1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 struct hugepage_subpool *spool;
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 spin_lock_init(&spool->lock);
137 spool->max_hpages = max_hpages;
139 spool->min_hpages = min_hpages;
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 spool->rsv_hpages = min_hpages;
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
157 unlock_or_release_subpool(spool, flags);
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 spin_lock_irq(&spool->lock);
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
203 spin_unlock_irq(&spool->lock);
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
222 spin_lock_irqsave(&spool->lock, flags);
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
243 unlock_or_release_subpool(spool, flags);
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 return HUGETLBFS_SB(inode->i_sb)->spool;
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 return subpool_inode(file_inode(vma->vm_file));
258 /* Helper that removes a struct file_region from the resv_map cache and returns
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 struct file_region *nrg;
266 VM_BUG_ON(resv->region_cache_count <= 0);
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 list_del(&nrg->link);
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
281 #ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 struct resv_map *resv,
293 struct file_region *nrg)
295 #ifdef CONFIG_CGROUP_HUGETLB
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 nrg->reservation_counter = NULL;
324 static void put_uncharge_info(struct file_region *rg)
326 #ifdef CONFIG_CGROUP_HUGETLB
332 static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
335 #ifdef CONFIG_CGROUP_HUGETLB
336 return rg->reservation_counter == org->reservation_counter &&
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 struct file_region *nrg, *prg;
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
354 put_uncharge_info(rg);
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
366 put_uncharge_info(rg);
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
376 struct file_region *nrg;
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg);
382 coalesce_file_region(map, nrg);
384 *regions_needed += 1;
390 * Must be called with resv->lock held.
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 struct hugetlb_cgroup *h_cg,
399 struct hstate *h, long *regions_needed)
402 struct list_head *head = &resv->regions;
403 long last_accounted_offset = f;
404 struct file_region *iter, *trg = NULL;
405 struct list_head *rg = NULL;
410 /* In this loop, we essentially handle an entry for the range
411 * [last_accounted_offset, iter->from), at every iteration, with some
414 list_for_each_entry_safe(iter, trg, head, link) {
415 /* Skip irrelevant regions that start before our range. */
416 if (iter->from < f) {
417 /* If this region ends after the last accounted offset,
418 * then we need to update last_accounted_offset.
420 if (iter->to > last_accounted_offset)
421 last_accounted_offset = iter->to;
425 /* When we find a region that starts beyond our range, we've
428 if (iter->from >= t) {
429 rg = iter->link.prev;
433 /* Add an entry for last_accounted_offset -> iter->from, and
434 * update last_accounted_offset.
436 if (iter->from > last_accounted_offset)
437 add += hugetlb_resv_map_add(resv, iter->link.prev,
438 last_accounted_offset,
442 last_accounted_offset = iter->to;
445 /* Handle the case where our range extends beyond
446 * last_accounted_offset.
450 if (last_accounted_offset < t)
451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 t, h, h_cg, regions_needed);
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459 static int allocate_file_region_entries(struct resv_map *resv,
461 __must_hold(&resv->lock)
463 LIST_HEAD(allocated_regions);
464 int to_allocate = 0, i = 0;
465 struct file_region *trg = NULL, *rg = NULL;
467 VM_BUG_ON(regions_needed < 0);
470 * Check for sufficient descriptors in the cache to accommodate
471 * the number of in progress add operations plus regions_needed.
473 * This is a while loop because when we drop the lock, some other call
474 * to region_add or region_del may have consumed some region_entries,
475 * so we keep looping here until we finally have enough entries for
476 * (adds_in_progress + regions_needed).
478 while (resv->region_cache_count <
479 (resv->adds_in_progress + regions_needed)) {
480 to_allocate = resv->adds_in_progress + regions_needed -
481 resv->region_cache_count;
483 /* At this point, we should have enough entries in the cache
484 * for all the existing adds_in_progress. We should only be
485 * needing to allocate for regions_needed.
487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
489 spin_unlock(&resv->lock);
490 for (i = 0; i < to_allocate; i++) {
491 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
494 list_add(&trg->link, &allocated_regions);
497 spin_lock(&resv->lock);
499 list_splice(&allocated_regions, &resv->region_cache);
500 resv->region_cache_count += to_allocate;
506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
514 * Add the huge page range represented by [f, t) to the reserve
515 * map. Regions will be taken from the cache to fill in this range.
516 * Sufficient regions should exist in the cache due to the previous
517 * call to region_chg with the same range, but in some cases the cache will not
518 * have sufficient entries due to races with other code doing region_add or
519 * region_del. The extra needed entries will be allocated.
521 * regions_needed is the out value provided by a previous call to region_chg.
523 * Return the number of new huge pages added to the map. This number is greater
524 * than or equal to zero. If file_region entries needed to be allocated for
525 * this operation and we were not able to allocate, it returns -ENOMEM.
526 * region_add of regions of length 1 never allocate file_regions and cannot
527 * fail; region_chg will always allocate at least 1 entry and a region_add for
528 * 1 page will only require at most 1 entry.
530 static long region_add(struct resv_map *resv, long f, long t,
531 long in_regions_needed, struct hstate *h,
532 struct hugetlb_cgroup *h_cg)
534 long add = 0, actual_regions_needed = 0;
536 spin_lock(&resv->lock);
539 /* Count how many regions are actually needed to execute this add. */
540 add_reservation_in_range(resv, f, t, NULL, NULL,
541 &actual_regions_needed);
544 * Check for sufficient descriptors in the cache to accommodate
545 * this add operation. Note that actual_regions_needed may be greater
546 * than in_regions_needed, as the resv_map may have been modified since
547 * the region_chg call. In this case, we need to make sure that we
548 * allocate extra entries, such that we have enough for all the
549 * existing adds_in_progress, plus the excess needed for this
552 if (actual_regions_needed > in_regions_needed &&
553 resv->region_cache_count <
554 resv->adds_in_progress +
555 (actual_regions_needed - in_regions_needed)) {
556 /* region_add operation of range 1 should never need to
557 * allocate file_region entries.
559 VM_BUG_ON(t - f <= 1);
561 if (allocate_file_region_entries(
562 resv, actual_regions_needed - in_regions_needed)) {
569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
571 resv->adds_in_progress -= in_regions_needed;
573 spin_unlock(&resv->lock);
578 * Examine the existing reserve map and determine how many
579 * huge pages in the specified range [f, t) are NOT currently
580 * represented. This routine is called before a subsequent
581 * call to region_add that will actually modify the reserve
582 * map to add the specified range [f, t). region_chg does
583 * not change the number of huge pages represented by the
584 * map. A number of new file_region structures is added to the cache as a
585 * placeholder, for the subsequent region_add call to use. At least 1
586 * file_region structure is added.
588 * out_regions_needed is the number of regions added to the
589 * resv->adds_in_progress. This value needs to be provided to a follow up call
590 * to region_add or region_abort for proper accounting.
592 * Returns the number of huge pages that need to be added to the existing
593 * reservation map for the range [f, t). This number is greater or equal to
594 * zero. -ENOMEM is returned if a new file_region structure or cache entry
595 * is needed and can not be allocated.
597 static long region_chg(struct resv_map *resv, long f, long t,
598 long *out_regions_needed)
602 spin_lock(&resv->lock);
604 /* Count how many hugepages in this range are NOT represented. */
605 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
608 if (*out_regions_needed == 0)
609 *out_regions_needed = 1;
611 if (allocate_file_region_entries(resv, *out_regions_needed))
614 resv->adds_in_progress += *out_regions_needed;
616 spin_unlock(&resv->lock);
621 * Abort the in progress add operation. The adds_in_progress field
622 * of the resv_map keeps track of the operations in progress between
623 * calls to region_chg and region_add. Operations are sometimes
624 * aborted after the call to region_chg. In such cases, region_abort
625 * is called to decrement the adds_in_progress counter. regions_needed
626 * is the value returned by the region_chg call, it is used to decrement
627 * the adds_in_progress counter.
629 * NOTE: The range arguments [f, t) are not needed or used in this
630 * routine. They are kept to make reading the calling code easier as
631 * arguments will match the associated region_chg call.
633 static void region_abort(struct resv_map *resv, long f, long t,
636 spin_lock(&resv->lock);
637 VM_BUG_ON(!resv->region_cache_count);
638 resv->adds_in_progress -= regions_needed;
639 spin_unlock(&resv->lock);
643 * Delete the specified range [f, t) from the reserve map. If the
644 * t parameter is LONG_MAX, this indicates that ALL regions after f
645 * should be deleted. Locate the regions which intersect [f, t)
646 * and either trim, delete or split the existing regions.
648 * Returns the number of huge pages deleted from the reserve map.
649 * In the normal case, the return value is zero or more. In the
650 * case where a region must be split, a new region descriptor must
651 * be allocated. If the allocation fails, -ENOMEM will be returned.
652 * NOTE: If the parameter t == LONG_MAX, then we will never split
653 * a region and possibly return -ENOMEM. Callers specifying
654 * t == LONG_MAX do not need to check for -ENOMEM error.
656 static long region_del(struct resv_map *resv, long f, long t)
658 struct list_head *head = &resv->regions;
659 struct file_region *rg, *trg;
660 struct file_region *nrg = NULL;
664 spin_lock(&resv->lock);
665 list_for_each_entry_safe(rg, trg, head, link) {
667 * Skip regions before the range to be deleted. file_region
668 * ranges are normally of the form [from, to). However, there
669 * may be a "placeholder" entry in the map which is of the form
670 * (from, to) with from == to. Check for placeholder entries
671 * at the beginning of the range to be deleted.
673 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
679 if (f > rg->from && t < rg->to) { /* Must split region */
681 * Check for an entry in the cache before dropping
682 * lock and attempting allocation.
685 resv->region_cache_count > resv->adds_in_progress) {
686 nrg = list_first_entry(&resv->region_cache,
689 list_del(&nrg->link);
690 resv->region_cache_count--;
694 spin_unlock(&resv->lock);
695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
702 hugetlb_cgroup_uncharge_file_region(
703 resv, rg, t - f, false);
705 /* New entry for end of split region */
709 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
711 INIT_LIST_HEAD(&nrg->link);
713 /* Original entry is trimmed */
716 list_add(&nrg->link, &rg->link);
721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 del += rg->to - rg->from;
723 hugetlb_cgroup_uncharge_file_region(resv, rg,
724 rg->to - rg->from, true);
730 if (f <= rg->from) { /* Trim beginning of region */
731 hugetlb_cgroup_uncharge_file_region(resv, rg,
732 t - rg->from, false);
736 } else { /* Trim end of region */
737 hugetlb_cgroup_uncharge_file_region(resv, rg,
745 spin_unlock(&resv->lock);
751 * A rare out of memory error was encountered which prevented removal of
752 * the reserve map region for a page. The huge page itself was free'ed
753 * and removed from the page cache. This routine will adjust the subpool
754 * usage count, and the global reserve count if needed. By incrementing
755 * these counts, the reserve map entry which could not be deleted will
756 * appear as a "reserved" entry instead of simply dangling with incorrect
759 void hugetlb_fix_reserve_counts(struct inode *inode)
761 struct hugepage_subpool *spool = subpool_inode(inode);
763 bool reserved = false;
765 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 if (rsv_adjust > 0) {
767 struct hstate *h = hstate_inode(inode);
769 if (!hugetlb_acct_memory(h, 1))
771 } else if (!rsv_adjust) {
776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 * Count and return the number of huge pages in the reserve map
781 * that intersect with the range [f, t).
783 static long region_count(struct resv_map *resv, long f, long t)
785 struct list_head *head = &resv->regions;
786 struct file_region *rg;
789 spin_lock(&resv->lock);
790 /* Locate each segment we overlap with, and count that overlap. */
791 list_for_each_entry(rg, head, link) {
800 seg_from = max(rg->from, f);
801 seg_to = min(rg->to, t);
803 chg += seg_to - seg_from;
805 spin_unlock(&resv->lock);
811 * Convert the address within this vma to the page offset within
812 * the mapping, in pagecache page units; huge pages here.
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 struct vm_area_struct *vma, unsigned long address)
817 return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 (vma->vm_pgoff >> huge_page_order(h));
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 unsigned long address)
824 return vma_hugecache_offset(hstate_vma(vma), vma, address);
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
829 * Return the size of the pages allocated when backing a VMA. In the majority
830 * cases this will be same size as used by the page table entries.
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
834 if (vma->vm_ops && vma->vm_ops->pagesize)
835 return vma->vm_ops->pagesize(vma);
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
841 * Return the page size being used by the MMU to back a VMA. In the majority
842 * of cases, the page size used by the kernel matches the MMU size. On
843 * architectures where it differs, an architecture-specific 'strong'
844 * version of this symbol is required.
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
848 return vma_kernel_pagesize(vma);
852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
853 * bits of the reservation map pointer, which are always clear due to
856 #define HPAGE_RESV_OWNER (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
861 * These helpers are used to track how many pages are reserved for
862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863 * is guaranteed to have their future faults succeed.
865 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866 * the reserve counters are updated with the hugetlb_lock held. It is safe
867 * to reset the VMA at fork() time as it is not in use yet and there is no
868 * chance of the global counters getting corrupted as a result of the values.
870 * The private mapping reservation is represented in a subtly different
871 * manner to a shared mapping. A shared mapping has a region map associated
872 * with the underlying file, this region map represents the backing file
873 * pages which have ever had a reservation assigned which this persists even
874 * after the page is instantiated. A private mapping has a region map
875 * associated with the original mmap which is attached to all VMAs which
876 * reference it, this region map represents those offsets which have consumed
877 * reservation ie. where pages have been instantiated.
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
881 return (unsigned long)vma->vm_private_data;
884 static void set_vma_private_data(struct vm_area_struct *vma,
887 vma->vm_private_data = (void *)value;
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 struct hugetlb_cgroup *h_cg,
895 #ifdef CONFIG_CGROUP_HUGETLB
897 resv_map->reservation_counter = NULL;
898 resv_map->pages_per_hpage = 0;
899 resv_map->css = NULL;
901 resv_map->reservation_counter =
902 &h_cg->rsvd_hugepage[hstate_index(h)];
903 resv_map->pages_per_hpage = pages_per_huge_page(h);
904 resv_map->css = &h_cg->css;
909 struct resv_map *resv_map_alloc(void)
911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
914 if (!resv_map || !rg) {
920 kref_init(&resv_map->refs);
921 spin_lock_init(&resv_map->lock);
922 INIT_LIST_HEAD(&resv_map->regions);
924 resv_map->adds_in_progress = 0;
926 * Initialize these to 0. On shared mappings, 0's here indicate these
927 * fields don't do cgroup accounting. On private mappings, these will be
928 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 * reservations are to be un-charged from here.
931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
933 INIT_LIST_HEAD(&resv_map->region_cache);
934 list_add(&rg->link, &resv_map->region_cache);
935 resv_map->region_cache_count = 1;
940 void resv_map_release(struct kref *ref)
942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 struct list_head *head = &resv_map->region_cache;
944 struct file_region *rg, *trg;
946 /* Clear out any active regions before we release the map. */
947 region_del(resv_map, 0, LONG_MAX);
949 /* ... and any entries left in the cache */
950 list_for_each_entry_safe(rg, trg, head, link) {
955 VM_BUG_ON(resv_map->adds_in_progress);
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
963 * At inode evict time, i_mapping may not point to the original
964 * address space within the inode. This original address space
965 * contains the pointer to the resv_map. So, always use the
966 * address space embedded within the inode.
967 * The VERY common case is inode->mapping == &inode->i_data but,
968 * this may not be true for device special inodes.
970 return (struct resv_map *)(&inode->i_data)->private_data;
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 if (vma->vm_flags & VM_MAYSHARE) {
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
980 return inode_resv_map(inode);
983 return (struct resv_map *)(get_vma_private_data(vma) &
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
993 set_vma_private_data(vma, (get_vma_private_data(vma) &
994 HPAGE_RESV_MASK) | (unsigned long)map);
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1009 return (get_vma_private_data(vma) & flag) != 0;
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1016 * Clear vm_private_data
1017 * - For shared mappings this is a per-vma semaphore that may be
1018 * allocated in a subsequent call to hugetlb_vm_op_open.
1019 * Before clearing, make sure pointer is not associated with vma
1020 * as this will leak the structure. This is the case when called
1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 * been called to allocate a new structure.
1023 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 * not apply to children. Faults generated by the children are
1025 * not guaranteed to succeed, even if read-only.
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1030 if (vma_lock && vma_lock->vma != vma)
1031 vma->vm_private_data = NULL;
1033 vma->vm_private_data = NULL;
1037 * Reset and decrement one ref on hugepage private reservation.
1038 * Called with mm->mmap_sem writer semaphore held.
1039 * This function should be only used by move_vma() and operate on
1040 * same sized vma. It should never come here with last ref on the
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1046 * Clear the old hugetlb private page reservation.
1047 * It has already been transferred to new_vma.
1049 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 * which copies vma into new_vma and unmaps vma. After the copy
1051 * operation both new_vma and vma share a reference to the resv_map
1052 * struct, and at that point vma is about to be unmapped. We don't
1053 * want to return the reservation to the pool at unmap of vma because
1054 * the reservation still lives on in new_vma, so simply decrement the
1055 * ref here and remove the resv_map reference from this vma.
1057 struct resv_map *reservations = vma_resv_map(vma);
1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061 kref_put(&reservations->refs, resv_map_release);
1064 hugetlb_dup_vma_private(vma);
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1070 if (vma->vm_flags & VM_NORESERVE) {
1072 * This address is already reserved by other process(chg == 0),
1073 * so, we should decrement reserved count. Without decrementing,
1074 * reserve count remains after releasing inode, because this
1075 * allocated page will go into page cache and is regarded as
1076 * coming from reserved pool in releasing step. Currently, we
1077 * don't have any other solution to deal with this situation
1078 * properly, so add work-around here.
1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1086 /* Shared mappings always use reserves */
1087 if (vma->vm_flags & VM_MAYSHARE) {
1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1090 * be a region map for all pages. The only situation where
1091 * there is no region map is if a hole was punched via
1092 * fallocate. In this case, there really are no reserves to
1093 * use. This situation is indicated if chg != 0.
1102 * Only the process that called mmap() has reserves for
1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107 * Like the shared case above, a hole punch or truncate
1108 * could have been performed on the private mapping.
1109 * Examine the value of chg to determine if reserves
1110 * actually exist or were previously consumed.
1111 * Very Subtle - The value of chg comes from a previous
1112 * call to vma_needs_reserves(). The reserve map for
1113 * private mappings has different (opposite) semantics
1114 * than that of shared mappings. vma_needs_reserves()
1115 * has already taken this difference in semantics into
1116 * account. Therefore, the meaning of chg is the same
1117 * as in the shared case above. Code could easily be
1118 * combined, but keeping it separate draws attention to
1119 * subtle differences.
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1132 int nid = page_to_nid(page);
1134 lockdep_assert_held(&hugetlb_lock);
1135 VM_BUG_ON_PAGE(page_count(page), page);
1137 list_move(&page->lru, &h->hugepage_freelists[nid]);
1138 h->free_huge_pages++;
1139 h->free_huge_pages_node[nid]++;
1140 SetHPageFreed(page);
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1148 lockdep_assert_held(&hugetlb_lock);
1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150 if (pin && !is_longterm_pinnable_page(page))
1153 if (PageHWPoison(page))
1156 list_move(&page->lru, &h->hugepage_activelist);
1157 set_page_refcounted(page);
1158 ClearHPageFreed(page);
1159 h->free_huge_pages--;
1160 h->free_huge_pages_node[nid]--;
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1170 unsigned int cpuset_mems_cookie;
1171 struct zonelist *zonelist;
1174 int node = NUMA_NO_NODE;
1176 zonelist = node_zonelist(nid, gfp_mask);
1179 cpuset_mems_cookie = read_mems_allowed_begin();
1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1183 if (!cpuset_zone_allowed(zone, gfp_mask))
1186 * no need to ask again on the same node. Pool is node rather than
1189 if (zone_to_nid(zone) == node)
1191 node = zone_to_nid(zone);
1193 page = dequeue_huge_page_node_exact(h, node);
1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1203 static unsigned long available_huge_pages(struct hstate *h)
1205 return h->free_huge_pages - h->resv_huge_pages;
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 struct vm_area_struct *vma,
1210 unsigned long address, int avoid_reserve,
1213 struct page *page = NULL;
1214 struct mempolicy *mpol;
1216 nodemask_t *nodemask;
1220 * A child process with MAP_PRIVATE mappings created by their parent
1221 * have no page reserves. This check ensures that reservations are
1222 * not "stolen". The child may still get SIGKILLed
1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1227 /* If reserves cannot be used, ensure enough pages are in the pool */
1228 if (avoid_reserve && !available_huge_pages(h))
1231 gfp_mask = htlb_alloc_mask(h);
1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1234 if (mpol_is_preferred_many(mpol)) {
1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1237 /* Fallback to all nodes if page==NULL */
1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245 SetHPageRestoreReserve(page);
1246 h->resv_huge_pages--;
1249 mpol_cond_put(mpol);
1257 * common helper functions for hstate_next_node_to_{alloc|free}.
1258 * We may have allocated or freed a huge page based on a different
1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260 * be outside of *nodes_allowed. Ensure that we use an allowed
1261 * node for alloc or free.
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1265 nid = next_node_in(nid, *nodes_allowed);
1266 VM_BUG_ON(nid >= MAX_NUMNODES);
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1273 if (!node_isset(nid, *nodes_allowed))
1274 nid = next_node_allowed(nid, nodes_allowed);
1279 * returns the previously saved node ["this node"] from which to
1280 * allocate a persistent huge page for the pool and advance the
1281 * next node from which to allocate, handling wrap at end of node
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285 nodemask_t *nodes_allowed)
1289 VM_BUG_ON(!nodes_allowed);
1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1298 * helper for remove_pool_huge_page() - return the previously saved
1299 * node ["this node"] from which to free a huge page. Advance the
1300 * next node id whether or not we find a free huge page to free so
1301 * that the next attempt to free addresses the next node.
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1307 VM_BUG_ON(!nodes_allowed);
1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1316 for (nr_nodes = nodes_weight(*mask); \
1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1322 for (nr_nodes = nodes_weight(*mask); \
1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329 unsigned int order, bool demote)
1332 int nr_pages = 1 << order;
1335 atomic_set(compound_mapcount_ptr(page), 0);
1336 atomic_set(compound_pincount_ptr(page), 0);
1338 for (i = 1; i < nr_pages; i++) {
1339 p = nth_page(page, i);
1341 clear_compound_head(p);
1343 set_page_refcounted(p);
1346 set_compound_order(page, 0);
1348 page[1].compound_nr = 0;
1350 __ClearPageHead(page);
1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1356 __destroy_compound_gigantic_page(page, order, true);
1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1360 static void destroy_compound_gigantic_page(struct page *page,
1363 __destroy_compound_gigantic_page(page, order, false);
1366 static void free_gigantic_page(struct page *page, unsigned int order)
1369 * If the page isn't allocated using the cma allocator,
1370 * cma_release() returns false.
1373 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1377 free_contig_range(page_to_pfn(page), 1 << order);
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382 int nid, nodemask_t *nodemask)
1384 unsigned long nr_pages = pages_per_huge_page(h);
1385 if (nid == NUMA_NO_NODE)
1386 nid = numa_mem_id();
1393 if (hugetlb_cma[nid]) {
1394 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 huge_page_order(h), true);
1400 if (!(gfp_mask & __GFP_THISNODE)) {
1401 for_each_node_mask(node, *nodemask) {
1402 if (node == nid || !hugetlb_cma[node])
1405 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 huge_page_order(h), true);
1414 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1417 #else /* !CONFIG_CONTIG_ALLOC */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 int nid, nodemask_t *nodemask)
1423 #endif /* CONFIG_CONTIG_ALLOC */
1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1427 int nid, nodemask_t *nodemask)
1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1432 static inline void destroy_compound_gigantic_page(struct page *page,
1433 unsigned int order) { }
1437 * Remove hugetlb page from lists, and update dtor so that page appears
1438 * as just a compound page.
1440 * A reference is held on the page, except in the case of demote.
1442 * Must be called with hugetlb lock held.
1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445 bool adjust_surplus,
1448 int nid = page_to_nid(page);
1450 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1453 lockdep_assert_held(&hugetlb_lock);
1454 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1457 list_del(&page->lru);
1459 if (HPageFreed(page)) {
1460 h->free_huge_pages--;
1461 h->free_huge_pages_node[nid]--;
1463 if (adjust_surplus) {
1464 h->surplus_huge_pages--;
1465 h->surplus_huge_pages_node[nid]--;
1471 * For non-gigantic pages set the destructor to the normal compound
1472 * page dtor. This is needed in case someone takes an additional
1473 * temporary ref to the page, and freeing is delayed until they drop
1476 * For gigantic pages set the destructor to the null dtor. This
1477 * destructor will never be called. Before freeing the gigantic
1478 * page destroy_compound_gigantic_page will turn the compound page
1479 * into a simple group of pages. After this the destructor does not
1482 * This handles the case where more than one ref is held when and
1483 * after update_and_free_page is called.
1485 * In the case of demote we do not ref count the page as it will soon
1486 * be turned into a page of smaller size.
1489 set_page_refcounted(page);
1490 if (hstate_is_gigantic(h))
1491 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1496 h->nr_huge_pages_node[nid]--;
1499 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500 bool adjust_surplus)
1502 __remove_hugetlb_page(h, page, adjust_surplus, false);
1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506 bool adjust_surplus)
1508 __remove_hugetlb_page(h, page, adjust_surplus, true);
1511 static void add_hugetlb_page(struct hstate *h, struct page *page,
1512 bool adjust_surplus)
1515 int nid = page_to_nid(page);
1517 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1519 lockdep_assert_held(&hugetlb_lock);
1521 INIT_LIST_HEAD(&page->lru);
1523 h->nr_huge_pages_node[nid]++;
1525 if (adjust_surplus) {
1526 h->surplus_huge_pages++;
1527 h->surplus_huge_pages_node[nid]++;
1530 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531 set_page_private(page, 0);
1533 * We have to set HPageVmemmapOptimized again as above
1534 * set_page_private(page, 0) cleared it.
1536 SetHPageVmemmapOptimized(page);
1539 * This page is about to be managed by the hugetlb allocator and
1540 * should have no users. Drop our reference, and check for others
1543 zeroed = put_page_testzero(page);
1546 * It is VERY unlikely soneone else has taken a ref on
1547 * the page. In this case, we simply return as the
1548 * hugetlb destructor (free_huge_page) will be called
1549 * when this other ref is dropped.
1553 arch_clear_hugepage_flags(page);
1554 enqueue_huge_page(h, page);
1557 static void __update_and_free_page(struct hstate *h, struct page *page)
1560 struct page *subpage;
1562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1566 * If we don't know which subpages are hwpoisoned, we can't free
1567 * the hugepage, so it's leaked intentionally.
1569 if (HPageRawHwpUnreliable(page))
1572 if (hugetlb_vmemmap_restore(h, page)) {
1573 spin_lock_irq(&hugetlb_lock);
1575 * If we cannot allocate vmemmap pages, just refuse to free the
1576 * page and put the page back on the hugetlb free list and treat
1577 * as a surplus page.
1579 add_hugetlb_page(h, page, true);
1580 spin_unlock_irq(&hugetlb_lock);
1585 * Move PageHWPoison flag from head page to the raw error pages,
1586 * which makes any healthy subpages reusable.
1588 if (unlikely(PageHWPoison(page)))
1589 hugetlb_clear_page_hwpoison(page);
1591 for (i = 0; i < pages_per_huge_page(h); i++) {
1592 subpage = nth_page(page, i);
1593 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1594 1 << PG_referenced | 1 << PG_dirty |
1595 1 << PG_active | 1 << PG_private |
1600 * Non-gigantic pages demoted from CMA allocated gigantic pages
1601 * need to be given back to CMA in free_gigantic_page.
1603 if (hstate_is_gigantic(h) ||
1604 hugetlb_cma_page(page, huge_page_order(h))) {
1605 destroy_compound_gigantic_page(page, huge_page_order(h));
1606 free_gigantic_page(page, huge_page_order(h));
1608 __free_pages(page, huge_page_order(h));
1613 * As update_and_free_page() can be called under any context, so we cannot
1614 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616 * the vmemmap pages.
1618 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619 * freed and frees them one-by-one. As the page->mapping pointer is going
1620 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621 * structure of a lockless linked list of huge pages to be freed.
1623 static LLIST_HEAD(hpage_freelist);
1625 static void free_hpage_workfn(struct work_struct *work)
1627 struct llist_node *node;
1629 node = llist_del_all(&hpage_freelist);
1635 page = container_of((struct address_space **)node,
1636 struct page, mapping);
1638 page->mapping = NULL;
1640 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641 * is going to trigger because a previous call to
1642 * remove_hugetlb_page() will set_compound_page_dtor(page,
1643 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1645 h = size_to_hstate(page_size(page));
1647 __update_and_free_page(h, page);
1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1654 static inline void flush_free_hpage_work(struct hstate *h)
1656 if (hugetlb_vmemmap_optimizable(h))
1657 flush_work(&free_hpage_work);
1660 static void update_and_free_page(struct hstate *h, struct page *page,
1663 if (!HPageVmemmapOptimized(page) || !atomic) {
1664 __update_and_free_page(h, page);
1669 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1671 * Only call schedule_work() if hpage_freelist is previously
1672 * empty. Otherwise, schedule_work() had been called but the workfn
1673 * hasn't retrieved the list yet.
1675 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676 schedule_work(&free_hpage_work);
1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1681 struct page *page, *t_page;
1683 list_for_each_entry_safe(page, t_page, list, lru) {
1684 update_and_free_page(h, page, false);
1689 struct hstate *size_to_hstate(unsigned long size)
1693 for_each_hstate(h) {
1694 if (huge_page_size(h) == size)
1700 void free_huge_page(struct page *page)
1703 * Can't pass hstate in here because it is called from the
1704 * compound page destructor.
1706 struct hstate *h = page_hstate(page);
1707 int nid = page_to_nid(page);
1708 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1709 bool restore_reserve;
1710 unsigned long flags;
1712 VM_BUG_ON_PAGE(page_count(page), page);
1713 VM_BUG_ON_PAGE(page_mapcount(page), page);
1715 hugetlb_set_page_subpool(page, NULL);
1717 __ClearPageAnonExclusive(page);
1718 page->mapping = NULL;
1719 restore_reserve = HPageRestoreReserve(page);
1720 ClearHPageRestoreReserve(page);
1723 * If HPageRestoreReserve was set on page, page allocation consumed a
1724 * reservation. If the page was associated with a subpool, there
1725 * would have been a page reserved in the subpool before allocation
1726 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1727 * reservation, do not call hugepage_subpool_put_pages() as this will
1728 * remove the reserved page from the subpool.
1730 if (!restore_reserve) {
1732 * A return code of zero implies that the subpool will be
1733 * under its minimum size if the reservation is not restored
1734 * after page is free. Therefore, force restore_reserve
1737 if (hugepage_subpool_put_pages(spool, 1) == 0)
1738 restore_reserve = true;
1741 spin_lock_irqsave(&hugetlb_lock, flags);
1742 ClearHPageMigratable(page);
1743 hugetlb_cgroup_uncharge_page(hstate_index(h),
1744 pages_per_huge_page(h), page);
1745 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746 pages_per_huge_page(h), page);
1747 if (restore_reserve)
1748 h->resv_huge_pages++;
1750 if (HPageTemporary(page)) {
1751 remove_hugetlb_page(h, page, false);
1752 spin_unlock_irqrestore(&hugetlb_lock, flags);
1753 update_and_free_page(h, page, true);
1754 } else if (h->surplus_huge_pages_node[nid]) {
1755 /* remove the page from active list */
1756 remove_hugetlb_page(h, page, true);
1757 spin_unlock_irqrestore(&hugetlb_lock, flags);
1758 update_and_free_page(h, page, true);
1760 arch_clear_hugepage_flags(page);
1761 enqueue_huge_page(h, page);
1762 spin_unlock_irqrestore(&hugetlb_lock, flags);
1767 * Must be called with the hugetlb lock held
1769 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1771 lockdep_assert_held(&hugetlb_lock);
1773 h->nr_huge_pages_node[nid]++;
1776 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1778 hugetlb_vmemmap_optimize(h, page);
1779 INIT_LIST_HEAD(&page->lru);
1780 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1781 hugetlb_set_page_subpool(page, NULL);
1782 set_hugetlb_cgroup(page, NULL);
1783 set_hugetlb_cgroup_rsvd(page, NULL);
1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1788 __prep_new_huge_page(h, page);
1789 spin_lock_irq(&hugetlb_lock);
1790 __prep_account_new_huge_page(h, nid);
1791 spin_unlock_irq(&hugetlb_lock);
1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1798 int nr_pages = 1 << order;
1801 /* we rely on prep_new_huge_page to set the destructor */
1802 set_compound_order(page, order);
1803 __SetPageHead(page);
1804 for (i = 0; i < nr_pages; i++) {
1805 p = nth_page(page, i);
1808 * For gigantic hugepages allocated through bootmem at
1809 * boot, it's safer to be consistent with the not-gigantic
1810 * hugepages and clear the PG_reserved bit from all tail pages
1811 * too. Otherwise drivers using get_user_pages() to access tail
1812 * pages may get the reference counting wrong if they see
1813 * PG_reserved set on a tail page (despite the head page not
1814 * having PG_reserved set). Enforcing this consistency between
1815 * head and tail pages allows drivers to optimize away a check
1816 * on the head page when they need know if put_page() is needed
1817 * after get_user_pages().
1819 __ClearPageReserved(p);
1821 * Subtle and very unlikely
1823 * Gigantic 'page allocators' such as memblock or cma will
1824 * return a set of pages with each page ref counted. We need
1825 * to turn this set of pages into a compound page with tail
1826 * page ref counts set to zero. Code such as speculative page
1827 * cache adding could take a ref on a 'to be' tail page.
1828 * We need to respect any increased ref count, and only set
1829 * the ref count to zero if count is currently 1. If count
1830 * is not 1, we return an error. An error return indicates
1831 * the set of pages can not be converted to a gigantic page.
1832 * The caller who allocated the pages should then discard the
1833 * pages using the appropriate free interface.
1835 * In the case of demote, the ref count will be zero.
1838 if (!page_ref_freeze(p, 1)) {
1839 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1843 VM_BUG_ON_PAGE(page_count(p), p);
1846 set_compound_head(p, page);
1848 atomic_set(compound_mapcount_ptr(page), -1);
1849 atomic_set(compound_pincount_ptr(page), 0);
1853 /* undo page modifications made above */
1854 for (j = 0; j < i; j++) {
1855 p = nth_page(page, j);
1857 clear_compound_head(p);
1858 set_page_refcounted(p);
1860 /* need to clear PG_reserved on remaining tail pages */
1861 for (; j < nr_pages; j++) {
1862 p = nth_page(page, j);
1863 __ClearPageReserved(p);
1865 set_compound_order(page, 0);
1867 page[1].compound_nr = 0;
1869 __ClearPageHead(page);
1873 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1875 return __prep_compound_gigantic_page(page, order, false);
1878 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1881 return __prep_compound_gigantic_page(page, order, true);
1885 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1886 * transparent huge pages. See the PageTransHuge() documentation for more
1889 int PageHuge(struct page *page)
1891 if (!PageCompound(page))
1894 page = compound_head(page);
1895 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1897 EXPORT_SYMBOL_GPL(PageHuge);
1900 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1901 * normal or transparent huge pages.
1903 int PageHeadHuge(struct page *page_head)
1905 if (!PageHead(page_head))
1908 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1910 EXPORT_SYMBOL_GPL(PageHeadHuge);
1913 * Find and lock address space (mapping) in write mode.
1915 * Upon entry, the page is locked which means that page_mapping() is
1916 * stable. Due to locking order, we can only trylock_write. If we can
1917 * not get the lock, simply return NULL to caller.
1919 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1921 struct address_space *mapping = page_mapping(hpage);
1926 if (i_mmap_trylock_write(mapping))
1932 pgoff_t hugetlb_basepage_index(struct page *page)
1934 struct page *page_head = compound_head(page);
1935 pgoff_t index = page_index(page_head);
1936 unsigned long compound_idx;
1938 if (compound_order(page_head) >= MAX_ORDER)
1939 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1941 compound_idx = page - page_head;
1943 return (index << compound_order(page_head)) + compound_idx;
1946 static struct page *alloc_buddy_huge_page(struct hstate *h,
1947 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 nodemask_t *node_alloc_noretry)
1950 int order = huge_page_order(h);
1952 bool alloc_try_hard = true;
1956 * By default we always try hard to allocate the page with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1966 gfp_mask |= __GFP_RETRY_MAYFAIL;
1967 if (nid == NUMA_NO_NODE)
1968 nid = numa_mem_id();
1970 page = __alloc_pages(gfp_mask, order, nid, nmask);
1972 /* Freeze head page */
1973 if (page && !page_ref_freeze(page, 1)) {
1974 __free_pages(page, order);
1975 if (retry) { /* retry once */
1979 /* WOW! twice in a row. */
1980 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1985 __count_vm_event(HTLB_BUDDY_PGALLOC);
1987 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1990 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1991 * indicates an overall state change. Clear bit so that we resume
1992 * normal 'try hard' allocations.
1994 if (node_alloc_noretry && page && !alloc_try_hard)
1995 node_clear(nid, *node_alloc_noretry);
1998 * If we tried hard to get a page but failed, set bit so that
1999 * subsequent attempts will not try as hard until there is an
2000 * overall state change.
2002 if (node_alloc_noretry && !page && alloc_try_hard)
2003 node_set(nid, *node_alloc_noretry);
2009 * Common helper to allocate a fresh hugetlb page. All specific allocators
2010 * should use this function to get new hugetlb pages
2012 * Note that returned page is 'frozen': ref count of head page and all tail
2015 static struct page *alloc_fresh_huge_page(struct hstate *h,
2016 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2017 nodemask_t *node_alloc_noretry)
2023 if (hstate_is_gigantic(h))
2024 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2026 page = alloc_buddy_huge_page(h, gfp_mask,
2027 nid, nmask, node_alloc_noretry);
2031 if (hstate_is_gigantic(h)) {
2032 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2034 * Rare failure to convert pages to compound page.
2035 * Free pages and try again - ONCE!
2037 free_gigantic_page(page, huge_page_order(h));
2045 prep_new_huge_page(h, page, page_to_nid(page));
2051 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2054 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2055 nodemask_t *node_alloc_noretry)
2059 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2061 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2062 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2063 node_alloc_noretry);
2071 free_huge_page(page); /* free it into the hugepage allocator */
2077 * Remove huge page from pool from next node to free. Attempt to keep
2078 * persistent huge pages more or less balanced over allowed nodes.
2079 * This routine only 'removes' the hugetlb page. The caller must make
2080 * an additional call to free the page to low level allocators.
2081 * Called with hugetlb_lock locked.
2083 static struct page *remove_pool_huge_page(struct hstate *h,
2084 nodemask_t *nodes_allowed,
2088 struct page *page = NULL;
2090 lockdep_assert_held(&hugetlb_lock);
2091 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2093 * If we're returning unused surplus pages, only examine
2094 * nodes with surplus pages.
2096 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2097 !list_empty(&h->hugepage_freelists[node])) {
2098 page = list_entry(h->hugepage_freelists[node].next,
2100 remove_hugetlb_page(h, page, acct_surplus);
2109 * Dissolve a given free hugepage into free buddy pages. This function does
2110 * nothing for in-use hugepages and non-hugepages.
2111 * This function returns values like below:
2113 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2114 * when the system is under memory pressure and the feature of
2115 * freeing unused vmemmap pages associated with each hugetlb page
2117 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2118 * (allocated or reserved.)
2119 * 0: successfully dissolved free hugepages or the page is not a
2120 * hugepage (considered as already dissolved)
2122 int dissolve_free_huge_page(struct page *page)
2127 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2128 if (!PageHuge(page))
2131 spin_lock_irq(&hugetlb_lock);
2132 if (!PageHuge(page)) {
2137 if (!page_count(page)) {
2138 struct page *head = compound_head(page);
2139 struct hstate *h = page_hstate(head);
2140 if (!available_huge_pages(h))
2144 * We should make sure that the page is already on the free list
2145 * when it is dissolved.
2147 if (unlikely(!HPageFreed(head))) {
2148 spin_unlock_irq(&hugetlb_lock);
2152 * Theoretically, we should return -EBUSY when we
2153 * encounter this race. In fact, we have a chance
2154 * to successfully dissolve the page if we do a
2155 * retry. Because the race window is quite small.
2156 * If we seize this opportunity, it is an optimization
2157 * for increasing the success rate of dissolving page.
2162 remove_hugetlb_page(h, head, false);
2163 h->max_huge_pages--;
2164 spin_unlock_irq(&hugetlb_lock);
2167 * Normally update_and_free_page will allocate required vmemmmap
2168 * before freeing the page. update_and_free_page will fail to
2169 * free the page if it can not allocate required vmemmap. We
2170 * need to adjust max_huge_pages if the page is not freed.
2171 * Attempt to allocate vmemmmap here so that we can take
2172 * appropriate action on failure.
2174 rc = hugetlb_vmemmap_restore(h, head);
2176 update_and_free_page(h, head, false);
2178 spin_lock_irq(&hugetlb_lock);
2179 add_hugetlb_page(h, head, false);
2180 h->max_huge_pages++;
2181 spin_unlock_irq(&hugetlb_lock);
2187 spin_unlock_irq(&hugetlb_lock);
2192 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2193 * make specified memory blocks removable from the system.
2194 * Note that this will dissolve a free gigantic hugepage completely, if any
2195 * part of it lies within the given range.
2196 * Also note that if dissolve_free_huge_page() returns with an error, all
2197 * free hugepages that were dissolved before that error are lost.
2199 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2207 if (!hugepages_supported())
2210 order = huge_page_order(&default_hstate);
2212 order = min(order, huge_page_order(h));
2214 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2215 page = pfn_to_page(pfn);
2216 rc = dissolve_free_huge_page(page);
2225 * Allocates a fresh surplus page from the page allocator.
2227 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2228 int nid, nodemask_t *nmask)
2230 struct page *page = NULL;
2232 if (hstate_is_gigantic(h))
2235 spin_lock_irq(&hugetlb_lock);
2236 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2238 spin_unlock_irq(&hugetlb_lock);
2240 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2244 spin_lock_irq(&hugetlb_lock);
2246 * We could have raced with the pool size change.
2247 * Double check that and simply deallocate the new page
2248 * if we would end up overcommiting the surpluses. Abuse
2249 * temporary page to workaround the nasty free_huge_page
2252 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2253 SetHPageTemporary(page);
2254 spin_unlock_irq(&hugetlb_lock);
2255 free_huge_page(page);
2259 h->surplus_huge_pages++;
2260 h->surplus_huge_pages_node[page_to_nid(page)]++;
2263 spin_unlock_irq(&hugetlb_lock);
2268 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2269 int nid, nodemask_t *nmask)
2273 if (hstate_is_gigantic(h))
2276 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2280 /* fresh huge pages are frozen */
2281 set_page_refcounted(page);
2284 * We do not account these pages as surplus because they are only
2285 * temporary and will be released properly on the last reference
2287 SetHPageTemporary(page);
2293 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2296 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2297 struct vm_area_struct *vma, unsigned long addr)
2299 struct page *page = NULL;
2300 struct mempolicy *mpol;
2301 gfp_t gfp_mask = htlb_alloc_mask(h);
2303 nodemask_t *nodemask;
2305 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2306 if (mpol_is_preferred_many(mpol)) {
2307 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2309 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2310 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2312 /* Fallback to all nodes if page==NULL */
2317 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2318 mpol_cond_put(mpol);
2322 /* page migration callback function */
2323 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2324 nodemask_t *nmask, gfp_t gfp_mask)
2326 spin_lock_irq(&hugetlb_lock);
2327 if (available_huge_pages(h)) {
2330 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2332 spin_unlock_irq(&hugetlb_lock);
2336 spin_unlock_irq(&hugetlb_lock);
2338 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2341 /* mempolicy aware migration callback */
2342 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2343 unsigned long address)
2345 struct mempolicy *mpol;
2346 nodemask_t *nodemask;
2351 gfp_mask = htlb_alloc_mask(h);
2352 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2353 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2354 mpol_cond_put(mpol);
2360 * Increase the hugetlb pool such that it can accommodate a reservation
2363 static int gather_surplus_pages(struct hstate *h, long delta)
2364 __must_hold(&hugetlb_lock)
2366 LIST_HEAD(surplus_list);
2367 struct page *page, *tmp;
2370 long needed, allocated;
2371 bool alloc_ok = true;
2373 lockdep_assert_held(&hugetlb_lock);
2374 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2376 h->resv_huge_pages += delta;
2384 spin_unlock_irq(&hugetlb_lock);
2385 for (i = 0; i < needed; i++) {
2386 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2387 NUMA_NO_NODE, NULL);
2392 list_add(&page->lru, &surplus_list);
2398 * After retaking hugetlb_lock, we need to recalculate 'needed'
2399 * because either resv_huge_pages or free_huge_pages may have changed.
2401 spin_lock_irq(&hugetlb_lock);
2402 needed = (h->resv_huge_pages + delta) -
2403 (h->free_huge_pages + allocated);
2408 * We were not able to allocate enough pages to
2409 * satisfy the entire reservation so we free what
2410 * we've allocated so far.
2415 * The surplus_list now contains _at_least_ the number of extra pages
2416 * needed to accommodate the reservation. Add the appropriate number
2417 * of pages to the hugetlb pool and free the extras back to the buddy
2418 * allocator. Commit the entire reservation here to prevent another
2419 * process from stealing the pages as they are added to the pool but
2420 * before they are reserved.
2422 needed += allocated;
2423 h->resv_huge_pages += delta;
2426 /* Free the needed pages to the hugetlb pool */
2427 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2430 /* Add the page to the hugetlb allocator */
2431 enqueue_huge_page(h, page);
2434 spin_unlock_irq(&hugetlb_lock);
2437 * Free unnecessary surplus pages to the buddy allocator.
2438 * Pages have no ref count, call free_huge_page directly.
2440 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2441 free_huge_page(page);
2442 spin_lock_irq(&hugetlb_lock);
2448 * This routine has two main purposes:
2449 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2450 * in unused_resv_pages. This corresponds to the prior adjustments made
2451 * to the associated reservation map.
2452 * 2) Free any unused surplus pages that may have been allocated to satisfy
2453 * the reservation. As many as unused_resv_pages may be freed.
2455 static void return_unused_surplus_pages(struct hstate *h,
2456 unsigned long unused_resv_pages)
2458 unsigned long nr_pages;
2460 LIST_HEAD(page_list);
2462 lockdep_assert_held(&hugetlb_lock);
2463 /* Uncommit the reservation */
2464 h->resv_huge_pages -= unused_resv_pages;
2466 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2470 * Part (or even all) of the reservation could have been backed
2471 * by pre-allocated pages. Only free surplus pages.
2473 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2476 * We want to release as many surplus pages as possible, spread
2477 * evenly across all nodes with memory. Iterate across these nodes
2478 * until we can no longer free unreserved surplus pages. This occurs
2479 * when the nodes with surplus pages have no free pages.
2480 * remove_pool_huge_page() will balance the freed pages across the
2481 * on-line nodes with memory and will handle the hstate accounting.
2483 while (nr_pages--) {
2484 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2488 list_add(&page->lru, &page_list);
2492 spin_unlock_irq(&hugetlb_lock);
2493 update_and_free_pages_bulk(h, &page_list);
2494 spin_lock_irq(&hugetlb_lock);
2499 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2500 * are used by the huge page allocation routines to manage reservations.
2502 * vma_needs_reservation is called to determine if the huge page at addr
2503 * within the vma has an associated reservation. If a reservation is
2504 * needed, the value 1 is returned. The caller is then responsible for
2505 * managing the global reservation and subpool usage counts. After
2506 * the huge page has been allocated, vma_commit_reservation is called
2507 * to add the page to the reservation map. If the page allocation fails,
2508 * the reservation must be ended instead of committed. vma_end_reservation
2509 * is called in such cases.
2511 * In the normal case, vma_commit_reservation returns the same value
2512 * as the preceding vma_needs_reservation call. The only time this
2513 * is not the case is if a reserve map was changed between calls. It
2514 * is the responsibility of the caller to notice the difference and
2515 * take appropriate action.
2517 * vma_add_reservation is used in error paths where a reservation must
2518 * be restored when a newly allocated huge page must be freed. It is
2519 * to be called after calling vma_needs_reservation to determine if a
2520 * reservation exists.
2522 * vma_del_reservation is used in error paths where an entry in the reserve
2523 * map was created during huge page allocation and must be removed. It is to
2524 * be called after calling vma_needs_reservation to determine if a reservation
2527 enum vma_resv_mode {
2534 static long __vma_reservation_common(struct hstate *h,
2535 struct vm_area_struct *vma, unsigned long addr,
2536 enum vma_resv_mode mode)
2538 struct resv_map *resv;
2541 long dummy_out_regions_needed;
2543 resv = vma_resv_map(vma);
2547 idx = vma_hugecache_offset(h, vma, addr);
2549 case VMA_NEEDS_RESV:
2550 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2551 /* We assume that vma_reservation_* routines always operate on
2552 * 1 page, and that adding to resv map a 1 page entry can only
2553 * ever require 1 region.
2555 VM_BUG_ON(dummy_out_regions_needed != 1);
2557 case VMA_COMMIT_RESV:
2558 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2559 /* region_add calls of range 1 should never fail. */
2563 region_abort(resv, idx, idx + 1, 1);
2567 if (vma->vm_flags & VM_MAYSHARE) {
2568 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2569 /* region_add calls of range 1 should never fail. */
2572 region_abort(resv, idx, idx + 1, 1);
2573 ret = region_del(resv, idx, idx + 1);
2577 if (vma->vm_flags & VM_MAYSHARE) {
2578 region_abort(resv, idx, idx + 1, 1);
2579 ret = region_del(resv, idx, idx + 1);
2581 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2582 /* region_add calls of range 1 should never fail. */
2590 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2593 * We know private mapping must have HPAGE_RESV_OWNER set.
2595 * In most cases, reserves always exist for private mappings.
2596 * However, a file associated with mapping could have been
2597 * hole punched or truncated after reserves were consumed.
2598 * As subsequent fault on such a range will not use reserves.
2599 * Subtle - The reserve map for private mappings has the
2600 * opposite meaning than that of shared mappings. If NO
2601 * entry is in the reserve map, it means a reservation exists.
2602 * If an entry exists in the reserve map, it means the
2603 * reservation has already been consumed. As a result, the
2604 * return value of this routine is the opposite of the
2605 * value returned from reserve map manipulation routines above.
2614 static long vma_needs_reservation(struct hstate *h,
2615 struct vm_area_struct *vma, unsigned long addr)
2617 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2620 static long vma_commit_reservation(struct hstate *h,
2621 struct vm_area_struct *vma, unsigned long addr)
2623 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2626 static void vma_end_reservation(struct hstate *h,
2627 struct vm_area_struct *vma, unsigned long addr)
2629 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2632 static long vma_add_reservation(struct hstate *h,
2633 struct vm_area_struct *vma, unsigned long addr)
2635 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2638 static long vma_del_reservation(struct hstate *h,
2639 struct vm_area_struct *vma, unsigned long addr)
2641 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2645 * This routine is called to restore reservation information on error paths.
2646 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2647 * the hugetlb mutex should remain held when calling this routine.
2649 * It handles two specific cases:
2650 * 1) A reservation was in place and the page consumed the reservation.
2651 * HPageRestoreReserve is set in the page.
2652 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2653 * not set. However, alloc_huge_page always updates the reserve map.
2655 * In case 1, free_huge_page later in the error path will increment the
2656 * global reserve count. But, free_huge_page does not have enough context
2657 * to adjust the reservation map. This case deals primarily with private
2658 * mappings. Adjust the reserve map here to be consistent with global
2659 * reserve count adjustments to be made by free_huge_page. Make sure the
2660 * reserve map indicates there is a reservation present.
2662 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2664 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2665 unsigned long address, struct page *page)
2667 long rc = vma_needs_reservation(h, vma, address);
2669 if (HPageRestoreReserve(page)) {
2670 if (unlikely(rc < 0))
2672 * Rare out of memory condition in reserve map
2673 * manipulation. Clear HPageRestoreReserve so that
2674 * global reserve count will not be incremented
2675 * by free_huge_page. This will make it appear
2676 * as though the reservation for this page was
2677 * consumed. This may prevent the task from
2678 * faulting in the page at a later time. This
2679 * is better than inconsistent global huge page
2680 * accounting of reserve counts.
2682 ClearHPageRestoreReserve(page);
2684 (void)vma_add_reservation(h, vma, address);
2686 vma_end_reservation(h, vma, address);
2690 * This indicates there is an entry in the reserve map
2691 * not added by alloc_huge_page. We know it was added
2692 * before the alloc_huge_page call, otherwise
2693 * HPageRestoreReserve would be set on the page.
2694 * Remove the entry so that a subsequent allocation
2695 * does not consume a reservation.
2697 rc = vma_del_reservation(h, vma, address);
2700 * VERY rare out of memory condition. Since
2701 * we can not delete the entry, set
2702 * HPageRestoreReserve so that the reserve
2703 * count will be incremented when the page
2704 * is freed. This reserve will be consumed
2705 * on a subsequent allocation.
2707 SetHPageRestoreReserve(page);
2708 } else if (rc < 0) {
2710 * Rare out of memory condition from
2711 * vma_needs_reservation call. Memory allocation is
2712 * only attempted if a new entry is needed. Therefore,
2713 * this implies there is not an entry in the
2716 * For shared mappings, no entry in the map indicates
2717 * no reservation. We are done.
2719 if (!(vma->vm_flags & VM_MAYSHARE))
2721 * For private mappings, no entry indicates
2722 * a reservation is present. Since we can
2723 * not add an entry, set SetHPageRestoreReserve
2724 * on the page so reserve count will be
2725 * incremented when freed. This reserve will
2726 * be consumed on a subsequent allocation.
2728 SetHPageRestoreReserve(page);
2731 * No reservation present, do nothing
2733 vma_end_reservation(h, vma, address);
2738 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2739 * @h: struct hstate old page belongs to
2740 * @old_page: Old page to dissolve
2741 * @list: List to isolate the page in case we need to
2742 * Returns 0 on success, otherwise negated error.
2744 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2745 struct list_head *list)
2747 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2748 int nid = page_to_nid(old_page);
2749 struct page *new_page;
2753 * Before dissolving the page, we need to allocate a new one for the
2754 * pool to remain stable. Here, we allocate the page and 'prep' it
2755 * by doing everything but actually updating counters and adding to
2756 * the pool. This simplifies and let us do most of the processing
2759 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2762 __prep_new_huge_page(h, new_page);
2765 spin_lock_irq(&hugetlb_lock);
2766 if (!PageHuge(old_page)) {
2768 * Freed from under us. Drop new_page too.
2771 } else if (page_count(old_page)) {
2773 * Someone has grabbed the page, try to isolate it here.
2774 * Fail with -EBUSY if not possible.
2776 spin_unlock_irq(&hugetlb_lock);
2777 ret = isolate_hugetlb(old_page, list);
2778 spin_lock_irq(&hugetlb_lock);
2780 } else if (!HPageFreed(old_page)) {
2782 * Page's refcount is 0 but it has not been enqueued in the
2783 * freelist yet. Race window is small, so we can succeed here if
2786 spin_unlock_irq(&hugetlb_lock);
2791 * Ok, old_page is still a genuine free hugepage. Remove it from
2792 * the freelist and decrease the counters. These will be
2793 * incremented again when calling __prep_account_new_huge_page()
2794 * and enqueue_huge_page() for new_page. The counters will remain
2795 * stable since this happens under the lock.
2797 remove_hugetlb_page(h, old_page, false);
2800 * Ref count on new page is already zero as it was dropped
2801 * earlier. It can be directly added to the pool free list.
2803 __prep_account_new_huge_page(h, nid);
2804 enqueue_huge_page(h, new_page);
2807 * Pages have been replaced, we can safely free the old one.
2809 spin_unlock_irq(&hugetlb_lock);
2810 update_and_free_page(h, old_page, false);
2816 spin_unlock_irq(&hugetlb_lock);
2817 /* Page has a zero ref count, but needs a ref to be freed */
2818 set_page_refcounted(new_page);
2819 update_and_free_page(h, new_page, false);
2824 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2831 * The page might have been dissolved from under our feet, so make sure
2832 * to carefully check the state under the lock.
2833 * Return success when racing as if we dissolved the page ourselves.
2835 spin_lock_irq(&hugetlb_lock);
2836 if (PageHuge(page)) {
2837 head = compound_head(page);
2838 h = page_hstate(head);
2840 spin_unlock_irq(&hugetlb_lock);
2843 spin_unlock_irq(&hugetlb_lock);
2846 * Fence off gigantic pages as there is a cyclic dependency between
2847 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2848 * of bailing out right away without further retrying.
2850 if (hstate_is_gigantic(h))
2853 if (page_count(head) && !isolate_hugetlb(head, list))
2855 else if (!page_count(head))
2856 ret = alloc_and_dissolve_huge_page(h, head, list);
2861 struct page *alloc_huge_page(struct vm_area_struct *vma,
2862 unsigned long addr, int avoid_reserve)
2864 struct hugepage_subpool *spool = subpool_vma(vma);
2865 struct hstate *h = hstate_vma(vma);
2867 long map_chg, map_commit;
2870 struct hugetlb_cgroup *h_cg;
2871 bool deferred_reserve;
2873 idx = hstate_index(h);
2875 * Examine the region/reserve map to determine if the process
2876 * has a reservation for the page to be allocated. A return
2877 * code of zero indicates a reservation exists (no change).
2879 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2881 return ERR_PTR(-ENOMEM);
2884 * Processes that did not create the mapping will have no
2885 * reserves as indicated by the region/reserve map. Check
2886 * that the allocation will not exceed the subpool limit.
2887 * Allocations for MAP_NORESERVE mappings also need to be
2888 * checked against any subpool limit.
2890 if (map_chg || avoid_reserve) {
2891 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2893 vma_end_reservation(h, vma, addr);
2894 return ERR_PTR(-ENOSPC);
2898 * Even though there was no reservation in the region/reserve
2899 * map, there could be reservations associated with the
2900 * subpool that can be used. This would be indicated if the
2901 * return value of hugepage_subpool_get_pages() is zero.
2902 * However, if avoid_reserve is specified we still avoid even
2903 * the subpool reservations.
2909 /* If this allocation is not consuming a reservation, charge it now.
2911 deferred_reserve = map_chg || avoid_reserve;
2912 if (deferred_reserve) {
2913 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2914 idx, pages_per_huge_page(h), &h_cg);
2916 goto out_subpool_put;
2919 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2921 goto out_uncharge_cgroup_reservation;
2923 spin_lock_irq(&hugetlb_lock);
2925 * glb_chg is passed to indicate whether or not a page must be taken
2926 * from the global free pool (global change). gbl_chg == 0 indicates
2927 * a reservation exists for the allocation.
2929 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2931 spin_unlock_irq(&hugetlb_lock);
2932 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2934 goto out_uncharge_cgroup;
2935 spin_lock_irq(&hugetlb_lock);
2936 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2937 SetHPageRestoreReserve(page);
2938 h->resv_huge_pages--;
2940 list_add(&page->lru, &h->hugepage_activelist);
2941 set_page_refcounted(page);
2944 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2945 /* If allocation is not consuming a reservation, also store the
2946 * hugetlb_cgroup pointer on the page.
2948 if (deferred_reserve) {
2949 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2953 spin_unlock_irq(&hugetlb_lock);
2955 hugetlb_set_page_subpool(page, spool);
2957 map_commit = vma_commit_reservation(h, vma, addr);
2958 if (unlikely(map_chg > map_commit)) {
2960 * The page was added to the reservation map between
2961 * vma_needs_reservation and vma_commit_reservation.
2962 * This indicates a race with hugetlb_reserve_pages.
2963 * Adjust for the subpool count incremented above AND
2964 * in hugetlb_reserve_pages for the same page. Also,
2965 * the reservation count added in hugetlb_reserve_pages
2966 * no longer applies.
2970 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2971 hugetlb_acct_memory(h, -rsv_adjust);
2972 if (deferred_reserve)
2973 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2974 pages_per_huge_page(h), page);
2978 out_uncharge_cgroup:
2979 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2980 out_uncharge_cgroup_reservation:
2981 if (deferred_reserve)
2982 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2985 if (map_chg || avoid_reserve)
2986 hugepage_subpool_put_pages(spool, 1);
2987 vma_end_reservation(h, vma, addr);
2988 return ERR_PTR(-ENOSPC);
2991 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2992 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2993 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2995 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2998 /* do node specific alloc */
2999 if (nid != NUMA_NO_NODE) {
3000 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3006 /* allocate from next node when distributing huge pages */
3007 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3008 m = memblock_alloc_try_nid_raw(
3009 huge_page_size(h), huge_page_size(h),
3010 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3012 * Use the beginning of the huge page to store the
3013 * huge_bootmem_page struct (until gather_bootmem
3014 * puts them into the mem_map).
3022 /* Put them into a private list first because mem_map is not up yet */
3023 INIT_LIST_HEAD(&m->list);
3024 list_add(&m->list, &huge_boot_pages);
3030 * Put bootmem huge pages into the standard lists after mem_map is up.
3031 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3033 static void __init gather_bootmem_prealloc(void)
3035 struct huge_bootmem_page *m;
3037 list_for_each_entry(m, &huge_boot_pages, list) {
3038 struct page *page = virt_to_page(m);
3039 struct hstate *h = m->hstate;
3041 VM_BUG_ON(!hstate_is_gigantic(h));
3042 WARN_ON(page_count(page) != 1);
3043 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3044 WARN_ON(PageReserved(page));
3045 prep_new_huge_page(h, page, page_to_nid(page));
3046 free_huge_page(page); /* add to the hugepage allocator */
3048 /* VERY unlikely inflated ref count on a tail page */
3049 free_gigantic_page(page, huge_page_order(h));
3053 * We need to restore the 'stolen' pages to totalram_pages
3054 * in order to fix confusing memory reports from free(1) and
3055 * other side-effects, like CommitLimit going negative.
3057 adjust_managed_page_count(page, pages_per_huge_page(h));
3061 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3066 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3067 if (hstate_is_gigantic(h)) {
3068 if (!alloc_bootmem_huge_page(h, nid))
3072 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3074 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3075 &node_states[N_MEMORY], NULL);
3078 free_huge_page(page); /* free it into the hugepage allocator */
3082 if (i == h->max_huge_pages_node[nid])
3085 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3086 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3087 h->max_huge_pages_node[nid], buf, nid, i);
3088 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3089 h->max_huge_pages_node[nid] = i;
3092 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3095 nodemask_t *node_alloc_noretry;
3096 bool node_specific_alloc = false;
3098 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3099 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3100 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3104 /* do node specific alloc */
3105 for_each_online_node(i) {
3106 if (h->max_huge_pages_node[i] > 0) {
3107 hugetlb_hstate_alloc_pages_onenode(h, i);
3108 node_specific_alloc = true;
3112 if (node_specific_alloc)
3115 /* below will do all node balanced alloc */
3116 if (!hstate_is_gigantic(h)) {
3118 * Bit mask controlling how hard we retry per-node allocations.
3119 * Ignore errors as lower level routines can deal with
3120 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3121 * time, we are likely in bigger trouble.
3123 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3126 /* allocations done at boot time */
3127 node_alloc_noretry = NULL;
3130 /* bit mask controlling how hard we retry per-node allocations */
3131 if (node_alloc_noretry)
3132 nodes_clear(*node_alloc_noretry);
3134 for (i = 0; i < h->max_huge_pages; ++i) {
3135 if (hstate_is_gigantic(h)) {
3136 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3138 } else if (!alloc_pool_huge_page(h,
3139 &node_states[N_MEMORY],
3140 node_alloc_noretry))
3144 if (i < h->max_huge_pages) {
3147 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3148 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3149 h->max_huge_pages, buf, i);
3150 h->max_huge_pages = i;
3152 kfree(node_alloc_noretry);
3155 static void __init hugetlb_init_hstates(void)
3157 struct hstate *h, *h2;
3159 for_each_hstate(h) {
3160 /* oversize hugepages were init'ed in early boot */
3161 if (!hstate_is_gigantic(h))
3162 hugetlb_hstate_alloc_pages(h);
3165 * Set demote order for each hstate. Note that
3166 * h->demote_order is initially 0.
3167 * - We can not demote gigantic pages if runtime freeing
3168 * is not supported, so skip this.
3169 * - If CMA allocation is possible, we can not demote
3170 * HUGETLB_PAGE_ORDER or smaller size pages.
3172 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3174 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3176 for_each_hstate(h2) {
3179 if (h2->order < h->order &&
3180 h2->order > h->demote_order)
3181 h->demote_order = h2->order;
3186 static void __init report_hugepages(void)
3190 for_each_hstate(h) {
3193 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3194 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3195 buf, h->free_huge_pages);
3196 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3197 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3201 #ifdef CONFIG_HIGHMEM
3202 static void try_to_free_low(struct hstate *h, unsigned long count,
3203 nodemask_t *nodes_allowed)
3206 LIST_HEAD(page_list);
3208 lockdep_assert_held(&hugetlb_lock);
3209 if (hstate_is_gigantic(h))
3213 * Collect pages to be freed on a list, and free after dropping lock
3215 for_each_node_mask(i, *nodes_allowed) {
3216 struct page *page, *next;
3217 struct list_head *freel = &h->hugepage_freelists[i];
3218 list_for_each_entry_safe(page, next, freel, lru) {
3219 if (count >= h->nr_huge_pages)
3221 if (PageHighMem(page))
3223 remove_hugetlb_page(h, page, false);
3224 list_add(&page->lru, &page_list);
3229 spin_unlock_irq(&hugetlb_lock);
3230 update_and_free_pages_bulk(h, &page_list);
3231 spin_lock_irq(&hugetlb_lock);
3234 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3235 nodemask_t *nodes_allowed)
3241 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3242 * balanced by operating on them in a round-robin fashion.
3243 * Returns 1 if an adjustment was made.
3245 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3250 lockdep_assert_held(&hugetlb_lock);
3251 VM_BUG_ON(delta != -1 && delta != 1);
3254 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3255 if (h->surplus_huge_pages_node[node])
3259 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3260 if (h->surplus_huge_pages_node[node] <
3261 h->nr_huge_pages_node[node])
3268 h->surplus_huge_pages += delta;
3269 h->surplus_huge_pages_node[node] += delta;
3273 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3274 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3275 nodemask_t *nodes_allowed)
3277 unsigned long min_count, ret;
3279 LIST_HEAD(page_list);
3280 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3283 * Bit mask controlling how hard we retry per-node allocations.
3284 * If we can not allocate the bit mask, do not attempt to allocate
3285 * the requested huge pages.
3287 if (node_alloc_noretry)
3288 nodes_clear(*node_alloc_noretry);
3293 * resize_lock mutex prevents concurrent adjustments to number of
3294 * pages in hstate via the proc/sysfs interfaces.
3296 mutex_lock(&h->resize_lock);
3297 flush_free_hpage_work(h);
3298 spin_lock_irq(&hugetlb_lock);
3301 * Check for a node specific request.
3302 * Changing node specific huge page count may require a corresponding
3303 * change to the global count. In any case, the passed node mask
3304 * (nodes_allowed) will restrict alloc/free to the specified node.
3306 if (nid != NUMA_NO_NODE) {
3307 unsigned long old_count = count;
3309 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3311 * User may have specified a large count value which caused the
3312 * above calculation to overflow. In this case, they wanted
3313 * to allocate as many huge pages as possible. Set count to
3314 * largest possible value to align with their intention.
3316 if (count < old_count)
3321 * Gigantic pages runtime allocation depend on the capability for large
3322 * page range allocation.
3323 * If the system does not provide this feature, return an error when
3324 * the user tries to allocate gigantic pages but let the user free the
3325 * boottime allocated gigantic pages.
3327 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3328 if (count > persistent_huge_pages(h)) {
3329 spin_unlock_irq(&hugetlb_lock);
3330 mutex_unlock(&h->resize_lock);
3331 NODEMASK_FREE(node_alloc_noretry);
3334 /* Fall through to decrease pool */
3338 * Increase the pool size
3339 * First take pages out of surplus state. Then make up the
3340 * remaining difference by allocating fresh huge pages.
3342 * We might race with alloc_surplus_huge_page() here and be unable
3343 * to convert a surplus huge page to a normal huge page. That is
3344 * not critical, though, it just means the overall size of the
3345 * pool might be one hugepage larger than it needs to be, but
3346 * within all the constraints specified by the sysctls.
3348 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3349 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3353 while (count > persistent_huge_pages(h)) {
3355 * If this allocation races such that we no longer need the
3356 * page, free_huge_page will handle it by freeing the page
3357 * and reducing the surplus.
3359 spin_unlock_irq(&hugetlb_lock);
3361 /* yield cpu to avoid soft lockup */
3364 ret = alloc_pool_huge_page(h, nodes_allowed,
3365 node_alloc_noretry);
3366 spin_lock_irq(&hugetlb_lock);
3370 /* Bail for signals. Probably ctrl-c from user */
3371 if (signal_pending(current))
3376 * Decrease the pool size
3377 * First return free pages to the buddy allocator (being careful
3378 * to keep enough around to satisfy reservations). Then place
3379 * pages into surplus state as needed so the pool will shrink
3380 * to the desired size as pages become free.
3382 * By placing pages into the surplus state independent of the
3383 * overcommit value, we are allowing the surplus pool size to
3384 * exceed overcommit. There are few sane options here. Since
3385 * alloc_surplus_huge_page() is checking the global counter,
3386 * though, we'll note that we're not allowed to exceed surplus
3387 * and won't grow the pool anywhere else. Not until one of the
3388 * sysctls are changed, or the surplus pages go out of use.
3390 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3391 min_count = max(count, min_count);
3392 try_to_free_low(h, min_count, nodes_allowed);
3395 * Collect pages to be removed on list without dropping lock
3397 while (min_count < persistent_huge_pages(h)) {
3398 page = remove_pool_huge_page(h, nodes_allowed, 0);
3402 list_add(&page->lru, &page_list);
3404 /* free the pages after dropping lock */
3405 spin_unlock_irq(&hugetlb_lock);
3406 update_and_free_pages_bulk(h, &page_list);
3407 flush_free_hpage_work(h);
3408 spin_lock_irq(&hugetlb_lock);
3410 while (count < persistent_huge_pages(h)) {
3411 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3415 h->max_huge_pages = persistent_huge_pages(h);
3416 spin_unlock_irq(&hugetlb_lock);
3417 mutex_unlock(&h->resize_lock);
3419 NODEMASK_FREE(node_alloc_noretry);
3424 static int demote_free_huge_page(struct hstate *h, struct page *page)
3426 int i, nid = page_to_nid(page);
3427 struct hstate *target_hstate;
3428 struct page *subpage;
3431 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3433 remove_hugetlb_page_for_demote(h, page, false);
3434 spin_unlock_irq(&hugetlb_lock);
3436 rc = hugetlb_vmemmap_restore(h, page);
3438 /* Allocation of vmemmmap failed, we can not demote page */
3439 spin_lock_irq(&hugetlb_lock);
3440 set_page_refcounted(page);
3441 add_hugetlb_page(h, page, false);
3446 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3447 * sizes as it will not ref count pages.
3449 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3452 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3453 * Without the mutex, pages added to target hstate could be marked
3456 * Note that we already hold h->resize_lock. To prevent deadlock,
3457 * use the convention of always taking larger size hstate mutex first.
3459 mutex_lock(&target_hstate->resize_lock);
3460 for (i = 0; i < pages_per_huge_page(h);
3461 i += pages_per_huge_page(target_hstate)) {
3462 subpage = nth_page(page, i);
3463 if (hstate_is_gigantic(target_hstate))
3464 prep_compound_gigantic_page_for_demote(subpage,
3465 target_hstate->order);
3467 prep_compound_page(subpage, target_hstate->order);
3468 set_page_private(subpage, 0);
3469 prep_new_huge_page(target_hstate, subpage, nid);
3470 free_huge_page(subpage);
3472 mutex_unlock(&target_hstate->resize_lock);
3474 spin_lock_irq(&hugetlb_lock);
3477 * Not absolutely necessary, but for consistency update max_huge_pages
3478 * based on pool changes for the demoted page.
3480 h->max_huge_pages--;
3481 target_hstate->max_huge_pages +=
3482 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3487 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3488 __must_hold(&hugetlb_lock)
3493 lockdep_assert_held(&hugetlb_lock);
3495 /* We should never get here if no demote order */
3496 if (!h->demote_order) {
3497 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3498 return -EINVAL; /* internal error */
3501 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3502 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3503 if (PageHWPoison(page))
3506 return demote_free_huge_page(h, page);
3511 * Only way to get here is if all pages on free lists are poisoned.
3512 * Return -EBUSY so that caller will not retry.
3517 #define HSTATE_ATTR_RO(_name) \
3518 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3520 #define HSTATE_ATTR_WO(_name) \
3521 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3523 #define HSTATE_ATTR(_name) \
3524 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3526 static struct kobject *hugepages_kobj;
3527 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3529 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3531 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3535 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3536 if (hstate_kobjs[i] == kobj) {
3538 *nidp = NUMA_NO_NODE;
3542 return kobj_to_node_hstate(kobj, nidp);
3545 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3546 struct kobj_attribute *attr, char *buf)
3549 unsigned long nr_huge_pages;
3552 h = kobj_to_hstate(kobj, &nid);
3553 if (nid == NUMA_NO_NODE)
3554 nr_huge_pages = h->nr_huge_pages;
3556 nr_huge_pages = h->nr_huge_pages_node[nid];
3558 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3561 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3562 struct hstate *h, int nid,
3563 unsigned long count, size_t len)
3566 nodemask_t nodes_allowed, *n_mask;
3568 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3571 if (nid == NUMA_NO_NODE) {
3573 * global hstate attribute
3575 if (!(obey_mempolicy &&
3576 init_nodemask_of_mempolicy(&nodes_allowed)))
3577 n_mask = &node_states[N_MEMORY];
3579 n_mask = &nodes_allowed;
3582 * Node specific request. count adjustment happens in
3583 * set_max_huge_pages() after acquiring hugetlb_lock.
3585 init_nodemask_of_node(&nodes_allowed, nid);
3586 n_mask = &nodes_allowed;
3589 err = set_max_huge_pages(h, count, nid, n_mask);
3591 return err ? err : len;
3594 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3595 struct kobject *kobj, const char *buf,
3599 unsigned long count;
3603 err = kstrtoul(buf, 10, &count);
3607 h = kobj_to_hstate(kobj, &nid);
3608 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3611 static ssize_t nr_hugepages_show(struct kobject *kobj,
3612 struct kobj_attribute *attr, char *buf)
3614 return nr_hugepages_show_common(kobj, attr, buf);
3617 static ssize_t nr_hugepages_store(struct kobject *kobj,
3618 struct kobj_attribute *attr, const char *buf, size_t len)
3620 return nr_hugepages_store_common(false, kobj, buf, len);
3622 HSTATE_ATTR(nr_hugepages);
3627 * hstate attribute for optionally mempolicy-based constraint on persistent
3628 * huge page alloc/free.
3630 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3631 struct kobj_attribute *attr,
3634 return nr_hugepages_show_common(kobj, attr, buf);
3637 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3638 struct kobj_attribute *attr, const char *buf, size_t len)
3640 return nr_hugepages_store_common(true, kobj, buf, len);
3642 HSTATE_ATTR(nr_hugepages_mempolicy);
3646 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3647 struct kobj_attribute *attr, char *buf)
3649 struct hstate *h = kobj_to_hstate(kobj, NULL);
3650 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3653 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3654 struct kobj_attribute *attr, const char *buf, size_t count)
3657 unsigned long input;
3658 struct hstate *h = kobj_to_hstate(kobj, NULL);
3660 if (hstate_is_gigantic(h))
3663 err = kstrtoul(buf, 10, &input);
3667 spin_lock_irq(&hugetlb_lock);
3668 h->nr_overcommit_huge_pages = input;
3669 spin_unlock_irq(&hugetlb_lock);
3673 HSTATE_ATTR(nr_overcommit_hugepages);
3675 static ssize_t free_hugepages_show(struct kobject *kobj,
3676 struct kobj_attribute *attr, char *buf)
3679 unsigned long free_huge_pages;
3682 h = kobj_to_hstate(kobj, &nid);
3683 if (nid == NUMA_NO_NODE)
3684 free_huge_pages = h->free_huge_pages;
3686 free_huge_pages = h->free_huge_pages_node[nid];
3688 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3690 HSTATE_ATTR_RO(free_hugepages);
3692 static ssize_t resv_hugepages_show(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3695 struct hstate *h = kobj_to_hstate(kobj, NULL);
3696 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3698 HSTATE_ATTR_RO(resv_hugepages);
3700 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3701 struct kobj_attribute *attr, char *buf)
3704 unsigned long surplus_huge_pages;
3707 h = kobj_to_hstate(kobj, &nid);
3708 if (nid == NUMA_NO_NODE)
3709 surplus_huge_pages = h->surplus_huge_pages;
3711 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3713 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3715 HSTATE_ATTR_RO(surplus_hugepages);
3717 static ssize_t demote_store(struct kobject *kobj,
3718 struct kobj_attribute *attr, const char *buf, size_t len)
3720 unsigned long nr_demote;
3721 unsigned long nr_available;
3722 nodemask_t nodes_allowed, *n_mask;
3727 err = kstrtoul(buf, 10, &nr_demote);
3730 h = kobj_to_hstate(kobj, &nid);
3732 if (nid != NUMA_NO_NODE) {
3733 init_nodemask_of_node(&nodes_allowed, nid);
3734 n_mask = &nodes_allowed;
3736 n_mask = &node_states[N_MEMORY];
3739 /* Synchronize with other sysfs operations modifying huge pages */
3740 mutex_lock(&h->resize_lock);
3741 spin_lock_irq(&hugetlb_lock);
3745 * Check for available pages to demote each time thorough the
3746 * loop as demote_pool_huge_page will drop hugetlb_lock.
3748 if (nid != NUMA_NO_NODE)
3749 nr_available = h->free_huge_pages_node[nid];
3751 nr_available = h->free_huge_pages;
3752 nr_available -= h->resv_huge_pages;
3756 err = demote_pool_huge_page(h, n_mask);
3763 spin_unlock_irq(&hugetlb_lock);
3764 mutex_unlock(&h->resize_lock);
3770 HSTATE_ATTR_WO(demote);
3772 static ssize_t demote_size_show(struct kobject *kobj,
3773 struct kobj_attribute *attr, char *buf)
3775 struct hstate *h = kobj_to_hstate(kobj, NULL);
3776 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3778 return sysfs_emit(buf, "%lukB\n", demote_size);
3781 static ssize_t demote_size_store(struct kobject *kobj,
3782 struct kobj_attribute *attr,
3783 const char *buf, size_t count)
3785 struct hstate *h, *demote_hstate;
3786 unsigned long demote_size;
3787 unsigned int demote_order;
3789 demote_size = (unsigned long)memparse(buf, NULL);
3791 demote_hstate = size_to_hstate(demote_size);
3794 demote_order = demote_hstate->order;
3795 if (demote_order < HUGETLB_PAGE_ORDER)
3798 /* demote order must be smaller than hstate order */
3799 h = kobj_to_hstate(kobj, NULL);
3800 if (demote_order >= h->order)
3803 /* resize_lock synchronizes access to demote size and writes */
3804 mutex_lock(&h->resize_lock);
3805 h->demote_order = demote_order;
3806 mutex_unlock(&h->resize_lock);
3810 HSTATE_ATTR(demote_size);
3812 static struct attribute *hstate_attrs[] = {
3813 &nr_hugepages_attr.attr,
3814 &nr_overcommit_hugepages_attr.attr,
3815 &free_hugepages_attr.attr,
3816 &resv_hugepages_attr.attr,
3817 &surplus_hugepages_attr.attr,
3819 &nr_hugepages_mempolicy_attr.attr,
3824 static const struct attribute_group hstate_attr_group = {
3825 .attrs = hstate_attrs,
3828 static struct attribute *hstate_demote_attrs[] = {
3829 &demote_size_attr.attr,
3834 static const struct attribute_group hstate_demote_attr_group = {
3835 .attrs = hstate_demote_attrs,
3838 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3839 struct kobject **hstate_kobjs,
3840 const struct attribute_group *hstate_attr_group)
3843 int hi = hstate_index(h);
3845 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3846 if (!hstate_kobjs[hi])
3849 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3851 kobject_put(hstate_kobjs[hi]);
3852 hstate_kobjs[hi] = NULL;
3856 if (h->demote_order) {
3857 retval = sysfs_create_group(hstate_kobjs[hi],
3858 &hstate_demote_attr_group);
3860 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3861 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3862 kobject_put(hstate_kobjs[hi]);
3863 hstate_kobjs[hi] = NULL;
3872 static bool hugetlb_sysfs_initialized __ro_after_init;
3875 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3876 * with node devices in node_devices[] using a parallel array. The array
3877 * index of a node device or _hstate == node id.
3878 * This is here to avoid any static dependency of the node device driver, in
3879 * the base kernel, on the hugetlb module.
3881 struct node_hstate {
3882 struct kobject *hugepages_kobj;
3883 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3885 static struct node_hstate node_hstates[MAX_NUMNODES];
3888 * A subset of global hstate attributes for node devices
3890 static struct attribute *per_node_hstate_attrs[] = {
3891 &nr_hugepages_attr.attr,
3892 &free_hugepages_attr.attr,
3893 &surplus_hugepages_attr.attr,
3897 static const struct attribute_group per_node_hstate_attr_group = {
3898 .attrs = per_node_hstate_attrs,
3902 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3903 * Returns node id via non-NULL nidp.
3905 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3909 for (nid = 0; nid < nr_node_ids; nid++) {
3910 struct node_hstate *nhs = &node_hstates[nid];
3912 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3913 if (nhs->hstate_kobjs[i] == kobj) {
3925 * Unregister hstate attributes from a single node device.
3926 * No-op if no hstate attributes attached.
3928 void hugetlb_unregister_node(struct node *node)
3931 struct node_hstate *nhs = &node_hstates[node->dev.id];
3933 if (!nhs->hugepages_kobj)
3934 return; /* no hstate attributes */
3936 for_each_hstate(h) {
3937 int idx = hstate_index(h);
3938 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3942 if (h->demote_order)
3943 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3944 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3945 kobject_put(hstate_kobj);
3946 nhs->hstate_kobjs[idx] = NULL;
3949 kobject_put(nhs->hugepages_kobj);
3950 nhs->hugepages_kobj = NULL;
3955 * Register hstate attributes for a single node device.
3956 * No-op if attributes already registered.
3958 void hugetlb_register_node(struct node *node)
3961 struct node_hstate *nhs = &node_hstates[node->dev.id];
3964 if (!hugetlb_sysfs_initialized)
3967 if (nhs->hugepages_kobj)
3968 return; /* already allocated */
3970 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3972 if (!nhs->hugepages_kobj)
3975 for_each_hstate(h) {
3976 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3978 &per_node_hstate_attr_group);
3980 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3981 h->name, node->dev.id);
3982 hugetlb_unregister_node(node);
3989 * hugetlb init time: register hstate attributes for all registered node
3990 * devices of nodes that have memory. All on-line nodes should have
3991 * registered their associated device by this time.
3993 static void __init hugetlb_register_all_nodes(void)
3997 for_each_online_node(nid)
3998 hugetlb_register_node(node_devices[nid]);
4000 #else /* !CONFIG_NUMA */
4002 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4010 static void hugetlb_register_all_nodes(void) { }
4015 static void __init hugetlb_cma_check(void);
4017 static inline __init void hugetlb_cma_check(void)
4022 static void __init hugetlb_sysfs_init(void)
4027 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4028 if (!hugepages_kobj)
4031 for_each_hstate(h) {
4032 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4033 hstate_kobjs, &hstate_attr_group);
4035 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4039 hugetlb_sysfs_initialized = true;
4041 hugetlb_register_all_nodes();
4044 static int __init hugetlb_init(void)
4048 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4051 if (!hugepages_supported()) {
4052 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4053 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4058 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4059 * architectures depend on setup being done here.
4061 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4062 if (!parsed_default_hugepagesz) {
4064 * If we did not parse a default huge page size, set
4065 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4066 * number of huge pages for this default size was implicitly
4067 * specified, set that here as well.
4068 * Note that the implicit setting will overwrite an explicit
4069 * setting. A warning will be printed in this case.
4071 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4072 if (default_hstate_max_huge_pages) {
4073 if (default_hstate.max_huge_pages) {
4076 string_get_size(huge_page_size(&default_hstate),
4077 1, STRING_UNITS_2, buf, 32);
4078 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4079 default_hstate.max_huge_pages, buf);
4080 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4081 default_hstate_max_huge_pages);
4083 default_hstate.max_huge_pages =
4084 default_hstate_max_huge_pages;
4086 for_each_online_node(i)
4087 default_hstate.max_huge_pages_node[i] =
4088 default_hugepages_in_node[i];
4092 hugetlb_cma_check();
4093 hugetlb_init_hstates();
4094 gather_bootmem_prealloc();
4097 hugetlb_sysfs_init();
4098 hugetlb_cgroup_file_init();
4101 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4103 num_fault_mutexes = 1;
4105 hugetlb_fault_mutex_table =
4106 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4108 BUG_ON(!hugetlb_fault_mutex_table);
4110 for (i = 0; i < num_fault_mutexes; i++)
4111 mutex_init(&hugetlb_fault_mutex_table[i]);
4114 subsys_initcall(hugetlb_init);
4116 /* Overwritten by architectures with more huge page sizes */
4117 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4119 return size == HPAGE_SIZE;
4122 void __init hugetlb_add_hstate(unsigned int order)
4127 if (size_to_hstate(PAGE_SIZE << order)) {
4130 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4132 h = &hstates[hugetlb_max_hstate++];
4133 mutex_init(&h->resize_lock);
4135 h->mask = ~(huge_page_size(h) - 1);
4136 for (i = 0; i < MAX_NUMNODES; ++i)
4137 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4138 INIT_LIST_HEAD(&h->hugepage_activelist);
4139 h->next_nid_to_alloc = first_memory_node;
4140 h->next_nid_to_free = first_memory_node;
4141 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4142 huge_page_size(h)/SZ_1K);
4147 bool __init __weak hugetlb_node_alloc_supported(void)
4152 static void __init hugepages_clear_pages_in_node(void)
4154 if (!hugetlb_max_hstate) {
4155 default_hstate_max_huge_pages = 0;
4156 memset(default_hugepages_in_node, 0,
4157 sizeof(default_hugepages_in_node));
4159 parsed_hstate->max_huge_pages = 0;
4160 memset(parsed_hstate->max_huge_pages_node, 0,
4161 sizeof(parsed_hstate->max_huge_pages_node));
4166 * hugepages command line processing
4167 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4168 * specification. If not, ignore the hugepages value. hugepages can also
4169 * be the first huge page command line option in which case it implicitly
4170 * specifies the number of huge pages for the default size.
4172 static int __init hugepages_setup(char *s)
4175 static unsigned long *last_mhp;
4176 int node = NUMA_NO_NODE;
4181 if (!parsed_valid_hugepagesz) {
4182 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4183 parsed_valid_hugepagesz = true;
4188 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4189 * yet, so this hugepages= parameter goes to the "default hstate".
4190 * Otherwise, it goes with the previously parsed hugepagesz or
4191 * default_hugepagesz.
4193 else if (!hugetlb_max_hstate)
4194 mhp = &default_hstate_max_huge_pages;
4196 mhp = &parsed_hstate->max_huge_pages;
4198 if (mhp == last_mhp) {
4199 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4205 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4207 /* Parameter is node format */
4208 if (p[count] == ':') {
4209 if (!hugetlb_node_alloc_supported()) {
4210 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4213 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4215 node = array_index_nospec(tmp, MAX_NUMNODES);
4217 /* Parse hugepages */
4218 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4220 if (!hugetlb_max_hstate)
4221 default_hugepages_in_node[node] = tmp;
4223 parsed_hstate->max_huge_pages_node[node] = tmp;
4225 /* Go to parse next node*/
4226 if (p[count] == ',')
4239 * Global state is always initialized later in hugetlb_init.
4240 * But we need to allocate gigantic hstates here early to still
4241 * use the bootmem allocator.
4243 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4244 hugetlb_hstate_alloc_pages(parsed_hstate);
4251 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4252 hugepages_clear_pages_in_node();
4255 __setup("hugepages=", hugepages_setup);
4258 * hugepagesz command line processing
4259 * A specific huge page size can only be specified once with hugepagesz.
4260 * hugepagesz is followed by hugepages on the command line. The global
4261 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4262 * hugepagesz argument was valid.
4264 static int __init hugepagesz_setup(char *s)
4269 parsed_valid_hugepagesz = false;
4270 size = (unsigned long)memparse(s, NULL);
4272 if (!arch_hugetlb_valid_size(size)) {
4273 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4277 h = size_to_hstate(size);
4280 * hstate for this size already exists. This is normally
4281 * an error, but is allowed if the existing hstate is the
4282 * default hstate. More specifically, it is only allowed if
4283 * the number of huge pages for the default hstate was not
4284 * previously specified.
4286 if (!parsed_default_hugepagesz || h != &default_hstate ||
4287 default_hstate.max_huge_pages) {
4288 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4293 * No need to call hugetlb_add_hstate() as hstate already
4294 * exists. But, do set parsed_hstate so that a following
4295 * hugepages= parameter will be applied to this hstate.
4298 parsed_valid_hugepagesz = true;
4302 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4303 parsed_valid_hugepagesz = true;
4306 __setup("hugepagesz=", hugepagesz_setup);
4309 * default_hugepagesz command line input
4310 * Only one instance of default_hugepagesz allowed on command line.
4312 static int __init default_hugepagesz_setup(char *s)
4317 parsed_valid_hugepagesz = false;
4318 if (parsed_default_hugepagesz) {
4319 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4323 size = (unsigned long)memparse(s, NULL);
4325 if (!arch_hugetlb_valid_size(size)) {
4326 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4330 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4331 parsed_valid_hugepagesz = true;
4332 parsed_default_hugepagesz = true;
4333 default_hstate_idx = hstate_index(size_to_hstate(size));
4336 * The number of default huge pages (for this size) could have been
4337 * specified as the first hugetlb parameter: hugepages=X. If so,
4338 * then default_hstate_max_huge_pages is set. If the default huge
4339 * page size is gigantic (>= MAX_ORDER), then the pages must be
4340 * allocated here from bootmem allocator.
4342 if (default_hstate_max_huge_pages) {
4343 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4344 for_each_online_node(i)
4345 default_hstate.max_huge_pages_node[i] =
4346 default_hugepages_in_node[i];
4347 if (hstate_is_gigantic(&default_hstate))
4348 hugetlb_hstate_alloc_pages(&default_hstate);
4349 default_hstate_max_huge_pages = 0;
4354 __setup("default_hugepagesz=", default_hugepagesz_setup);
4356 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4359 struct mempolicy *mpol = get_task_policy(current);
4362 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4363 * (from policy_nodemask) specifically for hugetlb case
4365 if (mpol->mode == MPOL_BIND &&
4366 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4367 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4368 return &mpol->nodes;
4373 static unsigned int allowed_mems_nr(struct hstate *h)
4376 unsigned int nr = 0;
4377 nodemask_t *mbind_nodemask;
4378 unsigned int *array = h->free_huge_pages_node;
4379 gfp_t gfp_mask = htlb_alloc_mask(h);
4381 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4382 for_each_node_mask(node, cpuset_current_mems_allowed) {
4383 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4390 #ifdef CONFIG_SYSCTL
4391 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4392 void *buffer, size_t *length,
4393 loff_t *ppos, unsigned long *out)
4395 struct ctl_table dup_table;
4398 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4399 * can duplicate the @table and alter the duplicate of it.
4402 dup_table.data = out;
4404 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4407 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4408 struct ctl_table *table, int write,
4409 void *buffer, size_t *length, loff_t *ppos)
4411 struct hstate *h = &default_hstate;
4412 unsigned long tmp = h->max_huge_pages;
4415 if (!hugepages_supported())
4418 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4424 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4425 NUMA_NO_NODE, tmp, *length);
4430 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4431 void *buffer, size_t *length, loff_t *ppos)
4434 return hugetlb_sysctl_handler_common(false, table, write,
4435 buffer, length, ppos);
4439 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4440 void *buffer, size_t *length, loff_t *ppos)
4442 return hugetlb_sysctl_handler_common(true, table, write,
4443 buffer, length, ppos);
4445 #endif /* CONFIG_NUMA */
4447 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4448 void *buffer, size_t *length, loff_t *ppos)
4450 struct hstate *h = &default_hstate;
4454 if (!hugepages_supported())
4457 tmp = h->nr_overcommit_huge_pages;
4459 if (write && hstate_is_gigantic(h))
4462 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4468 spin_lock_irq(&hugetlb_lock);
4469 h->nr_overcommit_huge_pages = tmp;
4470 spin_unlock_irq(&hugetlb_lock);
4476 #endif /* CONFIG_SYSCTL */
4478 void hugetlb_report_meminfo(struct seq_file *m)
4481 unsigned long total = 0;
4483 if (!hugepages_supported())
4486 for_each_hstate(h) {
4487 unsigned long count = h->nr_huge_pages;
4489 total += huge_page_size(h) * count;
4491 if (h == &default_hstate)
4493 "HugePages_Total: %5lu\n"
4494 "HugePages_Free: %5lu\n"
4495 "HugePages_Rsvd: %5lu\n"
4496 "HugePages_Surp: %5lu\n"
4497 "Hugepagesize: %8lu kB\n",
4501 h->surplus_huge_pages,
4502 huge_page_size(h) / SZ_1K);
4505 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4508 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4510 struct hstate *h = &default_hstate;
4512 if (!hugepages_supported())
4515 return sysfs_emit_at(buf, len,
4516 "Node %d HugePages_Total: %5u\n"
4517 "Node %d HugePages_Free: %5u\n"
4518 "Node %d HugePages_Surp: %5u\n",
4519 nid, h->nr_huge_pages_node[nid],
4520 nid, h->free_huge_pages_node[nid],
4521 nid, h->surplus_huge_pages_node[nid]);
4524 void hugetlb_show_meminfo_node(int nid)
4528 if (!hugepages_supported())
4532 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4534 h->nr_huge_pages_node[nid],
4535 h->free_huge_pages_node[nid],
4536 h->surplus_huge_pages_node[nid],
4537 huge_page_size(h) / SZ_1K);
4540 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4542 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4543 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4546 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4547 unsigned long hugetlb_total_pages(void)
4550 unsigned long nr_total_pages = 0;
4553 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4554 return nr_total_pages;
4557 static int hugetlb_acct_memory(struct hstate *h, long delta)
4564 spin_lock_irq(&hugetlb_lock);
4566 * When cpuset is configured, it breaks the strict hugetlb page
4567 * reservation as the accounting is done on a global variable. Such
4568 * reservation is completely rubbish in the presence of cpuset because
4569 * the reservation is not checked against page availability for the
4570 * current cpuset. Application can still potentially OOM'ed by kernel
4571 * with lack of free htlb page in cpuset that the task is in.
4572 * Attempt to enforce strict accounting with cpuset is almost
4573 * impossible (or too ugly) because cpuset is too fluid that
4574 * task or memory node can be dynamically moved between cpusets.
4576 * The change of semantics for shared hugetlb mapping with cpuset is
4577 * undesirable. However, in order to preserve some of the semantics,
4578 * we fall back to check against current free page availability as
4579 * a best attempt and hopefully to minimize the impact of changing
4580 * semantics that cpuset has.
4582 * Apart from cpuset, we also have memory policy mechanism that
4583 * also determines from which node the kernel will allocate memory
4584 * in a NUMA system. So similar to cpuset, we also should consider
4585 * the memory policy of the current task. Similar to the description
4589 if (gather_surplus_pages(h, delta) < 0)
4592 if (delta > allowed_mems_nr(h)) {
4593 return_unused_surplus_pages(h, delta);
4600 return_unused_surplus_pages(h, (unsigned long) -delta);
4603 spin_unlock_irq(&hugetlb_lock);
4607 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4609 struct resv_map *resv = vma_resv_map(vma);
4612 * HPAGE_RESV_OWNER indicates a private mapping.
4613 * This new VMA should share its siblings reservation map if present.
4614 * The VMA will only ever have a valid reservation map pointer where
4615 * it is being copied for another still existing VMA. As that VMA
4616 * has a reference to the reservation map it cannot disappear until
4617 * after this open call completes. It is therefore safe to take a
4618 * new reference here without additional locking.
4620 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4621 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4622 kref_get(&resv->refs);
4626 * vma_lock structure for sharable mappings is vma specific.
4627 * Clear old pointer (if copied via vm_area_dup) and allocate
4628 * new structure. Before clearing, make sure vma_lock is not
4631 if (vma->vm_flags & VM_MAYSHARE) {
4632 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4635 if (vma_lock->vma != vma) {
4636 vma->vm_private_data = NULL;
4637 hugetlb_vma_lock_alloc(vma);
4639 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4641 hugetlb_vma_lock_alloc(vma);
4645 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4647 struct hstate *h = hstate_vma(vma);
4648 struct resv_map *resv;
4649 struct hugepage_subpool *spool = subpool_vma(vma);
4650 unsigned long reserve, start, end;
4653 hugetlb_vma_lock_free(vma);
4655 resv = vma_resv_map(vma);
4656 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4659 start = vma_hugecache_offset(h, vma, vma->vm_start);
4660 end = vma_hugecache_offset(h, vma, vma->vm_end);
4662 reserve = (end - start) - region_count(resv, start, end);
4663 hugetlb_cgroup_uncharge_counter(resv, start, end);
4666 * Decrement reserve counts. The global reserve count may be
4667 * adjusted if the subpool has a minimum size.
4669 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4670 hugetlb_acct_memory(h, -gbl_reserve);
4673 kref_put(&resv->refs, resv_map_release);
4676 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4678 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4683 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4685 return huge_page_size(hstate_vma(vma));
4689 * We cannot handle pagefaults against hugetlb pages at all. They cause
4690 * handle_mm_fault() to try to instantiate regular-sized pages in the
4691 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4694 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4701 * When a new function is introduced to vm_operations_struct and added
4702 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4703 * This is because under System V memory model, mappings created via
4704 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4705 * their original vm_ops are overwritten with shm_vm_ops.
4707 const struct vm_operations_struct hugetlb_vm_ops = {
4708 .fault = hugetlb_vm_op_fault,
4709 .open = hugetlb_vm_op_open,
4710 .close = hugetlb_vm_op_close,
4711 .may_split = hugetlb_vm_op_split,
4712 .pagesize = hugetlb_vm_op_pagesize,
4715 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4719 unsigned int shift = huge_page_shift(hstate_vma(vma));
4722 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4723 vma->vm_page_prot)));
4725 entry = huge_pte_wrprotect(mk_huge_pte(page,
4726 vma->vm_page_prot));
4728 entry = pte_mkyoung(entry);
4729 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4734 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4735 unsigned long address, pte_t *ptep)
4739 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4740 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4741 update_mmu_cache(vma, address, ptep);
4744 bool is_hugetlb_entry_migration(pte_t pte)
4748 if (huge_pte_none(pte) || pte_present(pte))
4750 swp = pte_to_swp_entry(pte);
4751 if (is_migration_entry(swp))
4757 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4761 if (huge_pte_none(pte) || pte_present(pte))
4763 swp = pte_to_swp_entry(pte);
4764 if (is_hwpoison_entry(swp))
4771 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4772 struct page *new_page)
4774 __SetPageUptodate(new_page);
4775 hugepage_add_new_anon_rmap(new_page, vma, addr);
4776 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4777 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4778 ClearHPageRestoreReserve(new_page);
4779 SetHPageMigratable(new_page);
4782 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4783 struct vm_area_struct *dst_vma,
4784 struct vm_area_struct *src_vma)
4786 pte_t *src_pte, *dst_pte, entry;
4787 struct page *ptepage;
4789 bool cow = is_cow_mapping(src_vma->vm_flags);
4790 struct hstate *h = hstate_vma(src_vma);
4791 unsigned long sz = huge_page_size(h);
4792 unsigned long npages = pages_per_huge_page(h);
4793 struct mmu_notifier_range range;
4794 unsigned long last_addr_mask;
4798 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4801 mmu_notifier_invalidate_range_start(&range);
4802 mmap_assert_write_locked(src);
4803 raw_write_seqcount_begin(&src->write_protect_seq);
4806 * For shared mappings the vma lock must be held before
4807 * calling huge_pte_offset in the src vma. Otherwise, the
4808 * returned ptep could go away if part of a shared pmd and
4809 * another thread calls huge_pmd_unshare.
4811 hugetlb_vma_lock_read(src_vma);
4814 last_addr_mask = hugetlb_mask_last_page(h);
4815 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4816 spinlock_t *src_ptl, *dst_ptl;
4817 src_pte = huge_pte_offset(src, addr, sz);
4819 addr |= last_addr_mask;
4822 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4829 * If the pagetables are shared don't copy or take references.
4831 * dst_pte == src_pte is the common case of src/dest sharing.
4832 * However, src could have 'unshared' and dst shares with
4833 * another vma. So page_count of ptep page is checked instead
4834 * to reliably determine whether pte is shared.
4836 if (page_count(virt_to_page(dst_pte)) > 1) {
4837 addr |= last_addr_mask;
4841 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4842 src_ptl = huge_pte_lockptr(h, src, src_pte);
4843 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4844 entry = huge_ptep_get(src_pte);
4846 if (huge_pte_none(entry)) {
4848 * Skip if src entry none.
4851 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4852 bool uffd_wp = huge_pte_uffd_wp(entry);
4854 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855 entry = huge_pte_clear_uffd_wp(entry);
4856 set_huge_pte_at(dst, addr, dst_pte, entry);
4857 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4858 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4859 bool uffd_wp = huge_pte_uffd_wp(entry);
4861 if (!is_readable_migration_entry(swp_entry) && cow) {
4863 * COW mappings require pages in both
4864 * parent and child to be set to read.
4866 swp_entry = make_readable_migration_entry(
4867 swp_offset(swp_entry));
4868 entry = swp_entry_to_pte(swp_entry);
4869 if (userfaultfd_wp(src_vma) && uffd_wp)
4870 entry = huge_pte_mkuffd_wp(entry);
4871 set_huge_pte_at(src, addr, src_pte, entry);
4873 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4874 entry = huge_pte_clear_uffd_wp(entry);
4875 set_huge_pte_at(dst, addr, dst_pte, entry);
4876 } else if (unlikely(is_pte_marker(entry))) {
4878 * We copy the pte marker only if the dst vma has
4881 if (userfaultfd_wp(dst_vma))
4882 set_huge_pte_at(dst, addr, dst_pte, entry);
4884 entry = huge_ptep_get(src_pte);
4885 ptepage = pte_page(entry);
4889 * Failing to duplicate the anon rmap is a rare case
4890 * where we see pinned hugetlb pages while they're
4891 * prone to COW. We need to do the COW earlier during
4894 * When pre-allocating the page or copying data, we
4895 * need to be without the pgtable locks since we could
4896 * sleep during the process.
4898 if (!PageAnon(ptepage)) {
4899 page_dup_file_rmap(ptepage, true);
4900 } else if (page_try_dup_anon_rmap(ptepage, true,
4902 pte_t src_pte_old = entry;
4905 spin_unlock(src_ptl);
4906 spin_unlock(dst_ptl);
4907 /* Do not use reserve as it's private owned */
4908 new = alloc_huge_page(dst_vma, addr, 1);
4914 copy_user_huge_page(new, ptepage, addr, dst_vma,
4918 /* Install the new huge page if src pte stable */
4919 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4920 src_ptl = huge_pte_lockptr(h, src, src_pte);
4921 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4922 entry = huge_ptep_get(src_pte);
4923 if (!pte_same(src_pte_old, entry)) {
4924 restore_reserve_on_error(h, dst_vma, addr,
4927 /* huge_ptep of dst_pte won't change as in child */
4930 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4931 spin_unlock(src_ptl);
4932 spin_unlock(dst_ptl);
4938 * No need to notify as we are downgrading page
4939 * table protection not changing it to point
4942 * See Documentation/mm/mmu_notifier.rst
4944 huge_ptep_set_wrprotect(src, addr, src_pte);
4945 entry = huge_pte_wrprotect(entry);
4948 set_huge_pte_at(dst, addr, dst_pte, entry);
4949 hugetlb_count_add(npages, dst);
4951 spin_unlock(src_ptl);
4952 spin_unlock(dst_ptl);
4956 raw_write_seqcount_end(&src->write_protect_seq);
4957 mmu_notifier_invalidate_range_end(&range);
4959 hugetlb_vma_unlock_read(src_vma);
4965 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4966 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4968 struct hstate *h = hstate_vma(vma);
4969 struct mm_struct *mm = vma->vm_mm;
4970 spinlock_t *src_ptl, *dst_ptl;
4973 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4974 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4977 * We don't have to worry about the ordering of src and dst ptlocks
4978 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4980 if (src_ptl != dst_ptl)
4981 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4983 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4984 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4986 if (src_ptl != dst_ptl)
4987 spin_unlock(src_ptl);
4988 spin_unlock(dst_ptl);
4991 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4992 struct vm_area_struct *new_vma,
4993 unsigned long old_addr, unsigned long new_addr,
4996 struct hstate *h = hstate_vma(vma);
4997 struct address_space *mapping = vma->vm_file->f_mapping;
4998 unsigned long sz = huge_page_size(h);
4999 struct mm_struct *mm = vma->vm_mm;
5000 unsigned long old_end = old_addr + len;
5001 unsigned long last_addr_mask;
5002 pte_t *src_pte, *dst_pte;
5003 struct mmu_notifier_range range;
5004 bool shared_pmd = false;
5006 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5008 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5010 * In case of shared PMDs, we should cover the maximum possible
5013 flush_cache_range(vma, range.start, range.end);
5015 mmu_notifier_invalidate_range_start(&range);
5016 last_addr_mask = hugetlb_mask_last_page(h);
5017 /* Prevent race with file truncation */
5018 hugetlb_vma_lock_write(vma);
5019 i_mmap_lock_write(mapping);
5020 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5021 src_pte = huge_pte_offset(mm, old_addr, sz);
5023 old_addr |= last_addr_mask;
5024 new_addr |= last_addr_mask;
5027 if (huge_pte_none(huge_ptep_get(src_pte)))
5030 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5032 old_addr |= last_addr_mask;
5033 new_addr |= last_addr_mask;
5037 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5041 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5045 flush_tlb_range(vma, range.start, range.end);
5047 flush_tlb_range(vma, old_end - len, old_end);
5048 mmu_notifier_invalidate_range_end(&range);
5049 i_mmap_unlock_write(mapping);
5050 hugetlb_vma_unlock_write(vma);
5052 return len + old_addr - old_end;
5055 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5056 unsigned long start, unsigned long end,
5057 struct page *ref_page, zap_flags_t zap_flags)
5059 struct mm_struct *mm = vma->vm_mm;
5060 unsigned long address;
5065 struct hstate *h = hstate_vma(vma);
5066 unsigned long sz = huge_page_size(h);
5067 struct mmu_notifier_range range;
5068 unsigned long last_addr_mask;
5069 bool force_flush = false;
5071 WARN_ON(!is_vm_hugetlb_page(vma));
5072 BUG_ON(start & ~huge_page_mask(h));
5073 BUG_ON(end & ~huge_page_mask(h));
5076 * This is a hugetlb vma, all the pte entries should point
5079 tlb_change_page_size(tlb, sz);
5080 tlb_start_vma(tlb, vma);
5083 * If sharing possible, alert mmu notifiers of worst case.
5085 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5087 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5088 mmu_notifier_invalidate_range_start(&range);
5089 last_addr_mask = hugetlb_mask_last_page(h);
5091 for (; address < end; address += sz) {
5092 ptep = huge_pte_offset(mm, address, sz);
5094 address |= last_addr_mask;
5098 ptl = huge_pte_lock(h, mm, ptep);
5099 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5101 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5103 address |= last_addr_mask;
5107 pte = huge_ptep_get(ptep);
5108 if (huge_pte_none(pte)) {
5114 * Migrating hugepage or HWPoisoned hugepage is already
5115 * unmapped and its refcount is dropped, so just clear pte here.
5117 if (unlikely(!pte_present(pte))) {
5118 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5120 * If the pte was wr-protected by uffd-wp in any of the
5121 * swap forms, meanwhile the caller does not want to
5122 * drop the uffd-wp bit in this zap, then replace the
5123 * pte with a marker.
5125 if (pte_swp_uffd_wp_any(pte) &&
5126 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5127 set_huge_pte_at(mm, address, ptep,
5128 make_pte_marker(PTE_MARKER_UFFD_WP));
5131 huge_pte_clear(mm, address, ptep, sz);
5136 page = pte_page(pte);
5138 * If a reference page is supplied, it is because a specific
5139 * page is being unmapped, not a range. Ensure the page we
5140 * are about to unmap is the actual page of interest.
5143 if (page != ref_page) {
5148 * Mark the VMA as having unmapped its page so that
5149 * future faults in this VMA will fail rather than
5150 * looking like data was lost
5152 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5155 pte = huge_ptep_get_and_clear(mm, address, ptep);
5156 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5157 if (huge_pte_dirty(pte))
5158 set_page_dirty(page);
5159 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5160 /* Leave a uffd-wp pte marker if needed */
5161 if (huge_pte_uffd_wp(pte) &&
5162 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5163 set_huge_pte_at(mm, address, ptep,
5164 make_pte_marker(PTE_MARKER_UFFD_WP));
5166 hugetlb_count_sub(pages_per_huge_page(h), mm);
5167 page_remove_rmap(page, vma, true);
5170 tlb_remove_page_size(tlb, page, huge_page_size(h));
5172 * Bail out after unmapping reference page if supplied
5177 mmu_notifier_invalidate_range_end(&range);
5178 tlb_end_vma(tlb, vma);
5181 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5182 * could defer the flush until now, since by holding i_mmap_rwsem we
5183 * guaranteed that the last refernece would not be dropped. But we must
5184 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5185 * dropped and the last reference to the shared PMDs page might be
5188 * In theory we could defer the freeing of the PMD pages as well, but
5189 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5190 * detect sharing, so we cannot defer the release of the page either.
5191 * Instead, do flush now.
5194 tlb_flush_mmu_tlbonly(tlb);
5197 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5198 struct vm_area_struct *vma, unsigned long start,
5199 unsigned long end, struct page *ref_page,
5200 zap_flags_t zap_flags)
5202 hugetlb_vma_lock_write(vma);
5203 i_mmap_lock_write(vma->vm_file->f_mapping);
5205 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5208 * Unlock and free the vma lock before releasing i_mmap_rwsem. When
5209 * the vma_lock is freed, this makes the vma ineligible for pmd
5210 * sharing. And, i_mmap_rwsem is required to set up pmd sharing.
5211 * This is important as page tables for this unmapped range will
5212 * be asynchrously deleted. If the page tables are shared, there
5213 * will be issues when accessed by someone else.
5215 __hugetlb_vma_unlock_write_free(vma);
5217 i_mmap_unlock_write(vma->vm_file->f_mapping);
5220 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5221 unsigned long end, struct page *ref_page,
5222 zap_flags_t zap_flags)
5224 struct mmu_gather tlb;
5226 tlb_gather_mmu(&tlb, vma->vm_mm);
5227 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5228 tlb_finish_mmu(&tlb);
5232 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5233 * mapping it owns the reserve page for. The intention is to unmap the page
5234 * from other VMAs and let the children be SIGKILLed if they are faulting the
5237 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5238 struct page *page, unsigned long address)
5240 struct hstate *h = hstate_vma(vma);
5241 struct vm_area_struct *iter_vma;
5242 struct address_space *mapping;
5246 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5247 * from page cache lookup which is in HPAGE_SIZE units.
5249 address = address & huge_page_mask(h);
5250 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5252 mapping = vma->vm_file->f_mapping;
5255 * Take the mapping lock for the duration of the table walk. As
5256 * this mapping should be shared between all the VMAs,
5257 * __unmap_hugepage_range() is called as the lock is already held
5259 i_mmap_lock_write(mapping);
5260 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5261 /* Do not unmap the current VMA */
5262 if (iter_vma == vma)
5266 * Shared VMAs have their own reserves and do not affect
5267 * MAP_PRIVATE accounting but it is possible that a shared
5268 * VMA is using the same page so check and skip such VMAs.
5270 if (iter_vma->vm_flags & VM_MAYSHARE)
5274 * Unmap the page from other VMAs without their own reserves.
5275 * They get marked to be SIGKILLed if they fault in these
5276 * areas. This is because a future no-page fault on this VMA
5277 * could insert a zeroed page instead of the data existing
5278 * from the time of fork. This would look like data corruption
5280 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5281 unmap_hugepage_range(iter_vma, address,
5282 address + huge_page_size(h), page, 0);
5284 i_mmap_unlock_write(mapping);
5288 * hugetlb_wp() should be called with page lock of the original hugepage held.
5289 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5290 * cannot race with other handlers or page migration.
5291 * Keep the pte_same checks anyway to make transition from the mutex easier.
5293 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5294 unsigned long address, pte_t *ptep, unsigned int flags,
5295 struct page *pagecache_page, spinlock_t *ptl)
5297 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5299 struct hstate *h = hstate_vma(vma);
5300 struct page *old_page, *new_page;
5301 int outside_reserve = 0;
5303 unsigned long haddr = address & huge_page_mask(h);
5304 struct mmu_notifier_range range;
5306 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5307 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5310 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5311 * PTE mapped R/O such as maybe_mkwrite() would do.
5313 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5314 return VM_FAULT_SIGSEGV;
5316 /* Let's take out MAP_SHARED mappings first. */
5317 if (vma->vm_flags & VM_MAYSHARE) {
5318 if (unlikely(unshare))
5320 set_huge_ptep_writable(vma, haddr, ptep);
5324 pte = huge_ptep_get(ptep);
5325 old_page = pte_page(pte);
5327 delayacct_wpcopy_start();
5331 * If no-one else is actually using this page, we're the exclusive
5332 * owner and can reuse this page.
5334 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5335 if (!PageAnonExclusive(old_page))
5336 page_move_anon_rmap(old_page, vma);
5337 if (likely(!unshare))
5338 set_huge_ptep_writable(vma, haddr, ptep);
5340 delayacct_wpcopy_end();
5343 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5347 * If the process that created a MAP_PRIVATE mapping is about to
5348 * perform a COW due to a shared page count, attempt to satisfy
5349 * the allocation without using the existing reserves. The pagecache
5350 * page is used to determine if the reserve at this address was
5351 * consumed or not. If reserves were used, a partial faulted mapping
5352 * at the time of fork() could consume its reserves on COW instead
5353 * of the full address range.
5355 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5356 old_page != pagecache_page)
5357 outside_reserve = 1;
5362 * Drop page table lock as buddy allocator may be called. It will
5363 * be acquired again before returning to the caller, as expected.
5366 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5368 if (IS_ERR(new_page)) {
5370 * If a process owning a MAP_PRIVATE mapping fails to COW,
5371 * it is due to references held by a child and an insufficient
5372 * huge page pool. To guarantee the original mappers
5373 * reliability, unmap the page from child processes. The child
5374 * may get SIGKILLed if it later faults.
5376 if (outside_reserve) {
5377 struct address_space *mapping = vma->vm_file->f_mapping;
5383 * Drop hugetlb_fault_mutex and vma_lock before
5384 * unmapping. unmapping needs to hold vma_lock
5385 * in write mode. Dropping vma_lock in read mode
5386 * here is OK as COW mappings do not interact with
5389 * Reacquire both after unmap operation.
5391 idx = vma_hugecache_offset(h, vma, haddr);
5392 hash = hugetlb_fault_mutex_hash(mapping, idx);
5393 hugetlb_vma_unlock_read(vma);
5394 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5396 unmap_ref_private(mm, vma, old_page, haddr);
5398 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5399 hugetlb_vma_lock_read(vma);
5401 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5403 pte_same(huge_ptep_get(ptep), pte)))
5404 goto retry_avoidcopy;
5406 * race occurs while re-acquiring page table
5407 * lock, and our job is done.
5409 delayacct_wpcopy_end();
5413 ret = vmf_error(PTR_ERR(new_page));
5414 goto out_release_old;
5418 * When the original hugepage is shared one, it does not have
5419 * anon_vma prepared.
5421 if (unlikely(anon_vma_prepare(vma))) {
5423 goto out_release_all;
5426 copy_user_huge_page(new_page, old_page, address, vma,
5427 pages_per_huge_page(h));
5428 __SetPageUptodate(new_page);
5430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5431 haddr + huge_page_size(h));
5432 mmu_notifier_invalidate_range_start(&range);
5435 * Retake the page table lock to check for racing updates
5436 * before the page tables are altered
5439 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5440 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5441 ClearHPageRestoreReserve(new_page);
5443 /* Break COW or unshare */
5444 huge_ptep_clear_flush(vma, haddr, ptep);
5445 mmu_notifier_invalidate_range(mm, range.start, range.end);
5446 page_remove_rmap(old_page, vma, true);
5447 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5448 set_huge_pte_at(mm, haddr, ptep,
5449 make_huge_pte(vma, new_page, !unshare));
5450 SetHPageMigratable(new_page);
5451 /* Make the old page be freed below */
5452 new_page = old_page;
5455 mmu_notifier_invalidate_range_end(&range);
5458 * No restore in case of successful pagetable update (Break COW or
5461 if (new_page != old_page)
5462 restore_reserve_on_error(h, vma, haddr, new_page);
5467 spin_lock(ptl); /* Caller expects lock to be held */
5469 delayacct_wpcopy_end();
5474 * Return whether there is a pagecache page to back given address within VMA.
5475 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5477 static bool hugetlbfs_pagecache_present(struct hstate *h,
5478 struct vm_area_struct *vma, unsigned long address)
5480 struct address_space *mapping;
5484 mapping = vma->vm_file->f_mapping;
5485 idx = vma_hugecache_offset(h, vma, address);
5487 page = find_get_page(mapping, idx);
5490 return page != NULL;
5493 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5496 struct folio *folio = page_folio(page);
5497 struct inode *inode = mapping->host;
5498 struct hstate *h = hstate_inode(inode);
5501 __folio_set_locked(folio);
5502 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5504 if (unlikely(err)) {
5505 __folio_clear_locked(folio);
5508 ClearHPageRestoreReserve(page);
5511 * mark folio dirty so that it will not be removed from cache/file
5512 * by non-hugetlbfs specific code paths.
5514 folio_mark_dirty(folio);
5516 spin_lock(&inode->i_lock);
5517 inode->i_blocks += blocks_per_huge_page(h);
5518 spin_unlock(&inode->i_lock);
5522 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5523 struct address_space *mapping,
5526 unsigned long haddr,
5528 unsigned long reason)
5531 struct vm_fault vmf = {
5534 .real_address = addr,
5538 * Hard to debug if it ends up being
5539 * used by a callee that assumes
5540 * something about the other
5541 * uninitialized fields... same as in
5547 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5548 * userfault. Also mmap_lock could be dropped due to handling
5549 * userfault, any vma operation should be careful from here.
5551 hugetlb_vma_unlock_read(vma);
5552 hash = hugetlb_fault_mutex_hash(mapping, idx);
5553 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5554 return handle_userfault(&vmf, reason);
5558 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5559 * false if pte changed or is changing.
5561 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5562 pte_t *ptep, pte_t old_pte)
5567 ptl = huge_pte_lock(h, mm, ptep);
5568 same = pte_same(huge_ptep_get(ptep), old_pte);
5574 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5575 struct vm_area_struct *vma,
5576 struct address_space *mapping, pgoff_t idx,
5577 unsigned long address, pte_t *ptep,
5578 pte_t old_pte, unsigned int flags)
5580 struct hstate *h = hstate_vma(vma);
5581 vm_fault_t ret = VM_FAULT_SIGBUS;
5587 unsigned long haddr = address & huge_page_mask(h);
5588 bool new_page, new_pagecache_page = false;
5589 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5592 * Currently, we are forced to kill the process in the event the
5593 * original mapper has unmapped pages from the child due to a failed
5594 * COW/unsharing. Warn that such a situation has occurred as it may not
5597 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5598 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5604 * Use page lock to guard against racing truncation
5605 * before we get page_table_lock.
5608 page = find_lock_page(mapping, idx);
5610 size = i_size_read(mapping->host) >> huge_page_shift(h);
5613 /* Check for page in userfault range */
5614 if (userfaultfd_missing(vma)) {
5616 * Since hugetlb_no_page() was examining pte
5617 * without pgtable lock, we need to re-test under
5618 * lock because the pte may not be stable and could
5619 * have changed from under us. Try to detect
5620 * either changed or during-changing ptes and retry
5621 * properly when needed.
5623 * Note that userfaultfd is actually fine with
5624 * false positives (e.g. caused by pte changed),
5625 * but not wrong logical events (e.g. caused by
5626 * reading a pte during changing). The latter can
5627 * confuse the userspace, so the strictness is very
5628 * much preferred. E.g., MISSING event should
5629 * never happen on the page after UFFDIO_COPY has
5630 * correctly installed the page and returned.
5632 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5637 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5642 page = alloc_huge_page(vma, haddr, 0);
5645 * Returning error will result in faulting task being
5646 * sent SIGBUS. The hugetlb fault mutex prevents two
5647 * tasks from racing to fault in the same page which
5648 * could result in false unable to allocate errors.
5649 * Page migration does not take the fault mutex, but
5650 * does a clear then write of pte's under page table
5651 * lock. Page fault code could race with migration,
5652 * notice the clear pte and try to allocate a page
5653 * here. Before returning error, get ptl and make
5654 * sure there really is no pte entry.
5656 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5657 ret = vmf_error(PTR_ERR(page));
5662 clear_huge_page(page, address, pages_per_huge_page(h));
5663 __SetPageUptodate(page);
5666 if (vma->vm_flags & VM_MAYSHARE) {
5667 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5670 * err can't be -EEXIST which implies someone
5671 * else consumed the reservation since hugetlb
5672 * fault mutex is held when add a hugetlb page
5673 * to the page cache. So it's safe to call
5674 * restore_reserve_on_error() here.
5676 restore_reserve_on_error(h, vma, haddr, page);
5680 new_pagecache_page = true;
5683 if (unlikely(anon_vma_prepare(vma))) {
5685 goto backout_unlocked;
5691 * If memory error occurs between mmap() and fault, some process
5692 * don't have hwpoisoned swap entry for errored virtual address.
5693 * So we need to block hugepage fault by PG_hwpoison bit check.
5695 if (unlikely(PageHWPoison(page))) {
5696 ret = VM_FAULT_HWPOISON_LARGE |
5697 VM_FAULT_SET_HINDEX(hstate_index(h));
5698 goto backout_unlocked;
5701 /* Check for page in userfault range. */
5702 if (userfaultfd_minor(vma)) {
5705 /* See comment in userfaultfd_missing() block above */
5706 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5710 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5717 * If we are going to COW a private mapping later, we examine the
5718 * pending reservations for this page now. This will ensure that
5719 * any allocations necessary to record that reservation occur outside
5722 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5723 if (vma_needs_reservation(h, vma, haddr) < 0) {
5725 goto backout_unlocked;
5727 /* Just decrements count, does not deallocate */
5728 vma_end_reservation(h, vma, haddr);
5731 ptl = huge_pte_lock(h, mm, ptep);
5733 /* If pte changed from under us, retry */
5734 if (!pte_same(huge_ptep_get(ptep), old_pte))
5738 ClearHPageRestoreReserve(page);
5739 hugepage_add_new_anon_rmap(page, vma, haddr);
5741 page_dup_file_rmap(page, true);
5742 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5743 && (vma->vm_flags & VM_SHARED)));
5745 * If this pte was previously wr-protected, keep it wr-protected even
5748 if (unlikely(pte_marker_uffd_wp(old_pte)))
5749 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5750 set_huge_pte_at(mm, haddr, ptep, new_pte);
5752 hugetlb_count_add(pages_per_huge_page(h), mm);
5753 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5754 /* Optimization, do the COW without a second fault */
5755 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5761 * Only set HPageMigratable in newly allocated pages. Existing pages
5762 * found in the pagecache may not have HPageMigratableset if they have
5763 * been isolated for migration.
5766 SetHPageMigratable(page);
5770 hugetlb_vma_unlock_read(vma);
5771 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5777 if (new_page && !new_pagecache_page)
5778 restore_reserve_on_error(h, vma, haddr, page);
5786 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5788 unsigned long key[2];
5791 key[0] = (unsigned long) mapping;
5794 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5796 return hash & (num_fault_mutexes - 1);
5800 * For uniprocessor systems we always use a single mutex, so just
5801 * return 0 and avoid the hashing overhead.
5803 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5809 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5810 unsigned long address, unsigned int flags)
5817 struct page *page = NULL;
5818 struct page *pagecache_page = NULL;
5819 struct hstate *h = hstate_vma(vma);
5820 struct address_space *mapping;
5821 int need_wait_lock = 0;
5822 unsigned long haddr = address & huge_page_mask(h);
5824 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5827 * Since we hold no locks, ptep could be stale. That is
5828 * OK as we are only making decisions based on content and
5829 * not actually modifying content here.
5831 entry = huge_ptep_get(ptep);
5832 if (unlikely(is_hugetlb_entry_migration(entry))) {
5833 migration_entry_wait_huge(vma, ptep);
5835 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5836 return VM_FAULT_HWPOISON_LARGE |
5837 VM_FAULT_SET_HINDEX(hstate_index(h));
5841 * Serialize hugepage allocation and instantiation, so that we don't
5842 * get spurious allocation failures if two CPUs race to instantiate
5843 * the same page in the page cache.
5845 mapping = vma->vm_file->f_mapping;
5846 idx = vma_hugecache_offset(h, vma, haddr);
5847 hash = hugetlb_fault_mutex_hash(mapping, idx);
5848 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5851 * Acquire vma lock before calling huge_pte_alloc and hold
5852 * until finished with ptep. This prevents huge_pmd_unshare from
5853 * being called elsewhere and making the ptep no longer valid.
5855 * ptep could have already be assigned via huge_pte_offset. That
5856 * is OK, as huge_pte_alloc will return the same value unless
5857 * something has changed.
5859 hugetlb_vma_lock_read(vma);
5860 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5862 hugetlb_vma_unlock_read(vma);
5863 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5864 return VM_FAULT_OOM;
5867 entry = huge_ptep_get(ptep);
5868 /* PTE markers should be handled the same way as none pte */
5869 if (huge_pte_none_mostly(entry))
5871 * hugetlb_no_page will drop vma lock and hugetlb fault
5872 * mutex internally, which make us return immediately.
5874 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5880 * entry could be a migration/hwpoison entry at this point, so this
5881 * check prevents the kernel from going below assuming that we have
5882 * an active hugepage in pagecache. This goto expects the 2nd page
5883 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5884 * properly handle it.
5886 if (!pte_present(entry))
5890 * If we are going to COW/unshare the mapping later, we examine the
5891 * pending reservations for this page now. This will ensure that any
5892 * allocations necessary to record that reservation occur outside the
5893 * spinlock. Also lookup the pagecache page now as it is used to
5894 * determine if a reservation has been consumed.
5896 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5897 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5898 if (vma_needs_reservation(h, vma, haddr) < 0) {
5902 /* Just decrements count, does not deallocate */
5903 vma_end_reservation(h, vma, haddr);
5905 pagecache_page = find_lock_page(mapping, idx);
5908 ptl = huge_pte_lock(h, mm, ptep);
5910 /* Check for a racing update before calling hugetlb_wp() */
5911 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5914 /* Handle userfault-wp first, before trying to lock more pages */
5915 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5916 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5917 struct vm_fault vmf = {
5920 .real_address = address,
5925 if (pagecache_page) {
5926 unlock_page(pagecache_page);
5927 put_page(pagecache_page);
5929 hugetlb_vma_unlock_read(vma);
5930 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5931 return handle_userfault(&vmf, VM_UFFD_WP);
5935 * hugetlb_wp() requires page locks of pte_page(entry) and
5936 * pagecache_page, so here we need take the former one
5937 * when page != pagecache_page or !pagecache_page.
5939 page = pte_page(entry);
5940 if (page != pagecache_page)
5941 if (!trylock_page(page)) {
5948 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5949 if (!huge_pte_write(entry)) {
5950 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5951 pagecache_page, ptl);
5953 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5954 entry = huge_pte_mkdirty(entry);
5957 entry = pte_mkyoung(entry);
5958 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5959 flags & FAULT_FLAG_WRITE))
5960 update_mmu_cache(vma, haddr, ptep);
5962 if (page != pagecache_page)
5968 if (pagecache_page) {
5969 unlock_page(pagecache_page);
5970 put_page(pagecache_page);
5973 hugetlb_vma_unlock_read(vma);
5974 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5976 * Generally it's safe to hold refcount during waiting page lock. But
5977 * here we just wait to defer the next page fault to avoid busy loop and
5978 * the page is not used after unlocked before returning from the current
5979 * page fault. So we are safe from accessing freed page, even if we wait
5980 * here without taking refcount.
5983 wait_on_page_locked(page);
5987 #ifdef CONFIG_USERFAULTFD
5989 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5990 * modifications for huge pages.
5992 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5994 struct vm_area_struct *dst_vma,
5995 unsigned long dst_addr,
5996 unsigned long src_addr,
5997 enum mcopy_atomic_mode mode,
5998 struct page **pagep,
6001 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6002 struct hstate *h = hstate_vma(dst_vma);
6003 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6004 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6006 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6012 bool page_in_pagecache = false;
6016 page = find_lock_page(mapping, idx);
6019 page_in_pagecache = true;
6020 } else if (!*pagep) {
6021 /* If a page already exists, then it's UFFDIO_COPY for
6022 * a non-missing case. Return -EEXIST.
6025 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6030 page = alloc_huge_page(dst_vma, dst_addr, 0);
6036 ret = copy_huge_page_from_user(page,
6037 (const void __user *) src_addr,
6038 pages_per_huge_page(h), false);
6040 /* fallback to copy_from_user outside mmap_lock */
6041 if (unlikely(ret)) {
6043 /* Free the allocated page which may have
6044 * consumed a reservation.
6046 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6049 /* Allocate a temporary page to hold the copied
6052 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6058 /* Set the outparam pagep and return to the caller to
6059 * copy the contents outside the lock. Don't free the
6066 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6073 page = alloc_huge_page(dst_vma, dst_addr, 0);
6080 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6081 pages_per_huge_page(h));
6087 * The memory barrier inside __SetPageUptodate makes sure that
6088 * preceding stores to the page contents become visible before
6089 * the set_pte_at() write.
6091 __SetPageUptodate(page);
6093 /* Add shared, newly allocated pages to the page cache. */
6094 if (vm_shared && !is_continue) {
6095 size = i_size_read(mapping->host) >> huge_page_shift(h);
6098 goto out_release_nounlock;
6101 * Serialization between remove_inode_hugepages() and
6102 * hugetlb_add_to_page_cache() below happens through the
6103 * hugetlb_fault_mutex_table that here must be hold by
6106 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6108 goto out_release_nounlock;
6109 page_in_pagecache = true;
6112 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6115 * We allow to overwrite a pte marker: consider when both MISSING|WP
6116 * registered, we firstly wr-protect a none pte which has no page cache
6117 * page backing it, then access the page.
6120 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6121 goto out_release_unlock;
6123 if (page_in_pagecache) {
6124 page_dup_file_rmap(page, true);
6126 ClearHPageRestoreReserve(page);
6127 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6131 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6132 * with wp flag set, don't set pte write bit.
6134 if (wp_copy || (is_continue && !vm_shared))
6137 writable = dst_vma->vm_flags & VM_WRITE;
6139 _dst_pte = make_huge_pte(dst_vma, page, writable);
6141 * Always mark UFFDIO_COPY page dirty; note that this may not be
6142 * extremely important for hugetlbfs for now since swapping is not
6143 * supported, but we should still be clear in that this page cannot be
6144 * thrown away at will, even if write bit not set.
6146 _dst_pte = huge_pte_mkdirty(_dst_pte);
6147 _dst_pte = pte_mkyoung(_dst_pte);
6150 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6152 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6154 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6156 /* No need to invalidate - it was non-present before */
6157 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6161 SetHPageMigratable(page);
6162 if (vm_shared || is_continue)
6169 if (vm_shared || is_continue)
6171 out_release_nounlock:
6172 if (!page_in_pagecache)
6173 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6177 #endif /* CONFIG_USERFAULTFD */
6179 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6180 int refs, struct page **pages,
6181 struct vm_area_struct **vmas)
6185 for (nr = 0; nr < refs; nr++) {
6187 pages[nr] = nth_page(page, nr);
6193 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6196 pte_t pteval = huge_ptep_get(pte);
6199 if (is_swap_pte(pteval))
6201 if (huge_pte_write(pteval))
6203 if (flags & FOLL_WRITE)
6205 if (gup_must_unshare(flags, pte_page(pteval))) {
6212 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6213 struct page **pages, struct vm_area_struct **vmas,
6214 unsigned long *position, unsigned long *nr_pages,
6215 long i, unsigned int flags, int *locked)
6217 unsigned long pfn_offset;
6218 unsigned long vaddr = *position;
6219 unsigned long remainder = *nr_pages;
6220 struct hstate *h = hstate_vma(vma);
6221 int err = -EFAULT, refs;
6223 while (vaddr < vma->vm_end && remainder) {
6225 spinlock_t *ptl = NULL;
6226 bool unshare = false;
6231 * If we have a pending SIGKILL, don't keep faulting pages and
6232 * potentially allocating memory.
6234 if (fatal_signal_pending(current)) {
6240 * Some archs (sparc64, sh*) have multiple pte_ts to
6241 * each hugepage. We have to make sure we get the
6242 * first, for the page indexing below to work.
6244 * Note that page table lock is not held when pte is null.
6246 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6249 ptl = huge_pte_lock(h, mm, pte);
6250 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6253 * When coredumping, it suits get_dump_page if we just return
6254 * an error where there's an empty slot with no huge pagecache
6255 * to back it. This way, we avoid allocating a hugepage, and
6256 * the sparse dumpfile avoids allocating disk blocks, but its
6257 * huge holes still show up with zeroes where they need to be.
6259 if (absent && (flags & FOLL_DUMP) &&
6260 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6268 * We need call hugetlb_fault for both hugepages under migration
6269 * (in which case hugetlb_fault waits for the migration,) and
6270 * hwpoisoned hugepages (in which case we need to prevent the
6271 * caller from accessing to them.) In order to do this, we use
6272 * here is_swap_pte instead of is_hugetlb_entry_migration and
6273 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6274 * both cases, and because we can't follow correct pages
6275 * directly from any kind of swap entries.
6278 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6280 unsigned int fault_flags = 0;
6284 if (flags & FOLL_WRITE)
6285 fault_flags |= FAULT_FLAG_WRITE;
6287 fault_flags |= FAULT_FLAG_UNSHARE;
6289 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6290 FAULT_FLAG_KILLABLE;
6291 if (flags & FOLL_NOWAIT)
6292 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6293 FAULT_FLAG_RETRY_NOWAIT;
6294 if (flags & FOLL_TRIED) {
6296 * Note: FAULT_FLAG_ALLOW_RETRY and
6297 * FAULT_FLAG_TRIED can co-exist
6299 fault_flags |= FAULT_FLAG_TRIED;
6301 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6302 if (ret & VM_FAULT_ERROR) {
6303 err = vm_fault_to_errno(ret, flags);
6307 if (ret & VM_FAULT_RETRY) {
6309 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6313 * VM_FAULT_RETRY must not return an
6314 * error, it will return zero
6317 * No need to update "position" as the
6318 * caller will not check it after
6319 * *nr_pages is set to 0.
6326 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6327 page = pte_page(huge_ptep_get(pte));
6329 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6330 !PageAnonExclusive(page), page);
6333 * If subpage information not requested, update counters
6334 * and skip the same_page loop below.
6336 if (!pages && !vmas && !pfn_offset &&
6337 (vaddr + huge_page_size(h) < vma->vm_end) &&
6338 (remainder >= pages_per_huge_page(h))) {
6339 vaddr += huge_page_size(h);
6340 remainder -= pages_per_huge_page(h);
6341 i += pages_per_huge_page(h);
6346 /* vaddr may not be aligned to PAGE_SIZE */
6347 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6348 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6351 record_subpages_vmas(nth_page(page, pfn_offset),
6353 likely(pages) ? pages + i : NULL,
6354 vmas ? vmas + i : NULL);
6358 * try_grab_folio() should always succeed here,
6359 * because: a) we hold the ptl lock, and b) we've just
6360 * checked that the huge page is present in the page
6361 * tables. If the huge page is present, then the tail
6362 * pages must also be present. The ptl prevents the
6363 * head page and tail pages from being rearranged in
6364 * any way. So this page must be available at this
6365 * point, unless the page refcount overflowed:
6367 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6376 vaddr += (refs << PAGE_SHIFT);
6382 *nr_pages = remainder;
6384 * setting position is actually required only if remainder is
6385 * not zero but it's faster not to add a "if (remainder)"
6393 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6394 unsigned long address, unsigned long end,
6395 pgprot_t newprot, unsigned long cp_flags)
6397 struct mm_struct *mm = vma->vm_mm;
6398 unsigned long start = address;
6401 struct hstate *h = hstate_vma(vma);
6402 unsigned long pages = 0, psize = huge_page_size(h);
6403 bool shared_pmd = false;
6404 struct mmu_notifier_range range;
6405 unsigned long last_addr_mask;
6406 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6407 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6410 * In the case of shared PMDs, the area to flush could be beyond
6411 * start/end. Set range.start/range.end to cover the maximum possible
6412 * range if PMD sharing is possible.
6414 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6415 0, vma, mm, start, end);
6416 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6418 BUG_ON(address >= end);
6419 flush_cache_range(vma, range.start, range.end);
6421 mmu_notifier_invalidate_range_start(&range);
6422 hugetlb_vma_lock_write(vma);
6423 i_mmap_lock_write(vma->vm_file->f_mapping);
6424 last_addr_mask = hugetlb_mask_last_page(h);
6425 for (; address < end; address += psize) {
6427 ptep = huge_pte_offset(mm, address, psize);
6429 address |= last_addr_mask;
6432 ptl = huge_pte_lock(h, mm, ptep);
6433 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6435 * When uffd-wp is enabled on the vma, unshare
6436 * shouldn't happen at all. Warn about it if it
6437 * happened due to some reason.
6439 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6443 address |= last_addr_mask;
6446 pte = huge_ptep_get(ptep);
6447 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6451 if (unlikely(is_hugetlb_entry_migration(pte))) {
6452 swp_entry_t entry = pte_to_swp_entry(pte);
6453 struct page *page = pfn_swap_entry_to_page(entry);
6455 if (!is_readable_migration_entry(entry)) {
6459 entry = make_readable_exclusive_migration_entry(
6462 entry = make_readable_migration_entry(
6464 newpte = swp_entry_to_pte(entry);
6466 newpte = pte_swp_mkuffd_wp(newpte);
6467 else if (uffd_wp_resolve)
6468 newpte = pte_swp_clear_uffd_wp(newpte);
6469 set_huge_pte_at(mm, address, ptep, newpte);
6475 if (unlikely(pte_marker_uffd_wp(pte))) {
6477 * This is changing a non-present pte into a none pte,
6478 * no need for huge_ptep_modify_prot_start/commit().
6480 if (uffd_wp_resolve)
6481 huge_pte_clear(mm, address, ptep, psize);
6483 if (!huge_pte_none(pte)) {
6485 unsigned int shift = huge_page_shift(hstate_vma(vma));
6487 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6488 pte = huge_pte_modify(old_pte, newprot);
6489 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6491 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6492 else if (uffd_wp_resolve)
6493 pte = huge_pte_clear_uffd_wp(pte);
6494 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6498 if (unlikely(uffd_wp))
6499 /* Safe to modify directly (none->non-present). */
6500 set_huge_pte_at(mm, address, ptep,
6501 make_pte_marker(PTE_MARKER_UFFD_WP));
6506 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6507 * may have cleared our pud entry and done put_page on the page table:
6508 * once we release i_mmap_rwsem, another task can do the final put_page
6509 * and that page table be reused and filled with junk. If we actually
6510 * did unshare a page of pmds, flush the range corresponding to the pud.
6513 flush_hugetlb_tlb_range(vma, range.start, range.end);
6515 flush_hugetlb_tlb_range(vma, start, end);
6517 * No need to call mmu_notifier_invalidate_range() we are downgrading
6518 * page table protection not changing it to point to a new page.
6520 * See Documentation/mm/mmu_notifier.rst
6522 i_mmap_unlock_write(vma->vm_file->f_mapping);
6523 hugetlb_vma_unlock_write(vma);
6524 mmu_notifier_invalidate_range_end(&range);
6526 return pages << h->order;
6529 /* Return true if reservation was successful, false otherwise. */
6530 bool hugetlb_reserve_pages(struct inode *inode,
6532 struct vm_area_struct *vma,
6533 vm_flags_t vm_flags)
6536 struct hstate *h = hstate_inode(inode);
6537 struct hugepage_subpool *spool = subpool_inode(inode);
6538 struct resv_map *resv_map;
6539 struct hugetlb_cgroup *h_cg = NULL;
6540 long gbl_reserve, regions_needed = 0;
6542 /* This should never happen */
6544 VM_WARN(1, "%s called with a negative range\n", __func__);
6549 * vma specific semaphore used for pmd sharing synchronization
6551 hugetlb_vma_lock_alloc(vma);
6554 * Only apply hugepage reservation if asked. At fault time, an
6555 * attempt will be made for VM_NORESERVE to allocate a page
6556 * without using reserves
6558 if (vm_flags & VM_NORESERVE)
6562 * Shared mappings base their reservation on the number of pages that
6563 * are already allocated on behalf of the file. Private mappings need
6564 * to reserve the full area even if read-only as mprotect() may be
6565 * called to make the mapping read-write. Assume !vma is a shm mapping
6567 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6569 * resv_map can not be NULL as hugetlb_reserve_pages is only
6570 * called for inodes for which resv_maps were created (see
6571 * hugetlbfs_get_inode).
6573 resv_map = inode_resv_map(inode);
6575 chg = region_chg(resv_map, from, to, ®ions_needed);
6577 /* Private mapping. */
6578 resv_map = resv_map_alloc();
6584 set_vma_resv_map(vma, resv_map);
6585 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6591 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6592 chg * pages_per_huge_page(h), &h_cg) < 0)
6595 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6596 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6599 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6603 * There must be enough pages in the subpool for the mapping. If
6604 * the subpool has a minimum size, there may be some global
6605 * reservations already in place (gbl_reserve).
6607 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6608 if (gbl_reserve < 0)
6609 goto out_uncharge_cgroup;
6612 * Check enough hugepages are available for the reservation.
6613 * Hand the pages back to the subpool if there are not
6615 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6619 * Account for the reservations made. Shared mappings record regions
6620 * that have reservations as they are shared by multiple VMAs.
6621 * When the last VMA disappears, the region map says how much
6622 * the reservation was and the page cache tells how much of
6623 * the reservation was consumed. Private mappings are per-VMA and
6624 * only the consumed reservations are tracked. When the VMA
6625 * disappears, the original reservation is the VMA size and the
6626 * consumed reservations are stored in the map. Hence, nothing
6627 * else has to be done for private mappings here
6629 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6630 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6632 if (unlikely(add < 0)) {
6633 hugetlb_acct_memory(h, -gbl_reserve);
6635 } else if (unlikely(chg > add)) {
6637 * pages in this range were added to the reserve
6638 * map between region_chg and region_add. This
6639 * indicates a race with alloc_huge_page. Adjust
6640 * the subpool and reserve counts modified above
6641 * based on the difference.
6646 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6647 * reference to h_cg->css. See comment below for detail.
6649 hugetlb_cgroup_uncharge_cgroup_rsvd(
6651 (chg - add) * pages_per_huge_page(h), h_cg);
6653 rsv_adjust = hugepage_subpool_put_pages(spool,
6655 hugetlb_acct_memory(h, -rsv_adjust);
6658 * The file_regions will hold their own reference to
6659 * h_cg->css. So we should release the reference held
6660 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6663 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6669 /* put back original number of pages, chg */
6670 (void)hugepage_subpool_put_pages(spool, chg);
6671 out_uncharge_cgroup:
6672 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6673 chg * pages_per_huge_page(h), h_cg);
6675 hugetlb_vma_lock_free(vma);
6676 if (!vma || vma->vm_flags & VM_MAYSHARE)
6677 /* Only call region_abort if the region_chg succeeded but the
6678 * region_add failed or didn't run.
6680 if (chg >= 0 && add < 0)
6681 region_abort(resv_map, from, to, regions_needed);
6682 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6683 kref_put(&resv_map->refs, resv_map_release);
6687 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6690 struct hstate *h = hstate_inode(inode);
6691 struct resv_map *resv_map = inode_resv_map(inode);
6693 struct hugepage_subpool *spool = subpool_inode(inode);
6697 * Since this routine can be called in the evict inode path for all
6698 * hugetlbfs inodes, resv_map could be NULL.
6701 chg = region_del(resv_map, start, end);
6703 * region_del() can fail in the rare case where a region
6704 * must be split and another region descriptor can not be
6705 * allocated. If end == LONG_MAX, it will not fail.
6711 spin_lock(&inode->i_lock);
6712 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6713 spin_unlock(&inode->i_lock);
6716 * If the subpool has a minimum size, the number of global
6717 * reservations to be released may be adjusted.
6719 * Note that !resv_map implies freed == 0. So (chg - freed)
6720 * won't go negative.
6722 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6723 hugetlb_acct_memory(h, -gbl_reserve);
6728 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6729 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6730 struct vm_area_struct *vma,
6731 unsigned long addr, pgoff_t idx)
6733 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6735 unsigned long sbase = saddr & PUD_MASK;
6736 unsigned long s_end = sbase + PUD_SIZE;
6738 /* Allow segments to share if only one is marked locked */
6739 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6740 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6743 * match the virtual addresses, permission and the alignment of the
6746 * Also, vma_lock (vm_private_data) is required for sharing.
6748 if (pmd_index(addr) != pmd_index(saddr) ||
6749 vm_flags != svm_flags ||
6750 !range_in_vma(svma, sbase, s_end) ||
6751 !svma->vm_private_data)
6757 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6759 unsigned long start = addr & PUD_MASK;
6760 unsigned long end = start + PUD_SIZE;
6762 #ifdef CONFIG_USERFAULTFD
6763 if (uffd_disable_huge_pmd_share(vma))
6767 * check on proper vm_flags and page table alignment
6769 if (!(vma->vm_flags & VM_MAYSHARE))
6771 if (!vma->vm_private_data) /* vma lock required for sharing */
6773 if (!range_in_vma(vma, start, end))
6779 * Determine if start,end range within vma could be mapped by shared pmd.
6780 * If yes, adjust start and end to cover range associated with possible
6781 * shared pmd mappings.
6783 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6784 unsigned long *start, unsigned long *end)
6786 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6787 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6790 * vma needs to span at least one aligned PUD size, and the range
6791 * must be at least partially within in.
6793 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6794 (*end <= v_start) || (*start >= v_end))
6797 /* Extend the range to be PUD aligned for a worst case scenario */
6798 if (*start > v_start)
6799 *start = ALIGN_DOWN(*start, PUD_SIZE);
6802 *end = ALIGN(*end, PUD_SIZE);
6805 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6807 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6808 vma->vm_private_data;
6811 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6813 if (__vma_shareable_flags_pmd(vma)) {
6814 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6816 down_read(&vma_lock->rw_sema);
6820 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6822 if (__vma_shareable_flags_pmd(vma)) {
6823 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6825 up_read(&vma_lock->rw_sema);
6829 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6831 if (__vma_shareable_flags_pmd(vma)) {
6832 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6834 down_write(&vma_lock->rw_sema);
6838 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6840 if (__vma_shareable_flags_pmd(vma)) {
6841 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6843 up_write(&vma_lock->rw_sema);
6847 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6849 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6851 if (!__vma_shareable_flags_pmd(vma))
6854 return down_write_trylock(&vma_lock->rw_sema);
6857 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6859 if (__vma_shareable_flags_pmd(vma)) {
6860 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6862 lockdep_assert_held(&vma_lock->rw_sema);
6866 void hugetlb_vma_lock_release(struct kref *kref)
6868 struct hugetlb_vma_lock *vma_lock = container_of(kref,
6869 struct hugetlb_vma_lock, refs);
6874 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6876 struct vm_area_struct *vma = vma_lock->vma;
6879 * vma_lock structure may or not be released as a result of put,
6880 * it certainly will no longer be attached to vma so clear pointer.
6881 * Semaphore synchronizes access to vma_lock->vma field.
6883 vma_lock->vma = NULL;
6884 vma->vm_private_data = NULL;
6885 up_write(&vma_lock->rw_sema);
6886 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6889 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6891 if (__vma_shareable_flags_pmd(vma)) {
6892 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6894 __hugetlb_vma_unlock_write_put(vma_lock);
6898 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6901 * Only present in sharable vmas.
6903 if (!vma || !__vma_shareable_flags_pmd(vma))
6906 if (vma->vm_private_data) {
6907 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6909 down_write(&vma_lock->rw_sema);
6910 __hugetlb_vma_unlock_write_put(vma_lock);
6914 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6916 struct hugetlb_vma_lock *vma_lock;
6918 /* Only establish in (flags) sharable vmas */
6919 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6922 /* Should never get here with non-NULL vm_private_data */
6923 if (vma->vm_private_data)
6926 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6929 * If we can not allocate structure, then vma can not
6930 * participate in pmd sharing. This is only a possible
6931 * performance enhancement and memory saving issue.
6932 * However, the lock is also used to synchronize page
6933 * faults with truncation. If the lock is not present,
6934 * unlikely races could leave pages in a file past i_size
6935 * until the file is removed. Warn in the unlikely case of
6936 * allocation failure.
6938 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6942 kref_init(&vma_lock->refs);
6943 init_rwsem(&vma_lock->rw_sema);
6944 vma_lock->vma = vma;
6945 vma->vm_private_data = vma_lock;
6949 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6950 * and returns the corresponding pte. While this is not necessary for the
6951 * !shared pmd case because we can allocate the pmd later as well, it makes the
6952 * code much cleaner. pmd allocation is essential for the shared case because
6953 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6954 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6955 * bad pmd for sharing.
6957 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6958 unsigned long addr, pud_t *pud)
6960 struct address_space *mapping = vma->vm_file->f_mapping;
6961 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6963 struct vm_area_struct *svma;
6964 unsigned long saddr;
6969 i_mmap_lock_read(mapping);
6970 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6974 saddr = page_table_shareable(svma, vma, addr, idx);
6976 spte = huge_pte_offset(svma->vm_mm, saddr,
6977 vma_mmu_pagesize(svma));
6979 get_page(virt_to_page(spte));
6988 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6989 if (pud_none(*pud)) {
6990 pud_populate(mm, pud,
6991 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6994 put_page(virt_to_page(spte));
6998 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6999 i_mmap_unlock_read(mapping);
7004 * unmap huge page backed by shared pte.
7006 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7007 * indicated by page_count > 1, unmap is achieved by clearing pud and
7008 * decrementing the ref count. If count == 1, the pte page is not shared.
7010 * Called with page table lock held.
7012 * returns: 1 successfully unmapped a shared pte page
7013 * 0 the underlying pte page is not shared, or it is the last user
7015 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7016 unsigned long addr, pte_t *ptep)
7018 pgd_t *pgd = pgd_offset(mm, addr);
7019 p4d_t *p4d = p4d_offset(pgd, addr);
7020 pud_t *pud = pud_offset(p4d, addr);
7022 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7023 hugetlb_vma_assert_locked(vma);
7024 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7025 if (page_count(virt_to_page(ptep)) == 1)
7029 put_page(virt_to_page(ptep));
7034 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7036 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7040 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7044 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7048 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7052 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7057 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7061 void hugetlb_vma_lock_release(struct kref *kref)
7065 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7069 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7073 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7077 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7078 unsigned long addr, pud_t *pud)
7083 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7084 unsigned long addr, pte_t *ptep)
7089 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7090 unsigned long *start, unsigned long *end)
7094 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7098 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7100 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7101 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7102 unsigned long addr, unsigned long sz)
7109 pgd = pgd_offset(mm, addr);
7110 p4d = p4d_alloc(mm, pgd, addr);
7113 pud = pud_alloc(mm, p4d, addr);
7115 if (sz == PUD_SIZE) {
7118 BUG_ON(sz != PMD_SIZE);
7119 if (want_pmd_share(vma, addr) && pud_none(*pud))
7120 pte = huge_pmd_share(mm, vma, addr, pud);
7122 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7125 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7131 * huge_pte_offset() - Walk the page table to resolve the hugepage
7132 * entry at address @addr
7134 * Return: Pointer to page table entry (PUD or PMD) for
7135 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7136 * size @sz doesn't match the hugepage size at this level of the page
7139 pte_t *huge_pte_offset(struct mm_struct *mm,
7140 unsigned long addr, unsigned long sz)
7147 pgd = pgd_offset(mm, addr);
7148 if (!pgd_present(*pgd))
7150 p4d = p4d_offset(pgd, addr);
7151 if (!p4d_present(*p4d))
7154 pud = pud_offset(p4d, addr);
7156 /* must be pud huge, non-present or none */
7157 return (pte_t *)pud;
7158 if (!pud_present(*pud))
7160 /* must have a valid entry and size to go further */
7162 pmd = pmd_offset(pud, addr);
7163 /* must be pmd huge, non-present or none */
7164 return (pte_t *)pmd;
7168 * Return a mask that can be used to update an address to the last huge
7169 * page in a page table page mapping size. Used to skip non-present
7170 * page table entries when linearly scanning address ranges. Architectures
7171 * with unique huge page to page table relationships can define their own
7172 * version of this routine.
7174 unsigned long hugetlb_mask_last_page(struct hstate *h)
7176 unsigned long hp_size = huge_page_size(h);
7178 if (hp_size == PUD_SIZE)
7179 return P4D_SIZE - PUD_SIZE;
7180 else if (hp_size == PMD_SIZE)
7181 return PUD_SIZE - PMD_SIZE;
7188 /* See description above. Architectures can provide their own version. */
7189 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7191 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7192 if (huge_page_size(h) == PMD_SIZE)
7193 return PUD_SIZE - PMD_SIZE;
7198 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7201 * These functions are overwritable if your architecture needs its own
7204 struct page * __weak
7205 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7208 return ERR_PTR(-EINVAL);
7211 struct page * __weak
7212 follow_huge_pd(struct vm_area_struct *vma,
7213 unsigned long address, hugepd_t hpd, int flags, int pdshift)
7215 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7219 struct page * __weak
7220 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7222 struct hstate *h = hstate_vma(vma);
7223 struct mm_struct *mm = vma->vm_mm;
7224 struct page *page = NULL;
7229 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7230 * follow_hugetlb_page().
7232 if (WARN_ON_ONCE(flags & FOLL_PIN))
7236 ptep = huge_pte_offset(mm, address, huge_page_size(h));
7240 ptl = huge_pte_lock(h, mm, ptep);
7241 pte = huge_ptep_get(ptep);
7242 if (pte_present(pte)) {
7243 page = pte_page(pte) +
7244 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7246 * try_grab_page() should always succeed here, because: a) we
7247 * hold the pmd (ptl) lock, and b) we've just checked that the
7248 * huge pmd (head) page is present in the page tables. The ptl
7249 * prevents the head page and tail pages from being rearranged
7250 * in any way. So this page must be available at this point,
7251 * unless the page refcount overflowed:
7253 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7258 if (is_hugetlb_entry_migration(pte)) {
7260 __migration_entry_wait_huge(ptep, ptl);
7264 * hwpoisoned entry is treated as no_page_table in
7265 * follow_page_mask().
7273 struct page * __weak
7274 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7275 pud_t *pud, int flags)
7277 struct page *page = NULL;
7281 if (WARN_ON_ONCE(flags & FOLL_PIN))
7285 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7286 if (!pud_huge(*pud))
7288 pte = huge_ptep_get((pte_t *)pud);
7289 if (pte_present(pte)) {
7290 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7291 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7296 if (is_hugetlb_entry_migration(pte)) {
7298 __migration_entry_wait(mm, (pte_t *)pud, ptl);
7302 * hwpoisoned entry is treated as no_page_table in
7303 * follow_page_mask().
7311 struct page * __weak
7312 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7314 if (flags & (FOLL_GET | FOLL_PIN))
7317 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7320 int isolate_hugetlb(struct page *page, struct list_head *list)
7324 spin_lock_irq(&hugetlb_lock);
7325 if (!PageHeadHuge(page) ||
7326 !HPageMigratable(page) ||
7327 !get_page_unless_zero(page)) {
7331 ClearHPageMigratable(page);
7332 list_move_tail(&page->lru, list);
7334 spin_unlock_irq(&hugetlb_lock);
7338 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7343 spin_lock_irq(&hugetlb_lock);
7344 if (PageHeadHuge(page)) {
7346 if (HPageFreed(page))
7348 else if (HPageMigratable(page))
7349 ret = get_page_unless_zero(page);
7353 spin_unlock_irq(&hugetlb_lock);
7357 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7361 spin_lock_irq(&hugetlb_lock);
7362 ret = __get_huge_page_for_hwpoison(pfn, flags);
7363 spin_unlock_irq(&hugetlb_lock);
7367 void putback_active_hugepage(struct page *page)
7369 spin_lock_irq(&hugetlb_lock);
7370 SetHPageMigratable(page);
7371 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7372 spin_unlock_irq(&hugetlb_lock);
7376 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7378 struct hstate *h = page_hstate(oldpage);
7380 hugetlb_cgroup_migrate(oldpage, newpage);
7381 set_page_owner_migrate_reason(newpage, reason);
7384 * transfer temporary state of the new huge page. This is
7385 * reverse to other transitions because the newpage is going to
7386 * be final while the old one will be freed so it takes over
7387 * the temporary status.
7389 * Also note that we have to transfer the per-node surplus state
7390 * here as well otherwise the global surplus count will not match
7393 if (HPageTemporary(newpage)) {
7394 int old_nid = page_to_nid(oldpage);
7395 int new_nid = page_to_nid(newpage);
7397 SetHPageTemporary(oldpage);
7398 ClearHPageTemporary(newpage);
7401 * There is no need to transfer the per-node surplus state
7402 * when we do not cross the node.
7404 if (new_nid == old_nid)
7406 spin_lock_irq(&hugetlb_lock);
7407 if (h->surplus_huge_pages_node[old_nid]) {
7408 h->surplus_huge_pages_node[old_nid]--;
7409 h->surplus_huge_pages_node[new_nid]++;
7411 spin_unlock_irq(&hugetlb_lock);
7416 * This function will unconditionally remove all the shared pmd pgtable entries
7417 * within the specific vma for a hugetlbfs memory range.
7419 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7421 struct hstate *h = hstate_vma(vma);
7422 unsigned long sz = huge_page_size(h);
7423 struct mm_struct *mm = vma->vm_mm;
7424 struct mmu_notifier_range range;
7425 unsigned long address, start, end;
7429 if (!(vma->vm_flags & VM_MAYSHARE))
7432 start = ALIGN(vma->vm_start, PUD_SIZE);
7433 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7438 flush_cache_range(vma, start, end);
7440 * No need to call adjust_range_if_pmd_sharing_possible(), because
7441 * we have already done the PUD_SIZE alignment.
7443 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7445 mmu_notifier_invalidate_range_start(&range);
7446 hugetlb_vma_lock_write(vma);
7447 i_mmap_lock_write(vma->vm_file->f_mapping);
7448 for (address = start; address < end; address += PUD_SIZE) {
7449 ptep = huge_pte_offset(mm, address, sz);
7452 ptl = huge_pte_lock(h, mm, ptep);
7453 huge_pmd_unshare(mm, vma, address, ptep);
7456 flush_hugetlb_tlb_range(vma, start, end);
7457 i_mmap_unlock_write(vma->vm_file->f_mapping);
7458 hugetlb_vma_unlock_write(vma);
7460 * No need to call mmu_notifier_invalidate_range(), see
7461 * Documentation/mm/mmu_notifier.rst.
7463 mmu_notifier_invalidate_range_end(&range);
7467 static bool cma_reserve_called __initdata;
7469 static int __init cmdline_parse_hugetlb_cma(char *p)
7476 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7479 if (s[count] == ':') {
7480 if (tmp >= MAX_NUMNODES)
7482 nid = array_index_nospec(tmp, MAX_NUMNODES);
7485 tmp = memparse(s, &s);
7486 hugetlb_cma_size_in_node[nid] = tmp;
7487 hugetlb_cma_size += tmp;
7490 * Skip the separator if have one, otherwise
7491 * break the parsing.
7498 hugetlb_cma_size = memparse(p, &p);
7506 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7508 void __init hugetlb_cma_reserve(int order)
7510 unsigned long size, reserved, per_node;
7511 bool node_specific_cma_alloc = false;
7514 cma_reserve_called = true;
7516 if (!hugetlb_cma_size)
7519 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7520 if (hugetlb_cma_size_in_node[nid] == 0)
7523 if (!node_online(nid)) {
7524 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7525 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7526 hugetlb_cma_size_in_node[nid] = 0;
7530 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7531 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7532 nid, (PAGE_SIZE << order) / SZ_1M);
7533 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7534 hugetlb_cma_size_in_node[nid] = 0;
7536 node_specific_cma_alloc = true;
7540 /* Validate the CMA size again in case some invalid nodes specified. */
7541 if (!hugetlb_cma_size)
7544 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7545 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7546 (PAGE_SIZE << order) / SZ_1M);
7547 hugetlb_cma_size = 0;
7551 if (!node_specific_cma_alloc) {
7553 * If 3 GB area is requested on a machine with 4 numa nodes,
7554 * let's allocate 1 GB on first three nodes and ignore the last one.
7556 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7557 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7558 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7562 for_each_online_node(nid) {
7564 char name[CMA_MAX_NAME];
7566 if (node_specific_cma_alloc) {
7567 if (hugetlb_cma_size_in_node[nid] == 0)
7570 size = hugetlb_cma_size_in_node[nid];
7572 size = min(per_node, hugetlb_cma_size - reserved);
7575 size = round_up(size, PAGE_SIZE << order);
7577 snprintf(name, sizeof(name), "hugetlb%d", nid);
7579 * Note that 'order per bit' is based on smallest size that
7580 * may be returned to CMA allocator in the case of
7581 * huge page demotion.
7583 res = cma_declare_contiguous_nid(0, size, 0,
7584 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7586 &hugetlb_cma[nid], nid);
7588 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7594 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7597 if (reserved >= hugetlb_cma_size)
7603 * hugetlb_cma_size is used to determine if allocations from
7604 * cma are possible. Set to zero if no cma regions are set up.
7606 hugetlb_cma_size = 0;
7609 static void __init hugetlb_cma_check(void)
7611 if (!hugetlb_cma_size || cma_reserve_called)
7614 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7617 #endif /* CONFIG_CMA */