1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
35 #include <asm/pgalloc.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 static unsigned long hugetlb_cma_size __initdata;
56 * Minimum page order among possible hugepage sizes, set to a proper value
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
61 __initdata LIST_HEAD(huge_boot_pages);
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
73 DEFINE_SPINLOCK(hugetlb_lock);
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
99 spin_unlock(&spool->lock);
101 /* If no pages are used, and no other handles to the subpool
102 * remain, give up any reservations based on minimum size and
103 * free the subpool */
104 if (subpool_is_free(spool)) {
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115 struct hugepage_subpool *spool;
117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
121 spin_lock_init(&spool->lock);
123 spool->max_hpages = max_hpages;
125 spool->min_hpages = min_hpages;
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
131 spool->rsv_hpages = min_hpages;
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 spin_lock(&spool->lock);
139 BUG_ON(!spool->count);
141 unlock_or_release_subpool(spool);
145 * Subpool accounting for allocating and reserving pages.
146 * Return -ENOMEM if there are not enough resources to satisfy the
147 * request. Otherwise, return the number of pages by which the
148 * global pools must be adjusted (upward). The returned value may
149 * only be different than the passed value (delta) in the case where
150 * a subpool minimum size must be maintained.
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
160 spin_lock(&spool->lock);
162 if (spool->max_hpages != -1) { /* maximum size accounting */
163 if ((spool->used_hpages + delta) <= spool->max_hpages)
164 spool->used_hpages += delta;
171 /* minimum size accounting */
172 if (spool->min_hpages != -1 && spool->rsv_hpages) {
173 if (delta > spool->rsv_hpages) {
175 * Asking for more reserves than those already taken on
176 * behalf of subpool. Return difference.
178 ret = delta - spool->rsv_hpages;
179 spool->rsv_hpages = 0;
181 ret = 0; /* reserves already accounted for */
182 spool->rsv_hpages -= delta;
187 spin_unlock(&spool->lock);
192 * Subpool accounting for freeing and unreserving pages.
193 * Return the number of global page reservations that must be dropped.
194 * The return value may only be different than the passed value (delta)
195 * in the case where a subpool minimum size must be maintained.
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
205 spin_lock(&spool->lock);
207 if (spool->max_hpages != -1) /* maximum size accounting */
208 spool->used_hpages -= delta;
210 /* minimum size accounting */
211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212 if (spool->rsv_hpages + delta <= spool->min_hpages)
215 ret = spool->rsv_hpages + delta - spool->min_hpages;
217 spool->rsv_hpages += delta;
218 if (spool->rsv_hpages > spool->min_hpages)
219 spool->rsv_hpages = spool->min_hpages;
223 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 * quota reference, free it now.
226 unlock_or_release_subpool(spool);
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
233 return HUGETLBFS_SB(inode->i_sb)->spool;
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
238 return subpool_inode(file_inode(vma->vm_file));
241 /* Helper that removes a struct file_region from the resv_map cache and returns
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
247 struct file_region *nrg = NULL;
249 VM_BUG_ON(resv->region_cache_count <= 0);
251 resv->region_cache_count--;
252 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253 list_del(&nrg->link);
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 struct file_region *rg)
264 #ifdef CONFIG_CGROUP_HUGETLB
265 nrg->reservation_counter = rg->reservation_counter;
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
275 struct resv_map *resv,
276 struct file_region *nrg)
278 #ifdef CONFIG_CGROUP_HUGETLB
280 nrg->reservation_counter =
281 &h_cg->rsvd_hugepage[hstate_index(h)];
282 nrg->css = &h_cg->css;
283 if (!resv->pages_per_hpage)
284 resv->pages_per_hpage = pages_per_huge_page(h);
285 /* pages_per_hpage should be the same for all entries in
288 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
290 nrg->reservation_counter = NULL;
296 static bool has_same_uncharge_info(struct file_region *rg,
297 struct file_region *org)
299 #ifdef CONFIG_CGROUP_HUGETLB
301 rg->reservation_counter == org->reservation_counter &&
309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
311 struct file_region *nrg = NULL, *prg = NULL;
313 prg = list_prev_entry(rg, link);
314 if (&prg->link != &resv->regions && prg->to == rg->from &&
315 has_same_uncharge_info(prg, rg)) {
324 nrg = list_next_entry(rg, link);
325 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
326 has_same_uncharge_info(nrg, rg)) {
327 nrg->from = rg->from;
335 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
336 long to, struct hstate *h, struct hugetlb_cgroup *cg,
337 long *regions_needed)
339 struct file_region *nrg;
341 if (!regions_needed) {
342 nrg = get_file_region_entry_from_cache(map, from, to);
343 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
344 list_add(&nrg->link, rg->link.prev);
345 coalesce_file_region(map, nrg);
347 *regions_needed += 1;
353 * Must be called with resv->lock held.
355 * Calling this with regions_needed != NULL will count the number of pages
356 * to be added but will not modify the linked list. And regions_needed will
357 * indicate the number of file_regions needed in the cache to carry out to add
358 * the regions for this range.
360 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
361 struct hugetlb_cgroup *h_cg,
362 struct hstate *h, long *regions_needed)
365 struct list_head *head = &resv->regions;
366 long last_accounted_offset = f;
367 struct file_region *rg = NULL, *trg = NULL;
372 /* In this loop, we essentially handle an entry for the range
373 * [last_accounted_offset, rg->from), at every iteration, with some
376 list_for_each_entry_safe(rg, trg, head, link) {
377 /* Skip irrelevant regions that start before our range. */
379 /* If this region ends after the last accounted offset,
380 * then we need to update last_accounted_offset.
382 if (rg->to > last_accounted_offset)
383 last_accounted_offset = rg->to;
387 /* When we find a region that starts beyond our range, we've
393 /* Add an entry for last_accounted_offset -> rg->from, and
394 * update last_accounted_offset.
396 if (rg->from > last_accounted_offset)
397 add += hugetlb_resv_map_add(resv, rg,
398 last_accounted_offset,
402 last_accounted_offset = rg->to;
405 /* Handle the case where our range extends beyond
406 * last_accounted_offset.
408 if (last_accounted_offset < t)
409 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
410 t, h, h_cg, regions_needed);
416 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
418 static int allocate_file_region_entries(struct resv_map *resv,
420 __must_hold(&resv->lock)
422 struct list_head allocated_regions;
423 int to_allocate = 0, i = 0;
424 struct file_region *trg = NULL, *rg = NULL;
426 VM_BUG_ON(regions_needed < 0);
428 INIT_LIST_HEAD(&allocated_regions);
431 * Check for sufficient descriptors in the cache to accommodate
432 * the number of in progress add operations plus regions_needed.
434 * This is a while loop because when we drop the lock, some other call
435 * to region_add or region_del may have consumed some region_entries,
436 * so we keep looping here until we finally have enough entries for
437 * (adds_in_progress + regions_needed).
439 while (resv->region_cache_count <
440 (resv->adds_in_progress + regions_needed)) {
441 to_allocate = resv->adds_in_progress + regions_needed -
442 resv->region_cache_count;
444 /* At this point, we should have enough entries in the cache
445 * for all the existings adds_in_progress. We should only be
446 * needing to allocate for regions_needed.
448 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
450 spin_unlock(&resv->lock);
451 for (i = 0; i < to_allocate; i++) {
452 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
455 list_add(&trg->link, &allocated_regions);
458 spin_lock(&resv->lock);
460 list_splice(&allocated_regions, &resv->region_cache);
461 resv->region_cache_count += to_allocate;
467 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
475 * Add the huge page range represented by [f, t) to the reserve
476 * map. Regions will be taken from the cache to fill in this range.
477 * Sufficient regions should exist in the cache due to the previous
478 * call to region_chg with the same range, but in some cases the cache will not
479 * have sufficient entries due to races with other code doing region_add or
480 * region_del. The extra needed entries will be allocated.
482 * regions_needed is the out value provided by a previous call to region_chg.
484 * Return the number of new huge pages added to the map. This number is greater
485 * than or equal to zero. If file_region entries needed to be allocated for
486 * this operation and we were not able to allocate, it returns -ENOMEM.
487 * region_add of regions of length 1 never allocate file_regions and cannot
488 * fail; region_chg will always allocate at least 1 entry and a region_add for
489 * 1 page will only require at most 1 entry.
491 static long region_add(struct resv_map *resv, long f, long t,
492 long in_regions_needed, struct hstate *h,
493 struct hugetlb_cgroup *h_cg)
495 long add = 0, actual_regions_needed = 0;
497 spin_lock(&resv->lock);
500 /* Count how many regions are actually needed to execute this add. */
501 add_reservation_in_range(resv, f, t, NULL, NULL,
502 &actual_regions_needed);
505 * Check for sufficient descriptors in the cache to accommodate
506 * this add operation. Note that actual_regions_needed may be greater
507 * than in_regions_needed, as the resv_map may have been modified since
508 * the region_chg call. In this case, we need to make sure that we
509 * allocate extra entries, such that we have enough for all the
510 * existing adds_in_progress, plus the excess needed for this
513 if (actual_regions_needed > in_regions_needed &&
514 resv->region_cache_count <
515 resv->adds_in_progress +
516 (actual_regions_needed - in_regions_needed)) {
517 /* region_add operation of range 1 should never need to
518 * allocate file_region entries.
520 VM_BUG_ON(t - f <= 1);
522 if (allocate_file_region_entries(
523 resv, actual_regions_needed - in_regions_needed)) {
530 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
532 resv->adds_in_progress -= in_regions_needed;
534 spin_unlock(&resv->lock);
540 * Examine the existing reserve map and determine how many
541 * huge pages in the specified range [f, t) are NOT currently
542 * represented. This routine is called before a subsequent
543 * call to region_add that will actually modify the reserve
544 * map to add the specified range [f, t). region_chg does
545 * not change the number of huge pages represented by the
546 * map. A number of new file_region structures is added to the cache as a
547 * placeholder, for the subsequent region_add call to use. At least 1
548 * file_region structure is added.
550 * out_regions_needed is the number of regions added to the
551 * resv->adds_in_progress. This value needs to be provided to a follow up call
552 * to region_add or region_abort for proper accounting.
554 * Returns the number of huge pages that need to be added to the existing
555 * reservation map for the range [f, t). This number is greater or equal to
556 * zero. -ENOMEM is returned if a new file_region structure or cache entry
557 * is needed and can not be allocated.
559 static long region_chg(struct resv_map *resv, long f, long t,
560 long *out_regions_needed)
564 spin_lock(&resv->lock);
566 /* Count how many hugepages in this range are NOT represented. */
567 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570 if (*out_regions_needed == 0)
571 *out_regions_needed = 1;
573 if (allocate_file_region_entries(resv, *out_regions_needed))
576 resv->adds_in_progress += *out_regions_needed;
578 spin_unlock(&resv->lock);
583 * Abort the in progress add operation. The adds_in_progress field
584 * of the resv_map keeps track of the operations in progress between
585 * calls to region_chg and region_add. Operations are sometimes
586 * aborted after the call to region_chg. In such cases, region_abort
587 * is called to decrement the adds_in_progress counter. regions_needed
588 * is the value returned by the region_chg call, it is used to decrement
589 * the adds_in_progress counter.
591 * NOTE: The range arguments [f, t) are not needed or used in this
592 * routine. They are kept to make reading the calling code easier as
593 * arguments will match the associated region_chg call.
595 static void region_abort(struct resv_map *resv, long f, long t,
598 spin_lock(&resv->lock);
599 VM_BUG_ON(!resv->region_cache_count);
600 resv->adds_in_progress -= regions_needed;
601 spin_unlock(&resv->lock);
605 * Delete the specified range [f, t) from the reserve map. If the
606 * t parameter is LONG_MAX, this indicates that ALL regions after f
607 * should be deleted. Locate the regions which intersect [f, t)
608 * and either trim, delete or split the existing regions.
610 * Returns the number of huge pages deleted from the reserve map.
611 * In the normal case, the return value is zero or more. In the
612 * case where a region must be split, a new region descriptor must
613 * be allocated. If the allocation fails, -ENOMEM will be returned.
614 * NOTE: If the parameter t == LONG_MAX, then we will never split
615 * a region and possibly return -ENOMEM. Callers specifying
616 * t == LONG_MAX do not need to check for -ENOMEM error.
618 static long region_del(struct resv_map *resv, long f, long t)
620 struct list_head *head = &resv->regions;
621 struct file_region *rg, *trg;
622 struct file_region *nrg = NULL;
626 spin_lock(&resv->lock);
627 list_for_each_entry_safe(rg, trg, head, link) {
629 * Skip regions before the range to be deleted. file_region
630 * ranges are normally of the form [from, to). However, there
631 * may be a "placeholder" entry in the map which is of the form
632 * (from, to) with from == to. Check for placeholder entries
633 * at the beginning of the range to be deleted.
635 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
641 if (f > rg->from && t < rg->to) { /* Must split region */
643 * Check for an entry in the cache before dropping
644 * lock and attempting allocation.
647 resv->region_cache_count > resv->adds_in_progress) {
648 nrg = list_first_entry(&resv->region_cache,
651 list_del(&nrg->link);
652 resv->region_cache_count--;
656 spin_unlock(&resv->lock);
657 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
664 hugetlb_cgroup_uncharge_file_region(
667 /* New entry for end of split region */
671 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
673 INIT_LIST_HEAD(&nrg->link);
675 /* Original entry is trimmed */
678 list_add(&nrg->link, &rg->link);
683 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
684 del += rg->to - rg->from;
685 hugetlb_cgroup_uncharge_file_region(resv, rg,
692 if (f <= rg->from) { /* Trim beginning of region */
693 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 } else { /* Trim end of region */
699 hugetlb_cgroup_uncharge_file_region(resv, rg,
707 spin_unlock(&resv->lock);
713 * A rare out of memory error was encountered which prevented removal of
714 * the reserve map region for a page. The huge page itself was free'ed
715 * and removed from the page cache. This routine will adjust the subpool
716 * usage count, and the global reserve count if needed. By incrementing
717 * these counts, the reserve map entry which could not be deleted will
718 * appear as a "reserved" entry instead of simply dangling with incorrect
721 void hugetlb_fix_reserve_counts(struct inode *inode)
723 struct hugepage_subpool *spool = subpool_inode(inode);
726 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
728 struct hstate *h = hstate_inode(inode);
730 hugetlb_acct_memory(h, 1);
735 * Count and return the number of huge pages in the reserve map
736 * that intersect with the range [f, t).
738 static long region_count(struct resv_map *resv, long f, long t)
740 struct list_head *head = &resv->regions;
741 struct file_region *rg;
744 spin_lock(&resv->lock);
745 /* Locate each segment we overlap with, and count that overlap. */
746 list_for_each_entry(rg, head, link) {
755 seg_from = max(rg->from, f);
756 seg_to = min(rg->to, t);
758 chg += seg_to - seg_from;
760 spin_unlock(&resv->lock);
766 * Convert the address within this vma to the page offset within
767 * the mapping, in pagecache page units; huge pages here.
769 static pgoff_t vma_hugecache_offset(struct hstate *h,
770 struct vm_area_struct *vma, unsigned long address)
772 return ((address - vma->vm_start) >> huge_page_shift(h)) +
773 (vma->vm_pgoff >> huge_page_order(h));
776 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
777 unsigned long address)
779 return vma_hugecache_offset(hstate_vma(vma), vma, address);
781 EXPORT_SYMBOL_GPL(linear_hugepage_index);
784 * Return the size of the pages allocated when backing a VMA. In the majority
785 * cases this will be same size as used by the page table entries.
787 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
789 if (vma->vm_ops && vma->vm_ops->pagesize)
790 return vma->vm_ops->pagesize(vma);
793 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796 * Return the page size being used by the MMU to back a VMA. In the majority
797 * of cases, the page size used by the kernel matches the MMU size. On
798 * architectures where it differs, an architecture-specific 'strong'
799 * version of this symbol is required.
801 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
803 return vma_kernel_pagesize(vma);
807 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
808 * bits of the reservation map pointer, which are always clear due to
811 #define HPAGE_RESV_OWNER (1UL << 0)
812 #define HPAGE_RESV_UNMAPPED (1UL << 1)
813 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816 * These helpers are used to track how many pages are reserved for
817 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
818 * is guaranteed to have their future faults succeed.
820 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
821 * the reserve counters are updated with the hugetlb_lock held. It is safe
822 * to reset the VMA at fork() time as it is not in use yet and there is no
823 * chance of the global counters getting corrupted as a result of the values.
825 * The private mapping reservation is represented in a subtly different
826 * manner to a shared mapping. A shared mapping has a region map associated
827 * with the underlying file, this region map represents the backing file
828 * pages which have ever had a reservation assigned which this persists even
829 * after the page is instantiated. A private mapping has a region map
830 * associated with the original mmap which is attached to all VMAs which
831 * reference it, this region map represents those offsets which have consumed
832 * reservation ie. where pages have been instantiated.
834 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
836 return (unsigned long)vma->vm_private_data;
839 static void set_vma_private_data(struct vm_area_struct *vma,
842 vma->vm_private_data = (void *)value;
846 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
847 struct hugetlb_cgroup *h_cg,
850 #ifdef CONFIG_CGROUP_HUGETLB
852 resv_map->reservation_counter = NULL;
853 resv_map->pages_per_hpage = 0;
854 resv_map->css = NULL;
856 resv_map->reservation_counter =
857 &h_cg->rsvd_hugepage[hstate_index(h)];
858 resv_map->pages_per_hpage = pages_per_huge_page(h);
859 resv_map->css = &h_cg->css;
864 struct resv_map *resv_map_alloc(void)
866 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
867 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
869 if (!resv_map || !rg) {
875 kref_init(&resv_map->refs);
876 spin_lock_init(&resv_map->lock);
877 INIT_LIST_HEAD(&resv_map->regions);
879 resv_map->adds_in_progress = 0;
881 * Initialize these to 0. On shared mappings, 0's here indicate these
882 * fields don't do cgroup accounting. On private mappings, these will be
883 * re-initialized to the proper values, to indicate that hugetlb cgroup
884 * reservations are to be un-charged from here.
886 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
888 INIT_LIST_HEAD(&resv_map->region_cache);
889 list_add(&rg->link, &resv_map->region_cache);
890 resv_map->region_cache_count = 1;
895 void resv_map_release(struct kref *ref)
897 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
898 struct list_head *head = &resv_map->region_cache;
899 struct file_region *rg, *trg;
901 /* Clear out any active regions before we release the map. */
902 region_del(resv_map, 0, LONG_MAX);
904 /* ... and any entries left in the cache */
905 list_for_each_entry_safe(rg, trg, head, link) {
910 VM_BUG_ON(resv_map->adds_in_progress);
915 static inline struct resv_map *inode_resv_map(struct inode *inode)
918 * At inode evict time, i_mapping may not point to the original
919 * address space within the inode. This original address space
920 * contains the pointer to the resv_map. So, always use the
921 * address space embedded within the inode.
922 * The VERY common case is inode->mapping == &inode->i_data but,
923 * this may not be true for device special inodes.
925 return (struct resv_map *)(&inode->i_data)->private_data;
928 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
930 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
931 if (vma->vm_flags & VM_MAYSHARE) {
932 struct address_space *mapping = vma->vm_file->f_mapping;
933 struct inode *inode = mapping->host;
935 return inode_resv_map(inode);
938 return (struct resv_map *)(get_vma_private_data(vma) &
943 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
945 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
948 set_vma_private_data(vma, (get_vma_private_data(vma) &
949 HPAGE_RESV_MASK) | (unsigned long)map);
952 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
954 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
955 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
957 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
962 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
964 return (get_vma_private_data(vma) & flag) != 0;
967 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
968 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
970 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
971 if (!(vma->vm_flags & VM_MAYSHARE))
972 vma->vm_private_data = (void *)0;
975 /* Returns true if the VMA has associated reserve pages */
976 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
978 if (vma->vm_flags & VM_NORESERVE) {
980 * This address is already reserved by other process(chg == 0),
981 * so, we should decrement reserved count. Without decrementing,
982 * reserve count remains after releasing inode, because this
983 * allocated page will go into page cache and is regarded as
984 * coming from reserved pool in releasing step. Currently, we
985 * don't have any other solution to deal with this situation
986 * properly, so add work-around here.
988 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
994 /* Shared mappings always use reserves */
995 if (vma->vm_flags & VM_MAYSHARE) {
997 * We know VM_NORESERVE is not set. Therefore, there SHOULD
998 * be a region map for all pages. The only situation where
999 * there is no region map is if a hole was punched via
1000 * fallocate. In this case, there really are no reserves to
1001 * use. This situation is indicated if chg != 0.
1010 * Only the process that called mmap() has reserves for
1013 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015 * Like the shared case above, a hole punch or truncate
1016 * could have been performed on the private mapping.
1017 * Examine the value of chg to determine if reserves
1018 * actually exist or were previously consumed.
1019 * Very Subtle - The value of chg comes from a previous
1020 * call to vma_needs_reserves(). The reserve map for
1021 * private mappings has different (opposite) semantics
1022 * than that of shared mappings. vma_needs_reserves()
1023 * has already taken this difference in semantics into
1024 * account. Therefore, the meaning of chg is the same
1025 * as in the shared case above. Code could easily be
1026 * combined, but keeping it separate draws attention to
1027 * subtle differences.
1038 static void enqueue_huge_page(struct hstate *h, struct page *page)
1040 int nid = page_to_nid(page);
1041 list_move(&page->lru, &h->hugepage_freelists[nid]);
1042 h->free_huge_pages++;
1043 h->free_huge_pages_node[nid]++;
1044 SetHPageFreed(page);
1047 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1052 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1053 if (nocma && is_migrate_cma_page(page))
1056 if (PageHWPoison(page))
1059 list_move(&page->lru, &h->hugepage_activelist);
1060 set_page_refcounted(page);
1061 ClearHPageFreed(page);
1062 h->free_huge_pages--;
1063 h->free_huge_pages_node[nid]--;
1070 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1073 unsigned int cpuset_mems_cookie;
1074 struct zonelist *zonelist;
1077 int node = NUMA_NO_NODE;
1079 zonelist = node_zonelist(nid, gfp_mask);
1082 cpuset_mems_cookie = read_mems_allowed_begin();
1083 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1086 if (!cpuset_zone_allowed(zone, gfp_mask))
1089 * no need to ask again on the same node. Pool is node rather than
1092 if (zone_to_nid(zone) == node)
1094 node = zone_to_nid(zone);
1096 page = dequeue_huge_page_node_exact(h, node);
1100 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1106 static struct page *dequeue_huge_page_vma(struct hstate *h,
1107 struct vm_area_struct *vma,
1108 unsigned long address, int avoid_reserve,
1112 struct mempolicy *mpol;
1114 nodemask_t *nodemask;
1118 * A child process with MAP_PRIVATE mappings created by their parent
1119 * have no page reserves. This check ensures that reservations are
1120 * not "stolen". The child may still get SIGKILLed
1122 if (!vma_has_reserves(vma, chg) &&
1123 h->free_huge_pages - h->resv_huge_pages == 0)
1126 /* If reserves cannot be used, ensure enough pages are in the pool */
1127 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130 gfp_mask = htlb_alloc_mask(h);
1131 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1132 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1133 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1134 SetHPageRestoreReserve(page);
1135 h->resv_huge_pages--;
1138 mpol_cond_put(mpol);
1146 * common helper functions for hstate_next_node_to_{alloc|free}.
1147 * We may have allocated or freed a huge page based on a different
1148 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1149 * be outside of *nodes_allowed. Ensure that we use an allowed
1150 * node for alloc or free.
1152 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1154 nid = next_node_in(nid, *nodes_allowed);
1155 VM_BUG_ON(nid >= MAX_NUMNODES);
1160 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1162 if (!node_isset(nid, *nodes_allowed))
1163 nid = next_node_allowed(nid, nodes_allowed);
1168 * returns the previously saved node ["this node"] from which to
1169 * allocate a persistent huge page for the pool and advance the
1170 * next node from which to allocate, handling wrap at end of node
1173 static int hstate_next_node_to_alloc(struct hstate *h,
1174 nodemask_t *nodes_allowed)
1178 VM_BUG_ON(!nodes_allowed);
1180 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1181 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1187 * helper for free_pool_huge_page() - return the previously saved
1188 * node ["this node"] from which to free a huge page. Advance the
1189 * next node id whether or not we find a free huge page to free so
1190 * that the next attempt to free addresses the next node.
1192 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1196 VM_BUG_ON(!nodes_allowed);
1198 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1199 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1204 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1205 for (nr_nodes = nodes_weight(*mask); \
1207 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1210 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1211 for (nr_nodes = nodes_weight(*mask); \
1213 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1216 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1217 static void destroy_compound_gigantic_page(struct page *page,
1221 int nr_pages = 1 << order;
1222 struct page *p = page + 1;
1224 atomic_set(compound_mapcount_ptr(page), 0);
1225 atomic_set(compound_pincount_ptr(page), 0);
1227 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1228 clear_compound_head(p);
1229 set_page_refcounted(p);
1232 set_compound_order(page, 0);
1233 page[1].compound_nr = 0;
1234 __ClearPageHead(page);
1237 static void free_gigantic_page(struct page *page, unsigned int order)
1240 * If the page isn't allocated using the cma allocator,
1241 * cma_release() returns false.
1244 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248 free_contig_range(page_to_pfn(page), 1 << order);
1251 #ifdef CONFIG_CONTIG_ALLOC
1252 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1253 int nid, nodemask_t *nodemask)
1255 unsigned long nr_pages = 1UL << huge_page_order(h);
1256 if (nid == NUMA_NO_NODE)
1257 nid = numa_mem_id();
1264 if (hugetlb_cma[nid]) {
1265 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1266 huge_page_order(h), true);
1271 if (!(gfp_mask & __GFP_THISNODE)) {
1272 for_each_node_mask(node, *nodemask) {
1273 if (node == nid || !hugetlb_cma[node])
1276 page = cma_alloc(hugetlb_cma[node], nr_pages,
1277 huge_page_order(h), true);
1285 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1288 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1290 #else /* !CONFIG_CONTIG_ALLOC */
1291 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1292 int nid, nodemask_t *nodemask)
1296 #endif /* CONFIG_CONTIG_ALLOC */
1298 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1299 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1300 int nid, nodemask_t *nodemask)
1304 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1305 static inline void destroy_compound_gigantic_page(struct page *page,
1306 unsigned int order) { }
1309 static void update_and_free_page(struct hstate *h, struct page *page)
1312 struct page *subpage = page;
1314 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1318 h->nr_huge_pages_node[page_to_nid(page)]--;
1319 for (i = 0; i < pages_per_huge_page(h);
1320 i++, subpage = mem_map_next(subpage, page, i)) {
1321 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1322 1 << PG_referenced | 1 << PG_dirty |
1323 1 << PG_active | 1 << PG_private |
1326 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1327 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1328 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1329 set_page_refcounted(page);
1330 if (hstate_is_gigantic(h)) {
1332 * Temporarily drop the hugetlb_lock, because
1333 * we might block in free_gigantic_page().
1335 spin_unlock(&hugetlb_lock);
1336 destroy_compound_gigantic_page(page, huge_page_order(h));
1337 free_gigantic_page(page, huge_page_order(h));
1338 spin_lock(&hugetlb_lock);
1340 __free_pages(page, huge_page_order(h));
1344 struct hstate *size_to_hstate(unsigned long size)
1348 for_each_hstate(h) {
1349 if (huge_page_size(h) == size)
1355 static void __free_huge_page(struct page *page)
1358 * Can't pass hstate in here because it is called from the
1359 * compound page destructor.
1361 struct hstate *h = page_hstate(page);
1362 int nid = page_to_nid(page);
1363 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1364 bool restore_reserve;
1366 VM_BUG_ON_PAGE(page_count(page), page);
1367 VM_BUG_ON_PAGE(page_mapcount(page), page);
1369 hugetlb_set_page_subpool(page, NULL);
1370 page->mapping = NULL;
1371 restore_reserve = HPageRestoreReserve(page);
1372 ClearHPageRestoreReserve(page);
1375 * If HPageRestoreReserve was set on page, page allocation consumed a
1376 * reservation. If the page was associated with a subpool, there
1377 * would have been a page reserved in the subpool before allocation
1378 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1379 * reservation, do not call hugepage_subpool_put_pages() as this will
1380 * remove the reserved page from the subpool.
1382 if (!restore_reserve) {
1384 * A return code of zero implies that the subpool will be
1385 * under its minimum size if the reservation is not restored
1386 * after page is free. Therefore, force restore_reserve
1389 if (hugepage_subpool_put_pages(spool, 1) == 0)
1390 restore_reserve = true;
1393 spin_lock(&hugetlb_lock);
1394 ClearHPageMigratable(page);
1395 hugetlb_cgroup_uncharge_page(hstate_index(h),
1396 pages_per_huge_page(h), page);
1397 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1398 pages_per_huge_page(h), page);
1399 if (restore_reserve)
1400 h->resv_huge_pages++;
1402 if (HPageTemporary(page)) {
1403 list_del(&page->lru);
1404 ClearHPageTemporary(page);
1405 update_and_free_page(h, page);
1406 } else if (h->surplus_huge_pages_node[nid]) {
1407 /* remove the page from active list */
1408 list_del(&page->lru);
1409 update_and_free_page(h, page);
1410 h->surplus_huge_pages--;
1411 h->surplus_huge_pages_node[nid]--;
1413 arch_clear_hugepage_flags(page);
1414 enqueue_huge_page(h, page);
1416 spin_unlock(&hugetlb_lock);
1420 * As free_huge_page() can be called from a non-task context, we have
1421 * to defer the actual freeing in a workqueue to prevent potential
1422 * hugetlb_lock deadlock.
1424 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1425 * be freed and frees them one-by-one. As the page->mapping pointer is
1426 * going to be cleared in __free_huge_page() anyway, it is reused as the
1427 * llist_node structure of a lockless linked list of huge pages to be freed.
1429 static LLIST_HEAD(hpage_freelist);
1431 static void free_hpage_workfn(struct work_struct *work)
1433 struct llist_node *node;
1436 node = llist_del_all(&hpage_freelist);
1439 page = container_of((struct address_space **)node,
1440 struct page, mapping);
1442 __free_huge_page(page);
1445 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1447 void free_huge_page(struct page *page)
1450 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1454 * Only call schedule_work() if hpage_freelist is previously
1455 * empty. Otherwise, schedule_work() had been called but the
1456 * workfn hasn't retrieved the list yet.
1458 if (llist_add((struct llist_node *)&page->mapping,
1460 schedule_work(&free_hpage_work);
1464 __free_huge_page(page);
1467 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1469 INIT_LIST_HEAD(&page->lru);
1470 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1471 hugetlb_set_page_subpool(page, NULL);
1472 set_hugetlb_cgroup(page, NULL);
1473 set_hugetlb_cgroup_rsvd(page, NULL);
1474 spin_lock(&hugetlb_lock);
1476 h->nr_huge_pages_node[nid]++;
1477 ClearHPageFreed(page);
1478 spin_unlock(&hugetlb_lock);
1481 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1484 int nr_pages = 1 << order;
1485 struct page *p = page + 1;
1487 /* we rely on prep_new_huge_page to set the destructor */
1488 set_compound_order(page, order);
1489 __ClearPageReserved(page);
1490 __SetPageHead(page);
1491 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1493 * For gigantic hugepages allocated through bootmem at
1494 * boot, it's safer to be consistent with the not-gigantic
1495 * hugepages and clear the PG_reserved bit from all tail pages
1496 * too. Otherwise drivers using get_user_pages() to access tail
1497 * pages may get the reference counting wrong if they see
1498 * PG_reserved set on a tail page (despite the head page not
1499 * having PG_reserved set). Enforcing this consistency between
1500 * head and tail pages allows drivers to optimize away a check
1501 * on the head page when they need know if put_page() is needed
1502 * after get_user_pages().
1504 __ClearPageReserved(p);
1505 set_page_count(p, 0);
1506 set_compound_head(p, page);
1508 atomic_set(compound_mapcount_ptr(page), -1);
1509 atomic_set(compound_pincount_ptr(page), 0);
1513 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1514 * transparent huge pages. See the PageTransHuge() documentation for more
1517 int PageHuge(struct page *page)
1519 if (!PageCompound(page))
1522 page = compound_head(page);
1523 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1525 EXPORT_SYMBOL_GPL(PageHuge);
1528 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1529 * normal or transparent huge pages.
1531 int PageHeadHuge(struct page *page_head)
1533 if (!PageHead(page_head))
1536 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1540 * Find and lock address space (mapping) in write mode.
1542 * Upon entry, the page is locked which means that page_mapping() is
1543 * stable. Due to locking order, we can only trylock_write. If we can
1544 * not get the lock, simply return NULL to caller.
1546 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1548 struct address_space *mapping = page_mapping(hpage);
1553 if (i_mmap_trylock_write(mapping))
1559 pgoff_t __basepage_index(struct page *page)
1561 struct page *page_head = compound_head(page);
1562 pgoff_t index = page_index(page_head);
1563 unsigned long compound_idx;
1565 if (!PageHuge(page_head))
1566 return page_index(page);
1568 if (compound_order(page_head) >= MAX_ORDER)
1569 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1571 compound_idx = page - page_head;
1573 return (index << compound_order(page_head)) + compound_idx;
1576 static struct page *alloc_buddy_huge_page(struct hstate *h,
1577 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1578 nodemask_t *node_alloc_noretry)
1580 int order = huge_page_order(h);
1582 bool alloc_try_hard = true;
1585 * By default we always try hard to allocate the page with
1586 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1587 * a loop (to adjust global huge page counts) and previous allocation
1588 * failed, do not continue to try hard on the same node. Use the
1589 * node_alloc_noretry bitmap to manage this state information.
1591 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1592 alloc_try_hard = false;
1593 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1595 gfp_mask |= __GFP_RETRY_MAYFAIL;
1596 if (nid == NUMA_NO_NODE)
1597 nid = numa_mem_id();
1598 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1600 __count_vm_event(HTLB_BUDDY_PGALLOC);
1602 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1605 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1606 * indicates an overall state change. Clear bit so that we resume
1607 * normal 'try hard' allocations.
1609 if (node_alloc_noretry && page && !alloc_try_hard)
1610 node_clear(nid, *node_alloc_noretry);
1613 * If we tried hard to get a page but failed, set bit so that
1614 * subsequent attempts will not try as hard until there is an
1615 * overall state change.
1617 if (node_alloc_noretry && !page && alloc_try_hard)
1618 node_set(nid, *node_alloc_noretry);
1624 * Common helper to allocate a fresh hugetlb page. All specific allocators
1625 * should use this function to get new hugetlb pages
1627 static struct page *alloc_fresh_huge_page(struct hstate *h,
1628 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1629 nodemask_t *node_alloc_noretry)
1633 if (hstate_is_gigantic(h))
1634 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1636 page = alloc_buddy_huge_page(h, gfp_mask,
1637 nid, nmask, node_alloc_noretry);
1641 if (hstate_is_gigantic(h))
1642 prep_compound_gigantic_page(page, huge_page_order(h));
1643 prep_new_huge_page(h, page, page_to_nid(page));
1649 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1652 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1653 nodemask_t *node_alloc_noretry)
1657 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1659 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1660 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1661 node_alloc_noretry);
1669 put_page(page); /* free it into the hugepage allocator */
1675 * Free huge page from pool from next node to free.
1676 * Attempt to keep persistent huge pages more or less
1677 * balanced over allowed nodes.
1678 * Called with hugetlb_lock locked.
1680 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1686 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1688 * If we're returning unused surplus pages, only examine
1689 * nodes with surplus pages.
1691 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1692 !list_empty(&h->hugepage_freelists[node])) {
1694 list_entry(h->hugepage_freelists[node].next,
1696 list_del(&page->lru);
1697 h->free_huge_pages--;
1698 h->free_huge_pages_node[node]--;
1700 h->surplus_huge_pages--;
1701 h->surplus_huge_pages_node[node]--;
1703 update_and_free_page(h, page);
1713 * Dissolve a given free hugepage into free buddy pages. This function does
1714 * nothing for in-use hugepages and non-hugepages.
1715 * This function returns values like below:
1717 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1718 * (allocated or reserved.)
1719 * 0: successfully dissolved free hugepages or the page is not a
1720 * hugepage (considered as already dissolved)
1722 int dissolve_free_huge_page(struct page *page)
1727 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1728 if (!PageHuge(page))
1731 spin_lock(&hugetlb_lock);
1732 if (!PageHuge(page)) {
1737 if (!page_count(page)) {
1738 struct page *head = compound_head(page);
1739 struct hstate *h = page_hstate(head);
1740 int nid = page_to_nid(head);
1741 if (h->free_huge_pages - h->resv_huge_pages == 0)
1745 * We should make sure that the page is already on the free list
1746 * when it is dissolved.
1748 if (unlikely(!HPageFreed(head))) {
1749 spin_unlock(&hugetlb_lock);
1753 * Theoretically, we should return -EBUSY when we
1754 * encounter this race. In fact, we have a chance
1755 * to successfully dissolve the page if we do a
1756 * retry. Because the race window is quite small.
1757 * If we seize this opportunity, it is an optimization
1758 * for increasing the success rate of dissolving page.
1764 * Move PageHWPoison flag from head page to the raw error page,
1765 * which makes any subpages rather than the error page reusable.
1767 if (PageHWPoison(head) && page != head) {
1768 SetPageHWPoison(page);
1769 ClearPageHWPoison(head);
1771 list_del(&head->lru);
1772 h->free_huge_pages--;
1773 h->free_huge_pages_node[nid]--;
1774 h->max_huge_pages--;
1775 update_and_free_page(h, head);
1779 spin_unlock(&hugetlb_lock);
1784 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1785 * make specified memory blocks removable from the system.
1786 * Note that this will dissolve a free gigantic hugepage completely, if any
1787 * part of it lies within the given range.
1788 * Also note that if dissolve_free_huge_page() returns with an error, all
1789 * free hugepages that were dissolved before that error are lost.
1791 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1797 if (!hugepages_supported())
1800 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1801 page = pfn_to_page(pfn);
1802 rc = dissolve_free_huge_page(page);
1811 * Allocates a fresh surplus page from the page allocator.
1813 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1814 int nid, nodemask_t *nmask)
1816 struct page *page = NULL;
1818 if (hstate_is_gigantic(h))
1821 spin_lock(&hugetlb_lock);
1822 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1824 spin_unlock(&hugetlb_lock);
1826 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1830 spin_lock(&hugetlb_lock);
1832 * We could have raced with the pool size change.
1833 * Double check that and simply deallocate the new page
1834 * if we would end up overcommiting the surpluses. Abuse
1835 * temporary page to workaround the nasty free_huge_page
1838 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1839 SetHPageTemporary(page);
1840 spin_unlock(&hugetlb_lock);
1844 h->surplus_huge_pages++;
1845 h->surplus_huge_pages_node[page_to_nid(page)]++;
1849 spin_unlock(&hugetlb_lock);
1854 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1855 int nid, nodemask_t *nmask)
1859 if (hstate_is_gigantic(h))
1862 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1867 * We do not account these pages as surplus because they are only
1868 * temporary and will be released properly on the last reference
1870 SetHPageTemporary(page);
1876 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1879 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1880 struct vm_area_struct *vma, unsigned long addr)
1883 struct mempolicy *mpol;
1884 gfp_t gfp_mask = htlb_alloc_mask(h);
1886 nodemask_t *nodemask;
1888 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1889 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1890 mpol_cond_put(mpol);
1895 /* page migration callback function */
1896 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1897 nodemask_t *nmask, gfp_t gfp_mask)
1899 spin_lock(&hugetlb_lock);
1900 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1903 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1905 spin_unlock(&hugetlb_lock);
1909 spin_unlock(&hugetlb_lock);
1911 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1914 /* mempolicy aware migration callback */
1915 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1916 unsigned long address)
1918 struct mempolicy *mpol;
1919 nodemask_t *nodemask;
1924 gfp_mask = htlb_alloc_mask(h);
1925 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1926 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1927 mpol_cond_put(mpol);
1933 * Increase the hugetlb pool such that it can accommodate a reservation
1936 static int gather_surplus_pages(struct hstate *h, long delta)
1937 __must_hold(&hugetlb_lock)
1939 struct list_head surplus_list;
1940 struct page *page, *tmp;
1943 long needed, allocated;
1944 bool alloc_ok = true;
1946 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1948 h->resv_huge_pages += delta;
1953 INIT_LIST_HEAD(&surplus_list);
1957 spin_unlock(&hugetlb_lock);
1958 for (i = 0; i < needed; i++) {
1959 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1960 NUMA_NO_NODE, NULL);
1965 list_add(&page->lru, &surplus_list);
1971 * After retaking hugetlb_lock, we need to recalculate 'needed'
1972 * because either resv_huge_pages or free_huge_pages may have changed.
1974 spin_lock(&hugetlb_lock);
1975 needed = (h->resv_huge_pages + delta) -
1976 (h->free_huge_pages + allocated);
1981 * We were not able to allocate enough pages to
1982 * satisfy the entire reservation so we free what
1983 * we've allocated so far.
1988 * The surplus_list now contains _at_least_ the number of extra pages
1989 * needed to accommodate the reservation. Add the appropriate number
1990 * of pages to the hugetlb pool and free the extras back to the buddy
1991 * allocator. Commit the entire reservation here to prevent another
1992 * process from stealing the pages as they are added to the pool but
1993 * before they are reserved.
1995 needed += allocated;
1996 h->resv_huge_pages += delta;
1999 /* Free the needed pages to the hugetlb pool */
2000 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2006 * This page is now managed by the hugetlb allocator and has
2007 * no users -- drop the buddy allocator's reference.
2009 zeroed = put_page_testzero(page);
2010 VM_BUG_ON_PAGE(!zeroed, page);
2011 enqueue_huge_page(h, page);
2014 spin_unlock(&hugetlb_lock);
2016 /* Free unnecessary surplus pages to the buddy allocator */
2017 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2019 spin_lock(&hugetlb_lock);
2025 * This routine has two main purposes:
2026 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2027 * in unused_resv_pages. This corresponds to the prior adjustments made
2028 * to the associated reservation map.
2029 * 2) Free any unused surplus pages that may have been allocated to satisfy
2030 * the reservation. As many as unused_resv_pages may be freed.
2032 * Called with hugetlb_lock held. However, the lock could be dropped (and
2033 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2034 * we must make sure nobody else can claim pages we are in the process of
2035 * freeing. Do this by ensuring resv_huge_page always is greater than the
2036 * number of huge pages we plan to free when dropping the lock.
2038 static void return_unused_surplus_pages(struct hstate *h,
2039 unsigned long unused_resv_pages)
2041 unsigned long nr_pages;
2043 /* Cannot return gigantic pages currently */
2044 if (hstate_is_gigantic(h))
2048 * Part (or even all) of the reservation could have been backed
2049 * by pre-allocated pages. Only free surplus pages.
2051 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2054 * We want to release as many surplus pages as possible, spread
2055 * evenly across all nodes with memory. Iterate across these nodes
2056 * until we can no longer free unreserved surplus pages. This occurs
2057 * when the nodes with surplus pages have no free pages.
2058 * free_pool_huge_page() will balance the freed pages across the
2059 * on-line nodes with memory and will handle the hstate accounting.
2061 * Note that we decrement resv_huge_pages as we free the pages. If
2062 * we drop the lock, resv_huge_pages will still be sufficiently large
2063 * to cover subsequent pages we may free.
2065 while (nr_pages--) {
2066 h->resv_huge_pages--;
2067 unused_resv_pages--;
2068 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2070 cond_resched_lock(&hugetlb_lock);
2074 /* Fully uncommit the reservation */
2075 h->resv_huge_pages -= unused_resv_pages;
2080 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2081 * are used by the huge page allocation routines to manage reservations.
2083 * vma_needs_reservation is called to determine if the huge page at addr
2084 * within the vma has an associated reservation. If a reservation is
2085 * needed, the value 1 is returned. The caller is then responsible for
2086 * managing the global reservation and subpool usage counts. After
2087 * the huge page has been allocated, vma_commit_reservation is called
2088 * to add the page to the reservation map. If the page allocation fails,
2089 * the reservation must be ended instead of committed. vma_end_reservation
2090 * is called in such cases.
2092 * In the normal case, vma_commit_reservation returns the same value
2093 * as the preceding vma_needs_reservation call. The only time this
2094 * is not the case is if a reserve map was changed between calls. It
2095 * is the responsibility of the caller to notice the difference and
2096 * take appropriate action.
2098 * vma_add_reservation is used in error paths where a reservation must
2099 * be restored when a newly allocated huge page must be freed. It is
2100 * to be called after calling vma_needs_reservation to determine if a
2101 * reservation exists.
2103 enum vma_resv_mode {
2109 static long __vma_reservation_common(struct hstate *h,
2110 struct vm_area_struct *vma, unsigned long addr,
2111 enum vma_resv_mode mode)
2113 struct resv_map *resv;
2116 long dummy_out_regions_needed;
2118 resv = vma_resv_map(vma);
2122 idx = vma_hugecache_offset(h, vma, addr);
2124 case VMA_NEEDS_RESV:
2125 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2126 /* We assume that vma_reservation_* routines always operate on
2127 * 1 page, and that adding to resv map a 1 page entry can only
2128 * ever require 1 region.
2130 VM_BUG_ON(dummy_out_regions_needed != 1);
2132 case VMA_COMMIT_RESV:
2133 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2134 /* region_add calls of range 1 should never fail. */
2138 region_abort(resv, idx, idx + 1, 1);
2142 if (vma->vm_flags & VM_MAYSHARE) {
2143 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2144 /* region_add calls of range 1 should never fail. */
2147 region_abort(resv, idx, idx + 1, 1);
2148 ret = region_del(resv, idx, idx + 1);
2155 if (vma->vm_flags & VM_MAYSHARE)
2157 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2159 * In most cases, reserves always exist for private mappings.
2160 * However, a file associated with mapping could have been
2161 * hole punched or truncated after reserves were consumed.
2162 * As subsequent fault on such a range will not use reserves.
2163 * Subtle - The reserve map for private mappings has the
2164 * opposite meaning than that of shared mappings. If NO
2165 * entry is in the reserve map, it means a reservation exists.
2166 * If an entry exists in the reserve map, it means the
2167 * reservation has already been consumed. As a result, the
2168 * return value of this routine is the opposite of the
2169 * value returned from reserve map manipulation routines above.
2177 return ret < 0 ? ret : 0;
2180 static long vma_needs_reservation(struct hstate *h,
2181 struct vm_area_struct *vma, unsigned long addr)
2183 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2186 static long vma_commit_reservation(struct hstate *h,
2187 struct vm_area_struct *vma, unsigned long addr)
2189 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2192 static void vma_end_reservation(struct hstate *h,
2193 struct vm_area_struct *vma, unsigned long addr)
2195 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2198 static long vma_add_reservation(struct hstate *h,
2199 struct vm_area_struct *vma, unsigned long addr)
2201 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2205 * This routine is called to restore a reservation on error paths. In the
2206 * specific error paths, a huge page was allocated (via alloc_huge_page)
2207 * and is about to be freed. If a reservation for the page existed,
2208 * alloc_huge_page would have consumed the reservation and set
2209 * HPageRestoreReserve in the newly allocated page. When the page is freed
2210 * via free_huge_page, the global reservation count will be incremented if
2211 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2212 * reserve map. Adjust the reserve map here to be consistent with global
2213 * reserve count adjustments to be made by free_huge_page.
2215 static void restore_reserve_on_error(struct hstate *h,
2216 struct vm_area_struct *vma, unsigned long address,
2219 if (unlikely(HPageRestoreReserve(page))) {
2220 long rc = vma_needs_reservation(h, vma, address);
2222 if (unlikely(rc < 0)) {
2224 * Rare out of memory condition in reserve map
2225 * manipulation. Clear HPageRestoreReserve so that
2226 * global reserve count will not be incremented
2227 * by free_huge_page. This will make it appear
2228 * as though the reservation for this page was
2229 * consumed. This may prevent the task from
2230 * faulting in the page at a later time. This
2231 * is better than inconsistent global huge page
2232 * accounting of reserve counts.
2234 ClearHPageRestoreReserve(page);
2236 rc = vma_add_reservation(h, vma, address);
2237 if (unlikely(rc < 0))
2239 * See above comment about rare out of
2242 ClearHPageRestoreReserve(page);
2244 vma_end_reservation(h, vma, address);
2248 struct page *alloc_huge_page(struct vm_area_struct *vma,
2249 unsigned long addr, int avoid_reserve)
2251 struct hugepage_subpool *spool = subpool_vma(vma);
2252 struct hstate *h = hstate_vma(vma);
2254 long map_chg, map_commit;
2257 struct hugetlb_cgroup *h_cg;
2258 bool deferred_reserve;
2260 idx = hstate_index(h);
2262 * Examine the region/reserve map to determine if the process
2263 * has a reservation for the page to be allocated. A return
2264 * code of zero indicates a reservation exists (no change).
2266 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2268 return ERR_PTR(-ENOMEM);
2271 * Processes that did not create the mapping will have no
2272 * reserves as indicated by the region/reserve map. Check
2273 * that the allocation will not exceed the subpool limit.
2274 * Allocations for MAP_NORESERVE mappings also need to be
2275 * checked against any subpool limit.
2277 if (map_chg || avoid_reserve) {
2278 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2280 vma_end_reservation(h, vma, addr);
2281 return ERR_PTR(-ENOSPC);
2285 * Even though there was no reservation in the region/reserve
2286 * map, there could be reservations associated with the
2287 * subpool that can be used. This would be indicated if the
2288 * return value of hugepage_subpool_get_pages() is zero.
2289 * However, if avoid_reserve is specified we still avoid even
2290 * the subpool reservations.
2296 /* If this allocation is not consuming a reservation, charge it now.
2298 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2299 if (deferred_reserve) {
2300 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2301 idx, pages_per_huge_page(h), &h_cg);
2303 goto out_subpool_put;
2306 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2308 goto out_uncharge_cgroup_reservation;
2310 spin_lock(&hugetlb_lock);
2312 * glb_chg is passed to indicate whether or not a page must be taken
2313 * from the global free pool (global change). gbl_chg == 0 indicates
2314 * a reservation exists for the allocation.
2316 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2318 spin_unlock(&hugetlb_lock);
2319 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2321 goto out_uncharge_cgroup;
2322 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2323 SetHPageRestoreReserve(page);
2324 h->resv_huge_pages--;
2326 spin_lock(&hugetlb_lock);
2327 list_add(&page->lru, &h->hugepage_activelist);
2330 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2331 /* If allocation is not consuming a reservation, also store the
2332 * hugetlb_cgroup pointer on the page.
2334 if (deferred_reserve) {
2335 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2339 spin_unlock(&hugetlb_lock);
2341 hugetlb_set_page_subpool(page, spool);
2343 map_commit = vma_commit_reservation(h, vma, addr);
2344 if (unlikely(map_chg > map_commit)) {
2346 * The page was added to the reservation map between
2347 * vma_needs_reservation and vma_commit_reservation.
2348 * This indicates a race with hugetlb_reserve_pages.
2349 * Adjust for the subpool count incremented above AND
2350 * in hugetlb_reserve_pages for the same page. Also,
2351 * the reservation count added in hugetlb_reserve_pages
2352 * no longer applies.
2356 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2357 hugetlb_acct_memory(h, -rsv_adjust);
2358 if (deferred_reserve)
2359 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2360 pages_per_huge_page(h), page);
2364 out_uncharge_cgroup:
2365 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2366 out_uncharge_cgroup_reservation:
2367 if (deferred_reserve)
2368 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2371 if (map_chg || avoid_reserve)
2372 hugepage_subpool_put_pages(spool, 1);
2373 vma_end_reservation(h, vma, addr);
2374 return ERR_PTR(-ENOSPC);
2377 int alloc_bootmem_huge_page(struct hstate *h)
2378 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2379 int __alloc_bootmem_huge_page(struct hstate *h)
2381 struct huge_bootmem_page *m;
2384 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2387 addr = memblock_alloc_try_nid_raw(
2388 huge_page_size(h), huge_page_size(h),
2389 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2392 * Use the beginning of the huge page to store the
2393 * huge_bootmem_page struct (until gather_bootmem
2394 * puts them into the mem_map).
2403 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2404 /* Put them into a private list first because mem_map is not up yet */
2405 INIT_LIST_HEAD(&m->list);
2406 list_add(&m->list, &huge_boot_pages);
2411 static void __init prep_compound_huge_page(struct page *page,
2414 if (unlikely(order > (MAX_ORDER - 1)))
2415 prep_compound_gigantic_page(page, order);
2417 prep_compound_page(page, order);
2420 /* Put bootmem huge pages into the standard lists after mem_map is up */
2421 static void __init gather_bootmem_prealloc(void)
2423 struct huge_bootmem_page *m;
2425 list_for_each_entry(m, &huge_boot_pages, list) {
2426 struct page *page = virt_to_page(m);
2427 struct hstate *h = m->hstate;
2429 WARN_ON(page_count(page) != 1);
2430 prep_compound_huge_page(page, huge_page_order(h));
2431 WARN_ON(PageReserved(page));
2432 prep_new_huge_page(h, page, page_to_nid(page));
2433 put_page(page); /* free it into the hugepage allocator */
2436 * If we had gigantic hugepages allocated at boot time, we need
2437 * to restore the 'stolen' pages to totalram_pages in order to
2438 * fix confusing memory reports from free(1) and another
2439 * side-effects, like CommitLimit going negative.
2441 if (hstate_is_gigantic(h))
2442 adjust_managed_page_count(page, pages_per_huge_page(h));
2447 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2450 nodemask_t *node_alloc_noretry;
2452 if (!hstate_is_gigantic(h)) {
2454 * Bit mask controlling how hard we retry per-node allocations.
2455 * Ignore errors as lower level routines can deal with
2456 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2457 * time, we are likely in bigger trouble.
2459 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2462 /* allocations done at boot time */
2463 node_alloc_noretry = NULL;
2466 /* bit mask controlling how hard we retry per-node allocations */
2467 if (node_alloc_noretry)
2468 nodes_clear(*node_alloc_noretry);
2470 for (i = 0; i < h->max_huge_pages; ++i) {
2471 if (hstate_is_gigantic(h)) {
2472 if (hugetlb_cma_size) {
2473 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2476 if (!alloc_bootmem_huge_page(h))
2478 } else if (!alloc_pool_huge_page(h,
2479 &node_states[N_MEMORY],
2480 node_alloc_noretry))
2484 if (i < h->max_huge_pages) {
2487 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2488 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2489 h->max_huge_pages, buf, i);
2490 h->max_huge_pages = i;
2493 kfree(node_alloc_noretry);
2496 static void __init hugetlb_init_hstates(void)
2500 for_each_hstate(h) {
2501 if (minimum_order > huge_page_order(h))
2502 minimum_order = huge_page_order(h);
2504 /* oversize hugepages were init'ed in early boot */
2505 if (!hstate_is_gigantic(h))
2506 hugetlb_hstate_alloc_pages(h);
2508 VM_BUG_ON(minimum_order == UINT_MAX);
2511 static void __init report_hugepages(void)
2515 for_each_hstate(h) {
2518 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2519 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2520 buf, h->free_huge_pages);
2524 #ifdef CONFIG_HIGHMEM
2525 static void try_to_free_low(struct hstate *h, unsigned long count,
2526 nodemask_t *nodes_allowed)
2530 if (hstate_is_gigantic(h))
2533 for_each_node_mask(i, *nodes_allowed) {
2534 struct page *page, *next;
2535 struct list_head *freel = &h->hugepage_freelists[i];
2536 list_for_each_entry_safe(page, next, freel, lru) {
2537 if (count >= h->nr_huge_pages)
2539 if (PageHighMem(page))
2541 list_del(&page->lru);
2542 update_and_free_page(h, page);
2543 h->free_huge_pages--;
2544 h->free_huge_pages_node[page_to_nid(page)]--;
2549 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2550 nodemask_t *nodes_allowed)
2556 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2557 * balanced by operating on them in a round-robin fashion.
2558 * Returns 1 if an adjustment was made.
2560 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2565 VM_BUG_ON(delta != -1 && delta != 1);
2568 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2569 if (h->surplus_huge_pages_node[node])
2573 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2574 if (h->surplus_huge_pages_node[node] <
2575 h->nr_huge_pages_node[node])
2582 h->surplus_huge_pages += delta;
2583 h->surplus_huge_pages_node[node] += delta;
2587 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2588 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2589 nodemask_t *nodes_allowed)
2591 unsigned long min_count, ret;
2592 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2595 * Bit mask controlling how hard we retry per-node allocations.
2596 * If we can not allocate the bit mask, do not attempt to allocate
2597 * the requested huge pages.
2599 if (node_alloc_noretry)
2600 nodes_clear(*node_alloc_noretry);
2604 spin_lock(&hugetlb_lock);
2607 * Check for a node specific request.
2608 * Changing node specific huge page count may require a corresponding
2609 * change to the global count. In any case, the passed node mask
2610 * (nodes_allowed) will restrict alloc/free to the specified node.
2612 if (nid != NUMA_NO_NODE) {
2613 unsigned long old_count = count;
2615 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2617 * User may have specified a large count value which caused the
2618 * above calculation to overflow. In this case, they wanted
2619 * to allocate as many huge pages as possible. Set count to
2620 * largest possible value to align with their intention.
2622 if (count < old_count)
2627 * Gigantic pages runtime allocation depend on the capability for large
2628 * page range allocation.
2629 * If the system does not provide this feature, return an error when
2630 * the user tries to allocate gigantic pages but let the user free the
2631 * boottime allocated gigantic pages.
2633 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2634 if (count > persistent_huge_pages(h)) {
2635 spin_unlock(&hugetlb_lock);
2636 NODEMASK_FREE(node_alloc_noretry);
2639 /* Fall through to decrease pool */
2643 * Increase the pool size
2644 * First take pages out of surplus state. Then make up the
2645 * remaining difference by allocating fresh huge pages.
2647 * We might race with alloc_surplus_huge_page() here and be unable
2648 * to convert a surplus huge page to a normal huge page. That is
2649 * not critical, though, it just means the overall size of the
2650 * pool might be one hugepage larger than it needs to be, but
2651 * within all the constraints specified by the sysctls.
2653 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2654 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2658 while (count > persistent_huge_pages(h)) {
2660 * If this allocation races such that we no longer need the
2661 * page, free_huge_page will handle it by freeing the page
2662 * and reducing the surplus.
2664 spin_unlock(&hugetlb_lock);
2666 /* yield cpu to avoid soft lockup */
2669 ret = alloc_pool_huge_page(h, nodes_allowed,
2670 node_alloc_noretry);
2671 spin_lock(&hugetlb_lock);
2675 /* Bail for signals. Probably ctrl-c from user */
2676 if (signal_pending(current))
2681 * Decrease the pool size
2682 * First return free pages to the buddy allocator (being careful
2683 * to keep enough around to satisfy reservations). Then place
2684 * pages into surplus state as needed so the pool will shrink
2685 * to the desired size as pages become free.
2687 * By placing pages into the surplus state independent of the
2688 * overcommit value, we are allowing the surplus pool size to
2689 * exceed overcommit. There are few sane options here. Since
2690 * alloc_surplus_huge_page() is checking the global counter,
2691 * though, we'll note that we're not allowed to exceed surplus
2692 * and won't grow the pool anywhere else. Not until one of the
2693 * sysctls are changed, or the surplus pages go out of use.
2695 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2696 min_count = max(count, min_count);
2697 try_to_free_low(h, min_count, nodes_allowed);
2698 while (min_count < persistent_huge_pages(h)) {
2699 if (!free_pool_huge_page(h, nodes_allowed, 0))
2701 cond_resched_lock(&hugetlb_lock);
2703 while (count < persistent_huge_pages(h)) {
2704 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2708 h->max_huge_pages = persistent_huge_pages(h);
2709 spin_unlock(&hugetlb_lock);
2711 NODEMASK_FREE(node_alloc_noretry);
2716 #define HSTATE_ATTR_RO(_name) \
2717 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2719 #define HSTATE_ATTR(_name) \
2720 static struct kobj_attribute _name##_attr = \
2721 __ATTR(_name, 0644, _name##_show, _name##_store)
2723 static struct kobject *hugepages_kobj;
2724 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2726 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2728 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2732 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2733 if (hstate_kobjs[i] == kobj) {
2735 *nidp = NUMA_NO_NODE;
2739 return kobj_to_node_hstate(kobj, nidp);
2742 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2743 struct kobj_attribute *attr, char *buf)
2746 unsigned long nr_huge_pages;
2749 h = kobj_to_hstate(kobj, &nid);
2750 if (nid == NUMA_NO_NODE)
2751 nr_huge_pages = h->nr_huge_pages;
2753 nr_huge_pages = h->nr_huge_pages_node[nid];
2755 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2758 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2759 struct hstate *h, int nid,
2760 unsigned long count, size_t len)
2763 nodemask_t nodes_allowed, *n_mask;
2765 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2768 if (nid == NUMA_NO_NODE) {
2770 * global hstate attribute
2772 if (!(obey_mempolicy &&
2773 init_nodemask_of_mempolicy(&nodes_allowed)))
2774 n_mask = &node_states[N_MEMORY];
2776 n_mask = &nodes_allowed;
2779 * Node specific request. count adjustment happens in
2780 * set_max_huge_pages() after acquiring hugetlb_lock.
2782 init_nodemask_of_node(&nodes_allowed, nid);
2783 n_mask = &nodes_allowed;
2786 err = set_max_huge_pages(h, count, nid, n_mask);
2788 return err ? err : len;
2791 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2792 struct kobject *kobj, const char *buf,
2796 unsigned long count;
2800 err = kstrtoul(buf, 10, &count);
2804 h = kobj_to_hstate(kobj, &nid);
2805 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2808 static ssize_t nr_hugepages_show(struct kobject *kobj,
2809 struct kobj_attribute *attr, char *buf)
2811 return nr_hugepages_show_common(kobj, attr, buf);
2814 static ssize_t nr_hugepages_store(struct kobject *kobj,
2815 struct kobj_attribute *attr, const char *buf, size_t len)
2817 return nr_hugepages_store_common(false, kobj, buf, len);
2819 HSTATE_ATTR(nr_hugepages);
2824 * hstate attribute for optionally mempolicy-based constraint on persistent
2825 * huge page alloc/free.
2827 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2828 struct kobj_attribute *attr,
2831 return nr_hugepages_show_common(kobj, attr, buf);
2834 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2835 struct kobj_attribute *attr, const char *buf, size_t len)
2837 return nr_hugepages_store_common(true, kobj, buf, len);
2839 HSTATE_ATTR(nr_hugepages_mempolicy);
2843 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2844 struct kobj_attribute *attr, char *buf)
2846 struct hstate *h = kobj_to_hstate(kobj, NULL);
2847 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2850 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2851 struct kobj_attribute *attr, const char *buf, size_t count)
2854 unsigned long input;
2855 struct hstate *h = kobj_to_hstate(kobj, NULL);
2857 if (hstate_is_gigantic(h))
2860 err = kstrtoul(buf, 10, &input);
2864 spin_lock(&hugetlb_lock);
2865 h->nr_overcommit_huge_pages = input;
2866 spin_unlock(&hugetlb_lock);
2870 HSTATE_ATTR(nr_overcommit_hugepages);
2872 static ssize_t free_hugepages_show(struct kobject *kobj,
2873 struct kobj_attribute *attr, char *buf)
2876 unsigned long free_huge_pages;
2879 h = kobj_to_hstate(kobj, &nid);
2880 if (nid == NUMA_NO_NODE)
2881 free_huge_pages = h->free_huge_pages;
2883 free_huge_pages = h->free_huge_pages_node[nid];
2885 return sysfs_emit(buf, "%lu\n", free_huge_pages);
2887 HSTATE_ATTR_RO(free_hugepages);
2889 static ssize_t resv_hugepages_show(struct kobject *kobj,
2890 struct kobj_attribute *attr, char *buf)
2892 struct hstate *h = kobj_to_hstate(kobj, NULL);
2893 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2895 HSTATE_ATTR_RO(resv_hugepages);
2897 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2898 struct kobj_attribute *attr, char *buf)
2901 unsigned long surplus_huge_pages;
2904 h = kobj_to_hstate(kobj, &nid);
2905 if (nid == NUMA_NO_NODE)
2906 surplus_huge_pages = h->surplus_huge_pages;
2908 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2910 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2912 HSTATE_ATTR_RO(surplus_hugepages);
2914 static struct attribute *hstate_attrs[] = {
2915 &nr_hugepages_attr.attr,
2916 &nr_overcommit_hugepages_attr.attr,
2917 &free_hugepages_attr.attr,
2918 &resv_hugepages_attr.attr,
2919 &surplus_hugepages_attr.attr,
2921 &nr_hugepages_mempolicy_attr.attr,
2926 static const struct attribute_group hstate_attr_group = {
2927 .attrs = hstate_attrs,
2930 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2931 struct kobject **hstate_kobjs,
2932 const struct attribute_group *hstate_attr_group)
2935 int hi = hstate_index(h);
2937 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2938 if (!hstate_kobjs[hi])
2941 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2943 kobject_put(hstate_kobjs[hi]);
2944 hstate_kobjs[hi] = NULL;
2950 static void __init hugetlb_sysfs_init(void)
2955 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2956 if (!hugepages_kobj)
2959 for_each_hstate(h) {
2960 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2961 hstate_kobjs, &hstate_attr_group);
2963 pr_err("HugeTLB: Unable to add hstate %s", h->name);
2970 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2971 * with node devices in node_devices[] using a parallel array. The array
2972 * index of a node device or _hstate == node id.
2973 * This is here to avoid any static dependency of the node device driver, in
2974 * the base kernel, on the hugetlb module.
2976 struct node_hstate {
2977 struct kobject *hugepages_kobj;
2978 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2980 static struct node_hstate node_hstates[MAX_NUMNODES];
2983 * A subset of global hstate attributes for node devices
2985 static struct attribute *per_node_hstate_attrs[] = {
2986 &nr_hugepages_attr.attr,
2987 &free_hugepages_attr.attr,
2988 &surplus_hugepages_attr.attr,
2992 static const struct attribute_group per_node_hstate_attr_group = {
2993 .attrs = per_node_hstate_attrs,
2997 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2998 * Returns node id via non-NULL nidp.
3000 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3004 for (nid = 0; nid < nr_node_ids; nid++) {
3005 struct node_hstate *nhs = &node_hstates[nid];
3007 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3008 if (nhs->hstate_kobjs[i] == kobj) {
3020 * Unregister hstate attributes from a single node device.
3021 * No-op if no hstate attributes attached.
3023 static void hugetlb_unregister_node(struct node *node)
3026 struct node_hstate *nhs = &node_hstates[node->dev.id];
3028 if (!nhs->hugepages_kobj)
3029 return; /* no hstate attributes */
3031 for_each_hstate(h) {
3032 int idx = hstate_index(h);
3033 if (nhs->hstate_kobjs[idx]) {
3034 kobject_put(nhs->hstate_kobjs[idx]);
3035 nhs->hstate_kobjs[idx] = NULL;
3039 kobject_put(nhs->hugepages_kobj);
3040 nhs->hugepages_kobj = NULL;
3045 * Register hstate attributes for a single node device.
3046 * No-op if attributes already registered.
3048 static void hugetlb_register_node(struct node *node)
3051 struct node_hstate *nhs = &node_hstates[node->dev.id];
3054 if (nhs->hugepages_kobj)
3055 return; /* already allocated */
3057 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3059 if (!nhs->hugepages_kobj)
3062 for_each_hstate(h) {
3063 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3065 &per_node_hstate_attr_group);
3067 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3068 h->name, node->dev.id);
3069 hugetlb_unregister_node(node);
3076 * hugetlb init time: register hstate attributes for all registered node
3077 * devices of nodes that have memory. All on-line nodes should have
3078 * registered their associated device by this time.
3080 static void __init hugetlb_register_all_nodes(void)
3084 for_each_node_state(nid, N_MEMORY) {
3085 struct node *node = node_devices[nid];
3086 if (node->dev.id == nid)
3087 hugetlb_register_node(node);
3091 * Let the node device driver know we're here so it can
3092 * [un]register hstate attributes on node hotplug.
3094 register_hugetlbfs_with_node(hugetlb_register_node,
3095 hugetlb_unregister_node);
3097 #else /* !CONFIG_NUMA */
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3107 static void hugetlb_register_all_nodes(void) { }
3111 static int __init hugetlb_init(void)
3115 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3118 if (!hugepages_supported()) {
3119 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3120 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3125 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3126 * architectures depend on setup being done here.
3128 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3129 if (!parsed_default_hugepagesz) {
3131 * If we did not parse a default huge page size, set
3132 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3133 * number of huge pages for this default size was implicitly
3134 * specified, set that here as well.
3135 * Note that the implicit setting will overwrite an explicit
3136 * setting. A warning will be printed in this case.
3138 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3139 if (default_hstate_max_huge_pages) {
3140 if (default_hstate.max_huge_pages) {
3143 string_get_size(huge_page_size(&default_hstate),
3144 1, STRING_UNITS_2, buf, 32);
3145 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3146 default_hstate.max_huge_pages, buf);
3147 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3148 default_hstate_max_huge_pages);
3150 default_hstate.max_huge_pages =
3151 default_hstate_max_huge_pages;
3155 hugetlb_cma_check();
3156 hugetlb_init_hstates();
3157 gather_bootmem_prealloc();
3160 hugetlb_sysfs_init();
3161 hugetlb_register_all_nodes();
3162 hugetlb_cgroup_file_init();
3165 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3167 num_fault_mutexes = 1;
3169 hugetlb_fault_mutex_table =
3170 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3172 BUG_ON(!hugetlb_fault_mutex_table);
3174 for (i = 0; i < num_fault_mutexes; i++)
3175 mutex_init(&hugetlb_fault_mutex_table[i]);
3178 subsys_initcall(hugetlb_init);
3180 /* Overwritten by architectures with more huge page sizes */
3181 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3183 return size == HPAGE_SIZE;
3186 void __init hugetlb_add_hstate(unsigned int order)
3191 if (size_to_hstate(PAGE_SIZE << order)) {
3194 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3196 h = &hstates[hugetlb_max_hstate++];
3198 h->mask = ~(huge_page_size(h) - 1);
3199 for (i = 0; i < MAX_NUMNODES; ++i)
3200 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3201 INIT_LIST_HEAD(&h->hugepage_activelist);
3202 h->next_nid_to_alloc = first_memory_node;
3203 h->next_nid_to_free = first_memory_node;
3204 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3205 huge_page_size(h)/1024);
3211 * hugepages command line processing
3212 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3213 * specification. If not, ignore the hugepages value. hugepages can also
3214 * be the first huge page command line option in which case it implicitly
3215 * specifies the number of huge pages for the default size.
3217 static int __init hugepages_setup(char *s)
3220 static unsigned long *last_mhp;
3222 if (!parsed_valid_hugepagesz) {
3223 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3224 parsed_valid_hugepagesz = true;
3229 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3230 * yet, so this hugepages= parameter goes to the "default hstate".
3231 * Otherwise, it goes with the previously parsed hugepagesz or
3232 * default_hugepagesz.
3234 else if (!hugetlb_max_hstate)
3235 mhp = &default_hstate_max_huge_pages;
3237 mhp = &parsed_hstate->max_huge_pages;
3239 if (mhp == last_mhp) {
3240 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3244 if (sscanf(s, "%lu", mhp) <= 0)
3248 * Global state is always initialized later in hugetlb_init.
3249 * But we need to allocate >= MAX_ORDER hstates here early to still
3250 * use the bootmem allocator.
3252 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3253 hugetlb_hstate_alloc_pages(parsed_hstate);
3259 __setup("hugepages=", hugepages_setup);
3262 * hugepagesz command line processing
3263 * A specific huge page size can only be specified once with hugepagesz.
3264 * hugepagesz is followed by hugepages on the command line. The global
3265 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3266 * hugepagesz argument was valid.
3268 static int __init hugepagesz_setup(char *s)
3273 parsed_valid_hugepagesz = false;
3274 size = (unsigned long)memparse(s, NULL);
3276 if (!arch_hugetlb_valid_size(size)) {
3277 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3281 h = size_to_hstate(size);
3284 * hstate for this size already exists. This is normally
3285 * an error, but is allowed if the existing hstate is the
3286 * default hstate. More specifically, it is only allowed if
3287 * the number of huge pages for the default hstate was not
3288 * previously specified.
3290 if (!parsed_default_hugepagesz || h != &default_hstate ||
3291 default_hstate.max_huge_pages) {
3292 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3297 * No need to call hugetlb_add_hstate() as hstate already
3298 * exists. But, do set parsed_hstate so that a following
3299 * hugepages= parameter will be applied to this hstate.
3302 parsed_valid_hugepagesz = true;
3306 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3307 parsed_valid_hugepagesz = true;
3310 __setup("hugepagesz=", hugepagesz_setup);
3313 * default_hugepagesz command line input
3314 * Only one instance of default_hugepagesz allowed on command line.
3316 static int __init default_hugepagesz_setup(char *s)
3320 parsed_valid_hugepagesz = false;
3321 if (parsed_default_hugepagesz) {
3322 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3326 size = (unsigned long)memparse(s, NULL);
3328 if (!arch_hugetlb_valid_size(size)) {
3329 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3333 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3334 parsed_valid_hugepagesz = true;
3335 parsed_default_hugepagesz = true;
3336 default_hstate_idx = hstate_index(size_to_hstate(size));
3339 * The number of default huge pages (for this size) could have been
3340 * specified as the first hugetlb parameter: hugepages=X. If so,
3341 * then default_hstate_max_huge_pages is set. If the default huge
3342 * page size is gigantic (>= MAX_ORDER), then the pages must be
3343 * allocated here from bootmem allocator.
3345 if (default_hstate_max_huge_pages) {
3346 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3347 if (hstate_is_gigantic(&default_hstate))
3348 hugetlb_hstate_alloc_pages(&default_hstate);
3349 default_hstate_max_huge_pages = 0;
3354 __setup("default_hugepagesz=", default_hugepagesz_setup);
3356 static unsigned int allowed_mems_nr(struct hstate *h)
3359 unsigned int nr = 0;
3360 nodemask_t *mpol_allowed;
3361 unsigned int *array = h->free_huge_pages_node;
3362 gfp_t gfp_mask = htlb_alloc_mask(h);
3364 mpol_allowed = policy_nodemask_current(gfp_mask);
3366 for_each_node_mask(node, cpuset_current_mems_allowed) {
3367 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3374 #ifdef CONFIG_SYSCTL
3375 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3376 void *buffer, size_t *length,
3377 loff_t *ppos, unsigned long *out)
3379 struct ctl_table dup_table;
3382 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3383 * can duplicate the @table and alter the duplicate of it.
3386 dup_table.data = out;
3388 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3391 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3392 struct ctl_table *table, int write,
3393 void *buffer, size_t *length, loff_t *ppos)
3395 struct hstate *h = &default_hstate;
3396 unsigned long tmp = h->max_huge_pages;
3399 if (!hugepages_supported())
3402 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3408 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3409 NUMA_NO_NODE, tmp, *length);
3414 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3415 void *buffer, size_t *length, loff_t *ppos)
3418 return hugetlb_sysctl_handler_common(false, table, write,
3419 buffer, length, ppos);
3423 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3424 void *buffer, size_t *length, loff_t *ppos)
3426 return hugetlb_sysctl_handler_common(true, table, write,
3427 buffer, length, ppos);
3429 #endif /* CONFIG_NUMA */
3431 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3432 void *buffer, size_t *length, loff_t *ppos)
3434 struct hstate *h = &default_hstate;
3438 if (!hugepages_supported())
3441 tmp = h->nr_overcommit_huge_pages;
3443 if (write && hstate_is_gigantic(h))
3446 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3452 spin_lock(&hugetlb_lock);
3453 h->nr_overcommit_huge_pages = tmp;
3454 spin_unlock(&hugetlb_lock);
3460 #endif /* CONFIG_SYSCTL */
3462 void hugetlb_report_meminfo(struct seq_file *m)
3465 unsigned long total = 0;
3467 if (!hugepages_supported())
3470 for_each_hstate(h) {
3471 unsigned long count = h->nr_huge_pages;
3473 total += huge_page_size(h) * count;
3475 if (h == &default_hstate)
3477 "HugePages_Total: %5lu\n"
3478 "HugePages_Free: %5lu\n"
3479 "HugePages_Rsvd: %5lu\n"
3480 "HugePages_Surp: %5lu\n"
3481 "Hugepagesize: %8lu kB\n",
3485 h->surplus_huge_pages,
3486 huge_page_size(h) / SZ_1K);
3489 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
3492 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3494 struct hstate *h = &default_hstate;
3496 if (!hugepages_supported())
3499 return sysfs_emit_at(buf, len,
3500 "Node %d HugePages_Total: %5u\n"
3501 "Node %d HugePages_Free: %5u\n"
3502 "Node %d HugePages_Surp: %5u\n",
3503 nid, h->nr_huge_pages_node[nid],
3504 nid, h->free_huge_pages_node[nid],
3505 nid, h->surplus_huge_pages_node[nid]);
3508 void hugetlb_show_meminfo(void)
3513 if (!hugepages_supported())
3516 for_each_node_state(nid, N_MEMORY)
3518 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3520 h->nr_huge_pages_node[nid],
3521 h->free_huge_pages_node[nid],
3522 h->surplus_huge_pages_node[nid],
3523 huge_page_size(h) / SZ_1K);
3526 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3528 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3529 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3532 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3533 unsigned long hugetlb_total_pages(void)
3536 unsigned long nr_total_pages = 0;
3539 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3540 return nr_total_pages;
3543 static int hugetlb_acct_memory(struct hstate *h, long delta)
3550 spin_lock(&hugetlb_lock);
3552 * When cpuset is configured, it breaks the strict hugetlb page
3553 * reservation as the accounting is done on a global variable. Such
3554 * reservation is completely rubbish in the presence of cpuset because
3555 * the reservation is not checked against page availability for the
3556 * current cpuset. Application can still potentially OOM'ed by kernel
3557 * with lack of free htlb page in cpuset that the task is in.
3558 * Attempt to enforce strict accounting with cpuset is almost
3559 * impossible (or too ugly) because cpuset is too fluid that
3560 * task or memory node can be dynamically moved between cpusets.
3562 * The change of semantics for shared hugetlb mapping with cpuset is
3563 * undesirable. However, in order to preserve some of the semantics,
3564 * we fall back to check against current free page availability as
3565 * a best attempt and hopefully to minimize the impact of changing
3566 * semantics that cpuset has.
3568 * Apart from cpuset, we also have memory policy mechanism that
3569 * also determines from which node the kernel will allocate memory
3570 * in a NUMA system. So similar to cpuset, we also should consider
3571 * the memory policy of the current task. Similar to the description
3575 if (gather_surplus_pages(h, delta) < 0)
3578 if (delta > allowed_mems_nr(h)) {
3579 return_unused_surplus_pages(h, delta);
3586 return_unused_surplus_pages(h, (unsigned long) -delta);
3589 spin_unlock(&hugetlb_lock);
3593 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3595 struct resv_map *resv = vma_resv_map(vma);
3598 * This new VMA should share its siblings reservation map if present.
3599 * The VMA will only ever have a valid reservation map pointer where
3600 * it is being copied for another still existing VMA. As that VMA
3601 * has a reference to the reservation map it cannot disappear until
3602 * after this open call completes. It is therefore safe to take a
3603 * new reference here without additional locking.
3605 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3606 kref_get(&resv->refs);
3609 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3611 struct hstate *h = hstate_vma(vma);
3612 struct resv_map *resv = vma_resv_map(vma);
3613 struct hugepage_subpool *spool = subpool_vma(vma);
3614 unsigned long reserve, start, end;
3617 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3620 start = vma_hugecache_offset(h, vma, vma->vm_start);
3621 end = vma_hugecache_offset(h, vma, vma->vm_end);
3623 reserve = (end - start) - region_count(resv, start, end);
3624 hugetlb_cgroup_uncharge_counter(resv, start, end);
3627 * Decrement reserve counts. The global reserve count may be
3628 * adjusted if the subpool has a minimum size.
3630 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3631 hugetlb_acct_memory(h, -gbl_reserve);
3634 kref_put(&resv->refs, resv_map_release);
3637 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3639 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3644 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3646 return huge_page_size(hstate_vma(vma));
3650 * We cannot handle pagefaults against hugetlb pages at all. They cause
3651 * handle_mm_fault() to try to instantiate regular-sized pages in the
3652 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3655 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3662 * When a new function is introduced to vm_operations_struct and added
3663 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3664 * This is because under System V memory model, mappings created via
3665 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3666 * their original vm_ops are overwritten with shm_vm_ops.
3668 const struct vm_operations_struct hugetlb_vm_ops = {
3669 .fault = hugetlb_vm_op_fault,
3670 .open = hugetlb_vm_op_open,
3671 .close = hugetlb_vm_op_close,
3672 .may_split = hugetlb_vm_op_split,
3673 .pagesize = hugetlb_vm_op_pagesize,
3676 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3682 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3683 vma->vm_page_prot)));
3685 entry = huge_pte_wrprotect(mk_huge_pte(page,
3686 vma->vm_page_prot));
3688 entry = pte_mkyoung(entry);
3689 entry = pte_mkhuge(entry);
3690 entry = arch_make_huge_pte(entry, vma, page, writable);
3695 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3696 unsigned long address, pte_t *ptep)
3700 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3701 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3702 update_mmu_cache(vma, address, ptep);
3705 bool is_hugetlb_entry_migration(pte_t pte)
3709 if (huge_pte_none(pte) || pte_present(pte))
3711 swp = pte_to_swp_entry(pte);
3712 if (is_migration_entry(swp))
3718 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3722 if (huge_pte_none(pte) || pte_present(pte))
3724 swp = pte_to_swp_entry(pte);
3725 if (is_hwpoison_entry(swp))
3732 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3733 struct page *new_page)
3735 __SetPageUptodate(new_page);
3736 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3737 hugepage_add_new_anon_rmap(new_page, vma, addr);
3738 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3739 ClearHPageRestoreReserve(new_page);
3740 SetHPageMigratable(new_page);
3743 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3744 struct vm_area_struct *vma)
3746 pte_t *src_pte, *dst_pte, entry, dst_entry;
3747 struct page *ptepage;
3749 bool cow = is_cow_mapping(vma->vm_flags);
3750 struct hstate *h = hstate_vma(vma);
3751 unsigned long sz = huge_page_size(h);
3752 unsigned long npages = pages_per_huge_page(h);
3753 struct address_space *mapping = vma->vm_file->f_mapping;
3754 struct mmu_notifier_range range;
3758 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3761 mmu_notifier_invalidate_range_start(&range);
3764 * For shared mappings i_mmap_rwsem must be held to call
3765 * huge_pte_alloc, otherwise the returned ptep could go
3766 * away if part of a shared pmd and another thread calls
3769 i_mmap_lock_read(mapping);
3772 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3773 spinlock_t *src_ptl, *dst_ptl;
3774 src_pte = huge_pte_offset(src, addr, sz);
3777 dst_pte = huge_pte_alloc(dst, addr, sz);
3784 * If the pagetables are shared don't copy or take references.
3785 * dst_pte == src_pte is the common case of src/dest sharing.
3787 * However, src could have 'unshared' and dst shares with
3788 * another vma. If dst_pte !none, this implies sharing.
3789 * Check here before taking page table lock, and once again
3790 * after taking the lock below.
3792 dst_entry = huge_ptep_get(dst_pte);
3793 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3796 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3797 src_ptl = huge_pte_lockptr(h, src, src_pte);
3798 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3799 entry = huge_ptep_get(src_pte);
3800 dst_entry = huge_ptep_get(dst_pte);
3802 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3804 * Skip if src entry none. Also, skip in the
3805 * unlikely case dst entry !none as this implies
3806 * sharing with another vma.
3809 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3810 is_hugetlb_entry_hwpoisoned(entry))) {
3811 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3813 if (is_write_migration_entry(swp_entry) && cow) {
3815 * COW mappings require pages in both
3816 * parent and child to be set to read.
3818 make_migration_entry_read(&swp_entry);
3819 entry = swp_entry_to_pte(swp_entry);
3820 set_huge_swap_pte_at(src, addr, src_pte,
3823 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3825 entry = huge_ptep_get(src_pte);
3826 ptepage = pte_page(entry);
3830 * This is a rare case where we see pinned hugetlb
3831 * pages while they're prone to COW. We need to do the
3832 * COW earlier during fork.
3834 * When pre-allocating the page or copying data, we
3835 * need to be without the pgtable locks since we could
3836 * sleep during the process.
3838 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3839 pte_t src_pte_old = entry;
3842 spin_unlock(src_ptl);
3843 spin_unlock(dst_ptl);
3844 /* Do not use reserve as it's private owned */
3845 new = alloc_huge_page(vma, addr, 1);
3851 copy_user_huge_page(new, ptepage, addr, vma,
3855 /* Install the new huge page if src pte stable */
3856 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3857 src_ptl = huge_pte_lockptr(h, src, src_pte);
3858 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3859 entry = huge_ptep_get(src_pte);
3860 if (!pte_same(src_pte_old, entry)) {
3862 /* dst_entry won't change as in child */
3865 hugetlb_install_page(vma, dst_pte, addr, new);
3866 spin_unlock(src_ptl);
3867 spin_unlock(dst_ptl);
3873 * No need to notify as we are downgrading page
3874 * table protection not changing it to point
3877 * See Documentation/vm/mmu_notifier.rst
3879 huge_ptep_set_wrprotect(src, addr, src_pte);
3882 page_dup_rmap(ptepage, true);
3883 set_huge_pte_at(dst, addr, dst_pte, entry);
3884 hugetlb_count_add(npages, dst);
3886 spin_unlock(src_ptl);
3887 spin_unlock(dst_ptl);
3891 mmu_notifier_invalidate_range_end(&range);
3893 i_mmap_unlock_read(mapping);
3898 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3899 unsigned long start, unsigned long end,
3900 struct page *ref_page)
3902 struct mm_struct *mm = vma->vm_mm;
3903 unsigned long address;
3908 struct hstate *h = hstate_vma(vma);
3909 unsigned long sz = huge_page_size(h);
3910 struct mmu_notifier_range range;
3912 WARN_ON(!is_vm_hugetlb_page(vma));
3913 BUG_ON(start & ~huge_page_mask(h));
3914 BUG_ON(end & ~huge_page_mask(h));
3917 * This is a hugetlb vma, all the pte entries should point
3920 tlb_change_page_size(tlb, sz);
3921 tlb_start_vma(tlb, vma);
3924 * If sharing possible, alert mmu notifiers of worst case.
3926 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3928 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3929 mmu_notifier_invalidate_range_start(&range);
3931 for (; address < end; address += sz) {
3932 ptep = huge_pte_offset(mm, address, sz);
3936 ptl = huge_pte_lock(h, mm, ptep);
3937 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3940 * We just unmapped a page of PMDs by clearing a PUD.
3941 * The caller's TLB flush range should cover this area.
3946 pte = huge_ptep_get(ptep);
3947 if (huge_pte_none(pte)) {
3953 * Migrating hugepage or HWPoisoned hugepage is already
3954 * unmapped and its refcount is dropped, so just clear pte here.
3956 if (unlikely(!pte_present(pte))) {
3957 huge_pte_clear(mm, address, ptep, sz);
3962 page = pte_page(pte);
3964 * If a reference page is supplied, it is because a specific
3965 * page is being unmapped, not a range. Ensure the page we
3966 * are about to unmap is the actual page of interest.
3969 if (page != ref_page) {
3974 * Mark the VMA as having unmapped its page so that
3975 * future faults in this VMA will fail rather than
3976 * looking like data was lost
3978 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3981 pte = huge_ptep_get_and_clear(mm, address, ptep);
3982 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3983 if (huge_pte_dirty(pte))
3984 set_page_dirty(page);
3986 hugetlb_count_sub(pages_per_huge_page(h), mm);
3987 page_remove_rmap(page, true);
3990 tlb_remove_page_size(tlb, page, huge_page_size(h));
3992 * Bail out after unmapping reference page if supplied
3997 mmu_notifier_invalidate_range_end(&range);
3998 tlb_end_vma(tlb, vma);
4001 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4002 struct vm_area_struct *vma, unsigned long start,
4003 unsigned long end, struct page *ref_page)
4005 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4008 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4009 * test will fail on a vma being torn down, and not grab a page table
4010 * on its way out. We're lucky that the flag has such an appropriate
4011 * name, and can in fact be safely cleared here. We could clear it
4012 * before the __unmap_hugepage_range above, but all that's necessary
4013 * is to clear it before releasing the i_mmap_rwsem. This works
4014 * because in the context this is called, the VMA is about to be
4015 * destroyed and the i_mmap_rwsem is held.
4017 vma->vm_flags &= ~VM_MAYSHARE;
4020 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4021 unsigned long end, struct page *ref_page)
4023 struct mmu_gather tlb;
4025 tlb_gather_mmu(&tlb, vma->vm_mm);
4026 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4027 tlb_finish_mmu(&tlb);
4031 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4032 * mapping it owns the reserve page for. The intention is to unmap the page
4033 * from other VMAs and let the children be SIGKILLed if they are faulting the
4036 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4037 struct page *page, unsigned long address)
4039 struct hstate *h = hstate_vma(vma);
4040 struct vm_area_struct *iter_vma;
4041 struct address_space *mapping;
4045 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4046 * from page cache lookup which is in HPAGE_SIZE units.
4048 address = address & huge_page_mask(h);
4049 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4051 mapping = vma->vm_file->f_mapping;
4054 * Take the mapping lock for the duration of the table walk. As
4055 * this mapping should be shared between all the VMAs,
4056 * __unmap_hugepage_range() is called as the lock is already held
4058 i_mmap_lock_write(mapping);
4059 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4060 /* Do not unmap the current VMA */
4061 if (iter_vma == vma)
4065 * Shared VMAs have their own reserves and do not affect
4066 * MAP_PRIVATE accounting but it is possible that a shared
4067 * VMA is using the same page so check and skip such VMAs.
4069 if (iter_vma->vm_flags & VM_MAYSHARE)
4073 * Unmap the page from other VMAs without their own reserves.
4074 * They get marked to be SIGKILLed if they fault in these
4075 * areas. This is because a future no-page fault on this VMA
4076 * could insert a zeroed page instead of the data existing
4077 * from the time of fork. This would look like data corruption
4079 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4080 unmap_hugepage_range(iter_vma, address,
4081 address + huge_page_size(h), page);
4083 i_mmap_unlock_write(mapping);
4087 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4088 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4089 * cannot race with other handlers or page migration.
4090 * Keep the pte_same checks anyway to make transition from the mutex easier.
4092 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4093 unsigned long address, pte_t *ptep,
4094 struct page *pagecache_page, spinlock_t *ptl)
4097 struct hstate *h = hstate_vma(vma);
4098 struct page *old_page, *new_page;
4099 int outside_reserve = 0;
4101 unsigned long haddr = address & huge_page_mask(h);
4102 struct mmu_notifier_range range;
4104 pte = huge_ptep_get(ptep);
4105 old_page = pte_page(pte);
4108 /* If no-one else is actually using this page, avoid the copy
4109 * and just make the page writable */
4110 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4111 page_move_anon_rmap(old_page, vma);
4112 set_huge_ptep_writable(vma, haddr, ptep);
4117 * If the process that created a MAP_PRIVATE mapping is about to
4118 * perform a COW due to a shared page count, attempt to satisfy
4119 * the allocation without using the existing reserves. The pagecache
4120 * page is used to determine if the reserve at this address was
4121 * consumed or not. If reserves were used, a partial faulted mapping
4122 * at the time of fork() could consume its reserves on COW instead
4123 * of the full address range.
4125 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4126 old_page != pagecache_page)
4127 outside_reserve = 1;
4132 * Drop page table lock as buddy allocator may be called. It will
4133 * be acquired again before returning to the caller, as expected.
4136 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4138 if (IS_ERR(new_page)) {
4140 * If a process owning a MAP_PRIVATE mapping fails to COW,
4141 * it is due to references held by a child and an insufficient
4142 * huge page pool. To guarantee the original mappers
4143 * reliability, unmap the page from child processes. The child
4144 * may get SIGKILLed if it later faults.
4146 if (outside_reserve) {
4147 struct address_space *mapping = vma->vm_file->f_mapping;
4152 BUG_ON(huge_pte_none(pte));
4154 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4155 * unmapping. unmapping needs to hold i_mmap_rwsem
4156 * in write mode. Dropping i_mmap_rwsem in read mode
4157 * here is OK as COW mappings do not interact with
4160 * Reacquire both after unmap operation.
4162 idx = vma_hugecache_offset(h, vma, haddr);
4163 hash = hugetlb_fault_mutex_hash(mapping, idx);
4164 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4165 i_mmap_unlock_read(mapping);
4167 unmap_ref_private(mm, vma, old_page, haddr);
4169 i_mmap_lock_read(mapping);
4170 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4172 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4174 pte_same(huge_ptep_get(ptep), pte)))
4175 goto retry_avoidcopy;
4177 * race occurs while re-acquiring page table
4178 * lock, and our job is done.
4183 ret = vmf_error(PTR_ERR(new_page));
4184 goto out_release_old;
4188 * When the original hugepage is shared one, it does not have
4189 * anon_vma prepared.
4191 if (unlikely(anon_vma_prepare(vma))) {
4193 goto out_release_all;
4196 copy_user_huge_page(new_page, old_page, address, vma,
4197 pages_per_huge_page(h));
4198 __SetPageUptodate(new_page);
4200 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4201 haddr + huge_page_size(h));
4202 mmu_notifier_invalidate_range_start(&range);
4205 * Retake the page table lock to check for racing updates
4206 * before the page tables are altered
4209 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4210 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4211 ClearHPageRestoreReserve(new_page);
4214 huge_ptep_clear_flush(vma, haddr, ptep);
4215 mmu_notifier_invalidate_range(mm, range.start, range.end);
4216 set_huge_pte_at(mm, haddr, ptep,
4217 make_huge_pte(vma, new_page, 1));
4218 page_remove_rmap(old_page, true);
4219 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4220 SetHPageMigratable(new_page);
4221 /* Make the old page be freed below */
4222 new_page = old_page;
4225 mmu_notifier_invalidate_range_end(&range);
4227 restore_reserve_on_error(h, vma, haddr, new_page);
4232 spin_lock(ptl); /* Caller expects lock to be held */
4236 /* Return the pagecache page at a given address within a VMA */
4237 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4238 struct vm_area_struct *vma, unsigned long address)
4240 struct address_space *mapping;
4243 mapping = vma->vm_file->f_mapping;
4244 idx = vma_hugecache_offset(h, vma, address);
4246 return find_lock_page(mapping, idx);
4250 * Return whether there is a pagecache page to back given address within VMA.
4251 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4253 static bool hugetlbfs_pagecache_present(struct hstate *h,
4254 struct vm_area_struct *vma, unsigned long address)
4256 struct address_space *mapping;
4260 mapping = vma->vm_file->f_mapping;
4261 idx = vma_hugecache_offset(h, vma, address);
4263 page = find_get_page(mapping, idx);
4266 return page != NULL;
4269 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4272 struct inode *inode = mapping->host;
4273 struct hstate *h = hstate_inode(inode);
4274 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4278 ClearHPageRestoreReserve(page);
4281 * set page dirty so that it will not be removed from cache/file
4282 * by non-hugetlbfs specific code paths.
4284 set_page_dirty(page);
4286 spin_lock(&inode->i_lock);
4287 inode->i_blocks += blocks_per_huge_page(h);
4288 spin_unlock(&inode->i_lock);
4292 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4293 struct vm_area_struct *vma,
4294 struct address_space *mapping, pgoff_t idx,
4295 unsigned long address, pte_t *ptep, unsigned int flags)
4297 struct hstate *h = hstate_vma(vma);
4298 vm_fault_t ret = VM_FAULT_SIGBUS;
4304 unsigned long haddr = address & huge_page_mask(h);
4305 bool new_page = false;
4308 * Currently, we are forced to kill the process in the event the
4309 * original mapper has unmapped pages from the child due to a failed
4310 * COW. Warn that such a situation has occurred as it may not be obvious
4312 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4313 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4319 * We can not race with truncation due to holding i_mmap_rwsem.
4320 * i_size is modified when holding i_mmap_rwsem, so check here
4321 * once for faults beyond end of file.
4323 size = i_size_read(mapping->host) >> huge_page_shift(h);
4328 page = find_lock_page(mapping, idx);
4331 * Check for page in userfault range
4333 if (userfaultfd_missing(vma)) {
4335 struct vm_fault vmf = {
4340 * Hard to debug if it ends up being
4341 * used by a callee that assumes
4342 * something about the other
4343 * uninitialized fields... same as in
4349 * hugetlb_fault_mutex and i_mmap_rwsem must be
4350 * dropped before handling userfault. Reacquire
4351 * after handling fault to make calling code simpler.
4353 hash = hugetlb_fault_mutex_hash(mapping, idx);
4354 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4355 i_mmap_unlock_read(mapping);
4356 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4357 i_mmap_lock_read(mapping);
4358 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4362 page = alloc_huge_page(vma, haddr, 0);
4365 * Returning error will result in faulting task being
4366 * sent SIGBUS. The hugetlb fault mutex prevents two
4367 * tasks from racing to fault in the same page which
4368 * could result in false unable to allocate errors.
4369 * Page migration does not take the fault mutex, but
4370 * does a clear then write of pte's under page table
4371 * lock. Page fault code could race with migration,
4372 * notice the clear pte and try to allocate a page
4373 * here. Before returning error, get ptl and make
4374 * sure there really is no pte entry.
4376 ptl = huge_pte_lock(h, mm, ptep);
4377 if (!huge_pte_none(huge_ptep_get(ptep))) {
4383 ret = vmf_error(PTR_ERR(page));
4386 clear_huge_page(page, address, pages_per_huge_page(h));
4387 __SetPageUptodate(page);
4390 if (vma->vm_flags & VM_MAYSHARE) {
4391 int err = huge_add_to_page_cache(page, mapping, idx);
4400 if (unlikely(anon_vma_prepare(vma))) {
4402 goto backout_unlocked;
4408 * If memory error occurs between mmap() and fault, some process
4409 * don't have hwpoisoned swap entry for errored virtual address.
4410 * So we need to block hugepage fault by PG_hwpoison bit check.
4412 if (unlikely(PageHWPoison(page))) {
4413 ret = VM_FAULT_HWPOISON_LARGE |
4414 VM_FAULT_SET_HINDEX(hstate_index(h));
4415 goto backout_unlocked;
4420 * If we are going to COW a private mapping later, we examine the
4421 * pending reservations for this page now. This will ensure that
4422 * any allocations necessary to record that reservation occur outside
4425 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4426 if (vma_needs_reservation(h, vma, haddr) < 0) {
4428 goto backout_unlocked;
4430 /* Just decrements count, does not deallocate */
4431 vma_end_reservation(h, vma, haddr);
4434 ptl = huge_pte_lock(h, mm, ptep);
4436 if (!huge_pte_none(huge_ptep_get(ptep)))
4440 ClearHPageRestoreReserve(page);
4441 hugepage_add_new_anon_rmap(page, vma, haddr);
4443 page_dup_rmap(page, true);
4444 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4445 && (vma->vm_flags & VM_SHARED)));
4446 set_huge_pte_at(mm, haddr, ptep, new_pte);
4448 hugetlb_count_add(pages_per_huge_page(h), mm);
4449 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4450 /* Optimization, do the COW without a second fault */
4451 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4457 * Only set HPageMigratable in newly allocated pages. Existing pages
4458 * found in the pagecache may not have HPageMigratableset if they have
4459 * been isolated for migration.
4462 SetHPageMigratable(page);
4472 restore_reserve_on_error(h, vma, haddr, page);
4478 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4480 unsigned long key[2];
4483 key[0] = (unsigned long) mapping;
4486 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4488 return hash & (num_fault_mutexes - 1);
4492 * For uniprocessor systems we always use a single mutex, so just
4493 * return 0 and avoid the hashing overhead.
4495 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4501 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4502 unsigned long address, unsigned int flags)
4509 struct page *page = NULL;
4510 struct page *pagecache_page = NULL;
4511 struct hstate *h = hstate_vma(vma);
4512 struct address_space *mapping;
4513 int need_wait_lock = 0;
4514 unsigned long haddr = address & huge_page_mask(h);
4516 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4519 * Since we hold no locks, ptep could be stale. That is
4520 * OK as we are only making decisions based on content and
4521 * not actually modifying content here.
4523 entry = huge_ptep_get(ptep);
4524 if (unlikely(is_hugetlb_entry_migration(entry))) {
4525 migration_entry_wait_huge(vma, mm, ptep);
4527 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4528 return VM_FAULT_HWPOISON_LARGE |
4529 VM_FAULT_SET_HINDEX(hstate_index(h));
4533 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4534 * until finished with ptep. This serves two purposes:
4535 * 1) It prevents huge_pmd_unshare from being called elsewhere
4536 * and making the ptep no longer valid.
4537 * 2) It synchronizes us with i_size modifications during truncation.
4539 * ptep could have already be assigned via huge_pte_offset. That
4540 * is OK, as huge_pte_alloc will return the same value unless
4541 * something has changed.
4543 mapping = vma->vm_file->f_mapping;
4544 i_mmap_lock_read(mapping);
4545 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4547 i_mmap_unlock_read(mapping);
4548 return VM_FAULT_OOM;
4552 * Serialize hugepage allocation and instantiation, so that we don't
4553 * get spurious allocation failures if two CPUs race to instantiate
4554 * the same page in the page cache.
4556 idx = vma_hugecache_offset(h, vma, haddr);
4557 hash = hugetlb_fault_mutex_hash(mapping, idx);
4558 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4560 entry = huge_ptep_get(ptep);
4561 if (huge_pte_none(entry)) {
4562 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4569 * entry could be a migration/hwpoison entry at this point, so this
4570 * check prevents the kernel from going below assuming that we have
4571 * an active hugepage in pagecache. This goto expects the 2nd page
4572 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4573 * properly handle it.
4575 if (!pte_present(entry))
4579 * If we are going to COW the mapping later, we examine the pending
4580 * reservations for this page now. This will ensure that any
4581 * allocations necessary to record that reservation occur outside the
4582 * spinlock. For private mappings, we also lookup the pagecache
4583 * page now as it is used to determine if a reservation has been
4586 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4587 if (vma_needs_reservation(h, vma, haddr) < 0) {
4591 /* Just decrements count, does not deallocate */
4592 vma_end_reservation(h, vma, haddr);
4594 if (!(vma->vm_flags & VM_MAYSHARE))
4595 pagecache_page = hugetlbfs_pagecache_page(h,
4599 ptl = huge_pte_lock(h, mm, ptep);
4601 /* Check for a racing update before calling hugetlb_cow */
4602 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4606 * hugetlb_cow() requires page locks of pte_page(entry) and
4607 * pagecache_page, so here we need take the former one
4608 * when page != pagecache_page or !pagecache_page.
4610 page = pte_page(entry);
4611 if (page != pagecache_page)
4612 if (!trylock_page(page)) {
4619 if (flags & FAULT_FLAG_WRITE) {
4620 if (!huge_pte_write(entry)) {
4621 ret = hugetlb_cow(mm, vma, address, ptep,
4622 pagecache_page, ptl);
4625 entry = huge_pte_mkdirty(entry);
4627 entry = pte_mkyoung(entry);
4628 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4629 flags & FAULT_FLAG_WRITE))
4630 update_mmu_cache(vma, haddr, ptep);
4632 if (page != pagecache_page)
4638 if (pagecache_page) {
4639 unlock_page(pagecache_page);
4640 put_page(pagecache_page);
4643 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4644 i_mmap_unlock_read(mapping);
4646 * Generally it's safe to hold refcount during waiting page lock. But
4647 * here we just wait to defer the next page fault to avoid busy loop and
4648 * the page is not used after unlocked before returning from the current
4649 * page fault. So we are safe from accessing freed page, even if we wait
4650 * here without taking refcount.
4653 wait_on_page_locked(page);
4658 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4659 * modifications for huge pages.
4661 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4663 struct vm_area_struct *dst_vma,
4664 unsigned long dst_addr,
4665 unsigned long src_addr,
4666 struct page **pagep)
4668 struct address_space *mapping;
4671 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4672 struct hstate *h = hstate_vma(dst_vma);
4680 page = alloc_huge_page(dst_vma, dst_addr, 0);
4684 ret = copy_huge_page_from_user(page,
4685 (const void __user *) src_addr,
4686 pages_per_huge_page(h), false);
4688 /* fallback to copy_from_user outside mmap_lock */
4689 if (unlikely(ret)) {
4692 /* don't free the page */
4701 * The memory barrier inside __SetPageUptodate makes sure that
4702 * preceding stores to the page contents become visible before
4703 * the set_pte_at() write.
4705 __SetPageUptodate(page);
4707 mapping = dst_vma->vm_file->f_mapping;
4708 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4711 * If shared, add to page cache
4714 size = i_size_read(mapping->host) >> huge_page_shift(h);
4717 goto out_release_nounlock;
4720 * Serialization between remove_inode_hugepages() and
4721 * huge_add_to_page_cache() below happens through the
4722 * hugetlb_fault_mutex_table that here must be hold by
4725 ret = huge_add_to_page_cache(page, mapping, idx);
4727 goto out_release_nounlock;
4730 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4734 * Recheck the i_size after holding PT lock to make sure not
4735 * to leave any page mapped (as page_mapped()) beyond the end
4736 * of the i_size (remove_inode_hugepages() is strict about
4737 * enforcing that). If we bail out here, we'll also leave a
4738 * page in the radix tree in the vm_shared case beyond the end
4739 * of the i_size, but remove_inode_hugepages() will take care
4740 * of it as soon as we drop the hugetlb_fault_mutex_table.
4742 size = i_size_read(mapping->host) >> huge_page_shift(h);
4745 goto out_release_unlock;
4748 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4749 goto out_release_unlock;
4752 page_dup_rmap(page, true);
4754 ClearHPageRestoreReserve(page);
4755 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4758 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4759 if (dst_vma->vm_flags & VM_WRITE)
4760 _dst_pte = huge_pte_mkdirty(_dst_pte);
4761 _dst_pte = pte_mkyoung(_dst_pte);
4763 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4765 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4766 dst_vma->vm_flags & VM_WRITE);
4767 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4769 /* No need to invalidate - it was non-present before */
4770 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4773 SetHPageMigratable(page);
4783 out_release_nounlock:
4788 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4789 int refs, struct page **pages,
4790 struct vm_area_struct **vmas)
4794 for (nr = 0; nr < refs; nr++) {
4796 pages[nr] = mem_map_offset(page, nr);
4802 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4803 struct page **pages, struct vm_area_struct **vmas,
4804 unsigned long *position, unsigned long *nr_pages,
4805 long i, unsigned int flags, int *locked)
4807 unsigned long pfn_offset;
4808 unsigned long vaddr = *position;
4809 unsigned long remainder = *nr_pages;
4810 struct hstate *h = hstate_vma(vma);
4811 int err = -EFAULT, refs;
4813 while (vaddr < vma->vm_end && remainder) {
4815 spinlock_t *ptl = NULL;
4820 * If we have a pending SIGKILL, don't keep faulting pages and
4821 * potentially allocating memory.
4823 if (fatal_signal_pending(current)) {
4829 * Some archs (sparc64, sh*) have multiple pte_ts to
4830 * each hugepage. We have to make sure we get the
4831 * first, for the page indexing below to work.
4833 * Note that page table lock is not held when pte is null.
4835 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4838 ptl = huge_pte_lock(h, mm, pte);
4839 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4842 * When coredumping, it suits get_dump_page if we just return
4843 * an error where there's an empty slot with no huge pagecache
4844 * to back it. This way, we avoid allocating a hugepage, and
4845 * the sparse dumpfile avoids allocating disk blocks, but its
4846 * huge holes still show up with zeroes where they need to be.
4848 if (absent && (flags & FOLL_DUMP) &&
4849 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4857 * We need call hugetlb_fault for both hugepages under migration
4858 * (in which case hugetlb_fault waits for the migration,) and
4859 * hwpoisoned hugepages (in which case we need to prevent the
4860 * caller from accessing to them.) In order to do this, we use
4861 * here is_swap_pte instead of is_hugetlb_entry_migration and
4862 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4863 * both cases, and because we can't follow correct pages
4864 * directly from any kind of swap entries.
4866 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4867 ((flags & FOLL_WRITE) &&
4868 !huge_pte_write(huge_ptep_get(pte)))) {
4870 unsigned int fault_flags = 0;
4874 if (flags & FOLL_WRITE)
4875 fault_flags |= FAULT_FLAG_WRITE;
4877 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4878 FAULT_FLAG_KILLABLE;
4879 if (flags & FOLL_NOWAIT)
4880 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4881 FAULT_FLAG_RETRY_NOWAIT;
4882 if (flags & FOLL_TRIED) {
4884 * Note: FAULT_FLAG_ALLOW_RETRY and
4885 * FAULT_FLAG_TRIED can co-exist
4887 fault_flags |= FAULT_FLAG_TRIED;
4889 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4890 if (ret & VM_FAULT_ERROR) {
4891 err = vm_fault_to_errno(ret, flags);
4895 if (ret & VM_FAULT_RETRY) {
4897 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4901 * VM_FAULT_RETRY must not return an
4902 * error, it will return zero
4905 * No need to update "position" as the
4906 * caller will not check it after
4907 * *nr_pages is set to 0.
4914 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4915 page = pte_page(huge_ptep_get(pte));
4918 * If subpage information not requested, update counters
4919 * and skip the same_page loop below.
4921 if (!pages && !vmas && !pfn_offset &&
4922 (vaddr + huge_page_size(h) < vma->vm_end) &&
4923 (remainder >= pages_per_huge_page(h))) {
4924 vaddr += huge_page_size(h);
4925 remainder -= pages_per_huge_page(h);
4926 i += pages_per_huge_page(h);
4931 refs = min3(pages_per_huge_page(h) - pfn_offset,
4932 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4935 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4937 likely(pages) ? pages + i : NULL,
4938 vmas ? vmas + i : NULL);
4942 * try_grab_compound_head() should always succeed here,
4943 * because: a) we hold the ptl lock, and b) we've just
4944 * checked that the huge page is present in the page
4945 * tables. If the huge page is present, then the tail
4946 * pages must also be present. The ptl prevents the
4947 * head page and tail pages from being rearranged in
4948 * any way. So this page must be available at this
4949 * point, unless the page refcount overflowed:
4951 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4961 vaddr += (refs << PAGE_SHIFT);
4967 *nr_pages = remainder;
4969 * setting position is actually required only if remainder is
4970 * not zero but it's faster not to add a "if (remainder)"
4978 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4980 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4983 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4986 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4987 unsigned long address, unsigned long end, pgprot_t newprot)
4989 struct mm_struct *mm = vma->vm_mm;
4990 unsigned long start = address;
4993 struct hstate *h = hstate_vma(vma);
4994 unsigned long pages = 0;
4995 bool shared_pmd = false;
4996 struct mmu_notifier_range range;
4999 * In the case of shared PMDs, the area to flush could be beyond
5000 * start/end. Set range.start/range.end to cover the maximum possible
5001 * range if PMD sharing is possible.
5003 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5004 0, vma, mm, start, end);
5005 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5007 BUG_ON(address >= end);
5008 flush_cache_range(vma, range.start, range.end);
5010 mmu_notifier_invalidate_range_start(&range);
5011 i_mmap_lock_write(vma->vm_file->f_mapping);
5012 for (; address < end; address += huge_page_size(h)) {
5014 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5017 ptl = huge_pte_lock(h, mm, ptep);
5018 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5024 pte = huge_ptep_get(ptep);
5025 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5029 if (unlikely(is_hugetlb_entry_migration(pte))) {
5030 swp_entry_t entry = pte_to_swp_entry(pte);
5032 if (is_write_migration_entry(entry)) {
5035 make_migration_entry_read(&entry);
5036 newpte = swp_entry_to_pte(entry);
5037 set_huge_swap_pte_at(mm, address, ptep,
5038 newpte, huge_page_size(h));
5044 if (!huge_pte_none(pte)) {
5047 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5048 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5049 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5050 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5056 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5057 * may have cleared our pud entry and done put_page on the page table:
5058 * once we release i_mmap_rwsem, another task can do the final put_page
5059 * and that page table be reused and filled with junk. If we actually
5060 * did unshare a page of pmds, flush the range corresponding to the pud.
5063 flush_hugetlb_tlb_range(vma, range.start, range.end);
5065 flush_hugetlb_tlb_range(vma, start, end);
5067 * No need to call mmu_notifier_invalidate_range() we are downgrading
5068 * page table protection not changing it to point to a new page.
5070 * See Documentation/vm/mmu_notifier.rst
5072 i_mmap_unlock_write(vma->vm_file->f_mapping);
5073 mmu_notifier_invalidate_range_end(&range);
5075 return pages << h->order;
5078 /* Return true if reservation was successful, false otherwise. */
5079 bool hugetlb_reserve_pages(struct inode *inode,
5081 struct vm_area_struct *vma,
5082 vm_flags_t vm_flags)
5085 struct hstate *h = hstate_inode(inode);
5086 struct hugepage_subpool *spool = subpool_inode(inode);
5087 struct resv_map *resv_map;
5088 struct hugetlb_cgroup *h_cg = NULL;
5089 long gbl_reserve, regions_needed = 0;
5091 /* This should never happen */
5093 VM_WARN(1, "%s called with a negative range\n", __func__);
5098 * Only apply hugepage reservation if asked. At fault time, an
5099 * attempt will be made for VM_NORESERVE to allocate a page
5100 * without using reserves
5102 if (vm_flags & VM_NORESERVE)
5106 * Shared mappings base their reservation on the number of pages that
5107 * are already allocated on behalf of the file. Private mappings need
5108 * to reserve the full area even if read-only as mprotect() may be
5109 * called to make the mapping read-write. Assume !vma is a shm mapping
5111 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5113 * resv_map can not be NULL as hugetlb_reserve_pages is only
5114 * called for inodes for which resv_maps were created (see
5115 * hugetlbfs_get_inode).
5117 resv_map = inode_resv_map(inode);
5119 chg = region_chg(resv_map, from, to, ®ions_needed);
5122 /* Private mapping. */
5123 resv_map = resv_map_alloc();
5129 set_vma_resv_map(vma, resv_map);
5130 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5136 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5137 chg * pages_per_huge_page(h), &h_cg) < 0)
5140 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5141 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5144 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5148 * There must be enough pages in the subpool for the mapping. If
5149 * the subpool has a minimum size, there may be some global
5150 * reservations already in place (gbl_reserve).
5152 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5153 if (gbl_reserve < 0)
5154 goto out_uncharge_cgroup;
5157 * Check enough hugepages are available for the reservation.
5158 * Hand the pages back to the subpool if there are not
5160 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5164 * Account for the reservations made. Shared mappings record regions
5165 * that have reservations as they are shared by multiple VMAs.
5166 * When the last VMA disappears, the region map says how much
5167 * the reservation was and the page cache tells how much of
5168 * the reservation was consumed. Private mappings are per-VMA and
5169 * only the consumed reservations are tracked. When the VMA
5170 * disappears, the original reservation is the VMA size and the
5171 * consumed reservations are stored in the map. Hence, nothing
5172 * else has to be done for private mappings here
5174 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5175 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5177 if (unlikely(add < 0)) {
5178 hugetlb_acct_memory(h, -gbl_reserve);
5180 } else if (unlikely(chg > add)) {
5182 * pages in this range were added to the reserve
5183 * map between region_chg and region_add. This
5184 * indicates a race with alloc_huge_page. Adjust
5185 * the subpool and reserve counts modified above
5186 * based on the difference.
5190 hugetlb_cgroup_uncharge_cgroup_rsvd(
5192 (chg - add) * pages_per_huge_page(h), h_cg);
5194 rsv_adjust = hugepage_subpool_put_pages(spool,
5196 hugetlb_acct_memory(h, -rsv_adjust);
5202 /* put back original number of pages, chg */
5203 (void)hugepage_subpool_put_pages(spool, chg);
5204 out_uncharge_cgroup:
5205 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5206 chg * pages_per_huge_page(h), h_cg);
5208 if (!vma || vma->vm_flags & VM_MAYSHARE)
5209 /* Only call region_abort if the region_chg succeeded but the
5210 * region_add failed or didn't run.
5212 if (chg >= 0 && add < 0)
5213 region_abort(resv_map, from, to, regions_needed);
5214 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5215 kref_put(&resv_map->refs, resv_map_release);
5219 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5222 struct hstate *h = hstate_inode(inode);
5223 struct resv_map *resv_map = inode_resv_map(inode);
5225 struct hugepage_subpool *spool = subpool_inode(inode);
5229 * Since this routine can be called in the evict inode path for all
5230 * hugetlbfs inodes, resv_map could be NULL.
5233 chg = region_del(resv_map, start, end);
5235 * region_del() can fail in the rare case where a region
5236 * must be split and another region descriptor can not be
5237 * allocated. If end == LONG_MAX, it will not fail.
5243 spin_lock(&inode->i_lock);
5244 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5245 spin_unlock(&inode->i_lock);
5248 * If the subpool has a minimum size, the number of global
5249 * reservations to be released may be adjusted.
5251 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5252 hugetlb_acct_memory(h, -gbl_reserve);
5257 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5258 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5259 struct vm_area_struct *vma,
5260 unsigned long addr, pgoff_t idx)
5262 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5264 unsigned long sbase = saddr & PUD_MASK;
5265 unsigned long s_end = sbase + PUD_SIZE;
5267 /* Allow segments to share if only one is marked locked */
5268 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5272 * match the virtual addresses, permission and the alignment of the
5275 if (pmd_index(addr) != pmd_index(saddr) ||
5276 vm_flags != svm_flags ||
5277 !range_in_vma(svma, sbase, s_end))
5283 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5285 unsigned long base = addr & PUD_MASK;
5286 unsigned long end = base + PUD_SIZE;
5289 * check on proper vm_flags and page table alignment
5291 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5297 * Determine if start,end range within vma could be mapped by shared pmd.
5298 * If yes, adjust start and end to cover range associated with possible
5299 * shared pmd mappings.
5301 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5302 unsigned long *start, unsigned long *end)
5304 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5305 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5308 * vma need span at least one aligned PUD size and the start,end range
5309 * must at least partialy within it.
5311 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5312 (*end <= v_start) || (*start >= v_end))
5315 /* Extend the range to be PUD aligned for a worst case scenario */
5316 if (*start > v_start)
5317 *start = ALIGN_DOWN(*start, PUD_SIZE);
5320 *end = ALIGN(*end, PUD_SIZE);
5324 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5325 * and returns the corresponding pte. While this is not necessary for the
5326 * !shared pmd case because we can allocate the pmd later as well, it makes the
5327 * code much cleaner.
5329 * This routine must be called with i_mmap_rwsem held in at least read mode if
5330 * sharing is possible. For hugetlbfs, this prevents removal of any page
5331 * table entries associated with the address space. This is important as we
5332 * are setting up sharing based on existing page table entries (mappings).
5334 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5335 * huge_pte_alloc know that sharing is not possible and do not take
5336 * i_mmap_rwsem as a performance optimization. This is handled by the
5337 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5338 * only required for subsequent processing.
5340 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5342 struct vm_area_struct *vma = find_vma(mm, addr);
5343 struct address_space *mapping = vma->vm_file->f_mapping;
5344 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5346 struct vm_area_struct *svma;
5347 unsigned long saddr;
5352 if (!vma_shareable(vma, addr))
5353 return (pte_t *)pmd_alloc(mm, pud, addr);
5355 i_mmap_assert_locked(mapping);
5356 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5360 saddr = page_table_shareable(svma, vma, addr, idx);
5362 spte = huge_pte_offset(svma->vm_mm, saddr,
5363 vma_mmu_pagesize(svma));
5365 get_page(virt_to_page(spte));
5374 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5375 if (pud_none(*pud)) {
5376 pud_populate(mm, pud,
5377 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5380 put_page(virt_to_page(spte));
5384 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5389 * unmap huge page backed by shared pte.
5391 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5392 * indicated by page_count > 1, unmap is achieved by clearing pud and
5393 * decrementing the ref count. If count == 1, the pte page is not shared.
5395 * Called with page table lock held and i_mmap_rwsem held in write mode.
5397 * returns: 1 successfully unmapped a shared pte page
5398 * 0 the underlying pte page is not shared, or it is the last user
5400 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5401 unsigned long *addr, pte_t *ptep)
5403 pgd_t *pgd = pgd_offset(mm, *addr);
5404 p4d_t *p4d = p4d_offset(pgd, *addr);
5405 pud_t *pud = pud_offset(p4d, *addr);
5407 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5408 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5409 if (page_count(virt_to_page(ptep)) == 1)
5413 put_page(virt_to_page(ptep));
5415 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5418 #define want_pmd_share() (1)
5419 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5420 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5425 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5426 unsigned long *addr, pte_t *ptep)
5431 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5432 unsigned long *start, unsigned long *end)
5435 #define want_pmd_share() (0)
5436 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5438 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5439 pte_t *huge_pte_alloc(struct mm_struct *mm,
5440 unsigned long addr, unsigned long sz)
5447 pgd = pgd_offset(mm, addr);
5448 p4d = p4d_alloc(mm, pgd, addr);
5451 pud = pud_alloc(mm, p4d, addr);
5453 if (sz == PUD_SIZE) {
5456 BUG_ON(sz != PMD_SIZE);
5457 if (want_pmd_share() && pud_none(*pud))
5458 pte = huge_pmd_share(mm, addr, pud);
5460 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5463 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5469 * huge_pte_offset() - Walk the page table to resolve the hugepage
5470 * entry at address @addr
5472 * Return: Pointer to page table entry (PUD or PMD) for
5473 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5474 * size @sz doesn't match the hugepage size at this level of the page
5477 pte_t *huge_pte_offset(struct mm_struct *mm,
5478 unsigned long addr, unsigned long sz)
5485 pgd = pgd_offset(mm, addr);
5486 if (!pgd_present(*pgd))
5488 p4d = p4d_offset(pgd, addr);
5489 if (!p4d_present(*p4d))
5492 pud = pud_offset(p4d, addr);
5494 /* must be pud huge, non-present or none */
5495 return (pte_t *)pud;
5496 if (!pud_present(*pud))
5498 /* must have a valid entry and size to go further */
5500 pmd = pmd_offset(pud, addr);
5501 /* must be pmd huge, non-present or none */
5502 return (pte_t *)pmd;
5505 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5508 * These functions are overwritable if your architecture needs its own
5511 struct page * __weak
5512 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5515 return ERR_PTR(-EINVAL);
5518 struct page * __weak
5519 follow_huge_pd(struct vm_area_struct *vma,
5520 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5522 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5526 struct page * __weak
5527 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5528 pmd_t *pmd, int flags)
5530 struct page *page = NULL;
5534 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5535 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5536 (FOLL_PIN | FOLL_GET)))
5540 ptl = pmd_lockptr(mm, pmd);
5543 * make sure that the address range covered by this pmd is not
5544 * unmapped from other threads.
5546 if (!pmd_huge(*pmd))
5548 pte = huge_ptep_get((pte_t *)pmd);
5549 if (pte_present(pte)) {
5550 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5552 * try_grab_page() should always succeed here, because: a) we
5553 * hold the pmd (ptl) lock, and b) we've just checked that the
5554 * huge pmd (head) page is present in the page tables. The ptl
5555 * prevents the head page and tail pages from being rearranged
5556 * in any way. So this page must be available at this point,
5557 * unless the page refcount overflowed:
5559 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5564 if (is_hugetlb_entry_migration(pte)) {
5566 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5570 * hwpoisoned entry is treated as no_page_table in
5571 * follow_page_mask().
5579 struct page * __weak
5580 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5581 pud_t *pud, int flags)
5583 if (flags & (FOLL_GET | FOLL_PIN))
5586 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5589 struct page * __weak
5590 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5592 if (flags & (FOLL_GET | FOLL_PIN))
5595 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5598 bool isolate_huge_page(struct page *page, struct list_head *list)
5602 spin_lock(&hugetlb_lock);
5603 if (!PageHeadHuge(page) ||
5604 !HPageMigratable(page) ||
5605 !get_page_unless_zero(page)) {
5609 ClearHPageMigratable(page);
5610 list_move_tail(&page->lru, list);
5612 spin_unlock(&hugetlb_lock);
5616 void putback_active_hugepage(struct page *page)
5618 spin_lock(&hugetlb_lock);
5619 SetHPageMigratable(page);
5620 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5621 spin_unlock(&hugetlb_lock);
5625 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5627 struct hstate *h = page_hstate(oldpage);
5629 hugetlb_cgroup_migrate(oldpage, newpage);
5630 set_page_owner_migrate_reason(newpage, reason);
5633 * transfer temporary state of the new huge page. This is
5634 * reverse to other transitions because the newpage is going to
5635 * be final while the old one will be freed so it takes over
5636 * the temporary status.
5638 * Also note that we have to transfer the per-node surplus state
5639 * here as well otherwise the global surplus count will not match
5642 if (HPageTemporary(newpage)) {
5643 int old_nid = page_to_nid(oldpage);
5644 int new_nid = page_to_nid(newpage);
5646 SetHPageTemporary(oldpage);
5647 ClearHPageTemporary(newpage);
5649 spin_lock(&hugetlb_lock);
5650 if (h->surplus_huge_pages_node[old_nid]) {
5651 h->surplus_huge_pages_node[old_nid]--;
5652 h->surplus_huge_pages_node[new_nid]++;
5654 spin_unlock(&hugetlb_lock);
5659 static bool cma_reserve_called __initdata;
5661 static int __init cmdline_parse_hugetlb_cma(char *p)
5663 hugetlb_cma_size = memparse(p, &p);
5667 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5669 void __init hugetlb_cma_reserve(int order)
5671 unsigned long size, reserved, per_node;
5674 cma_reserve_called = true;
5676 if (!hugetlb_cma_size)
5679 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5680 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5681 (PAGE_SIZE << order) / SZ_1M);
5686 * If 3 GB area is requested on a machine with 4 numa nodes,
5687 * let's allocate 1 GB on first three nodes and ignore the last one.
5689 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5690 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5691 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5694 for_each_node_state(nid, N_ONLINE) {
5696 char name[CMA_MAX_NAME];
5698 size = min(per_node, hugetlb_cma_size - reserved);
5699 size = round_up(size, PAGE_SIZE << order);
5701 snprintf(name, sizeof(name), "hugetlb%d", nid);
5702 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5704 &hugetlb_cma[nid], nid);
5706 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5712 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5715 if (reserved >= hugetlb_cma_size)
5720 void __init hugetlb_cma_check(void)
5722 if (!hugetlb_cma_size || cma_reserve_called)
5725 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5728 #endif /* CONFIG_CMA */