2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
30 #include <asm/pgtable.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
45 * Minimum page order among possible hugepage sizes, set to a proper value
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 __initdata LIST_HEAD(huge_boot_pages);
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 spin_unlock(&spool->lock);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 struct hugepage_subpool *spool;
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 spin_lock_init(&spool->lock);
102 spool->max_hpages = max_hpages;
104 spool->min_hpages = min_hpages;
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 spool->rsv_hpages = min_hpages;
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
120 unlock_or_release_subpool(spool);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
139 spin_lock(&spool->lock);
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
166 spin_unlock(&spool->lock);
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
184 spin_lock(&spool->lock);
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool);
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 return HUGETLBFS_SB(inode->i_sb)->spool;
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 return subpool_inode(file_inode(vma->vm_file));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
240 struct list_head link;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map *resv, long f, long t)
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 list_del(&nrg->link);
287 list_add(&nrg->link, rg->link.prev);
293 /* Round our left edge to the current segment if it encloses us. */
297 /* Check for and consume any regions we now overlap with. */
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add -= (rg->to - rg->from);
321 add += (nrg->from - f); /* Added to beginning of region */
323 add += t - nrg->to; /* Added to end of region */
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map *resv, long f, long t)
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
362 spin_lock(&resv->lock);
364 resv->adds_in_progress++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
408 INIT_LIST_HEAD(&nrg->link);
412 list_add(&nrg->link, rg->link.prev);
417 /* Round our left edge to the current segment if it encloses us. */
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
436 chg -= rg->to - rg->from;
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
445 spin_unlock(&resv->lock);
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map *resv, long f, long t)
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map *resv, long f, long t)
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
505 if (f > rg->from && t < rg->to) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
515 list_del(&nrg->link);
516 resv->region_cache_count--;
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
529 /* New entry for end of split region */
532 INIT_LIST_HEAD(&nrg->link);
534 /* Original entry is trimmed */
537 list_add(&nrg->link, &rg->link);
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
549 if (f <= rg->from) { /* Trim beginning of region */
552 } else { /* Trim end of region */
558 spin_unlock(&resv->lock);
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
572 void hugetlb_fix_reserve_counts(struct inode *inode)
574 struct hugepage_subpool *spool = subpool_inode(inode);
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 struct hstate *h = hstate_inode(inode);
581 hugetlb_acct_memory(h, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map *resv, long f, long t)
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
609 chg += seg_to - seg_from;
611 spin_unlock(&resv->lock);
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 return vma_kernel_pagesize(vma);
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 return (unsigned long)vma->vm_private_data;
690 static void set_vma_private_data(struct vm_area_struct *vma,
693 vma->vm_private_data = (void *)value;
696 struct resv_map *resv_map_alloc(void)
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 if (!resv_map || !rg) {
707 kref_init(&resv_map->refs);
708 spin_lock_init(&resv_map->lock);
709 INIT_LIST_HEAD(&resv_map->regions);
711 resv_map->adds_in_progress = 0;
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
720 void resv_map_release(struct kref *ref)
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map, 0, LONG_MAX);
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
735 VM_BUG_ON(resv_map->adds_in_progress);
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 return inode->i_mapping->private_data;
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
752 return inode_resv_map(inode);
755 return (struct resv_map *)(get_vma_private_data(vma) &
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 return (get_vma_private_data(vma) & flag) != 0;
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 if (!(vma->vm_flags & VM_MAYSHARE))
789 vma->vm_private_data = (void *)0;
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 if (vma->vm_flags & VM_NORESERVE) {
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 /* Shared mappings always use reserves */
812 if (vma->vm_flags & VM_MAYSHARE) {
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
827 * Only the process that called mmap() has reserves for
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 int nid = page_to_nid(page);
858 list_move(&page->lru, &h->hugepage_freelists[nid]);
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 if (!PageHWPoison(page))
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
874 if (&h->hugepage_freelists[nid] == &page->lru)
876 list_move(&page->lru, &h->hugepage_activelist);
877 set_page_refcounted(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
892 zonelist = node_zonelist(nid, gfp_mask);
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
899 if (!cpuset_zone_allowed(zone, gfp_mask))
902 * no need to ask again on the same node. Pool is node rather than
905 if (zone_to_nid(zone) == node)
907 node = zone_to_nid(zone);
909 page = dequeue_huge_page_node_exact(h, node);
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 if (hugepage_migration_supported(h))
923 return GFP_HIGHUSER_MOVABLE;
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
930 unsigned long address, int avoid_reserve,
934 struct mempolicy *mpol;
936 nodemask_t *nodemask;
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
944 if (!vma_has_reserves(vma, chg) &&
945 h->free_huge_pages - h->resv_huge_pages == 0)
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 nid = next_node_in(nid, *nodes_allowed);
977 VM_BUG_ON(nid >= MAX_NUMNODES);
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
1000 VM_BUG_ON(!nodes_allowed);
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1018 VM_BUG_ON(!nodes_allowed);
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1046 atomic_set(compound_mapcount_ptr(page), 0);
1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 clear_compound_head(p);
1049 set_page_refcounted(p);
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1058 free_contig_range(page_to_pfn(page), 1 << order);
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 unsigned long nr_pages, gfp_t gfp_mask)
1064 unsigned long end_pfn = start_pfn + nr_pages;
1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1075 for (i = start_pfn; i < end_pfn; i++) {
1079 page = pfn_to_page(i);
1081 if (page_zone(page) != z)
1084 if (PageReserved(page))
1087 if (page_count(page) > 0)
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
1107 unsigned int order = huge_page_order(h);
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
1110 struct zonelist *zonelist;
1114 zonelist = node_zonelist(nid, gfp_mask);
1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 spin_lock_irqsave(&zone->lock, flags);
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131 return pfn_to_page(pfn);
1132 spin_lock_irqsave(&zone->lock, flags);
1137 spin_unlock_irqrestore(&zone->lock, flags);
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152 unsigned int order) { }
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
1167 1 << PG_active | 1 << PG_private |
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 set_page_refcounted(page);
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1177 __free_pages(page, huge_page_order(h));
1181 struct hstate *size_to_hstate(unsigned long size)
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1196 * This function can be called for tail pages, but never returns true for them.
1198 bool page_huge_active(struct page *page)
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1211 static void clear_page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1221 static inline bool PageHugeTemporary(struct page *page)
1223 if (!PageHuge(page))
1226 return (unsigned long)page[2].mapping == -1U;
1229 static inline void SetPageHugeTemporary(struct page *page)
1231 page[2].mapping = (void *)-1U;
1234 static inline void ClearPageHugeTemporary(struct page *page)
1236 page[2].mapping = NULL;
1239 void free_huge_page(struct page *page)
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1245 struct hstate *h = page_hstate(page);
1246 int nid = page_to_nid(page);
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
1249 bool restore_reserve;
1251 set_page_private(page, 0);
1252 page->mapping = NULL;
1253 VM_BUG_ON_PAGE(page_count(page), page);
1254 VM_BUG_ON_PAGE(page_mapcount(page), page);
1255 restore_reserve = PagePrivate(page);
1256 ClearPagePrivate(page);
1259 * A return code of zero implies that the subpool will be under its
1260 * minimum size if the reservation is not restored after page is free.
1261 * Therefore, force restore_reserve operation.
1263 if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 restore_reserve = true;
1266 spin_lock(&hugetlb_lock);
1267 clear_page_huge_active(page);
1268 hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 pages_per_huge_page(h), page);
1270 if (restore_reserve)
1271 h->resv_huge_pages++;
1273 if (PageHugeTemporary(page)) {
1274 list_del(&page->lru);
1275 ClearPageHugeTemporary(page);
1276 update_and_free_page(h, page);
1277 } else if (h->surplus_huge_pages_node[nid]) {
1278 /* remove the page from active list */
1279 list_del(&page->lru);
1280 update_and_free_page(h, page);
1281 h->surplus_huge_pages--;
1282 h->surplus_huge_pages_node[nid]--;
1284 arch_clear_hugepage_flags(page);
1285 enqueue_huge_page(h, page);
1287 spin_unlock(&hugetlb_lock);
1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1292 INIT_LIST_HEAD(&page->lru);
1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294 spin_lock(&hugetlb_lock);
1295 set_hugetlb_cgroup(page, NULL);
1297 h->nr_huge_pages_node[nid]++;
1298 spin_unlock(&hugetlb_lock);
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 int nr_pages = 1 << order;
1305 struct page *p = page + 1;
1307 /* we rely on prep_new_huge_page to set the destructor */
1308 set_compound_order(page, order);
1309 __ClearPageReserved(page);
1310 __SetPageHead(page);
1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1313 * For gigantic hugepages allocated through bootmem at
1314 * boot, it's safer to be consistent with the not-gigantic
1315 * hugepages and clear the PG_reserved bit from all tail pages
1316 * too. Otherwse drivers using get_user_pages() to access tail
1317 * pages may get the reference counting wrong if they see
1318 * PG_reserved set on a tail page (despite the head page not
1319 * having PG_reserved set). Enforcing this consistency between
1320 * head and tail pages allows drivers to optimize away a check
1321 * on the head page when they need know if put_page() is needed
1322 * after get_user_pages().
1324 __ClearPageReserved(p);
1325 set_page_count(p, 0);
1326 set_compound_head(p, page);
1328 atomic_set(compound_mapcount_ptr(page), -1);
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages. See the PageTransHuge() documentation for more
1336 int PageHuge(struct page *page)
1338 if (!PageCompound(page))
1341 page = compound_head(page);
1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1344 EXPORT_SYMBOL_GPL(PageHuge);
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1350 int PageHeadHuge(struct page *page_head)
1352 if (!PageHead(page_head))
1355 return get_compound_page_dtor(page_head) == free_huge_page;
1358 pgoff_t __basepage_index(struct page *page)
1360 struct page *page_head = compound_head(page);
1361 pgoff_t index = page_index(page_head);
1362 unsigned long compound_idx;
1364 if (!PageHuge(page_head))
1365 return page_index(page);
1367 if (compound_order(page_head) >= MAX_ORDER)
1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1370 compound_idx = page - page_head;
1372 return (index << compound_order(page_head)) + compound_idx;
1375 static struct page *alloc_buddy_huge_page(struct hstate *h,
1376 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1378 int order = huge_page_order(h);
1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 if (nid == NUMA_NO_NODE)
1383 nid = numa_mem_id();
1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1386 __count_vm_event(HTLB_BUDDY_PGALLOC);
1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1397 static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1402 if (hstate_is_gigantic(h))
1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1405 page = alloc_buddy_huge_page(h, gfp_mask,
1410 if (hstate_is_gigantic(h))
1411 prep_compound_gigantic_page(page, huge_page_order(h));
1412 prep_new_huge_page(h, page, page_to_nid(page));
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1436 put_page(page); /* free it into the hugepage allocator */
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1455 * If we're returning unused surplus pages, only examine
1456 * nodes with surplus pages.
1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 !list_empty(&h->hugepage_freelists[node])) {
1461 list_entry(h->hugepage_freelists[node].next,
1463 list_del(&page->lru);
1464 h->free_huge_pages--;
1465 h->free_huge_pages_node[node]--;
1467 h->surplus_huge_pages--;
1468 h->surplus_huge_pages_node[node]--;
1470 update_and_free_page(h, page);
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * number of free hugepages would be reduced below the number of reserved
1485 int dissolve_free_huge_page(struct page *page)
1489 spin_lock(&hugetlb_lock);
1490 if (PageHuge(page) && !page_count(page)) {
1491 struct page *head = compound_head(page);
1492 struct hstate *h = page_hstate(head);
1493 int nid = page_to_nid(head);
1494 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1499 * Move PageHWPoison flag from head page to the raw error page,
1500 * which makes any subpages rather than the error page reusable.
1502 if (PageHWPoison(head) && page != head) {
1503 SetPageHWPoison(page);
1504 ClearPageHWPoison(head);
1506 list_del(&head->lru);
1507 h->free_huge_pages--;
1508 h->free_huge_pages_node[nid]--;
1509 h->max_huge_pages--;
1510 update_and_free_page(h, head);
1513 spin_unlock(&hugetlb_lock);
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1531 if (!hugepages_supported())
1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535 page = pfn_to_page(pfn);
1536 if (PageHuge(page) && !page_count(page)) {
1537 rc = dissolve_free_huge_page(page);
1547 * Allocates a fresh surplus page from the page allocator.
1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550 int nid, nodemask_t *nmask)
1552 struct page *page = NULL;
1554 if (hstate_is_gigantic(h))
1557 spin_lock(&hugetlb_lock);
1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1560 spin_unlock(&hugetlb_lock);
1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1566 spin_lock(&hugetlb_lock);
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 SetPageHugeTemporary(page);
1579 h->surplus_huge_pages++;
1580 h->surplus_huge_pages_node[page_to_nid(page)]++;
1584 spin_unlock(&hugetlb_lock);
1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590 int nid, nodemask_t *nmask)
1594 if (hstate_is_gigantic(h))
1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1602 * We do not account these pages as surplus because they are only
1603 * temporary and will be released properly on the last reference
1605 SetPageHugeTemporary(page);
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615 struct vm_area_struct *vma, unsigned long addr)
1618 struct mempolicy *mpol;
1619 gfp_t gfp_mask = htlb_alloc_mask(h);
1621 nodemask_t *nodemask;
1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625 mpol_cond_put(mpol);
1630 /* page migration callback function */
1631 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633 gfp_t gfp_mask = htlb_alloc_mask(h);
1634 struct page *page = NULL;
1636 if (nid != NUMA_NO_NODE)
1637 gfp_mask |= __GFP_THISNODE;
1639 spin_lock(&hugetlb_lock);
1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642 spin_unlock(&hugetlb_lock);
1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1650 /* page migration callback function */
1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1654 gfp_t gfp_mask = htlb_alloc_mask(h);
1656 spin_lock(&hugetlb_lock);
1657 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1662 spin_unlock(&hugetlb_lock);
1666 spin_unlock(&hugetlb_lock);
1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1671 /* mempolicy aware migration callback */
1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673 unsigned long address)
1675 struct mempolicy *mpol;
1676 nodemask_t *nodemask;
1681 gfp_mask = htlb_alloc_mask(h);
1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683 page = alloc_huge_page_nodemask(h, node, nodemask);
1684 mpol_cond_put(mpol);
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703 h->resv_huge_pages += delta;
1708 INIT_LIST_HEAD(&surplus_list);
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715 NUMA_NO_NODE, NULL);
1720 list_add(&page->lru, &surplus_list);
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1729 spin_lock(&hugetlb_lock);
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1743 * The surplus_list now contains _at_least_ the number of extra pages
1744 * needed to accommodate the reservation. Add the appropriate number
1745 * of pages to the hugetlb pool and free the extras back to the buddy
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
1750 needed += allocated;
1751 h->resv_huge_pages += delta;
1754 /* Free the needed pages to the hugetlb pool */
1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1762 put_page_testzero(page);
1763 VM_BUG_ON_PAGE(page_count(page), page);
1764 enqueue_huge_page(h, page);
1767 spin_unlock(&hugetlb_lock);
1769 /* Free unnecessary surplus pages to the buddy allocator */
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 spin_lock(&hugetlb_lock);
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1791 static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
1794 unsigned long nr_pages;
1796 /* Cannot return gigantic pages currently */
1797 if (hstate_is_gigantic(h))
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1807 * We want to release as many surplus pages as possible, spread
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
1818 while (nr_pages--) {
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823 cond_resched_lock(&hugetlb_lock);
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1856 enum vma_resv_mode {
1862 static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
1864 enum vma_resv_mode mode)
1866 struct resv_map *resv;
1870 resv = vma_resv_map(vma);
1874 idx = vma_hugecache_offset(h, vma, addr);
1876 case VMA_NEEDS_RESV:
1877 ret = region_chg(resv, idx, idx + 1);
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1883 region_abort(resv, idx, idx + 1);
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1898 if (vma->vm_flags & VM_MAYSHARE)
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1920 return ret < 0 ? ret : 0;
1923 static long vma_needs_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1929 static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1935 static void vma_end_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1941 static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1958 static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1965 if (unlikely(rc < 0)) {
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1977 ClearPagePrivate(page);
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1982 * See above comment about rare out of
1985 ClearPagePrivate(page);
1987 vma_end_reservation(h, vma, address);
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 unsigned long addr, int avoid_reserve)
1994 struct hugepage_subpool *spool = subpool_vma(vma);
1995 struct hstate *h = hstate_vma(vma);
1997 long map_chg, map_commit;
2000 struct hugetlb_cgroup *h_cg;
2002 idx = hstate_index(h);
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 return ERR_PTR(-ENOMEM);
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 vma_end_reservation(h, vma, addr);
2023 return ERR_PTR(-ENOSPC);
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040 goto out_subpool_put;
2042 spin_lock(&hugetlb_lock);
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050 spin_unlock(&hugetlb_lock);
2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053 goto out_uncharge_cgroup;
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
2065 set_page_private(page, (unsigned long)spool);
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2085 out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088 if (map_chg || avoid_reserve)
2089 hugepage_subpool_put_pages(spool, 1);
2090 vma_end_reservation(h, vma, addr);
2091 return ERR_PTR(-ENOSPC);
2094 int alloc_bootmem_huge_page(struct hstate *h)
2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096 int __alloc_bootmem_huge_page(struct hstate *h)
2098 struct huge_bootmem_page *m;
2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2104 addr = memblock_virt_alloc_try_nid_nopanic(
2105 huge_page_size(h), huge_page_size(h),
2106 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2109 * Use the beginning of the huge page to store the
2110 * huge_bootmem_page struct (until gather_bootmem
2111 * puts them into the mem_map).
2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121 /* Put them into a private list first because mem_map is not up yet */
2122 list_add(&m->list, &huge_boot_pages);
2127 static void __init prep_compound_huge_page(struct page *page,
2130 if (unlikely(order > (MAX_ORDER - 1)))
2131 prep_compound_gigantic_page(page, order);
2133 prep_compound_page(page, order);
2136 /* Put bootmem huge pages into the standard lists after mem_map is up */
2137 static void __init gather_bootmem_prealloc(void)
2139 struct huge_bootmem_page *m;
2141 list_for_each_entry(m, &huge_boot_pages, list) {
2142 struct hstate *h = m->hstate;
2145 #ifdef CONFIG_HIGHMEM
2146 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2147 memblock_free_late(__pa(m),
2148 sizeof(struct huge_bootmem_page));
2150 page = virt_to_page(m);
2152 WARN_ON(page_count(page) != 1);
2153 prep_compound_huge_page(page, h->order);
2154 WARN_ON(PageReserved(page));
2155 prep_new_huge_page(h, page, page_to_nid(page));
2156 put_page(page); /* free it into the hugepage allocator */
2159 * If we had gigantic hugepages allocated at boot time, we need
2160 * to restore the 'stolen' pages to totalram_pages in order to
2161 * fix confusing memory reports from free(1) and another
2162 * side-effects, like CommitLimit going negative.
2164 if (hstate_is_gigantic(h))
2165 adjust_managed_page_count(page, 1 << h->order);
2169 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2173 for (i = 0; i < h->max_huge_pages; ++i) {
2174 if (hstate_is_gigantic(h)) {
2175 if (!alloc_bootmem_huge_page(h))
2177 } else if (!alloc_pool_huge_page(h,
2178 &node_states[N_MEMORY]))
2182 if (i < h->max_huge_pages) {
2185 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2186 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2187 h->max_huge_pages, buf, i);
2188 h->max_huge_pages = i;
2192 static void __init hugetlb_init_hstates(void)
2196 for_each_hstate(h) {
2197 if (minimum_order > huge_page_order(h))
2198 minimum_order = huge_page_order(h);
2200 /* oversize hugepages were init'ed in early boot */
2201 if (!hstate_is_gigantic(h))
2202 hugetlb_hstate_alloc_pages(h);
2204 VM_BUG_ON(minimum_order == UINT_MAX);
2207 static void __init report_hugepages(void)
2211 for_each_hstate(h) {
2214 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2215 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2216 buf, h->free_huge_pages);
2220 #ifdef CONFIG_HIGHMEM
2221 static void try_to_free_low(struct hstate *h, unsigned long count,
2222 nodemask_t *nodes_allowed)
2226 if (hstate_is_gigantic(h))
2229 for_each_node_mask(i, *nodes_allowed) {
2230 struct page *page, *next;
2231 struct list_head *freel = &h->hugepage_freelists[i];
2232 list_for_each_entry_safe(page, next, freel, lru) {
2233 if (count >= h->nr_huge_pages)
2235 if (PageHighMem(page))
2237 list_del(&page->lru);
2238 update_and_free_page(h, page);
2239 h->free_huge_pages--;
2240 h->free_huge_pages_node[page_to_nid(page)]--;
2245 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2246 nodemask_t *nodes_allowed)
2252 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2253 * balanced by operating on them in a round-robin fashion.
2254 * Returns 1 if an adjustment was made.
2256 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2261 VM_BUG_ON(delta != -1 && delta != 1);
2264 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2265 if (h->surplus_huge_pages_node[node])
2269 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2270 if (h->surplus_huge_pages_node[node] <
2271 h->nr_huge_pages_node[node])
2278 h->surplus_huge_pages += delta;
2279 h->surplus_huge_pages_node[node] += delta;
2283 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2284 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2285 nodemask_t *nodes_allowed)
2287 unsigned long min_count, ret;
2289 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2290 return h->max_huge_pages;
2293 * Increase the pool size
2294 * First take pages out of surplus state. Then make up the
2295 * remaining difference by allocating fresh huge pages.
2297 * We might race with alloc_surplus_huge_page() here and be unable
2298 * to convert a surplus huge page to a normal huge page. That is
2299 * not critical, though, it just means the overall size of the
2300 * pool might be one hugepage larger than it needs to be, but
2301 * within all the constraints specified by the sysctls.
2303 spin_lock(&hugetlb_lock);
2304 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2305 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2309 while (count > persistent_huge_pages(h)) {
2311 * If this allocation races such that we no longer need the
2312 * page, free_huge_page will handle it by freeing the page
2313 * and reducing the surplus.
2315 spin_unlock(&hugetlb_lock);
2317 /* yield cpu to avoid soft lockup */
2320 ret = alloc_pool_huge_page(h, nodes_allowed);
2321 spin_lock(&hugetlb_lock);
2325 /* Bail for signals. Probably ctrl-c from user */
2326 if (signal_pending(current))
2331 * Decrease the pool size
2332 * First return free pages to the buddy allocator (being careful
2333 * to keep enough around to satisfy reservations). Then place
2334 * pages into surplus state as needed so the pool will shrink
2335 * to the desired size as pages become free.
2337 * By placing pages into the surplus state independent of the
2338 * overcommit value, we are allowing the surplus pool size to
2339 * exceed overcommit. There are few sane options here. Since
2340 * alloc_surplus_huge_page() is checking the global counter,
2341 * though, we'll note that we're not allowed to exceed surplus
2342 * and won't grow the pool anywhere else. Not until one of the
2343 * sysctls are changed, or the surplus pages go out of use.
2345 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2346 min_count = max(count, min_count);
2347 try_to_free_low(h, min_count, nodes_allowed);
2348 while (min_count < persistent_huge_pages(h)) {
2349 if (!free_pool_huge_page(h, nodes_allowed, 0))
2351 cond_resched_lock(&hugetlb_lock);
2353 while (count < persistent_huge_pages(h)) {
2354 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2358 ret = persistent_huge_pages(h);
2359 spin_unlock(&hugetlb_lock);
2363 #define HSTATE_ATTR_RO(_name) \
2364 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2366 #define HSTATE_ATTR(_name) \
2367 static struct kobj_attribute _name##_attr = \
2368 __ATTR(_name, 0644, _name##_show, _name##_store)
2370 static struct kobject *hugepages_kobj;
2371 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2373 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2375 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2379 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2380 if (hstate_kobjs[i] == kobj) {
2382 *nidp = NUMA_NO_NODE;
2386 return kobj_to_node_hstate(kobj, nidp);
2389 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2390 struct kobj_attribute *attr, char *buf)
2393 unsigned long nr_huge_pages;
2396 h = kobj_to_hstate(kobj, &nid);
2397 if (nid == NUMA_NO_NODE)
2398 nr_huge_pages = h->nr_huge_pages;
2400 nr_huge_pages = h->nr_huge_pages_node[nid];
2402 return sprintf(buf, "%lu\n", nr_huge_pages);
2405 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2406 struct hstate *h, int nid,
2407 unsigned long count, size_t len)
2410 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2412 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2417 if (nid == NUMA_NO_NODE) {
2419 * global hstate attribute
2421 if (!(obey_mempolicy &&
2422 init_nodemask_of_mempolicy(nodes_allowed))) {
2423 NODEMASK_FREE(nodes_allowed);
2424 nodes_allowed = &node_states[N_MEMORY];
2426 } else if (nodes_allowed) {
2428 * per node hstate attribute: adjust count to global,
2429 * but restrict alloc/free to the specified node.
2431 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2432 init_nodemask_of_node(nodes_allowed, nid);
2434 nodes_allowed = &node_states[N_MEMORY];
2436 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2438 if (nodes_allowed != &node_states[N_MEMORY])
2439 NODEMASK_FREE(nodes_allowed);
2443 NODEMASK_FREE(nodes_allowed);
2447 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2448 struct kobject *kobj, const char *buf,
2452 unsigned long count;
2456 err = kstrtoul(buf, 10, &count);
2460 h = kobj_to_hstate(kobj, &nid);
2461 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2464 static ssize_t nr_hugepages_show(struct kobject *kobj,
2465 struct kobj_attribute *attr, char *buf)
2467 return nr_hugepages_show_common(kobj, attr, buf);
2470 static ssize_t nr_hugepages_store(struct kobject *kobj,
2471 struct kobj_attribute *attr, const char *buf, size_t len)
2473 return nr_hugepages_store_common(false, kobj, buf, len);
2475 HSTATE_ATTR(nr_hugepages);
2480 * hstate attribute for optionally mempolicy-based constraint on persistent
2481 * huge page alloc/free.
2483 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2484 struct kobj_attribute *attr, char *buf)
2486 return nr_hugepages_show_common(kobj, attr, buf);
2489 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2490 struct kobj_attribute *attr, const char *buf, size_t len)
2492 return nr_hugepages_store_common(true, kobj, buf, len);
2494 HSTATE_ATTR(nr_hugepages_mempolicy);
2498 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2499 struct kobj_attribute *attr, char *buf)
2501 struct hstate *h = kobj_to_hstate(kobj, NULL);
2502 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2505 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2506 struct kobj_attribute *attr, const char *buf, size_t count)
2509 unsigned long input;
2510 struct hstate *h = kobj_to_hstate(kobj, NULL);
2512 if (hstate_is_gigantic(h))
2515 err = kstrtoul(buf, 10, &input);
2519 spin_lock(&hugetlb_lock);
2520 h->nr_overcommit_huge_pages = input;
2521 spin_unlock(&hugetlb_lock);
2525 HSTATE_ATTR(nr_overcommit_hugepages);
2527 static ssize_t free_hugepages_show(struct kobject *kobj,
2528 struct kobj_attribute *attr, char *buf)
2531 unsigned long free_huge_pages;
2534 h = kobj_to_hstate(kobj, &nid);
2535 if (nid == NUMA_NO_NODE)
2536 free_huge_pages = h->free_huge_pages;
2538 free_huge_pages = h->free_huge_pages_node[nid];
2540 return sprintf(buf, "%lu\n", free_huge_pages);
2542 HSTATE_ATTR_RO(free_hugepages);
2544 static ssize_t resv_hugepages_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2547 struct hstate *h = kobj_to_hstate(kobj, NULL);
2548 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2550 HSTATE_ATTR_RO(resv_hugepages);
2552 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2553 struct kobj_attribute *attr, char *buf)
2556 unsigned long surplus_huge_pages;
2559 h = kobj_to_hstate(kobj, &nid);
2560 if (nid == NUMA_NO_NODE)
2561 surplus_huge_pages = h->surplus_huge_pages;
2563 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2565 return sprintf(buf, "%lu\n", surplus_huge_pages);
2567 HSTATE_ATTR_RO(surplus_hugepages);
2569 static struct attribute *hstate_attrs[] = {
2570 &nr_hugepages_attr.attr,
2571 &nr_overcommit_hugepages_attr.attr,
2572 &free_hugepages_attr.attr,
2573 &resv_hugepages_attr.attr,
2574 &surplus_hugepages_attr.attr,
2576 &nr_hugepages_mempolicy_attr.attr,
2581 static const struct attribute_group hstate_attr_group = {
2582 .attrs = hstate_attrs,
2585 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2586 struct kobject **hstate_kobjs,
2587 const struct attribute_group *hstate_attr_group)
2590 int hi = hstate_index(h);
2592 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2593 if (!hstate_kobjs[hi])
2596 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2598 kobject_put(hstate_kobjs[hi]);
2603 static void __init hugetlb_sysfs_init(void)
2608 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2609 if (!hugepages_kobj)
2612 for_each_hstate(h) {
2613 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2614 hstate_kobjs, &hstate_attr_group);
2616 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2623 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2624 * with node devices in node_devices[] using a parallel array. The array
2625 * index of a node device or _hstate == node id.
2626 * This is here to avoid any static dependency of the node device driver, in
2627 * the base kernel, on the hugetlb module.
2629 struct node_hstate {
2630 struct kobject *hugepages_kobj;
2631 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2633 static struct node_hstate node_hstates[MAX_NUMNODES];
2636 * A subset of global hstate attributes for node devices
2638 static struct attribute *per_node_hstate_attrs[] = {
2639 &nr_hugepages_attr.attr,
2640 &free_hugepages_attr.attr,
2641 &surplus_hugepages_attr.attr,
2645 static const struct attribute_group per_node_hstate_attr_group = {
2646 .attrs = per_node_hstate_attrs,
2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2651 * Returns node id via non-NULL nidp.
2653 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2657 for (nid = 0; nid < nr_node_ids; nid++) {
2658 struct node_hstate *nhs = &node_hstates[nid];
2660 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2661 if (nhs->hstate_kobjs[i] == kobj) {
2673 * Unregister hstate attributes from a single node device.
2674 * No-op if no hstate attributes attached.
2676 static void hugetlb_unregister_node(struct node *node)
2679 struct node_hstate *nhs = &node_hstates[node->dev.id];
2681 if (!nhs->hugepages_kobj)
2682 return; /* no hstate attributes */
2684 for_each_hstate(h) {
2685 int idx = hstate_index(h);
2686 if (nhs->hstate_kobjs[idx]) {
2687 kobject_put(nhs->hstate_kobjs[idx]);
2688 nhs->hstate_kobjs[idx] = NULL;
2692 kobject_put(nhs->hugepages_kobj);
2693 nhs->hugepages_kobj = NULL;
2698 * Register hstate attributes for a single node device.
2699 * No-op if attributes already registered.
2701 static void hugetlb_register_node(struct node *node)
2704 struct node_hstate *nhs = &node_hstates[node->dev.id];
2707 if (nhs->hugepages_kobj)
2708 return; /* already allocated */
2710 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2712 if (!nhs->hugepages_kobj)
2715 for_each_hstate(h) {
2716 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2718 &per_node_hstate_attr_group);
2720 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2721 h->name, node->dev.id);
2722 hugetlb_unregister_node(node);
2729 * hugetlb init time: register hstate attributes for all registered node
2730 * devices of nodes that have memory. All on-line nodes should have
2731 * registered their associated device by this time.
2733 static void __init hugetlb_register_all_nodes(void)
2737 for_each_node_state(nid, N_MEMORY) {
2738 struct node *node = node_devices[nid];
2739 if (node->dev.id == nid)
2740 hugetlb_register_node(node);
2744 * Let the node device driver know we're here so it can
2745 * [un]register hstate attributes on node hotplug.
2747 register_hugetlbfs_with_node(hugetlb_register_node,
2748 hugetlb_unregister_node);
2750 #else /* !CONFIG_NUMA */
2752 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2760 static void hugetlb_register_all_nodes(void) { }
2764 static int __init hugetlb_init(void)
2768 if (!hugepages_supported())
2771 if (!size_to_hstate(default_hstate_size)) {
2772 if (default_hstate_size != 0) {
2773 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2774 default_hstate_size, HPAGE_SIZE);
2777 default_hstate_size = HPAGE_SIZE;
2778 if (!size_to_hstate(default_hstate_size))
2779 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2781 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2782 if (default_hstate_max_huge_pages) {
2783 if (!default_hstate.max_huge_pages)
2784 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2787 hugetlb_init_hstates();
2788 gather_bootmem_prealloc();
2791 hugetlb_sysfs_init();
2792 hugetlb_register_all_nodes();
2793 hugetlb_cgroup_file_init();
2796 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2798 num_fault_mutexes = 1;
2800 hugetlb_fault_mutex_table =
2801 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2803 BUG_ON(!hugetlb_fault_mutex_table);
2805 for (i = 0; i < num_fault_mutexes; i++)
2806 mutex_init(&hugetlb_fault_mutex_table[i]);
2809 subsys_initcall(hugetlb_init);
2811 /* Should be called on processing a hugepagesz=... option */
2812 void __init hugetlb_bad_size(void)
2814 parsed_valid_hugepagesz = false;
2817 void __init hugetlb_add_hstate(unsigned int order)
2822 if (size_to_hstate(PAGE_SIZE << order)) {
2823 pr_warn("hugepagesz= specified twice, ignoring\n");
2826 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2828 h = &hstates[hugetlb_max_hstate++];
2830 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2831 h->nr_huge_pages = 0;
2832 h->free_huge_pages = 0;
2833 for (i = 0; i < MAX_NUMNODES; ++i)
2834 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2835 INIT_LIST_HEAD(&h->hugepage_activelist);
2836 h->next_nid_to_alloc = first_memory_node;
2837 h->next_nid_to_free = first_memory_node;
2838 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2839 huge_page_size(h)/1024);
2844 static int __init hugetlb_nrpages_setup(char *s)
2847 static unsigned long *last_mhp;
2849 if (!parsed_valid_hugepagesz) {
2850 pr_warn("hugepages = %s preceded by "
2851 "an unsupported hugepagesz, ignoring\n", s);
2852 parsed_valid_hugepagesz = true;
2856 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2857 * so this hugepages= parameter goes to the "default hstate".
2859 else if (!hugetlb_max_hstate)
2860 mhp = &default_hstate_max_huge_pages;
2862 mhp = &parsed_hstate->max_huge_pages;
2864 if (mhp == last_mhp) {
2865 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2869 if (sscanf(s, "%lu", mhp) <= 0)
2873 * Global state is always initialized later in hugetlb_init.
2874 * But we need to allocate >= MAX_ORDER hstates here early to still
2875 * use the bootmem allocator.
2877 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2878 hugetlb_hstate_alloc_pages(parsed_hstate);
2884 __setup("hugepages=", hugetlb_nrpages_setup);
2886 static int __init hugetlb_default_setup(char *s)
2888 default_hstate_size = memparse(s, &s);
2891 __setup("default_hugepagesz=", hugetlb_default_setup);
2893 static unsigned int cpuset_mems_nr(unsigned int *array)
2896 unsigned int nr = 0;
2898 for_each_node_mask(node, cpuset_current_mems_allowed)
2904 #ifdef CONFIG_SYSCTL
2905 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2906 struct ctl_table *table, int write,
2907 void __user *buffer, size_t *length, loff_t *ppos)
2909 struct hstate *h = &default_hstate;
2910 unsigned long tmp = h->max_huge_pages;
2913 if (!hugepages_supported())
2917 table->maxlen = sizeof(unsigned long);
2918 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2923 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2924 NUMA_NO_NODE, tmp, *length);
2929 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2930 void __user *buffer, size_t *length, loff_t *ppos)
2933 return hugetlb_sysctl_handler_common(false, table, write,
2934 buffer, length, ppos);
2938 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2941 return hugetlb_sysctl_handler_common(true, table, write,
2942 buffer, length, ppos);
2944 #endif /* CONFIG_NUMA */
2946 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2947 void __user *buffer,
2948 size_t *length, loff_t *ppos)
2950 struct hstate *h = &default_hstate;
2954 if (!hugepages_supported())
2957 tmp = h->nr_overcommit_huge_pages;
2959 if (write && hstate_is_gigantic(h))
2963 table->maxlen = sizeof(unsigned long);
2964 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2969 spin_lock(&hugetlb_lock);
2970 h->nr_overcommit_huge_pages = tmp;
2971 spin_unlock(&hugetlb_lock);
2977 #endif /* CONFIG_SYSCTL */
2979 void hugetlb_report_meminfo(struct seq_file *m)
2982 unsigned long total = 0;
2984 if (!hugepages_supported())
2987 for_each_hstate(h) {
2988 unsigned long count = h->nr_huge_pages;
2990 total += (PAGE_SIZE << huge_page_order(h)) * count;
2992 if (h == &default_hstate)
2994 "HugePages_Total: %5lu\n"
2995 "HugePages_Free: %5lu\n"
2996 "HugePages_Rsvd: %5lu\n"
2997 "HugePages_Surp: %5lu\n"
2998 "Hugepagesize: %8lu kB\n",
3002 h->surplus_huge_pages,
3003 (PAGE_SIZE << huge_page_order(h)) / 1024);
3006 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3009 int hugetlb_report_node_meminfo(int nid, char *buf)
3011 struct hstate *h = &default_hstate;
3012 if (!hugepages_supported())
3015 "Node %d HugePages_Total: %5u\n"
3016 "Node %d HugePages_Free: %5u\n"
3017 "Node %d HugePages_Surp: %5u\n",
3018 nid, h->nr_huge_pages_node[nid],
3019 nid, h->free_huge_pages_node[nid],
3020 nid, h->surplus_huge_pages_node[nid]);
3023 void hugetlb_show_meminfo(void)
3028 if (!hugepages_supported())
3031 for_each_node_state(nid, N_MEMORY)
3033 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3035 h->nr_huge_pages_node[nid],
3036 h->free_huge_pages_node[nid],
3037 h->surplus_huge_pages_node[nid],
3038 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3041 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3043 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3044 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3047 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3048 unsigned long hugetlb_total_pages(void)
3051 unsigned long nr_total_pages = 0;
3054 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3055 return nr_total_pages;
3058 static int hugetlb_acct_memory(struct hstate *h, long delta)
3062 spin_lock(&hugetlb_lock);
3064 * When cpuset is configured, it breaks the strict hugetlb page
3065 * reservation as the accounting is done on a global variable. Such
3066 * reservation is completely rubbish in the presence of cpuset because
3067 * the reservation is not checked against page availability for the
3068 * current cpuset. Application can still potentially OOM'ed by kernel
3069 * with lack of free htlb page in cpuset that the task is in.
3070 * Attempt to enforce strict accounting with cpuset is almost
3071 * impossible (or too ugly) because cpuset is too fluid that
3072 * task or memory node can be dynamically moved between cpusets.
3074 * The change of semantics for shared hugetlb mapping with cpuset is
3075 * undesirable. However, in order to preserve some of the semantics,
3076 * we fall back to check against current free page availability as
3077 * a best attempt and hopefully to minimize the impact of changing
3078 * semantics that cpuset has.
3081 if (gather_surplus_pages(h, delta) < 0)
3084 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3085 return_unused_surplus_pages(h, delta);
3092 return_unused_surplus_pages(h, (unsigned long) -delta);
3095 spin_unlock(&hugetlb_lock);
3099 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3101 struct resv_map *resv = vma_resv_map(vma);
3104 * This new VMA should share its siblings reservation map if present.
3105 * The VMA will only ever have a valid reservation map pointer where
3106 * it is being copied for another still existing VMA. As that VMA
3107 * has a reference to the reservation map it cannot disappear until
3108 * after this open call completes. It is therefore safe to take a
3109 * new reference here without additional locking.
3111 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3112 kref_get(&resv->refs);
3115 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3117 struct hstate *h = hstate_vma(vma);
3118 struct resv_map *resv = vma_resv_map(vma);
3119 struct hugepage_subpool *spool = subpool_vma(vma);
3120 unsigned long reserve, start, end;
3123 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3126 start = vma_hugecache_offset(h, vma, vma->vm_start);
3127 end = vma_hugecache_offset(h, vma, vma->vm_end);
3129 reserve = (end - start) - region_count(resv, start, end);
3131 kref_put(&resv->refs, resv_map_release);
3135 * Decrement reserve counts. The global reserve count may be
3136 * adjusted if the subpool has a minimum size.
3138 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3139 hugetlb_acct_memory(h, -gbl_reserve);
3143 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3145 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3150 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3152 struct hstate *hstate = hstate_vma(vma);
3154 return 1UL << huge_page_shift(hstate);
3158 * We cannot handle pagefaults against hugetlb pages at all. They cause
3159 * handle_mm_fault() to try to instantiate regular-sized pages in the
3160 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3163 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3169 const struct vm_operations_struct hugetlb_vm_ops = {
3170 .fault = hugetlb_vm_op_fault,
3171 .open = hugetlb_vm_op_open,
3172 .close = hugetlb_vm_op_close,
3173 .split = hugetlb_vm_op_split,
3174 .pagesize = hugetlb_vm_op_pagesize,
3177 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3183 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3184 vma->vm_page_prot)));
3186 entry = huge_pte_wrprotect(mk_huge_pte(page,
3187 vma->vm_page_prot));
3189 entry = pte_mkyoung(entry);
3190 entry = pte_mkhuge(entry);
3191 entry = arch_make_huge_pte(entry, vma, page, writable);
3196 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3197 unsigned long address, pte_t *ptep)
3201 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3202 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3203 update_mmu_cache(vma, address, ptep);
3206 bool is_hugetlb_entry_migration(pte_t pte)
3210 if (huge_pte_none(pte) || pte_present(pte))
3212 swp = pte_to_swp_entry(pte);
3213 if (non_swap_entry(swp) && is_migration_entry(swp))
3219 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3223 if (huge_pte_none(pte) || pte_present(pte))
3225 swp = pte_to_swp_entry(pte);
3226 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3232 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3233 struct vm_area_struct *vma)
3235 pte_t *src_pte, *dst_pte, entry;
3236 struct page *ptepage;
3239 struct hstate *h = hstate_vma(vma);
3240 unsigned long sz = huge_page_size(h);
3241 unsigned long mmun_start; /* For mmu_notifiers */
3242 unsigned long mmun_end; /* For mmu_notifiers */
3245 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3247 mmun_start = vma->vm_start;
3248 mmun_end = vma->vm_end;
3250 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3252 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3253 spinlock_t *src_ptl, *dst_ptl;
3254 src_pte = huge_pte_offset(src, addr, sz);
3257 dst_pte = huge_pte_alloc(dst, addr, sz);
3263 /* If the pagetables are shared don't copy or take references */
3264 if (dst_pte == src_pte)
3267 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3268 src_ptl = huge_pte_lockptr(h, src, src_pte);
3269 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3270 entry = huge_ptep_get(src_pte);
3271 if (huge_pte_none(entry)) { /* skip none entry */
3273 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3274 is_hugetlb_entry_hwpoisoned(entry))) {
3275 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3277 if (is_write_migration_entry(swp_entry) && cow) {
3279 * COW mappings require pages in both
3280 * parent and child to be set to read.
3282 make_migration_entry_read(&swp_entry);
3283 entry = swp_entry_to_pte(swp_entry);
3284 set_huge_swap_pte_at(src, addr, src_pte,
3287 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3291 * No need to notify as we are downgrading page
3292 * table protection not changing it to point
3295 * See Documentation/vm/mmu_notifier.rst
3297 huge_ptep_set_wrprotect(src, addr, src_pte);
3299 entry = huge_ptep_get(src_pte);
3300 ptepage = pte_page(entry);
3302 page_dup_rmap(ptepage, true);
3303 set_huge_pte_at(dst, addr, dst_pte, entry);
3304 hugetlb_count_add(pages_per_huge_page(h), dst);
3306 spin_unlock(src_ptl);
3307 spin_unlock(dst_ptl);
3311 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3317 unsigned long start, unsigned long end,
3318 struct page *ref_page)
3320 struct mm_struct *mm = vma->vm_mm;
3321 unsigned long address;
3326 struct hstate *h = hstate_vma(vma);
3327 unsigned long sz = huge_page_size(h);
3328 const unsigned long mmun_start = start; /* For mmu_notifiers */
3329 const unsigned long mmun_end = end; /* For mmu_notifiers */
3331 WARN_ON(!is_vm_hugetlb_page(vma));
3332 BUG_ON(start & ~huge_page_mask(h));
3333 BUG_ON(end & ~huge_page_mask(h));
3336 * This is a hugetlb vma, all the pte entries should point
3339 tlb_remove_check_page_size_change(tlb, sz);
3340 tlb_start_vma(tlb, vma);
3341 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3343 for (; address < end; address += sz) {
3344 ptep = huge_pte_offset(mm, address, sz);
3348 ptl = huge_pte_lock(h, mm, ptep);
3349 if (huge_pmd_unshare(mm, &address, ptep)) {
3354 pte = huge_ptep_get(ptep);
3355 if (huge_pte_none(pte)) {
3361 * Migrating hugepage or HWPoisoned hugepage is already
3362 * unmapped and its refcount is dropped, so just clear pte here.
3364 if (unlikely(!pte_present(pte))) {
3365 huge_pte_clear(mm, address, ptep, sz);
3370 page = pte_page(pte);
3372 * If a reference page is supplied, it is because a specific
3373 * page is being unmapped, not a range. Ensure the page we
3374 * are about to unmap is the actual page of interest.
3377 if (page != ref_page) {
3382 * Mark the VMA as having unmapped its page so that
3383 * future faults in this VMA will fail rather than
3384 * looking like data was lost
3386 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3389 pte = huge_ptep_get_and_clear(mm, address, ptep);
3390 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3391 if (huge_pte_dirty(pte))
3392 set_page_dirty(page);
3394 hugetlb_count_sub(pages_per_huge_page(h), mm);
3395 page_remove_rmap(page, true);
3398 tlb_remove_page_size(tlb, page, huge_page_size(h));
3400 * Bail out after unmapping reference page if supplied
3405 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3406 tlb_end_vma(tlb, vma);
3409 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3410 struct vm_area_struct *vma, unsigned long start,
3411 unsigned long end, struct page *ref_page)
3413 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3416 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3417 * test will fail on a vma being torn down, and not grab a page table
3418 * on its way out. We're lucky that the flag has such an appropriate
3419 * name, and can in fact be safely cleared here. We could clear it
3420 * before the __unmap_hugepage_range above, but all that's necessary
3421 * is to clear it before releasing the i_mmap_rwsem. This works
3422 * because in the context this is called, the VMA is about to be
3423 * destroyed and the i_mmap_rwsem is held.
3425 vma->vm_flags &= ~VM_MAYSHARE;
3428 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3429 unsigned long end, struct page *ref_page)
3431 struct mm_struct *mm;
3432 struct mmu_gather tlb;
3436 tlb_gather_mmu(&tlb, mm, start, end);
3437 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3438 tlb_finish_mmu(&tlb, start, end);
3442 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3443 * mappping it owns the reserve page for. The intention is to unmap the page
3444 * from other VMAs and let the children be SIGKILLed if they are faulting the
3447 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3448 struct page *page, unsigned long address)
3450 struct hstate *h = hstate_vma(vma);
3451 struct vm_area_struct *iter_vma;
3452 struct address_space *mapping;
3456 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3457 * from page cache lookup which is in HPAGE_SIZE units.
3459 address = address & huge_page_mask(h);
3460 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3462 mapping = vma->vm_file->f_mapping;
3465 * Take the mapping lock for the duration of the table walk. As
3466 * this mapping should be shared between all the VMAs,
3467 * __unmap_hugepage_range() is called as the lock is already held
3469 i_mmap_lock_write(mapping);
3470 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3471 /* Do not unmap the current VMA */
3472 if (iter_vma == vma)
3476 * Shared VMAs have their own reserves and do not affect
3477 * MAP_PRIVATE accounting but it is possible that a shared
3478 * VMA is using the same page so check and skip such VMAs.
3480 if (iter_vma->vm_flags & VM_MAYSHARE)
3484 * Unmap the page from other VMAs without their own reserves.
3485 * They get marked to be SIGKILLed if they fault in these
3486 * areas. This is because a future no-page fault on this VMA
3487 * could insert a zeroed page instead of the data existing
3488 * from the time of fork. This would look like data corruption
3490 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3491 unmap_hugepage_range(iter_vma, address,
3492 address + huge_page_size(h), page);
3494 i_mmap_unlock_write(mapping);
3498 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3499 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3500 * cannot race with other handlers or page migration.
3501 * Keep the pte_same checks anyway to make transition from the mutex easier.
3503 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3504 unsigned long address, pte_t *ptep,
3505 struct page *pagecache_page, spinlock_t *ptl)
3508 struct hstate *h = hstate_vma(vma);
3509 struct page *old_page, *new_page;
3510 int ret = 0, outside_reserve = 0;
3511 unsigned long mmun_start; /* For mmu_notifiers */
3512 unsigned long mmun_end; /* For mmu_notifiers */
3514 pte = huge_ptep_get(ptep);
3515 old_page = pte_page(pte);
3518 /* If no-one else is actually using this page, avoid the copy
3519 * and just make the page writable */
3520 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3521 page_move_anon_rmap(old_page, vma);
3522 set_huge_ptep_writable(vma, address, ptep);
3527 * If the process that created a MAP_PRIVATE mapping is about to
3528 * perform a COW due to a shared page count, attempt to satisfy
3529 * the allocation without using the existing reserves. The pagecache
3530 * page is used to determine if the reserve at this address was
3531 * consumed or not. If reserves were used, a partial faulted mapping
3532 * at the time of fork() could consume its reserves on COW instead
3533 * of the full address range.
3535 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3536 old_page != pagecache_page)
3537 outside_reserve = 1;
3542 * Drop page table lock as buddy allocator may be called. It will
3543 * be acquired again before returning to the caller, as expected.
3546 new_page = alloc_huge_page(vma, address, outside_reserve);
3548 if (IS_ERR(new_page)) {
3550 * If a process owning a MAP_PRIVATE mapping fails to COW,
3551 * it is due to references held by a child and an insufficient
3552 * huge page pool. To guarantee the original mappers
3553 * reliability, unmap the page from child processes. The child
3554 * may get SIGKILLed if it later faults.
3556 if (outside_reserve) {
3558 BUG_ON(huge_pte_none(pte));
3559 unmap_ref_private(mm, vma, old_page, address);
3560 BUG_ON(huge_pte_none(pte));
3562 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3565 pte_same(huge_ptep_get(ptep), pte)))
3566 goto retry_avoidcopy;
3568 * race occurs while re-acquiring page table
3569 * lock, and our job is done.
3574 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3575 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3576 goto out_release_old;
3580 * When the original hugepage is shared one, it does not have
3581 * anon_vma prepared.
3583 if (unlikely(anon_vma_prepare(vma))) {
3585 goto out_release_all;
3588 copy_user_huge_page(new_page, old_page, address, vma,
3589 pages_per_huge_page(h));
3590 __SetPageUptodate(new_page);
3591 set_page_huge_active(new_page);
3593 mmun_start = address & huge_page_mask(h);
3594 mmun_end = mmun_start + huge_page_size(h);
3595 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3598 * Retake the page table lock to check for racing updates
3599 * before the page tables are altered
3602 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3604 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605 ClearPagePrivate(new_page);
3608 huge_ptep_clear_flush(vma, address, ptep);
3609 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610 set_huge_pte_at(mm, address, ptep,
3611 make_huge_pte(vma, new_page, 1));
3612 page_remove_rmap(old_page, true);
3613 hugepage_add_new_anon_rmap(new_page, vma, address);
3614 /* Make the old page be freed below */
3615 new_page = old_page;
3618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3620 restore_reserve_on_error(h, vma, address, new_page);
3625 spin_lock(ptl); /* Caller expects lock to be held */
3629 /* Return the pagecache page at a given address within a VMA */
3630 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3631 struct vm_area_struct *vma, unsigned long address)
3633 struct address_space *mapping;
3636 mapping = vma->vm_file->f_mapping;
3637 idx = vma_hugecache_offset(h, vma, address);
3639 return find_lock_page(mapping, idx);
3643 * Return whether there is a pagecache page to back given address within VMA.
3644 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3646 static bool hugetlbfs_pagecache_present(struct hstate *h,
3647 struct vm_area_struct *vma, unsigned long address)
3649 struct address_space *mapping;
3653 mapping = vma->vm_file->f_mapping;
3654 idx = vma_hugecache_offset(h, vma, address);
3656 page = find_get_page(mapping, idx);
3659 return page != NULL;
3662 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3665 struct inode *inode = mapping->host;
3666 struct hstate *h = hstate_inode(inode);
3667 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3671 ClearPagePrivate(page);
3673 spin_lock(&inode->i_lock);
3674 inode->i_blocks += blocks_per_huge_page(h);
3675 spin_unlock(&inode->i_lock);
3679 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3680 struct address_space *mapping, pgoff_t idx,
3681 unsigned long address, pte_t *ptep, unsigned int flags)
3683 struct hstate *h = hstate_vma(vma);
3684 int ret = VM_FAULT_SIGBUS;
3690 unsigned long haddr = address & huge_page_mask(h);
3693 * Currently, we are forced to kill the process in the event the
3694 * original mapper has unmapped pages from the child due to a failed
3695 * COW. Warn that such a situation has occurred as it may not be obvious
3697 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3698 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3704 * Use page lock to guard against racing truncation
3705 * before we get page_table_lock.
3708 page = find_lock_page(mapping, idx);
3710 size = i_size_read(mapping->host) >> huge_page_shift(h);
3715 * Check for page in userfault range
3717 if (userfaultfd_missing(vma)) {
3719 struct vm_fault vmf = {
3724 * Hard to debug if it ends up being
3725 * used by a callee that assumes
3726 * something about the other
3727 * uninitialized fields... same as in
3733 * hugetlb_fault_mutex must be dropped before
3734 * handling userfault. Reacquire after handling
3735 * fault to make calling code simpler.
3737 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3739 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3740 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3741 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3745 page = alloc_huge_page(vma, haddr, 0);
3747 ret = PTR_ERR(page);
3751 ret = VM_FAULT_SIGBUS;
3754 clear_huge_page(page, address, pages_per_huge_page(h));
3755 __SetPageUptodate(page);
3756 set_page_huge_active(page);
3758 if (vma->vm_flags & VM_MAYSHARE) {
3759 int err = huge_add_to_page_cache(page, mapping, idx);
3768 if (unlikely(anon_vma_prepare(vma))) {
3770 goto backout_unlocked;
3776 * If memory error occurs between mmap() and fault, some process
3777 * don't have hwpoisoned swap entry for errored virtual address.
3778 * So we need to block hugepage fault by PG_hwpoison bit check.
3780 if (unlikely(PageHWPoison(page))) {
3781 ret = VM_FAULT_HWPOISON |
3782 VM_FAULT_SET_HINDEX(hstate_index(h));
3783 goto backout_unlocked;
3788 * If we are going to COW a private mapping later, we examine the
3789 * pending reservations for this page now. This will ensure that
3790 * any allocations necessary to record that reservation occur outside
3793 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3794 if (vma_needs_reservation(h, vma, haddr) < 0) {
3796 goto backout_unlocked;
3798 /* Just decrements count, does not deallocate */
3799 vma_end_reservation(h, vma, haddr);
3802 ptl = huge_pte_lock(h, mm, ptep);
3803 size = i_size_read(mapping->host) >> huge_page_shift(h);
3808 if (!huge_pte_none(huge_ptep_get(ptep)))
3812 ClearPagePrivate(page);
3813 hugepage_add_new_anon_rmap(page, vma, haddr);
3815 page_dup_rmap(page, true);
3816 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3817 && (vma->vm_flags & VM_SHARED)));
3818 set_huge_pte_at(mm, haddr, ptep, new_pte);
3820 hugetlb_count_add(pages_per_huge_page(h), mm);
3821 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3822 /* Optimization, do the COW without a second fault */
3823 ret = hugetlb_cow(mm, vma, haddr, ptep, page, ptl);
3835 restore_reserve_on_error(h, vma, haddr, page);
3841 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3842 struct vm_area_struct *vma,
3843 struct address_space *mapping,
3844 pgoff_t idx, unsigned long address)
3846 unsigned long key[2];
3849 if (vma->vm_flags & VM_SHARED) {
3850 key[0] = (unsigned long) mapping;
3853 key[0] = (unsigned long) mm;
3854 key[1] = address >> huge_page_shift(h);
3857 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3859 return hash & (num_fault_mutexes - 1);
3863 * For uniprocesor systems we always use a single mutex, so just
3864 * return 0 and avoid the hashing overhead.
3866 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3867 struct vm_area_struct *vma,
3868 struct address_space *mapping,
3869 pgoff_t idx, unsigned long address)
3875 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3876 unsigned long address, unsigned int flags)
3883 struct page *page = NULL;
3884 struct page *pagecache_page = NULL;
3885 struct hstate *h = hstate_vma(vma);
3886 struct address_space *mapping;
3887 int need_wait_lock = 0;
3888 unsigned long haddr = address & huge_page_mask(h);
3890 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3892 entry = huge_ptep_get(ptep);
3893 if (unlikely(is_hugetlb_entry_migration(entry))) {
3894 migration_entry_wait_huge(vma, mm, ptep);
3896 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3897 return VM_FAULT_HWPOISON_LARGE |
3898 VM_FAULT_SET_HINDEX(hstate_index(h));
3900 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3902 return VM_FAULT_OOM;
3905 mapping = vma->vm_file->f_mapping;
3906 idx = vma_hugecache_offset(h, vma, haddr);
3909 * Serialize hugepage allocation and instantiation, so that we don't
3910 * get spurious allocation failures if two CPUs race to instantiate
3911 * the same page in the page cache.
3913 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3914 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3916 entry = huge_ptep_get(ptep);
3917 if (huge_pte_none(entry)) {
3918 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3925 * entry could be a migration/hwpoison entry at this point, so this
3926 * check prevents the kernel from going below assuming that we have
3927 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3928 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3931 if (!pte_present(entry))
3935 * If we are going to COW the mapping later, we examine the pending
3936 * reservations for this page now. This will ensure that any
3937 * allocations necessary to record that reservation occur outside the
3938 * spinlock. For private mappings, we also lookup the pagecache
3939 * page now as it is used to determine if a reservation has been
3942 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3943 if (vma_needs_reservation(h, vma, haddr) < 0) {
3947 /* Just decrements count, does not deallocate */
3948 vma_end_reservation(h, vma, haddr);
3950 if (!(vma->vm_flags & VM_MAYSHARE))
3951 pagecache_page = hugetlbfs_pagecache_page(h,
3955 ptl = huge_pte_lock(h, mm, ptep);
3957 /* Check for a racing update before calling hugetlb_cow */
3958 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3962 * hugetlb_cow() requires page locks of pte_page(entry) and
3963 * pagecache_page, so here we need take the former one
3964 * when page != pagecache_page or !pagecache_page.
3966 page = pte_page(entry);
3967 if (page != pagecache_page)
3968 if (!trylock_page(page)) {
3975 if (flags & FAULT_FLAG_WRITE) {
3976 if (!huge_pte_write(entry)) {
3977 ret = hugetlb_cow(mm, vma, haddr, ptep,
3978 pagecache_page, ptl);
3981 entry = huge_pte_mkdirty(entry);
3983 entry = pte_mkyoung(entry);
3984 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
3985 flags & FAULT_FLAG_WRITE))
3986 update_mmu_cache(vma, haddr, ptep);
3988 if (page != pagecache_page)
3994 if (pagecache_page) {
3995 unlock_page(pagecache_page);
3996 put_page(pagecache_page);
3999 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4001 * Generally it's safe to hold refcount during waiting page lock. But
4002 * here we just wait to defer the next page fault to avoid busy loop and
4003 * the page is not used after unlocked before returning from the current
4004 * page fault. So we are safe from accessing freed page, even if we wait
4005 * here without taking refcount.
4008 wait_on_page_locked(page);
4013 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4014 * modifications for huge pages.
4016 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4018 struct vm_area_struct *dst_vma,
4019 unsigned long dst_addr,
4020 unsigned long src_addr,
4021 struct page **pagep)
4023 struct address_space *mapping;
4026 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4027 struct hstate *h = hstate_vma(dst_vma);
4035 page = alloc_huge_page(dst_vma, dst_addr, 0);
4039 ret = copy_huge_page_from_user(page,
4040 (const void __user *) src_addr,
4041 pages_per_huge_page(h), false);
4043 /* fallback to copy_from_user outside mmap_sem */
4044 if (unlikely(ret)) {
4047 /* don't free the page */
4056 * The memory barrier inside __SetPageUptodate makes sure that
4057 * preceding stores to the page contents become visible before
4058 * the set_pte_at() write.
4060 __SetPageUptodate(page);
4061 set_page_huge_active(page);
4063 mapping = dst_vma->vm_file->f_mapping;
4064 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4067 * If shared, add to page cache
4070 size = i_size_read(mapping->host) >> huge_page_shift(h);
4073 goto out_release_nounlock;
4076 * Serialization between remove_inode_hugepages() and
4077 * huge_add_to_page_cache() below happens through the
4078 * hugetlb_fault_mutex_table that here must be hold by
4081 ret = huge_add_to_page_cache(page, mapping, idx);
4083 goto out_release_nounlock;
4086 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4090 * Recheck the i_size after holding PT lock to make sure not
4091 * to leave any page mapped (as page_mapped()) beyond the end
4092 * of the i_size (remove_inode_hugepages() is strict about
4093 * enforcing that). If we bail out here, we'll also leave a
4094 * page in the radix tree in the vm_shared case beyond the end
4095 * of the i_size, but remove_inode_hugepages() will take care
4096 * of it as soon as we drop the hugetlb_fault_mutex_table.
4098 size = i_size_read(mapping->host) >> huge_page_shift(h);
4101 goto out_release_unlock;
4104 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4105 goto out_release_unlock;
4108 page_dup_rmap(page, true);
4110 ClearPagePrivate(page);
4111 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4114 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4115 if (dst_vma->vm_flags & VM_WRITE)
4116 _dst_pte = huge_pte_mkdirty(_dst_pte);
4117 _dst_pte = pte_mkyoung(_dst_pte);
4119 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4121 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4122 dst_vma->vm_flags & VM_WRITE);
4123 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4125 /* No need to invalidate - it was non-present before */
4126 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4138 out_release_nounlock:
4143 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4144 struct page **pages, struct vm_area_struct **vmas,
4145 unsigned long *position, unsigned long *nr_pages,
4146 long i, unsigned int flags, int *nonblocking)
4148 unsigned long pfn_offset;
4149 unsigned long vaddr = *position;
4150 unsigned long remainder = *nr_pages;
4151 struct hstate *h = hstate_vma(vma);
4154 while (vaddr < vma->vm_end && remainder) {
4156 spinlock_t *ptl = NULL;
4161 * If we have a pending SIGKILL, don't keep faulting pages and
4162 * potentially allocating memory.
4164 if (unlikely(fatal_signal_pending(current))) {
4170 * Some archs (sparc64, sh*) have multiple pte_ts to
4171 * each hugepage. We have to make sure we get the
4172 * first, for the page indexing below to work.
4174 * Note that page table lock is not held when pte is null.
4176 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4179 ptl = huge_pte_lock(h, mm, pte);
4180 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4183 * When coredumping, it suits get_dump_page if we just return
4184 * an error where there's an empty slot with no huge pagecache
4185 * to back it. This way, we avoid allocating a hugepage, and
4186 * the sparse dumpfile avoids allocating disk blocks, but its
4187 * huge holes still show up with zeroes where they need to be.
4189 if (absent && (flags & FOLL_DUMP) &&
4190 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4198 * We need call hugetlb_fault for both hugepages under migration
4199 * (in which case hugetlb_fault waits for the migration,) and
4200 * hwpoisoned hugepages (in which case we need to prevent the
4201 * caller from accessing to them.) In order to do this, we use
4202 * here is_swap_pte instead of is_hugetlb_entry_migration and
4203 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4204 * both cases, and because we can't follow correct pages
4205 * directly from any kind of swap entries.
4207 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4208 ((flags & FOLL_WRITE) &&
4209 !huge_pte_write(huge_ptep_get(pte)))) {
4211 unsigned int fault_flags = 0;
4215 if (flags & FOLL_WRITE)
4216 fault_flags |= FAULT_FLAG_WRITE;
4218 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4219 if (flags & FOLL_NOWAIT)
4220 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4221 FAULT_FLAG_RETRY_NOWAIT;
4222 if (flags & FOLL_TRIED) {
4223 VM_WARN_ON_ONCE(fault_flags &
4224 FAULT_FLAG_ALLOW_RETRY);
4225 fault_flags |= FAULT_FLAG_TRIED;
4227 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4228 if (ret & VM_FAULT_ERROR) {
4229 err = vm_fault_to_errno(ret, flags);
4233 if (ret & VM_FAULT_RETRY) {
4238 * VM_FAULT_RETRY must not return an
4239 * error, it will return zero
4242 * No need to update "position" as the
4243 * caller will not check it after
4244 * *nr_pages is set to 0.
4251 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4252 page = pte_page(huge_ptep_get(pte));
4255 pages[i] = mem_map_offset(page, pfn_offset);
4266 if (vaddr < vma->vm_end && remainder &&
4267 pfn_offset < pages_per_huge_page(h)) {
4269 * We use pfn_offset to avoid touching the pageframes
4270 * of this compound page.
4276 *nr_pages = remainder;
4278 * setting position is actually required only if remainder is
4279 * not zero but it's faster not to add a "if (remainder)"
4287 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4289 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4292 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4295 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4296 unsigned long address, unsigned long end, pgprot_t newprot)
4298 struct mm_struct *mm = vma->vm_mm;
4299 unsigned long start = address;
4302 struct hstate *h = hstate_vma(vma);
4303 unsigned long pages = 0;
4305 BUG_ON(address >= end);
4306 flush_cache_range(vma, address, end);
4308 mmu_notifier_invalidate_range_start(mm, start, end);
4309 i_mmap_lock_write(vma->vm_file->f_mapping);
4310 for (; address < end; address += huge_page_size(h)) {
4312 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4315 ptl = huge_pte_lock(h, mm, ptep);
4316 if (huge_pmd_unshare(mm, &address, ptep)) {
4321 pte = huge_ptep_get(ptep);
4322 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4326 if (unlikely(is_hugetlb_entry_migration(pte))) {
4327 swp_entry_t entry = pte_to_swp_entry(pte);
4329 if (is_write_migration_entry(entry)) {
4332 make_migration_entry_read(&entry);
4333 newpte = swp_entry_to_pte(entry);
4334 set_huge_swap_pte_at(mm, address, ptep,
4335 newpte, huge_page_size(h));
4341 if (!huge_pte_none(pte)) {
4342 pte = huge_ptep_get_and_clear(mm, address, ptep);
4343 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4344 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4345 set_huge_pte_at(mm, address, ptep, pte);
4351 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4352 * may have cleared our pud entry and done put_page on the page table:
4353 * once we release i_mmap_rwsem, another task can do the final put_page
4354 * and that page table be reused and filled with junk.
4356 flush_hugetlb_tlb_range(vma, start, end);
4358 * No need to call mmu_notifier_invalidate_range() we are downgrading
4359 * page table protection not changing it to point to a new page.
4361 * See Documentation/vm/mmu_notifier.rst
4363 i_mmap_unlock_write(vma->vm_file->f_mapping);
4364 mmu_notifier_invalidate_range_end(mm, start, end);
4366 return pages << h->order;
4369 int hugetlb_reserve_pages(struct inode *inode,
4371 struct vm_area_struct *vma,
4372 vm_flags_t vm_flags)
4375 struct hstate *h = hstate_inode(inode);
4376 struct hugepage_subpool *spool = subpool_inode(inode);
4377 struct resv_map *resv_map;
4380 /* This should never happen */
4382 VM_WARN(1, "%s called with a negative range\n", __func__);
4387 * Only apply hugepage reservation if asked. At fault time, an
4388 * attempt will be made for VM_NORESERVE to allocate a page
4389 * without using reserves
4391 if (vm_flags & VM_NORESERVE)
4395 * Shared mappings base their reservation on the number of pages that
4396 * are already allocated on behalf of the file. Private mappings need
4397 * to reserve the full area even if read-only as mprotect() may be
4398 * called to make the mapping read-write. Assume !vma is a shm mapping
4400 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4401 resv_map = inode_resv_map(inode);
4403 chg = region_chg(resv_map, from, to);
4406 resv_map = resv_map_alloc();
4412 set_vma_resv_map(vma, resv_map);
4413 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4422 * There must be enough pages in the subpool for the mapping. If
4423 * the subpool has a minimum size, there may be some global
4424 * reservations already in place (gbl_reserve).
4426 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4427 if (gbl_reserve < 0) {
4433 * Check enough hugepages are available for the reservation.
4434 * Hand the pages back to the subpool if there are not
4436 ret = hugetlb_acct_memory(h, gbl_reserve);
4438 /* put back original number of pages, chg */
4439 (void)hugepage_subpool_put_pages(spool, chg);
4444 * Account for the reservations made. Shared mappings record regions
4445 * that have reservations as they are shared by multiple VMAs.
4446 * When the last VMA disappears, the region map says how much
4447 * the reservation was and the page cache tells how much of
4448 * the reservation was consumed. Private mappings are per-VMA and
4449 * only the consumed reservations are tracked. When the VMA
4450 * disappears, the original reservation is the VMA size and the
4451 * consumed reservations are stored in the map. Hence, nothing
4452 * else has to be done for private mappings here
4454 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4455 long add = region_add(resv_map, from, to);
4457 if (unlikely(chg > add)) {
4459 * pages in this range were added to the reserve
4460 * map between region_chg and region_add. This
4461 * indicates a race with alloc_huge_page. Adjust
4462 * the subpool and reserve counts modified above
4463 * based on the difference.
4467 rsv_adjust = hugepage_subpool_put_pages(spool,
4469 hugetlb_acct_memory(h, -rsv_adjust);
4474 if (!vma || vma->vm_flags & VM_MAYSHARE)
4475 /* Don't call region_abort if region_chg failed */
4477 region_abort(resv_map, from, to);
4478 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4479 kref_put(&resv_map->refs, resv_map_release);
4483 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4486 struct hstate *h = hstate_inode(inode);
4487 struct resv_map *resv_map = inode_resv_map(inode);
4489 struct hugepage_subpool *spool = subpool_inode(inode);
4493 chg = region_del(resv_map, start, end);
4495 * region_del() can fail in the rare case where a region
4496 * must be split and another region descriptor can not be
4497 * allocated. If end == LONG_MAX, it will not fail.
4503 spin_lock(&inode->i_lock);
4504 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4505 spin_unlock(&inode->i_lock);
4508 * If the subpool has a minimum size, the number of global
4509 * reservations to be released may be adjusted.
4511 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4512 hugetlb_acct_memory(h, -gbl_reserve);
4517 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4518 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4519 struct vm_area_struct *vma,
4520 unsigned long addr, pgoff_t idx)
4522 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4524 unsigned long sbase = saddr & PUD_MASK;
4525 unsigned long s_end = sbase + PUD_SIZE;
4527 /* Allow segments to share if only one is marked locked */
4528 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4529 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4532 * match the virtual addresses, permission and the alignment of the
4535 if (pmd_index(addr) != pmd_index(saddr) ||
4536 vm_flags != svm_flags ||
4537 sbase < svma->vm_start || svma->vm_end < s_end)
4543 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4545 unsigned long base = addr & PUD_MASK;
4546 unsigned long end = base + PUD_SIZE;
4549 * check on proper vm_flags and page table alignment
4551 if (vma->vm_flags & VM_MAYSHARE &&
4552 vma->vm_start <= base && end <= vma->vm_end)
4558 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4559 * and returns the corresponding pte. While this is not necessary for the
4560 * !shared pmd case because we can allocate the pmd later as well, it makes the
4561 * code much cleaner. pmd allocation is essential for the shared case because
4562 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4563 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4564 * bad pmd for sharing.
4566 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4568 struct vm_area_struct *vma = find_vma(mm, addr);
4569 struct address_space *mapping = vma->vm_file->f_mapping;
4570 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4572 struct vm_area_struct *svma;
4573 unsigned long saddr;
4578 if (!vma_shareable(vma, addr))
4579 return (pte_t *)pmd_alloc(mm, pud, addr);
4581 i_mmap_lock_write(mapping);
4582 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4586 saddr = page_table_shareable(svma, vma, addr, idx);
4588 spte = huge_pte_offset(svma->vm_mm, saddr,
4589 vma_mmu_pagesize(svma));
4591 get_page(virt_to_page(spte));
4600 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4601 if (pud_none(*pud)) {
4602 pud_populate(mm, pud,
4603 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4606 put_page(virt_to_page(spte));
4610 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4611 i_mmap_unlock_write(mapping);
4616 * unmap huge page backed by shared pte.
4618 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4619 * indicated by page_count > 1, unmap is achieved by clearing pud and
4620 * decrementing the ref count. If count == 1, the pte page is not shared.
4622 * called with page table lock held.
4624 * returns: 1 successfully unmapped a shared pte page
4625 * 0 the underlying pte page is not shared, or it is the last user
4627 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4629 pgd_t *pgd = pgd_offset(mm, *addr);
4630 p4d_t *p4d = p4d_offset(pgd, *addr);
4631 pud_t *pud = pud_offset(p4d, *addr);
4633 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4634 if (page_count(virt_to_page(ptep)) == 1)
4638 put_page(virt_to_page(ptep));
4640 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4643 #define want_pmd_share() (1)
4644 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4645 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4650 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4654 #define want_pmd_share() (0)
4655 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4657 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4658 pte_t *huge_pte_alloc(struct mm_struct *mm,
4659 unsigned long addr, unsigned long sz)
4666 pgd = pgd_offset(mm, addr);
4667 p4d = p4d_alloc(mm, pgd, addr);
4670 pud = pud_alloc(mm, p4d, addr);
4672 if (sz == PUD_SIZE) {
4675 BUG_ON(sz != PMD_SIZE);
4676 if (want_pmd_share() && pud_none(*pud))
4677 pte = huge_pmd_share(mm, addr, pud);
4679 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4682 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4688 * huge_pte_offset() - Walk the page table to resolve the hugepage
4689 * entry at address @addr
4691 * Return: Pointer to page table or swap entry (PUD or PMD) for
4692 * address @addr, or NULL if a p*d_none() entry is encountered and the
4693 * size @sz doesn't match the hugepage size at this level of the page
4696 pte_t *huge_pte_offset(struct mm_struct *mm,
4697 unsigned long addr, unsigned long sz)
4704 pgd = pgd_offset(mm, addr);
4705 if (!pgd_present(*pgd))
4707 p4d = p4d_offset(pgd, addr);
4708 if (!p4d_present(*p4d))
4711 pud = pud_offset(p4d, addr);
4712 if (sz != PUD_SIZE && pud_none(*pud))
4714 /* hugepage or swap? */
4715 if (pud_huge(*pud) || !pud_present(*pud))
4716 return (pte_t *)pud;
4718 pmd = pmd_offset(pud, addr);
4719 if (sz != PMD_SIZE && pmd_none(*pmd))
4721 /* hugepage or swap? */
4722 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4723 return (pte_t *)pmd;
4728 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4731 * These functions are overwritable if your architecture needs its own
4734 struct page * __weak
4735 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4738 return ERR_PTR(-EINVAL);
4741 struct page * __weak
4742 follow_huge_pd(struct vm_area_struct *vma,
4743 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4745 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4749 struct page * __weak
4750 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4751 pmd_t *pmd, int flags)
4753 struct page *page = NULL;
4757 ptl = pmd_lockptr(mm, pmd);
4760 * make sure that the address range covered by this pmd is not
4761 * unmapped from other threads.
4763 if (!pmd_huge(*pmd))
4765 pte = huge_ptep_get((pte_t *)pmd);
4766 if (pte_present(pte)) {
4767 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4768 if (flags & FOLL_GET)
4771 if (is_hugetlb_entry_migration(pte)) {
4773 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4777 * hwpoisoned entry is treated as no_page_table in
4778 * follow_page_mask().
4786 struct page * __weak
4787 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4788 pud_t *pud, int flags)
4790 if (flags & FOLL_GET)
4793 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4796 struct page * __weak
4797 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4799 if (flags & FOLL_GET)
4802 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4805 bool isolate_huge_page(struct page *page, struct list_head *list)
4809 VM_BUG_ON_PAGE(!PageHead(page), page);
4810 spin_lock(&hugetlb_lock);
4811 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4815 clear_page_huge_active(page);
4816 list_move_tail(&page->lru, list);
4818 spin_unlock(&hugetlb_lock);
4822 void putback_active_hugepage(struct page *page)
4824 VM_BUG_ON_PAGE(!PageHead(page), page);
4825 spin_lock(&hugetlb_lock);
4826 set_page_huge_active(page);
4827 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4828 spin_unlock(&hugetlb_lock);
4832 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4834 struct hstate *h = page_hstate(oldpage);
4836 hugetlb_cgroup_migrate(oldpage, newpage);
4837 set_page_owner_migrate_reason(newpage, reason);
4840 * transfer temporary state of the new huge page. This is
4841 * reverse to other transitions because the newpage is going to
4842 * be final while the old one will be freed so it takes over
4843 * the temporary status.
4845 * Also note that we have to transfer the per-node surplus state
4846 * here as well otherwise the global surplus count will not match
4849 if (PageHugeTemporary(newpage)) {
4850 int old_nid = page_to_nid(oldpage);
4851 int new_nid = page_to_nid(newpage);
4853 SetPageHugeTemporary(oldpage);
4854 ClearPageHugeTemporary(newpage);
4856 spin_lock(&hugetlb_lock);
4857 if (h->surplus_huge_pages_node[old_nid]) {
4858 h->surplus_huge_pages_node[old_nid]--;
4859 h->surplus_huge_pages_node[new_nid]++;
4861 spin_unlock(&hugetlb_lock);