mm, hugetlb: change variable name reservations to resv
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation_mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448         if (vma->vm_flags & VM_NORESERVE) {
449                 /*
450                  * This address is already reserved by other process(chg == 0),
451                  * so, we should decrement reserved count. Without decrementing,
452                  * reserve count remains after releasing inode, because this
453                  * allocated page will go into page cache and is regarded as
454                  * coming from reserved pool in releasing step.  Currently, we
455                  * don't have any other solution to deal with this situation
456                  * properly, so add work-around here.
457                  */
458                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459                         return 1;
460                 else
461                         return 0;
462         }
463
464         /* Shared mappings always use reserves */
465         if (vma->vm_flags & VM_MAYSHARE)
466                 return 1;
467
468         /*
469          * Only the process that called mmap() has reserves for
470          * private mappings.
471          */
472         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473                 return 1;
474
475         return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480         int i;
481         struct hstate *h = page_hstate(src);
482         struct page *dst_base = dst;
483         struct page *src_base = src;
484
485         for (i = 0; i < pages_per_huge_page(h); ) {
486                 cond_resched();
487                 copy_highpage(dst, src);
488
489                 i++;
490                 dst = mem_map_next(dst, dst_base, i);
491                 src = mem_map_next(src, src_base, i);
492         }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497         int i;
498         struct hstate *h = page_hstate(src);
499
500         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501                 copy_gigantic_page(dst, src);
502                 return;
503         }
504
505         might_sleep();
506         for (i = 0; i < pages_per_huge_page(h); i++) {
507                 cond_resched();
508                 copy_highpage(dst + i, src + i);
509         }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514         int nid = page_to_nid(page);
515         list_move(&page->lru, &h->hugepage_freelists[nid]);
516         h->free_huge_pages++;
517         h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522         struct page *page;
523
524         if (list_empty(&h->hugepage_freelists[nid]))
525                 return NULL;
526         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527         list_move(&page->lru, &h->hugepage_activelist);
528         set_page_refcounted(page);
529         h->free_huge_pages--;
530         h->free_huge_pages_node[nid]--;
531         return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535                                 struct vm_area_struct *vma,
536                                 unsigned long address, int avoid_reserve,
537                                 long chg)
538 {
539         struct page *page = NULL;
540         struct mempolicy *mpol;
541         nodemask_t *nodemask;
542         struct zonelist *zonelist;
543         struct zone *zone;
544         struct zoneref *z;
545         unsigned int cpuset_mems_cookie;
546
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma, chg) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560 retry_cpuset:
561         cpuset_mems_cookie = get_mems_allowed();
562         zonelist = huge_zonelist(vma, address,
563                                         htlb_alloc_mask, &mpol, &nodemask);
564
565         for_each_zone_zonelist_nodemask(zone, z, zonelist,
566                                                 MAX_NR_ZONES - 1, nodemask) {
567                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
569                         if (page) {
570                                 if (avoid_reserve)
571                                         break;
572                                 if (!vma_has_reserves(vma, chg))
573                                         break;
574
575                                 h->resv_huge_pages--;
576                                 break;
577                         }
578                 }
579         }
580
581         mpol_cond_put(mpol);
582         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
583                 goto retry_cpuset;
584         return page;
585
586 err:
587         return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592         int i;
593
594         VM_BUG_ON(h->order >= MAX_ORDER);
595
596         h->nr_huge_pages--;
597         h->nr_huge_pages_node[page_to_nid(page)]--;
598         for (i = 0; i < pages_per_huge_page(h); i++) {
599                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600                                 1 << PG_referenced | 1 << PG_dirty |
601                                 1 << PG_active | 1 << PG_reserved |
602                                 1 << PG_private | 1 << PG_writeback);
603         }
604         VM_BUG_ON(hugetlb_cgroup_from_page(page));
605         set_compound_page_dtor(page, NULL);
606         set_page_refcounted(page);
607         arch_release_hugepage(page);
608         __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613         struct hstate *h;
614
615         for_each_hstate(h) {
616                 if (huge_page_size(h) == size)
617                         return h;
618         }
619         return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624         /*
625          * Can't pass hstate in here because it is called from the
626          * compound page destructor.
627          */
628         struct hstate *h = page_hstate(page);
629         int nid = page_to_nid(page);
630         struct hugepage_subpool *spool =
631                 (struct hugepage_subpool *)page_private(page);
632
633         set_page_private(page, 0);
634         page->mapping = NULL;
635         BUG_ON(page_count(page));
636         BUG_ON(page_mapcount(page));
637
638         spin_lock(&hugetlb_lock);
639         hugetlb_cgroup_uncharge_page(hstate_index(h),
640                                      pages_per_huge_page(h), page);
641         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
642                 /* remove the page from active list */
643                 list_del(&page->lru);
644                 update_and_free_page(h, page);
645                 h->surplus_huge_pages--;
646                 h->surplus_huge_pages_node[nid]--;
647         } else {
648                 arch_clear_hugepage_flags(page);
649                 enqueue_huge_page(h, page);
650         }
651         spin_unlock(&hugetlb_lock);
652         hugepage_subpool_put_pages(spool, 1);
653 }
654
655 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
656 {
657         INIT_LIST_HEAD(&page->lru);
658         set_compound_page_dtor(page, free_huge_page);
659         spin_lock(&hugetlb_lock);
660         set_hugetlb_cgroup(page, NULL);
661         h->nr_huge_pages++;
662         h->nr_huge_pages_node[nid]++;
663         spin_unlock(&hugetlb_lock);
664         put_page(page); /* free it into the hugepage allocator */
665 }
666
667 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668 {
669         int i;
670         int nr_pages = 1 << order;
671         struct page *p = page + 1;
672
673         /* we rely on prep_new_huge_page to set the destructor */
674         set_compound_order(page, order);
675         __SetPageHead(page);
676         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677                 __SetPageTail(p);
678                 set_page_count(p, 0);
679                 p->first_page = page;
680         }
681 }
682
683 /*
684  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685  * transparent huge pages.  See the PageTransHuge() documentation for more
686  * details.
687  */
688 int PageHuge(struct page *page)
689 {
690         compound_page_dtor *dtor;
691
692         if (!PageCompound(page))
693                 return 0;
694
695         page = compound_head(page);
696         dtor = get_compound_page_dtor(page);
697
698         return dtor == free_huge_page;
699 }
700 EXPORT_SYMBOL_GPL(PageHuge);
701
702 pgoff_t __basepage_index(struct page *page)
703 {
704         struct page *page_head = compound_head(page);
705         pgoff_t index = page_index(page_head);
706         unsigned long compound_idx;
707
708         if (!PageHuge(page_head))
709                 return page_index(page);
710
711         if (compound_order(page_head) >= MAX_ORDER)
712                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
713         else
714                 compound_idx = page - page_head;
715
716         return (index << compound_order(page_head)) + compound_idx;
717 }
718
719 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
720 {
721         struct page *page;
722
723         if (h->order >= MAX_ORDER)
724                 return NULL;
725
726         page = alloc_pages_exact_node(nid,
727                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
728                                                 __GFP_REPEAT|__GFP_NOWARN,
729                 huge_page_order(h));
730         if (page) {
731                 if (arch_prepare_hugepage(page)) {
732                         __free_pages(page, huge_page_order(h));
733                         return NULL;
734                 }
735                 prep_new_huge_page(h, page, nid);
736         }
737
738         return page;
739 }
740
741 /*
742  * common helper functions for hstate_next_node_to_{alloc|free}.
743  * We may have allocated or freed a huge page based on a different
744  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
745  * be outside of *nodes_allowed.  Ensure that we use an allowed
746  * node for alloc or free.
747  */
748 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
749 {
750         nid = next_node(nid, *nodes_allowed);
751         if (nid == MAX_NUMNODES)
752                 nid = first_node(*nodes_allowed);
753         VM_BUG_ON(nid >= MAX_NUMNODES);
754
755         return nid;
756 }
757
758 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760         if (!node_isset(nid, *nodes_allowed))
761                 nid = next_node_allowed(nid, nodes_allowed);
762         return nid;
763 }
764
765 /*
766  * returns the previously saved node ["this node"] from which to
767  * allocate a persistent huge page for the pool and advance the
768  * next node from which to allocate, handling wrap at end of node
769  * mask.
770  */
771 static int hstate_next_node_to_alloc(struct hstate *h,
772                                         nodemask_t *nodes_allowed)
773 {
774         int nid;
775
776         VM_BUG_ON(!nodes_allowed);
777
778         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
779         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
780
781         return nid;
782 }
783
784 /*
785  * helper for free_pool_huge_page() - return the previously saved
786  * node ["this node"] from which to free a huge page.  Advance the
787  * next node id whether or not we find a free huge page to free so
788  * that the next attempt to free addresses the next node.
789  */
790 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
791 {
792         int nid;
793
794         VM_BUG_ON(!nodes_allowed);
795
796         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
797         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
798
799         return nid;
800 }
801
802 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
803         for (nr_nodes = nodes_weight(*mask);                            \
804                 nr_nodes > 0 &&                                         \
805                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
806                 nr_nodes--)
807
808 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
809         for (nr_nodes = nodes_weight(*mask);                            \
810                 nr_nodes > 0 &&                                         \
811                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
812                 nr_nodes--)
813
814 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816         struct page *page;
817         int nr_nodes, node;
818         int ret = 0;
819
820         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
821                 page = alloc_fresh_huge_page_node(h, node);
822                 if (page) {
823                         ret = 1;
824                         break;
825                 }
826         }
827
828         if (ret)
829                 count_vm_event(HTLB_BUDDY_PGALLOC);
830         else
831                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
833         return ret;
834 }
835
836 /*
837  * Free huge page from pool from next node to free.
838  * Attempt to keep persistent huge pages more or less
839  * balanced over allowed nodes.
840  * Called with hugetlb_lock locked.
841  */
842 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
843                                                          bool acct_surplus)
844 {
845         int nr_nodes, node;
846         int ret = 0;
847
848         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
849                 /*
850                  * If we're returning unused surplus pages, only examine
851                  * nodes with surplus pages.
852                  */
853                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
854                     !list_empty(&h->hugepage_freelists[node])) {
855                         struct page *page =
856                                 list_entry(h->hugepage_freelists[node].next,
857                                           struct page, lru);
858                         list_del(&page->lru);
859                         h->free_huge_pages--;
860                         h->free_huge_pages_node[node]--;
861                         if (acct_surplus) {
862                                 h->surplus_huge_pages--;
863                                 h->surplus_huge_pages_node[node]--;
864                         }
865                         update_and_free_page(h, page);
866                         ret = 1;
867                         break;
868                 }
869         }
870
871         return ret;
872 }
873
874 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
875 {
876         struct page *page;
877         unsigned int r_nid;
878
879         if (h->order >= MAX_ORDER)
880                 return NULL;
881
882         /*
883          * Assume we will successfully allocate the surplus page to
884          * prevent racing processes from causing the surplus to exceed
885          * overcommit
886          *
887          * This however introduces a different race, where a process B
888          * tries to grow the static hugepage pool while alloc_pages() is
889          * called by process A. B will only examine the per-node
890          * counters in determining if surplus huge pages can be
891          * converted to normal huge pages in adjust_pool_surplus(). A
892          * won't be able to increment the per-node counter, until the
893          * lock is dropped by B, but B doesn't drop hugetlb_lock until
894          * no more huge pages can be converted from surplus to normal
895          * state (and doesn't try to convert again). Thus, we have a
896          * case where a surplus huge page exists, the pool is grown, and
897          * the surplus huge page still exists after, even though it
898          * should just have been converted to a normal huge page. This
899          * does not leak memory, though, as the hugepage will be freed
900          * once it is out of use. It also does not allow the counters to
901          * go out of whack in adjust_pool_surplus() as we don't modify
902          * the node values until we've gotten the hugepage and only the
903          * per-node value is checked there.
904          */
905         spin_lock(&hugetlb_lock);
906         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
907                 spin_unlock(&hugetlb_lock);
908                 return NULL;
909         } else {
910                 h->nr_huge_pages++;
911                 h->surplus_huge_pages++;
912         }
913         spin_unlock(&hugetlb_lock);
914
915         if (nid == NUMA_NO_NODE)
916                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
917                                    __GFP_REPEAT|__GFP_NOWARN,
918                                    huge_page_order(h));
919         else
920                 page = alloc_pages_exact_node(nid,
921                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
922                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
923
924         if (page && arch_prepare_hugepage(page)) {
925                 __free_pages(page, huge_page_order(h));
926                 page = NULL;
927         }
928
929         spin_lock(&hugetlb_lock);
930         if (page) {
931                 INIT_LIST_HEAD(&page->lru);
932                 r_nid = page_to_nid(page);
933                 set_compound_page_dtor(page, free_huge_page);
934                 set_hugetlb_cgroup(page, NULL);
935                 /*
936                  * We incremented the global counters already
937                  */
938                 h->nr_huge_pages_node[r_nid]++;
939                 h->surplus_huge_pages_node[r_nid]++;
940                 __count_vm_event(HTLB_BUDDY_PGALLOC);
941         } else {
942                 h->nr_huge_pages--;
943                 h->surplus_huge_pages--;
944                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
945         }
946         spin_unlock(&hugetlb_lock);
947
948         return page;
949 }
950
951 /*
952  * This allocation function is useful in the context where vma is irrelevant.
953  * E.g. soft-offlining uses this function because it only cares physical
954  * address of error page.
955  */
956 struct page *alloc_huge_page_node(struct hstate *h, int nid)
957 {
958         struct page *page = NULL;
959
960         spin_lock(&hugetlb_lock);
961         if (h->free_huge_pages - h->resv_huge_pages > 0)
962                 page = dequeue_huge_page_node(h, nid);
963         spin_unlock(&hugetlb_lock);
964
965         if (!page)
966                 page = alloc_buddy_huge_page(h, nid);
967
968         return page;
969 }
970
971 /*
972  * Increase the hugetlb pool such that it can accommodate a reservation
973  * of size 'delta'.
974  */
975 static int gather_surplus_pages(struct hstate *h, int delta)
976 {
977         struct list_head surplus_list;
978         struct page *page, *tmp;
979         int ret, i;
980         int needed, allocated;
981         bool alloc_ok = true;
982
983         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
984         if (needed <= 0) {
985                 h->resv_huge_pages += delta;
986                 return 0;
987         }
988
989         allocated = 0;
990         INIT_LIST_HEAD(&surplus_list);
991
992         ret = -ENOMEM;
993 retry:
994         spin_unlock(&hugetlb_lock);
995         for (i = 0; i < needed; i++) {
996                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
997                 if (!page) {
998                         alloc_ok = false;
999                         break;
1000                 }
1001                 list_add(&page->lru, &surplus_list);
1002         }
1003         allocated += i;
1004
1005         /*
1006          * After retaking hugetlb_lock, we need to recalculate 'needed'
1007          * because either resv_huge_pages or free_huge_pages may have changed.
1008          */
1009         spin_lock(&hugetlb_lock);
1010         needed = (h->resv_huge_pages + delta) -
1011                         (h->free_huge_pages + allocated);
1012         if (needed > 0) {
1013                 if (alloc_ok)
1014                         goto retry;
1015                 /*
1016                  * We were not able to allocate enough pages to
1017                  * satisfy the entire reservation so we free what
1018                  * we've allocated so far.
1019                  */
1020                 goto free;
1021         }
1022         /*
1023          * The surplus_list now contains _at_least_ the number of extra pages
1024          * needed to accommodate the reservation.  Add the appropriate number
1025          * of pages to the hugetlb pool and free the extras back to the buddy
1026          * allocator.  Commit the entire reservation here to prevent another
1027          * process from stealing the pages as they are added to the pool but
1028          * before they are reserved.
1029          */
1030         needed += allocated;
1031         h->resv_huge_pages += delta;
1032         ret = 0;
1033
1034         /* Free the needed pages to the hugetlb pool */
1035         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1036                 if ((--needed) < 0)
1037                         break;
1038                 /*
1039                  * This page is now managed by the hugetlb allocator and has
1040                  * no users -- drop the buddy allocator's reference.
1041                  */
1042                 put_page_testzero(page);
1043                 VM_BUG_ON(page_count(page));
1044                 enqueue_huge_page(h, page);
1045         }
1046 free:
1047         spin_unlock(&hugetlb_lock);
1048
1049         /* Free unnecessary surplus pages to the buddy allocator */
1050         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1051                 put_page(page);
1052         spin_lock(&hugetlb_lock);
1053
1054         return ret;
1055 }
1056
1057 /*
1058  * When releasing a hugetlb pool reservation, any surplus pages that were
1059  * allocated to satisfy the reservation must be explicitly freed if they were
1060  * never used.
1061  * Called with hugetlb_lock held.
1062  */
1063 static void return_unused_surplus_pages(struct hstate *h,
1064                                         unsigned long unused_resv_pages)
1065 {
1066         unsigned long nr_pages;
1067
1068         /* Uncommit the reservation */
1069         h->resv_huge_pages -= unused_resv_pages;
1070
1071         /* Cannot return gigantic pages currently */
1072         if (h->order >= MAX_ORDER)
1073                 return;
1074
1075         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1076
1077         /*
1078          * We want to release as many surplus pages as possible, spread
1079          * evenly across all nodes with memory. Iterate across these nodes
1080          * until we can no longer free unreserved surplus pages. This occurs
1081          * when the nodes with surplus pages have no free pages.
1082          * free_pool_huge_page() will balance the the freed pages across the
1083          * on-line nodes with memory and will handle the hstate accounting.
1084          */
1085         while (nr_pages--) {
1086                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1087                         break;
1088         }
1089 }
1090
1091 /*
1092  * Determine if the huge page at addr within the vma has an associated
1093  * reservation.  Where it does not we will need to logically increase
1094  * reservation and actually increase subpool usage before an allocation
1095  * can occur.  Where any new reservation would be required the
1096  * reservation change is prepared, but not committed.  Once the page
1097  * has been allocated from the subpool and instantiated the change should
1098  * be committed via vma_commit_reservation.  No action is required on
1099  * failure.
1100  */
1101 static long vma_needs_reservation(struct hstate *h,
1102                         struct vm_area_struct *vma, unsigned long addr)
1103 {
1104         struct address_space *mapping = vma->vm_file->f_mapping;
1105         struct inode *inode = mapping->host;
1106
1107         if (vma->vm_flags & VM_MAYSHARE) {
1108                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109                 return region_chg(&inode->i_mapping->private_list,
1110                                                         idx, idx + 1);
1111
1112         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1113                 return 1;
1114
1115         } else  {
1116                 long err;
1117                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1118                 struct resv_map *resv = vma_resv_map(vma);
1119
1120                 err = region_chg(&resv->regions, idx, idx + 1);
1121                 if (err < 0)
1122                         return err;
1123                 return 0;
1124         }
1125 }
1126 static void vma_commit_reservation(struct hstate *h,
1127                         struct vm_area_struct *vma, unsigned long addr)
1128 {
1129         struct address_space *mapping = vma->vm_file->f_mapping;
1130         struct inode *inode = mapping->host;
1131
1132         if (vma->vm_flags & VM_MAYSHARE) {
1133                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1134                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1135
1136         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1137                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1138                 struct resv_map *resv = vma_resv_map(vma);
1139
1140                 /* Mark this page used in the map. */
1141                 region_add(&resv->regions, idx, idx + 1);
1142         }
1143 }
1144
1145 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1146                                     unsigned long addr, int avoid_reserve)
1147 {
1148         struct hugepage_subpool *spool = subpool_vma(vma);
1149         struct hstate *h = hstate_vma(vma);
1150         struct page *page;
1151         long chg;
1152         int ret, idx;
1153         struct hugetlb_cgroup *h_cg;
1154
1155         idx = hstate_index(h);
1156         /*
1157          * Processes that did not create the mapping will have no
1158          * reserves and will not have accounted against subpool
1159          * limit. Check that the subpool limit can be made before
1160          * satisfying the allocation MAP_NORESERVE mappings may also
1161          * need pages and subpool limit allocated allocated if no reserve
1162          * mapping overlaps.
1163          */
1164         chg = vma_needs_reservation(h, vma, addr);
1165         if (chg < 0)
1166                 return ERR_PTR(-ENOMEM);
1167         if (chg)
1168                 if (hugepage_subpool_get_pages(spool, chg))
1169                         return ERR_PTR(-ENOSPC);
1170
1171         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1172         if (ret) {
1173                 hugepage_subpool_put_pages(spool, chg);
1174                 return ERR_PTR(-ENOSPC);
1175         }
1176         spin_lock(&hugetlb_lock);
1177         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1178         if (!page) {
1179                 spin_unlock(&hugetlb_lock);
1180                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1181                 if (!page) {
1182                         hugetlb_cgroup_uncharge_cgroup(idx,
1183                                                        pages_per_huge_page(h),
1184                                                        h_cg);
1185                         hugepage_subpool_put_pages(spool, chg);
1186                         return ERR_PTR(-ENOSPC);
1187                 }
1188                 spin_lock(&hugetlb_lock);
1189                 list_move(&page->lru, &h->hugepage_activelist);
1190                 /* Fall through */
1191         }
1192         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1193         spin_unlock(&hugetlb_lock);
1194
1195         set_page_private(page, (unsigned long)spool);
1196
1197         vma_commit_reservation(h, vma, addr);
1198         return page;
1199 }
1200
1201 int __weak alloc_bootmem_huge_page(struct hstate *h)
1202 {
1203         struct huge_bootmem_page *m;
1204         int nr_nodes, node;
1205
1206         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1207                 void *addr;
1208
1209                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1210                                 huge_page_size(h), huge_page_size(h), 0);
1211
1212                 if (addr) {
1213                         /*
1214                          * Use the beginning of the huge page to store the
1215                          * huge_bootmem_page struct (until gather_bootmem
1216                          * puts them into the mem_map).
1217                          */
1218                         m = addr;
1219                         goto found;
1220                 }
1221         }
1222         return 0;
1223
1224 found:
1225         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1226         /* Put them into a private list first because mem_map is not up yet */
1227         list_add(&m->list, &huge_boot_pages);
1228         m->hstate = h;
1229         return 1;
1230 }
1231
1232 static void prep_compound_huge_page(struct page *page, int order)
1233 {
1234         if (unlikely(order > (MAX_ORDER - 1)))
1235                 prep_compound_gigantic_page(page, order);
1236         else
1237                 prep_compound_page(page, order);
1238 }
1239
1240 /* Put bootmem huge pages into the standard lists after mem_map is up */
1241 static void __init gather_bootmem_prealloc(void)
1242 {
1243         struct huge_bootmem_page *m;
1244
1245         list_for_each_entry(m, &huge_boot_pages, list) {
1246                 struct hstate *h = m->hstate;
1247                 struct page *page;
1248
1249 #ifdef CONFIG_HIGHMEM
1250                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1251                 free_bootmem_late((unsigned long)m,
1252                                   sizeof(struct huge_bootmem_page));
1253 #else
1254                 page = virt_to_page(m);
1255 #endif
1256                 __ClearPageReserved(page);
1257                 WARN_ON(page_count(page) != 1);
1258                 prep_compound_huge_page(page, h->order);
1259                 prep_new_huge_page(h, page, page_to_nid(page));
1260                 /*
1261                  * If we had gigantic hugepages allocated at boot time, we need
1262                  * to restore the 'stolen' pages to totalram_pages in order to
1263                  * fix confusing memory reports from free(1) and another
1264                  * side-effects, like CommitLimit going negative.
1265                  */
1266                 if (h->order > (MAX_ORDER - 1))
1267                         adjust_managed_page_count(page, 1 << h->order);
1268         }
1269 }
1270
1271 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1272 {
1273         unsigned long i;
1274
1275         for (i = 0; i < h->max_huge_pages; ++i) {
1276                 if (h->order >= MAX_ORDER) {
1277                         if (!alloc_bootmem_huge_page(h))
1278                                 break;
1279                 } else if (!alloc_fresh_huge_page(h,
1280                                          &node_states[N_MEMORY]))
1281                         break;
1282         }
1283         h->max_huge_pages = i;
1284 }
1285
1286 static void __init hugetlb_init_hstates(void)
1287 {
1288         struct hstate *h;
1289
1290         for_each_hstate(h) {
1291                 /* oversize hugepages were init'ed in early boot */
1292                 if (h->order < MAX_ORDER)
1293                         hugetlb_hstate_alloc_pages(h);
1294         }
1295 }
1296
1297 static char * __init memfmt(char *buf, unsigned long n)
1298 {
1299         if (n >= (1UL << 30))
1300                 sprintf(buf, "%lu GB", n >> 30);
1301         else if (n >= (1UL << 20))
1302                 sprintf(buf, "%lu MB", n >> 20);
1303         else
1304                 sprintf(buf, "%lu KB", n >> 10);
1305         return buf;
1306 }
1307
1308 static void __init report_hugepages(void)
1309 {
1310         struct hstate *h;
1311
1312         for_each_hstate(h) {
1313                 char buf[32];
1314                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1315                         memfmt(buf, huge_page_size(h)),
1316                         h->free_huge_pages);
1317         }
1318 }
1319
1320 #ifdef CONFIG_HIGHMEM
1321 static void try_to_free_low(struct hstate *h, unsigned long count,
1322                                                 nodemask_t *nodes_allowed)
1323 {
1324         int i;
1325
1326         if (h->order >= MAX_ORDER)
1327                 return;
1328
1329         for_each_node_mask(i, *nodes_allowed) {
1330                 struct page *page, *next;
1331                 struct list_head *freel = &h->hugepage_freelists[i];
1332                 list_for_each_entry_safe(page, next, freel, lru) {
1333                         if (count >= h->nr_huge_pages)
1334                                 return;
1335                         if (PageHighMem(page))
1336                                 continue;
1337                         list_del(&page->lru);
1338                         update_and_free_page(h, page);
1339                         h->free_huge_pages--;
1340                         h->free_huge_pages_node[page_to_nid(page)]--;
1341                 }
1342         }
1343 }
1344 #else
1345 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1346                                                 nodemask_t *nodes_allowed)
1347 {
1348 }
1349 #endif
1350
1351 /*
1352  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1353  * balanced by operating on them in a round-robin fashion.
1354  * Returns 1 if an adjustment was made.
1355  */
1356 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1357                                 int delta)
1358 {
1359         int nr_nodes, node;
1360
1361         VM_BUG_ON(delta != -1 && delta != 1);
1362
1363         if (delta < 0) {
1364                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1365                         if (h->surplus_huge_pages_node[node])
1366                                 goto found;
1367                 }
1368         } else {
1369                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1370                         if (h->surplus_huge_pages_node[node] <
1371                                         h->nr_huge_pages_node[node])
1372                                 goto found;
1373                 }
1374         }
1375         return 0;
1376
1377 found:
1378         h->surplus_huge_pages += delta;
1379         h->surplus_huge_pages_node[node] += delta;
1380         return 1;
1381 }
1382
1383 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1384 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1385                                                 nodemask_t *nodes_allowed)
1386 {
1387         unsigned long min_count, ret;
1388
1389         if (h->order >= MAX_ORDER)
1390                 return h->max_huge_pages;
1391
1392         /*
1393          * Increase the pool size
1394          * First take pages out of surplus state.  Then make up the
1395          * remaining difference by allocating fresh huge pages.
1396          *
1397          * We might race with alloc_buddy_huge_page() here and be unable
1398          * to convert a surplus huge page to a normal huge page. That is
1399          * not critical, though, it just means the overall size of the
1400          * pool might be one hugepage larger than it needs to be, but
1401          * within all the constraints specified by the sysctls.
1402          */
1403         spin_lock(&hugetlb_lock);
1404         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1405                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1406                         break;
1407         }
1408
1409         while (count > persistent_huge_pages(h)) {
1410                 /*
1411                  * If this allocation races such that we no longer need the
1412                  * page, free_huge_page will handle it by freeing the page
1413                  * and reducing the surplus.
1414                  */
1415                 spin_unlock(&hugetlb_lock);
1416                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1417                 spin_lock(&hugetlb_lock);
1418                 if (!ret)
1419                         goto out;
1420
1421                 /* Bail for signals. Probably ctrl-c from user */
1422                 if (signal_pending(current))
1423                         goto out;
1424         }
1425
1426         /*
1427          * Decrease the pool size
1428          * First return free pages to the buddy allocator (being careful
1429          * to keep enough around to satisfy reservations).  Then place
1430          * pages into surplus state as needed so the pool will shrink
1431          * to the desired size as pages become free.
1432          *
1433          * By placing pages into the surplus state independent of the
1434          * overcommit value, we are allowing the surplus pool size to
1435          * exceed overcommit. There are few sane options here. Since
1436          * alloc_buddy_huge_page() is checking the global counter,
1437          * though, we'll note that we're not allowed to exceed surplus
1438          * and won't grow the pool anywhere else. Not until one of the
1439          * sysctls are changed, or the surplus pages go out of use.
1440          */
1441         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1442         min_count = max(count, min_count);
1443         try_to_free_low(h, min_count, nodes_allowed);
1444         while (min_count < persistent_huge_pages(h)) {
1445                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1446                         break;
1447         }
1448         while (count < persistent_huge_pages(h)) {
1449                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1450                         break;
1451         }
1452 out:
1453         ret = persistent_huge_pages(h);
1454         spin_unlock(&hugetlb_lock);
1455         return ret;
1456 }
1457
1458 #define HSTATE_ATTR_RO(_name) \
1459         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1460
1461 #define HSTATE_ATTR(_name) \
1462         static struct kobj_attribute _name##_attr = \
1463                 __ATTR(_name, 0644, _name##_show, _name##_store)
1464
1465 static struct kobject *hugepages_kobj;
1466 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1467
1468 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1469
1470 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1471 {
1472         int i;
1473
1474         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1475                 if (hstate_kobjs[i] == kobj) {
1476                         if (nidp)
1477                                 *nidp = NUMA_NO_NODE;
1478                         return &hstates[i];
1479                 }
1480
1481         return kobj_to_node_hstate(kobj, nidp);
1482 }
1483
1484 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1485                                         struct kobj_attribute *attr, char *buf)
1486 {
1487         struct hstate *h;
1488         unsigned long nr_huge_pages;
1489         int nid;
1490
1491         h = kobj_to_hstate(kobj, &nid);
1492         if (nid == NUMA_NO_NODE)
1493                 nr_huge_pages = h->nr_huge_pages;
1494         else
1495                 nr_huge_pages = h->nr_huge_pages_node[nid];
1496
1497         return sprintf(buf, "%lu\n", nr_huge_pages);
1498 }
1499
1500 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1501                         struct kobject *kobj, struct kobj_attribute *attr,
1502                         const char *buf, size_t len)
1503 {
1504         int err;
1505         int nid;
1506         unsigned long count;
1507         struct hstate *h;
1508         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1509
1510         err = kstrtoul(buf, 10, &count);
1511         if (err)
1512                 goto out;
1513
1514         h = kobj_to_hstate(kobj, &nid);
1515         if (h->order >= MAX_ORDER) {
1516                 err = -EINVAL;
1517                 goto out;
1518         }
1519
1520         if (nid == NUMA_NO_NODE) {
1521                 /*
1522                  * global hstate attribute
1523                  */
1524                 if (!(obey_mempolicy &&
1525                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1526                         NODEMASK_FREE(nodes_allowed);
1527                         nodes_allowed = &node_states[N_MEMORY];
1528                 }
1529         } else if (nodes_allowed) {
1530                 /*
1531                  * per node hstate attribute: adjust count to global,
1532                  * but restrict alloc/free to the specified node.
1533                  */
1534                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1535                 init_nodemask_of_node(nodes_allowed, nid);
1536         } else
1537                 nodes_allowed = &node_states[N_MEMORY];
1538
1539         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1540
1541         if (nodes_allowed != &node_states[N_MEMORY])
1542                 NODEMASK_FREE(nodes_allowed);
1543
1544         return len;
1545 out:
1546         NODEMASK_FREE(nodes_allowed);
1547         return err;
1548 }
1549
1550 static ssize_t nr_hugepages_show(struct kobject *kobj,
1551                                        struct kobj_attribute *attr, char *buf)
1552 {
1553         return nr_hugepages_show_common(kobj, attr, buf);
1554 }
1555
1556 static ssize_t nr_hugepages_store(struct kobject *kobj,
1557                struct kobj_attribute *attr, const char *buf, size_t len)
1558 {
1559         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1560 }
1561 HSTATE_ATTR(nr_hugepages);
1562
1563 #ifdef CONFIG_NUMA
1564
1565 /*
1566  * hstate attribute for optionally mempolicy-based constraint on persistent
1567  * huge page alloc/free.
1568  */
1569 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1570                                        struct kobj_attribute *attr, char *buf)
1571 {
1572         return nr_hugepages_show_common(kobj, attr, buf);
1573 }
1574
1575 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1576                struct kobj_attribute *attr, const char *buf, size_t len)
1577 {
1578         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1579 }
1580 HSTATE_ATTR(nr_hugepages_mempolicy);
1581 #endif
1582
1583
1584 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1585                                         struct kobj_attribute *attr, char *buf)
1586 {
1587         struct hstate *h = kobj_to_hstate(kobj, NULL);
1588         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1589 }
1590
1591 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1592                 struct kobj_attribute *attr, const char *buf, size_t count)
1593 {
1594         int err;
1595         unsigned long input;
1596         struct hstate *h = kobj_to_hstate(kobj, NULL);
1597
1598         if (h->order >= MAX_ORDER)
1599                 return -EINVAL;
1600
1601         err = kstrtoul(buf, 10, &input);
1602         if (err)
1603                 return err;
1604
1605         spin_lock(&hugetlb_lock);
1606         h->nr_overcommit_huge_pages = input;
1607         spin_unlock(&hugetlb_lock);
1608
1609         return count;
1610 }
1611 HSTATE_ATTR(nr_overcommit_hugepages);
1612
1613 static ssize_t free_hugepages_show(struct kobject *kobj,
1614                                         struct kobj_attribute *attr, char *buf)
1615 {
1616         struct hstate *h;
1617         unsigned long free_huge_pages;
1618         int nid;
1619
1620         h = kobj_to_hstate(kobj, &nid);
1621         if (nid == NUMA_NO_NODE)
1622                 free_huge_pages = h->free_huge_pages;
1623         else
1624                 free_huge_pages = h->free_huge_pages_node[nid];
1625
1626         return sprintf(buf, "%lu\n", free_huge_pages);
1627 }
1628 HSTATE_ATTR_RO(free_hugepages);
1629
1630 static ssize_t resv_hugepages_show(struct kobject *kobj,
1631                                         struct kobj_attribute *attr, char *buf)
1632 {
1633         struct hstate *h = kobj_to_hstate(kobj, NULL);
1634         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1635 }
1636 HSTATE_ATTR_RO(resv_hugepages);
1637
1638 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1639                                         struct kobj_attribute *attr, char *buf)
1640 {
1641         struct hstate *h;
1642         unsigned long surplus_huge_pages;
1643         int nid;
1644
1645         h = kobj_to_hstate(kobj, &nid);
1646         if (nid == NUMA_NO_NODE)
1647                 surplus_huge_pages = h->surplus_huge_pages;
1648         else
1649                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1650
1651         return sprintf(buf, "%lu\n", surplus_huge_pages);
1652 }
1653 HSTATE_ATTR_RO(surplus_hugepages);
1654
1655 static struct attribute *hstate_attrs[] = {
1656         &nr_hugepages_attr.attr,
1657         &nr_overcommit_hugepages_attr.attr,
1658         &free_hugepages_attr.attr,
1659         &resv_hugepages_attr.attr,
1660         &surplus_hugepages_attr.attr,
1661 #ifdef CONFIG_NUMA
1662         &nr_hugepages_mempolicy_attr.attr,
1663 #endif
1664         NULL,
1665 };
1666
1667 static struct attribute_group hstate_attr_group = {
1668         .attrs = hstate_attrs,
1669 };
1670
1671 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1672                                     struct kobject **hstate_kobjs,
1673                                     struct attribute_group *hstate_attr_group)
1674 {
1675         int retval;
1676         int hi = hstate_index(h);
1677
1678         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1679         if (!hstate_kobjs[hi])
1680                 return -ENOMEM;
1681
1682         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1683         if (retval)
1684                 kobject_put(hstate_kobjs[hi]);
1685
1686         return retval;
1687 }
1688
1689 static void __init hugetlb_sysfs_init(void)
1690 {
1691         struct hstate *h;
1692         int err;
1693
1694         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1695         if (!hugepages_kobj)
1696                 return;
1697
1698         for_each_hstate(h) {
1699                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1700                                          hstate_kobjs, &hstate_attr_group);
1701                 if (err)
1702                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1703         }
1704 }
1705
1706 #ifdef CONFIG_NUMA
1707
1708 /*
1709  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1710  * with node devices in node_devices[] using a parallel array.  The array
1711  * index of a node device or _hstate == node id.
1712  * This is here to avoid any static dependency of the node device driver, in
1713  * the base kernel, on the hugetlb module.
1714  */
1715 struct node_hstate {
1716         struct kobject          *hugepages_kobj;
1717         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1718 };
1719 struct node_hstate node_hstates[MAX_NUMNODES];
1720
1721 /*
1722  * A subset of global hstate attributes for node devices
1723  */
1724 static struct attribute *per_node_hstate_attrs[] = {
1725         &nr_hugepages_attr.attr,
1726         &free_hugepages_attr.attr,
1727         &surplus_hugepages_attr.attr,
1728         NULL,
1729 };
1730
1731 static struct attribute_group per_node_hstate_attr_group = {
1732         .attrs = per_node_hstate_attrs,
1733 };
1734
1735 /*
1736  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1737  * Returns node id via non-NULL nidp.
1738  */
1739 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740 {
1741         int nid;
1742
1743         for (nid = 0; nid < nr_node_ids; nid++) {
1744                 struct node_hstate *nhs = &node_hstates[nid];
1745                 int i;
1746                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1747                         if (nhs->hstate_kobjs[i] == kobj) {
1748                                 if (nidp)
1749                                         *nidp = nid;
1750                                 return &hstates[i];
1751                         }
1752         }
1753
1754         BUG();
1755         return NULL;
1756 }
1757
1758 /*
1759  * Unregister hstate attributes from a single node device.
1760  * No-op if no hstate attributes attached.
1761  */
1762 static void hugetlb_unregister_node(struct node *node)
1763 {
1764         struct hstate *h;
1765         struct node_hstate *nhs = &node_hstates[node->dev.id];
1766
1767         if (!nhs->hugepages_kobj)
1768                 return;         /* no hstate attributes */
1769
1770         for_each_hstate(h) {
1771                 int idx = hstate_index(h);
1772                 if (nhs->hstate_kobjs[idx]) {
1773                         kobject_put(nhs->hstate_kobjs[idx]);
1774                         nhs->hstate_kobjs[idx] = NULL;
1775                 }
1776         }
1777
1778         kobject_put(nhs->hugepages_kobj);
1779         nhs->hugepages_kobj = NULL;
1780 }
1781
1782 /*
1783  * hugetlb module exit:  unregister hstate attributes from node devices
1784  * that have them.
1785  */
1786 static void hugetlb_unregister_all_nodes(void)
1787 {
1788         int nid;
1789
1790         /*
1791          * disable node device registrations.
1792          */
1793         register_hugetlbfs_with_node(NULL, NULL);
1794
1795         /*
1796          * remove hstate attributes from any nodes that have them.
1797          */
1798         for (nid = 0; nid < nr_node_ids; nid++)
1799                 hugetlb_unregister_node(node_devices[nid]);
1800 }
1801
1802 /*
1803  * Register hstate attributes for a single node device.
1804  * No-op if attributes already registered.
1805  */
1806 static void hugetlb_register_node(struct node *node)
1807 {
1808         struct hstate *h;
1809         struct node_hstate *nhs = &node_hstates[node->dev.id];
1810         int err;
1811
1812         if (nhs->hugepages_kobj)
1813                 return;         /* already allocated */
1814
1815         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1816                                                         &node->dev.kobj);
1817         if (!nhs->hugepages_kobj)
1818                 return;
1819
1820         for_each_hstate(h) {
1821                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1822                                                 nhs->hstate_kobjs,
1823                                                 &per_node_hstate_attr_group);
1824                 if (err) {
1825                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1826                                 h->name, node->dev.id);
1827                         hugetlb_unregister_node(node);
1828                         break;
1829                 }
1830         }
1831 }
1832
1833 /*
1834  * hugetlb init time:  register hstate attributes for all registered node
1835  * devices of nodes that have memory.  All on-line nodes should have
1836  * registered their associated device by this time.
1837  */
1838 static void hugetlb_register_all_nodes(void)
1839 {
1840         int nid;
1841
1842         for_each_node_state(nid, N_MEMORY) {
1843                 struct node *node = node_devices[nid];
1844                 if (node->dev.id == nid)
1845                         hugetlb_register_node(node);
1846         }
1847
1848         /*
1849          * Let the node device driver know we're here so it can
1850          * [un]register hstate attributes on node hotplug.
1851          */
1852         register_hugetlbfs_with_node(hugetlb_register_node,
1853                                      hugetlb_unregister_node);
1854 }
1855 #else   /* !CONFIG_NUMA */
1856
1857 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858 {
1859         BUG();
1860         if (nidp)
1861                 *nidp = -1;
1862         return NULL;
1863 }
1864
1865 static void hugetlb_unregister_all_nodes(void) { }
1866
1867 static void hugetlb_register_all_nodes(void) { }
1868
1869 #endif
1870
1871 static void __exit hugetlb_exit(void)
1872 {
1873         struct hstate *h;
1874
1875         hugetlb_unregister_all_nodes();
1876
1877         for_each_hstate(h) {
1878                 kobject_put(hstate_kobjs[hstate_index(h)]);
1879         }
1880
1881         kobject_put(hugepages_kobj);
1882 }
1883 module_exit(hugetlb_exit);
1884
1885 static int __init hugetlb_init(void)
1886 {
1887         /* Some platform decide whether they support huge pages at boot
1888          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889          * there is no such support
1890          */
1891         if (HPAGE_SHIFT == 0)
1892                 return 0;
1893
1894         if (!size_to_hstate(default_hstate_size)) {
1895                 default_hstate_size = HPAGE_SIZE;
1896                 if (!size_to_hstate(default_hstate_size))
1897                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1898         }
1899         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1900         if (default_hstate_max_huge_pages)
1901                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1902
1903         hugetlb_init_hstates();
1904         gather_bootmem_prealloc();
1905         report_hugepages();
1906
1907         hugetlb_sysfs_init();
1908         hugetlb_register_all_nodes();
1909         hugetlb_cgroup_file_init();
1910
1911         return 0;
1912 }
1913 module_init(hugetlb_init);
1914
1915 /* Should be called on processing a hugepagesz=... option */
1916 void __init hugetlb_add_hstate(unsigned order)
1917 {
1918         struct hstate *h;
1919         unsigned long i;
1920
1921         if (size_to_hstate(PAGE_SIZE << order)) {
1922                 pr_warning("hugepagesz= specified twice, ignoring\n");
1923                 return;
1924         }
1925         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1926         BUG_ON(order == 0);
1927         h = &hstates[hugetlb_max_hstate++];
1928         h->order = order;
1929         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1930         h->nr_huge_pages = 0;
1931         h->free_huge_pages = 0;
1932         for (i = 0; i < MAX_NUMNODES; ++i)
1933                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1934         INIT_LIST_HEAD(&h->hugepage_activelist);
1935         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1936         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1937         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1938                                         huge_page_size(h)/1024);
1939
1940         parsed_hstate = h;
1941 }
1942
1943 static int __init hugetlb_nrpages_setup(char *s)
1944 {
1945         unsigned long *mhp;
1946         static unsigned long *last_mhp;
1947
1948         /*
1949          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1950          * so this hugepages= parameter goes to the "default hstate".
1951          */
1952         if (!hugetlb_max_hstate)
1953                 mhp = &default_hstate_max_huge_pages;
1954         else
1955                 mhp = &parsed_hstate->max_huge_pages;
1956
1957         if (mhp == last_mhp) {
1958                 pr_warning("hugepages= specified twice without "
1959                            "interleaving hugepagesz=, ignoring\n");
1960                 return 1;
1961         }
1962
1963         if (sscanf(s, "%lu", mhp) <= 0)
1964                 *mhp = 0;
1965
1966         /*
1967          * Global state is always initialized later in hugetlb_init.
1968          * But we need to allocate >= MAX_ORDER hstates here early to still
1969          * use the bootmem allocator.
1970          */
1971         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1972                 hugetlb_hstate_alloc_pages(parsed_hstate);
1973
1974         last_mhp = mhp;
1975
1976         return 1;
1977 }
1978 __setup("hugepages=", hugetlb_nrpages_setup);
1979
1980 static int __init hugetlb_default_setup(char *s)
1981 {
1982         default_hstate_size = memparse(s, &s);
1983         return 1;
1984 }
1985 __setup("default_hugepagesz=", hugetlb_default_setup);
1986
1987 static unsigned int cpuset_mems_nr(unsigned int *array)
1988 {
1989         int node;
1990         unsigned int nr = 0;
1991
1992         for_each_node_mask(node, cpuset_current_mems_allowed)
1993                 nr += array[node];
1994
1995         return nr;
1996 }
1997
1998 #ifdef CONFIG_SYSCTL
1999 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2000                          struct ctl_table *table, int write,
2001                          void __user *buffer, size_t *length, loff_t *ppos)
2002 {
2003         struct hstate *h = &default_hstate;
2004         unsigned long tmp;
2005         int ret;
2006
2007         tmp = h->max_huge_pages;
2008
2009         if (write && h->order >= MAX_ORDER)
2010                 return -EINVAL;
2011
2012         table->data = &tmp;
2013         table->maxlen = sizeof(unsigned long);
2014         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2015         if (ret)
2016                 goto out;
2017
2018         if (write) {
2019                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2020                                                 GFP_KERNEL | __GFP_NORETRY);
2021                 if (!(obey_mempolicy &&
2022                                init_nodemask_of_mempolicy(nodes_allowed))) {
2023                         NODEMASK_FREE(nodes_allowed);
2024                         nodes_allowed = &node_states[N_MEMORY];
2025                 }
2026                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2027
2028                 if (nodes_allowed != &node_states[N_MEMORY])
2029                         NODEMASK_FREE(nodes_allowed);
2030         }
2031 out:
2032         return ret;
2033 }
2034
2035 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2036                           void __user *buffer, size_t *length, loff_t *ppos)
2037 {
2038
2039         return hugetlb_sysctl_handler_common(false, table, write,
2040                                                         buffer, length, ppos);
2041 }
2042
2043 #ifdef CONFIG_NUMA
2044 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2045                           void __user *buffer, size_t *length, loff_t *ppos)
2046 {
2047         return hugetlb_sysctl_handler_common(true, table, write,
2048                                                         buffer, length, ppos);
2049 }
2050 #endif /* CONFIG_NUMA */
2051
2052 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2053                         void __user *buffer,
2054                         size_t *length, loff_t *ppos)
2055 {
2056         proc_dointvec(table, write, buffer, length, ppos);
2057         if (hugepages_treat_as_movable)
2058                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2059         else
2060                 htlb_alloc_mask = GFP_HIGHUSER;
2061         return 0;
2062 }
2063
2064 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2065                         void __user *buffer,
2066                         size_t *length, loff_t *ppos)
2067 {
2068         struct hstate *h = &default_hstate;
2069         unsigned long tmp;
2070         int ret;
2071
2072         tmp = h->nr_overcommit_huge_pages;
2073
2074         if (write && h->order >= MAX_ORDER)
2075                 return -EINVAL;
2076
2077         table->data = &tmp;
2078         table->maxlen = sizeof(unsigned long);
2079         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2080         if (ret)
2081                 goto out;
2082
2083         if (write) {
2084                 spin_lock(&hugetlb_lock);
2085                 h->nr_overcommit_huge_pages = tmp;
2086                 spin_unlock(&hugetlb_lock);
2087         }
2088 out:
2089         return ret;
2090 }
2091
2092 #endif /* CONFIG_SYSCTL */
2093
2094 void hugetlb_report_meminfo(struct seq_file *m)
2095 {
2096         struct hstate *h = &default_hstate;
2097         seq_printf(m,
2098                         "HugePages_Total:   %5lu\n"
2099                         "HugePages_Free:    %5lu\n"
2100                         "HugePages_Rsvd:    %5lu\n"
2101                         "HugePages_Surp:    %5lu\n"
2102                         "Hugepagesize:   %8lu kB\n",
2103                         h->nr_huge_pages,
2104                         h->free_huge_pages,
2105                         h->resv_huge_pages,
2106                         h->surplus_huge_pages,
2107                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2108 }
2109
2110 int hugetlb_report_node_meminfo(int nid, char *buf)
2111 {
2112         struct hstate *h = &default_hstate;
2113         return sprintf(buf,
2114                 "Node %d HugePages_Total: %5u\n"
2115                 "Node %d HugePages_Free:  %5u\n"
2116                 "Node %d HugePages_Surp:  %5u\n",
2117                 nid, h->nr_huge_pages_node[nid],
2118                 nid, h->free_huge_pages_node[nid],
2119                 nid, h->surplus_huge_pages_node[nid]);
2120 }
2121
2122 void hugetlb_show_meminfo(void)
2123 {
2124         struct hstate *h;
2125         int nid;
2126
2127         for_each_node_state(nid, N_MEMORY)
2128                 for_each_hstate(h)
2129                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2130                                 nid,
2131                                 h->nr_huge_pages_node[nid],
2132                                 h->free_huge_pages_node[nid],
2133                                 h->surplus_huge_pages_node[nid],
2134                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2135 }
2136
2137 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2138 unsigned long hugetlb_total_pages(void)
2139 {
2140         struct hstate *h;
2141         unsigned long nr_total_pages = 0;
2142
2143         for_each_hstate(h)
2144                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2145         return nr_total_pages;
2146 }
2147
2148 static int hugetlb_acct_memory(struct hstate *h, long delta)
2149 {
2150         int ret = -ENOMEM;
2151
2152         spin_lock(&hugetlb_lock);
2153         /*
2154          * When cpuset is configured, it breaks the strict hugetlb page
2155          * reservation as the accounting is done on a global variable. Such
2156          * reservation is completely rubbish in the presence of cpuset because
2157          * the reservation is not checked against page availability for the
2158          * current cpuset. Application can still potentially OOM'ed by kernel
2159          * with lack of free htlb page in cpuset that the task is in.
2160          * Attempt to enforce strict accounting with cpuset is almost
2161          * impossible (or too ugly) because cpuset is too fluid that
2162          * task or memory node can be dynamically moved between cpusets.
2163          *
2164          * The change of semantics for shared hugetlb mapping with cpuset is
2165          * undesirable. However, in order to preserve some of the semantics,
2166          * we fall back to check against current free page availability as
2167          * a best attempt and hopefully to minimize the impact of changing
2168          * semantics that cpuset has.
2169          */
2170         if (delta > 0) {
2171                 if (gather_surplus_pages(h, delta) < 0)
2172                         goto out;
2173
2174                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2175                         return_unused_surplus_pages(h, delta);
2176                         goto out;
2177                 }
2178         }
2179
2180         ret = 0;
2181         if (delta < 0)
2182                 return_unused_surplus_pages(h, (unsigned long) -delta);
2183
2184 out:
2185         spin_unlock(&hugetlb_lock);
2186         return ret;
2187 }
2188
2189 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2190 {
2191         struct resv_map *resv = vma_resv_map(vma);
2192
2193         /*
2194          * This new VMA should share its siblings reservation map if present.
2195          * The VMA will only ever have a valid reservation map pointer where
2196          * it is being copied for another still existing VMA.  As that VMA
2197          * has a reference to the reservation map it cannot disappear until
2198          * after this open call completes.  It is therefore safe to take a
2199          * new reference here without additional locking.
2200          */
2201         if (resv)
2202                 kref_get(&resv->refs);
2203 }
2204
2205 static void resv_map_put(struct vm_area_struct *vma)
2206 {
2207         struct resv_map *resv = vma_resv_map(vma);
2208
2209         if (!resv)
2210                 return;
2211         kref_put(&resv->refs, resv_map_release);
2212 }
2213
2214 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2215 {
2216         struct hstate *h = hstate_vma(vma);
2217         struct resv_map *resv = vma_resv_map(vma);
2218         struct hugepage_subpool *spool = subpool_vma(vma);
2219         unsigned long reserve;
2220         unsigned long start;
2221         unsigned long end;
2222
2223         if (resv) {
2224                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2225                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2226
2227                 reserve = (end - start) -
2228                         region_count(&resv->regions, start, end);
2229
2230                 resv_map_put(vma);
2231
2232                 if (reserve) {
2233                         hugetlb_acct_memory(h, -reserve);
2234                         hugepage_subpool_put_pages(spool, reserve);
2235                 }
2236         }
2237 }
2238
2239 /*
2240  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2241  * handle_mm_fault() to try to instantiate regular-sized pages in the
2242  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2243  * this far.
2244  */
2245 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2246 {
2247         BUG();
2248         return 0;
2249 }
2250
2251 const struct vm_operations_struct hugetlb_vm_ops = {
2252         .fault = hugetlb_vm_op_fault,
2253         .open = hugetlb_vm_op_open,
2254         .close = hugetlb_vm_op_close,
2255 };
2256
2257 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2258                                 int writable)
2259 {
2260         pte_t entry;
2261
2262         if (writable) {
2263                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2264                                          vma->vm_page_prot)));
2265         } else {
2266                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2267                                            vma->vm_page_prot));
2268         }
2269         entry = pte_mkyoung(entry);
2270         entry = pte_mkhuge(entry);
2271         entry = arch_make_huge_pte(entry, vma, page, writable);
2272
2273         return entry;
2274 }
2275
2276 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2277                                    unsigned long address, pte_t *ptep)
2278 {
2279         pte_t entry;
2280
2281         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2282         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2283                 update_mmu_cache(vma, address, ptep);
2284 }
2285
2286
2287 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2288                             struct vm_area_struct *vma)
2289 {
2290         pte_t *src_pte, *dst_pte, entry;
2291         struct page *ptepage;
2292         unsigned long addr;
2293         int cow;
2294         struct hstate *h = hstate_vma(vma);
2295         unsigned long sz = huge_page_size(h);
2296
2297         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2298
2299         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2300                 src_pte = huge_pte_offset(src, addr);
2301                 if (!src_pte)
2302                         continue;
2303                 dst_pte = huge_pte_alloc(dst, addr, sz);
2304                 if (!dst_pte)
2305                         goto nomem;
2306
2307                 /* If the pagetables are shared don't copy or take references */
2308                 if (dst_pte == src_pte)
2309                         continue;
2310
2311                 spin_lock(&dst->page_table_lock);
2312                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2313                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2314                         if (cow)
2315                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2316                         entry = huge_ptep_get(src_pte);
2317                         ptepage = pte_page(entry);
2318                         get_page(ptepage);
2319                         page_dup_rmap(ptepage);
2320                         set_huge_pte_at(dst, addr, dst_pte, entry);
2321                 }
2322                 spin_unlock(&src->page_table_lock);
2323                 spin_unlock(&dst->page_table_lock);
2324         }
2325         return 0;
2326
2327 nomem:
2328         return -ENOMEM;
2329 }
2330
2331 static int is_hugetlb_entry_migration(pte_t pte)
2332 {
2333         swp_entry_t swp;
2334
2335         if (huge_pte_none(pte) || pte_present(pte))
2336                 return 0;
2337         swp = pte_to_swp_entry(pte);
2338         if (non_swap_entry(swp) && is_migration_entry(swp))
2339                 return 1;
2340         else
2341                 return 0;
2342 }
2343
2344 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2345 {
2346         swp_entry_t swp;
2347
2348         if (huge_pte_none(pte) || pte_present(pte))
2349                 return 0;
2350         swp = pte_to_swp_entry(pte);
2351         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2352                 return 1;
2353         else
2354                 return 0;
2355 }
2356
2357 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2358                             unsigned long start, unsigned long end,
2359                             struct page *ref_page)
2360 {
2361         int force_flush = 0;
2362         struct mm_struct *mm = vma->vm_mm;
2363         unsigned long address;
2364         pte_t *ptep;
2365         pte_t pte;
2366         struct page *page;
2367         struct hstate *h = hstate_vma(vma);
2368         unsigned long sz = huge_page_size(h);
2369         const unsigned long mmun_start = start; /* For mmu_notifiers */
2370         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2371
2372         WARN_ON(!is_vm_hugetlb_page(vma));
2373         BUG_ON(start & ~huge_page_mask(h));
2374         BUG_ON(end & ~huge_page_mask(h));
2375
2376         tlb_start_vma(tlb, vma);
2377         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2378 again:
2379         spin_lock(&mm->page_table_lock);
2380         for (address = start; address < end; address += sz) {
2381                 ptep = huge_pte_offset(mm, address);
2382                 if (!ptep)
2383                         continue;
2384
2385                 if (huge_pmd_unshare(mm, &address, ptep))
2386                         continue;
2387
2388                 pte = huge_ptep_get(ptep);
2389                 if (huge_pte_none(pte))
2390                         continue;
2391
2392                 /*
2393                  * HWPoisoned hugepage is already unmapped and dropped reference
2394                  */
2395                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2396                         huge_pte_clear(mm, address, ptep);
2397                         continue;
2398                 }
2399
2400                 page = pte_page(pte);
2401                 /*
2402                  * If a reference page is supplied, it is because a specific
2403                  * page is being unmapped, not a range. Ensure the page we
2404                  * are about to unmap is the actual page of interest.
2405                  */
2406                 if (ref_page) {
2407                         if (page != ref_page)
2408                                 continue;
2409
2410                         /*
2411                          * Mark the VMA as having unmapped its page so that
2412                          * future faults in this VMA will fail rather than
2413                          * looking like data was lost
2414                          */
2415                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2416                 }
2417
2418                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2419                 tlb_remove_tlb_entry(tlb, ptep, address);
2420                 if (huge_pte_dirty(pte))
2421                         set_page_dirty(page);
2422
2423                 page_remove_rmap(page);
2424                 force_flush = !__tlb_remove_page(tlb, page);
2425                 if (force_flush)
2426                         break;
2427                 /* Bail out after unmapping reference page if supplied */
2428                 if (ref_page)
2429                         break;
2430         }
2431         spin_unlock(&mm->page_table_lock);
2432         /*
2433          * mmu_gather ran out of room to batch pages, we break out of
2434          * the PTE lock to avoid doing the potential expensive TLB invalidate
2435          * and page-free while holding it.
2436          */
2437         if (force_flush) {
2438                 force_flush = 0;
2439                 tlb_flush_mmu(tlb);
2440                 if (address < end && !ref_page)
2441                         goto again;
2442         }
2443         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2444         tlb_end_vma(tlb, vma);
2445 }
2446
2447 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2448                           struct vm_area_struct *vma, unsigned long start,
2449                           unsigned long end, struct page *ref_page)
2450 {
2451         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2452
2453         /*
2454          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2455          * test will fail on a vma being torn down, and not grab a page table
2456          * on its way out.  We're lucky that the flag has such an appropriate
2457          * name, and can in fact be safely cleared here. We could clear it
2458          * before the __unmap_hugepage_range above, but all that's necessary
2459          * is to clear it before releasing the i_mmap_mutex. This works
2460          * because in the context this is called, the VMA is about to be
2461          * destroyed and the i_mmap_mutex is held.
2462          */
2463         vma->vm_flags &= ~VM_MAYSHARE;
2464 }
2465
2466 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2467                           unsigned long end, struct page *ref_page)
2468 {
2469         struct mm_struct *mm;
2470         struct mmu_gather tlb;
2471
2472         mm = vma->vm_mm;
2473
2474         tlb_gather_mmu(&tlb, mm, start, end);
2475         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2476         tlb_finish_mmu(&tlb, start, end);
2477 }
2478
2479 /*
2480  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2481  * mappping it owns the reserve page for. The intention is to unmap the page
2482  * from other VMAs and let the children be SIGKILLed if they are faulting the
2483  * same region.
2484  */
2485 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2486                                 struct page *page, unsigned long address)
2487 {
2488         struct hstate *h = hstate_vma(vma);
2489         struct vm_area_struct *iter_vma;
2490         struct address_space *mapping;
2491         pgoff_t pgoff;
2492
2493         /*
2494          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2495          * from page cache lookup which is in HPAGE_SIZE units.
2496          */
2497         address = address & huge_page_mask(h);
2498         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2499                         vma->vm_pgoff;
2500         mapping = file_inode(vma->vm_file)->i_mapping;
2501
2502         /*
2503          * Take the mapping lock for the duration of the table walk. As
2504          * this mapping should be shared between all the VMAs,
2505          * __unmap_hugepage_range() is called as the lock is already held
2506          */
2507         mutex_lock(&mapping->i_mmap_mutex);
2508         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2509                 /* Do not unmap the current VMA */
2510                 if (iter_vma == vma)
2511                         continue;
2512
2513                 /*
2514                  * Unmap the page from other VMAs without their own reserves.
2515                  * They get marked to be SIGKILLed if they fault in these
2516                  * areas. This is because a future no-page fault on this VMA
2517                  * could insert a zeroed page instead of the data existing
2518                  * from the time of fork. This would look like data corruption
2519                  */
2520                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2521                         unmap_hugepage_range(iter_vma, address,
2522                                              address + huge_page_size(h), page);
2523         }
2524         mutex_unlock(&mapping->i_mmap_mutex);
2525
2526         return 1;
2527 }
2528
2529 /*
2530  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2531  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2532  * cannot race with other handlers or page migration.
2533  * Keep the pte_same checks anyway to make transition from the mutex easier.
2534  */
2535 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2536                         unsigned long address, pte_t *ptep, pte_t pte,
2537                         struct page *pagecache_page)
2538 {
2539         struct hstate *h = hstate_vma(vma);
2540         struct page *old_page, *new_page;
2541         int outside_reserve = 0;
2542         unsigned long mmun_start;       /* For mmu_notifiers */
2543         unsigned long mmun_end;         /* For mmu_notifiers */
2544
2545         old_page = pte_page(pte);
2546
2547 retry_avoidcopy:
2548         /* If no-one else is actually using this page, avoid the copy
2549          * and just make the page writable */
2550         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2551                 page_move_anon_rmap(old_page, vma, address);
2552                 set_huge_ptep_writable(vma, address, ptep);
2553                 return 0;
2554         }
2555
2556         /*
2557          * If the process that created a MAP_PRIVATE mapping is about to
2558          * perform a COW due to a shared page count, attempt to satisfy
2559          * the allocation without using the existing reserves. The pagecache
2560          * page is used to determine if the reserve at this address was
2561          * consumed or not. If reserves were used, a partial faulted mapping
2562          * at the time of fork() could consume its reserves on COW instead
2563          * of the full address range.
2564          */
2565         if (!(vma->vm_flags & VM_MAYSHARE) &&
2566                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2567                         old_page != pagecache_page)
2568                 outside_reserve = 1;
2569
2570         page_cache_get(old_page);
2571
2572         /* Drop page_table_lock as buddy allocator may be called */
2573         spin_unlock(&mm->page_table_lock);
2574         new_page = alloc_huge_page(vma, address, outside_reserve);
2575
2576         if (IS_ERR(new_page)) {
2577                 long err = PTR_ERR(new_page);
2578                 page_cache_release(old_page);
2579
2580                 /*
2581                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2582                  * it is due to references held by a child and an insufficient
2583                  * huge page pool. To guarantee the original mappers
2584                  * reliability, unmap the page from child processes. The child
2585                  * may get SIGKILLed if it later faults.
2586                  */
2587                 if (outside_reserve) {
2588                         BUG_ON(huge_pte_none(pte));
2589                         if (unmap_ref_private(mm, vma, old_page, address)) {
2590                                 BUG_ON(huge_pte_none(pte));
2591                                 spin_lock(&mm->page_table_lock);
2592                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2593                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2594                                         goto retry_avoidcopy;
2595                                 /*
2596                                  * race occurs while re-acquiring page_table_lock, and
2597                                  * our job is done.
2598                                  */
2599                                 return 0;
2600                         }
2601                         WARN_ON_ONCE(1);
2602                 }
2603
2604                 /* Caller expects lock to be held */
2605                 spin_lock(&mm->page_table_lock);
2606                 if (err == -ENOMEM)
2607                         return VM_FAULT_OOM;
2608                 else
2609                         return VM_FAULT_SIGBUS;
2610         }
2611
2612         /*
2613          * When the original hugepage is shared one, it does not have
2614          * anon_vma prepared.
2615          */
2616         if (unlikely(anon_vma_prepare(vma))) {
2617                 page_cache_release(new_page);
2618                 page_cache_release(old_page);
2619                 /* Caller expects lock to be held */
2620                 spin_lock(&mm->page_table_lock);
2621                 return VM_FAULT_OOM;
2622         }
2623
2624         copy_user_huge_page(new_page, old_page, address, vma,
2625                             pages_per_huge_page(h));
2626         __SetPageUptodate(new_page);
2627
2628         mmun_start = address & huge_page_mask(h);
2629         mmun_end = mmun_start + huge_page_size(h);
2630         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2631         /*
2632          * Retake the page_table_lock to check for racing updates
2633          * before the page tables are altered
2634          */
2635         spin_lock(&mm->page_table_lock);
2636         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2637         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2638                 /* Break COW */
2639                 huge_ptep_clear_flush(vma, address, ptep);
2640                 set_huge_pte_at(mm, address, ptep,
2641                                 make_huge_pte(vma, new_page, 1));
2642                 page_remove_rmap(old_page);
2643                 hugepage_add_new_anon_rmap(new_page, vma, address);
2644                 /* Make the old page be freed below */
2645                 new_page = old_page;
2646         }
2647         spin_unlock(&mm->page_table_lock);
2648         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2649         /* Caller expects lock to be held */
2650         spin_lock(&mm->page_table_lock);
2651         page_cache_release(new_page);
2652         page_cache_release(old_page);
2653         return 0;
2654 }
2655
2656 /* Return the pagecache page at a given address within a VMA */
2657 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2658                         struct vm_area_struct *vma, unsigned long address)
2659 {
2660         struct address_space *mapping;
2661         pgoff_t idx;
2662
2663         mapping = vma->vm_file->f_mapping;
2664         idx = vma_hugecache_offset(h, vma, address);
2665
2666         return find_lock_page(mapping, idx);
2667 }
2668
2669 /*
2670  * Return whether there is a pagecache page to back given address within VMA.
2671  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2672  */
2673 static bool hugetlbfs_pagecache_present(struct hstate *h,
2674                         struct vm_area_struct *vma, unsigned long address)
2675 {
2676         struct address_space *mapping;
2677         pgoff_t idx;
2678         struct page *page;
2679
2680         mapping = vma->vm_file->f_mapping;
2681         idx = vma_hugecache_offset(h, vma, address);
2682
2683         page = find_get_page(mapping, idx);
2684         if (page)
2685                 put_page(page);
2686         return page != NULL;
2687 }
2688
2689 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2690                         unsigned long address, pte_t *ptep, unsigned int flags)
2691 {
2692         struct hstate *h = hstate_vma(vma);
2693         int ret = VM_FAULT_SIGBUS;
2694         int anon_rmap = 0;
2695         pgoff_t idx;
2696         unsigned long size;
2697         struct page *page;
2698         struct address_space *mapping;
2699         pte_t new_pte;
2700
2701         /*
2702          * Currently, we are forced to kill the process in the event the
2703          * original mapper has unmapped pages from the child due to a failed
2704          * COW. Warn that such a situation has occurred as it may not be obvious
2705          */
2706         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2707                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2708                            current->pid);
2709                 return ret;
2710         }
2711
2712         mapping = vma->vm_file->f_mapping;
2713         idx = vma_hugecache_offset(h, vma, address);
2714
2715         /*
2716          * Use page lock to guard against racing truncation
2717          * before we get page_table_lock.
2718          */
2719 retry:
2720         page = find_lock_page(mapping, idx);
2721         if (!page) {
2722                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2723                 if (idx >= size)
2724                         goto out;
2725                 page = alloc_huge_page(vma, address, 0);
2726                 if (IS_ERR(page)) {
2727                         ret = PTR_ERR(page);
2728                         if (ret == -ENOMEM)
2729                                 ret = VM_FAULT_OOM;
2730                         else
2731                                 ret = VM_FAULT_SIGBUS;
2732                         goto out;
2733                 }
2734                 clear_huge_page(page, address, pages_per_huge_page(h));
2735                 __SetPageUptodate(page);
2736
2737                 if (vma->vm_flags & VM_MAYSHARE) {
2738                         int err;
2739                         struct inode *inode = mapping->host;
2740
2741                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2742                         if (err) {
2743                                 put_page(page);
2744                                 if (err == -EEXIST)
2745                                         goto retry;
2746                                 goto out;
2747                         }
2748
2749                         spin_lock(&inode->i_lock);
2750                         inode->i_blocks += blocks_per_huge_page(h);
2751                         spin_unlock(&inode->i_lock);
2752                 } else {
2753                         lock_page(page);
2754                         if (unlikely(anon_vma_prepare(vma))) {
2755                                 ret = VM_FAULT_OOM;
2756                                 goto backout_unlocked;
2757                         }
2758                         anon_rmap = 1;
2759                 }
2760         } else {
2761                 /*
2762                  * If memory error occurs between mmap() and fault, some process
2763                  * don't have hwpoisoned swap entry for errored virtual address.
2764                  * So we need to block hugepage fault by PG_hwpoison bit check.
2765                  */
2766                 if (unlikely(PageHWPoison(page))) {
2767                         ret = VM_FAULT_HWPOISON |
2768                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2769                         goto backout_unlocked;
2770                 }
2771         }
2772
2773         /*
2774          * If we are going to COW a private mapping later, we examine the
2775          * pending reservations for this page now. This will ensure that
2776          * any allocations necessary to record that reservation occur outside
2777          * the spinlock.
2778          */
2779         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2780                 if (vma_needs_reservation(h, vma, address) < 0) {
2781                         ret = VM_FAULT_OOM;
2782                         goto backout_unlocked;
2783                 }
2784
2785         spin_lock(&mm->page_table_lock);
2786         size = i_size_read(mapping->host) >> huge_page_shift(h);
2787         if (idx >= size)
2788                 goto backout;
2789
2790         ret = 0;
2791         if (!huge_pte_none(huge_ptep_get(ptep)))
2792                 goto backout;
2793
2794         if (anon_rmap)
2795                 hugepage_add_new_anon_rmap(page, vma, address);
2796         else
2797                 page_dup_rmap(page);
2798         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2799                                 && (vma->vm_flags & VM_SHARED)));
2800         set_huge_pte_at(mm, address, ptep, new_pte);
2801
2802         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2803                 /* Optimization, do the COW without a second fault */
2804                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2805         }
2806
2807         spin_unlock(&mm->page_table_lock);
2808         unlock_page(page);
2809 out:
2810         return ret;
2811
2812 backout:
2813         spin_unlock(&mm->page_table_lock);
2814 backout_unlocked:
2815         unlock_page(page);
2816         put_page(page);
2817         goto out;
2818 }
2819
2820 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2821                         unsigned long address, unsigned int flags)
2822 {
2823         pte_t *ptep;
2824         pte_t entry;
2825         int ret;
2826         struct page *page = NULL;
2827         struct page *pagecache_page = NULL;
2828         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2829         struct hstate *h = hstate_vma(vma);
2830
2831         address &= huge_page_mask(h);
2832
2833         ptep = huge_pte_offset(mm, address);
2834         if (ptep) {
2835                 entry = huge_ptep_get(ptep);
2836                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2837                         migration_entry_wait_huge(mm, ptep);
2838                         return 0;
2839                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2840                         return VM_FAULT_HWPOISON_LARGE |
2841                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2842         }
2843
2844         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2845         if (!ptep)
2846                 return VM_FAULT_OOM;
2847
2848         /*
2849          * Serialize hugepage allocation and instantiation, so that we don't
2850          * get spurious allocation failures if two CPUs race to instantiate
2851          * the same page in the page cache.
2852          */
2853         mutex_lock(&hugetlb_instantiation_mutex);
2854         entry = huge_ptep_get(ptep);
2855         if (huge_pte_none(entry)) {
2856                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2857                 goto out_mutex;
2858         }
2859
2860         ret = 0;
2861
2862         /*
2863          * If we are going to COW the mapping later, we examine the pending
2864          * reservations for this page now. This will ensure that any
2865          * allocations necessary to record that reservation occur outside the
2866          * spinlock. For private mappings, we also lookup the pagecache
2867          * page now as it is used to determine if a reservation has been
2868          * consumed.
2869          */
2870         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2871                 if (vma_needs_reservation(h, vma, address) < 0) {
2872                         ret = VM_FAULT_OOM;
2873                         goto out_mutex;
2874                 }
2875
2876                 if (!(vma->vm_flags & VM_MAYSHARE))
2877                         pagecache_page = hugetlbfs_pagecache_page(h,
2878                                                                 vma, address);
2879         }
2880
2881         /*
2882          * hugetlb_cow() requires page locks of pte_page(entry) and
2883          * pagecache_page, so here we need take the former one
2884          * when page != pagecache_page or !pagecache_page.
2885          * Note that locking order is always pagecache_page -> page,
2886          * so no worry about deadlock.
2887          */
2888         page = pte_page(entry);
2889         get_page(page);
2890         if (page != pagecache_page)
2891                 lock_page(page);
2892
2893         spin_lock(&mm->page_table_lock);
2894         /* Check for a racing update before calling hugetlb_cow */
2895         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2896                 goto out_page_table_lock;
2897
2898
2899         if (flags & FAULT_FLAG_WRITE) {
2900                 if (!huge_pte_write(entry)) {
2901                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2902                                                         pagecache_page);
2903                         goto out_page_table_lock;
2904                 }
2905                 entry = huge_pte_mkdirty(entry);
2906         }
2907         entry = pte_mkyoung(entry);
2908         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2909                                                 flags & FAULT_FLAG_WRITE))
2910                 update_mmu_cache(vma, address, ptep);
2911
2912 out_page_table_lock:
2913         spin_unlock(&mm->page_table_lock);
2914
2915         if (pagecache_page) {
2916                 unlock_page(pagecache_page);
2917                 put_page(pagecache_page);
2918         }
2919         if (page != pagecache_page)
2920                 unlock_page(page);
2921         put_page(page);
2922
2923 out_mutex:
2924         mutex_unlock(&hugetlb_instantiation_mutex);
2925
2926         return ret;
2927 }
2928
2929 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930                          struct page **pages, struct vm_area_struct **vmas,
2931                          unsigned long *position, unsigned long *nr_pages,
2932                          long i, unsigned int flags)
2933 {
2934         unsigned long pfn_offset;
2935         unsigned long vaddr = *position;
2936         unsigned long remainder = *nr_pages;
2937         struct hstate *h = hstate_vma(vma);
2938
2939         spin_lock(&mm->page_table_lock);
2940         while (vaddr < vma->vm_end && remainder) {
2941                 pte_t *pte;
2942                 int absent;
2943                 struct page *page;
2944
2945                 /*
2946                  * Some archs (sparc64, sh*) have multiple pte_ts to
2947                  * each hugepage.  We have to make sure we get the
2948                  * first, for the page indexing below to work.
2949                  */
2950                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2951                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2952
2953                 /*
2954                  * When coredumping, it suits get_dump_page if we just return
2955                  * an error where there's an empty slot with no huge pagecache
2956                  * to back it.  This way, we avoid allocating a hugepage, and
2957                  * the sparse dumpfile avoids allocating disk blocks, but its
2958                  * huge holes still show up with zeroes where they need to be.
2959                  */
2960                 if (absent && (flags & FOLL_DUMP) &&
2961                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2962                         remainder = 0;
2963                         break;
2964                 }
2965
2966                 /*
2967                  * We need call hugetlb_fault for both hugepages under migration
2968                  * (in which case hugetlb_fault waits for the migration,) and
2969                  * hwpoisoned hugepages (in which case we need to prevent the
2970                  * caller from accessing to them.) In order to do this, we use
2971                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2972                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2973                  * both cases, and because we can't follow correct pages
2974                  * directly from any kind of swap entries.
2975                  */
2976                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2977                     ((flags & FOLL_WRITE) &&
2978                       !huge_pte_write(huge_ptep_get(pte)))) {
2979                         int ret;
2980
2981                         spin_unlock(&mm->page_table_lock);
2982                         ret = hugetlb_fault(mm, vma, vaddr,
2983                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2984                         spin_lock(&mm->page_table_lock);
2985                         if (!(ret & VM_FAULT_ERROR))
2986                                 continue;
2987
2988                         remainder = 0;
2989                         break;
2990                 }
2991
2992                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2993                 page = pte_page(huge_ptep_get(pte));
2994 same_page:
2995                 if (pages) {
2996                         pages[i] = mem_map_offset(page, pfn_offset);
2997                         get_page(pages[i]);
2998                 }
2999
3000                 if (vmas)
3001                         vmas[i] = vma;
3002
3003                 vaddr += PAGE_SIZE;
3004                 ++pfn_offset;
3005                 --remainder;
3006                 ++i;
3007                 if (vaddr < vma->vm_end && remainder &&
3008                                 pfn_offset < pages_per_huge_page(h)) {
3009                         /*
3010                          * We use pfn_offset to avoid touching the pageframes
3011                          * of this compound page.
3012                          */
3013                         goto same_page;
3014                 }
3015         }
3016         spin_unlock(&mm->page_table_lock);
3017         *nr_pages = remainder;
3018         *position = vaddr;
3019
3020         return i ? i : -EFAULT;
3021 }
3022
3023 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3024                 unsigned long address, unsigned long end, pgprot_t newprot)
3025 {
3026         struct mm_struct *mm = vma->vm_mm;
3027         unsigned long start = address;
3028         pte_t *ptep;
3029         pte_t pte;
3030         struct hstate *h = hstate_vma(vma);
3031         unsigned long pages = 0;
3032
3033         BUG_ON(address >= end);
3034         flush_cache_range(vma, address, end);
3035
3036         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3037         spin_lock(&mm->page_table_lock);
3038         for (; address < end; address += huge_page_size(h)) {
3039                 ptep = huge_pte_offset(mm, address);
3040                 if (!ptep)
3041                         continue;
3042                 if (huge_pmd_unshare(mm, &address, ptep)) {
3043                         pages++;
3044                         continue;
3045                 }
3046                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3047                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3048                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3049                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3050                         set_huge_pte_at(mm, address, ptep, pte);
3051                         pages++;
3052                 }
3053         }
3054         spin_unlock(&mm->page_table_lock);
3055         /*
3056          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3057          * may have cleared our pud entry and done put_page on the page table:
3058          * once we release i_mmap_mutex, another task can do the final put_page
3059          * and that page table be reused and filled with junk.
3060          */
3061         flush_tlb_range(vma, start, end);
3062         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3063
3064         return pages << h->order;
3065 }
3066
3067 int hugetlb_reserve_pages(struct inode *inode,
3068                                         long from, long to,
3069                                         struct vm_area_struct *vma,
3070                                         vm_flags_t vm_flags)
3071 {
3072         long ret, chg;
3073         struct hstate *h = hstate_inode(inode);
3074         struct hugepage_subpool *spool = subpool_inode(inode);
3075
3076         /*
3077          * Only apply hugepage reservation if asked. At fault time, an
3078          * attempt will be made for VM_NORESERVE to allocate a page
3079          * without using reserves
3080          */
3081         if (vm_flags & VM_NORESERVE)
3082                 return 0;
3083
3084         /*
3085          * Shared mappings base their reservation on the number of pages that
3086          * are already allocated on behalf of the file. Private mappings need
3087          * to reserve the full area even if read-only as mprotect() may be
3088          * called to make the mapping read-write. Assume !vma is a shm mapping
3089          */
3090         if (!vma || vma->vm_flags & VM_MAYSHARE)
3091                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3092         else {
3093                 struct resv_map *resv_map = resv_map_alloc();
3094                 if (!resv_map)
3095                         return -ENOMEM;
3096
3097                 chg = to - from;
3098
3099                 set_vma_resv_map(vma, resv_map);
3100                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3101         }
3102
3103         if (chg < 0) {
3104                 ret = chg;
3105                 goto out_err;
3106         }
3107
3108         /* There must be enough pages in the subpool for the mapping */
3109         if (hugepage_subpool_get_pages(spool, chg)) {
3110                 ret = -ENOSPC;
3111                 goto out_err;
3112         }
3113
3114         /*
3115          * Check enough hugepages are available for the reservation.
3116          * Hand the pages back to the subpool if there are not
3117          */
3118         ret = hugetlb_acct_memory(h, chg);
3119         if (ret < 0) {
3120                 hugepage_subpool_put_pages(spool, chg);
3121                 goto out_err;
3122         }
3123
3124         /*
3125          * Account for the reservations made. Shared mappings record regions
3126          * that have reservations as they are shared by multiple VMAs.
3127          * When the last VMA disappears, the region map says how much
3128          * the reservation was and the page cache tells how much of
3129          * the reservation was consumed. Private mappings are per-VMA and
3130          * only the consumed reservations are tracked. When the VMA
3131          * disappears, the original reservation is the VMA size and the
3132          * consumed reservations are stored in the map. Hence, nothing
3133          * else has to be done for private mappings here
3134          */
3135         if (!vma || vma->vm_flags & VM_MAYSHARE)
3136                 region_add(&inode->i_mapping->private_list, from, to);
3137         return 0;
3138 out_err:
3139         if (vma)
3140                 resv_map_put(vma);
3141         return ret;
3142 }
3143
3144 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3145 {
3146         struct hstate *h = hstate_inode(inode);
3147         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3148         struct hugepage_subpool *spool = subpool_inode(inode);
3149
3150         spin_lock(&inode->i_lock);
3151         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3152         spin_unlock(&inode->i_lock);
3153
3154         hugepage_subpool_put_pages(spool, (chg - freed));
3155         hugetlb_acct_memory(h, -(chg - freed));
3156 }
3157
3158 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3159 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3160                                 struct vm_area_struct *vma,
3161                                 unsigned long addr, pgoff_t idx)
3162 {
3163         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3164                                 svma->vm_start;
3165         unsigned long sbase = saddr & PUD_MASK;
3166         unsigned long s_end = sbase + PUD_SIZE;
3167
3168         /* Allow segments to share if only one is marked locked */
3169         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3170         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3171
3172         /*
3173          * match the virtual addresses, permission and the alignment of the
3174          * page table page.
3175          */
3176         if (pmd_index(addr) != pmd_index(saddr) ||
3177             vm_flags != svm_flags ||
3178             sbase < svma->vm_start || svma->vm_end < s_end)
3179                 return 0;
3180
3181         return saddr;
3182 }
3183
3184 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3185 {
3186         unsigned long base = addr & PUD_MASK;
3187         unsigned long end = base + PUD_SIZE;
3188
3189         /*
3190          * check on proper vm_flags and page table alignment
3191          */
3192         if (vma->vm_flags & VM_MAYSHARE &&
3193             vma->vm_start <= base && end <= vma->vm_end)
3194                 return 1;
3195         return 0;
3196 }
3197
3198 /*
3199  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3200  * and returns the corresponding pte. While this is not necessary for the
3201  * !shared pmd case because we can allocate the pmd later as well, it makes the
3202  * code much cleaner. pmd allocation is essential for the shared case because
3203  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3204  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3205  * bad pmd for sharing.
3206  */
3207 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3208 {
3209         struct vm_area_struct *vma = find_vma(mm, addr);
3210         struct address_space *mapping = vma->vm_file->f_mapping;
3211         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3212                         vma->vm_pgoff;
3213         struct vm_area_struct *svma;
3214         unsigned long saddr;
3215         pte_t *spte = NULL;
3216         pte_t *pte;
3217
3218         if (!vma_shareable(vma, addr))
3219                 return (pte_t *)pmd_alloc(mm, pud, addr);
3220
3221         mutex_lock(&mapping->i_mmap_mutex);
3222         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3223                 if (svma == vma)
3224                         continue;
3225
3226                 saddr = page_table_shareable(svma, vma, addr, idx);
3227                 if (saddr) {
3228                         spte = huge_pte_offset(svma->vm_mm, saddr);
3229                         if (spte) {
3230                                 get_page(virt_to_page(spte));
3231                                 break;
3232                         }
3233                 }
3234         }
3235
3236         if (!spte)
3237                 goto out;
3238
3239         spin_lock(&mm->page_table_lock);
3240         if (pud_none(*pud))
3241                 pud_populate(mm, pud,
3242                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3243         else
3244                 put_page(virt_to_page(spte));
3245         spin_unlock(&mm->page_table_lock);
3246 out:
3247         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3248         mutex_unlock(&mapping->i_mmap_mutex);
3249         return pte;
3250 }
3251
3252 /*
3253  * unmap huge page backed by shared pte.
3254  *
3255  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3256  * indicated by page_count > 1, unmap is achieved by clearing pud and
3257  * decrementing the ref count. If count == 1, the pte page is not shared.
3258  *
3259  * called with vma->vm_mm->page_table_lock held.
3260  *
3261  * returns: 1 successfully unmapped a shared pte page
3262  *          0 the underlying pte page is not shared, or it is the last user
3263  */
3264 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3265 {
3266         pgd_t *pgd = pgd_offset(mm, *addr);
3267         pud_t *pud = pud_offset(pgd, *addr);
3268
3269         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3270         if (page_count(virt_to_page(ptep)) == 1)
3271                 return 0;
3272
3273         pud_clear(pud);
3274         put_page(virt_to_page(ptep));
3275         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3276         return 1;
3277 }
3278 #define want_pmd_share()        (1)
3279 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3280 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3281 {
3282         return NULL;
3283 }
3284 #define want_pmd_share()        (0)
3285 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3286
3287 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3288 pte_t *huge_pte_alloc(struct mm_struct *mm,
3289                         unsigned long addr, unsigned long sz)
3290 {
3291         pgd_t *pgd;
3292         pud_t *pud;
3293         pte_t *pte = NULL;
3294
3295         pgd = pgd_offset(mm, addr);
3296         pud = pud_alloc(mm, pgd, addr);
3297         if (pud) {
3298                 if (sz == PUD_SIZE) {
3299                         pte = (pte_t *)pud;
3300                 } else {
3301                         BUG_ON(sz != PMD_SIZE);
3302                         if (want_pmd_share() && pud_none(*pud))
3303                                 pte = huge_pmd_share(mm, addr, pud);
3304                         else
3305                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3306                 }
3307         }
3308         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3309
3310         return pte;
3311 }
3312
3313 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3314 {
3315         pgd_t *pgd;
3316         pud_t *pud;
3317         pmd_t *pmd = NULL;
3318
3319         pgd = pgd_offset(mm, addr);
3320         if (pgd_present(*pgd)) {
3321                 pud = pud_offset(pgd, addr);
3322                 if (pud_present(*pud)) {
3323                         if (pud_huge(*pud))
3324                                 return (pte_t *)pud;
3325                         pmd = pmd_offset(pud, addr);
3326                 }
3327         }
3328         return (pte_t *) pmd;
3329 }
3330
3331 struct page *
3332 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3333                 pmd_t *pmd, int write)
3334 {
3335         struct page *page;
3336
3337         page = pte_page(*(pte_t *)pmd);
3338         if (page)
3339                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3340         return page;
3341 }
3342
3343 struct page *
3344 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3345                 pud_t *pud, int write)
3346 {
3347         struct page *page;
3348
3349         page = pte_page(*(pte_t *)pud);
3350         if (page)
3351                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3352         return page;
3353 }
3354
3355 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3356
3357 /* Can be overriden by architectures */
3358 __attribute__((weak)) struct page *
3359 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3360                pud_t *pud, int write)
3361 {
3362         BUG();
3363         return NULL;
3364 }
3365
3366 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3367
3368 #ifdef CONFIG_MEMORY_FAILURE
3369
3370 /* Should be called in hugetlb_lock */
3371 static int is_hugepage_on_freelist(struct page *hpage)
3372 {
3373         struct page *page;
3374         struct page *tmp;
3375         struct hstate *h = page_hstate(hpage);
3376         int nid = page_to_nid(hpage);
3377
3378         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3379                 if (page == hpage)
3380                         return 1;
3381         return 0;
3382 }
3383
3384 /*
3385  * This function is called from memory failure code.
3386  * Assume the caller holds page lock of the head page.
3387  */
3388 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3389 {
3390         struct hstate *h = page_hstate(hpage);
3391         int nid = page_to_nid(hpage);
3392         int ret = -EBUSY;
3393
3394         spin_lock(&hugetlb_lock);
3395         if (is_hugepage_on_freelist(hpage)) {
3396                 /*
3397                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3398                  * but dangling hpage->lru can trigger list-debug warnings
3399                  * (this happens when we call unpoison_memory() on it),
3400                  * so let it point to itself with list_del_init().
3401                  */
3402                 list_del_init(&hpage->lru);
3403                 set_page_refcounted(hpage);
3404                 h->free_huge_pages--;
3405                 h->free_huge_pages_node[nid]--;
3406                 ret = 0;
3407         }
3408         spin_unlock(&hugetlb_lock);
3409         return ret;
3410 }
3411 #endif