5b1ab1f427c57cd1a66c29d9fca147d02bf229d4
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 if (!resv->pages_per_hpage)
284                         resv->pages_per_hpage = pages_per_huge_page(h);
285                 /* pages_per_hpage should be the same for all entries in
286                  * a resv_map.
287                  */
288                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
289         } else {
290                 nrg->reservation_counter = NULL;
291                 nrg->css = NULL;
292         }
293 #endif
294 }
295
296 static bool has_same_uncharge_info(struct file_region *rg,
297                                    struct file_region *org)
298 {
299 #ifdef CONFIG_CGROUP_HUGETLB
300         return rg && org &&
301                rg->reservation_counter == org->reservation_counter &&
302                rg->css == org->css;
303
304 #else
305         return true;
306 #endif
307 }
308
309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
310 {
311         struct file_region *nrg = NULL, *prg = NULL;
312
313         prg = list_prev_entry(rg, link);
314         if (&prg->link != &resv->regions && prg->to == rg->from &&
315             has_same_uncharge_info(prg, rg)) {
316                 prg->to = rg->to;
317
318                 list_del(&rg->link);
319                 kfree(rg);
320
321                 rg = prg;
322         }
323
324         nrg = list_next_entry(rg, link);
325         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
326             has_same_uncharge_info(nrg, rg)) {
327                 nrg->from = rg->from;
328
329                 list_del(&rg->link);
330                 kfree(rg);
331         }
332 }
333
334 static inline long
335 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
336                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
337                      long *regions_needed)
338 {
339         struct file_region *nrg;
340
341         if (!regions_needed) {
342                 nrg = get_file_region_entry_from_cache(map, from, to);
343                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
344                 list_add(&nrg->link, rg->link.prev);
345                 coalesce_file_region(map, nrg);
346         } else
347                 *regions_needed += 1;
348
349         return to - from;
350 }
351
352 /*
353  * Must be called with resv->lock held.
354  *
355  * Calling this with regions_needed != NULL will count the number of pages
356  * to be added but will not modify the linked list. And regions_needed will
357  * indicate the number of file_regions needed in the cache to carry out to add
358  * the regions for this range.
359  */
360 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
361                                      struct hugetlb_cgroup *h_cg,
362                                      struct hstate *h, long *regions_needed)
363 {
364         long add = 0;
365         struct list_head *head = &resv->regions;
366         long last_accounted_offset = f;
367         struct file_region *rg = NULL, *trg = NULL;
368
369         if (regions_needed)
370                 *regions_needed = 0;
371
372         /* In this loop, we essentially handle an entry for the range
373          * [last_accounted_offset, rg->from), at every iteration, with some
374          * bounds checking.
375          */
376         list_for_each_entry_safe(rg, trg, head, link) {
377                 /* Skip irrelevant regions that start before our range. */
378                 if (rg->from < f) {
379                         /* If this region ends after the last accounted offset,
380                          * then we need to update last_accounted_offset.
381                          */
382                         if (rg->to > last_accounted_offset)
383                                 last_accounted_offset = rg->to;
384                         continue;
385                 }
386
387                 /* When we find a region that starts beyond our range, we've
388                  * finished.
389                  */
390                 if (rg->from >= t)
391                         break;
392
393                 /* Add an entry for last_accounted_offset -> rg->from, and
394                  * update last_accounted_offset.
395                  */
396                 if (rg->from > last_accounted_offset)
397                         add += hugetlb_resv_map_add(resv, rg,
398                                                     last_accounted_offset,
399                                                     rg->from, h, h_cg,
400                                                     regions_needed);
401
402                 last_accounted_offset = rg->to;
403         }
404
405         /* Handle the case where our range extends beyond
406          * last_accounted_offset.
407          */
408         if (last_accounted_offset < t)
409                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
410                                             t, h, h_cg, regions_needed);
411
412         VM_BUG_ON(add < 0);
413         return add;
414 }
415
416 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
417  */
418 static int allocate_file_region_entries(struct resv_map *resv,
419                                         int regions_needed)
420         __must_hold(&resv->lock)
421 {
422         struct list_head allocated_regions;
423         int to_allocate = 0, i = 0;
424         struct file_region *trg = NULL, *rg = NULL;
425
426         VM_BUG_ON(regions_needed < 0);
427
428         INIT_LIST_HEAD(&allocated_regions);
429
430         /*
431          * Check for sufficient descriptors in the cache to accommodate
432          * the number of in progress add operations plus regions_needed.
433          *
434          * This is a while loop because when we drop the lock, some other call
435          * to region_add or region_del may have consumed some region_entries,
436          * so we keep looping here until we finally have enough entries for
437          * (adds_in_progress + regions_needed).
438          */
439         while (resv->region_cache_count <
440                (resv->adds_in_progress + regions_needed)) {
441                 to_allocate = resv->adds_in_progress + regions_needed -
442                               resv->region_cache_count;
443
444                 /* At this point, we should have enough entries in the cache
445                  * for all the existings adds_in_progress. We should only be
446                  * needing to allocate for regions_needed.
447                  */
448                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
449
450                 spin_unlock(&resv->lock);
451                 for (i = 0; i < to_allocate; i++) {
452                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
453                         if (!trg)
454                                 goto out_of_memory;
455                         list_add(&trg->link, &allocated_regions);
456                 }
457
458                 spin_lock(&resv->lock);
459
460                 list_splice(&allocated_regions, &resv->region_cache);
461                 resv->region_cache_count += to_allocate;
462         }
463
464         return 0;
465
466 out_of_memory:
467         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
468                 list_del(&rg->link);
469                 kfree(rg);
470         }
471         return -ENOMEM;
472 }
473
474 /*
475  * Add the huge page range represented by [f, t) to the reserve
476  * map.  Regions will be taken from the cache to fill in this range.
477  * Sufficient regions should exist in the cache due to the previous
478  * call to region_chg with the same range, but in some cases the cache will not
479  * have sufficient entries due to races with other code doing region_add or
480  * region_del.  The extra needed entries will be allocated.
481  *
482  * regions_needed is the out value provided by a previous call to region_chg.
483  *
484  * Return the number of new huge pages added to the map.  This number is greater
485  * than or equal to zero.  If file_region entries needed to be allocated for
486  * this operation and we were not able to allocate, it returns -ENOMEM.
487  * region_add of regions of length 1 never allocate file_regions and cannot
488  * fail; region_chg will always allocate at least 1 entry and a region_add for
489  * 1 page will only require at most 1 entry.
490  */
491 static long region_add(struct resv_map *resv, long f, long t,
492                        long in_regions_needed, struct hstate *h,
493                        struct hugetlb_cgroup *h_cg)
494 {
495         long add = 0, actual_regions_needed = 0;
496
497         spin_lock(&resv->lock);
498 retry:
499
500         /* Count how many regions are actually needed to execute this add. */
501         add_reservation_in_range(resv, f, t, NULL, NULL,
502                                  &actual_regions_needed);
503
504         /*
505          * Check for sufficient descriptors in the cache to accommodate
506          * this add operation. Note that actual_regions_needed may be greater
507          * than in_regions_needed, as the resv_map may have been modified since
508          * the region_chg call. In this case, we need to make sure that we
509          * allocate extra entries, such that we have enough for all the
510          * existing adds_in_progress, plus the excess needed for this
511          * operation.
512          */
513         if (actual_regions_needed > in_regions_needed &&
514             resv->region_cache_count <
515                     resv->adds_in_progress +
516                             (actual_regions_needed - in_regions_needed)) {
517                 /* region_add operation of range 1 should never need to
518                  * allocate file_region entries.
519                  */
520                 VM_BUG_ON(t - f <= 1);
521
522                 if (allocate_file_region_entries(
523                             resv, actual_regions_needed - in_regions_needed)) {
524                         return -ENOMEM;
525                 }
526
527                 goto retry;
528         }
529
530         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
531
532         resv->adds_in_progress -= in_regions_needed;
533
534         spin_unlock(&resv->lock);
535         VM_BUG_ON(add < 0);
536         return add;
537 }
538
539 /*
540  * Examine the existing reserve map and determine how many
541  * huge pages in the specified range [f, t) are NOT currently
542  * represented.  This routine is called before a subsequent
543  * call to region_add that will actually modify the reserve
544  * map to add the specified range [f, t).  region_chg does
545  * not change the number of huge pages represented by the
546  * map.  A number of new file_region structures is added to the cache as a
547  * placeholder, for the subsequent region_add call to use. At least 1
548  * file_region structure is added.
549  *
550  * out_regions_needed is the number of regions added to the
551  * resv->adds_in_progress.  This value needs to be provided to a follow up call
552  * to region_add or region_abort for proper accounting.
553  *
554  * Returns the number of huge pages that need to be added to the existing
555  * reservation map for the range [f, t).  This number is greater or equal to
556  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
557  * is needed and can not be allocated.
558  */
559 static long region_chg(struct resv_map *resv, long f, long t,
560                        long *out_regions_needed)
561 {
562         long chg = 0;
563
564         spin_lock(&resv->lock);
565
566         /* Count how many hugepages in this range are NOT represented. */
567         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
568                                        out_regions_needed);
569
570         if (*out_regions_needed == 0)
571                 *out_regions_needed = 1;
572
573         if (allocate_file_region_entries(resv, *out_regions_needed))
574                 return -ENOMEM;
575
576         resv->adds_in_progress += *out_regions_needed;
577
578         spin_unlock(&resv->lock);
579         return chg;
580 }
581
582 /*
583  * Abort the in progress add operation.  The adds_in_progress field
584  * of the resv_map keeps track of the operations in progress between
585  * calls to region_chg and region_add.  Operations are sometimes
586  * aborted after the call to region_chg.  In such cases, region_abort
587  * is called to decrement the adds_in_progress counter. regions_needed
588  * is the value returned by the region_chg call, it is used to decrement
589  * the adds_in_progress counter.
590  *
591  * NOTE: The range arguments [f, t) are not needed or used in this
592  * routine.  They are kept to make reading the calling code easier as
593  * arguments will match the associated region_chg call.
594  */
595 static void region_abort(struct resv_map *resv, long f, long t,
596                          long regions_needed)
597 {
598         spin_lock(&resv->lock);
599         VM_BUG_ON(!resv->region_cache_count);
600         resv->adds_in_progress -= regions_needed;
601         spin_unlock(&resv->lock);
602 }
603
604 /*
605  * Delete the specified range [f, t) from the reserve map.  If the
606  * t parameter is LONG_MAX, this indicates that ALL regions after f
607  * should be deleted.  Locate the regions which intersect [f, t)
608  * and either trim, delete or split the existing regions.
609  *
610  * Returns the number of huge pages deleted from the reserve map.
611  * In the normal case, the return value is zero or more.  In the
612  * case where a region must be split, a new region descriptor must
613  * be allocated.  If the allocation fails, -ENOMEM will be returned.
614  * NOTE: If the parameter t == LONG_MAX, then we will never split
615  * a region and possibly return -ENOMEM.  Callers specifying
616  * t == LONG_MAX do not need to check for -ENOMEM error.
617  */
618 static long region_del(struct resv_map *resv, long f, long t)
619 {
620         struct list_head *head = &resv->regions;
621         struct file_region *rg, *trg;
622         struct file_region *nrg = NULL;
623         long del = 0;
624
625 retry:
626         spin_lock(&resv->lock);
627         list_for_each_entry_safe(rg, trg, head, link) {
628                 /*
629                  * Skip regions before the range to be deleted.  file_region
630                  * ranges are normally of the form [from, to).  However, there
631                  * may be a "placeholder" entry in the map which is of the form
632                  * (from, to) with from == to.  Check for placeholder entries
633                  * at the beginning of the range to be deleted.
634                  */
635                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
636                         continue;
637
638                 if (rg->from >= t)
639                         break;
640
641                 if (f > rg->from && t < rg->to) { /* Must split region */
642                         /*
643                          * Check for an entry in the cache before dropping
644                          * lock and attempting allocation.
645                          */
646                         if (!nrg &&
647                             resv->region_cache_count > resv->adds_in_progress) {
648                                 nrg = list_first_entry(&resv->region_cache,
649                                                         struct file_region,
650                                                         link);
651                                 list_del(&nrg->link);
652                                 resv->region_cache_count--;
653                         }
654
655                         if (!nrg) {
656                                 spin_unlock(&resv->lock);
657                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
658                                 if (!nrg)
659                                         return -ENOMEM;
660                                 goto retry;
661                         }
662
663                         del += t - f;
664                         hugetlb_cgroup_uncharge_file_region(
665                                 resv, rg, t - f);
666
667                         /* New entry for end of split region */
668                         nrg->from = t;
669                         nrg->to = rg->to;
670
671                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
672
673                         INIT_LIST_HEAD(&nrg->link);
674
675                         /* Original entry is trimmed */
676                         rg->to = f;
677
678                         list_add(&nrg->link, &rg->link);
679                         nrg = NULL;
680                         break;
681                 }
682
683                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
684                         del += rg->to - rg->from;
685                         hugetlb_cgroup_uncharge_file_region(resv, rg,
686                                                             rg->to - rg->from);
687                         list_del(&rg->link);
688                         kfree(rg);
689                         continue;
690                 }
691
692                 if (f <= rg->from) {    /* Trim beginning of region */
693                         hugetlb_cgroup_uncharge_file_region(resv, rg,
694                                                             t - rg->from);
695
696                         del += t - rg->from;
697                         rg->from = t;
698                 } else {                /* Trim end of region */
699                         hugetlb_cgroup_uncharge_file_region(resv, rg,
700                                                             rg->to - f);
701
702                         del += rg->to - f;
703                         rg->to = f;
704                 }
705         }
706
707         spin_unlock(&resv->lock);
708         kfree(nrg);
709         return del;
710 }
711
712 /*
713  * A rare out of memory error was encountered which prevented removal of
714  * the reserve map region for a page.  The huge page itself was free'ed
715  * and removed from the page cache.  This routine will adjust the subpool
716  * usage count, and the global reserve count if needed.  By incrementing
717  * these counts, the reserve map entry which could not be deleted will
718  * appear as a "reserved" entry instead of simply dangling with incorrect
719  * counts.
720  */
721 void hugetlb_fix_reserve_counts(struct inode *inode)
722 {
723         struct hugepage_subpool *spool = subpool_inode(inode);
724         long rsv_adjust;
725
726         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
727         if (rsv_adjust) {
728                 struct hstate *h = hstate_inode(inode);
729
730                 hugetlb_acct_memory(h, 1);
731         }
732 }
733
734 /*
735  * Count and return the number of huge pages in the reserve map
736  * that intersect with the range [f, t).
737  */
738 static long region_count(struct resv_map *resv, long f, long t)
739 {
740         struct list_head *head = &resv->regions;
741         struct file_region *rg;
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745         /* Locate each segment we overlap with, and count that overlap. */
746         list_for_each_entry(rg, head, link) {
747                 long seg_from;
748                 long seg_to;
749
750                 if (rg->to <= f)
751                         continue;
752                 if (rg->from >= t)
753                         break;
754
755                 seg_from = max(rg->from, f);
756                 seg_to = min(rg->to, t);
757
758                 chg += seg_to - seg_from;
759         }
760         spin_unlock(&resv->lock);
761
762         return chg;
763 }
764
765 /*
766  * Convert the address within this vma to the page offset within
767  * the mapping, in pagecache page units; huge pages here.
768  */
769 static pgoff_t vma_hugecache_offset(struct hstate *h,
770                         struct vm_area_struct *vma, unsigned long address)
771 {
772         return ((address - vma->vm_start) >> huge_page_shift(h)) +
773                         (vma->vm_pgoff >> huge_page_order(h));
774 }
775
776 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
777                                      unsigned long address)
778 {
779         return vma_hugecache_offset(hstate_vma(vma), vma, address);
780 }
781 EXPORT_SYMBOL_GPL(linear_hugepage_index);
782
783 /*
784  * Return the size of the pages allocated when backing a VMA. In the majority
785  * cases this will be same size as used by the page table entries.
786  */
787 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
788 {
789         if (vma->vm_ops && vma->vm_ops->pagesize)
790                 return vma->vm_ops->pagesize(vma);
791         return PAGE_SIZE;
792 }
793 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
794
795 /*
796  * Return the page size being used by the MMU to back a VMA. In the majority
797  * of cases, the page size used by the kernel matches the MMU size. On
798  * architectures where it differs, an architecture-specific 'strong'
799  * version of this symbol is required.
800  */
801 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
802 {
803         return vma_kernel_pagesize(vma);
804 }
805
806 /*
807  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
808  * bits of the reservation map pointer, which are always clear due to
809  * alignment.
810  */
811 #define HPAGE_RESV_OWNER    (1UL << 0)
812 #define HPAGE_RESV_UNMAPPED (1UL << 1)
813 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
814
815 /*
816  * These helpers are used to track how many pages are reserved for
817  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
818  * is guaranteed to have their future faults succeed.
819  *
820  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
821  * the reserve counters are updated with the hugetlb_lock held. It is safe
822  * to reset the VMA at fork() time as it is not in use yet and there is no
823  * chance of the global counters getting corrupted as a result of the values.
824  *
825  * The private mapping reservation is represented in a subtly different
826  * manner to a shared mapping.  A shared mapping has a region map associated
827  * with the underlying file, this region map represents the backing file
828  * pages which have ever had a reservation assigned which this persists even
829  * after the page is instantiated.  A private mapping has a region map
830  * associated with the original mmap which is attached to all VMAs which
831  * reference it, this region map represents those offsets which have consumed
832  * reservation ie. where pages have been instantiated.
833  */
834 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
835 {
836         return (unsigned long)vma->vm_private_data;
837 }
838
839 static void set_vma_private_data(struct vm_area_struct *vma,
840                                                         unsigned long value)
841 {
842         vma->vm_private_data = (void *)value;
843 }
844
845 static void
846 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
847                                           struct hugetlb_cgroup *h_cg,
848                                           struct hstate *h)
849 {
850 #ifdef CONFIG_CGROUP_HUGETLB
851         if (!h_cg || !h) {
852                 resv_map->reservation_counter = NULL;
853                 resv_map->pages_per_hpage = 0;
854                 resv_map->css = NULL;
855         } else {
856                 resv_map->reservation_counter =
857                         &h_cg->rsvd_hugepage[hstate_index(h)];
858                 resv_map->pages_per_hpage = pages_per_huge_page(h);
859                 resv_map->css = &h_cg->css;
860         }
861 #endif
862 }
863
864 struct resv_map *resv_map_alloc(void)
865 {
866         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
867         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
868
869         if (!resv_map || !rg) {
870                 kfree(resv_map);
871                 kfree(rg);
872                 return NULL;
873         }
874
875         kref_init(&resv_map->refs);
876         spin_lock_init(&resv_map->lock);
877         INIT_LIST_HEAD(&resv_map->regions);
878
879         resv_map->adds_in_progress = 0;
880         /*
881          * Initialize these to 0. On shared mappings, 0's here indicate these
882          * fields don't do cgroup accounting. On private mappings, these will be
883          * re-initialized to the proper values, to indicate that hugetlb cgroup
884          * reservations are to be un-charged from here.
885          */
886         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
887
888         INIT_LIST_HEAD(&resv_map->region_cache);
889         list_add(&rg->link, &resv_map->region_cache);
890         resv_map->region_cache_count = 1;
891
892         return resv_map;
893 }
894
895 void resv_map_release(struct kref *ref)
896 {
897         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
898         struct list_head *head = &resv_map->region_cache;
899         struct file_region *rg, *trg;
900
901         /* Clear out any active regions before we release the map. */
902         region_del(resv_map, 0, LONG_MAX);
903
904         /* ... and any entries left in the cache */
905         list_for_each_entry_safe(rg, trg, head, link) {
906                 list_del(&rg->link);
907                 kfree(rg);
908         }
909
910         VM_BUG_ON(resv_map->adds_in_progress);
911
912         kfree(resv_map);
913 }
914
915 static inline struct resv_map *inode_resv_map(struct inode *inode)
916 {
917         /*
918          * At inode evict time, i_mapping may not point to the original
919          * address space within the inode.  This original address space
920          * contains the pointer to the resv_map.  So, always use the
921          * address space embedded within the inode.
922          * The VERY common case is inode->mapping == &inode->i_data but,
923          * this may not be true for device special inodes.
924          */
925         return (struct resv_map *)(&inode->i_data)->private_data;
926 }
927
928 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
929 {
930         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
931         if (vma->vm_flags & VM_MAYSHARE) {
932                 struct address_space *mapping = vma->vm_file->f_mapping;
933                 struct inode *inode = mapping->host;
934
935                 return inode_resv_map(inode);
936
937         } else {
938                 return (struct resv_map *)(get_vma_private_data(vma) &
939                                                         ~HPAGE_RESV_MASK);
940         }
941 }
942
943 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
944 {
945         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
947
948         set_vma_private_data(vma, (get_vma_private_data(vma) &
949                                 HPAGE_RESV_MASK) | (unsigned long)map);
950 }
951
952 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
953 {
954         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
955         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
956
957         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
958 }
959
960 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
961 {
962         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963
964         return (get_vma_private_data(vma) & flag) != 0;
965 }
966
967 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
968 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
969 {
970         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
971         if (!(vma->vm_flags & VM_MAYSHARE))
972                 vma->vm_private_data = (void *)0;
973 }
974
975 /* Returns true if the VMA has associated reserve pages */
976 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
977 {
978         if (vma->vm_flags & VM_NORESERVE) {
979                 /*
980                  * This address is already reserved by other process(chg == 0),
981                  * so, we should decrement reserved count. Without decrementing,
982                  * reserve count remains after releasing inode, because this
983                  * allocated page will go into page cache and is regarded as
984                  * coming from reserved pool in releasing step.  Currently, we
985                  * don't have any other solution to deal with this situation
986                  * properly, so add work-around here.
987                  */
988                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
989                         return true;
990                 else
991                         return false;
992         }
993
994         /* Shared mappings always use reserves */
995         if (vma->vm_flags & VM_MAYSHARE) {
996                 /*
997                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
998                  * be a region map for all pages.  The only situation where
999                  * there is no region map is if a hole was punched via
1000                  * fallocate.  In this case, there really are no reserves to
1001                  * use.  This situation is indicated if chg != 0.
1002                  */
1003                 if (chg)
1004                         return false;
1005                 else
1006                         return true;
1007         }
1008
1009         /*
1010          * Only the process that called mmap() has reserves for
1011          * private mappings.
1012          */
1013         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1014                 /*
1015                  * Like the shared case above, a hole punch or truncate
1016                  * could have been performed on the private mapping.
1017                  * Examine the value of chg to determine if reserves
1018                  * actually exist or were previously consumed.
1019                  * Very Subtle - The value of chg comes from a previous
1020                  * call to vma_needs_reserves().  The reserve map for
1021                  * private mappings has different (opposite) semantics
1022                  * than that of shared mappings.  vma_needs_reserves()
1023                  * has already taken this difference in semantics into
1024                  * account.  Therefore, the meaning of chg is the same
1025                  * as in the shared case above.  Code could easily be
1026                  * combined, but keeping it separate draws attention to
1027                  * subtle differences.
1028                  */
1029                 if (chg)
1030                         return false;
1031                 else
1032                         return true;
1033         }
1034
1035         return false;
1036 }
1037
1038 static void enqueue_huge_page(struct hstate *h, struct page *page)
1039 {
1040         int nid = page_to_nid(page);
1041         list_move(&page->lru, &h->hugepage_freelists[nid]);
1042         h->free_huge_pages++;
1043         h->free_huge_pages_node[nid]++;
1044         SetHPageFreed(page);
1045 }
1046
1047 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1048 {
1049         struct page *page;
1050         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1051
1052         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1053                 if (nocma && is_migrate_cma_page(page))
1054                         continue;
1055
1056                 if (PageHWPoison(page))
1057                         continue;
1058
1059                 list_move(&page->lru, &h->hugepage_activelist);
1060                 set_page_refcounted(page);
1061                 ClearHPageFreed(page);
1062                 h->free_huge_pages--;
1063                 h->free_huge_pages_node[nid]--;
1064                 return page;
1065         }
1066
1067         return NULL;
1068 }
1069
1070 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1071                 nodemask_t *nmask)
1072 {
1073         unsigned int cpuset_mems_cookie;
1074         struct zonelist *zonelist;
1075         struct zone *zone;
1076         struct zoneref *z;
1077         int node = NUMA_NO_NODE;
1078
1079         zonelist = node_zonelist(nid, gfp_mask);
1080
1081 retry_cpuset:
1082         cpuset_mems_cookie = read_mems_allowed_begin();
1083         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1084                 struct page *page;
1085
1086                 if (!cpuset_zone_allowed(zone, gfp_mask))
1087                         continue;
1088                 /*
1089                  * no need to ask again on the same node. Pool is node rather than
1090                  * zone aware
1091                  */
1092                 if (zone_to_nid(zone) == node)
1093                         continue;
1094                 node = zone_to_nid(zone);
1095
1096                 page = dequeue_huge_page_node_exact(h, node);
1097                 if (page)
1098                         return page;
1099         }
1100         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1101                 goto retry_cpuset;
1102
1103         return NULL;
1104 }
1105
1106 static struct page *dequeue_huge_page_vma(struct hstate *h,
1107                                 struct vm_area_struct *vma,
1108                                 unsigned long address, int avoid_reserve,
1109                                 long chg)
1110 {
1111         struct page *page;
1112         struct mempolicy *mpol;
1113         gfp_t gfp_mask;
1114         nodemask_t *nodemask;
1115         int nid;
1116
1117         /*
1118          * A child process with MAP_PRIVATE mappings created by their parent
1119          * have no page reserves. This check ensures that reservations are
1120          * not "stolen". The child may still get SIGKILLed
1121          */
1122         if (!vma_has_reserves(vma, chg) &&
1123                         h->free_huge_pages - h->resv_huge_pages == 0)
1124                 goto err;
1125
1126         /* If reserves cannot be used, ensure enough pages are in the pool */
1127         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1128                 goto err;
1129
1130         gfp_mask = htlb_alloc_mask(h);
1131         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1132         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1133         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1134                 SetHPageRestoreReserve(page);
1135                 h->resv_huge_pages--;
1136         }
1137
1138         mpol_cond_put(mpol);
1139         return page;
1140
1141 err:
1142         return NULL;
1143 }
1144
1145 /*
1146  * common helper functions for hstate_next_node_to_{alloc|free}.
1147  * We may have allocated or freed a huge page based on a different
1148  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1149  * be outside of *nodes_allowed.  Ensure that we use an allowed
1150  * node for alloc or free.
1151  */
1152 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1153 {
1154         nid = next_node_in(nid, *nodes_allowed);
1155         VM_BUG_ON(nid >= MAX_NUMNODES);
1156
1157         return nid;
1158 }
1159
1160 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1161 {
1162         if (!node_isset(nid, *nodes_allowed))
1163                 nid = next_node_allowed(nid, nodes_allowed);
1164         return nid;
1165 }
1166
1167 /*
1168  * returns the previously saved node ["this node"] from which to
1169  * allocate a persistent huge page for the pool and advance the
1170  * next node from which to allocate, handling wrap at end of node
1171  * mask.
1172  */
1173 static int hstate_next_node_to_alloc(struct hstate *h,
1174                                         nodemask_t *nodes_allowed)
1175 {
1176         int nid;
1177
1178         VM_BUG_ON(!nodes_allowed);
1179
1180         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1181         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1182
1183         return nid;
1184 }
1185
1186 /*
1187  * helper for free_pool_huge_page() - return the previously saved
1188  * node ["this node"] from which to free a huge page.  Advance the
1189  * next node id whether or not we find a free huge page to free so
1190  * that the next attempt to free addresses the next node.
1191  */
1192 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1193 {
1194         int nid;
1195
1196         VM_BUG_ON(!nodes_allowed);
1197
1198         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1199         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1200
1201         return nid;
1202 }
1203
1204 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1205         for (nr_nodes = nodes_weight(*mask);                            \
1206                 nr_nodes > 0 &&                                         \
1207                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1208                 nr_nodes--)
1209
1210 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1211         for (nr_nodes = nodes_weight(*mask);                            \
1212                 nr_nodes > 0 &&                                         \
1213                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1214                 nr_nodes--)
1215
1216 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1217 static void destroy_compound_gigantic_page(struct page *page,
1218                                         unsigned int order)
1219 {
1220         int i;
1221         int nr_pages = 1 << order;
1222         struct page *p = page + 1;
1223
1224         atomic_set(compound_mapcount_ptr(page), 0);
1225         atomic_set(compound_pincount_ptr(page), 0);
1226
1227         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1228                 clear_compound_head(p);
1229                 set_page_refcounted(p);
1230         }
1231
1232         set_compound_order(page, 0);
1233         page[1].compound_nr = 0;
1234         __ClearPageHead(page);
1235 }
1236
1237 static void free_gigantic_page(struct page *page, unsigned int order)
1238 {
1239         /*
1240          * If the page isn't allocated using the cma allocator,
1241          * cma_release() returns false.
1242          */
1243 #ifdef CONFIG_CMA
1244         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1245                 return;
1246 #endif
1247
1248         free_contig_range(page_to_pfn(page), 1 << order);
1249 }
1250
1251 #ifdef CONFIG_CONTIG_ALLOC
1252 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1253                 int nid, nodemask_t *nodemask)
1254 {
1255         unsigned long nr_pages = 1UL << huge_page_order(h);
1256         if (nid == NUMA_NO_NODE)
1257                 nid = numa_mem_id();
1258
1259 #ifdef CONFIG_CMA
1260         {
1261                 struct page *page;
1262                 int node;
1263
1264                 if (hugetlb_cma[nid]) {
1265                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1266                                         huge_page_order(h), true);
1267                         if (page)
1268                                 return page;
1269                 }
1270
1271                 if (!(gfp_mask & __GFP_THISNODE)) {
1272                         for_each_node_mask(node, *nodemask) {
1273                                 if (node == nid || !hugetlb_cma[node])
1274                                         continue;
1275
1276                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1277                                                 huge_page_order(h), true);
1278                                 if (page)
1279                                         return page;
1280                         }
1281                 }
1282         }
1283 #endif
1284
1285         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1286 }
1287
1288 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1290 #else /* !CONFIG_CONTIG_ALLOC */
1291 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1292                                         int nid, nodemask_t *nodemask)
1293 {
1294         return NULL;
1295 }
1296 #endif /* CONFIG_CONTIG_ALLOC */
1297
1298 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1299 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1300                                         int nid, nodemask_t *nodemask)
1301 {
1302         return NULL;
1303 }
1304 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1305 static inline void destroy_compound_gigantic_page(struct page *page,
1306                                                 unsigned int order) { }
1307 #endif
1308
1309 static void update_and_free_page(struct hstate *h, struct page *page)
1310 {
1311         int i;
1312         struct page *subpage = page;
1313
1314         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1315                 return;
1316
1317         h->nr_huge_pages--;
1318         h->nr_huge_pages_node[page_to_nid(page)]--;
1319         for (i = 0; i < pages_per_huge_page(h);
1320              i++, subpage = mem_map_next(subpage, page, i)) {
1321                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1322                                 1 << PG_referenced | 1 << PG_dirty |
1323                                 1 << PG_active | 1 << PG_private |
1324                                 1 << PG_writeback);
1325         }
1326         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1327         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1328         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1329         set_page_refcounted(page);
1330         if (hstate_is_gigantic(h)) {
1331                 /*
1332                  * Temporarily drop the hugetlb_lock, because
1333                  * we might block in free_gigantic_page().
1334                  */
1335                 spin_unlock(&hugetlb_lock);
1336                 destroy_compound_gigantic_page(page, huge_page_order(h));
1337                 free_gigantic_page(page, huge_page_order(h));
1338                 spin_lock(&hugetlb_lock);
1339         } else {
1340                 __free_pages(page, huge_page_order(h));
1341         }
1342 }
1343
1344 struct hstate *size_to_hstate(unsigned long size)
1345 {
1346         struct hstate *h;
1347
1348         for_each_hstate(h) {
1349                 if (huge_page_size(h) == size)
1350                         return h;
1351         }
1352         return NULL;
1353 }
1354
1355 static void __free_huge_page(struct page *page)
1356 {
1357         /*
1358          * Can't pass hstate in here because it is called from the
1359          * compound page destructor.
1360          */
1361         struct hstate *h = page_hstate(page);
1362         int nid = page_to_nid(page);
1363         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1364         bool restore_reserve;
1365
1366         VM_BUG_ON_PAGE(page_count(page), page);
1367         VM_BUG_ON_PAGE(page_mapcount(page), page);
1368
1369         hugetlb_set_page_subpool(page, NULL);
1370         page->mapping = NULL;
1371         restore_reserve = HPageRestoreReserve(page);
1372         ClearHPageRestoreReserve(page);
1373
1374         /*
1375          * If HPageRestoreReserve was set on page, page allocation consumed a
1376          * reservation.  If the page was associated with a subpool, there
1377          * would have been a page reserved in the subpool before allocation
1378          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1379          * reservation, do not call hugepage_subpool_put_pages() as this will
1380          * remove the reserved page from the subpool.
1381          */
1382         if (!restore_reserve) {
1383                 /*
1384                  * A return code of zero implies that the subpool will be
1385                  * under its minimum size if the reservation is not restored
1386                  * after page is free.  Therefore, force restore_reserve
1387                  * operation.
1388                  */
1389                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1390                         restore_reserve = true;
1391         }
1392
1393         spin_lock(&hugetlb_lock);
1394         ClearHPageMigratable(page);
1395         hugetlb_cgroup_uncharge_page(hstate_index(h),
1396                                      pages_per_huge_page(h), page);
1397         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1398                                           pages_per_huge_page(h), page);
1399         if (restore_reserve)
1400                 h->resv_huge_pages++;
1401
1402         if (HPageTemporary(page)) {
1403                 list_del(&page->lru);
1404                 ClearHPageTemporary(page);
1405                 update_and_free_page(h, page);
1406         } else if (h->surplus_huge_pages_node[nid]) {
1407                 /* remove the page from active list */
1408                 list_del(&page->lru);
1409                 update_and_free_page(h, page);
1410                 h->surplus_huge_pages--;
1411                 h->surplus_huge_pages_node[nid]--;
1412         } else {
1413                 arch_clear_hugepage_flags(page);
1414                 enqueue_huge_page(h, page);
1415         }
1416         spin_unlock(&hugetlb_lock);
1417 }
1418
1419 /*
1420  * As free_huge_page() can be called from a non-task context, we have
1421  * to defer the actual freeing in a workqueue to prevent potential
1422  * hugetlb_lock deadlock.
1423  *
1424  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1425  * be freed and frees them one-by-one. As the page->mapping pointer is
1426  * going to be cleared in __free_huge_page() anyway, it is reused as the
1427  * llist_node structure of a lockless linked list of huge pages to be freed.
1428  */
1429 static LLIST_HEAD(hpage_freelist);
1430
1431 static void free_hpage_workfn(struct work_struct *work)
1432 {
1433         struct llist_node *node;
1434         struct page *page;
1435
1436         node = llist_del_all(&hpage_freelist);
1437
1438         while (node) {
1439                 page = container_of((struct address_space **)node,
1440                                      struct page, mapping);
1441                 node = node->next;
1442                 __free_huge_page(page);
1443         }
1444 }
1445 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1446
1447 void free_huge_page(struct page *page)
1448 {
1449         /*
1450          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1451          */
1452         if (!in_task()) {
1453                 /*
1454                  * Only call schedule_work() if hpage_freelist is previously
1455                  * empty. Otherwise, schedule_work() had been called but the
1456                  * workfn hasn't retrieved the list yet.
1457                  */
1458                 if (llist_add((struct llist_node *)&page->mapping,
1459                               &hpage_freelist))
1460                         schedule_work(&free_hpage_work);
1461                 return;
1462         }
1463
1464         __free_huge_page(page);
1465 }
1466
1467 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1468 {
1469         INIT_LIST_HEAD(&page->lru);
1470         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1471         hugetlb_set_page_subpool(page, NULL);
1472         set_hugetlb_cgroup(page, NULL);
1473         set_hugetlb_cgroup_rsvd(page, NULL);
1474         spin_lock(&hugetlb_lock);
1475         h->nr_huge_pages++;
1476         h->nr_huge_pages_node[nid]++;
1477         ClearHPageFreed(page);
1478         spin_unlock(&hugetlb_lock);
1479 }
1480
1481 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1482 {
1483         int i;
1484         int nr_pages = 1 << order;
1485         struct page *p = page + 1;
1486
1487         /* we rely on prep_new_huge_page to set the destructor */
1488         set_compound_order(page, order);
1489         __ClearPageReserved(page);
1490         __SetPageHead(page);
1491         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1492                 /*
1493                  * For gigantic hugepages allocated through bootmem at
1494                  * boot, it's safer to be consistent with the not-gigantic
1495                  * hugepages and clear the PG_reserved bit from all tail pages
1496                  * too.  Otherwise drivers using get_user_pages() to access tail
1497                  * pages may get the reference counting wrong if they see
1498                  * PG_reserved set on a tail page (despite the head page not
1499                  * having PG_reserved set).  Enforcing this consistency between
1500                  * head and tail pages allows drivers to optimize away a check
1501                  * on the head page when they need know if put_page() is needed
1502                  * after get_user_pages().
1503                  */
1504                 __ClearPageReserved(p);
1505                 set_page_count(p, 0);
1506                 set_compound_head(p, page);
1507         }
1508         atomic_set(compound_mapcount_ptr(page), -1);
1509         atomic_set(compound_pincount_ptr(page), 0);
1510 }
1511
1512 /*
1513  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1514  * transparent huge pages.  See the PageTransHuge() documentation for more
1515  * details.
1516  */
1517 int PageHuge(struct page *page)
1518 {
1519         if (!PageCompound(page))
1520                 return 0;
1521
1522         page = compound_head(page);
1523         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1524 }
1525 EXPORT_SYMBOL_GPL(PageHuge);
1526
1527 /*
1528  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1529  * normal or transparent huge pages.
1530  */
1531 int PageHeadHuge(struct page *page_head)
1532 {
1533         if (!PageHead(page_head))
1534                 return 0;
1535
1536         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1537 }
1538
1539 /*
1540  * Find and lock address space (mapping) in write mode.
1541  *
1542  * Upon entry, the page is locked which means that page_mapping() is
1543  * stable.  Due to locking order, we can only trylock_write.  If we can
1544  * not get the lock, simply return NULL to caller.
1545  */
1546 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1547 {
1548         struct address_space *mapping = page_mapping(hpage);
1549
1550         if (!mapping)
1551                 return mapping;
1552
1553         if (i_mmap_trylock_write(mapping))
1554                 return mapping;
1555
1556         return NULL;
1557 }
1558
1559 pgoff_t __basepage_index(struct page *page)
1560 {
1561         struct page *page_head = compound_head(page);
1562         pgoff_t index = page_index(page_head);
1563         unsigned long compound_idx;
1564
1565         if (!PageHuge(page_head))
1566                 return page_index(page);
1567
1568         if (compound_order(page_head) >= MAX_ORDER)
1569                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1570         else
1571                 compound_idx = page - page_head;
1572
1573         return (index << compound_order(page_head)) + compound_idx;
1574 }
1575
1576 static struct page *alloc_buddy_huge_page(struct hstate *h,
1577                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1578                 nodemask_t *node_alloc_noretry)
1579 {
1580         int order = huge_page_order(h);
1581         struct page *page;
1582         bool alloc_try_hard = true;
1583
1584         /*
1585          * By default we always try hard to allocate the page with
1586          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1587          * a loop (to adjust global huge page counts) and previous allocation
1588          * failed, do not continue to try hard on the same node.  Use the
1589          * node_alloc_noretry bitmap to manage this state information.
1590          */
1591         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1592                 alloc_try_hard = false;
1593         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1594         if (alloc_try_hard)
1595                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1596         if (nid == NUMA_NO_NODE)
1597                 nid = numa_mem_id();
1598         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1599         if (page)
1600                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1601         else
1602                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1603
1604         /*
1605          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1606          * indicates an overall state change.  Clear bit so that we resume
1607          * normal 'try hard' allocations.
1608          */
1609         if (node_alloc_noretry && page && !alloc_try_hard)
1610                 node_clear(nid, *node_alloc_noretry);
1611
1612         /*
1613          * If we tried hard to get a page but failed, set bit so that
1614          * subsequent attempts will not try as hard until there is an
1615          * overall state change.
1616          */
1617         if (node_alloc_noretry && !page && alloc_try_hard)
1618                 node_set(nid, *node_alloc_noretry);
1619
1620         return page;
1621 }
1622
1623 /*
1624  * Common helper to allocate a fresh hugetlb page. All specific allocators
1625  * should use this function to get new hugetlb pages
1626  */
1627 static struct page *alloc_fresh_huge_page(struct hstate *h,
1628                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1629                 nodemask_t *node_alloc_noretry)
1630 {
1631         struct page *page;
1632
1633         if (hstate_is_gigantic(h))
1634                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1635         else
1636                 page = alloc_buddy_huge_page(h, gfp_mask,
1637                                 nid, nmask, node_alloc_noretry);
1638         if (!page)
1639                 return NULL;
1640
1641         if (hstate_is_gigantic(h))
1642                 prep_compound_gigantic_page(page, huge_page_order(h));
1643         prep_new_huge_page(h, page, page_to_nid(page));
1644
1645         return page;
1646 }
1647
1648 /*
1649  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1650  * manner.
1651  */
1652 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1653                                 nodemask_t *node_alloc_noretry)
1654 {
1655         struct page *page;
1656         int nr_nodes, node;
1657         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1658
1659         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1660                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1661                                                 node_alloc_noretry);
1662                 if (page)
1663                         break;
1664         }
1665
1666         if (!page)
1667                 return 0;
1668
1669         put_page(page); /* free it into the hugepage allocator */
1670
1671         return 1;
1672 }
1673
1674 /*
1675  * Free huge page from pool from next node to free.
1676  * Attempt to keep persistent huge pages more or less
1677  * balanced over allowed nodes.
1678  * Called with hugetlb_lock locked.
1679  */
1680 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1681                                                          bool acct_surplus)
1682 {
1683         int nr_nodes, node;
1684         int ret = 0;
1685
1686         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1687                 /*
1688                  * If we're returning unused surplus pages, only examine
1689                  * nodes with surplus pages.
1690                  */
1691                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1692                     !list_empty(&h->hugepage_freelists[node])) {
1693                         struct page *page =
1694                                 list_entry(h->hugepage_freelists[node].next,
1695                                           struct page, lru);
1696                         list_del(&page->lru);
1697                         h->free_huge_pages--;
1698                         h->free_huge_pages_node[node]--;
1699                         if (acct_surplus) {
1700                                 h->surplus_huge_pages--;
1701                                 h->surplus_huge_pages_node[node]--;
1702                         }
1703                         update_and_free_page(h, page);
1704                         ret = 1;
1705                         break;
1706                 }
1707         }
1708
1709         return ret;
1710 }
1711
1712 /*
1713  * Dissolve a given free hugepage into free buddy pages. This function does
1714  * nothing for in-use hugepages and non-hugepages.
1715  * This function returns values like below:
1716  *
1717  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1718  *          (allocated or reserved.)
1719  *       0: successfully dissolved free hugepages or the page is not a
1720  *          hugepage (considered as already dissolved)
1721  */
1722 int dissolve_free_huge_page(struct page *page)
1723 {
1724         int rc = -EBUSY;
1725
1726 retry:
1727         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1728         if (!PageHuge(page))
1729                 return 0;
1730
1731         spin_lock(&hugetlb_lock);
1732         if (!PageHuge(page)) {
1733                 rc = 0;
1734                 goto out;
1735         }
1736
1737         if (!page_count(page)) {
1738                 struct page *head = compound_head(page);
1739                 struct hstate *h = page_hstate(head);
1740                 int nid = page_to_nid(head);
1741                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1742                         goto out;
1743
1744                 /*
1745                  * We should make sure that the page is already on the free list
1746                  * when it is dissolved.
1747                  */
1748                 if (unlikely(!HPageFreed(head))) {
1749                         spin_unlock(&hugetlb_lock);
1750                         cond_resched();
1751
1752                         /*
1753                          * Theoretically, we should return -EBUSY when we
1754                          * encounter this race. In fact, we have a chance
1755                          * to successfully dissolve the page if we do a
1756                          * retry. Because the race window is quite small.
1757                          * If we seize this opportunity, it is an optimization
1758                          * for increasing the success rate of dissolving page.
1759                          */
1760                         goto retry;
1761                 }
1762
1763                 /*
1764                  * Move PageHWPoison flag from head page to the raw error page,
1765                  * which makes any subpages rather than the error page reusable.
1766                  */
1767                 if (PageHWPoison(head) && page != head) {
1768                         SetPageHWPoison(page);
1769                         ClearPageHWPoison(head);
1770                 }
1771                 list_del(&head->lru);
1772                 h->free_huge_pages--;
1773                 h->free_huge_pages_node[nid]--;
1774                 h->max_huge_pages--;
1775                 update_and_free_page(h, head);
1776                 rc = 0;
1777         }
1778 out:
1779         spin_unlock(&hugetlb_lock);
1780         return rc;
1781 }
1782
1783 /*
1784  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1785  * make specified memory blocks removable from the system.
1786  * Note that this will dissolve a free gigantic hugepage completely, if any
1787  * part of it lies within the given range.
1788  * Also note that if dissolve_free_huge_page() returns with an error, all
1789  * free hugepages that were dissolved before that error are lost.
1790  */
1791 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1792 {
1793         unsigned long pfn;
1794         struct page *page;
1795         int rc = 0;
1796
1797         if (!hugepages_supported())
1798                 return rc;
1799
1800         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1801                 page = pfn_to_page(pfn);
1802                 rc = dissolve_free_huge_page(page);
1803                 if (rc)
1804                         break;
1805         }
1806
1807         return rc;
1808 }
1809
1810 /*
1811  * Allocates a fresh surplus page from the page allocator.
1812  */
1813 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1814                 int nid, nodemask_t *nmask)
1815 {
1816         struct page *page = NULL;
1817
1818         if (hstate_is_gigantic(h))
1819                 return NULL;
1820
1821         spin_lock(&hugetlb_lock);
1822         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1823                 goto out_unlock;
1824         spin_unlock(&hugetlb_lock);
1825
1826         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1827         if (!page)
1828                 return NULL;
1829
1830         spin_lock(&hugetlb_lock);
1831         /*
1832          * We could have raced with the pool size change.
1833          * Double check that and simply deallocate the new page
1834          * if we would end up overcommiting the surpluses. Abuse
1835          * temporary page to workaround the nasty free_huge_page
1836          * codeflow
1837          */
1838         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1839                 SetHPageTemporary(page);
1840                 spin_unlock(&hugetlb_lock);
1841                 put_page(page);
1842                 return NULL;
1843         } else {
1844                 h->surplus_huge_pages++;
1845                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1846         }
1847
1848 out_unlock:
1849         spin_unlock(&hugetlb_lock);
1850
1851         return page;
1852 }
1853
1854 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1855                                      int nid, nodemask_t *nmask)
1856 {
1857         struct page *page;
1858
1859         if (hstate_is_gigantic(h))
1860                 return NULL;
1861
1862         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1863         if (!page)
1864                 return NULL;
1865
1866         /*
1867          * We do not account these pages as surplus because they are only
1868          * temporary and will be released properly on the last reference
1869          */
1870         SetHPageTemporary(page);
1871
1872         return page;
1873 }
1874
1875 /*
1876  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1877  */
1878 static
1879 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1880                 struct vm_area_struct *vma, unsigned long addr)
1881 {
1882         struct page *page;
1883         struct mempolicy *mpol;
1884         gfp_t gfp_mask = htlb_alloc_mask(h);
1885         int nid;
1886         nodemask_t *nodemask;
1887
1888         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1889         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1890         mpol_cond_put(mpol);
1891
1892         return page;
1893 }
1894
1895 /* page migration callback function */
1896 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1897                 nodemask_t *nmask, gfp_t gfp_mask)
1898 {
1899         spin_lock(&hugetlb_lock);
1900         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1901                 struct page *page;
1902
1903                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1904                 if (page) {
1905                         spin_unlock(&hugetlb_lock);
1906                         return page;
1907                 }
1908         }
1909         spin_unlock(&hugetlb_lock);
1910
1911         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1912 }
1913
1914 /* mempolicy aware migration callback */
1915 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1916                 unsigned long address)
1917 {
1918         struct mempolicy *mpol;
1919         nodemask_t *nodemask;
1920         struct page *page;
1921         gfp_t gfp_mask;
1922         int node;
1923
1924         gfp_mask = htlb_alloc_mask(h);
1925         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1926         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1927         mpol_cond_put(mpol);
1928
1929         return page;
1930 }
1931
1932 /*
1933  * Increase the hugetlb pool such that it can accommodate a reservation
1934  * of size 'delta'.
1935  */
1936 static int gather_surplus_pages(struct hstate *h, long delta)
1937         __must_hold(&hugetlb_lock)
1938 {
1939         struct list_head surplus_list;
1940         struct page *page, *tmp;
1941         int ret;
1942         long i;
1943         long needed, allocated;
1944         bool alloc_ok = true;
1945
1946         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1947         if (needed <= 0) {
1948                 h->resv_huge_pages += delta;
1949                 return 0;
1950         }
1951
1952         allocated = 0;
1953         INIT_LIST_HEAD(&surplus_list);
1954
1955         ret = -ENOMEM;
1956 retry:
1957         spin_unlock(&hugetlb_lock);
1958         for (i = 0; i < needed; i++) {
1959                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1960                                 NUMA_NO_NODE, NULL);
1961                 if (!page) {
1962                         alloc_ok = false;
1963                         break;
1964                 }
1965                 list_add(&page->lru, &surplus_list);
1966                 cond_resched();
1967         }
1968         allocated += i;
1969
1970         /*
1971          * After retaking hugetlb_lock, we need to recalculate 'needed'
1972          * because either resv_huge_pages or free_huge_pages may have changed.
1973          */
1974         spin_lock(&hugetlb_lock);
1975         needed = (h->resv_huge_pages + delta) -
1976                         (h->free_huge_pages + allocated);
1977         if (needed > 0) {
1978                 if (alloc_ok)
1979                         goto retry;
1980                 /*
1981                  * We were not able to allocate enough pages to
1982                  * satisfy the entire reservation so we free what
1983                  * we've allocated so far.
1984                  */
1985                 goto free;
1986         }
1987         /*
1988          * The surplus_list now contains _at_least_ the number of extra pages
1989          * needed to accommodate the reservation.  Add the appropriate number
1990          * of pages to the hugetlb pool and free the extras back to the buddy
1991          * allocator.  Commit the entire reservation here to prevent another
1992          * process from stealing the pages as they are added to the pool but
1993          * before they are reserved.
1994          */
1995         needed += allocated;
1996         h->resv_huge_pages += delta;
1997         ret = 0;
1998
1999         /* Free the needed pages to the hugetlb pool */
2000         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2001                 int zeroed;
2002
2003                 if ((--needed) < 0)
2004                         break;
2005                 /*
2006                  * This page is now managed by the hugetlb allocator and has
2007                  * no users -- drop the buddy allocator's reference.
2008                  */
2009                 zeroed = put_page_testzero(page);
2010                 VM_BUG_ON_PAGE(!zeroed, page);
2011                 enqueue_huge_page(h, page);
2012         }
2013 free:
2014         spin_unlock(&hugetlb_lock);
2015
2016         /* Free unnecessary surplus pages to the buddy allocator */
2017         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2018                 put_page(page);
2019         spin_lock(&hugetlb_lock);
2020
2021         return ret;
2022 }
2023
2024 /*
2025  * This routine has two main purposes:
2026  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2027  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2028  *    to the associated reservation map.
2029  * 2) Free any unused surplus pages that may have been allocated to satisfy
2030  *    the reservation.  As many as unused_resv_pages may be freed.
2031  *
2032  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2033  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2034  * we must make sure nobody else can claim pages we are in the process of
2035  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2036  * number of huge pages we plan to free when dropping the lock.
2037  */
2038 static void return_unused_surplus_pages(struct hstate *h,
2039                                         unsigned long unused_resv_pages)
2040 {
2041         unsigned long nr_pages;
2042
2043         /* Cannot return gigantic pages currently */
2044         if (hstate_is_gigantic(h))
2045                 goto out;
2046
2047         /*
2048          * Part (or even all) of the reservation could have been backed
2049          * by pre-allocated pages. Only free surplus pages.
2050          */
2051         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2052
2053         /*
2054          * We want to release as many surplus pages as possible, spread
2055          * evenly across all nodes with memory. Iterate across these nodes
2056          * until we can no longer free unreserved surplus pages. This occurs
2057          * when the nodes with surplus pages have no free pages.
2058          * free_pool_huge_page() will balance the freed pages across the
2059          * on-line nodes with memory and will handle the hstate accounting.
2060          *
2061          * Note that we decrement resv_huge_pages as we free the pages.  If
2062          * we drop the lock, resv_huge_pages will still be sufficiently large
2063          * to cover subsequent pages we may free.
2064          */
2065         while (nr_pages--) {
2066                 h->resv_huge_pages--;
2067                 unused_resv_pages--;
2068                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2069                         goto out;
2070                 cond_resched_lock(&hugetlb_lock);
2071         }
2072
2073 out:
2074         /* Fully uncommit the reservation */
2075         h->resv_huge_pages -= unused_resv_pages;
2076 }
2077
2078
2079 /*
2080  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2081  * are used by the huge page allocation routines to manage reservations.
2082  *
2083  * vma_needs_reservation is called to determine if the huge page at addr
2084  * within the vma has an associated reservation.  If a reservation is
2085  * needed, the value 1 is returned.  The caller is then responsible for
2086  * managing the global reservation and subpool usage counts.  After
2087  * the huge page has been allocated, vma_commit_reservation is called
2088  * to add the page to the reservation map.  If the page allocation fails,
2089  * the reservation must be ended instead of committed.  vma_end_reservation
2090  * is called in such cases.
2091  *
2092  * In the normal case, vma_commit_reservation returns the same value
2093  * as the preceding vma_needs_reservation call.  The only time this
2094  * is not the case is if a reserve map was changed between calls.  It
2095  * is the responsibility of the caller to notice the difference and
2096  * take appropriate action.
2097  *
2098  * vma_add_reservation is used in error paths where a reservation must
2099  * be restored when a newly allocated huge page must be freed.  It is
2100  * to be called after calling vma_needs_reservation to determine if a
2101  * reservation exists.
2102  */
2103 enum vma_resv_mode {
2104         VMA_NEEDS_RESV,
2105         VMA_COMMIT_RESV,
2106         VMA_END_RESV,
2107         VMA_ADD_RESV,
2108 };
2109 static long __vma_reservation_common(struct hstate *h,
2110                                 struct vm_area_struct *vma, unsigned long addr,
2111                                 enum vma_resv_mode mode)
2112 {
2113         struct resv_map *resv;
2114         pgoff_t idx;
2115         long ret;
2116         long dummy_out_regions_needed;
2117
2118         resv = vma_resv_map(vma);
2119         if (!resv)
2120                 return 1;
2121
2122         idx = vma_hugecache_offset(h, vma, addr);
2123         switch (mode) {
2124         case VMA_NEEDS_RESV:
2125                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2126                 /* We assume that vma_reservation_* routines always operate on
2127                  * 1 page, and that adding to resv map a 1 page entry can only
2128                  * ever require 1 region.
2129                  */
2130                 VM_BUG_ON(dummy_out_regions_needed != 1);
2131                 break;
2132         case VMA_COMMIT_RESV:
2133                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2134                 /* region_add calls of range 1 should never fail. */
2135                 VM_BUG_ON(ret < 0);
2136                 break;
2137         case VMA_END_RESV:
2138                 region_abort(resv, idx, idx + 1, 1);
2139                 ret = 0;
2140                 break;
2141         case VMA_ADD_RESV:
2142                 if (vma->vm_flags & VM_MAYSHARE) {
2143                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2144                         /* region_add calls of range 1 should never fail. */
2145                         VM_BUG_ON(ret < 0);
2146                 } else {
2147                         region_abort(resv, idx, idx + 1, 1);
2148                         ret = region_del(resv, idx, idx + 1);
2149                 }
2150                 break;
2151         default:
2152                 BUG();
2153         }
2154
2155         if (vma->vm_flags & VM_MAYSHARE)
2156                 return ret;
2157         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2158                 /*
2159                  * In most cases, reserves always exist for private mappings.
2160                  * However, a file associated with mapping could have been
2161                  * hole punched or truncated after reserves were consumed.
2162                  * As subsequent fault on such a range will not use reserves.
2163                  * Subtle - The reserve map for private mappings has the
2164                  * opposite meaning than that of shared mappings.  If NO
2165                  * entry is in the reserve map, it means a reservation exists.
2166                  * If an entry exists in the reserve map, it means the
2167                  * reservation has already been consumed.  As a result, the
2168                  * return value of this routine is the opposite of the
2169                  * value returned from reserve map manipulation routines above.
2170                  */
2171                 if (ret)
2172                         return 0;
2173                 else
2174                         return 1;
2175         }
2176         else
2177                 return ret < 0 ? ret : 0;
2178 }
2179
2180 static long vma_needs_reservation(struct hstate *h,
2181                         struct vm_area_struct *vma, unsigned long addr)
2182 {
2183         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2184 }
2185
2186 static long vma_commit_reservation(struct hstate *h,
2187                         struct vm_area_struct *vma, unsigned long addr)
2188 {
2189         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2190 }
2191
2192 static void vma_end_reservation(struct hstate *h,
2193                         struct vm_area_struct *vma, unsigned long addr)
2194 {
2195         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2196 }
2197
2198 static long vma_add_reservation(struct hstate *h,
2199                         struct vm_area_struct *vma, unsigned long addr)
2200 {
2201         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2202 }
2203
2204 /*
2205  * This routine is called to restore a reservation on error paths.  In the
2206  * specific error paths, a huge page was allocated (via alloc_huge_page)
2207  * and is about to be freed.  If a reservation for the page existed,
2208  * alloc_huge_page would have consumed the reservation and set
2209  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2210  * via free_huge_page, the global reservation count will be incremented if
2211  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2212  * reserve map.  Adjust the reserve map here to be consistent with global
2213  * reserve count adjustments to be made by free_huge_page.
2214  */
2215 static void restore_reserve_on_error(struct hstate *h,
2216                         struct vm_area_struct *vma, unsigned long address,
2217                         struct page *page)
2218 {
2219         if (unlikely(HPageRestoreReserve(page))) {
2220                 long rc = vma_needs_reservation(h, vma, address);
2221
2222                 if (unlikely(rc < 0)) {
2223                         /*
2224                          * Rare out of memory condition in reserve map
2225                          * manipulation.  Clear HPageRestoreReserve so that
2226                          * global reserve count will not be incremented
2227                          * by free_huge_page.  This will make it appear
2228                          * as though the reservation for this page was
2229                          * consumed.  This may prevent the task from
2230                          * faulting in the page at a later time.  This
2231                          * is better than inconsistent global huge page
2232                          * accounting of reserve counts.
2233                          */
2234                         ClearHPageRestoreReserve(page);
2235                 } else if (rc) {
2236                         rc = vma_add_reservation(h, vma, address);
2237                         if (unlikely(rc < 0))
2238                                 /*
2239                                  * See above comment about rare out of
2240                                  * memory condition.
2241                                  */
2242                                 ClearHPageRestoreReserve(page);
2243                 } else
2244                         vma_end_reservation(h, vma, address);
2245         }
2246 }
2247
2248 struct page *alloc_huge_page(struct vm_area_struct *vma,
2249                                     unsigned long addr, int avoid_reserve)
2250 {
2251         struct hugepage_subpool *spool = subpool_vma(vma);
2252         struct hstate *h = hstate_vma(vma);
2253         struct page *page;
2254         long map_chg, map_commit;
2255         long gbl_chg;
2256         int ret, idx;
2257         struct hugetlb_cgroup *h_cg;
2258         bool deferred_reserve;
2259
2260         idx = hstate_index(h);
2261         /*
2262          * Examine the region/reserve map to determine if the process
2263          * has a reservation for the page to be allocated.  A return
2264          * code of zero indicates a reservation exists (no change).
2265          */
2266         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2267         if (map_chg < 0)
2268                 return ERR_PTR(-ENOMEM);
2269
2270         /*
2271          * Processes that did not create the mapping will have no
2272          * reserves as indicated by the region/reserve map. Check
2273          * that the allocation will not exceed the subpool limit.
2274          * Allocations for MAP_NORESERVE mappings also need to be
2275          * checked against any subpool limit.
2276          */
2277         if (map_chg || avoid_reserve) {
2278                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2279                 if (gbl_chg < 0) {
2280                         vma_end_reservation(h, vma, addr);
2281                         return ERR_PTR(-ENOSPC);
2282                 }
2283
2284                 /*
2285                  * Even though there was no reservation in the region/reserve
2286                  * map, there could be reservations associated with the
2287                  * subpool that can be used.  This would be indicated if the
2288                  * return value of hugepage_subpool_get_pages() is zero.
2289                  * However, if avoid_reserve is specified we still avoid even
2290                  * the subpool reservations.
2291                  */
2292                 if (avoid_reserve)
2293                         gbl_chg = 1;
2294         }
2295
2296         /* If this allocation is not consuming a reservation, charge it now.
2297          */
2298         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2299         if (deferred_reserve) {
2300                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2301                         idx, pages_per_huge_page(h), &h_cg);
2302                 if (ret)
2303                         goto out_subpool_put;
2304         }
2305
2306         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2307         if (ret)
2308                 goto out_uncharge_cgroup_reservation;
2309
2310         spin_lock(&hugetlb_lock);
2311         /*
2312          * glb_chg is passed to indicate whether or not a page must be taken
2313          * from the global free pool (global change).  gbl_chg == 0 indicates
2314          * a reservation exists for the allocation.
2315          */
2316         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2317         if (!page) {
2318                 spin_unlock(&hugetlb_lock);
2319                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2320                 if (!page)
2321                         goto out_uncharge_cgroup;
2322                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2323                         SetHPageRestoreReserve(page);
2324                         h->resv_huge_pages--;
2325                 }
2326                 spin_lock(&hugetlb_lock);
2327                 list_add(&page->lru, &h->hugepage_activelist);
2328                 /* Fall through */
2329         }
2330         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2331         /* If allocation is not consuming a reservation, also store the
2332          * hugetlb_cgroup pointer on the page.
2333          */
2334         if (deferred_reserve) {
2335                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2336                                                   h_cg, page);
2337         }
2338
2339         spin_unlock(&hugetlb_lock);
2340
2341         hugetlb_set_page_subpool(page, spool);
2342
2343         map_commit = vma_commit_reservation(h, vma, addr);
2344         if (unlikely(map_chg > map_commit)) {
2345                 /*
2346                  * The page was added to the reservation map between
2347                  * vma_needs_reservation and vma_commit_reservation.
2348                  * This indicates a race with hugetlb_reserve_pages.
2349                  * Adjust for the subpool count incremented above AND
2350                  * in hugetlb_reserve_pages for the same page.  Also,
2351                  * the reservation count added in hugetlb_reserve_pages
2352                  * no longer applies.
2353                  */
2354                 long rsv_adjust;
2355
2356                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2357                 hugetlb_acct_memory(h, -rsv_adjust);
2358                 if (deferred_reserve)
2359                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2360                                         pages_per_huge_page(h), page);
2361         }
2362         return page;
2363
2364 out_uncharge_cgroup:
2365         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2366 out_uncharge_cgroup_reservation:
2367         if (deferred_reserve)
2368                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2369                                                     h_cg);
2370 out_subpool_put:
2371         if (map_chg || avoid_reserve)
2372                 hugepage_subpool_put_pages(spool, 1);
2373         vma_end_reservation(h, vma, addr);
2374         return ERR_PTR(-ENOSPC);
2375 }
2376
2377 int alloc_bootmem_huge_page(struct hstate *h)
2378         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2379 int __alloc_bootmem_huge_page(struct hstate *h)
2380 {
2381         struct huge_bootmem_page *m;
2382         int nr_nodes, node;
2383
2384         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2385                 void *addr;
2386
2387                 addr = memblock_alloc_try_nid_raw(
2388                                 huge_page_size(h), huge_page_size(h),
2389                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2390                 if (addr) {
2391                         /*
2392                          * Use the beginning of the huge page to store the
2393                          * huge_bootmem_page struct (until gather_bootmem
2394                          * puts them into the mem_map).
2395                          */
2396                         m = addr;
2397                         goto found;
2398                 }
2399         }
2400         return 0;
2401
2402 found:
2403         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2404         /* Put them into a private list first because mem_map is not up yet */
2405         INIT_LIST_HEAD(&m->list);
2406         list_add(&m->list, &huge_boot_pages);
2407         m->hstate = h;
2408         return 1;
2409 }
2410
2411 static void __init prep_compound_huge_page(struct page *page,
2412                 unsigned int order)
2413 {
2414         if (unlikely(order > (MAX_ORDER - 1)))
2415                 prep_compound_gigantic_page(page, order);
2416         else
2417                 prep_compound_page(page, order);
2418 }
2419
2420 /* Put bootmem huge pages into the standard lists after mem_map is up */
2421 static void __init gather_bootmem_prealloc(void)
2422 {
2423         struct huge_bootmem_page *m;
2424
2425         list_for_each_entry(m, &huge_boot_pages, list) {
2426                 struct page *page = virt_to_page(m);
2427                 struct hstate *h = m->hstate;
2428
2429                 WARN_ON(page_count(page) != 1);
2430                 prep_compound_huge_page(page, huge_page_order(h));
2431                 WARN_ON(PageReserved(page));
2432                 prep_new_huge_page(h, page, page_to_nid(page));
2433                 put_page(page); /* free it into the hugepage allocator */
2434
2435                 /*
2436                  * If we had gigantic hugepages allocated at boot time, we need
2437                  * to restore the 'stolen' pages to totalram_pages in order to
2438                  * fix confusing memory reports from free(1) and another
2439                  * side-effects, like CommitLimit going negative.
2440                  */
2441                 if (hstate_is_gigantic(h))
2442                         adjust_managed_page_count(page, pages_per_huge_page(h));
2443                 cond_resched();
2444         }
2445 }
2446
2447 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2448 {
2449         unsigned long i;
2450         nodemask_t *node_alloc_noretry;
2451
2452         if (!hstate_is_gigantic(h)) {
2453                 /*
2454                  * Bit mask controlling how hard we retry per-node allocations.
2455                  * Ignore errors as lower level routines can deal with
2456                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2457                  * time, we are likely in bigger trouble.
2458                  */
2459                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2460                                                 GFP_KERNEL);
2461         } else {
2462                 /* allocations done at boot time */
2463                 node_alloc_noretry = NULL;
2464         }
2465
2466         /* bit mask controlling how hard we retry per-node allocations */
2467         if (node_alloc_noretry)
2468                 nodes_clear(*node_alloc_noretry);
2469
2470         for (i = 0; i < h->max_huge_pages; ++i) {
2471                 if (hstate_is_gigantic(h)) {
2472                         if (hugetlb_cma_size) {
2473                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2474                                 goto free;
2475                         }
2476                         if (!alloc_bootmem_huge_page(h))
2477                                 break;
2478                 } else if (!alloc_pool_huge_page(h,
2479                                          &node_states[N_MEMORY],
2480                                          node_alloc_noretry))
2481                         break;
2482                 cond_resched();
2483         }
2484         if (i < h->max_huge_pages) {
2485                 char buf[32];
2486
2487                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2488                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2489                         h->max_huge_pages, buf, i);
2490                 h->max_huge_pages = i;
2491         }
2492 free:
2493         kfree(node_alloc_noretry);
2494 }
2495
2496 static void __init hugetlb_init_hstates(void)
2497 {
2498         struct hstate *h;
2499
2500         for_each_hstate(h) {
2501                 if (minimum_order > huge_page_order(h))
2502                         minimum_order = huge_page_order(h);
2503
2504                 /* oversize hugepages were init'ed in early boot */
2505                 if (!hstate_is_gigantic(h))
2506                         hugetlb_hstate_alloc_pages(h);
2507         }
2508         VM_BUG_ON(minimum_order == UINT_MAX);
2509 }
2510
2511 static void __init report_hugepages(void)
2512 {
2513         struct hstate *h;
2514
2515         for_each_hstate(h) {
2516                 char buf[32];
2517
2518                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2519                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2520                         buf, h->free_huge_pages);
2521         }
2522 }
2523
2524 #ifdef CONFIG_HIGHMEM
2525 static void try_to_free_low(struct hstate *h, unsigned long count,
2526                                                 nodemask_t *nodes_allowed)
2527 {
2528         int i;
2529
2530         if (hstate_is_gigantic(h))
2531                 return;
2532
2533         for_each_node_mask(i, *nodes_allowed) {
2534                 struct page *page, *next;
2535                 struct list_head *freel = &h->hugepage_freelists[i];
2536                 list_for_each_entry_safe(page, next, freel, lru) {
2537                         if (count >= h->nr_huge_pages)
2538                                 return;
2539                         if (PageHighMem(page))
2540                                 continue;
2541                         list_del(&page->lru);
2542                         update_and_free_page(h, page);
2543                         h->free_huge_pages--;
2544                         h->free_huge_pages_node[page_to_nid(page)]--;
2545                 }
2546         }
2547 }
2548 #else
2549 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2550                                                 nodemask_t *nodes_allowed)
2551 {
2552 }
2553 #endif
2554
2555 /*
2556  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2557  * balanced by operating on them in a round-robin fashion.
2558  * Returns 1 if an adjustment was made.
2559  */
2560 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2561                                 int delta)
2562 {
2563         int nr_nodes, node;
2564
2565         VM_BUG_ON(delta != -1 && delta != 1);
2566
2567         if (delta < 0) {
2568                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2569                         if (h->surplus_huge_pages_node[node])
2570                                 goto found;
2571                 }
2572         } else {
2573                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2574                         if (h->surplus_huge_pages_node[node] <
2575                                         h->nr_huge_pages_node[node])
2576                                 goto found;
2577                 }
2578         }
2579         return 0;
2580
2581 found:
2582         h->surplus_huge_pages += delta;
2583         h->surplus_huge_pages_node[node] += delta;
2584         return 1;
2585 }
2586
2587 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2588 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2589                               nodemask_t *nodes_allowed)
2590 {
2591         unsigned long min_count, ret;
2592         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2593
2594         /*
2595          * Bit mask controlling how hard we retry per-node allocations.
2596          * If we can not allocate the bit mask, do not attempt to allocate
2597          * the requested huge pages.
2598          */
2599         if (node_alloc_noretry)
2600                 nodes_clear(*node_alloc_noretry);
2601         else
2602                 return -ENOMEM;
2603
2604         spin_lock(&hugetlb_lock);
2605
2606         /*
2607          * Check for a node specific request.
2608          * Changing node specific huge page count may require a corresponding
2609          * change to the global count.  In any case, the passed node mask
2610          * (nodes_allowed) will restrict alloc/free to the specified node.
2611          */
2612         if (nid != NUMA_NO_NODE) {
2613                 unsigned long old_count = count;
2614
2615                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2616                 /*
2617                  * User may have specified a large count value which caused the
2618                  * above calculation to overflow.  In this case, they wanted
2619                  * to allocate as many huge pages as possible.  Set count to
2620                  * largest possible value to align with their intention.
2621                  */
2622                 if (count < old_count)
2623                         count = ULONG_MAX;
2624         }
2625
2626         /*
2627          * Gigantic pages runtime allocation depend on the capability for large
2628          * page range allocation.
2629          * If the system does not provide this feature, return an error when
2630          * the user tries to allocate gigantic pages but let the user free the
2631          * boottime allocated gigantic pages.
2632          */
2633         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2634                 if (count > persistent_huge_pages(h)) {
2635                         spin_unlock(&hugetlb_lock);
2636                         NODEMASK_FREE(node_alloc_noretry);
2637                         return -EINVAL;
2638                 }
2639                 /* Fall through to decrease pool */
2640         }
2641
2642         /*
2643          * Increase the pool size
2644          * First take pages out of surplus state.  Then make up the
2645          * remaining difference by allocating fresh huge pages.
2646          *
2647          * We might race with alloc_surplus_huge_page() here and be unable
2648          * to convert a surplus huge page to a normal huge page. That is
2649          * not critical, though, it just means the overall size of the
2650          * pool might be one hugepage larger than it needs to be, but
2651          * within all the constraints specified by the sysctls.
2652          */
2653         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2654                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2655                         break;
2656         }
2657
2658         while (count > persistent_huge_pages(h)) {
2659                 /*
2660                  * If this allocation races such that we no longer need the
2661                  * page, free_huge_page will handle it by freeing the page
2662                  * and reducing the surplus.
2663                  */
2664                 spin_unlock(&hugetlb_lock);
2665
2666                 /* yield cpu to avoid soft lockup */
2667                 cond_resched();
2668
2669                 ret = alloc_pool_huge_page(h, nodes_allowed,
2670                                                 node_alloc_noretry);
2671                 spin_lock(&hugetlb_lock);
2672                 if (!ret)
2673                         goto out;
2674
2675                 /* Bail for signals. Probably ctrl-c from user */
2676                 if (signal_pending(current))
2677                         goto out;
2678         }
2679
2680         /*
2681          * Decrease the pool size
2682          * First return free pages to the buddy allocator (being careful
2683          * to keep enough around to satisfy reservations).  Then place
2684          * pages into surplus state as needed so the pool will shrink
2685          * to the desired size as pages become free.
2686          *
2687          * By placing pages into the surplus state independent of the
2688          * overcommit value, we are allowing the surplus pool size to
2689          * exceed overcommit. There are few sane options here. Since
2690          * alloc_surplus_huge_page() is checking the global counter,
2691          * though, we'll note that we're not allowed to exceed surplus
2692          * and won't grow the pool anywhere else. Not until one of the
2693          * sysctls are changed, or the surplus pages go out of use.
2694          */
2695         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2696         min_count = max(count, min_count);
2697         try_to_free_low(h, min_count, nodes_allowed);
2698         while (min_count < persistent_huge_pages(h)) {
2699                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2700                         break;
2701                 cond_resched_lock(&hugetlb_lock);
2702         }
2703         while (count < persistent_huge_pages(h)) {
2704                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2705                         break;
2706         }
2707 out:
2708         h->max_huge_pages = persistent_huge_pages(h);
2709         spin_unlock(&hugetlb_lock);
2710
2711         NODEMASK_FREE(node_alloc_noretry);
2712
2713         return 0;
2714 }
2715
2716 #define HSTATE_ATTR_RO(_name) \
2717         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2718
2719 #define HSTATE_ATTR(_name) \
2720         static struct kobj_attribute _name##_attr = \
2721                 __ATTR(_name, 0644, _name##_show, _name##_store)
2722
2723 static struct kobject *hugepages_kobj;
2724 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2725
2726 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2727
2728 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2729 {
2730         int i;
2731
2732         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2733                 if (hstate_kobjs[i] == kobj) {
2734                         if (nidp)
2735                                 *nidp = NUMA_NO_NODE;
2736                         return &hstates[i];
2737                 }
2738
2739         return kobj_to_node_hstate(kobj, nidp);
2740 }
2741
2742 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2743                                         struct kobj_attribute *attr, char *buf)
2744 {
2745         struct hstate *h;
2746         unsigned long nr_huge_pages;
2747         int nid;
2748
2749         h = kobj_to_hstate(kobj, &nid);
2750         if (nid == NUMA_NO_NODE)
2751                 nr_huge_pages = h->nr_huge_pages;
2752         else
2753                 nr_huge_pages = h->nr_huge_pages_node[nid];
2754
2755         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2756 }
2757
2758 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2759                                            struct hstate *h, int nid,
2760                                            unsigned long count, size_t len)
2761 {
2762         int err;
2763         nodemask_t nodes_allowed, *n_mask;
2764
2765         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2766                 return -EINVAL;
2767
2768         if (nid == NUMA_NO_NODE) {
2769                 /*
2770                  * global hstate attribute
2771                  */
2772                 if (!(obey_mempolicy &&
2773                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2774                         n_mask = &node_states[N_MEMORY];
2775                 else
2776                         n_mask = &nodes_allowed;
2777         } else {
2778                 /*
2779                  * Node specific request.  count adjustment happens in
2780                  * set_max_huge_pages() after acquiring hugetlb_lock.
2781                  */
2782                 init_nodemask_of_node(&nodes_allowed, nid);
2783                 n_mask = &nodes_allowed;
2784         }
2785
2786         err = set_max_huge_pages(h, count, nid, n_mask);
2787
2788         return err ? err : len;
2789 }
2790
2791 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2792                                          struct kobject *kobj, const char *buf,
2793                                          size_t len)
2794 {
2795         struct hstate *h;
2796         unsigned long count;
2797         int nid;
2798         int err;
2799
2800         err = kstrtoul(buf, 10, &count);
2801         if (err)
2802                 return err;
2803
2804         h = kobj_to_hstate(kobj, &nid);
2805         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2806 }
2807
2808 static ssize_t nr_hugepages_show(struct kobject *kobj,
2809                                        struct kobj_attribute *attr, char *buf)
2810 {
2811         return nr_hugepages_show_common(kobj, attr, buf);
2812 }
2813
2814 static ssize_t nr_hugepages_store(struct kobject *kobj,
2815                struct kobj_attribute *attr, const char *buf, size_t len)
2816 {
2817         return nr_hugepages_store_common(false, kobj, buf, len);
2818 }
2819 HSTATE_ATTR(nr_hugepages);
2820
2821 #ifdef CONFIG_NUMA
2822
2823 /*
2824  * hstate attribute for optionally mempolicy-based constraint on persistent
2825  * huge page alloc/free.
2826  */
2827 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2828                                            struct kobj_attribute *attr,
2829                                            char *buf)
2830 {
2831         return nr_hugepages_show_common(kobj, attr, buf);
2832 }
2833
2834 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2835                struct kobj_attribute *attr, const char *buf, size_t len)
2836 {
2837         return nr_hugepages_store_common(true, kobj, buf, len);
2838 }
2839 HSTATE_ATTR(nr_hugepages_mempolicy);
2840 #endif
2841
2842
2843 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2844                                         struct kobj_attribute *attr, char *buf)
2845 {
2846         struct hstate *h = kobj_to_hstate(kobj, NULL);
2847         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2848 }
2849
2850 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2851                 struct kobj_attribute *attr, const char *buf, size_t count)
2852 {
2853         int err;
2854         unsigned long input;
2855         struct hstate *h = kobj_to_hstate(kobj, NULL);
2856
2857         if (hstate_is_gigantic(h))
2858                 return -EINVAL;
2859
2860         err = kstrtoul(buf, 10, &input);
2861         if (err)
2862                 return err;
2863
2864         spin_lock(&hugetlb_lock);
2865         h->nr_overcommit_huge_pages = input;
2866         spin_unlock(&hugetlb_lock);
2867
2868         return count;
2869 }
2870 HSTATE_ATTR(nr_overcommit_hugepages);
2871
2872 static ssize_t free_hugepages_show(struct kobject *kobj,
2873                                         struct kobj_attribute *attr, char *buf)
2874 {
2875         struct hstate *h;
2876         unsigned long free_huge_pages;
2877         int nid;
2878
2879         h = kobj_to_hstate(kobj, &nid);
2880         if (nid == NUMA_NO_NODE)
2881                 free_huge_pages = h->free_huge_pages;
2882         else
2883                 free_huge_pages = h->free_huge_pages_node[nid];
2884
2885         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2886 }
2887 HSTATE_ATTR_RO(free_hugepages);
2888
2889 static ssize_t resv_hugepages_show(struct kobject *kobj,
2890                                         struct kobj_attribute *attr, char *buf)
2891 {
2892         struct hstate *h = kobj_to_hstate(kobj, NULL);
2893         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2894 }
2895 HSTATE_ATTR_RO(resv_hugepages);
2896
2897 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2898                                         struct kobj_attribute *attr, char *buf)
2899 {
2900         struct hstate *h;
2901         unsigned long surplus_huge_pages;
2902         int nid;
2903
2904         h = kobj_to_hstate(kobj, &nid);
2905         if (nid == NUMA_NO_NODE)
2906                 surplus_huge_pages = h->surplus_huge_pages;
2907         else
2908                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2909
2910         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2911 }
2912 HSTATE_ATTR_RO(surplus_hugepages);
2913
2914 static struct attribute *hstate_attrs[] = {
2915         &nr_hugepages_attr.attr,
2916         &nr_overcommit_hugepages_attr.attr,
2917         &free_hugepages_attr.attr,
2918         &resv_hugepages_attr.attr,
2919         &surplus_hugepages_attr.attr,
2920 #ifdef CONFIG_NUMA
2921         &nr_hugepages_mempolicy_attr.attr,
2922 #endif
2923         NULL,
2924 };
2925
2926 static const struct attribute_group hstate_attr_group = {
2927         .attrs = hstate_attrs,
2928 };
2929
2930 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2931                                     struct kobject **hstate_kobjs,
2932                                     const struct attribute_group *hstate_attr_group)
2933 {
2934         int retval;
2935         int hi = hstate_index(h);
2936
2937         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2938         if (!hstate_kobjs[hi])
2939                 return -ENOMEM;
2940
2941         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2942         if (retval) {
2943                 kobject_put(hstate_kobjs[hi]);
2944                 hstate_kobjs[hi] = NULL;
2945         }
2946
2947         return retval;
2948 }
2949
2950 static void __init hugetlb_sysfs_init(void)
2951 {
2952         struct hstate *h;
2953         int err;
2954
2955         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2956         if (!hugepages_kobj)
2957                 return;
2958
2959         for_each_hstate(h) {
2960                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2961                                          hstate_kobjs, &hstate_attr_group);
2962                 if (err)
2963                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
2964         }
2965 }
2966
2967 #ifdef CONFIG_NUMA
2968
2969 /*
2970  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2971  * with node devices in node_devices[] using a parallel array.  The array
2972  * index of a node device or _hstate == node id.
2973  * This is here to avoid any static dependency of the node device driver, in
2974  * the base kernel, on the hugetlb module.
2975  */
2976 struct node_hstate {
2977         struct kobject          *hugepages_kobj;
2978         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2979 };
2980 static struct node_hstate node_hstates[MAX_NUMNODES];
2981
2982 /*
2983  * A subset of global hstate attributes for node devices
2984  */
2985 static struct attribute *per_node_hstate_attrs[] = {
2986         &nr_hugepages_attr.attr,
2987         &free_hugepages_attr.attr,
2988         &surplus_hugepages_attr.attr,
2989         NULL,
2990 };
2991
2992 static const struct attribute_group per_node_hstate_attr_group = {
2993         .attrs = per_node_hstate_attrs,
2994 };
2995
2996 /*
2997  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2998  * Returns node id via non-NULL nidp.
2999  */
3000 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3001 {
3002         int nid;
3003
3004         for (nid = 0; nid < nr_node_ids; nid++) {
3005                 struct node_hstate *nhs = &node_hstates[nid];
3006                 int i;
3007                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3008                         if (nhs->hstate_kobjs[i] == kobj) {
3009                                 if (nidp)
3010                                         *nidp = nid;
3011                                 return &hstates[i];
3012                         }
3013         }
3014
3015         BUG();
3016         return NULL;
3017 }
3018
3019 /*
3020  * Unregister hstate attributes from a single node device.
3021  * No-op if no hstate attributes attached.
3022  */
3023 static void hugetlb_unregister_node(struct node *node)
3024 {
3025         struct hstate *h;
3026         struct node_hstate *nhs = &node_hstates[node->dev.id];
3027
3028         if (!nhs->hugepages_kobj)
3029                 return;         /* no hstate attributes */
3030
3031         for_each_hstate(h) {
3032                 int idx = hstate_index(h);
3033                 if (nhs->hstate_kobjs[idx]) {
3034                         kobject_put(nhs->hstate_kobjs[idx]);
3035                         nhs->hstate_kobjs[idx] = NULL;
3036                 }
3037         }
3038
3039         kobject_put(nhs->hugepages_kobj);
3040         nhs->hugepages_kobj = NULL;
3041 }
3042
3043
3044 /*
3045  * Register hstate attributes for a single node device.
3046  * No-op if attributes already registered.
3047  */
3048 static void hugetlb_register_node(struct node *node)
3049 {
3050         struct hstate *h;
3051         struct node_hstate *nhs = &node_hstates[node->dev.id];
3052         int err;
3053
3054         if (nhs->hugepages_kobj)
3055                 return;         /* already allocated */
3056
3057         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3058                                                         &node->dev.kobj);
3059         if (!nhs->hugepages_kobj)
3060                 return;
3061
3062         for_each_hstate(h) {
3063                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3064                                                 nhs->hstate_kobjs,
3065                                                 &per_node_hstate_attr_group);
3066                 if (err) {
3067                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3068                                 h->name, node->dev.id);
3069                         hugetlb_unregister_node(node);
3070                         break;
3071                 }
3072         }
3073 }
3074
3075 /*
3076  * hugetlb init time:  register hstate attributes for all registered node
3077  * devices of nodes that have memory.  All on-line nodes should have
3078  * registered their associated device by this time.
3079  */
3080 static void __init hugetlb_register_all_nodes(void)
3081 {
3082         int nid;
3083
3084         for_each_node_state(nid, N_MEMORY) {
3085                 struct node *node = node_devices[nid];
3086                 if (node->dev.id == nid)
3087                         hugetlb_register_node(node);
3088         }
3089
3090         /*
3091          * Let the node device driver know we're here so it can
3092          * [un]register hstate attributes on node hotplug.
3093          */
3094         register_hugetlbfs_with_node(hugetlb_register_node,
3095                                      hugetlb_unregister_node);
3096 }
3097 #else   /* !CONFIG_NUMA */
3098
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3100 {
3101         BUG();
3102         if (nidp)
3103                 *nidp = -1;
3104         return NULL;
3105 }
3106
3107 static void hugetlb_register_all_nodes(void) { }
3108
3109 #endif
3110
3111 static int __init hugetlb_init(void)
3112 {
3113         int i;
3114
3115         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3116                         __NR_HPAGEFLAGS);
3117
3118         if (!hugepages_supported()) {
3119                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3120                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3121                 return 0;
3122         }
3123
3124         /*
3125          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3126          * architectures depend on setup being done here.
3127          */
3128         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3129         if (!parsed_default_hugepagesz) {
3130                 /*
3131                  * If we did not parse a default huge page size, set
3132                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3133                  * number of huge pages for this default size was implicitly
3134                  * specified, set that here as well.
3135                  * Note that the implicit setting will overwrite an explicit
3136                  * setting.  A warning will be printed in this case.
3137                  */
3138                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3139                 if (default_hstate_max_huge_pages) {
3140                         if (default_hstate.max_huge_pages) {
3141                                 char buf[32];
3142
3143                                 string_get_size(huge_page_size(&default_hstate),
3144                                         1, STRING_UNITS_2, buf, 32);
3145                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3146                                         default_hstate.max_huge_pages, buf);
3147                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3148                                         default_hstate_max_huge_pages);
3149                         }
3150                         default_hstate.max_huge_pages =
3151                                 default_hstate_max_huge_pages;
3152                 }
3153         }
3154
3155         hugetlb_cma_check();
3156         hugetlb_init_hstates();
3157         gather_bootmem_prealloc();
3158         report_hugepages();
3159
3160         hugetlb_sysfs_init();
3161         hugetlb_register_all_nodes();
3162         hugetlb_cgroup_file_init();
3163
3164 #ifdef CONFIG_SMP
3165         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3166 #else
3167         num_fault_mutexes = 1;
3168 #endif
3169         hugetlb_fault_mutex_table =
3170                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3171                               GFP_KERNEL);
3172         BUG_ON(!hugetlb_fault_mutex_table);
3173
3174         for (i = 0; i < num_fault_mutexes; i++)
3175                 mutex_init(&hugetlb_fault_mutex_table[i]);
3176         return 0;
3177 }
3178 subsys_initcall(hugetlb_init);
3179
3180 /* Overwritten by architectures with more huge page sizes */
3181 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3182 {
3183         return size == HPAGE_SIZE;
3184 }
3185
3186 void __init hugetlb_add_hstate(unsigned int order)
3187 {
3188         struct hstate *h;
3189         unsigned long i;
3190
3191         if (size_to_hstate(PAGE_SIZE << order)) {
3192                 return;
3193         }
3194         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3195         BUG_ON(order == 0);
3196         h = &hstates[hugetlb_max_hstate++];
3197         h->order = order;
3198         h->mask = ~(huge_page_size(h) - 1);
3199         for (i = 0; i < MAX_NUMNODES; ++i)
3200                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3201         INIT_LIST_HEAD(&h->hugepage_activelist);
3202         h->next_nid_to_alloc = first_memory_node;
3203         h->next_nid_to_free = first_memory_node;
3204         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3205                                         huge_page_size(h)/1024);
3206
3207         parsed_hstate = h;
3208 }
3209
3210 /*
3211  * hugepages command line processing
3212  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3213  * specification.  If not, ignore the hugepages value.  hugepages can also
3214  * be the first huge page command line  option in which case it implicitly
3215  * specifies the number of huge pages for the default size.
3216  */
3217 static int __init hugepages_setup(char *s)
3218 {
3219         unsigned long *mhp;
3220         static unsigned long *last_mhp;
3221
3222         if (!parsed_valid_hugepagesz) {
3223                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3224                 parsed_valid_hugepagesz = true;
3225                 return 0;
3226         }
3227
3228         /*
3229          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3230          * yet, so this hugepages= parameter goes to the "default hstate".
3231          * Otherwise, it goes with the previously parsed hugepagesz or
3232          * default_hugepagesz.
3233          */
3234         else if (!hugetlb_max_hstate)
3235                 mhp = &default_hstate_max_huge_pages;
3236         else
3237                 mhp = &parsed_hstate->max_huge_pages;
3238
3239         if (mhp == last_mhp) {
3240                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3241                 return 0;
3242         }
3243
3244         if (sscanf(s, "%lu", mhp) <= 0)
3245                 *mhp = 0;
3246
3247         /*
3248          * Global state is always initialized later in hugetlb_init.
3249          * But we need to allocate >= MAX_ORDER hstates here early to still
3250          * use the bootmem allocator.
3251          */
3252         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3253                 hugetlb_hstate_alloc_pages(parsed_hstate);
3254
3255         last_mhp = mhp;
3256
3257         return 1;
3258 }
3259 __setup("hugepages=", hugepages_setup);
3260
3261 /*
3262  * hugepagesz command line processing
3263  * A specific huge page size can only be specified once with hugepagesz.
3264  * hugepagesz is followed by hugepages on the command line.  The global
3265  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3266  * hugepagesz argument was valid.
3267  */
3268 static int __init hugepagesz_setup(char *s)
3269 {
3270         unsigned long size;
3271         struct hstate *h;
3272
3273         parsed_valid_hugepagesz = false;
3274         size = (unsigned long)memparse(s, NULL);
3275
3276         if (!arch_hugetlb_valid_size(size)) {
3277                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3278                 return 0;
3279         }
3280
3281         h = size_to_hstate(size);
3282         if (h) {
3283                 /*
3284                  * hstate for this size already exists.  This is normally
3285                  * an error, but is allowed if the existing hstate is the
3286                  * default hstate.  More specifically, it is only allowed if
3287                  * the number of huge pages for the default hstate was not
3288                  * previously specified.
3289                  */
3290                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3291                     default_hstate.max_huge_pages) {
3292                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3293                         return 0;
3294                 }
3295
3296                 /*
3297                  * No need to call hugetlb_add_hstate() as hstate already
3298                  * exists.  But, do set parsed_hstate so that a following
3299                  * hugepages= parameter will be applied to this hstate.
3300                  */
3301                 parsed_hstate = h;
3302                 parsed_valid_hugepagesz = true;
3303                 return 1;
3304         }
3305
3306         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3307         parsed_valid_hugepagesz = true;
3308         return 1;
3309 }
3310 __setup("hugepagesz=", hugepagesz_setup);
3311
3312 /*
3313  * default_hugepagesz command line input
3314  * Only one instance of default_hugepagesz allowed on command line.
3315  */
3316 static int __init default_hugepagesz_setup(char *s)
3317 {
3318         unsigned long size;
3319
3320         parsed_valid_hugepagesz = false;
3321         if (parsed_default_hugepagesz) {
3322                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3323                 return 0;
3324         }
3325
3326         size = (unsigned long)memparse(s, NULL);
3327
3328         if (!arch_hugetlb_valid_size(size)) {
3329                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3330                 return 0;
3331         }
3332
3333         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3334         parsed_valid_hugepagesz = true;
3335         parsed_default_hugepagesz = true;
3336         default_hstate_idx = hstate_index(size_to_hstate(size));
3337
3338         /*
3339          * The number of default huge pages (for this size) could have been
3340          * specified as the first hugetlb parameter: hugepages=X.  If so,
3341          * then default_hstate_max_huge_pages is set.  If the default huge
3342          * page size is gigantic (>= MAX_ORDER), then the pages must be
3343          * allocated here from bootmem allocator.
3344          */
3345         if (default_hstate_max_huge_pages) {
3346                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3347                 if (hstate_is_gigantic(&default_hstate))
3348                         hugetlb_hstate_alloc_pages(&default_hstate);
3349                 default_hstate_max_huge_pages = 0;
3350         }
3351
3352         return 1;
3353 }
3354 __setup("default_hugepagesz=", default_hugepagesz_setup);
3355
3356 static unsigned int allowed_mems_nr(struct hstate *h)
3357 {
3358         int node;
3359         unsigned int nr = 0;
3360         nodemask_t *mpol_allowed;
3361         unsigned int *array = h->free_huge_pages_node;
3362         gfp_t gfp_mask = htlb_alloc_mask(h);
3363
3364         mpol_allowed = policy_nodemask_current(gfp_mask);
3365
3366         for_each_node_mask(node, cpuset_current_mems_allowed) {
3367                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3368                         nr += array[node];
3369         }
3370
3371         return nr;
3372 }
3373
3374 #ifdef CONFIG_SYSCTL
3375 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3376                                           void *buffer, size_t *length,
3377                                           loff_t *ppos, unsigned long *out)
3378 {
3379         struct ctl_table dup_table;
3380
3381         /*
3382          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3383          * can duplicate the @table and alter the duplicate of it.
3384          */
3385         dup_table = *table;
3386         dup_table.data = out;
3387
3388         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3389 }
3390
3391 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3392                          struct ctl_table *table, int write,
3393                          void *buffer, size_t *length, loff_t *ppos)
3394 {
3395         struct hstate *h = &default_hstate;
3396         unsigned long tmp = h->max_huge_pages;
3397         int ret;
3398
3399         if (!hugepages_supported())
3400                 return -EOPNOTSUPP;
3401
3402         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3403                                              &tmp);
3404         if (ret)
3405                 goto out;
3406
3407         if (write)
3408                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3409                                                   NUMA_NO_NODE, tmp, *length);
3410 out:
3411         return ret;
3412 }
3413
3414 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3415                           void *buffer, size_t *length, loff_t *ppos)
3416 {
3417
3418         return hugetlb_sysctl_handler_common(false, table, write,
3419                                                         buffer, length, ppos);
3420 }
3421
3422 #ifdef CONFIG_NUMA
3423 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3424                           void *buffer, size_t *length, loff_t *ppos)
3425 {
3426         return hugetlb_sysctl_handler_common(true, table, write,
3427                                                         buffer, length, ppos);
3428 }
3429 #endif /* CONFIG_NUMA */
3430
3431 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3432                 void *buffer, size_t *length, loff_t *ppos)
3433 {
3434         struct hstate *h = &default_hstate;
3435         unsigned long tmp;
3436         int ret;
3437
3438         if (!hugepages_supported())
3439                 return -EOPNOTSUPP;
3440
3441         tmp = h->nr_overcommit_huge_pages;
3442
3443         if (write && hstate_is_gigantic(h))
3444                 return -EINVAL;
3445
3446         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3447                                              &tmp);
3448         if (ret)
3449                 goto out;
3450
3451         if (write) {
3452                 spin_lock(&hugetlb_lock);
3453                 h->nr_overcommit_huge_pages = tmp;
3454                 spin_unlock(&hugetlb_lock);
3455         }
3456 out:
3457         return ret;
3458 }
3459
3460 #endif /* CONFIG_SYSCTL */
3461
3462 void hugetlb_report_meminfo(struct seq_file *m)
3463 {
3464         struct hstate *h;
3465         unsigned long total = 0;
3466
3467         if (!hugepages_supported())
3468                 return;
3469
3470         for_each_hstate(h) {
3471                 unsigned long count = h->nr_huge_pages;
3472
3473                 total += huge_page_size(h) * count;
3474
3475                 if (h == &default_hstate)
3476                         seq_printf(m,
3477                                    "HugePages_Total:   %5lu\n"
3478                                    "HugePages_Free:    %5lu\n"
3479                                    "HugePages_Rsvd:    %5lu\n"
3480                                    "HugePages_Surp:    %5lu\n"
3481                                    "Hugepagesize:   %8lu kB\n",
3482                                    count,
3483                                    h->free_huge_pages,
3484                                    h->resv_huge_pages,
3485                                    h->surplus_huge_pages,
3486                                    huge_page_size(h) / SZ_1K);
3487         }
3488
3489         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3490 }
3491
3492 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3493 {
3494         struct hstate *h = &default_hstate;
3495
3496         if (!hugepages_supported())
3497                 return 0;
3498
3499         return sysfs_emit_at(buf, len,
3500                              "Node %d HugePages_Total: %5u\n"
3501                              "Node %d HugePages_Free:  %5u\n"
3502                              "Node %d HugePages_Surp:  %5u\n",
3503                              nid, h->nr_huge_pages_node[nid],
3504                              nid, h->free_huge_pages_node[nid],
3505                              nid, h->surplus_huge_pages_node[nid]);
3506 }
3507
3508 void hugetlb_show_meminfo(void)
3509 {
3510         struct hstate *h;
3511         int nid;
3512
3513         if (!hugepages_supported())
3514                 return;
3515
3516         for_each_node_state(nid, N_MEMORY)
3517                 for_each_hstate(h)
3518                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3519                                 nid,
3520                                 h->nr_huge_pages_node[nid],
3521                                 h->free_huge_pages_node[nid],
3522                                 h->surplus_huge_pages_node[nid],
3523                                 huge_page_size(h) / SZ_1K);
3524 }
3525
3526 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3527 {
3528         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3529                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3530 }
3531
3532 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3533 unsigned long hugetlb_total_pages(void)
3534 {
3535         struct hstate *h;
3536         unsigned long nr_total_pages = 0;
3537
3538         for_each_hstate(h)
3539                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3540         return nr_total_pages;
3541 }
3542
3543 static int hugetlb_acct_memory(struct hstate *h, long delta)
3544 {
3545         int ret = -ENOMEM;
3546
3547         if (!delta)
3548                 return 0;
3549
3550         spin_lock(&hugetlb_lock);
3551         /*
3552          * When cpuset is configured, it breaks the strict hugetlb page
3553          * reservation as the accounting is done on a global variable. Such
3554          * reservation is completely rubbish in the presence of cpuset because
3555          * the reservation is not checked against page availability for the
3556          * current cpuset. Application can still potentially OOM'ed by kernel
3557          * with lack of free htlb page in cpuset that the task is in.
3558          * Attempt to enforce strict accounting with cpuset is almost
3559          * impossible (or too ugly) because cpuset is too fluid that
3560          * task or memory node can be dynamically moved between cpusets.
3561          *
3562          * The change of semantics for shared hugetlb mapping with cpuset is
3563          * undesirable. However, in order to preserve some of the semantics,
3564          * we fall back to check against current free page availability as
3565          * a best attempt and hopefully to minimize the impact of changing
3566          * semantics that cpuset has.
3567          *
3568          * Apart from cpuset, we also have memory policy mechanism that
3569          * also determines from which node the kernel will allocate memory
3570          * in a NUMA system. So similar to cpuset, we also should consider
3571          * the memory policy of the current task. Similar to the description
3572          * above.
3573          */
3574         if (delta > 0) {
3575                 if (gather_surplus_pages(h, delta) < 0)
3576                         goto out;
3577
3578                 if (delta > allowed_mems_nr(h)) {
3579                         return_unused_surplus_pages(h, delta);
3580                         goto out;
3581                 }
3582         }
3583
3584         ret = 0;
3585         if (delta < 0)
3586                 return_unused_surplus_pages(h, (unsigned long) -delta);
3587
3588 out:
3589         spin_unlock(&hugetlb_lock);
3590         return ret;
3591 }
3592
3593 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3594 {
3595         struct resv_map *resv = vma_resv_map(vma);
3596
3597         /*
3598          * This new VMA should share its siblings reservation map if present.
3599          * The VMA will only ever have a valid reservation map pointer where
3600          * it is being copied for another still existing VMA.  As that VMA
3601          * has a reference to the reservation map it cannot disappear until
3602          * after this open call completes.  It is therefore safe to take a
3603          * new reference here without additional locking.
3604          */
3605         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3606                 kref_get(&resv->refs);
3607 }
3608
3609 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3610 {
3611         struct hstate *h = hstate_vma(vma);
3612         struct resv_map *resv = vma_resv_map(vma);
3613         struct hugepage_subpool *spool = subpool_vma(vma);
3614         unsigned long reserve, start, end;
3615         long gbl_reserve;
3616
3617         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3618                 return;
3619
3620         start = vma_hugecache_offset(h, vma, vma->vm_start);
3621         end = vma_hugecache_offset(h, vma, vma->vm_end);
3622
3623         reserve = (end - start) - region_count(resv, start, end);
3624         hugetlb_cgroup_uncharge_counter(resv, start, end);
3625         if (reserve) {
3626                 /*
3627                  * Decrement reserve counts.  The global reserve count may be
3628                  * adjusted if the subpool has a minimum size.
3629                  */
3630                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3631                 hugetlb_acct_memory(h, -gbl_reserve);
3632         }
3633
3634         kref_put(&resv->refs, resv_map_release);
3635 }
3636
3637 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3638 {
3639         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3640                 return -EINVAL;
3641         return 0;
3642 }
3643
3644 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3645 {
3646         return huge_page_size(hstate_vma(vma));
3647 }
3648
3649 /*
3650  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3651  * handle_mm_fault() to try to instantiate regular-sized pages in the
3652  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3653  * this far.
3654  */
3655 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3656 {
3657         BUG();
3658         return 0;
3659 }
3660
3661 /*
3662  * When a new function is introduced to vm_operations_struct and added
3663  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3664  * This is because under System V memory model, mappings created via
3665  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3666  * their original vm_ops are overwritten with shm_vm_ops.
3667  */
3668 const struct vm_operations_struct hugetlb_vm_ops = {
3669         .fault = hugetlb_vm_op_fault,
3670         .open = hugetlb_vm_op_open,
3671         .close = hugetlb_vm_op_close,
3672         .may_split = hugetlb_vm_op_split,
3673         .pagesize = hugetlb_vm_op_pagesize,
3674 };
3675
3676 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3677                                 int writable)
3678 {
3679         pte_t entry;
3680
3681         if (writable) {
3682                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3683                                          vma->vm_page_prot)));
3684         } else {
3685                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3686                                            vma->vm_page_prot));
3687         }
3688         entry = pte_mkyoung(entry);
3689         entry = pte_mkhuge(entry);
3690         entry = arch_make_huge_pte(entry, vma, page, writable);
3691
3692         return entry;
3693 }
3694
3695 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3696                                    unsigned long address, pte_t *ptep)
3697 {
3698         pte_t entry;
3699
3700         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3701         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3702                 update_mmu_cache(vma, address, ptep);
3703 }
3704
3705 bool is_hugetlb_entry_migration(pte_t pte)
3706 {
3707         swp_entry_t swp;
3708
3709         if (huge_pte_none(pte) || pte_present(pte))
3710                 return false;
3711         swp = pte_to_swp_entry(pte);
3712         if (is_migration_entry(swp))
3713                 return true;
3714         else
3715                 return false;
3716 }
3717
3718 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3719 {
3720         swp_entry_t swp;
3721
3722         if (huge_pte_none(pte) || pte_present(pte))
3723                 return false;
3724         swp = pte_to_swp_entry(pte);
3725         if (is_hwpoison_entry(swp))
3726                 return true;
3727         else
3728                 return false;
3729 }
3730
3731 static void
3732 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3733                      struct page *new_page)
3734 {
3735         __SetPageUptodate(new_page);
3736         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3737         hugepage_add_new_anon_rmap(new_page, vma, addr);
3738         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3739         ClearHPageRestoreReserve(new_page);
3740         SetHPageMigratable(new_page);
3741 }
3742
3743 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3744                             struct vm_area_struct *vma)
3745 {
3746         pte_t *src_pte, *dst_pte, entry, dst_entry;
3747         struct page *ptepage;
3748         unsigned long addr;
3749         bool cow = is_cow_mapping(vma->vm_flags);
3750         struct hstate *h = hstate_vma(vma);
3751         unsigned long sz = huge_page_size(h);
3752         unsigned long npages = pages_per_huge_page(h);
3753         struct address_space *mapping = vma->vm_file->f_mapping;
3754         struct mmu_notifier_range range;
3755         int ret = 0;
3756
3757         if (cow) {
3758                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3759                                         vma->vm_start,
3760                                         vma->vm_end);
3761                 mmu_notifier_invalidate_range_start(&range);
3762         } else {
3763                 /*
3764                  * For shared mappings i_mmap_rwsem must be held to call
3765                  * huge_pte_alloc, otherwise the returned ptep could go
3766                  * away if part of a shared pmd and another thread calls
3767                  * huge_pmd_unshare.
3768                  */
3769                 i_mmap_lock_read(mapping);
3770         }
3771
3772         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3773                 spinlock_t *src_ptl, *dst_ptl;
3774                 src_pte = huge_pte_offset(src, addr, sz);
3775                 if (!src_pte)
3776                         continue;
3777                 dst_pte = huge_pte_alloc(dst, addr, sz);
3778                 if (!dst_pte) {
3779                         ret = -ENOMEM;
3780                         break;
3781                 }
3782
3783                 /*
3784                  * If the pagetables are shared don't copy or take references.
3785                  * dst_pte == src_pte is the common case of src/dest sharing.
3786                  *
3787                  * However, src could have 'unshared' and dst shares with
3788                  * another vma.  If dst_pte !none, this implies sharing.
3789                  * Check here before taking page table lock, and once again
3790                  * after taking the lock below.
3791                  */
3792                 dst_entry = huge_ptep_get(dst_pte);
3793                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3794                         continue;
3795
3796                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3797                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3798                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3799                 entry = huge_ptep_get(src_pte);
3800                 dst_entry = huge_ptep_get(dst_pte);
3801 again:
3802                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3803                         /*
3804                          * Skip if src entry none.  Also, skip in the
3805                          * unlikely case dst entry !none as this implies
3806                          * sharing with another vma.
3807                          */
3808                         ;
3809                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3810                                     is_hugetlb_entry_hwpoisoned(entry))) {
3811                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3812
3813                         if (is_write_migration_entry(swp_entry) && cow) {
3814                                 /*
3815                                  * COW mappings require pages in both
3816                                  * parent and child to be set to read.
3817                                  */
3818                                 make_migration_entry_read(&swp_entry);
3819                                 entry = swp_entry_to_pte(swp_entry);
3820                                 set_huge_swap_pte_at(src, addr, src_pte,
3821                                                      entry, sz);
3822                         }
3823                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3824                 } else {
3825                         entry = huge_ptep_get(src_pte);
3826                         ptepage = pte_page(entry);
3827                         get_page(ptepage);
3828
3829                         /*
3830                          * This is a rare case where we see pinned hugetlb
3831                          * pages while they're prone to COW.  We need to do the
3832                          * COW earlier during fork.
3833                          *
3834                          * When pre-allocating the page or copying data, we
3835                          * need to be without the pgtable locks since we could
3836                          * sleep during the process.
3837                          */
3838                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3839                                 pte_t src_pte_old = entry;
3840                                 struct page *new;
3841
3842                                 spin_unlock(src_ptl);
3843                                 spin_unlock(dst_ptl);
3844                                 /* Do not use reserve as it's private owned */
3845                                 new = alloc_huge_page(vma, addr, 1);
3846                                 if (IS_ERR(new)) {
3847                                         put_page(ptepage);
3848                                         ret = PTR_ERR(new);
3849                                         break;
3850                                 }
3851                                 copy_user_huge_page(new, ptepage, addr, vma,
3852                                                     npages);
3853                                 put_page(ptepage);
3854
3855                                 /* Install the new huge page if src pte stable */
3856                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3857                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3858                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3859                                 entry = huge_ptep_get(src_pte);
3860                                 if (!pte_same(src_pte_old, entry)) {
3861                                         put_page(new);
3862                                         /* dst_entry won't change as in child */
3863                                         goto again;
3864                                 }
3865                                 hugetlb_install_page(vma, dst_pte, addr, new);
3866                                 spin_unlock(src_ptl);
3867                                 spin_unlock(dst_ptl);
3868                                 continue;
3869                         }
3870
3871                         if (cow) {
3872                                 /*
3873                                  * No need to notify as we are downgrading page
3874                                  * table protection not changing it to point
3875                                  * to a new page.
3876                                  *
3877                                  * See Documentation/vm/mmu_notifier.rst
3878                                  */
3879                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3880                         }
3881
3882                         page_dup_rmap(ptepage, true);
3883                         set_huge_pte_at(dst, addr, dst_pte, entry);
3884                         hugetlb_count_add(npages, dst);
3885                 }
3886                 spin_unlock(src_ptl);
3887                 spin_unlock(dst_ptl);
3888         }
3889
3890         if (cow)
3891                 mmu_notifier_invalidate_range_end(&range);
3892         else
3893                 i_mmap_unlock_read(mapping);
3894
3895         return ret;
3896 }
3897
3898 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3899                             unsigned long start, unsigned long end,
3900                             struct page *ref_page)
3901 {
3902         struct mm_struct *mm = vma->vm_mm;
3903         unsigned long address;
3904         pte_t *ptep;
3905         pte_t pte;
3906         spinlock_t *ptl;
3907         struct page *page;
3908         struct hstate *h = hstate_vma(vma);
3909         unsigned long sz = huge_page_size(h);
3910         struct mmu_notifier_range range;
3911
3912         WARN_ON(!is_vm_hugetlb_page(vma));
3913         BUG_ON(start & ~huge_page_mask(h));
3914         BUG_ON(end & ~huge_page_mask(h));
3915
3916         /*
3917          * This is a hugetlb vma, all the pte entries should point
3918          * to huge page.
3919          */
3920         tlb_change_page_size(tlb, sz);
3921         tlb_start_vma(tlb, vma);
3922
3923         /*
3924          * If sharing possible, alert mmu notifiers of worst case.
3925          */
3926         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3927                                 end);
3928         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3929         mmu_notifier_invalidate_range_start(&range);
3930         address = start;
3931         for (; address < end; address += sz) {
3932                 ptep = huge_pte_offset(mm, address, sz);
3933                 if (!ptep)
3934                         continue;
3935
3936                 ptl = huge_pte_lock(h, mm, ptep);
3937                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3938                         spin_unlock(ptl);
3939                         /*
3940                          * We just unmapped a page of PMDs by clearing a PUD.
3941                          * The caller's TLB flush range should cover this area.
3942                          */
3943                         continue;
3944                 }
3945
3946                 pte = huge_ptep_get(ptep);
3947                 if (huge_pte_none(pte)) {
3948                         spin_unlock(ptl);
3949                         continue;
3950                 }
3951
3952                 /*
3953                  * Migrating hugepage or HWPoisoned hugepage is already
3954                  * unmapped and its refcount is dropped, so just clear pte here.
3955                  */
3956                 if (unlikely(!pte_present(pte))) {
3957                         huge_pte_clear(mm, address, ptep, sz);
3958                         spin_unlock(ptl);
3959                         continue;
3960                 }
3961
3962                 page = pte_page(pte);
3963                 /*
3964                  * If a reference page is supplied, it is because a specific
3965                  * page is being unmapped, not a range. Ensure the page we
3966                  * are about to unmap is the actual page of interest.
3967                  */
3968                 if (ref_page) {
3969                         if (page != ref_page) {
3970                                 spin_unlock(ptl);
3971                                 continue;
3972                         }
3973                         /*
3974                          * Mark the VMA as having unmapped its page so that
3975                          * future faults in this VMA will fail rather than
3976                          * looking like data was lost
3977                          */
3978                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3979                 }
3980
3981                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3982                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3983                 if (huge_pte_dirty(pte))
3984                         set_page_dirty(page);
3985
3986                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3987                 page_remove_rmap(page, true);
3988
3989                 spin_unlock(ptl);
3990                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3991                 /*
3992                  * Bail out after unmapping reference page if supplied
3993                  */
3994                 if (ref_page)
3995                         break;
3996         }
3997         mmu_notifier_invalidate_range_end(&range);
3998         tlb_end_vma(tlb, vma);
3999 }
4000
4001 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4002                           struct vm_area_struct *vma, unsigned long start,
4003                           unsigned long end, struct page *ref_page)
4004 {
4005         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4006
4007         /*
4008          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4009          * test will fail on a vma being torn down, and not grab a page table
4010          * on its way out.  We're lucky that the flag has such an appropriate
4011          * name, and can in fact be safely cleared here. We could clear it
4012          * before the __unmap_hugepage_range above, but all that's necessary
4013          * is to clear it before releasing the i_mmap_rwsem. This works
4014          * because in the context this is called, the VMA is about to be
4015          * destroyed and the i_mmap_rwsem is held.
4016          */
4017         vma->vm_flags &= ~VM_MAYSHARE;
4018 }
4019
4020 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4021                           unsigned long end, struct page *ref_page)
4022 {
4023         struct mmu_gather tlb;
4024
4025         tlb_gather_mmu(&tlb, vma->vm_mm);
4026         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4027         tlb_finish_mmu(&tlb);
4028 }
4029
4030 /*
4031  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4032  * mapping it owns the reserve page for. The intention is to unmap the page
4033  * from other VMAs and let the children be SIGKILLed if they are faulting the
4034  * same region.
4035  */
4036 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4037                               struct page *page, unsigned long address)
4038 {
4039         struct hstate *h = hstate_vma(vma);
4040         struct vm_area_struct *iter_vma;
4041         struct address_space *mapping;
4042         pgoff_t pgoff;
4043
4044         /*
4045          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4046          * from page cache lookup which is in HPAGE_SIZE units.
4047          */
4048         address = address & huge_page_mask(h);
4049         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4050                         vma->vm_pgoff;
4051         mapping = vma->vm_file->f_mapping;
4052
4053         /*
4054          * Take the mapping lock for the duration of the table walk. As
4055          * this mapping should be shared between all the VMAs,
4056          * __unmap_hugepage_range() is called as the lock is already held
4057          */
4058         i_mmap_lock_write(mapping);
4059         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4060                 /* Do not unmap the current VMA */
4061                 if (iter_vma == vma)
4062                         continue;
4063
4064                 /*
4065                  * Shared VMAs have their own reserves and do not affect
4066                  * MAP_PRIVATE accounting but it is possible that a shared
4067                  * VMA is using the same page so check and skip such VMAs.
4068                  */
4069                 if (iter_vma->vm_flags & VM_MAYSHARE)
4070                         continue;
4071
4072                 /*
4073                  * Unmap the page from other VMAs without their own reserves.
4074                  * They get marked to be SIGKILLed if they fault in these
4075                  * areas. This is because a future no-page fault on this VMA
4076                  * could insert a zeroed page instead of the data existing
4077                  * from the time of fork. This would look like data corruption
4078                  */
4079                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4080                         unmap_hugepage_range(iter_vma, address,
4081                                              address + huge_page_size(h), page);
4082         }
4083         i_mmap_unlock_write(mapping);
4084 }
4085
4086 /*
4087  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4088  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4089  * cannot race with other handlers or page migration.
4090  * Keep the pte_same checks anyway to make transition from the mutex easier.
4091  */
4092 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4093                        unsigned long address, pte_t *ptep,
4094                        struct page *pagecache_page, spinlock_t *ptl)
4095 {
4096         pte_t pte;
4097         struct hstate *h = hstate_vma(vma);
4098         struct page *old_page, *new_page;
4099         int outside_reserve = 0;
4100         vm_fault_t ret = 0;
4101         unsigned long haddr = address & huge_page_mask(h);
4102         struct mmu_notifier_range range;
4103
4104         pte = huge_ptep_get(ptep);
4105         old_page = pte_page(pte);
4106
4107 retry_avoidcopy:
4108         /* If no-one else is actually using this page, avoid the copy
4109          * and just make the page writable */
4110         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4111                 page_move_anon_rmap(old_page, vma);
4112                 set_huge_ptep_writable(vma, haddr, ptep);
4113                 return 0;
4114         }
4115
4116         /*
4117          * If the process that created a MAP_PRIVATE mapping is about to
4118          * perform a COW due to a shared page count, attempt to satisfy
4119          * the allocation without using the existing reserves. The pagecache
4120          * page is used to determine if the reserve at this address was
4121          * consumed or not. If reserves were used, a partial faulted mapping
4122          * at the time of fork() could consume its reserves on COW instead
4123          * of the full address range.
4124          */
4125         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4126                         old_page != pagecache_page)
4127                 outside_reserve = 1;
4128
4129         get_page(old_page);
4130
4131         /*
4132          * Drop page table lock as buddy allocator may be called. It will
4133          * be acquired again before returning to the caller, as expected.
4134          */
4135         spin_unlock(ptl);
4136         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4137
4138         if (IS_ERR(new_page)) {
4139                 /*
4140                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4141                  * it is due to references held by a child and an insufficient
4142                  * huge page pool. To guarantee the original mappers
4143                  * reliability, unmap the page from child processes. The child
4144                  * may get SIGKILLed if it later faults.
4145                  */
4146                 if (outside_reserve) {
4147                         struct address_space *mapping = vma->vm_file->f_mapping;
4148                         pgoff_t idx;
4149                         u32 hash;
4150
4151                         put_page(old_page);
4152                         BUG_ON(huge_pte_none(pte));
4153                         /*
4154                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4155                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4156                          * in write mode.  Dropping i_mmap_rwsem in read mode
4157                          * here is OK as COW mappings do not interact with
4158                          * PMD sharing.
4159                          *
4160                          * Reacquire both after unmap operation.
4161                          */
4162                         idx = vma_hugecache_offset(h, vma, haddr);
4163                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4164                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4165                         i_mmap_unlock_read(mapping);
4166
4167                         unmap_ref_private(mm, vma, old_page, haddr);
4168
4169                         i_mmap_lock_read(mapping);
4170                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4171                         spin_lock(ptl);
4172                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4173                         if (likely(ptep &&
4174                                    pte_same(huge_ptep_get(ptep), pte)))
4175                                 goto retry_avoidcopy;
4176                         /*
4177                          * race occurs while re-acquiring page table
4178                          * lock, and our job is done.
4179                          */
4180                         return 0;
4181                 }
4182
4183                 ret = vmf_error(PTR_ERR(new_page));
4184                 goto out_release_old;
4185         }
4186
4187         /*
4188          * When the original hugepage is shared one, it does not have
4189          * anon_vma prepared.
4190          */
4191         if (unlikely(anon_vma_prepare(vma))) {
4192                 ret = VM_FAULT_OOM;
4193                 goto out_release_all;
4194         }
4195
4196         copy_user_huge_page(new_page, old_page, address, vma,
4197                             pages_per_huge_page(h));
4198         __SetPageUptodate(new_page);
4199
4200         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4201                                 haddr + huge_page_size(h));
4202         mmu_notifier_invalidate_range_start(&range);
4203
4204         /*
4205          * Retake the page table lock to check for racing updates
4206          * before the page tables are altered
4207          */
4208         spin_lock(ptl);
4209         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4210         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4211                 ClearHPageRestoreReserve(new_page);
4212
4213                 /* Break COW */
4214                 huge_ptep_clear_flush(vma, haddr, ptep);
4215                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4216                 set_huge_pte_at(mm, haddr, ptep,
4217                                 make_huge_pte(vma, new_page, 1));
4218                 page_remove_rmap(old_page, true);
4219                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4220                 SetHPageMigratable(new_page);
4221                 /* Make the old page be freed below */
4222                 new_page = old_page;
4223         }
4224         spin_unlock(ptl);
4225         mmu_notifier_invalidate_range_end(&range);
4226 out_release_all:
4227         restore_reserve_on_error(h, vma, haddr, new_page);
4228         put_page(new_page);
4229 out_release_old:
4230         put_page(old_page);
4231
4232         spin_lock(ptl); /* Caller expects lock to be held */
4233         return ret;
4234 }
4235
4236 /* Return the pagecache page at a given address within a VMA */
4237 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4238                         struct vm_area_struct *vma, unsigned long address)
4239 {
4240         struct address_space *mapping;
4241         pgoff_t idx;
4242
4243         mapping = vma->vm_file->f_mapping;
4244         idx = vma_hugecache_offset(h, vma, address);
4245
4246         return find_lock_page(mapping, idx);
4247 }
4248
4249 /*
4250  * Return whether there is a pagecache page to back given address within VMA.
4251  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4252  */
4253 static bool hugetlbfs_pagecache_present(struct hstate *h,
4254                         struct vm_area_struct *vma, unsigned long address)
4255 {
4256         struct address_space *mapping;
4257         pgoff_t idx;
4258         struct page *page;
4259
4260         mapping = vma->vm_file->f_mapping;
4261         idx = vma_hugecache_offset(h, vma, address);
4262
4263         page = find_get_page(mapping, idx);
4264         if (page)
4265                 put_page(page);
4266         return page != NULL;
4267 }
4268
4269 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4270                            pgoff_t idx)
4271 {
4272         struct inode *inode = mapping->host;
4273         struct hstate *h = hstate_inode(inode);
4274         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4275
4276         if (err)
4277                 return err;
4278         ClearHPageRestoreReserve(page);
4279
4280         /*
4281          * set page dirty so that it will not be removed from cache/file
4282          * by non-hugetlbfs specific code paths.
4283          */
4284         set_page_dirty(page);
4285
4286         spin_lock(&inode->i_lock);
4287         inode->i_blocks += blocks_per_huge_page(h);
4288         spin_unlock(&inode->i_lock);
4289         return 0;
4290 }
4291
4292 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4293                         struct vm_area_struct *vma,
4294                         struct address_space *mapping, pgoff_t idx,
4295                         unsigned long address, pte_t *ptep, unsigned int flags)
4296 {
4297         struct hstate *h = hstate_vma(vma);
4298         vm_fault_t ret = VM_FAULT_SIGBUS;
4299         int anon_rmap = 0;
4300         unsigned long size;
4301         struct page *page;
4302         pte_t new_pte;
4303         spinlock_t *ptl;
4304         unsigned long haddr = address & huge_page_mask(h);
4305         bool new_page = false;
4306
4307         /*
4308          * Currently, we are forced to kill the process in the event the
4309          * original mapper has unmapped pages from the child due to a failed
4310          * COW. Warn that such a situation has occurred as it may not be obvious
4311          */
4312         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4313                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4314                            current->pid);
4315                 return ret;
4316         }
4317
4318         /*
4319          * We can not race with truncation due to holding i_mmap_rwsem.
4320          * i_size is modified when holding i_mmap_rwsem, so check here
4321          * once for faults beyond end of file.
4322          */
4323         size = i_size_read(mapping->host) >> huge_page_shift(h);
4324         if (idx >= size)
4325                 goto out;
4326
4327 retry:
4328         page = find_lock_page(mapping, idx);
4329         if (!page) {
4330                 /*
4331                  * Check for page in userfault range
4332                  */
4333                 if (userfaultfd_missing(vma)) {
4334                         u32 hash;
4335                         struct vm_fault vmf = {
4336                                 .vma = vma,
4337                                 .address = haddr,
4338                                 .flags = flags,
4339                                 /*
4340                                  * Hard to debug if it ends up being
4341                                  * used by a callee that assumes
4342                                  * something about the other
4343                                  * uninitialized fields... same as in
4344                                  * memory.c
4345                                  */
4346                         };
4347
4348                         /*
4349                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4350                          * dropped before handling userfault.  Reacquire
4351                          * after handling fault to make calling code simpler.
4352                          */
4353                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4354                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4355                         i_mmap_unlock_read(mapping);
4356                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4357                         i_mmap_lock_read(mapping);
4358                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4359                         goto out;
4360                 }
4361
4362                 page = alloc_huge_page(vma, haddr, 0);
4363                 if (IS_ERR(page)) {
4364                         /*
4365                          * Returning error will result in faulting task being
4366                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4367                          * tasks from racing to fault in the same page which
4368                          * could result in false unable to allocate errors.
4369                          * Page migration does not take the fault mutex, but
4370                          * does a clear then write of pte's under page table
4371                          * lock.  Page fault code could race with migration,
4372                          * notice the clear pte and try to allocate a page
4373                          * here.  Before returning error, get ptl and make
4374                          * sure there really is no pte entry.
4375                          */
4376                         ptl = huge_pte_lock(h, mm, ptep);
4377                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4378                                 ret = 0;
4379                                 spin_unlock(ptl);
4380                                 goto out;
4381                         }
4382                         spin_unlock(ptl);
4383                         ret = vmf_error(PTR_ERR(page));
4384                         goto out;
4385                 }
4386                 clear_huge_page(page, address, pages_per_huge_page(h));
4387                 __SetPageUptodate(page);
4388                 new_page = true;
4389
4390                 if (vma->vm_flags & VM_MAYSHARE) {
4391                         int err = huge_add_to_page_cache(page, mapping, idx);
4392                         if (err) {
4393                                 put_page(page);
4394                                 if (err == -EEXIST)
4395                                         goto retry;
4396                                 goto out;
4397                         }
4398                 } else {
4399                         lock_page(page);
4400                         if (unlikely(anon_vma_prepare(vma))) {
4401                                 ret = VM_FAULT_OOM;
4402                                 goto backout_unlocked;
4403                         }
4404                         anon_rmap = 1;
4405                 }
4406         } else {
4407                 /*
4408                  * If memory error occurs between mmap() and fault, some process
4409                  * don't have hwpoisoned swap entry for errored virtual address.
4410                  * So we need to block hugepage fault by PG_hwpoison bit check.
4411                  */
4412                 if (unlikely(PageHWPoison(page))) {
4413                         ret = VM_FAULT_HWPOISON_LARGE |
4414                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4415                         goto backout_unlocked;
4416                 }
4417         }
4418
4419         /*
4420          * If we are going to COW a private mapping later, we examine the
4421          * pending reservations for this page now. This will ensure that
4422          * any allocations necessary to record that reservation occur outside
4423          * the spinlock.
4424          */
4425         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4426                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4427                         ret = VM_FAULT_OOM;
4428                         goto backout_unlocked;
4429                 }
4430                 /* Just decrements count, does not deallocate */
4431                 vma_end_reservation(h, vma, haddr);
4432         }
4433
4434         ptl = huge_pte_lock(h, mm, ptep);
4435         ret = 0;
4436         if (!huge_pte_none(huge_ptep_get(ptep)))
4437                 goto backout;
4438
4439         if (anon_rmap) {
4440                 ClearHPageRestoreReserve(page);
4441                 hugepage_add_new_anon_rmap(page, vma, haddr);
4442         } else
4443                 page_dup_rmap(page, true);
4444         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4445                                 && (vma->vm_flags & VM_SHARED)));
4446         set_huge_pte_at(mm, haddr, ptep, new_pte);
4447
4448         hugetlb_count_add(pages_per_huge_page(h), mm);
4449         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4450                 /* Optimization, do the COW without a second fault */
4451                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4452         }
4453
4454         spin_unlock(ptl);
4455
4456         /*
4457          * Only set HPageMigratable in newly allocated pages.  Existing pages
4458          * found in the pagecache may not have HPageMigratableset if they have
4459          * been isolated for migration.
4460          */
4461         if (new_page)
4462                 SetHPageMigratable(page);
4463
4464         unlock_page(page);
4465 out:
4466         return ret;
4467
4468 backout:
4469         spin_unlock(ptl);
4470 backout_unlocked:
4471         unlock_page(page);
4472         restore_reserve_on_error(h, vma, haddr, page);
4473         put_page(page);
4474         goto out;
4475 }
4476
4477 #ifdef CONFIG_SMP
4478 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4479 {
4480         unsigned long key[2];
4481         u32 hash;
4482
4483         key[0] = (unsigned long) mapping;
4484         key[1] = idx;
4485
4486         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4487
4488         return hash & (num_fault_mutexes - 1);
4489 }
4490 #else
4491 /*
4492  * For uniprocessor systems we always use a single mutex, so just
4493  * return 0 and avoid the hashing overhead.
4494  */
4495 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4496 {
4497         return 0;
4498 }
4499 #endif
4500
4501 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4502                         unsigned long address, unsigned int flags)
4503 {
4504         pte_t *ptep, entry;
4505         spinlock_t *ptl;
4506         vm_fault_t ret;
4507         u32 hash;
4508         pgoff_t idx;
4509         struct page *page = NULL;
4510         struct page *pagecache_page = NULL;
4511         struct hstate *h = hstate_vma(vma);
4512         struct address_space *mapping;
4513         int need_wait_lock = 0;
4514         unsigned long haddr = address & huge_page_mask(h);
4515
4516         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4517         if (ptep) {
4518                 /*
4519                  * Since we hold no locks, ptep could be stale.  That is
4520                  * OK as we are only making decisions based on content and
4521                  * not actually modifying content here.
4522                  */
4523                 entry = huge_ptep_get(ptep);
4524                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4525                         migration_entry_wait_huge(vma, mm, ptep);
4526                         return 0;
4527                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4528                         return VM_FAULT_HWPOISON_LARGE |
4529                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4530         }
4531
4532         /*
4533          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4534          * until finished with ptep.  This serves two purposes:
4535          * 1) It prevents huge_pmd_unshare from being called elsewhere
4536          *    and making the ptep no longer valid.
4537          * 2) It synchronizes us with i_size modifications during truncation.
4538          *
4539          * ptep could have already be assigned via huge_pte_offset.  That
4540          * is OK, as huge_pte_alloc will return the same value unless
4541          * something has changed.
4542          */
4543         mapping = vma->vm_file->f_mapping;
4544         i_mmap_lock_read(mapping);
4545         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4546         if (!ptep) {
4547                 i_mmap_unlock_read(mapping);
4548                 return VM_FAULT_OOM;
4549         }
4550
4551         /*
4552          * Serialize hugepage allocation and instantiation, so that we don't
4553          * get spurious allocation failures if two CPUs race to instantiate
4554          * the same page in the page cache.
4555          */
4556         idx = vma_hugecache_offset(h, vma, haddr);
4557         hash = hugetlb_fault_mutex_hash(mapping, idx);
4558         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4559
4560         entry = huge_ptep_get(ptep);
4561         if (huge_pte_none(entry)) {
4562                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4563                 goto out_mutex;
4564         }
4565
4566         ret = 0;
4567
4568         /*
4569          * entry could be a migration/hwpoison entry at this point, so this
4570          * check prevents the kernel from going below assuming that we have
4571          * an active hugepage in pagecache. This goto expects the 2nd page
4572          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4573          * properly handle it.
4574          */
4575         if (!pte_present(entry))
4576                 goto out_mutex;
4577
4578         /*
4579          * If we are going to COW the mapping later, we examine the pending
4580          * reservations for this page now. This will ensure that any
4581          * allocations necessary to record that reservation occur outside the
4582          * spinlock. For private mappings, we also lookup the pagecache
4583          * page now as it is used to determine if a reservation has been
4584          * consumed.
4585          */
4586         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4587                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4588                         ret = VM_FAULT_OOM;
4589                         goto out_mutex;
4590                 }
4591                 /* Just decrements count, does not deallocate */
4592                 vma_end_reservation(h, vma, haddr);
4593
4594                 if (!(vma->vm_flags & VM_MAYSHARE))
4595                         pagecache_page = hugetlbfs_pagecache_page(h,
4596                                                                 vma, haddr);
4597         }
4598
4599         ptl = huge_pte_lock(h, mm, ptep);
4600
4601         /* Check for a racing update before calling hugetlb_cow */
4602         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4603                 goto out_ptl;
4604
4605         /*
4606          * hugetlb_cow() requires page locks of pte_page(entry) and
4607          * pagecache_page, so here we need take the former one
4608          * when page != pagecache_page or !pagecache_page.
4609          */
4610         page = pte_page(entry);
4611         if (page != pagecache_page)
4612                 if (!trylock_page(page)) {
4613                         need_wait_lock = 1;
4614                         goto out_ptl;
4615                 }
4616
4617         get_page(page);
4618
4619         if (flags & FAULT_FLAG_WRITE) {
4620                 if (!huge_pte_write(entry)) {
4621                         ret = hugetlb_cow(mm, vma, address, ptep,
4622                                           pagecache_page, ptl);
4623                         goto out_put_page;
4624                 }
4625                 entry = huge_pte_mkdirty(entry);
4626         }
4627         entry = pte_mkyoung(entry);
4628         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4629                                                 flags & FAULT_FLAG_WRITE))
4630                 update_mmu_cache(vma, haddr, ptep);
4631 out_put_page:
4632         if (page != pagecache_page)
4633                 unlock_page(page);
4634         put_page(page);
4635 out_ptl:
4636         spin_unlock(ptl);
4637
4638         if (pagecache_page) {
4639                 unlock_page(pagecache_page);
4640                 put_page(pagecache_page);
4641         }
4642 out_mutex:
4643         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4644         i_mmap_unlock_read(mapping);
4645         /*
4646          * Generally it's safe to hold refcount during waiting page lock. But
4647          * here we just wait to defer the next page fault to avoid busy loop and
4648          * the page is not used after unlocked before returning from the current
4649          * page fault. So we are safe from accessing freed page, even if we wait
4650          * here without taking refcount.
4651          */
4652         if (need_wait_lock)
4653                 wait_on_page_locked(page);
4654         return ret;
4655 }
4656
4657 /*
4658  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4659  * modifications for huge pages.
4660  */
4661 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4662                             pte_t *dst_pte,
4663                             struct vm_area_struct *dst_vma,
4664                             unsigned long dst_addr,
4665                             unsigned long src_addr,
4666                             struct page **pagep)
4667 {
4668         struct address_space *mapping;
4669         pgoff_t idx;
4670         unsigned long size;
4671         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4672         struct hstate *h = hstate_vma(dst_vma);
4673         pte_t _dst_pte;
4674         spinlock_t *ptl;
4675         int ret;
4676         struct page *page;
4677
4678         if (!*pagep) {
4679                 ret = -ENOMEM;
4680                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4681                 if (IS_ERR(page))
4682                         goto out;
4683
4684                 ret = copy_huge_page_from_user(page,
4685                                                 (const void __user *) src_addr,
4686                                                 pages_per_huge_page(h), false);
4687
4688                 /* fallback to copy_from_user outside mmap_lock */
4689                 if (unlikely(ret)) {
4690                         ret = -ENOENT;
4691                         *pagep = page;
4692                         /* don't free the page */
4693                         goto out;
4694                 }
4695         } else {
4696                 page = *pagep;
4697                 *pagep = NULL;
4698         }
4699
4700         /*
4701          * The memory barrier inside __SetPageUptodate makes sure that
4702          * preceding stores to the page contents become visible before
4703          * the set_pte_at() write.
4704          */
4705         __SetPageUptodate(page);
4706
4707         mapping = dst_vma->vm_file->f_mapping;
4708         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4709
4710         /*
4711          * If shared, add to page cache
4712          */
4713         if (vm_shared) {
4714                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4715                 ret = -EFAULT;
4716                 if (idx >= size)
4717                         goto out_release_nounlock;
4718
4719                 /*
4720                  * Serialization between remove_inode_hugepages() and
4721                  * huge_add_to_page_cache() below happens through the
4722                  * hugetlb_fault_mutex_table that here must be hold by
4723                  * the caller.
4724                  */
4725                 ret = huge_add_to_page_cache(page, mapping, idx);
4726                 if (ret)
4727                         goto out_release_nounlock;
4728         }
4729
4730         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4731         spin_lock(ptl);
4732
4733         /*
4734          * Recheck the i_size after holding PT lock to make sure not
4735          * to leave any page mapped (as page_mapped()) beyond the end
4736          * of the i_size (remove_inode_hugepages() is strict about
4737          * enforcing that). If we bail out here, we'll also leave a
4738          * page in the radix tree in the vm_shared case beyond the end
4739          * of the i_size, but remove_inode_hugepages() will take care
4740          * of it as soon as we drop the hugetlb_fault_mutex_table.
4741          */
4742         size = i_size_read(mapping->host) >> huge_page_shift(h);
4743         ret = -EFAULT;
4744         if (idx >= size)
4745                 goto out_release_unlock;
4746
4747         ret = -EEXIST;
4748         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4749                 goto out_release_unlock;
4750
4751         if (vm_shared) {
4752                 page_dup_rmap(page, true);
4753         } else {
4754                 ClearHPageRestoreReserve(page);
4755                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4756         }
4757
4758         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4759         if (dst_vma->vm_flags & VM_WRITE)
4760                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4761         _dst_pte = pte_mkyoung(_dst_pte);
4762
4763         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4764
4765         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4766                                         dst_vma->vm_flags & VM_WRITE);
4767         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4768
4769         /* No need to invalidate - it was non-present before */
4770         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4771
4772         spin_unlock(ptl);
4773         SetHPageMigratable(page);
4774         if (vm_shared)
4775                 unlock_page(page);
4776         ret = 0;
4777 out:
4778         return ret;
4779 out_release_unlock:
4780         spin_unlock(ptl);
4781         if (vm_shared)
4782                 unlock_page(page);
4783 out_release_nounlock:
4784         put_page(page);
4785         goto out;
4786 }
4787
4788 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4789                                  int refs, struct page **pages,
4790                                  struct vm_area_struct **vmas)
4791 {
4792         int nr;
4793
4794         for (nr = 0; nr < refs; nr++) {
4795                 if (likely(pages))
4796                         pages[nr] = mem_map_offset(page, nr);
4797                 if (vmas)
4798                         vmas[nr] = vma;
4799         }
4800 }
4801
4802 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4803                          struct page **pages, struct vm_area_struct **vmas,
4804                          unsigned long *position, unsigned long *nr_pages,
4805                          long i, unsigned int flags, int *locked)
4806 {
4807         unsigned long pfn_offset;
4808         unsigned long vaddr = *position;
4809         unsigned long remainder = *nr_pages;
4810         struct hstate *h = hstate_vma(vma);
4811         int err = -EFAULT, refs;
4812
4813         while (vaddr < vma->vm_end && remainder) {
4814                 pte_t *pte;
4815                 spinlock_t *ptl = NULL;
4816                 int absent;
4817                 struct page *page;
4818
4819                 /*
4820                  * If we have a pending SIGKILL, don't keep faulting pages and
4821                  * potentially allocating memory.
4822                  */
4823                 if (fatal_signal_pending(current)) {
4824                         remainder = 0;
4825                         break;
4826                 }
4827
4828                 /*
4829                  * Some archs (sparc64, sh*) have multiple pte_ts to
4830                  * each hugepage.  We have to make sure we get the
4831                  * first, for the page indexing below to work.
4832                  *
4833                  * Note that page table lock is not held when pte is null.
4834                  */
4835                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4836                                       huge_page_size(h));
4837                 if (pte)
4838                         ptl = huge_pte_lock(h, mm, pte);
4839                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4840
4841                 /*
4842                  * When coredumping, it suits get_dump_page if we just return
4843                  * an error where there's an empty slot with no huge pagecache
4844                  * to back it.  This way, we avoid allocating a hugepage, and
4845                  * the sparse dumpfile avoids allocating disk blocks, but its
4846                  * huge holes still show up with zeroes where they need to be.
4847                  */
4848                 if (absent && (flags & FOLL_DUMP) &&
4849                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4850                         if (pte)
4851                                 spin_unlock(ptl);
4852                         remainder = 0;
4853                         break;
4854                 }
4855
4856                 /*
4857                  * We need call hugetlb_fault for both hugepages under migration
4858                  * (in which case hugetlb_fault waits for the migration,) and
4859                  * hwpoisoned hugepages (in which case we need to prevent the
4860                  * caller from accessing to them.) In order to do this, we use
4861                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4862                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4863                  * both cases, and because we can't follow correct pages
4864                  * directly from any kind of swap entries.
4865                  */
4866                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4867                     ((flags & FOLL_WRITE) &&
4868                       !huge_pte_write(huge_ptep_get(pte)))) {
4869                         vm_fault_t ret;
4870                         unsigned int fault_flags = 0;
4871
4872                         if (pte)
4873                                 spin_unlock(ptl);
4874                         if (flags & FOLL_WRITE)
4875                                 fault_flags |= FAULT_FLAG_WRITE;
4876                         if (locked)
4877                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4878                                         FAULT_FLAG_KILLABLE;
4879                         if (flags & FOLL_NOWAIT)
4880                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4881                                         FAULT_FLAG_RETRY_NOWAIT;
4882                         if (flags & FOLL_TRIED) {
4883                                 /*
4884                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4885                                  * FAULT_FLAG_TRIED can co-exist
4886                                  */
4887                                 fault_flags |= FAULT_FLAG_TRIED;
4888                         }
4889                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4890                         if (ret & VM_FAULT_ERROR) {
4891                                 err = vm_fault_to_errno(ret, flags);
4892                                 remainder = 0;
4893                                 break;
4894                         }
4895                         if (ret & VM_FAULT_RETRY) {
4896                                 if (locked &&
4897                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4898                                         *locked = 0;
4899                                 *nr_pages = 0;
4900                                 /*
4901                                  * VM_FAULT_RETRY must not return an
4902                                  * error, it will return zero
4903                                  * instead.
4904                                  *
4905                                  * No need to update "position" as the
4906                                  * caller will not check it after
4907                                  * *nr_pages is set to 0.
4908                                  */
4909                                 return i;
4910                         }
4911                         continue;
4912                 }
4913
4914                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4915                 page = pte_page(huge_ptep_get(pte));
4916
4917                 /*
4918                  * If subpage information not requested, update counters
4919                  * and skip the same_page loop below.
4920                  */
4921                 if (!pages && !vmas && !pfn_offset &&
4922                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4923                     (remainder >= pages_per_huge_page(h))) {
4924                         vaddr += huge_page_size(h);
4925                         remainder -= pages_per_huge_page(h);
4926                         i += pages_per_huge_page(h);
4927                         spin_unlock(ptl);
4928                         continue;
4929                 }
4930
4931                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4932                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4933
4934                 if (pages || vmas)
4935                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4936                                              vma, refs,
4937                                              likely(pages) ? pages + i : NULL,
4938                                              vmas ? vmas + i : NULL);
4939
4940                 if (pages) {
4941                         /*
4942                          * try_grab_compound_head() should always succeed here,
4943                          * because: a) we hold the ptl lock, and b) we've just
4944                          * checked that the huge page is present in the page
4945                          * tables. If the huge page is present, then the tail
4946                          * pages must also be present. The ptl prevents the
4947                          * head page and tail pages from being rearranged in
4948                          * any way. So this page must be available at this
4949                          * point, unless the page refcount overflowed:
4950                          */
4951                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4952                                                                  refs,
4953                                                                  flags))) {
4954                                 spin_unlock(ptl);
4955                                 remainder = 0;
4956                                 err = -ENOMEM;
4957                                 break;
4958                         }
4959                 }
4960
4961                 vaddr += (refs << PAGE_SHIFT);
4962                 remainder -= refs;
4963                 i += refs;
4964
4965                 spin_unlock(ptl);
4966         }
4967         *nr_pages = remainder;
4968         /*
4969          * setting position is actually required only if remainder is
4970          * not zero but it's faster not to add a "if (remainder)"
4971          * branch.
4972          */
4973         *position = vaddr;
4974
4975         return i ? i : err;
4976 }
4977
4978 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4979 /*
4980  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4981  * implement this.
4982  */
4983 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4984 #endif
4985
4986 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4987                 unsigned long address, unsigned long end, pgprot_t newprot)
4988 {
4989         struct mm_struct *mm = vma->vm_mm;
4990         unsigned long start = address;
4991         pte_t *ptep;
4992         pte_t pte;
4993         struct hstate *h = hstate_vma(vma);
4994         unsigned long pages = 0;
4995         bool shared_pmd = false;
4996         struct mmu_notifier_range range;
4997
4998         /*
4999          * In the case of shared PMDs, the area to flush could be beyond
5000          * start/end.  Set range.start/range.end to cover the maximum possible
5001          * range if PMD sharing is possible.
5002          */
5003         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5004                                 0, vma, mm, start, end);
5005         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5006
5007         BUG_ON(address >= end);
5008         flush_cache_range(vma, range.start, range.end);
5009
5010         mmu_notifier_invalidate_range_start(&range);
5011         i_mmap_lock_write(vma->vm_file->f_mapping);
5012         for (; address < end; address += huge_page_size(h)) {
5013                 spinlock_t *ptl;
5014                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5015                 if (!ptep)
5016                         continue;
5017                 ptl = huge_pte_lock(h, mm, ptep);
5018                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5019                         pages++;
5020                         spin_unlock(ptl);
5021                         shared_pmd = true;
5022                         continue;
5023                 }
5024                 pte = huge_ptep_get(ptep);
5025                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5026                         spin_unlock(ptl);
5027                         continue;
5028                 }
5029                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5030                         swp_entry_t entry = pte_to_swp_entry(pte);
5031
5032                         if (is_write_migration_entry(entry)) {
5033                                 pte_t newpte;
5034
5035                                 make_migration_entry_read(&entry);
5036                                 newpte = swp_entry_to_pte(entry);
5037                                 set_huge_swap_pte_at(mm, address, ptep,
5038                                                      newpte, huge_page_size(h));
5039                                 pages++;
5040                         }
5041                         spin_unlock(ptl);
5042                         continue;
5043                 }
5044                 if (!huge_pte_none(pte)) {
5045                         pte_t old_pte;
5046
5047                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5048                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5049                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5050                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5051                         pages++;
5052                 }
5053                 spin_unlock(ptl);
5054         }
5055         /*
5056          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5057          * may have cleared our pud entry and done put_page on the page table:
5058          * once we release i_mmap_rwsem, another task can do the final put_page
5059          * and that page table be reused and filled with junk.  If we actually
5060          * did unshare a page of pmds, flush the range corresponding to the pud.
5061          */
5062         if (shared_pmd)
5063                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5064         else
5065                 flush_hugetlb_tlb_range(vma, start, end);
5066         /*
5067          * No need to call mmu_notifier_invalidate_range() we are downgrading
5068          * page table protection not changing it to point to a new page.
5069          *
5070          * See Documentation/vm/mmu_notifier.rst
5071          */
5072         i_mmap_unlock_write(vma->vm_file->f_mapping);
5073         mmu_notifier_invalidate_range_end(&range);
5074
5075         return pages << h->order;
5076 }
5077
5078 /* Return true if reservation was successful, false otherwise.  */
5079 bool hugetlb_reserve_pages(struct inode *inode,
5080                                         long from, long to,
5081                                         struct vm_area_struct *vma,
5082                                         vm_flags_t vm_flags)
5083 {
5084         long chg, add = -1;
5085         struct hstate *h = hstate_inode(inode);
5086         struct hugepage_subpool *spool = subpool_inode(inode);
5087         struct resv_map *resv_map;
5088         struct hugetlb_cgroup *h_cg = NULL;
5089         long gbl_reserve, regions_needed = 0;
5090
5091         /* This should never happen */
5092         if (from > to) {
5093                 VM_WARN(1, "%s called with a negative range\n", __func__);
5094                 return false;
5095         }
5096
5097         /*
5098          * Only apply hugepage reservation if asked. At fault time, an
5099          * attempt will be made for VM_NORESERVE to allocate a page
5100          * without using reserves
5101          */
5102         if (vm_flags & VM_NORESERVE)
5103                 return true;
5104
5105         /*
5106          * Shared mappings base their reservation on the number of pages that
5107          * are already allocated on behalf of the file. Private mappings need
5108          * to reserve the full area even if read-only as mprotect() may be
5109          * called to make the mapping read-write. Assume !vma is a shm mapping
5110          */
5111         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5112                 /*
5113                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5114                  * called for inodes for which resv_maps were created (see
5115                  * hugetlbfs_get_inode).
5116                  */
5117                 resv_map = inode_resv_map(inode);
5118
5119                 chg = region_chg(resv_map, from, to, &regions_needed);
5120
5121         } else {
5122                 /* Private mapping. */
5123                 resv_map = resv_map_alloc();
5124                 if (!resv_map)
5125                         return false;
5126
5127                 chg = to - from;
5128
5129                 set_vma_resv_map(vma, resv_map);
5130                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5131         }
5132
5133         if (chg < 0)
5134                 goto out_err;
5135
5136         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5137                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5138                 goto out_err;
5139
5140         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5141                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5142                  * of the resv_map.
5143                  */
5144                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5145         }
5146
5147         /*
5148          * There must be enough pages in the subpool for the mapping. If
5149          * the subpool has a minimum size, there may be some global
5150          * reservations already in place (gbl_reserve).
5151          */
5152         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5153         if (gbl_reserve < 0)
5154                 goto out_uncharge_cgroup;
5155
5156         /*
5157          * Check enough hugepages are available for the reservation.
5158          * Hand the pages back to the subpool if there are not
5159          */
5160         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5161                 goto out_put_pages;
5162
5163         /*
5164          * Account for the reservations made. Shared mappings record regions
5165          * that have reservations as they are shared by multiple VMAs.
5166          * When the last VMA disappears, the region map says how much
5167          * the reservation was and the page cache tells how much of
5168          * the reservation was consumed. Private mappings are per-VMA and
5169          * only the consumed reservations are tracked. When the VMA
5170          * disappears, the original reservation is the VMA size and the
5171          * consumed reservations are stored in the map. Hence, nothing
5172          * else has to be done for private mappings here
5173          */
5174         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5175                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5176
5177                 if (unlikely(add < 0)) {
5178                         hugetlb_acct_memory(h, -gbl_reserve);
5179                         goto out_put_pages;
5180                 } else if (unlikely(chg > add)) {
5181                         /*
5182                          * pages in this range were added to the reserve
5183                          * map between region_chg and region_add.  This
5184                          * indicates a race with alloc_huge_page.  Adjust
5185                          * the subpool and reserve counts modified above
5186                          * based on the difference.
5187                          */
5188                         long rsv_adjust;
5189
5190                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5191                                 hstate_index(h),
5192                                 (chg - add) * pages_per_huge_page(h), h_cg);
5193
5194                         rsv_adjust = hugepage_subpool_put_pages(spool,
5195                                                                 chg - add);
5196                         hugetlb_acct_memory(h, -rsv_adjust);
5197                 }
5198         }
5199         return true;
5200
5201 out_put_pages:
5202         /* put back original number of pages, chg */
5203         (void)hugepage_subpool_put_pages(spool, chg);
5204 out_uncharge_cgroup:
5205         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5206                                             chg * pages_per_huge_page(h), h_cg);
5207 out_err:
5208         if (!vma || vma->vm_flags & VM_MAYSHARE)
5209                 /* Only call region_abort if the region_chg succeeded but the
5210                  * region_add failed or didn't run.
5211                  */
5212                 if (chg >= 0 && add < 0)
5213                         region_abort(resv_map, from, to, regions_needed);
5214         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5215                 kref_put(&resv_map->refs, resv_map_release);
5216         return false;
5217 }
5218
5219 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5220                                                                 long freed)
5221 {
5222         struct hstate *h = hstate_inode(inode);
5223         struct resv_map *resv_map = inode_resv_map(inode);
5224         long chg = 0;
5225         struct hugepage_subpool *spool = subpool_inode(inode);
5226         long gbl_reserve;
5227
5228         /*
5229          * Since this routine can be called in the evict inode path for all
5230          * hugetlbfs inodes, resv_map could be NULL.
5231          */
5232         if (resv_map) {
5233                 chg = region_del(resv_map, start, end);
5234                 /*
5235                  * region_del() can fail in the rare case where a region
5236                  * must be split and another region descriptor can not be
5237                  * allocated.  If end == LONG_MAX, it will not fail.
5238                  */
5239                 if (chg < 0)
5240                         return chg;
5241         }
5242
5243         spin_lock(&inode->i_lock);
5244         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5245         spin_unlock(&inode->i_lock);
5246
5247         /*
5248          * If the subpool has a minimum size, the number of global
5249          * reservations to be released may be adjusted.
5250          */
5251         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5252         hugetlb_acct_memory(h, -gbl_reserve);
5253
5254         return 0;
5255 }
5256
5257 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5258 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5259                                 struct vm_area_struct *vma,
5260                                 unsigned long addr, pgoff_t idx)
5261 {
5262         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5263                                 svma->vm_start;
5264         unsigned long sbase = saddr & PUD_MASK;
5265         unsigned long s_end = sbase + PUD_SIZE;
5266
5267         /* Allow segments to share if only one is marked locked */
5268         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5270
5271         /*
5272          * match the virtual addresses, permission and the alignment of the
5273          * page table page.
5274          */
5275         if (pmd_index(addr) != pmd_index(saddr) ||
5276             vm_flags != svm_flags ||
5277             !range_in_vma(svma, sbase, s_end))
5278                 return 0;
5279
5280         return saddr;
5281 }
5282
5283 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5284 {
5285         unsigned long base = addr & PUD_MASK;
5286         unsigned long end = base + PUD_SIZE;
5287
5288         /*
5289          * check on proper vm_flags and page table alignment
5290          */
5291         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5292                 return true;
5293         return false;
5294 }
5295
5296 /*
5297  * Determine if start,end range within vma could be mapped by shared pmd.
5298  * If yes, adjust start and end to cover range associated with possible
5299  * shared pmd mappings.
5300  */
5301 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5302                                 unsigned long *start, unsigned long *end)
5303 {
5304         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5305                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5306
5307         /*
5308          * vma need span at least one aligned PUD size and the start,end range
5309          * must at least partialy within it.
5310          */
5311         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5312                 (*end <= v_start) || (*start >= v_end))
5313                 return;
5314
5315         /* Extend the range to be PUD aligned for a worst case scenario */
5316         if (*start > v_start)
5317                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5318
5319         if (*end < v_end)
5320                 *end = ALIGN(*end, PUD_SIZE);
5321 }
5322
5323 /*
5324  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5325  * and returns the corresponding pte. While this is not necessary for the
5326  * !shared pmd case because we can allocate the pmd later as well, it makes the
5327  * code much cleaner.
5328  *
5329  * This routine must be called with i_mmap_rwsem held in at least read mode if
5330  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5331  * table entries associated with the address space.  This is important as we
5332  * are setting up sharing based on existing page table entries (mappings).
5333  *
5334  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5335  * huge_pte_alloc know that sharing is not possible and do not take
5336  * i_mmap_rwsem as a performance optimization.  This is handled by the
5337  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5338  * only required for subsequent processing.
5339  */
5340 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5341 {
5342         struct vm_area_struct *vma = find_vma(mm, addr);
5343         struct address_space *mapping = vma->vm_file->f_mapping;
5344         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5345                         vma->vm_pgoff;
5346         struct vm_area_struct *svma;
5347         unsigned long saddr;
5348         pte_t *spte = NULL;
5349         pte_t *pte;
5350         spinlock_t *ptl;
5351
5352         if (!vma_shareable(vma, addr))
5353                 return (pte_t *)pmd_alloc(mm, pud, addr);
5354
5355         i_mmap_assert_locked(mapping);
5356         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5357                 if (svma == vma)
5358                         continue;
5359
5360                 saddr = page_table_shareable(svma, vma, addr, idx);
5361                 if (saddr) {
5362                         spte = huge_pte_offset(svma->vm_mm, saddr,
5363                                                vma_mmu_pagesize(svma));
5364                         if (spte) {
5365                                 get_page(virt_to_page(spte));
5366                                 break;
5367                         }
5368                 }
5369         }
5370
5371         if (!spte)
5372                 goto out;
5373
5374         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5375         if (pud_none(*pud)) {
5376                 pud_populate(mm, pud,
5377                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5378                 mm_inc_nr_pmds(mm);
5379         } else {
5380                 put_page(virt_to_page(spte));
5381         }
5382         spin_unlock(ptl);
5383 out:
5384         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5385         return pte;
5386 }
5387
5388 /*
5389  * unmap huge page backed by shared pte.
5390  *
5391  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5392  * indicated by page_count > 1, unmap is achieved by clearing pud and
5393  * decrementing the ref count. If count == 1, the pte page is not shared.
5394  *
5395  * Called with page table lock held and i_mmap_rwsem held in write mode.
5396  *
5397  * returns: 1 successfully unmapped a shared pte page
5398  *          0 the underlying pte page is not shared, or it is the last user
5399  */
5400 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5401                                         unsigned long *addr, pte_t *ptep)
5402 {
5403         pgd_t *pgd = pgd_offset(mm, *addr);
5404         p4d_t *p4d = p4d_offset(pgd, *addr);
5405         pud_t *pud = pud_offset(p4d, *addr);
5406
5407         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5408         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5409         if (page_count(virt_to_page(ptep)) == 1)
5410                 return 0;
5411
5412         pud_clear(pud);
5413         put_page(virt_to_page(ptep));
5414         mm_dec_nr_pmds(mm);
5415         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5416         return 1;
5417 }
5418 #define want_pmd_share()        (1)
5419 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5420 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5421 {
5422         return NULL;
5423 }
5424
5425 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5426                                 unsigned long *addr, pte_t *ptep)
5427 {
5428         return 0;
5429 }
5430
5431 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5432                                 unsigned long *start, unsigned long *end)
5433 {
5434 }
5435 #define want_pmd_share()        (0)
5436 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5437
5438 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5439 pte_t *huge_pte_alloc(struct mm_struct *mm,
5440                         unsigned long addr, unsigned long sz)
5441 {
5442         pgd_t *pgd;
5443         p4d_t *p4d;
5444         pud_t *pud;
5445         pte_t *pte = NULL;
5446
5447         pgd = pgd_offset(mm, addr);
5448         p4d = p4d_alloc(mm, pgd, addr);
5449         if (!p4d)
5450                 return NULL;
5451         pud = pud_alloc(mm, p4d, addr);
5452         if (pud) {
5453                 if (sz == PUD_SIZE) {
5454                         pte = (pte_t *)pud;
5455                 } else {
5456                         BUG_ON(sz != PMD_SIZE);
5457                         if (want_pmd_share() && pud_none(*pud))
5458                                 pte = huge_pmd_share(mm, addr, pud);
5459                         else
5460                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5461                 }
5462         }
5463         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5464
5465         return pte;
5466 }
5467
5468 /*
5469  * huge_pte_offset() - Walk the page table to resolve the hugepage
5470  * entry at address @addr
5471  *
5472  * Return: Pointer to page table entry (PUD or PMD) for
5473  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5474  * size @sz doesn't match the hugepage size at this level of the page
5475  * table.
5476  */
5477 pte_t *huge_pte_offset(struct mm_struct *mm,
5478                        unsigned long addr, unsigned long sz)
5479 {
5480         pgd_t *pgd;
5481         p4d_t *p4d;
5482         pud_t *pud;
5483         pmd_t *pmd;
5484
5485         pgd = pgd_offset(mm, addr);
5486         if (!pgd_present(*pgd))
5487                 return NULL;
5488         p4d = p4d_offset(pgd, addr);
5489         if (!p4d_present(*p4d))
5490                 return NULL;
5491
5492         pud = pud_offset(p4d, addr);
5493         if (sz == PUD_SIZE)
5494                 /* must be pud huge, non-present or none */
5495                 return (pte_t *)pud;
5496         if (!pud_present(*pud))
5497                 return NULL;
5498         /* must have a valid entry and size to go further */
5499
5500         pmd = pmd_offset(pud, addr);
5501         /* must be pmd huge, non-present or none */
5502         return (pte_t *)pmd;
5503 }
5504
5505 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5506
5507 /*
5508  * These functions are overwritable if your architecture needs its own
5509  * behavior.
5510  */
5511 struct page * __weak
5512 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5513                               int write)
5514 {
5515         return ERR_PTR(-EINVAL);
5516 }
5517
5518 struct page * __weak
5519 follow_huge_pd(struct vm_area_struct *vma,
5520                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5521 {
5522         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5523         return NULL;
5524 }
5525
5526 struct page * __weak
5527 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5528                 pmd_t *pmd, int flags)
5529 {
5530         struct page *page = NULL;
5531         spinlock_t *ptl;
5532         pte_t pte;
5533
5534         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5535         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5536                          (FOLL_PIN | FOLL_GET)))
5537                 return NULL;
5538
5539 retry:
5540         ptl = pmd_lockptr(mm, pmd);
5541         spin_lock(ptl);
5542         /*
5543          * make sure that the address range covered by this pmd is not
5544          * unmapped from other threads.
5545          */
5546         if (!pmd_huge(*pmd))
5547                 goto out;
5548         pte = huge_ptep_get((pte_t *)pmd);
5549         if (pte_present(pte)) {
5550                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5551                 /*
5552                  * try_grab_page() should always succeed here, because: a) we
5553                  * hold the pmd (ptl) lock, and b) we've just checked that the
5554                  * huge pmd (head) page is present in the page tables. The ptl
5555                  * prevents the head page and tail pages from being rearranged
5556                  * in any way. So this page must be available at this point,
5557                  * unless the page refcount overflowed:
5558                  */
5559                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5560                         page = NULL;
5561                         goto out;
5562                 }
5563         } else {
5564                 if (is_hugetlb_entry_migration(pte)) {
5565                         spin_unlock(ptl);
5566                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5567                         goto retry;
5568                 }
5569                 /*
5570                  * hwpoisoned entry is treated as no_page_table in
5571                  * follow_page_mask().
5572                  */
5573         }
5574 out:
5575         spin_unlock(ptl);
5576         return page;
5577 }
5578
5579 struct page * __weak
5580 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5581                 pud_t *pud, int flags)
5582 {
5583         if (flags & (FOLL_GET | FOLL_PIN))
5584                 return NULL;
5585
5586         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5587 }
5588
5589 struct page * __weak
5590 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5591 {
5592         if (flags & (FOLL_GET | FOLL_PIN))
5593                 return NULL;
5594
5595         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5596 }
5597
5598 bool isolate_huge_page(struct page *page, struct list_head *list)
5599 {
5600         bool ret = true;
5601
5602         spin_lock(&hugetlb_lock);
5603         if (!PageHeadHuge(page) ||
5604             !HPageMigratable(page) ||
5605             !get_page_unless_zero(page)) {
5606                 ret = false;
5607                 goto unlock;
5608         }
5609         ClearHPageMigratable(page);
5610         list_move_tail(&page->lru, list);
5611 unlock:
5612         spin_unlock(&hugetlb_lock);
5613         return ret;
5614 }
5615
5616 void putback_active_hugepage(struct page *page)
5617 {
5618         spin_lock(&hugetlb_lock);
5619         SetHPageMigratable(page);
5620         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5621         spin_unlock(&hugetlb_lock);
5622         put_page(page);
5623 }
5624
5625 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5626 {
5627         struct hstate *h = page_hstate(oldpage);
5628
5629         hugetlb_cgroup_migrate(oldpage, newpage);
5630         set_page_owner_migrate_reason(newpage, reason);
5631
5632         /*
5633          * transfer temporary state of the new huge page. This is
5634          * reverse to other transitions because the newpage is going to
5635          * be final while the old one will be freed so it takes over
5636          * the temporary status.
5637          *
5638          * Also note that we have to transfer the per-node surplus state
5639          * here as well otherwise the global surplus count will not match
5640          * the per-node's.
5641          */
5642         if (HPageTemporary(newpage)) {
5643                 int old_nid = page_to_nid(oldpage);
5644                 int new_nid = page_to_nid(newpage);
5645
5646                 SetHPageTemporary(oldpage);
5647                 ClearHPageTemporary(newpage);
5648
5649                 spin_lock(&hugetlb_lock);
5650                 if (h->surplus_huge_pages_node[old_nid]) {
5651                         h->surplus_huge_pages_node[old_nid]--;
5652                         h->surplus_huge_pages_node[new_nid]++;
5653                 }
5654                 spin_unlock(&hugetlb_lock);
5655         }
5656 }
5657
5658 #ifdef CONFIG_CMA
5659 static bool cma_reserve_called __initdata;
5660
5661 static int __init cmdline_parse_hugetlb_cma(char *p)
5662 {
5663         hugetlb_cma_size = memparse(p, &p);
5664         return 0;
5665 }
5666
5667 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5668
5669 void __init hugetlb_cma_reserve(int order)
5670 {
5671         unsigned long size, reserved, per_node;
5672         int nid;
5673
5674         cma_reserve_called = true;
5675
5676         if (!hugetlb_cma_size)
5677                 return;
5678
5679         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5680                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5681                         (PAGE_SIZE << order) / SZ_1M);
5682                 return;
5683         }
5684
5685         /*
5686          * If 3 GB area is requested on a machine with 4 numa nodes,
5687          * let's allocate 1 GB on first three nodes and ignore the last one.
5688          */
5689         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5690         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5691                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5692
5693         reserved = 0;
5694         for_each_node_state(nid, N_ONLINE) {
5695                 int res;
5696                 char name[CMA_MAX_NAME];
5697
5698                 size = min(per_node, hugetlb_cma_size - reserved);
5699                 size = round_up(size, PAGE_SIZE << order);
5700
5701                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5702                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5703                                                  0, false, name,
5704                                                  &hugetlb_cma[nid], nid);
5705                 if (res) {
5706                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5707                                 res, nid);
5708                         continue;
5709                 }
5710
5711                 reserved += size;
5712                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5713                         size / SZ_1M, nid);
5714
5715                 if (reserved >= hugetlb_cma_size)
5716                         break;
5717         }
5718 }
5719
5720 void __init hugetlb_cma_check(void)
5721 {
5722         if (!hugetlb_cma_size || cma_reserve_called)
5723                 return;
5724
5725         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5726 }
5727
5728 #endif /* CONFIG_CMA */