_end)
3181                 return 0;
3182
3183         return saddr;
3184 }
3185
3186 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3187 {
3188         unsigned long base = addr & PUD_MASK;
3189         unsigned long end = base + PUD_SIZE;
3190
3191         /*
3192          * check on proper vm_flags and page table alignment
3193          */
3194         if (vma->vm_flags & VM_MAYSHARE &&
3195             vma->vm_start <= base && end <= vma->vm_end)
3196                 return 1;
3197         return 0;
3198 }
3199
3200 /*
3201  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3202  * and returns the corresponding pte. While this is not necessary for the
3203  * !shared pmd case because we can allocate the pmd later as well, it makes the
3204  * code much cleaner. pmd allocation is essential for the shared case because
3205  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3206  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3207  * bad pmd for sharing.
3208  */
3209 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3210 {
3211         struct vm_area_struct *vma = find_vma(mm, addr);
3212         struct address_space *mapping = vma->vm_file->f_mapping;
3213         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3214                         vma->vm_pgoff;
3215         struct vm_area_struct *svma;
3216         unsigned long saddr;
3217         pte_t *spte = NULL;
3218         pte_t *pte;
3219
3220         if (!vma_shareable(vma, addr))
3221                 return (pte_t *)pmd_alloc(mm, pud, addr);
3222
3223         mutex_lock(&mapping->i_mmap_mutex);
3224         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3225                 if (svma == vma)
3226                         continue;
3227
3228                 saddr = page_table_shareable(svma, vma, addr, idx);
3229                 if (saddr) {
3230                         spte = huge_pte_offset(svma->vm_mm, saddr);
3231                         if (spte) {
3232                                 get_page(virt_to_page(spte));
3233                                 break;
3234                         }
3235                 }
3236         }
3237
3238         if (!spte)
3239                 goto out;
3240
3241         spin_lock(&mm->page_table_lock);
3242         if (pud_none(*pud))
3243                 pud_populate(mm, pud,
3244                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3245         else
3246                 put_page(virt_to_page(spte));
3247         spin_unlock(&mm->page_table_lock);
3248 out:
3249         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3250         mutex_unlock(&mapping->i_mmap_mutex);
3251         return pte;
3252 }
3253
3254 /*
3255  * unmap huge page backed by shared pte.
3256  *
3257  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3258  * indicated by page_count > 1, unmap is achieved by clearing pud and
3259  * decrementing the ref count. If count == 1, the pte page is not shared.
3260  *
3261  * called with vma->vm_mm->page_table_lock held.
3262  *
3263  * returns: 1 successfully unmapped a shared pte page
3264  *          0 the underlying pte page is not shared, or it is the last user
3265  */
3266 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3267 {
3268         pgd_t *pgd = pgd_offset(mm, *addr);
3269         pud_t *pud = pud_offset(pgd, *addr);
3270
3271         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3272         if (page_count(virt_to_page(ptep)) == 1)
3273                 return 0;
3274
3275         pud_clear(pud);
3276         put_page(virt_to_page(ptep));
3277         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3278         return 1;
3279 }
3280 #define want_pmd_share()        (1)
3281 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3282 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3283 {
3284         return NULL;
3285 }
3286 #define want_pmd_share()        (0)
3287 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3288
3289 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3290 pte_t *huge_pte_alloc(struct mm_struct *mm,
3291                         unsigned long addr, unsigned long sz)
3292 {
3293         pgd_t *pgd;
3294         pud_t *pud;
3295         pte_t *pte = NULL;
3296
3297         pgd = pgd_offset(mm, addr);
3298         pud = pud_alloc(mm, pgd, addr);
3299         if (pud) {
3300                 if (sz == PUD_SIZE) {
3301                         pte = (pte_t *)pud;
3302                 } else {
3303                         BUG_ON(sz != PMD_SIZE);
3304                         if (want_pmd_share() && pud_none(*pud))
3305                                 pte = huge_pmd_share(mm, addr, pud);
3306                         else
3307                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3308                 }
3309         }
3310         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3311
3312         return pte;
3313 }
3314
3315 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3316 {
3317         pgd_t *pgd;
3318         pud_t *pud;
3319         pmd_t *pmd = NULL;
3320
3321         pgd = pgd_offset(mm, addr);
3322         if (pgd_present(*pgd)) {
3323                 pud = pud_offset(pgd, addr);
3324                 if (pud_present(*pud)) {
3325                         if (pud_huge(*pud))
3326                                 return (pte_t *)pud;
3327                         pmd = pmd_offset(pud, addr);
3328                 }
3329         }
3330         return (pte_t *) pmd;
3331 }
3332
3333 struct page *
3334 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3335                 pmd_t *pmd, int write)
3336 {
3337         struct page *page;
3338
3339         page = pte_page(*(pte_t *)pmd);
3340         if (page)
3341                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3342         return page;
3343 }
3344
3345 struct page *
3346 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3347                 pud_t *pud, int write)
3348 {
3349         struct page *page;
3350
3351         page = pte_page(*(pte_t *)pud);
3352         if (page)
3353                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3354         return page;
3355 }
3356
3357 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3358
3359 /* Can be overriden by architectures */
3360 __attribute__((weak)) struct page *
3361 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3362                pud_t *pud, int write)
3363 {
3364         BUG();
3365         return NULL;
3366 }
3367
3368 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3369
3370 #ifdef CONFIG_MEMORY_FAILURE
3371
3372 /* Should be called in hugetlb_lock */
3373 static int is_hugepage_on_freelist(struct page *hpage)
3374 {
3375         struct page *page;
3376         struct page *tmp;
3377         struct hstate *h = page_hstate(hpage);
3378         int nid = page_to_nid(hpage);
3379
3380         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3381                 if (page == hpage)
3382                         return 1;
3383         return 0;
3384 }
3385
3386 /*
3387  * This function is called from memory failure code.
3388  * Assume the caller holds page lock of the head page.
3389  */
3390 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3391 {
3392         struct hstate *h = page_hstate(hpage);
3393         int nid = page_to_nid(hpage);
3394         int ret = -EBUSY;
3395
3396         spin_lock(&hugetlb_lock);
3397         if (is_hugepage_on_freelist(hpage)) {
3398                 /*
3399                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3400                  * but dangling hpage->lru can trigger list-debug warnings
3401                  * (this happens when we call unpoison_memory() on it),
3402                  * so let it point to itself with list_del_init().
3403                  */
3404                 list_del_init(&hpage->lru);
3405                 set_page_refcounted(hpage);
3406                 h->free_huge_pages--;
3407                 h->free_huge_pages_node[nid]--;
3408                 ret = 0;
3409         }
3410         spin_unlock(&hugetlb_lock);
3411         return ret;
3412 }
3413 #endif