2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
30 #include <asm/pgtable.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
45 * Minimum page order among possible hugepage sizes, set to a proper value
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 __initdata LIST_HEAD(huge_boot_pages);
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 spin_unlock(&spool->lock);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 struct hugepage_subpool *spool;
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 spin_lock_init(&spool->lock);
102 spool->max_hpages = max_hpages;
104 spool->min_hpages = min_hpages;
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 spool->rsv_hpages = min_hpages;
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
120 unlock_or_release_subpool(spool);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
139 spin_lock(&spool->lock);
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
166 spin_unlock(&spool->lock);
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
184 spin_lock(&spool->lock);
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool);
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 return HUGETLBFS_SB(inode->i_sb)->spool;
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 return subpool_inode(file_inode(vma->vm_file));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
240 struct list_head link;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map *resv, long f, long t)
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 list_del(&nrg->link);
287 list_add(&nrg->link, rg->link.prev);
293 /* Round our left edge to the current segment if it encloses us. */
297 /* Check for and consume any regions we now overlap with. */
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add -= (rg->to - rg->from);
321 add += (nrg->from - f); /* Added to beginning of region */
323 add += t - nrg->to; /* Added to end of region */
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map *resv, long f, long t)
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
362 spin_lock(&resv->lock);
364 resv->adds_in_progress++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
408 INIT_LIST_HEAD(&nrg->link);
412 list_add(&nrg->link, rg->link.prev);
417 /* Round our left edge to the current segment if it encloses us. */
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
436 chg -= rg->to - rg->from;
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
445 spin_unlock(&resv->lock);
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map *resv, long f, long t)
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map *resv, long f, long t)
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
505 if (f > rg->from && t < rg->to) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
515 list_del(&nrg->link);
516 resv->region_cache_count--;
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
529 /* New entry for end of split region */
532 INIT_LIST_HEAD(&nrg->link);
534 /* Original entry is trimmed */
537 list_add(&nrg->link, &rg->link);
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
549 if (f <= rg->from) { /* Trim beginning of region */
552 } else { /* Trim end of region */
558 spin_unlock(&resv->lock);
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
572 void hugetlb_fix_reserve_counts(struct inode *inode)
574 struct hugepage_subpool *spool = subpool_inode(inode);
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 struct hstate *h = hstate_inode(inode);
581 hugetlb_acct_memory(h, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map *resv, long f, long t)
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
609 chg += seg_to - seg_from;
611 spin_unlock(&resv->lock);
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 return vma_kernel_pagesize(vma);
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 return (unsigned long)vma->vm_private_data;
690 static void set_vma_private_data(struct vm_area_struct *vma,
693 vma->vm_private_data = (void *)value;
696 struct resv_map *resv_map_alloc(void)
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 if (!resv_map || !rg) {
707 kref_init(&resv_map->refs);
708 spin_lock_init(&resv_map->lock);
709 INIT_LIST_HEAD(&resv_map->regions);
711 resv_map->adds_in_progress = 0;
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
720 void resv_map_release(struct kref *ref)
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map, 0, LONG_MAX);
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
735 VM_BUG_ON(resv_map->adds_in_progress);
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 return inode->i_mapping->private_data;
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
752 return inode_resv_map(inode);
755 return (struct resv_map *)(get_vma_private_data(vma) &
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 return (get_vma_private_data(vma) & flag) != 0;
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 if (!(vma->vm_flags & VM_MAYSHARE))
789 vma->vm_private_data = (void *)0;
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 if (vma->vm_flags & VM_NORESERVE) {
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 /* Shared mappings always use reserves */
812 if (vma->vm_flags & VM_MAYSHARE) {
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
827 * Only the process that called mmap() has reserves for
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 int nid = page_to_nid(page);
858 list_move(&page->lru, &h->hugepage_freelists[nid]);
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 if (!PageHWPoison(page))
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
874 if (&h->hugepage_freelists[nid] == &page->lru)
876 list_move(&page->lru, &h->hugepage_activelist);
877 set_page_refcounted(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
892 zonelist = node_zonelist(nid, gfp_mask);
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
899 if (!cpuset_zone_allowed(zone, gfp_mask))
902 * no need to ask again on the same node. Pool is node rather than
905 if (zone_to_nid(zone) == node)
907 node = zone_to_nid(zone);
909 page = dequeue_huge_page_node_exact(h, node);
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 if (hugepage_migration_supported(h))
923 return GFP_HIGHUSER_MOVABLE;
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
930 unsigned long address, int avoid_reserve,
934 struct mempolicy *mpol;
936 nodemask_t *nodemask;
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
944 if (!vma_has_reserves(vma, chg) &&
945 h->free_huge_pages - h->resv_huge_pages == 0)
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 nid = next_node_in(nid, *nodes_allowed);
977 VM_BUG_ON(nid >= MAX_NUMNODES);
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
1000 VM_BUG_ON(!nodes_allowed);
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1018 VM_BUG_ON(!nodes_allowed);
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1046 atomic_set(compound_mapcount_ptr(page), 0);
1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 clear_compound_head(p);
1049 set_page_refcounted(p);
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1058 free_contig_range(page_to_pfn(page), 1 << order);
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 unsigned long nr_pages, gfp_t gfp_mask)
1064 unsigned long end_pfn = start_pfn + nr_pages;
1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1075 for (i = start_pfn; i < end_pfn; i++) {
1079 page = pfn_to_page(i);
1081 if (page_zone(page) != z)
1084 if (PageReserved(page))
1087 if (page_count(page) > 0)
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
1107 unsigned int order = huge_page_order(h);
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
1110 struct zonelist *zonelist;
1114 zonelist = node_zonelist(nid, gfp_mask);
1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 spin_lock_irqsave(&zone->lock, flags);
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131 return pfn_to_page(pfn);
1132 spin_lock_irqsave(&zone->lock, flags);
1137 spin_unlock_irqrestore(&zone->lock, flags);
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152 unsigned int order) { }
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
1167 1 << PG_active | 1 << PG_private |
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 set_page_refcounted(page);
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1177 __free_pages(page, huge_page_order(h));
1181 struct hstate *size_to_hstate(unsigned long size)
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1196 * This function can be called for tail pages, but never returns true for them.
1198 bool page_huge_active(struct page *page)
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1211 static void clear_page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1221 static inline bool PageHugeTemporary(struct page *page)
1223 if (!PageHuge(page))
1226 return (unsigned long)page[2].mapping == -1U;
1229 static inline void SetPageHugeTemporary(struct page *page)
1231 page[2].mapping = (void *)-1U;
1234 static inline void ClearPageHugeTemporary(struct page *page)
1236 page[2].mapping = NULL;
1239 void free_huge_page(struct page *page)
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1245 struct hstate *h = page_hstate(page);
1246 int nid = page_to_nid(page);
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
1249 bool restore_reserve;
1251 set_page_private(page, 0);
1252 page->mapping = NULL;
1253 VM_BUG_ON_PAGE(page_count(page), page);
1254 VM_BUG_ON_PAGE(page_mapcount(page), page);
1255 restore_reserve = PagePrivate(page);
1256 ClearPagePrivate(page);
1259 * A return code of zero implies that the subpool will be under its
1260 * minimum size if the reservation is not restored after page is free.
1261 * Therefore, force restore_reserve operation.
1263 if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 restore_reserve = true;
1266 spin_lock(&hugetlb_lock);
1267 clear_page_huge_active(page);
1268 hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 pages_per_huge_page(h), page);
1270 if (restore_reserve)
1271 h->resv_huge_pages++;
1273 if (PageHugeTemporary(page)) {
1274 list_del(&page->lru);
1275 ClearPageHugeTemporary(page);
1276 update_and_free_page(h, page);
1277 } else if (h->surplus_huge_pages_node[nid]) {
1278 /* remove the page from active list */
1279 list_del(&page->lru);
1280 update_and_free_page(h, page);
1281 h->surplus_huge_pages--;
1282 h->surplus_huge_pages_node[nid]--;
1284 arch_clear_hugepage_flags(page);
1285 enqueue_huge_page(h, page);
1287 spin_unlock(&hugetlb_lock);
1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1292 INIT_LIST_HEAD(&page->lru);
1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294 spin_lock(&hugetlb_lock);
1295 set_hugetlb_cgroup(page, NULL);
1297 h->nr_huge_pages_node[nid]++;
1298 spin_unlock(&hugetlb_lock);
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 int nr_pages = 1 << order;
1305 struct page *p = page + 1;
1307 /* we rely on prep_new_huge_page to set the destructor */
1308 set_compound_order(page, order);
1309 __ClearPageReserved(page);
1310 __SetPageHead(page);
1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1313 * For gigantic hugepages allocated through bootmem at
1314 * boot, it's safer to be consistent with the not-gigantic
1315 * hugepages and clear the PG_reserved bit from all tail pages
1316 * too. Otherwse drivers using get_user_pages() to access tail
1317 * pages may get the reference counting wrong if they see
1318 * PG_reserved set on a tail page (despite the head page not
1319 * having PG_reserved set). Enforcing this consistency between
1320 * head and tail pages allows drivers to optimize away a check
1321 * on the head page when they need know if put_page() is needed
1322 * after get_user_pages().
1324 __ClearPageReserved(p);
1325 set_page_count(p, 0);
1326 set_compound_head(p, page);
1328 atomic_set(compound_mapcount_ptr(page), -1);
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages. See the PageTransHuge() documentation for more
1336 int PageHuge(struct page *page)
1338 if (!PageCompound(page))
1341 page = compound_head(page);
1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1344 EXPORT_SYMBOL_GPL(PageHuge);
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1350 int PageHeadHuge(struct page *page_head)
1352 if (!PageHead(page_head))
1355 return get_compound_page_dtor(page_head) == free_huge_page;
1358 pgoff_t __basepage_index(struct page *page)
1360 struct page *page_head = compound_head(page);
1361 pgoff_t index = page_index(page_head);
1362 unsigned long compound_idx;
1364 if (!PageHuge(page_head))
1365 return page_index(page);
1367 if (compound_order(page_head) >= MAX_ORDER)
1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1370 compound_idx = page - page_head;
1372 return (index << compound_order(page_head)) + compound_idx;
1375 static struct page *alloc_buddy_huge_page(struct hstate *h,
1376 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1378 int order = huge_page_order(h);
1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 if (nid == NUMA_NO_NODE)
1383 nid = numa_mem_id();
1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1386 __count_vm_event(HTLB_BUDDY_PGALLOC);
1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1397 static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1402 if (hstate_is_gigantic(h))
1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1405 page = alloc_buddy_huge_page(h, gfp_mask,
1410 if (hstate_is_gigantic(h))
1411 prep_compound_gigantic_page(page, huge_page_order(h));
1412 prep_new_huge_page(h, page, page_to_nid(page));
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1436 put_page(page); /* free it into the hugepage allocator */
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1455 * If we're returning unused surplus pages, only examine
1456 * nodes with surplus pages.
1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 !list_empty(&h->hugepage_freelists[node])) {
1461 list_entry(h->hugepage_freelists[node].next,
1463 list_del(&page->lru);
1464 h->free_huge_pages--;
1465 h->free_huge_pages_node[node]--;
1467 h->surplus_huge_pages--;
1468 h->surplus_huge_pages_node[node]--;
1470 update_and_free_page(h, page);
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * dissolution fails because a give page is not a free hugepage, or because
1483 * free hugepages are fully reserved.
1485 int dissolve_free_huge_page(struct page *page)
1489 spin_lock(&hugetlb_lock);
1490 if (PageHuge(page) && !page_count(page)) {
1491 struct page *head = compound_head(page);
1492 struct hstate *h = page_hstate(head);
1493 int nid = page_to_nid(head);
1494 if (h->free_huge_pages - h->resv_huge_pages == 0)
1497 * Move PageHWPoison flag from head page to the raw error page,
1498 * which makes any subpages rather than the error page reusable.
1500 if (PageHWPoison(head) && page != head) {
1501 SetPageHWPoison(page);
1502 ClearPageHWPoison(head);
1504 list_del(&head->lru);
1505 h->free_huge_pages--;
1506 h->free_huge_pages_node[nid]--;
1507 h->max_huge_pages--;
1508 update_and_free_page(h, head);
1512 spin_unlock(&hugetlb_lock);
1517 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1518 * make specified memory blocks removable from the system.
1519 * Note that this will dissolve a free gigantic hugepage completely, if any
1520 * part of it lies within the given range.
1521 * Also note that if dissolve_free_huge_page() returns with an error, all
1522 * free hugepages that were dissolved before that error are lost.
1524 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1530 if (!hugepages_supported())
1533 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1534 page = pfn_to_page(pfn);
1535 if (PageHuge(page) && !page_count(page)) {
1536 rc = dissolve_free_huge_page(page);
1546 * Allocates a fresh surplus page from the page allocator.
1548 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1549 int nid, nodemask_t *nmask)
1551 struct page *page = NULL;
1553 if (hstate_is_gigantic(h))
1556 spin_lock(&hugetlb_lock);
1557 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 spin_unlock(&hugetlb_lock);
1561 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1565 spin_lock(&hugetlb_lock);
1567 * We could have raced with the pool size change.
1568 * Double check that and simply deallocate the new page
1569 * if we would end up overcommiting the surpluses. Abuse
1570 * temporary page to workaround the nasty free_huge_page
1573 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1574 SetPageHugeTemporary(page);
1578 h->surplus_huge_pages++;
1579 h->surplus_huge_pages_node[page_to_nid(page)]++;
1583 spin_unlock(&hugetlb_lock);
1588 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1589 int nid, nodemask_t *nmask)
1593 if (hstate_is_gigantic(h))
1596 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1601 * We do not account these pages as surplus because they are only
1602 * temporary and will be released properly on the last reference
1604 SetPageHugeTemporary(page);
1610 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614 struct vm_area_struct *vma, unsigned long addr)
1617 struct mempolicy *mpol;
1618 gfp_t gfp_mask = htlb_alloc_mask(h);
1620 nodemask_t *nodemask;
1622 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1623 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1624 mpol_cond_put(mpol);
1629 /* page migration callback function */
1630 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632 gfp_t gfp_mask = htlb_alloc_mask(h);
1633 struct page *page = NULL;
1635 if (nid != NUMA_NO_NODE)
1636 gfp_mask |= __GFP_THISNODE;
1638 spin_lock(&hugetlb_lock);
1639 if (h->free_huge_pages - h->resv_huge_pages > 0)
1640 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641 spin_unlock(&hugetlb_lock);
1644 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1649 /* page migration callback function */
1650 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1653 gfp_t gfp_mask = htlb_alloc_mask(h);
1655 spin_lock(&hugetlb_lock);
1656 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1659 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 spin_unlock(&hugetlb_lock);
1665 spin_unlock(&hugetlb_lock);
1667 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1670 /* mempolicy aware migration callback */
1671 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1672 unsigned long address)
1674 struct mempolicy *mpol;
1675 nodemask_t *nodemask;
1680 gfp_mask = htlb_alloc_mask(h);
1681 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1682 page = alloc_huge_page_nodemask(h, node, nodemask);
1683 mpol_cond_put(mpol);
1689 * Increase the hugetlb pool such that it can accommodate a reservation
1692 static int gather_surplus_pages(struct hstate *h, int delta)
1694 struct list_head surplus_list;
1695 struct page *page, *tmp;
1697 int needed, allocated;
1698 bool alloc_ok = true;
1700 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 h->resv_huge_pages += delta;
1707 INIT_LIST_HEAD(&surplus_list);
1711 spin_unlock(&hugetlb_lock);
1712 for (i = 0; i < needed; i++) {
1713 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1714 NUMA_NO_NODE, NULL);
1719 list_add(&page->lru, &surplus_list);
1725 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 * because either resv_huge_pages or free_huge_pages may have changed.
1728 spin_lock(&hugetlb_lock);
1729 needed = (h->resv_huge_pages + delta) -
1730 (h->free_huge_pages + allocated);
1735 * We were not able to allocate enough pages to
1736 * satisfy the entire reservation so we free what
1737 * we've allocated so far.
1742 * The surplus_list now contains _at_least_ the number of extra pages
1743 * needed to accommodate the reservation. Add the appropriate number
1744 * of pages to the hugetlb pool and free the extras back to the buddy
1745 * allocator. Commit the entire reservation here to prevent another
1746 * process from stealing the pages as they are added to the pool but
1747 * before they are reserved.
1749 needed += allocated;
1750 h->resv_huge_pages += delta;
1753 /* Free the needed pages to the hugetlb pool */
1754 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1758 * This page is now managed by the hugetlb allocator and has
1759 * no users -- drop the buddy allocator's reference.
1761 put_page_testzero(page);
1762 VM_BUG_ON_PAGE(page_count(page), page);
1763 enqueue_huge_page(h, page);
1766 spin_unlock(&hugetlb_lock);
1768 /* Free unnecessary surplus pages to the buddy allocator */
1769 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 spin_lock(&hugetlb_lock);
1777 * This routine has two main purposes:
1778 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779 * in unused_resv_pages. This corresponds to the prior adjustments made
1780 * to the associated reservation map.
1781 * 2) Free any unused surplus pages that may have been allocated to satisfy
1782 * the reservation. As many as unused_resv_pages may be freed.
1784 * Called with hugetlb_lock held. However, the lock could be dropped (and
1785 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1786 * we must make sure nobody else can claim pages we are in the process of
1787 * freeing. Do this by ensuring resv_huge_page always is greater than the
1788 * number of huge pages we plan to free when dropping the lock.
1790 static void return_unused_surplus_pages(struct hstate *h,
1791 unsigned long unused_resv_pages)
1793 unsigned long nr_pages;
1795 /* Cannot return gigantic pages currently */
1796 if (hstate_is_gigantic(h))
1800 * Part (or even all) of the reservation could have been backed
1801 * by pre-allocated pages. Only free surplus pages.
1803 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806 * We want to release as many surplus pages as possible, spread
1807 * evenly across all nodes with memory. Iterate across these nodes
1808 * until we can no longer free unreserved surplus pages. This occurs
1809 * when the nodes with surplus pages have no free pages.
1810 * free_pool_huge_page() will balance the the freed pages across the
1811 * on-line nodes with memory and will handle the hstate accounting.
1813 * Note that we decrement resv_huge_pages as we free the pages. If
1814 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 * to cover subsequent pages we may free.
1817 while (nr_pages--) {
1818 h->resv_huge_pages--;
1819 unused_resv_pages--;
1820 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 cond_resched_lock(&hugetlb_lock);
1826 /* Fully uncommit the reservation */
1827 h->resv_huge_pages -= unused_resv_pages;
1832 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833 * are used by the huge page allocation routines to manage reservations.
1835 * vma_needs_reservation is called to determine if the huge page at addr
1836 * within the vma has an associated reservation. If a reservation is
1837 * needed, the value 1 is returned. The caller is then responsible for
1838 * managing the global reservation and subpool usage counts. After
1839 * the huge page has been allocated, vma_commit_reservation is called
1840 * to add the page to the reservation map. If the page allocation fails,
1841 * the reservation must be ended instead of committed. vma_end_reservation
1842 * is called in such cases.
1844 * In the normal case, vma_commit_reservation returns the same value
1845 * as the preceding vma_needs_reservation call. The only time this
1846 * is not the case is if a reserve map was changed between calls. It
1847 * is the responsibility of the caller to notice the difference and
1848 * take appropriate action.
1850 * vma_add_reservation is used in error paths where a reservation must
1851 * be restored when a newly allocated huge page must be freed. It is
1852 * to be called after calling vma_needs_reservation to determine if a
1853 * reservation exists.
1855 enum vma_resv_mode {
1861 static long __vma_reservation_common(struct hstate *h,
1862 struct vm_area_struct *vma, unsigned long addr,
1863 enum vma_resv_mode mode)
1865 struct resv_map *resv;
1869 resv = vma_resv_map(vma);
1873 idx = vma_hugecache_offset(h, vma, addr);
1875 case VMA_NEEDS_RESV:
1876 ret = region_chg(resv, idx, idx + 1);
1878 case VMA_COMMIT_RESV:
1879 ret = region_add(resv, idx, idx + 1);
1882 region_abort(resv, idx, idx + 1);
1886 if (vma->vm_flags & VM_MAYSHARE)
1887 ret = region_add(resv, idx, idx + 1);
1889 region_abort(resv, idx, idx + 1);
1890 ret = region_del(resv, idx, idx + 1);
1897 if (vma->vm_flags & VM_MAYSHARE)
1899 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 * In most cases, reserves always exist for private mappings.
1902 * However, a file associated with mapping could have been
1903 * hole punched or truncated after reserves were consumed.
1904 * As subsequent fault on such a range will not use reserves.
1905 * Subtle - The reserve map for private mappings has the
1906 * opposite meaning than that of shared mappings. If NO
1907 * entry is in the reserve map, it means a reservation exists.
1908 * If an entry exists in the reserve map, it means the
1909 * reservation has already been consumed. As a result, the
1910 * return value of this routine is the opposite of the
1911 * value returned from reserve map manipulation routines above.
1919 return ret < 0 ? ret : 0;
1922 static long vma_needs_reservation(struct hstate *h,
1923 struct vm_area_struct *vma, unsigned long addr)
1925 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928 static long vma_commit_reservation(struct hstate *h,
1929 struct vm_area_struct *vma, unsigned long addr)
1931 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934 static void vma_end_reservation(struct hstate *h,
1935 struct vm_area_struct *vma, unsigned long addr)
1937 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 static long vma_add_reservation(struct hstate *h,
1941 struct vm_area_struct *vma, unsigned long addr)
1943 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1947 * This routine is called to restore a reservation on error paths. In the
1948 * specific error paths, a huge page was allocated (via alloc_huge_page)
1949 * and is about to be freed. If a reservation for the page existed,
1950 * alloc_huge_page would have consumed the reservation and set PagePrivate
1951 * in the newly allocated page. When the page is freed via free_huge_page,
1952 * the global reservation count will be incremented if PagePrivate is set.
1953 * However, free_huge_page can not adjust the reserve map. Adjust the
1954 * reserve map here to be consistent with global reserve count adjustments
1955 * to be made by free_huge_page.
1957 static void restore_reserve_on_error(struct hstate *h,
1958 struct vm_area_struct *vma, unsigned long address,
1961 if (unlikely(PagePrivate(page))) {
1962 long rc = vma_needs_reservation(h, vma, address);
1964 if (unlikely(rc < 0)) {
1966 * Rare out of memory condition in reserve map
1967 * manipulation. Clear PagePrivate so that
1968 * global reserve count will not be incremented
1969 * by free_huge_page. This will make it appear
1970 * as though the reservation for this page was
1971 * consumed. This may prevent the task from
1972 * faulting in the page at a later time. This
1973 * is better than inconsistent global huge page
1974 * accounting of reserve counts.
1976 ClearPagePrivate(page);
1978 rc = vma_add_reservation(h, vma, address);
1979 if (unlikely(rc < 0))
1981 * See above comment about rare out of
1984 ClearPagePrivate(page);
1986 vma_end_reservation(h, vma, address);
1990 struct page *alloc_huge_page(struct vm_area_struct *vma,
1991 unsigned long addr, int avoid_reserve)
1993 struct hugepage_subpool *spool = subpool_vma(vma);
1994 struct hstate *h = hstate_vma(vma);
1996 long map_chg, map_commit;
1999 struct hugetlb_cgroup *h_cg;
2001 idx = hstate_index(h);
2003 * Examine the region/reserve map to determine if the process
2004 * has a reservation for the page to be allocated. A return
2005 * code of zero indicates a reservation exists (no change).
2007 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 return ERR_PTR(-ENOMEM);
2012 * Processes that did not create the mapping will have no
2013 * reserves as indicated by the region/reserve map. Check
2014 * that the allocation will not exceed the subpool limit.
2015 * Allocations for MAP_NORESERVE mappings also need to be
2016 * checked against any subpool limit.
2018 if (map_chg || avoid_reserve) {
2019 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 vma_end_reservation(h, vma, addr);
2022 return ERR_PTR(-ENOSPC);
2026 * Even though there was no reservation in the region/reserve
2027 * map, there could be reservations associated with the
2028 * subpool that can be used. This would be indicated if the
2029 * return value of hugepage_subpool_get_pages() is zero.
2030 * However, if avoid_reserve is specified we still avoid even
2031 * the subpool reservations.
2037 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 goto out_subpool_put;
2041 spin_lock(&hugetlb_lock);
2043 * glb_chg is passed to indicate whether or not a page must be taken
2044 * from the global free pool (global change). gbl_chg == 0 indicates
2045 * a reservation exists for the allocation.
2047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 spin_unlock(&hugetlb_lock);
2050 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 goto out_uncharge_cgroup;
2053 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054 SetPagePrivate(page);
2055 h->resv_huge_pages--;
2057 spin_lock(&hugetlb_lock);
2058 list_move(&page->lru, &h->hugepage_activelist);
2061 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062 spin_unlock(&hugetlb_lock);
2064 set_page_private(page, (unsigned long)spool);
2066 map_commit = vma_commit_reservation(h, vma, addr);
2067 if (unlikely(map_chg > map_commit)) {
2069 * The page was added to the reservation map between
2070 * vma_needs_reservation and vma_commit_reservation.
2071 * This indicates a race with hugetlb_reserve_pages.
2072 * Adjust for the subpool count incremented above AND
2073 * in hugetlb_reserve_pages for the same page. Also,
2074 * the reservation count added in hugetlb_reserve_pages
2075 * no longer applies.
2079 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080 hugetlb_acct_memory(h, -rsv_adjust);
2084 out_uncharge_cgroup:
2085 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 if (map_chg || avoid_reserve)
2088 hugepage_subpool_put_pages(spool, 1);
2089 vma_end_reservation(h, vma, addr);
2090 return ERR_PTR(-ENOSPC);
2093 int alloc_bootmem_huge_page(struct hstate *h)
2094 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2095 int __alloc_bootmem_huge_page(struct hstate *h)
2097 struct huge_bootmem_page *m;
2100 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2103 addr = memblock_virt_alloc_try_nid_raw(
2104 huge_page_size(h), huge_page_size(h),
2105 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2108 * Use the beginning of the huge page to store the
2109 * huge_bootmem_page struct (until gather_bootmem
2110 * puts them into the mem_map).
2119 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2120 /* Put them into a private list first because mem_map is not up yet */
2121 INIT_LIST_HEAD(&m->list);
2122 list_add(&m->list, &huge_boot_pages);
2127 static void __init prep_compound_huge_page(struct page *page,
2130 if (unlikely(order > (MAX_ORDER - 1)))
2131 prep_compound_gigantic_page(page, order);
2133 prep_compound_page(page, order);
2136 /* Put bootmem huge pages into the standard lists after mem_map is up */
2137 static void __init gather_bootmem_prealloc(void)
2139 struct huge_bootmem_page *m;
2141 list_for_each_entry(m, &huge_boot_pages, list) {
2142 struct page *page = virt_to_page(m);
2143 struct hstate *h = m->hstate;
2145 WARN_ON(page_count(page) != 1);
2146 prep_compound_huge_page(page, h->order);
2147 WARN_ON(PageReserved(page));
2148 prep_new_huge_page(h, page, page_to_nid(page));
2149 put_page(page); /* free it into the hugepage allocator */
2152 * If we had gigantic hugepages allocated at boot time, we need
2153 * to restore the 'stolen' pages to totalram_pages in order to
2154 * fix confusing memory reports from free(1) and another
2155 * side-effects, like CommitLimit going negative.
2157 if (hstate_is_gigantic(h))
2158 adjust_managed_page_count(page, 1 << h->order);
2163 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2167 for (i = 0; i < h->max_huge_pages; ++i) {
2168 if (hstate_is_gigantic(h)) {
2169 if (!alloc_bootmem_huge_page(h))
2171 } else if (!alloc_pool_huge_page(h,
2172 &node_states[N_MEMORY]))
2176 if (i < h->max_huge_pages) {
2179 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2180 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2181 h->max_huge_pages, buf, i);
2182 h->max_huge_pages = i;
2186 static void __init hugetlb_init_hstates(void)
2190 for_each_hstate(h) {
2191 if (minimum_order > huge_page_order(h))
2192 minimum_order = huge_page_order(h);
2194 /* oversize hugepages were init'ed in early boot */
2195 if (!hstate_is_gigantic(h))
2196 hugetlb_hstate_alloc_pages(h);
2198 VM_BUG_ON(minimum_order == UINT_MAX);
2201 static void __init report_hugepages(void)
2205 for_each_hstate(h) {
2208 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2209 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2210 buf, h->free_huge_pages);
2214 #ifdef CONFIG_HIGHMEM
2215 static void try_to_free_low(struct hstate *h, unsigned long count,
2216 nodemask_t *nodes_allowed)
2220 if (hstate_is_gigantic(h))
2223 for_each_node_mask(i, *nodes_allowed) {
2224 struct page *page, *next;
2225 struct list_head *freel = &h->hugepage_freelists[i];
2226 list_for_each_entry_safe(page, next, freel, lru) {
2227 if (count >= h->nr_huge_pages)
2229 if (PageHighMem(page))
2231 list_del(&page->lru);
2232 update_and_free_page(h, page);
2233 h->free_huge_pages--;
2234 h->free_huge_pages_node[page_to_nid(page)]--;
2239 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2240 nodemask_t *nodes_allowed)
2246 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2247 * balanced by operating on them in a round-robin fashion.
2248 * Returns 1 if an adjustment was made.
2250 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2255 VM_BUG_ON(delta != -1 && delta != 1);
2258 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2259 if (h->surplus_huge_pages_node[node])
2263 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264 if (h->surplus_huge_pages_node[node] <
2265 h->nr_huge_pages_node[node])
2272 h->surplus_huge_pages += delta;
2273 h->surplus_huge_pages_node[node] += delta;
2277 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2278 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2279 nodemask_t *nodes_allowed)
2281 unsigned long min_count, ret;
2283 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2284 return h->max_huge_pages;
2287 * Increase the pool size
2288 * First take pages out of surplus state. Then make up the
2289 * remaining difference by allocating fresh huge pages.
2291 * We might race with alloc_surplus_huge_page() here and be unable
2292 * to convert a surplus huge page to a normal huge page. That is
2293 * not critical, though, it just means the overall size of the
2294 * pool might be one hugepage larger than it needs to be, but
2295 * within all the constraints specified by the sysctls.
2297 spin_lock(&hugetlb_lock);
2298 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2299 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2303 while (count > persistent_huge_pages(h)) {
2305 * If this allocation races such that we no longer need the
2306 * page, free_huge_page will handle it by freeing the page
2307 * and reducing the surplus.
2309 spin_unlock(&hugetlb_lock);
2311 /* yield cpu to avoid soft lockup */
2314 ret = alloc_pool_huge_page(h, nodes_allowed);
2315 spin_lock(&hugetlb_lock);
2319 /* Bail for signals. Probably ctrl-c from user */
2320 if (signal_pending(current))
2325 * Decrease the pool size
2326 * First return free pages to the buddy allocator (being careful
2327 * to keep enough around to satisfy reservations). Then place
2328 * pages into surplus state as needed so the pool will shrink
2329 * to the desired size as pages become free.
2331 * By placing pages into the surplus state independent of the
2332 * overcommit value, we are allowing the surplus pool size to
2333 * exceed overcommit. There are few sane options here. Since
2334 * alloc_surplus_huge_page() is checking the global counter,
2335 * though, we'll note that we're not allowed to exceed surplus
2336 * and won't grow the pool anywhere else. Not until one of the
2337 * sysctls are changed, or the surplus pages go out of use.
2339 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2340 min_count = max(count, min_count);
2341 try_to_free_low(h, min_count, nodes_allowed);
2342 while (min_count < persistent_huge_pages(h)) {
2343 if (!free_pool_huge_page(h, nodes_allowed, 0))
2345 cond_resched_lock(&hugetlb_lock);
2347 while (count < persistent_huge_pages(h)) {
2348 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2352 ret = persistent_huge_pages(h);
2353 spin_unlock(&hugetlb_lock);
2357 #define HSTATE_ATTR_RO(_name) \
2358 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2360 #define HSTATE_ATTR(_name) \
2361 static struct kobj_attribute _name##_attr = \
2362 __ATTR(_name, 0644, _name##_show, _name##_store)
2364 static struct kobject *hugepages_kobj;
2365 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2367 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2369 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2373 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2374 if (hstate_kobjs[i] == kobj) {
2376 *nidp = NUMA_NO_NODE;
2380 return kobj_to_node_hstate(kobj, nidp);
2383 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2384 struct kobj_attribute *attr, char *buf)
2387 unsigned long nr_huge_pages;
2390 h = kobj_to_hstate(kobj, &nid);
2391 if (nid == NUMA_NO_NODE)
2392 nr_huge_pages = h->nr_huge_pages;
2394 nr_huge_pages = h->nr_huge_pages_node[nid];
2396 return sprintf(buf, "%lu\n", nr_huge_pages);
2399 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2400 struct hstate *h, int nid,
2401 unsigned long count, size_t len)
2404 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2406 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2411 if (nid == NUMA_NO_NODE) {
2413 * global hstate attribute
2415 if (!(obey_mempolicy &&
2416 init_nodemask_of_mempolicy(nodes_allowed))) {
2417 NODEMASK_FREE(nodes_allowed);
2418 nodes_allowed = &node_states[N_MEMORY];
2420 } else if (nodes_allowed) {
2422 * per node hstate attribute: adjust count to global,
2423 * but restrict alloc/free to the specified node.
2425 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2426 init_nodemask_of_node(nodes_allowed, nid);
2428 nodes_allowed = &node_states[N_MEMORY];
2430 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2432 if (nodes_allowed != &node_states[N_MEMORY])
2433 NODEMASK_FREE(nodes_allowed);
2437 NODEMASK_FREE(nodes_allowed);
2441 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2442 struct kobject *kobj, const char *buf,
2446 unsigned long count;
2450 err = kstrtoul(buf, 10, &count);
2454 h = kobj_to_hstate(kobj, &nid);
2455 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458 static ssize_t nr_hugepages_show(struct kobject *kobj,
2459 struct kobj_attribute *attr, char *buf)
2461 return nr_hugepages_show_common(kobj, attr, buf);
2464 static ssize_t nr_hugepages_store(struct kobject *kobj,
2465 struct kobj_attribute *attr, const char *buf, size_t len)
2467 return nr_hugepages_store_common(false, kobj, buf, len);
2469 HSTATE_ATTR(nr_hugepages);
2474 * hstate attribute for optionally mempolicy-based constraint on persistent
2475 * huge page alloc/free.
2477 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2478 struct kobj_attribute *attr, char *buf)
2480 return nr_hugepages_show_common(kobj, attr, buf);
2483 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2484 struct kobj_attribute *attr, const char *buf, size_t len)
2486 return nr_hugepages_store_common(true, kobj, buf, len);
2488 HSTATE_ATTR(nr_hugepages_mempolicy);
2492 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2493 struct kobj_attribute *attr, char *buf)
2495 struct hstate *h = kobj_to_hstate(kobj, NULL);
2496 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t count)
2503 unsigned long input;
2504 struct hstate *h = kobj_to_hstate(kobj, NULL);
2506 if (hstate_is_gigantic(h))
2509 err = kstrtoul(buf, 10, &input);
2513 spin_lock(&hugetlb_lock);
2514 h->nr_overcommit_huge_pages = input;
2515 spin_unlock(&hugetlb_lock);
2519 HSTATE_ATTR(nr_overcommit_hugepages);
2521 static ssize_t free_hugepages_show(struct kobject *kobj,
2522 struct kobj_attribute *attr, char *buf)
2525 unsigned long free_huge_pages;
2528 h = kobj_to_hstate(kobj, &nid);
2529 if (nid == NUMA_NO_NODE)
2530 free_huge_pages = h->free_huge_pages;
2532 free_huge_pages = h->free_huge_pages_node[nid];
2534 return sprintf(buf, "%lu\n", free_huge_pages);
2536 HSTATE_ATTR_RO(free_hugepages);
2538 static ssize_t resv_hugepages_show(struct kobject *kobj,
2539 struct kobj_attribute *attr, char *buf)
2541 struct hstate *h = kobj_to_hstate(kobj, NULL);
2542 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2544 HSTATE_ATTR_RO(resv_hugepages);
2546 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2547 struct kobj_attribute *attr, char *buf)
2550 unsigned long surplus_huge_pages;
2553 h = kobj_to_hstate(kobj, &nid);
2554 if (nid == NUMA_NO_NODE)
2555 surplus_huge_pages = h->surplus_huge_pages;
2557 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2559 return sprintf(buf, "%lu\n", surplus_huge_pages);
2561 HSTATE_ATTR_RO(surplus_hugepages);
2563 static struct attribute *hstate_attrs[] = {
2564 &nr_hugepages_attr.attr,
2565 &nr_overcommit_hugepages_attr.attr,
2566 &free_hugepages_attr.attr,
2567 &resv_hugepages_attr.attr,
2568 &surplus_hugepages_attr.attr,
2570 &nr_hugepages_mempolicy_attr.attr,
2575 static const struct attribute_group hstate_attr_group = {
2576 .attrs = hstate_attrs,
2579 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2580 struct kobject **hstate_kobjs,
2581 const struct attribute_group *hstate_attr_group)
2584 int hi = hstate_index(h);
2586 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2587 if (!hstate_kobjs[hi])
2590 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2592 kobject_put(hstate_kobjs[hi]);
2597 static void __init hugetlb_sysfs_init(void)
2602 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2603 if (!hugepages_kobj)
2606 for_each_hstate(h) {
2607 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2608 hstate_kobjs, &hstate_attr_group);
2610 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2617 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2618 * with node devices in node_devices[] using a parallel array. The array
2619 * index of a node device or _hstate == node id.
2620 * This is here to avoid any static dependency of the node device driver, in
2621 * the base kernel, on the hugetlb module.
2623 struct node_hstate {
2624 struct kobject *hugepages_kobj;
2625 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2627 static struct node_hstate node_hstates[MAX_NUMNODES];
2630 * A subset of global hstate attributes for node devices
2632 static struct attribute *per_node_hstate_attrs[] = {
2633 &nr_hugepages_attr.attr,
2634 &free_hugepages_attr.attr,
2635 &surplus_hugepages_attr.attr,
2639 static const struct attribute_group per_node_hstate_attr_group = {
2640 .attrs = per_node_hstate_attrs,
2644 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2645 * Returns node id via non-NULL nidp.
2647 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2651 for (nid = 0; nid < nr_node_ids; nid++) {
2652 struct node_hstate *nhs = &node_hstates[nid];
2654 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2655 if (nhs->hstate_kobjs[i] == kobj) {
2667 * Unregister hstate attributes from a single node device.
2668 * No-op if no hstate attributes attached.
2670 static void hugetlb_unregister_node(struct node *node)
2673 struct node_hstate *nhs = &node_hstates[node->dev.id];
2675 if (!nhs->hugepages_kobj)
2676 return; /* no hstate attributes */
2678 for_each_hstate(h) {
2679 int idx = hstate_index(h);
2680 if (nhs->hstate_kobjs[idx]) {
2681 kobject_put(nhs->hstate_kobjs[idx]);
2682 nhs->hstate_kobjs[idx] = NULL;
2686 kobject_put(nhs->hugepages_kobj);
2687 nhs->hugepages_kobj = NULL;
2692 * Register hstate attributes for a single node device.
2693 * No-op if attributes already registered.
2695 static void hugetlb_register_node(struct node *node)
2698 struct node_hstate *nhs = &node_hstates[node->dev.id];
2701 if (nhs->hugepages_kobj)
2702 return; /* already allocated */
2704 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2706 if (!nhs->hugepages_kobj)
2709 for_each_hstate(h) {
2710 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2712 &per_node_hstate_attr_group);
2714 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2715 h->name, node->dev.id);
2716 hugetlb_unregister_node(node);
2723 * hugetlb init time: register hstate attributes for all registered node
2724 * devices of nodes that have memory. All on-line nodes should have
2725 * registered their associated device by this time.
2727 static void __init hugetlb_register_all_nodes(void)
2731 for_each_node_state(nid, N_MEMORY) {
2732 struct node *node = node_devices[nid];
2733 if (node->dev.id == nid)
2734 hugetlb_register_node(node);
2738 * Let the node device driver know we're here so it can
2739 * [un]register hstate attributes on node hotplug.
2741 register_hugetlbfs_with_node(hugetlb_register_node,
2742 hugetlb_unregister_node);
2744 #else /* !CONFIG_NUMA */
2746 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2754 static void hugetlb_register_all_nodes(void) { }
2758 static int __init hugetlb_init(void)
2762 if (!hugepages_supported())
2765 if (!size_to_hstate(default_hstate_size)) {
2766 if (default_hstate_size != 0) {
2767 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2768 default_hstate_size, HPAGE_SIZE);
2771 default_hstate_size = HPAGE_SIZE;
2772 if (!size_to_hstate(default_hstate_size))
2773 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2775 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2776 if (default_hstate_max_huge_pages) {
2777 if (!default_hstate.max_huge_pages)
2778 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2781 hugetlb_init_hstates();
2782 gather_bootmem_prealloc();
2785 hugetlb_sysfs_init();
2786 hugetlb_register_all_nodes();
2787 hugetlb_cgroup_file_init();
2790 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2792 num_fault_mutexes = 1;
2794 hugetlb_fault_mutex_table =
2795 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2797 BUG_ON(!hugetlb_fault_mutex_table);
2799 for (i = 0; i < num_fault_mutexes; i++)
2800 mutex_init(&hugetlb_fault_mutex_table[i]);
2803 subsys_initcall(hugetlb_init);
2805 /* Should be called on processing a hugepagesz=... option */
2806 void __init hugetlb_bad_size(void)
2808 parsed_valid_hugepagesz = false;
2811 void __init hugetlb_add_hstate(unsigned int order)
2816 if (size_to_hstate(PAGE_SIZE << order)) {
2817 pr_warn("hugepagesz= specified twice, ignoring\n");
2820 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2822 h = &hstates[hugetlb_max_hstate++];
2824 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2825 h->nr_huge_pages = 0;
2826 h->free_huge_pages = 0;
2827 for (i = 0; i < MAX_NUMNODES; ++i)
2828 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2829 INIT_LIST_HEAD(&h->hugepage_activelist);
2830 h->next_nid_to_alloc = first_memory_node;
2831 h->next_nid_to_free = first_memory_node;
2832 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2833 huge_page_size(h)/1024);
2838 static int __init hugetlb_nrpages_setup(char *s)
2841 static unsigned long *last_mhp;
2843 if (!parsed_valid_hugepagesz) {
2844 pr_warn("hugepages = %s preceded by "
2845 "an unsupported hugepagesz, ignoring\n", s);
2846 parsed_valid_hugepagesz = true;
2850 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2851 * so this hugepages= parameter goes to the "default hstate".
2853 else if (!hugetlb_max_hstate)
2854 mhp = &default_hstate_max_huge_pages;
2856 mhp = &parsed_hstate->max_huge_pages;
2858 if (mhp == last_mhp) {
2859 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2863 if (sscanf(s, "%lu", mhp) <= 0)
2867 * Global state is always initialized later in hugetlb_init.
2868 * But we need to allocate >= MAX_ORDER hstates here early to still
2869 * use the bootmem allocator.
2871 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2872 hugetlb_hstate_alloc_pages(parsed_hstate);
2878 __setup("hugepages=", hugetlb_nrpages_setup);
2880 static int __init hugetlb_default_setup(char *s)
2882 default_hstate_size = memparse(s, &s);
2885 __setup("default_hugepagesz=", hugetlb_default_setup);
2887 static unsigned int cpuset_mems_nr(unsigned int *array)
2890 unsigned int nr = 0;
2892 for_each_node_mask(node, cpuset_current_mems_allowed)
2898 #ifdef CONFIG_SYSCTL
2899 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2900 struct ctl_table *table, int write,
2901 void __user *buffer, size_t *length, loff_t *ppos)
2903 struct hstate *h = &default_hstate;
2904 unsigned long tmp = h->max_huge_pages;
2907 if (!hugepages_supported())
2911 table->maxlen = sizeof(unsigned long);
2912 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2917 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2918 NUMA_NO_NODE, tmp, *length);
2923 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2924 void __user *buffer, size_t *length, loff_t *ppos)
2927 return hugetlb_sysctl_handler_common(false, table, write,
2928 buffer, length, ppos);
2932 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2933 void __user *buffer, size_t *length, loff_t *ppos)
2935 return hugetlb_sysctl_handler_common(true, table, write,
2936 buffer, length, ppos);
2938 #endif /* CONFIG_NUMA */
2940 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2941 void __user *buffer,
2942 size_t *length, loff_t *ppos)
2944 struct hstate *h = &default_hstate;
2948 if (!hugepages_supported())
2951 tmp = h->nr_overcommit_huge_pages;
2953 if (write && hstate_is_gigantic(h))
2957 table->maxlen = sizeof(unsigned long);
2958 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2963 spin_lock(&hugetlb_lock);
2964 h->nr_overcommit_huge_pages = tmp;
2965 spin_unlock(&hugetlb_lock);
2971 #endif /* CONFIG_SYSCTL */
2973 void hugetlb_report_meminfo(struct seq_file *m)
2976 unsigned long total = 0;
2978 if (!hugepages_supported())
2981 for_each_hstate(h) {
2982 unsigned long count = h->nr_huge_pages;
2984 total += (PAGE_SIZE << huge_page_order(h)) * count;
2986 if (h == &default_hstate)
2988 "HugePages_Total: %5lu\n"
2989 "HugePages_Free: %5lu\n"
2990 "HugePages_Rsvd: %5lu\n"
2991 "HugePages_Surp: %5lu\n"
2992 "Hugepagesize: %8lu kB\n",
2996 h->surplus_huge_pages,
2997 (PAGE_SIZE << huge_page_order(h)) / 1024);
3000 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3003 int hugetlb_report_node_meminfo(int nid, char *buf)
3005 struct hstate *h = &default_hstate;
3006 if (!hugepages_supported())
3009 "Node %d HugePages_Total: %5u\n"
3010 "Node %d HugePages_Free: %5u\n"
3011 "Node %d HugePages_Surp: %5u\n",
3012 nid, h->nr_huge_pages_node[nid],
3013 nid, h->free_huge_pages_node[nid],
3014 nid, h->surplus_huge_pages_node[nid]);
3017 void hugetlb_show_meminfo(void)
3022 if (!hugepages_supported())
3025 for_each_node_state(nid, N_MEMORY)
3027 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029 h->nr_huge_pages_node[nid],
3030 h->free_huge_pages_node[nid],
3031 h->surplus_huge_pages_node[nid],
3032 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3037 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3038 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3042 unsigned long hugetlb_total_pages(void)
3045 unsigned long nr_total_pages = 0;
3048 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3049 return nr_total_pages;
3052 static int hugetlb_acct_memory(struct hstate *h, long delta)
3056 spin_lock(&hugetlb_lock);
3058 * When cpuset is configured, it breaks the strict hugetlb page
3059 * reservation as the accounting is done on a global variable. Such
3060 * reservation is completely rubbish in the presence of cpuset because
3061 * the reservation is not checked against page availability for the
3062 * current cpuset. Application can still potentially OOM'ed by kernel
3063 * with lack of free htlb page in cpuset that the task is in.
3064 * Attempt to enforce strict accounting with cpuset is almost
3065 * impossible (or too ugly) because cpuset is too fluid that
3066 * task or memory node can be dynamically moved between cpusets.
3068 * The change of semantics for shared hugetlb mapping with cpuset is
3069 * undesirable. However, in order to preserve some of the semantics,
3070 * we fall back to check against current free page availability as
3071 * a best attempt and hopefully to minimize the impact of changing
3072 * semantics that cpuset has.
3075 if (gather_surplus_pages(h, delta) < 0)
3078 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3079 return_unused_surplus_pages(h, delta);
3086 return_unused_surplus_pages(h, (unsigned long) -delta);
3089 spin_unlock(&hugetlb_lock);
3093 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3095 struct resv_map *resv = vma_resv_map(vma);
3098 * This new VMA should share its siblings reservation map if present.
3099 * The VMA will only ever have a valid reservation map pointer where
3100 * it is being copied for another still existing VMA. As that VMA
3101 * has a reference to the reservation map it cannot disappear until
3102 * after this open call completes. It is therefore safe to take a
3103 * new reference here without additional locking.
3105 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3106 kref_get(&resv->refs);
3109 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3111 struct hstate *h = hstate_vma(vma);
3112 struct resv_map *resv = vma_resv_map(vma);
3113 struct hugepage_subpool *spool = subpool_vma(vma);
3114 unsigned long reserve, start, end;
3117 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120 start = vma_hugecache_offset(h, vma, vma->vm_start);
3121 end = vma_hugecache_offset(h, vma, vma->vm_end);
3123 reserve = (end - start) - region_count(resv, start, end);
3125 kref_put(&resv->refs, resv_map_release);
3129 * Decrement reserve counts. The global reserve count may be
3130 * adjusted if the subpool has a minimum size.
3132 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3133 hugetlb_acct_memory(h, -gbl_reserve);
3137 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3139 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3144 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3146 struct hstate *hstate = hstate_vma(vma);
3148 return 1UL << huge_page_shift(hstate);
3152 * We cannot handle pagefaults against hugetlb pages at all. They cause
3153 * handle_mm_fault() to try to instantiate regular-sized pages in the
3154 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3157 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3164 * When a new function is introduced to vm_operations_struct and added
3165 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3166 * This is because under System V memory model, mappings created via
3167 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3168 * their original vm_ops are overwritten with shm_vm_ops.
3170 const struct vm_operations_struct hugetlb_vm_ops = {
3171 .fault = hugetlb_vm_op_fault,
3172 .open = hugetlb_vm_op_open,
3173 .close = hugetlb_vm_op_close,
3174 .split = hugetlb_vm_op_split,
3175 .pagesize = hugetlb_vm_op_pagesize,
3178 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3184 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3185 vma->vm_page_prot)));
3187 entry = huge_pte_wrprotect(mk_huge_pte(page,
3188 vma->vm_page_prot));
3190 entry = pte_mkyoung(entry);
3191 entry = pte_mkhuge(entry);
3192 entry = arch_make_huge_pte(entry, vma, page, writable);
3197 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3198 unsigned long address, pte_t *ptep)
3202 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3203 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3204 update_mmu_cache(vma, address, ptep);
3207 bool is_hugetlb_entry_migration(pte_t pte)
3211 if (huge_pte_none(pte) || pte_present(pte))
3213 swp = pte_to_swp_entry(pte);
3214 if (non_swap_entry(swp) && is_migration_entry(swp))
3220 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3224 if (huge_pte_none(pte) || pte_present(pte))
3226 swp = pte_to_swp_entry(pte);
3227 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3233 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3234 struct vm_area_struct *vma)
3236 pte_t *src_pte, *dst_pte, entry;
3237 struct page *ptepage;
3240 struct hstate *h = hstate_vma(vma);
3241 unsigned long sz = huge_page_size(h);
3242 unsigned long mmun_start; /* For mmu_notifiers */
3243 unsigned long mmun_end; /* For mmu_notifiers */
3246 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3248 mmun_start = vma->vm_start;
3249 mmun_end = vma->vm_end;
3251 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3253 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3254 spinlock_t *src_ptl, *dst_ptl;
3255 src_pte = huge_pte_offset(src, addr, sz);
3258 dst_pte = huge_pte_alloc(dst, addr, sz);
3264 /* If the pagetables are shared don't copy or take references */
3265 if (dst_pte == src_pte)
3268 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3269 src_ptl = huge_pte_lockptr(h, src, src_pte);
3270 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3271 entry = huge_ptep_get(src_pte);
3272 if (huge_pte_none(entry)) { /* skip none entry */
3274 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3275 is_hugetlb_entry_hwpoisoned(entry))) {
3276 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3278 if (is_write_migration_entry(swp_entry) && cow) {
3280 * COW mappings require pages in both
3281 * parent and child to be set to read.
3283 make_migration_entry_read(&swp_entry);
3284 entry = swp_entry_to_pte(swp_entry);
3285 set_huge_swap_pte_at(src, addr, src_pte,
3288 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3292 * No need to notify as we are downgrading page
3293 * table protection not changing it to point
3296 * See Documentation/vm/mmu_notifier.rst
3298 huge_ptep_set_wrprotect(src, addr, src_pte);
3300 entry = huge_ptep_get(src_pte);
3301 ptepage = pte_page(entry);
3303 page_dup_rmap(ptepage, true);
3304 set_huge_pte_at(dst, addr, dst_pte, entry);
3305 hugetlb_count_add(pages_per_huge_page(h), dst);
3307 spin_unlock(src_ptl);
3308 spin_unlock(dst_ptl);
3312 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3317 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3318 unsigned long start, unsigned long end,
3319 struct page *ref_page)
3321 struct mm_struct *mm = vma->vm_mm;
3322 unsigned long address;
3327 struct hstate *h = hstate_vma(vma);
3328 unsigned long sz = huge_page_size(h);
3329 const unsigned long mmun_start = start; /* For mmu_notifiers */
3330 const unsigned long mmun_end = end; /* For mmu_notifiers */
3332 WARN_ON(!is_vm_hugetlb_page(vma));
3333 BUG_ON(start & ~huge_page_mask(h));
3334 BUG_ON(end & ~huge_page_mask(h));
3337 * This is a hugetlb vma, all the pte entries should point
3340 tlb_remove_check_page_size_change(tlb, sz);
3341 tlb_start_vma(tlb, vma);
3342 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3344 for (; address < end; address += sz) {
3345 ptep = huge_pte_offset(mm, address, sz);
3349 ptl = huge_pte_lock(h, mm, ptep);
3350 if (huge_pmd_unshare(mm, &address, ptep)) {
3355 pte = huge_ptep_get(ptep);
3356 if (huge_pte_none(pte)) {
3362 * Migrating hugepage or HWPoisoned hugepage is already
3363 * unmapped and its refcount is dropped, so just clear pte here.
3365 if (unlikely(!pte_present(pte))) {
3366 huge_pte_clear(mm, address, ptep, sz);
3371 page = pte_page(pte);
3373 * If a reference page is supplied, it is because a specific
3374 * page is being unmapped, not a range. Ensure the page we
3375 * are about to unmap is the actual page of interest.
3378 if (page != ref_page) {
3383 * Mark the VMA as having unmapped its page so that
3384 * future faults in this VMA will fail rather than
3385 * looking like data was lost
3387 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3390 pte = huge_ptep_get_and_clear(mm, address, ptep);
3391 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3392 if (huge_pte_dirty(pte))
3393 set_page_dirty(page);
3395 hugetlb_count_sub(pages_per_huge_page(h), mm);
3396 page_remove_rmap(page, true);
3399 tlb_remove_page_size(tlb, page, huge_page_size(h));
3401 * Bail out after unmapping reference page if supplied
3406 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3407 tlb_end_vma(tlb, vma);
3410 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3411 struct vm_area_struct *vma, unsigned long start,
3412 unsigned long end, struct page *ref_page)
3414 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3417 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3418 * test will fail on a vma being torn down, and not grab a page table
3419 * on its way out. We're lucky that the flag has such an appropriate
3420 * name, and can in fact be safely cleared here. We could clear it
3421 * before the __unmap_hugepage_range above, but all that's necessary
3422 * is to clear it before releasing the i_mmap_rwsem. This works
3423 * because in the context this is called, the VMA is about to be
3424 * destroyed and the i_mmap_rwsem is held.
3426 vma->vm_flags &= ~VM_MAYSHARE;
3429 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3430 unsigned long end, struct page *ref_page)
3432 struct mm_struct *mm;
3433 struct mmu_gather tlb;
3437 tlb_gather_mmu(&tlb, mm, start, end);
3438 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3439 tlb_finish_mmu(&tlb, start, end);
3443 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3444 * mappping it owns the reserve page for. The intention is to unmap the page
3445 * from other VMAs and let the children be SIGKILLed if they are faulting the
3448 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3449 struct page *page, unsigned long address)
3451 struct hstate *h = hstate_vma(vma);
3452 struct vm_area_struct *iter_vma;
3453 struct address_space *mapping;
3457 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3458 * from page cache lookup which is in HPAGE_SIZE units.
3460 address = address & huge_page_mask(h);
3461 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3463 mapping = vma->vm_file->f_mapping;
3466 * Take the mapping lock for the duration of the table walk. As
3467 * this mapping should be shared between all the VMAs,
3468 * __unmap_hugepage_range() is called as the lock is already held
3470 i_mmap_lock_write(mapping);
3471 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3472 /* Do not unmap the current VMA */
3473 if (iter_vma == vma)
3477 * Shared VMAs have their own reserves and do not affect
3478 * MAP_PRIVATE accounting but it is possible that a shared
3479 * VMA is using the same page so check and skip such VMAs.
3481 if (iter_vma->vm_flags & VM_MAYSHARE)
3485 * Unmap the page from other VMAs without their own reserves.
3486 * They get marked to be SIGKILLed if they fault in these
3487 * areas. This is because a future no-page fault on this VMA
3488 * could insert a zeroed page instead of the data existing
3489 * from the time of fork. This would look like data corruption
3491 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3492 unmap_hugepage_range(iter_vma, address,
3493 address + huge_page_size(h), page);
3495 i_mmap_unlock_write(mapping);
3499 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3500 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3501 * cannot race with other handlers or page migration.
3502 * Keep the pte_same checks anyway to make transition from the mutex easier.
3504 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3505 unsigned long address, pte_t *ptep,
3506 struct page *pagecache_page, spinlock_t *ptl)
3509 struct hstate *h = hstate_vma(vma);
3510 struct page *old_page, *new_page;
3511 int outside_reserve = 0;
3513 unsigned long mmun_start; /* For mmu_notifiers */
3514 unsigned long mmun_end; /* For mmu_notifiers */
3515 unsigned long haddr = address & huge_page_mask(h);
3517 pte = huge_ptep_get(ptep);
3518 old_page = pte_page(pte);
3521 /* If no-one else is actually using this page, avoid the copy
3522 * and just make the page writable */
3523 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3524 page_move_anon_rmap(old_page, vma);
3525 set_huge_ptep_writable(vma, haddr, ptep);
3530 * If the process that created a MAP_PRIVATE mapping is about to
3531 * perform a COW due to a shared page count, attempt to satisfy
3532 * the allocation without using the existing reserves. The pagecache
3533 * page is used to determine if the reserve at this address was
3534 * consumed or not. If reserves were used, a partial faulted mapping
3535 * at the time of fork() could consume its reserves on COW instead
3536 * of the full address range.
3538 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3539 old_page != pagecache_page)
3540 outside_reserve = 1;
3545 * Drop page table lock as buddy allocator may be called. It will
3546 * be acquired again before returning to the caller, as expected.
3549 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3551 if (IS_ERR(new_page)) {
3553 * If a process owning a MAP_PRIVATE mapping fails to COW,
3554 * it is due to references held by a child and an insufficient
3555 * huge page pool. To guarantee the original mappers
3556 * reliability, unmap the page from child processes. The child
3557 * may get SIGKILLed if it later faults.
3559 if (outside_reserve) {
3561 BUG_ON(huge_pte_none(pte));
3562 unmap_ref_private(mm, vma, old_page, haddr);
3563 BUG_ON(huge_pte_none(pte));
3565 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3567 pte_same(huge_ptep_get(ptep), pte)))
3568 goto retry_avoidcopy;
3570 * race occurs while re-acquiring page table
3571 * lock, and our job is done.
3576 ret = vmf_error(PTR_ERR(new_page));
3577 goto out_release_old;
3581 * When the original hugepage is shared one, it does not have
3582 * anon_vma prepared.
3584 if (unlikely(anon_vma_prepare(vma))) {
3586 goto out_release_all;
3589 copy_user_huge_page(new_page, old_page, address, vma,
3590 pages_per_huge_page(h));
3591 __SetPageUptodate(new_page);
3592 set_page_huge_active(new_page);
3595 mmun_end = mmun_start + huge_page_size(h);
3596 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3599 * Retake the page table lock to check for racing updates
3600 * before the page tables are altered
3603 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3604 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605 ClearPagePrivate(new_page);
3608 huge_ptep_clear_flush(vma, haddr, ptep);
3609 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610 set_huge_pte_at(mm, haddr, ptep,
3611 make_huge_pte(vma, new_page, 1));
3612 page_remove_rmap(old_page, true);
3613 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3614 /* Make the old page be freed below */
3615 new_page = old_page;
3618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3620 restore_reserve_on_error(h, vma, haddr, new_page);
3625 spin_lock(ptl); /* Caller expects lock to be held */
3629 /* Return the pagecache page at a given address within a VMA */
3630 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3631 struct vm_area_struct *vma, unsigned long address)
3633 struct address_space *mapping;
3636 mapping = vma->vm_file->f_mapping;
3637 idx = vma_hugecache_offset(h, vma, address);
3639 return find_lock_page(mapping, idx);
3643 * Return whether there is a pagecache page to back given address within VMA.
3644 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3646 static bool hugetlbfs_pagecache_present(struct hstate *h,
3647 struct vm_area_struct *vma, unsigned long address)
3649 struct address_space *mapping;
3653 mapping = vma->vm_file->f_mapping;
3654 idx = vma_hugecache_offset(h, vma, address);
3656 page = find_get_page(mapping, idx);
3659 return page != NULL;
3662 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3665 struct inode *inode = mapping->host;
3666 struct hstate *h = hstate_inode(inode);
3667 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3671 ClearPagePrivate(page);
3673 spin_lock(&inode->i_lock);
3674 inode->i_blocks += blocks_per_huge_page(h);
3675 spin_unlock(&inode->i_lock);
3679 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3680 struct vm_area_struct *vma,
3681 struct address_space *mapping, pgoff_t idx,
3682 unsigned long address, pte_t *ptep, unsigned int flags)
3684 struct hstate *h = hstate_vma(vma);
3685 vm_fault_t ret = VM_FAULT_SIGBUS;
3691 unsigned long haddr = address & huge_page_mask(h);
3694 * Currently, we are forced to kill the process in the event the
3695 * original mapper has unmapped pages from the child due to a failed
3696 * COW. Warn that such a situation has occurred as it may not be obvious
3698 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3699 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3705 * Use page lock to guard against racing truncation
3706 * before we get page_table_lock.
3709 page = find_lock_page(mapping, idx);
3711 size = i_size_read(mapping->host) >> huge_page_shift(h);
3716 * Check for page in userfault range
3718 if (userfaultfd_missing(vma)) {
3720 struct vm_fault vmf = {
3725 * Hard to debug if it ends up being
3726 * used by a callee that assumes
3727 * something about the other
3728 * uninitialized fields... same as in
3734 * hugetlb_fault_mutex must be dropped before
3735 * handling userfault. Reacquire after handling
3736 * fault to make calling code simpler.
3738 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3740 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3741 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3742 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3746 page = alloc_huge_page(vma, haddr, 0);
3748 ret = vmf_error(PTR_ERR(page));
3751 clear_huge_page(page, address, pages_per_huge_page(h));
3752 __SetPageUptodate(page);
3753 set_page_huge_active(page);
3755 if (vma->vm_flags & VM_MAYSHARE) {
3756 int err = huge_add_to_page_cache(page, mapping, idx);
3765 if (unlikely(anon_vma_prepare(vma))) {
3767 goto backout_unlocked;
3773 * If memory error occurs between mmap() and fault, some process
3774 * don't have hwpoisoned swap entry for errored virtual address.
3775 * So we need to block hugepage fault by PG_hwpoison bit check.
3777 if (unlikely(PageHWPoison(page))) {
3778 ret = VM_FAULT_HWPOISON |
3779 VM_FAULT_SET_HINDEX(hstate_index(h));
3780 goto backout_unlocked;
3785 * If we are going to COW a private mapping later, we examine the
3786 * pending reservations for this page now. This will ensure that
3787 * any allocations necessary to record that reservation occur outside
3790 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791 if (vma_needs_reservation(h, vma, haddr) < 0) {
3793 goto backout_unlocked;
3795 /* Just decrements count, does not deallocate */
3796 vma_end_reservation(h, vma, haddr);
3799 ptl = huge_pte_lock(h, mm, ptep);
3800 size = i_size_read(mapping->host) >> huge_page_shift(h);
3805 if (!huge_pte_none(huge_ptep_get(ptep)))
3809 ClearPagePrivate(page);
3810 hugepage_add_new_anon_rmap(page, vma, haddr);
3812 page_dup_rmap(page, true);
3813 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814 && (vma->vm_flags & VM_SHARED)));
3815 set_huge_pte_at(mm, haddr, ptep, new_pte);
3817 hugetlb_count_add(pages_per_huge_page(h), mm);
3818 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819 /* Optimization, do the COW without a second fault */
3820 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3832 restore_reserve_on_error(h, vma, haddr, page);
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 struct vm_area_struct *vma,
3840 struct address_space *mapping,
3841 pgoff_t idx, unsigned long address)
3843 unsigned long key[2];
3846 if (vma->vm_flags & VM_SHARED) {
3847 key[0] = (unsigned long) mapping;
3850 key[0] = (unsigned long) mm;
3851 key[1] = address >> huge_page_shift(h);
3854 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3856 return hash & (num_fault_mutexes - 1);
3860 * For uniprocesor systems we always use a single mutex, so just
3861 * return 0 and avoid the hashing overhead.
3863 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864 struct vm_area_struct *vma,
3865 struct address_space *mapping,
3866 pgoff_t idx, unsigned long address)
3872 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873 unsigned long address, unsigned int flags)
3880 struct page *page = NULL;
3881 struct page *pagecache_page = NULL;
3882 struct hstate *h = hstate_vma(vma);
3883 struct address_space *mapping;
3884 int need_wait_lock = 0;
3885 unsigned long haddr = address & huge_page_mask(h);
3887 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3889 entry = huge_ptep_get(ptep);
3890 if (unlikely(is_hugetlb_entry_migration(entry))) {
3891 migration_entry_wait_huge(vma, mm, ptep);
3893 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3894 return VM_FAULT_HWPOISON_LARGE |
3895 VM_FAULT_SET_HINDEX(hstate_index(h));
3897 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3899 return VM_FAULT_OOM;
3902 mapping = vma->vm_file->f_mapping;
3903 idx = vma_hugecache_offset(h, vma, haddr);
3906 * Serialize hugepage allocation and instantiation, so that we don't
3907 * get spurious allocation failures if two CPUs race to instantiate
3908 * the same page in the page cache.
3910 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3911 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3913 entry = huge_ptep_get(ptep);
3914 if (huge_pte_none(entry)) {
3915 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3922 * entry could be a migration/hwpoison entry at this point, so this
3923 * check prevents the kernel from going below assuming that we have
3924 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3928 if (!pte_present(entry))
3932 * If we are going to COW the mapping later, we examine the pending
3933 * reservations for this page now. This will ensure that any
3934 * allocations necessary to record that reservation occur outside the
3935 * spinlock. For private mappings, we also lookup the pagecache
3936 * page now as it is used to determine if a reservation has been
3939 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3940 if (vma_needs_reservation(h, vma, haddr) < 0) {
3944 /* Just decrements count, does not deallocate */
3945 vma_end_reservation(h, vma, haddr);
3947 if (!(vma->vm_flags & VM_MAYSHARE))
3948 pagecache_page = hugetlbfs_pagecache_page(h,
3952 ptl = huge_pte_lock(h, mm, ptep);
3954 /* Check for a racing update before calling hugetlb_cow */
3955 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3959 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 * pagecache_page, so here we need take the former one
3961 * when page != pagecache_page or !pagecache_page.
3963 page = pte_page(entry);
3964 if (page != pagecache_page)
3965 if (!trylock_page(page)) {
3972 if (flags & FAULT_FLAG_WRITE) {
3973 if (!huge_pte_write(entry)) {
3974 ret = hugetlb_cow(mm, vma, address, ptep,
3975 pagecache_page, ptl);
3978 entry = huge_pte_mkdirty(entry);
3980 entry = pte_mkyoung(entry);
3981 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
3982 flags & FAULT_FLAG_WRITE))
3983 update_mmu_cache(vma, haddr, ptep);
3985 if (page != pagecache_page)
3991 if (pagecache_page) {
3992 unlock_page(pagecache_page);
3993 put_page(pagecache_page);
3996 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3998 * Generally it's safe to hold refcount during waiting page lock. But
3999 * here we just wait to defer the next page fault to avoid busy loop and
4000 * the page is not used after unlocked before returning from the current
4001 * page fault. So we are safe from accessing freed page, even if we wait
4002 * here without taking refcount.
4005 wait_on_page_locked(page);
4010 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4011 * modifications for huge pages.
4013 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4015 struct vm_area_struct *dst_vma,
4016 unsigned long dst_addr,
4017 unsigned long src_addr,
4018 struct page **pagep)
4020 struct address_space *mapping;
4023 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024 struct hstate *h = hstate_vma(dst_vma);
4032 page = alloc_huge_page(dst_vma, dst_addr, 0);
4036 ret = copy_huge_page_from_user(page,
4037 (const void __user *) src_addr,
4038 pages_per_huge_page(h), false);
4040 /* fallback to copy_from_user outside mmap_sem */
4041 if (unlikely(ret)) {
4044 /* don't free the page */
4053 * The memory barrier inside __SetPageUptodate makes sure that
4054 * preceding stores to the page contents become visible before
4055 * the set_pte_at() write.
4057 __SetPageUptodate(page);
4058 set_page_huge_active(page);
4060 mapping = dst_vma->vm_file->f_mapping;
4061 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4064 * If shared, add to page cache
4067 size = i_size_read(mapping->host) >> huge_page_shift(h);
4070 goto out_release_nounlock;
4073 * Serialization between remove_inode_hugepages() and
4074 * huge_add_to_page_cache() below happens through the
4075 * hugetlb_fault_mutex_table that here must be hold by
4078 ret = huge_add_to_page_cache(page, mapping, idx);
4080 goto out_release_nounlock;
4083 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4087 * Recheck the i_size after holding PT lock to make sure not
4088 * to leave any page mapped (as page_mapped()) beyond the end
4089 * of the i_size (remove_inode_hugepages() is strict about
4090 * enforcing that). If we bail out here, we'll also leave a
4091 * page in the radix tree in the vm_shared case beyond the end
4092 * of the i_size, but remove_inode_hugepages() will take care
4093 * of it as soon as we drop the hugetlb_fault_mutex_table.
4095 size = i_size_read(mapping->host) >> huge_page_shift(h);
4098 goto out_release_unlock;
4101 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102 goto out_release_unlock;
4105 page_dup_rmap(page, true);
4107 ClearPagePrivate(page);
4108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4111 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112 if (dst_vma->vm_flags & VM_WRITE)
4113 _dst_pte = huge_pte_mkdirty(_dst_pte);
4114 _dst_pte = pte_mkyoung(_dst_pte);
4116 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4118 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119 dst_vma->vm_flags & VM_WRITE);
4120 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4122 /* No need to invalidate - it was non-present before */
4123 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4135 out_release_nounlock:
4140 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141 struct page **pages, struct vm_area_struct **vmas,
4142 unsigned long *position, unsigned long *nr_pages,
4143 long i, unsigned int flags, int *nonblocking)
4145 unsigned long pfn_offset;
4146 unsigned long vaddr = *position;
4147 unsigned long remainder = *nr_pages;
4148 struct hstate *h = hstate_vma(vma);
4151 while (vaddr < vma->vm_end && remainder) {
4153 spinlock_t *ptl = NULL;
4158 * If we have a pending SIGKILL, don't keep faulting pages and
4159 * potentially allocating memory.
4161 if (unlikely(fatal_signal_pending(current))) {
4167 * Some archs (sparc64, sh*) have multiple pte_ts to
4168 * each hugepage. We have to make sure we get the
4169 * first, for the page indexing below to work.
4171 * Note that page table lock is not held when pte is null.
4173 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4176 ptl = huge_pte_lock(h, mm, pte);
4177 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4180 * When coredumping, it suits get_dump_page if we just return
4181 * an error where there's an empty slot with no huge pagecache
4182 * to back it. This way, we avoid allocating a hugepage, and
4183 * the sparse dumpfile avoids allocating disk blocks, but its
4184 * huge holes still show up with zeroes where they need to be.
4186 if (absent && (flags & FOLL_DUMP) &&
4187 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4195 * We need call hugetlb_fault for both hugepages under migration
4196 * (in which case hugetlb_fault waits for the migration,) and
4197 * hwpoisoned hugepages (in which case we need to prevent the
4198 * caller from accessing to them.) In order to do this, we use
4199 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 * both cases, and because we can't follow correct pages
4202 * directly from any kind of swap entries.
4204 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4205 ((flags & FOLL_WRITE) &&
4206 !huge_pte_write(huge_ptep_get(pte)))) {
4208 unsigned int fault_flags = 0;
4212 if (flags & FOLL_WRITE)
4213 fault_flags |= FAULT_FLAG_WRITE;
4215 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216 if (flags & FOLL_NOWAIT)
4217 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218 FAULT_FLAG_RETRY_NOWAIT;
4219 if (flags & FOLL_TRIED) {
4220 VM_WARN_ON_ONCE(fault_flags &
4221 FAULT_FLAG_ALLOW_RETRY);
4222 fault_flags |= FAULT_FLAG_TRIED;
4224 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225 if (ret & VM_FAULT_ERROR) {
4226 err = vm_fault_to_errno(ret, flags);
4230 if (ret & VM_FAULT_RETRY) {
4235 * VM_FAULT_RETRY must not return an
4236 * error, it will return zero
4239 * No need to update "position" as the
4240 * caller will not check it after
4241 * *nr_pages is set to 0.
4248 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4249 page = pte_page(huge_ptep_get(pte));
4252 pages[i] = mem_map_offset(page, pfn_offset);
4263 if (vaddr < vma->vm_end && remainder &&
4264 pfn_offset < pages_per_huge_page(h)) {
4266 * We use pfn_offset to avoid touching the pageframes
4267 * of this compound page.
4273 *nr_pages = remainder;
4275 * setting position is actually required only if remainder is
4276 * not zero but it's faster not to add a "if (remainder)"
4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4286 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4289 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4292 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4293 unsigned long address, unsigned long end, pgprot_t newprot)
4295 struct mm_struct *mm = vma->vm_mm;
4296 unsigned long start = address;
4299 struct hstate *h = hstate_vma(vma);
4300 unsigned long pages = 0;
4302 BUG_ON(address >= end);
4303 flush_cache_range(vma, address, end);
4305 mmu_notifier_invalidate_range_start(mm, start, end);
4306 i_mmap_lock_write(vma->vm_file->f_mapping);
4307 for (; address < end; address += huge_page_size(h)) {
4309 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4312 ptl = huge_pte_lock(h, mm, ptep);
4313 if (huge_pmd_unshare(mm, &address, ptep)) {
4318 pte = huge_ptep_get(ptep);
4319 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4323 if (unlikely(is_hugetlb_entry_migration(pte))) {
4324 swp_entry_t entry = pte_to_swp_entry(pte);
4326 if (is_write_migration_entry(entry)) {
4329 make_migration_entry_read(&entry);
4330 newpte = swp_entry_to_pte(entry);
4331 set_huge_swap_pte_at(mm, address, ptep,
4332 newpte, huge_page_size(h));
4338 if (!huge_pte_none(pte)) {
4339 pte = huge_ptep_get_and_clear(mm, address, ptep);
4340 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4341 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4342 set_huge_pte_at(mm, address, ptep, pte);
4348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4349 * may have cleared our pud entry and done put_page on the page table:
4350 * once we release i_mmap_rwsem, another task can do the final put_page
4351 * and that page table be reused and filled with junk.
4353 flush_hugetlb_tlb_range(vma, start, end);
4355 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 * page table protection not changing it to point to a new page.
4358 * See Documentation/vm/mmu_notifier.rst
4360 i_mmap_unlock_write(vma->vm_file->f_mapping);
4361 mmu_notifier_invalidate_range_end(mm, start, end);
4363 return pages << h->order;
4366 int hugetlb_reserve_pages(struct inode *inode,
4368 struct vm_area_struct *vma,
4369 vm_flags_t vm_flags)
4372 struct hstate *h = hstate_inode(inode);
4373 struct hugepage_subpool *spool = subpool_inode(inode);
4374 struct resv_map *resv_map;
4377 /* This should never happen */
4379 VM_WARN(1, "%s called with a negative range\n", __func__);
4384 * Only apply hugepage reservation if asked. At fault time, an
4385 * attempt will be made for VM_NORESERVE to allocate a page
4386 * without using reserves
4388 if (vm_flags & VM_NORESERVE)
4392 * Shared mappings base their reservation on the number of pages that
4393 * are already allocated on behalf of the file. Private mappings need
4394 * to reserve the full area even if read-only as mprotect() may be
4395 * called to make the mapping read-write. Assume !vma is a shm mapping
4397 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4398 resv_map = inode_resv_map(inode);
4400 chg = region_chg(resv_map, from, to);
4403 resv_map = resv_map_alloc();
4409 set_vma_resv_map(vma, resv_map);
4410 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4419 * There must be enough pages in the subpool for the mapping. If
4420 * the subpool has a minimum size, there may be some global
4421 * reservations already in place (gbl_reserve).
4423 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4424 if (gbl_reserve < 0) {
4430 * Check enough hugepages are available for the reservation.
4431 * Hand the pages back to the subpool if there are not
4433 ret = hugetlb_acct_memory(h, gbl_reserve);
4435 /* put back original number of pages, chg */
4436 (void)hugepage_subpool_put_pages(spool, chg);
4441 * Account for the reservations made. Shared mappings record regions
4442 * that have reservations as they are shared by multiple VMAs.
4443 * When the last VMA disappears, the region map says how much
4444 * the reservation was and the page cache tells how much of
4445 * the reservation was consumed. Private mappings are per-VMA and
4446 * only the consumed reservations are tracked. When the VMA
4447 * disappears, the original reservation is the VMA size and the
4448 * consumed reservations are stored in the map. Hence, nothing
4449 * else has to be done for private mappings here
4451 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4452 long add = region_add(resv_map, from, to);
4454 if (unlikely(chg > add)) {
4456 * pages in this range were added to the reserve
4457 * map between region_chg and region_add. This
4458 * indicates a race with alloc_huge_page. Adjust
4459 * the subpool and reserve counts modified above
4460 * based on the difference.
4464 rsv_adjust = hugepage_subpool_put_pages(spool,
4466 hugetlb_acct_memory(h, -rsv_adjust);
4471 if (!vma || vma->vm_flags & VM_MAYSHARE)
4472 /* Don't call region_abort if region_chg failed */
4474 region_abort(resv_map, from, to);
4475 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4476 kref_put(&resv_map->refs, resv_map_release);
4480 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4483 struct hstate *h = hstate_inode(inode);
4484 struct resv_map *resv_map = inode_resv_map(inode);
4486 struct hugepage_subpool *spool = subpool_inode(inode);
4490 chg = region_del(resv_map, start, end);
4492 * region_del() can fail in the rare case where a region
4493 * must be split and another region descriptor can not be
4494 * allocated. If end == LONG_MAX, it will not fail.
4500 spin_lock(&inode->i_lock);
4501 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4502 spin_unlock(&inode->i_lock);
4505 * If the subpool has a minimum size, the number of global
4506 * reservations to be released may be adjusted.
4508 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4509 hugetlb_acct_memory(h, -gbl_reserve);
4514 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4515 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4516 struct vm_area_struct *vma,
4517 unsigned long addr, pgoff_t idx)
4519 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4521 unsigned long sbase = saddr & PUD_MASK;
4522 unsigned long s_end = sbase + PUD_SIZE;
4524 /* Allow segments to share if only one is marked locked */
4525 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4526 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4529 * match the virtual addresses, permission and the alignment of the
4532 if (pmd_index(addr) != pmd_index(saddr) ||
4533 vm_flags != svm_flags ||
4534 sbase < svma->vm_start || svma->vm_end < s_end)
4540 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4542 unsigned long base = addr & PUD_MASK;
4543 unsigned long end = base + PUD_SIZE;
4546 * check on proper vm_flags and page table alignment
4548 if (vma->vm_flags & VM_MAYSHARE &&
4549 vma->vm_start <= base && end <= vma->vm_end)
4555 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4556 * and returns the corresponding pte. While this is not necessary for the
4557 * !shared pmd case because we can allocate the pmd later as well, it makes the
4558 * code much cleaner. pmd allocation is essential for the shared case because
4559 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4560 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4561 * bad pmd for sharing.
4563 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4565 struct vm_area_struct *vma = find_vma(mm, addr);
4566 struct address_space *mapping = vma->vm_file->f_mapping;
4567 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4569 struct vm_area_struct *svma;
4570 unsigned long saddr;
4575 if (!vma_shareable(vma, addr))
4576 return (pte_t *)pmd_alloc(mm, pud, addr);
4578 i_mmap_lock_write(mapping);
4579 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4583 saddr = page_table_shareable(svma, vma, addr, idx);
4585 spte = huge_pte_offset(svma->vm_mm, saddr,
4586 vma_mmu_pagesize(svma));
4588 get_page(virt_to_page(spte));
4597 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4598 if (pud_none(*pud)) {
4599 pud_populate(mm, pud,
4600 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4603 put_page(virt_to_page(spte));
4607 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4608 i_mmap_unlock_write(mapping);
4613 * unmap huge page backed by shared pte.
4615 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4616 * indicated by page_count > 1, unmap is achieved by clearing pud and
4617 * decrementing the ref count. If count == 1, the pte page is not shared.
4619 * called with page table lock held.
4621 * returns: 1 successfully unmapped a shared pte page
4622 * 0 the underlying pte page is not shared, or it is the last user
4624 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4626 pgd_t *pgd = pgd_offset(mm, *addr);
4627 p4d_t *p4d = p4d_offset(pgd, *addr);
4628 pud_t *pud = pud_offset(p4d, *addr);
4630 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4631 if (page_count(virt_to_page(ptep)) == 1)
4635 put_page(virt_to_page(ptep));
4637 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4640 #define want_pmd_share() (1)
4641 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4642 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4647 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4651 #define want_pmd_share() (0)
4652 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4654 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4655 pte_t *huge_pte_alloc(struct mm_struct *mm,
4656 unsigned long addr, unsigned long sz)
4663 pgd = pgd_offset(mm, addr);
4664 p4d = p4d_alloc(mm, pgd, addr);
4667 pud = pud_alloc(mm, p4d, addr);
4669 if (sz == PUD_SIZE) {
4672 BUG_ON(sz != PMD_SIZE);
4673 if (want_pmd_share() && pud_none(*pud))
4674 pte = huge_pmd_share(mm, addr, pud);
4676 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4679 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4685 * huge_pte_offset() - Walk the page table to resolve the hugepage
4686 * entry at address @addr
4688 * Return: Pointer to page table or swap entry (PUD or PMD) for
4689 * address @addr, or NULL if a p*d_none() entry is encountered and the
4690 * size @sz doesn't match the hugepage size at this level of the page
4693 pte_t *huge_pte_offset(struct mm_struct *mm,
4694 unsigned long addr, unsigned long sz)
4701 pgd = pgd_offset(mm, addr);
4702 if (!pgd_present(*pgd))
4704 p4d = p4d_offset(pgd, addr);
4705 if (!p4d_present(*p4d))
4708 pud = pud_offset(p4d, addr);
4709 if (sz != PUD_SIZE && pud_none(*pud))
4711 /* hugepage or swap? */
4712 if (pud_huge(*pud) || !pud_present(*pud))
4713 return (pte_t *)pud;
4715 pmd = pmd_offset(pud, addr);
4716 if (sz != PMD_SIZE && pmd_none(*pmd))
4718 /* hugepage or swap? */
4719 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4720 return (pte_t *)pmd;
4725 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4728 * These functions are overwritable if your architecture needs its own
4731 struct page * __weak
4732 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4735 return ERR_PTR(-EINVAL);
4738 struct page * __weak
4739 follow_huge_pd(struct vm_area_struct *vma,
4740 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4742 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4746 struct page * __weak
4747 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4748 pmd_t *pmd, int flags)
4750 struct page *page = NULL;
4754 ptl = pmd_lockptr(mm, pmd);
4757 * make sure that the address range covered by this pmd is not
4758 * unmapped from other threads.
4760 if (!pmd_huge(*pmd))
4762 pte = huge_ptep_get((pte_t *)pmd);
4763 if (pte_present(pte)) {
4764 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4765 if (flags & FOLL_GET)
4768 if (is_hugetlb_entry_migration(pte)) {
4770 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4774 * hwpoisoned entry is treated as no_page_table in
4775 * follow_page_mask().
4783 struct page * __weak
4784 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4785 pud_t *pud, int flags)
4787 if (flags & FOLL_GET)
4790 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4793 struct page * __weak
4794 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4796 if (flags & FOLL_GET)
4799 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4802 bool isolate_huge_page(struct page *page, struct list_head *list)
4806 VM_BUG_ON_PAGE(!PageHead(page), page);
4807 spin_lock(&hugetlb_lock);
4808 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4812 clear_page_huge_active(page);
4813 list_move_tail(&page->lru, list);
4815 spin_unlock(&hugetlb_lock);
4819 void putback_active_hugepage(struct page *page)
4821 VM_BUG_ON_PAGE(!PageHead(page), page);
4822 spin_lock(&hugetlb_lock);
4823 set_page_huge_active(page);
4824 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4825 spin_unlock(&hugetlb_lock);
4829 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4831 struct hstate *h = page_hstate(oldpage);
4833 hugetlb_cgroup_migrate(oldpage, newpage);
4834 set_page_owner_migrate_reason(newpage, reason);
4837 * transfer temporary state of the new huge page. This is
4838 * reverse to other transitions because the newpage is going to
4839 * be final while the old one will be freed so it takes over
4840 * the temporary status.
4842 * Also note that we have to transfer the per-node surplus state
4843 * here as well otherwise the global surplus count will not match
4846 if (PageHugeTemporary(newpage)) {
4847 int old_nid = page_to_nid(oldpage);
4848 int new_nid = page_to_nid(newpage);
4850 SetPageHugeTemporary(oldpage);
4851 ClearPageHugeTemporary(newpage);
4853 spin_lock(&hugetlb_lock);
4854 if (h->surplus_huge_pages_node[old_nid]) {
4855 h->surplus_huge_pages_node[old_nid]--;
4856 h->surplus_huge_pages_node[new_nid]++;
4858 spin_unlock(&hugetlb_lock);