2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
27 #include <asm/pgtable.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 __initdata LIST_HEAD(huge_boot_pages);
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
76 spin_lock_init(&spool->lock);
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
106 spin_unlock(&spool->lock);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(file_inode(vma->vm_file));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg -= rg->to - rg->from;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
248 if (&rg->link == head)
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
262 chg += rg->to - rg->from;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
321 hstate = hstate_vma(vma);
323 return 1UL << huge_page_shift(hstate);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
376 vma->vm_private_data = (void *)value;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
449 if (vma->vm_flags & VM_NORESERVE) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
470 * Only the process that called mmap() has reserves for
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
481 int nid = page_to_nid(page);
482 list_move(&page->lru, &h->hugepage_freelists[nid]);
483 h->free_huge_pages++;
484 h->free_huge_pages_node[nid]++;
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 if (!is_migrate_isolate_page(page))
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
498 if (&h->hugepage_freelists[nid] == &page->lru)
500 list_move(&page->lru, &h->hugepage_activelist);
501 set_page_refcounted(page);
502 h->free_huge_pages--;
503 h->free_huge_pages_node[nid]--;
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
510 if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 return GFP_HIGHUSER_MOVABLE;
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517 struct vm_area_struct *vma,
518 unsigned long address, int avoid_reserve,
521 struct page *page = NULL;
522 struct mempolicy *mpol;
523 nodemask_t *nodemask;
524 struct zonelist *zonelist;
527 unsigned int cpuset_mems_cookie;
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
534 if (!vma_has_reserves(vma, chg) &&
535 h->free_huge_pages - h->resv_huge_pages == 0)
538 /* If reserves cannot be used, ensure enough pages are in the pool */
539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
543 cpuset_mems_cookie = get_mems_allowed();
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask(h), &mpol, &nodemask);
547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 MAX_NR_ZONES - 1, nodemask) {
549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 page = dequeue_huge_page_node(h, zone_to_nid(zone));
554 if (!vma_has_reserves(vma, chg))
557 SetPagePrivate(page);
558 h->resv_huge_pages--;
565 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 static void update_and_free_page(struct hstate *h, struct page *page)
577 VM_BUG_ON(h->order >= MAX_ORDER);
580 h->nr_huge_pages_node[page_to_nid(page)]--;
581 for (i = 0; i < pages_per_huge_page(h); i++) {
582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 1 << PG_referenced | 1 << PG_dirty |
584 1 << PG_active | 1 << PG_reserved |
585 1 << PG_private | 1 << PG_writeback);
587 VM_BUG_ON(hugetlb_cgroup_from_page(page));
588 set_compound_page_dtor(page, NULL);
589 set_page_refcounted(page);
590 arch_release_hugepage(page);
591 __free_pages(page, huge_page_order(h));
594 struct hstate *size_to_hstate(unsigned long size)
599 if (huge_page_size(h) == size)
605 static void free_huge_page(struct page *page)
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
611 struct hstate *h = page_hstate(page);
612 int nid = page_to_nid(page);
613 struct hugepage_subpool *spool =
614 (struct hugepage_subpool *)page_private(page);
615 bool restore_reserve;
617 set_page_private(page, 0);
618 page->mapping = NULL;
619 BUG_ON(page_count(page));
620 BUG_ON(page_mapcount(page));
621 restore_reserve = PagePrivate(page);
622 ClearPagePrivate(page);
624 spin_lock(&hugetlb_lock);
625 hugetlb_cgroup_uncharge_page(hstate_index(h),
626 pages_per_huge_page(h), page);
628 h->resv_huge_pages++;
630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 /* remove the page from active list */
632 list_del(&page->lru);
633 update_and_free_page(h, page);
634 h->surplus_huge_pages--;
635 h->surplus_huge_pages_node[nid]--;
637 arch_clear_hugepage_flags(page);
638 enqueue_huge_page(h, page);
640 spin_unlock(&hugetlb_lock);
641 hugepage_subpool_put_pages(spool, 1);
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
646 INIT_LIST_HEAD(&page->lru);
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
649 set_hugetlb_cgroup(page, NULL);
651 h->nr_huge_pages_node[nid]++;
652 spin_unlock(&hugetlb_lock);
653 put_page(page); /* free it into the hugepage allocator */
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 int nr_pages = 1 << order;
660 struct page *p = page + 1;
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page, order);
665 __ClearPageReserved(page);
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
680 __ClearPageReserved(p);
681 set_page_count(p, 0);
682 p->first_page = page;
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
691 int PageHuge(struct page *page)
693 if (!PageCompound(page))
696 page = compound_head(page);
697 return get_compound_page_dtor(page) == free_huge_page;
699 EXPORT_SYMBOL_GPL(PageHuge);
702 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703 * normal or transparent huge pages.
705 int PageHeadHuge(struct page *page_head)
707 if (!PageHead(page_head))
710 return get_compound_page_dtor(page_head) == free_huge_page;
713 pgoff_t __basepage_index(struct page *page)
715 struct page *page_head = compound_head(page);
716 pgoff_t index = page_index(page_head);
717 unsigned long compound_idx;
719 if (!PageHuge(page_head))
720 return page_index(page);
722 if (compound_order(page_head) >= MAX_ORDER)
723 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
725 compound_idx = page - page_head;
727 return (index << compound_order(page_head)) + compound_idx;
730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
734 if (h->order >= MAX_ORDER)
737 page = alloc_pages_exact_node(nid,
738 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739 __GFP_REPEAT|__GFP_NOWARN,
742 if (arch_prepare_hugepage(page)) {
743 __free_pages(page, huge_page_order(h));
746 prep_new_huge_page(h, page, nid);
753 * common helper functions for hstate_next_node_to_{alloc|free}.
754 * We may have allocated or freed a huge page based on a different
755 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756 * be outside of *nodes_allowed. Ensure that we use an allowed
757 * node for alloc or free.
759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
761 nid = next_node(nid, *nodes_allowed);
762 if (nid == MAX_NUMNODES)
763 nid = first_node(*nodes_allowed);
764 VM_BUG_ON(nid >= MAX_NUMNODES);
769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
771 if (!node_isset(nid, *nodes_allowed))
772 nid = next_node_allowed(nid, nodes_allowed);
777 * returns the previously saved node ["this node"] from which to
778 * allocate a persistent huge page for the pool and advance the
779 * next node from which to allocate, handling wrap at end of node
782 static int hstate_next_node_to_alloc(struct hstate *h,
783 nodemask_t *nodes_allowed)
787 VM_BUG_ON(!nodes_allowed);
789 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
796 * helper for free_pool_huge_page() - return the previously saved
797 * node ["this node"] from which to free a huge page. Advance the
798 * next node id whether or not we find a free huge page to free so
799 * that the next attempt to free addresses the next node.
801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
805 VM_BUG_ON(!nodes_allowed);
807 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
814 for (nr_nodes = nodes_weight(*mask); \
816 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
820 for (nr_nodes = nodes_weight(*mask); \
822 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
831 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832 page = alloc_fresh_huge_page_node(h, node);
840 count_vm_event(HTLB_BUDDY_PGALLOC);
842 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
848 * Free huge page from pool from next node to free.
849 * Attempt to keep persistent huge pages more or less
850 * balanced over allowed nodes.
851 * Called with hugetlb_lock locked.
853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
859 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
861 * If we're returning unused surplus pages, only examine
862 * nodes with surplus pages.
864 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865 !list_empty(&h->hugepage_freelists[node])) {
867 list_entry(h->hugepage_freelists[node].next,
869 list_del(&page->lru);
870 h->free_huge_pages--;
871 h->free_huge_pages_node[node]--;
873 h->surplus_huge_pages--;
874 h->surplus_huge_pages_node[node]--;
876 update_and_free_page(h, page);
886 * Dissolve a given free hugepage into free buddy pages. This function does
887 * nothing for in-use (including surplus) hugepages.
889 static void dissolve_free_huge_page(struct page *page)
891 spin_lock(&hugetlb_lock);
892 if (PageHuge(page) && !page_count(page)) {
893 struct hstate *h = page_hstate(page);
894 int nid = page_to_nid(page);
895 list_del(&page->lru);
896 h->free_huge_pages--;
897 h->free_huge_pages_node[nid]--;
898 update_and_free_page(h, page);
900 spin_unlock(&hugetlb_lock);
904 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905 * make specified memory blocks removable from the system.
906 * Note that start_pfn should aligned with (minimum) hugepage size.
908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
910 unsigned int order = 8 * sizeof(void *);
914 /* Set scan step to minimum hugepage size */
916 if (order > huge_page_order(h))
917 order = huge_page_order(h);
918 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920 dissolve_free_huge_page(pfn_to_page(pfn));
923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
928 if (h->order >= MAX_ORDER)
932 * Assume we will successfully allocate the surplus page to
933 * prevent racing processes from causing the surplus to exceed
936 * This however introduces a different race, where a process B
937 * tries to grow the static hugepage pool while alloc_pages() is
938 * called by process A. B will only examine the per-node
939 * counters in determining if surplus huge pages can be
940 * converted to normal huge pages in adjust_pool_surplus(). A
941 * won't be able to increment the per-node counter, until the
942 * lock is dropped by B, but B doesn't drop hugetlb_lock until
943 * no more huge pages can be converted from surplus to normal
944 * state (and doesn't try to convert again). Thus, we have a
945 * case where a surplus huge page exists, the pool is grown, and
946 * the surplus huge page still exists after, even though it
947 * should just have been converted to a normal huge page. This
948 * does not leak memory, though, as the hugepage will be freed
949 * once it is out of use. It also does not allow the counters to
950 * go out of whack in adjust_pool_surplus() as we don't modify
951 * the node values until we've gotten the hugepage and only the
952 * per-node value is checked there.
954 spin_lock(&hugetlb_lock);
955 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956 spin_unlock(&hugetlb_lock);
960 h->surplus_huge_pages++;
962 spin_unlock(&hugetlb_lock);
964 if (nid == NUMA_NO_NODE)
965 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966 __GFP_REPEAT|__GFP_NOWARN,
969 page = alloc_pages_exact_node(nid,
970 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
973 if (page && arch_prepare_hugepage(page)) {
974 __free_pages(page, huge_page_order(h));
978 spin_lock(&hugetlb_lock);
980 INIT_LIST_HEAD(&page->lru);
981 r_nid = page_to_nid(page);
982 set_compound_page_dtor(page, free_huge_page);
983 set_hugetlb_cgroup(page, NULL);
985 * We incremented the global counters already
987 h->nr_huge_pages_node[r_nid]++;
988 h->surplus_huge_pages_node[r_nid]++;
989 __count_vm_event(HTLB_BUDDY_PGALLOC);
992 h->surplus_huge_pages--;
993 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
995 spin_unlock(&hugetlb_lock);
1001 * This allocation function is useful in the context where vma is irrelevant.
1002 * E.g. soft-offlining uses this function because it only cares physical
1003 * address of error page.
1005 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1007 struct page *page = NULL;
1009 spin_lock(&hugetlb_lock);
1010 if (h->free_huge_pages - h->resv_huge_pages > 0)
1011 page = dequeue_huge_page_node(h, nid);
1012 spin_unlock(&hugetlb_lock);
1015 page = alloc_buddy_huge_page(h, nid);
1021 * Increase the hugetlb pool such that it can accommodate a reservation
1024 static int gather_surplus_pages(struct hstate *h, int delta)
1026 struct list_head surplus_list;
1027 struct page *page, *tmp;
1029 int needed, allocated;
1030 bool alloc_ok = true;
1032 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1034 h->resv_huge_pages += delta;
1039 INIT_LIST_HEAD(&surplus_list);
1043 spin_unlock(&hugetlb_lock);
1044 for (i = 0; i < needed; i++) {
1045 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1050 list_add(&page->lru, &surplus_list);
1055 * After retaking hugetlb_lock, we need to recalculate 'needed'
1056 * because either resv_huge_pages or free_huge_pages may have changed.
1058 spin_lock(&hugetlb_lock);
1059 needed = (h->resv_huge_pages + delta) -
1060 (h->free_huge_pages + allocated);
1065 * We were not able to allocate enough pages to
1066 * satisfy the entire reservation so we free what
1067 * we've allocated so far.
1072 * The surplus_list now contains _at_least_ the number of extra pages
1073 * needed to accommodate the reservation. Add the appropriate number
1074 * of pages to the hugetlb pool and free the extras back to the buddy
1075 * allocator. Commit the entire reservation here to prevent another
1076 * process from stealing the pages as they are added to the pool but
1077 * before they are reserved.
1079 needed += allocated;
1080 h->resv_huge_pages += delta;
1083 /* Free the needed pages to the hugetlb pool */
1084 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1088 * This page is now managed by the hugetlb allocator and has
1089 * no users -- drop the buddy allocator's reference.
1091 put_page_testzero(page);
1092 VM_BUG_ON(page_count(page));
1093 enqueue_huge_page(h, page);
1096 spin_unlock(&hugetlb_lock);
1098 /* Free unnecessary surplus pages to the buddy allocator */
1099 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1101 spin_lock(&hugetlb_lock);
1107 * When releasing a hugetlb pool reservation, any surplus pages that were
1108 * allocated to satisfy the reservation must be explicitly freed if they were
1110 * Called with hugetlb_lock held.
1112 static void return_unused_surplus_pages(struct hstate *h,
1113 unsigned long unused_resv_pages)
1115 unsigned long nr_pages;
1117 /* Uncommit the reservation */
1118 h->resv_huge_pages -= unused_resv_pages;
1120 /* Cannot return gigantic pages currently */
1121 if (h->order >= MAX_ORDER)
1124 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1127 * We want to release as many surplus pages as possible, spread
1128 * evenly across all nodes with memory. Iterate across these nodes
1129 * until we can no longer free unreserved surplus pages. This occurs
1130 * when the nodes with surplus pages have no free pages.
1131 * free_pool_huge_page() will balance the the freed pages across the
1132 * on-line nodes with memory and will handle the hstate accounting.
1134 while (nr_pages--) {
1135 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1141 * Determine if the huge page at addr within the vma has an associated
1142 * reservation. Where it does not we will need to logically increase
1143 * reservation and actually increase subpool usage before an allocation
1144 * can occur. Where any new reservation would be required the
1145 * reservation change is prepared, but not committed. Once the page
1146 * has been allocated from the subpool and instantiated the change should
1147 * be committed via vma_commit_reservation. No action is required on
1150 static long vma_needs_reservation(struct hstate *h,
1151 struct vm_area_struct *vma, unsigned long addr)
1153 struct address_space *mapping = vma->vm_file->f_mapping;
1154 struct inode *inode = mapping->host;
1156 if (vma->vm_flags & VM_MAYSHARE) {
1157 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1158 return region_chg(&inode->i_mapping->private_list,
1161 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1166 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167 struct resv_map *resv = vma_resv_map(vma);
1169 err = region_chg(&resv->regions, idx, idx + 1);
1175 static void vma_commit_reservation(struct hstate *h,
1176 struct vm_area_struct *vma, unsigned long addr)
1178 struct address_space *mapping = vma->vm_file->f_mapping;
1179 struct inode *inode = mapping->host;
1181 if (vma->vm_flags & VM_MAYSHARE) {
1182 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1185 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1186 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1187 struct resv_map *resv = vma_resv_map(vma);
1189 /* Mark this page used in the map. */
1190 region_add(&resv->regions, idx, idx + 1);
1194 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1195 unsigned long addr, int avoid_reserve)
1197 struct hugepage_subpool *spool = subpool_vma(vma);
1198 struct hstate *h = hstate_vma(vma);
1202 struct hugetlb_cgroup *h_cg;
1204 idx = hstate_index(h);
1206 * Processes that did not create the mapping will have no
1207 * reserves and will not have accounted against subpool
1208 * limit. Check that the subpool limit can be made before
1209 * satisfying the allocation MAP_NORESERVE mappings may also
1210 * need pages and subpool limit allocated allocated if no reserve
1213 chg = vma_needs_reservation(h, vma, addr);
1215 return ERR_PTR(-ENOMEM);
1216 if (chg || avoid_reserve)
1217 if (hugepage_subpool_get_pages(spool, 1))
1218 return ERR_PTR(-ENOSPC);
1220 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222 if (chg || avoid_reserve)
1223 hugepage_subpool_put_pages(spool, 1);
1224 return ERR_PTR(-ENOSPC);
1226 spin_lock(&hugetlb_lock);
1227 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1229 spin_unlock(&hugetlb_lock);
1230 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1232 hugetlb_cgroup_uncharge_cgroup(idx,
1233 pages_per_huge_page(h),
1235 if (chg || avoid_reserve)
1236 hugepage_subpool_put_pages(spool, 1);
1237 return ERR_PTR(-ENOSPC);
1239 spin_lock(&hugetlb_lock);
1240 list_move(&page->lru, &h->hugepage_activelist);
1243 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1244 spin_unlock(&hugetlb_lock);
1246 set_page_private(page, (unsigned long)spool);
1248 vma_commit_reservation(h, vma, addr);
1253 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1254 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1255 * where no ERR_VALUE is expected to be returned.
1257 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1258 unsigned long addr, int avoid_reserve)
1260 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1266 int __weak alloc_bootmem_huge_page(struct hstate *h)
1268 struct huge_bootmem_page *m;
1271 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1274 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1275 huge_page_size(h), huge_page_size(h), 0);
1279 * Use the beginning of the huge page to store the
1280 * huge_bootmem_page struct (until gather_bootmem
1281 * puts them into the mem_map).
1290 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1291 /* Put them into a private list first because mem_map is not up yet */
1292 list_add(&m->list, &huge_boot_pages);
1297 static void prep_compound_huge_page(struct page *page, int order)
1299 if (unlikely(order > (MAX_ORDER - 1)))
1300 prep_compound_gigantic_page(page, order);
1302 prep_compound_page(page, order);
1305 /* Put bootmem huge pages into the standard lists after mem_map is up */
1306 static void __init gather_bootmem_prealloc(void)
1308 struct huge_bootmem_page *m;
1310 list_for_each_entry(m, &huge_boot_pages, list) {
1311 struct hstate *h = m->hstate;
1314 #ifdef CONFIG_HIGHMEM
1315 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1316 free_bootmem_late((unsigned long)m,
1317 sizeof(struct huge_bootmem_page));
1319 page = virt_to_page(m);
1321 WARN_ON(page_count(page) != 1);
1322 prep_compound_huge_page(page, h->order);
1323 WARN_ON(PageReserved(page));
1324 prep_new_huge_page(h, page, page_to_nid(page));
1326 * If we had gigantic hugepages allocated at boot time, we need
1327 * to restore the 'stolen' pages to totalram_pages in order to
1328 * fix confusing memory reports from free(1) and another
1329 * side-effects, like CommitLimit going negative.
1331 if (h->order > (MAX_ORDER - 1))
1332 adjust_managed_page_count(page, 1 << h->order);
1336 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1340 for (i = 0; i < h->max_huge_pages; ++i) {
1341 if (h->order >= MAX_ORDER) {
1342 if (!alloc_bootmem_huge_page(h))
1344 } else if (!alloc_fresh_huge_page(h,
1345 &node_states[N_MEMORY]))
1348 h->max_huge_pages = i;
1351 static void __init hugetlb_init_hstates(void)
1355 for_each_hstate(h) {
1356 /* oversize hugepages were init'ed in early boot */
1357 if (h->order < MAX_ORDER)
1358 hugetlb_hstate_alloc_pages(h);
1362 static char * __init memfmt(char *buf, unsigned long n)
1364 if (n >= (1UL << 30))
1365 sprintf(buf, "%lu GB", n >> 30);
1366 else if (n >= (1UL << 20))
1367 sprintf(buf, "%lu MB", n >> 20);
1369 sprintf(buf, "%lu KB", n >> 10);
1373 static void __init report_hugepages(void)
1377 for_each_hstate(h) {
1379 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1380 memfmt(buf, huge_page_size(h)),
1381 h->free_huge_pages);
1385 #ifdef CONFIG_HIGHMEM
1386 static void try_to_free_low(struct hstate *h, unsigned long count,
1387 nodemask_t *nodes_allowed)
1391 if (h->order >= MAX_ORDER)
1394 for_each_node_mask(i, *nodes_allowed) {
1395 struct page *page, *next;
1396 struct list_head *freel = &h->hugepage_freelists[i];
1397 list_for_each_entry_safe(page, next, freel, lru) {
1398 if (count >= h->nr_huge_pages)
1400 if (PageHighMem(page))
1402 list_del(&page->lru);
1403 update_and_free_page(h, page);
1404 h->free_huge_pages--;
1405 h->free_huge_pages_node[page_to_nid(page)]--;
1410 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1411 nodemask_t *nodes_allowed)
1417 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1418 * balanced by operating on them in a round-robin fashion.
1419 * Returns 1 if an adjustment was made.
1421 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1426 VM_BUG_ON(delta != -1 && delta != 1);
1429 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430 if (h->surplus_huge_pages_node[node])
1434 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1435 if (h->surplus_huge_pages_node[node] <
1436 h->nr_huge_pages_node[node])
1443 h->surplus_huge_pages += delta;
1444 h->surplus_huge_pages_node[node] += delta;
1448 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1450 nodemask_t *nodes_allowed)
1452 unsigned long min_count, ret;
1454 if (h->order >= MAX_ORDER)
1455 return h->max_huge_pages;
1458 * Increase the pool size
1459 * First take pages out of surplus state. Then make up the
1460 * remaining difference by allocating fresh huge pages.
1462 * We might race with alloc_buddy_huge_page() here and be unable
1463 * to convert a surplus huge page to a normal huge page. That is
1464 * not critical, though, it just means the overall size of the
1465 * pool might be one hugepage larger than it needs to be, but
1466 * within all the constraints specified by the sysctls.
1468 spin_lock(&hugetlb_lock);
1469 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1470 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1474 while (count > persistent_huge_pages(h)) {
1476 * If this allocation races such that we no longer need the
1477 * page, free_huge_page will handle it by freeing the page
1478 * and reducing the surplus.
1480 spin_unlock(&hugetlb_lock);
1481 ret = alloc_fresh_huge_page(h, nodes_allowed);
1482 spin_lock(&hugetlb_lock);
1486 /* Bail for signals. Probably ctrl-c from user */
1487 if (signal_pending(current))
1492 * Decrease the pool size
1493 * First return free pages to the buddy allocator (being careful
1494 * to keep enough around to satisfy reservations). Then place
1495 * pages into surplus state as needed so the pool will shrink
1496 * to the desired size as pages become free.
1498 * By placing pages into the surplus state independent of the
1499 * overcommit value, we are allowing the surplus pool size to
1500 * exceed overcommit. There are few sane options here. Since
1501 * alloc_buddy_huge_page() is checking the global counter,
1502 * though, we'll note that we're not allowed to exceed surplus
1503 * and won't grow the pool anywhere else. Not until one of the
1504 * sysctls are changed, or the surplus pages go out of use.
1506 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1507 min_count = max(count, min_count);
1508 try_to_free_low(h, min_count, nodes_allowed);
1509 while (min_count < persistent_huge_pages(h)) {
1510 if (!free_pool_huge_page(h, nodes_allowed, 0))
1513 while (count < persistent_huge_pages(h)) {
1514 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1518 ret = persistent_huge_pages(h);
1519 spin_unlock(&hugetlb_lock);
1523 #define HSTATE_ATTR_RO(_name) \
1524 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1526 #define HSTATE_ATTR(_name) \
1527 static struct kobj_attribute _name##_attr = \
1528 __ATTR(_name, 0644, _name##_show, _name##_store)
1530 static struct kobject *hugepages_kobj;
1531 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1533 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1535 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1539 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1540 if (hstate_kobjs[i] == kobj) {
1542 *nidp = NUMA_NO_NODE;
1546 return kobj_to_node_hstate(kobj, nidp);
1549 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1550 struct kobj_attribute *attr, char *buf)
1553 unsigned long nr_huge_pages;
1556 h = kobj_to_hstate(kobj, &nid);
1557 if (nid == NUMA_NO_NODE)
1558 nr_huge_pages = h->nr_huge_pages;
1560 nr_huge_pages = h->nr_huge_pages_node[nid];
1562 return sprintf(buf, "%lu\n", nr_huge_pages);
1565 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1566 struct kobject *kobj, struct kobj_attribute *attr,
1567 const char *buf, size_t len)
1571 unsigned long count;
1573 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1575 err = kstrtoul(buf, 10, &count);
1579 h = kobj_to_hstate(kobj, &nid);
1580 if (h->order >= MAX_ORDER) {
1585 if (nid == NUMA_NO_NODE) {
1587 * global hstate attribute
1589 if (!(obey_mempolicy &&
1590 init_nodemask_of_mempolicy(nodes_allowed))) {
1591 NODEMASK_FREE(nodes_allowed);
1592 nodes_allowed = &node_states[N_MEMORY];
1594 } else if (nodes_allowed) {
1596 * per node hstate attribute: adjust count to global,
1597 * but restrict alloc/free to the specified node.
1599 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1600 init_nodemask_of_node(nodes_allowed, nid);
1602 nodes_allowed = &node_states[N_MEMORY];
1604 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1606 if (nodes_allowed != &node_states[N_MEMORY])
1607 NODEMASK_FREE(nodes_allowed);
1611 NODEMASK_FREE(nodes_allowed);
1615 static ssize_t nr_hugepages_show(struct kobject *kobj,
1616 struct kobj_attribute *attr, char *buf)
1618 return nr_hugepages_show_common(kobj, attr, buf);
1621 static ssize_t nr_hugepages_store(struct kobject *kobj,
1622 struct kobj_attribute *attr, const char *buf, size_t len)
1624 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1626 HSTATE_ATTR(nr_hugepages);
1631 * hstate attribute for optionally mempolicy-based constraint on persistent
1632 * huge page alloc/free.
1634 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1635 struct kobj_attribute *attr, char *buf)
1637 return nr_hugepages_show_common(kobj, attr, buf);
1640 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1641 struct kobj_attribute *attr, const char *buf, size_t len)
1643 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1645 HSTATE_ATTR(nr_hugepages_mempolicy);
1649 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1650 struct kobj_attribute *attr, char *buf)
1652 struct hstate *h = kobj_to_hstate(kobj, NULL);
1653 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1656 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1657 struct kobj_attribute *attr, const char *buf, size_t count)
1660 unsigned long input;
1661 struct hstate *h = kobj_to_hstate(kobj, NULL);
1663 if (h->order >= MAX_ORDER)
1666 err = kstrtoul(buf, 10, &input);
1670 spin_lock(&hugetlb_lock);
1671 h->nr_overcommit_huge_pages = input;
1672 spin_unlock(&hugetlb_lock);
1676 HSTATE_ATTR(nr_overcommit_hugepages);
1678 static ssize_t free_hugepages_show(struct kobject *kobj,
1679 struct kobj_attribute *attr, char *buf)
1682 unsigned long free_huge_pages;
1685 h = kobj_to_hstate(kobj, &nid);
1686 if (nid == NUMA_NO_NODE)
1687 free_huge_pages = h->free_huge_pages;
1689 free_huge_pages = h->free_huge_pages_node[nid];
1691 return sprintf(buf, "%lu\n", free_huge_pages);
1693 HSTATE_ATTR_RO(free_hugepages);
1695 static ssize_t resv_hugepages_show(struct kobject *kobj,
1696 struct kobj_attribute *attr, char *buf)
1698 struct hstate *h = kobj_to_hstate(kobj, NULL);
1699 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1701 HSTATE_ATTR_RO(resv_hugepages);
1703 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1704 struct kobj_attribute *attr, char *buf)
1707 unsigned long surplus_huge_pages;
1710 h = kobj_to_hstate(kobj, &nid);
1711 if (nid == NUMA_NO_NODE)
1712 surplus_huge_pages = h->surplus_huge_pages;
1714 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1716 return sprintf(buf, "%lu\n", surplus_huge_pages);
1718 HSTATE_ATTR_RO(surplus_hugepages);
1720 static struct attribute *hstate_attrs[] = {
1721 &nr_hugepages_attr.attr,
1722 &nr_overcommit_hugepages_attr.attr,
1723 &free_hugepages_attr.attr,
1724 &resv_hugepages_attr.attr,
1725 &surplus_hugepages_attr.attr,
1727 &nr_hugepages_mempolicy_attr.attr,
1732 static struct attribute_group hstate_attr_group = {
1733 .attrs = hstate_attrs,
1736 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1737 struct kobject **hstate_kobjs,
1738 struct attribute_group *hstate_attr_group)
1741 int hi = hstate_index(h);
1743 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1744 if (!hstate_kobjs[hi])
1747 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1749 kobject_put(hstate_kobjs[hi]);
1754 static void __init hugetlb_sysfs_init(void)
1759 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1760 if (!hugepages_kobj)
1763 for_each_hstate(h) {
1764 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1765 hstate_kobjs, &hstate_attr_group);
1767 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1774 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1775 * with node devices in node_devices[] using a parallel array. The array
1776 * index of a node device or _hstate == node id.
1777 * This is here to avoid any static dependency of the node device driver, in
1778 * the base kernel, on the hugetlb module.
1780 struct node_hstate {
1781 struct kobject *hugepages_kobj;
1782 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1784 struct node_hstate node_hstates[MAX_NUMNODES];
1787 * A subset of global hstate attributes for node devices
1789 static struct attribute *per_node_hstate_attrs[] = {
1790 &nr_hugepages_attr.attr,
1791 &free_hugepages_attr.attr,
1792 &surplus_hugepages_attr.attr,
1796 static struct attribute_group per_node_hstate_attr_group = {
1797 .attrs = per_node_hstate_attrs,
1801 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1802 * Returns node id via non-NULL nidp.
1804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1808 for (nid = 0; nid < nr_node_ids; nid++) {
1809 struct node_hstate *nhs = &node_hstates[nid];
1811 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1812 if (nhs->hstate_kobjs[i] == kobj) {
1824 * Unregister hstate attributes from a single node device.
1825 * No-op if no hstate attributes attached.
1827 static void hugetlb_unregister_node(struct node *node)
1830 struct node_hstate *nhs = &node_hstates[node->dev.id];
1832 if (!nhs->hugepages_kobj)
1833 return; /* no hstate attributes */
1835 for_each_hstate(h) {
1836 int idx = hstate_index(h);
1837 if (nhs->hstate_kobjs[idx]) {
1838 kobject_put(nhs->hstate_kobjs[idx]);
1839 nhs->hstate_kobjs[idx] = NULL;
1843 kobject_put(nhs->hugepages_kobj);
1844 nhs->hugepages_kobj = NULL;
1848 * hugetlb module exit: unregister hstate attributes from node devices
1851 static void hugetlb_unregister_all_nodes(void)
1856 * disable node device registrations.
1858 register_hugetlbfs_with_node(NULL, NULL);
1861 * remove hstate attributes from any nodes that have them.
1863 for (nid = 0; nid < nr_node_ids; nid++)
1864 hugetlb_unregister_node(node_devices[nid]);
1868 * Register hstate attributes for a single node device.
1869 * No-op if attributes already registered.
1871 static void hugetlb_register_node(struct node *node)
1874 struct node_hstate *nhs = &node_hstates[node->dev.id];
1877 if (nhs->hugepages_kobj)
1878 return; /* already allocated */
1880 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1882 if (!nhs->hugepages_kobj)
1885 for_each_hstate(h) {
1886 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1888 &per_node_hstate_attr_group);
1890 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1891 h->name, node->dev.id);
1892 hugetlb_unregister_node(node);
1899 * hugetlb init time: register hstate attributes for all registered node
1900 * devices of nodes that have memory. All on-line nodes should have
1901 * registered their associated device by this time.
1903 static void hugetlb_register_all_nodes(void)
1907 for_each_node_state(nid, N_MEMORY) {
1908 struct node *node = node_devices[nid];
1909 if (node->dev.id == nid)
1910 hugetlb_register_node(node);
1914 * Let the node device driver know we're here so it can
1915 * [un]register hstate attributes on node hotplug.
1917 register_hugetlbfs_with_node(hugetlb_register_node,
1918 hugetlb_unregister_node);
1920 #else /* !CONFIG_NUMA */
1922 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1930 static void hugetlb_unregister_all_nodes(void) { }
1932 static void hugetlb_register_all_nodes(void) { }
1936 static void __exit hugetlb_exit(void)
1940 hugetlb_unregister_all_nodes();
1942 for_each_hstate(h) {
1943 kobject_put(hstate_kobjs[hstate_index(h)]);
1946 kobject_put(hugepages_kobj);
1948 module_exit(hugetlb_exit);
1950 static int __init hugetlb_init(void)
1952 /* Some platform decide whether they support huge pages at boot
1953 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1954 * there is no such support
1956 if (HPAGE_SHIFT == 0)
1959 if (!size_to_hstate(default_hstate_size)) {
1960 default_hstate_size = HPAGE_SIZE;
1961 if (!size_to_hstate(default_hstate_size))
1962 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1964 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1965 if (default_hstate_max_huge_pages)
1966 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1968 hugetlb_init_hstates();
1969 gather_bootmem_prealloc();
1972 hugetlb_sysfs_init();
1973 hugetlb_register_all_nodes();
1974 hugetlb_cgroup_file_init();
1978 module_init(hugetlb_init);
1980 /* Should be called on processing a hugepagesz=... option */
1981 void __init hugetlb_add_hstate(unsigned order)
1986 if (size_to_hstate(PAGE_SIZE << order)) {
1987 pr_warning("hugepagesz= specified twice, ignoring\n");
1990 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1992 h = &hstates[hugetlb_max_hstate++];
1994 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1995 h->nr_huge_pages = 0;
1996 h->free_huge_pages = 0;
1997 for (i = 0; i < MAX_NUMNODES; ++i)
1998 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1999 INIT_LIST_HEAD(&h->hugepage_activelist);
2000 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2001 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2002 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2003 huge_page_size(h)/1024);
2008 static int __init hugetlb_nrpages_setup(char *s)
2011 static unsigned long *last_mhp;
2014 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2015 * so this hugepages= parameter goes to the "default hstate".
2017 if (!hugetlb_max_hstate)
2018 mhp = &default_hstate_max_huge_pages;
2020 mhp = &parsed_hstate->max_huge_pages;
2022 if (mhp == last_mhp) {
2023 pr_warning("hugepages= specified twice without "
2024 "interleaving hugepagesz=, ignoring\n");
2028 if (sscanf(s, "%lu", mhp) <= 0)
2032 * Global state is always initialized later in hugetlb_init.
2033 * But we need to allocate >= MAX_ORDER hstates here early to still
2034 * use the bootmem allocator.
2036 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2037 hugetlb_hstate_alloc_pages(parsed_hstate);
2043 __setup("hugepages=", hugetlb_nrpages_setup);
2045 static int __init hugetlb_default_setup(char *s)
2047 default_hstate_size = memparse(s, &s);
2050 __setup("default_hugepagesz=", hugetlb_default_setup);
2052 static unsigned int cpuset_mems_nr(unsigned int *array)
2055 unsigned int nr = 0;
2057 for_each_node_mask(node, cpuset_current_mems_allowed)
2063 #ifdef CONFIG_SYSCTL
2064 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2065 struct ctl_table *table, int write,
2066 void __user *buffer, size_t *length, loff_t *ppos)
2068 struct hstate *h = &default_hstate;
2072 tmp = h->max_huge_pages;
2074 if (write && h->order >= MAX_ORDER)
2078 table->maxlen = sizeof(unsigned long);
2079 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2084 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2085 GFP_KERNEL | __GFP_NORETRY);
2086 if (!(obey_mempolicy &&
2087 init_nodemask_of_mempolicy(nodes_allowed))) {
2088 NODEMASK_FREE(nodes_allowed);
2089 nodes_allowed = &node_states[N_MEMORY];
2091 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2093 if (nodes_allowed != &node_states[N_MEMORY])
2094 NODEMASK_FREE(nodes_allowed);
2100 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2101 void __user *buffer, size_t *length, loff_t *ppos)
2104 return hugetlb_sysctl_handler_common(false, table, write,
2105 buffer, length, ppos);
2109 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2110 void __user *buffer, size_t *length, loff_t *ppos)
2112 return hugetlb_sysctl_handler_common(true, table, write,
2113 buffer, length, ppos);
2115 #endif /* CONFIG_NUMA */
2117 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2118 void __user *buffer,
2119 size_t *length, loff_t *ppos)
2121 struct hstate *h = &default_hstate;
2125 tmp = h->nr_overcommit_huge_pages;
2127 if (write && h->order >= MAX_ORDER)
2131 table->maxlen = sizeof(unsigned long);
2132 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2137 spin_lock(&hugetlb_lock);
2138 h->nr_overcommit_huge_pages = tmp;
2139 spin_unlock(&hugetlb_lock);
2145 #endif /* CONFIG_SYSCTL */
2147 void hugetlb_report_meminfo(struct seq_file *m)
2149 struct hstate *h = &default_hstate;
2151 "HugePages_Total: %5lu\n"
2152 "HugePages_Free: %5lu\n"
2153 "HugePages_Rsvd: %5lu\n"
2154 "HugePages_Surp: %5lu\n"
2155 "Hugepagesize: %8lu kB\n",
2159 h->surplus_huge_pages,
2160 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2163 int hugetlb_report_node_meminfo(int nid, char *buf)
2165 struct hstate *h = &default_hstate;
2167 "Node %d HugePages_Total: %5u\n"
2168 "Node %d HugePages_Free: %5u\n"
2169 "Node %d HugePages_Surp: %5u\n",
2170 nid, h->nr_huge_pages_node[nid],
2171 nid, h->free_huge_pages_node[nid],
2172 nid, h->surplus_huge_pages_node[nid]);
2175 void hugetlb_show_meminfo(void)
2180 for_each_node_state(nid, N_MEMORY)
2182 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2184 h->nr_huge_pages_node[nid],
2185 h->free_huge_pages_node[nid],
2186 h->surplus_huge_pages_node[nid],
2187 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2190 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191 unsigned long hugetlb_total_pages(void)
2194 unsigned long nr_total_pages = 0;
2197 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2198 return nr_total_pages;
2201 static int hugetlb_acct_memory(struct hstate *h, long delta)
2205 spin_lock(&hugetlb_lock);
2207 * When cpuset is configured, it breaks the strict hugetlb page
2208 * reservation as the accounting is done on a global variable. Such
2209 * reservation is completely rubbish in the presence of cpuset because
2210 * the reservation is not checked against page availability for the
2211 * current cpuset. Application can still potentially OOM'ed by kernel
2212 * with lack of free htlb page in cpuset that the task is in.
2213 * Attempt to enforce strict accounting with cpuset is almost
2214 * impossible (or too ugly) because cpuset is too fluid that
2215 * task or memory node can be dynamically moved between cpusets.
2217 * The change of semantics for shared hugetlb mapping with cpuset is
2218 * undesirable. However, in order to preserve some of the semantics,
2219 * we fall back to check against current free page availability as
2220 * a best attempt and hopefully to minimize the impact of changing
2221 * semantics that cpuset has.
2224 if (gather_surplus_pages(h, delta) < 0)
2227 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2228 return_unused_surplus_pages(h, delta);
2235 return_unused_surplus_pages(h, (unsigned long) -delta);
2238 spin_unlock(&hugetlb_lock);
2242 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2244 struct resv_map *resv = vma_resv_map(vma);
2247 * This new VMA should share its siblings reservation map if present.
2248 * The VMA will only ever have a valid reservation map pointer where
2249 * it is being copied for another still existing VMA. As that VMA
2250 * has a reference to the reservation map it cannot disappear until
2251 * after this open call completes. It is therefore safe to take a
2252 * new reference here without additional locking.
2255 kref_get(&resv->refs);
2258 static void resv_map_put(struct vm_area_struct *vma)
2260 struct resv_map *resv = vma_resv_map(vma);
2264 kref_put(&resv->refs, resv_map_release);
2267 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2269 struct hstate *h = hstate_vma(vma);
2270 struct resv_map *resv = vma_resv_map(vma);
2271 struct hugepage_subpool *spool = subpool_vma(vma);
2272 unsigned long reserve;
2273 unsigned long start;
2277 start = vma_hugecache_offset(h, vma, vma->vm_start);
2278 end = vma_hugecache_offset(h, vma, vma->vm_end);
2280 reserve = (end - start) -
2281 region_count(&resv->regions, start, end);
2286 hugetlb_acct_memory(h, -reserve);
2287 hugepage_subpool_put_pages(spool, reserve);
2293 * We cannot handle pagefaults against hugetlb pages at all. They cause
2294 * handle_mm_fault() to try to instantiate regular-sized pages in the
2295 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2298 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2304 const struct vm_operations_struct hugetlb_vm_ops = {
2305 .fault = hugetlb_vm_op_fault,
2306 .open = hugetlb_vm_op_open,
2307 .close = hugetlb_vm_op_close,
2310 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2316 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2317 vma->vm_page_prot)));
2319 entry = huge_pte_wrprotect(mk_huge_pte(page,
2320 vma->vm_page_prot));
2322 entry = pte_mkyoung(entry);
2323 entry = pte_mkhuge(entry);
2324 entry = arch_make_huge_pte(entry, vma, page, writable);
2329 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2330 unsigned long address, pte_t *ptep)
2334 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2335 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2336 update_mmu_cache(vma, address, ptep);
2340 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2341 struct vm_area_struct *vma)
2343 pte_t *src_pte, *dst_pte, entry;
2344 struct page *ptepage;
2347 struct hstate *h = hstate_vma(vma);
2348 unsigned long sz = huge_page_size(h);
2349 unsigned long mmun_start; /* For mmu_notifiers */
2350 unsigned long mmun_end; /* For mmu_notifiers */
2353 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2355 mmun_start = vma->vm_start;
2356 mmun_end = vma->vm_end;
2358 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2360 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2361 spinlock_t *src_ptl, *dst_ptl;
2362 src_pte = huge_pte_offset(src, addr);
2365 dst_pte = huge_pte_alloc(dst, addr, sz);
2371 /* If the pagetables are shared don't copy or take references */
2372 if (dst_pte == src_pte)
2375 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2376 src_ptl = huge_pte_lockptr(h, src, src_pte);
2377 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2378 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2380 huge_ptep_set_wrprotect(src, addr, src_pte);
2381 entry = huge_ptep_get(src_pte);
2382 ptepage = pte_page(entry);
2384 page_dup_rmap(ptepage);
2385 set_huge_pte_at(dst, addr, dst_pte, entry);
2387 spin_unlock(src_ptl);
2388 spin_unlock(dst_ptl);
2392 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2397 static int is_hugetlb_entry_migration(pte_t pte)
2401 if (huge_pte_none(pte) || pte_present(pte))
2403 swp = pte_to_swp_entry(pte);
2404 if (non_swap_entry(swp) && is_migration_entry(swp))
2410 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2414 if (huge_pte_none(pte) || pte_present(pte))
2416 swp = pte_to_swp_entry(pte);
2417 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2423 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2424 unsigned long start, unsigned long end,
2425 struct page *ref_page)
2427 int force_flush = 0;
2428 struct mm_struct *mm = vma->vm_mm;
2429 unsigned long address;
2434 struct hstate *h = hstate_vma(vma);
2435 unsigned long sz = huge_page_size(h);
2436 const unsigned long mmun_start = start; /* For mmu_notifiers */
2437 const unsigned long mmun_end = end; /* For mmu_notifiers */
2439 WARN_ON(!is_vm_hugetlb_page(vma));
2440 BUG_ON(start & ~huge_page_mask(h));
2441 BUG_ON(end & ~huge_page_mask(h));
2443 tlb_start_vma(tlb, vma);
2444 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2446 for (address = start; address < end; address += sz) {
2447 ptep = huge_pte_offset(mm, address);
2451 ptl = huge_pte_lock(h, mm, ptep);
2452 if (huge_pmd_unshare(mm, &address, ptep))
2455 pte = huge_ptep_get(ptep);
2456 if (huge_pte_none(pte))
2460 * HWPoisoned hugepage is already unmapped and dropped reference
2462 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2463 huge_pte_clear(mm, address, ptep);
2467 page = pte_page(pte);
2469 * If a reference page is supplied, it is because a specific
2470 * page is being unmapped, not a range. Ensure the page we
2471 * are about to unmap is the actual page of interest.
2474 if (page != ref_page)
2478 * Mark the VMA as having unmapped its page so that
2479 * future faults in this VMA will fail rather than
2480 * looking like data was lost
2482 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2485 pte = huge_ptep_get_and_clear(mm, address, ptep);
2486 tlb_remove_tlb_entry(tlb, ptep, address);
2487 if (huge_pte_dirty(pte))
2488 set_page_dirty(page);
2490 page_remove_rmap(page);
2491 force_flush = !__tlb_remove_page(tlb, page);
2496 /* Bail out after unmapping reference page if supplied */
2505 * mmu_gather ran out of room to batch pages, we break out of
2506 * the PTE lock to avoid doing the potential expensive TLB invalidate
2507 * and page-free while holding it.
2512 if (address < end && !ref_page)
2515 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2516 tlb_end_vma(tlb, vma);
2519 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2520 struct vm_area_struct *vma, unsigned long start,
2521 unsigned long end, struct page *ref_page)
2523 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2526 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2527 * test will fail on a vma being torn down, and not grab a page table
2528 * on its way out. We're lucky that the flag has such an appropriate
2529 * name, and can in fact be safely cleared here. We could clear it
2530 * before the __unmap_hugepage_range above, but all that's necessary
2531 * is to clear it before releasing the i_mmap_mutex. This works
2532 * because in the context this is called, the VMA is about to be
2533 * destroyed and the i_mmap_mutex is held.
2535 vma->vm_flags &= ~VM_MAYSHARE;
2538 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2539 unsigned long end, struct page *ref_page)
2541 struct mm_struct *mm;
2542 struct mmu_gather tlb;
2546 tlb_gather_mmu(&tlb, mm, start, end);
2547 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2548 tlb_finish_mmu(&tlb, start, end);
2552 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2553 * mappping it owns the reserve page for. The intention is to unmap the page
2554 * from other VMAs and let the children be SIGKILLed if they are faulting the
2557 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2558 struct page *page, unsigned long address)
2560 struct hstate *h = hstate_vma(vma);
2561 struct vm_area_struct *iter_vma;
2562 struct address_space *mapping;
2566 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2567 * from page cache lookup which is in HPAGE_SIZE units.
2569 address = address & huge_page_mask(h);
2570 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2572 mapping = file_inode(vma->vm_file)->i_mapping;
2575 * Take the mapping lock for the duration of the table walk. As
2576 * this mapping should be shared between all the VMAs,
2577 * __unmap_hugepage_range() is called as the lock is already held
2579 mutex_lock(&mapping->i_mmap_mutex);
2580 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2581 /* Do not unmap the current VMA */
2582 if (iter_vma == vma)
2586 * Unmap the page from other VMAs without their own reserves.
2587 * They get marked to be SIGKILLed if they fault in these
2588 * areas. This is because a future no-page fault on this VMA
2589 * could insert a zeroed page instead of the data existing
2590 * from the time of fork. This would look like data corruption
2592 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2593 unmap_hugepage_range(iter_vma, address,
2594 address + huge_page_size(h), page);
2596 mutex_unlock(&mapping->i_mmap_mutex);
2602 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2603 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2604 * cannot race with other handlers or page migration.
2605 * Keep the pte_same checks anyway to make transition from the mutex easier.
2607 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2608 unsigned long address, pte_t *ptep, pte_t pte,
2609 struct page *pagecache_page, spinlock_t *ptl)
2611 struct hstate *h = hstate_vma(vma);
2612 struct page *old_page, *new_page;
2613 int outside_reserve = 0;
2614 unsigned long mmun_start; /* For mmu_notifiers */
2615 unsigned long mmun_end; /* For mmu_notifiers */
2617 old_page = pte_page(pte);
2620 /* If no-one else is actually using this page, avoid the copy
2621 * and just make the page writable */
2622 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2623 page_move_anon_rmap(old_page, vma, address);
2624 set_huge_ptep_writable(vma, address, ptep);
2629 * If the process that created a MAP_PRIVATE mapping is about to
2630 * perform a COW due to a shared page count, attempt to satisfy
2631 * the allocation without using the existing reserves. The pagecache
2632 * page is used to determine if the reserve at this address was
2633 * consumed or not. If reserves were used, a partial faulted mapping
2634 * at the time of fork() could consume its reserves on COW instead
2635 * of the full address range.
2637 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2638 old_page != pagecache_page)
2639 outside_reserve = 1;
2641 page_cache_get(old_page);
2643 /* Drop page table lock as buddy allocator may be called */
2645 new_page = alloc_huge_page(vma, address, outside_reserve);
2647 if (IS_ERR(new_page)) {
2648 long err = PTR_ERR(new_page);
2649 page_cache_release(old_page);
2652 * If a process owning a MAP_PRIVATE mapping fails to COW,
2653 * it is due to references held by a child and an insufficient
2654 * huge page pool. To guarantee the original mappers
2655 * reliability, unmap the page from child processes. The child
2656 * may get SIGKILLed if it later faults.
2658 if (outside_reserve) {
2659 BUG_ON(huge_pte_none(pte));
2660 if (unmap_ref_private(mm, vma, old_page, address)) {
2661 BUG_ON(huge_pte_none(pte));
2663 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2664 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2665 goto retry_avoidcopy;
2667 * race occurs while re-acquiring page table
2668 * lock, and our job is done.
2675 /* Caller expects lock to be held */
2678 return VM_FAULT_OOM;
2680 return VM_FAULT_SIGBUS;
2684 * When the original hugepage is shared one, it does not have
2685 * anon_vma prepared.
2687 if (unlikely(anon_vma_prepare(vma))) {
2688 page_cache_release(new_page);
2689 page_cache_release(old_page);
2690 /* Caller expects lock to be held */
2692 return VM_FAULT_OOM;
2695 copy_user_huge_page(new_page, old_page, address, vma,
2696 pages_per_huge_page(h));
2697 __SetPageUptodate(new_page);
2699 mmun_start = address & huge_page_mask(h);
2700 mmun_end = mmun_start + huge_page_size(h);
2701 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2703 * Retake the page table lock to check for racing updates
2704 * before the page tables are altered
2707 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2708 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2709 ClearPagePrivate(new_page);
2712 huge_ptep_clear_flush(vma, address, ptep);
2713 set_huge_pte_at(mm, address, ptep,
2714 make_huge_pte(vma, new_page, 1));
2715 page_remove_rmap(old_page);
2716 hugepage_add_new_anon_rmap(new_page, vma, address);
2717 /* Make the old page be freed below */
2718 new_page = old_page;
2721 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2722 page_cache_release(new_page);
2723 page_cache_release(old_page);
2725 /* Caller expects lock to be held */
2730 /* Return the pagecache page at a given address within a VMA */
2731 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2732 struct vm_area_struct *vma, unsigned long address)
2734 struct address_space *mapping;
2737 mapping = vma->vm_file->f_mapping;
2738 idx = vma_hugecache_offset(h, vma, address);
2740 return find_lock_page(mapping, idx);
2744 * Return whether there is a pagecache page to back given address within VMA.
2745 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2747 static bool hugetlbfs_pagecache_present(struct hstate *h,
2748 struct vm_area_struct *vma, unsigned long address)
2750 struct address_space *mapping;
2754 mapping = vma->vm_file->f_mapping;
2755 idx = vma_hugecache_offset(h, vma, address);
2757 page = find_get_page(mapping, idx);
2760 return page != NULL;
2763 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2764 unsigned long address, pte_t *ptep, unsigned int flags)
2766 struct hstate *h = hstate_vma(vma);
2767 int ret = VM_FAULT_SIGBUS;
2772 struct address_space *mapping;
2777 * Currently, we are forced to kill the process in the event the
2778 * original mapper has unmapped pages from the child due to a failed
2779 * COW. Warn that such a situation has occurred as it may not be obvious
2781 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2782 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2787 mapping = vma->vm_file->f_mapping;
2788 idx = vma_hugecache_offset(h, vma, address);
2791 * Use page lock to guard against racing truncation
2792 * before we get page_table_lock.
2795 page = find_lock_page(mapping, idx);
2797 size = i_size_read(mapping->host) >> huge_page_shift(h);
2800 page = alloc_huge_page(vma, address, 0);
2802 ret = PTR_ERR(page);
2806 ret = VM_FAULT_SIGBUS;
2809 clear_huge_page(page, address, pages_per_huge_page(h));
2810 __SetPageUptodate(page);
2812 if (vma->vm_flags & VM_MAYSHARE) {
2814 struct inode *inode = mapping->host;
2816 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2823 ClearPagePrivate(page);
2825 spin_lock(&inode->i_lock);
2826 inode->i_blocks += blocks_per_huge_page(h);
2827 spin_unlock(&inode->i_lock);
2830 if (unlikely(anon_vma_prepare(vma))) {
2832 goto backout_unlocked;
2838 * If memory error occurs between mmap() and fault, some process
2839 * don't have hwpoisoned swap entry for errored virtual address.
2840 * So we need to block hugepage fault by PG_hwpoison bit check.
2842 if (unlikely(PageHWPoison(page))) {
2843 ret = VM_FAULT_HWPOISON |
2844 VM_FAULT_SET_HINDEX(hstate_index(h));
2845 goto backout_unlocked;
2850 * If we are going to COW a private mapping later, we examine the
2851 * pending reservations for this page now. This will ensure that
2852 * any allocations necessary to record that reservation occur outside
2855 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2856 if (vma_needs_reservation(h, vma, address) < 0) {
2858 goto backout_unlocked;
2861 ptl = huge_pte_lockptr(h, mm, ptep);
2863 size = i_size_read(mapping->host) >> huge_page_shift(h);
2868 if (!huge_pte_none(huge_ptep_get(ptep)))
2872 ClearPagePrivate(page);
2873 hugepage_add_new_anon_rmap(page, vma, address);
2876 page_dup_rmap(page);
2877 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2878 && (vma->vm_flags & VM_SHARED)));
2879 set_huge_pte_at(mm, address, ptep, new_pte);
2881 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2882 /* Optimization, do the COW without a second fault */
2883 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2899 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2900 unsigned long address, unsigned int flags)
2906 struct page *page = NULL;
2907 struct page *pagecache_page = NULL;
2908 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2909 struct hstate *h = hstate_vma(vma);
2911 address &= huge_page_mask(h);
2913 ptep = huge_pte_offset(mm, address);
2915 entry = huge_ptep_get(ptep);
2916 if (unlikely(is_hugetlb_entry_migration(entry))) {
2917 migration_entry_wait_huge(vma, mm, ptep);
2919 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2920 return VM_FAULT_HWPOISON_LARGE |
2921 VM_FAULT_SET_HINDEX(hstate_index(h));
2924 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2926 return VM_FAULT_OOM;
2929 * Serialize hugepage allocation and instantiation, so that we don't
2930 * get spurious allocation failures if two CPUs race to instantiate
2931 * the same page in the page cache.
2933 mutex_lock(&hugetlb_instantiation_mutex);
2934 entry = huge_ptep_get(ptep);
2935 if (huge_pte_none(entry)) {
2936 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2943 * If we are going to COW the mapping later, we examine the pending
2944 * reservations for this page now. This will ensure that any
2945 * allocations necessary to record that reservation occur outside the
2946 * spinlock. For private mappings, we also lookup the pagecache
2947 * page now as it is used to determine if a reservation has been
2950 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2951 if (vma_needs_reservation(h, vma, address) < 0) {
2956 if (!(vma->vm_flags & VM_MAYSHARE))
2957 pagecache_page = hugetlbfs_pagecache_page(h,
2962 * hugetlb_cow() requires page locks of pte_page(entry) and
2963 * pagecache_page, so here we need take the former one
2964 * when page != pagecache_page or !pagecache_page.
2965 * Note that locking order is always pagecache_page -> page,
2966 * so no worry about deadlock.
2968 page = pte_page(entry);
2970 if (page != pagecache_page)
2973 ptl = huge_pte_lockptr(h, mm, ptep);
2975 /* Check for a racing update before calling hugetlb_cow */
2976 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2980 if (flags & FAULT_FLAG_WRITE) {
2981 if (!huge_pte_write(entry)) {
2982 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2983 pagecache_page, ptl);
2986 entry = huge_pte_mkdirty(entry);
2988 entry = pte_mkyoung(entry);
2989 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2990 flags & FAULT_FLAG_WRITE))
2991 update_mmu_cache(vma, address, ptep);
2996 if (pagecache_page) {
2997 unlock_page(pagecache_page);
2998 put_page(pagecache_page);
3000 if (page != pagecache_page)
3005 mutex_unlock(&hugetlb_instantiation_mutex);
3010 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3011 struct page **pages, struct vm_area_struct **vmas,
3012 unsigned long *position, unsigned long *nr_pages,
3013 long i, unsigned int flags)
3015 unsigned long pfn_offset;
3016 unsigned long vaddr = *position;
3017 unsigned long remainder = *nr_pages;
3018 struct hstate *h = hstate_vma(vma);
3020 while (vaddr < vma->vm_end && remainder) {
3022 spinlock_t *ptl = NULL;
3027 * Some archs (sparc64, sh*) have multiple pte_ts to
3028 * each hugepage. We have to make sure we get the
3029 * first, for the page indexing below to work.
3031 * Note that page table lock is not held when pte is null.
3033 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3035 ptl = huge_pte_lock(h, mm, pte);
3036 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3039 * When coredumping, it suits get_dump_page if we just return
3040 * an error where there's an empty slot with no huge pagecache
3041 * to back it. This way, we avoid allocating a hugepage, and
3042 * the sparse dumpfile avoids allocating disk blocks, but its
3043 * huge holes still show up with zeroes where they need to be.
3045 if (absent && (flags & FOLL_DUMP) &&
3046 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3054 * We need call hugetlb_fault for both hugepages under migration
3055 * (in which case hugetlb_fault waits for the migration,) and
3056 * hwpoisoned hugepages (in which case we need to prevent the
3057 * caller from accessing to them.) In order to do this, we use
3058 * here is_swap_pte instead of is_hugetlb_entry_migration and
3059 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3060 * both cases, and because we can't follow correct pages
3061 * directly from any kind of swap entries.
3063 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3064 ((flags & FOLL_WRITE) &&
3065 !huge_pte_write(huge_ptep_get(pte)))) {
3070 ret = hugetlb_fault(mm, vma, vaddr,
3071 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3072 if (!(ret & VM_FAULT_ERROR))
3079 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3080 page = pte_page(huge_ptep_get(pte));
3083 pages[i] = mem_map_offset(page, pfn_offset);
3084 get_page_foll(pages[i]);
3094 if (vaddr < vma->vm_end && remainder &&
3095 pfn_offset < pages_per_huge_page(h)) {
3097 * We use pfn_offset to avoid touching the pageframes
3098 * of this compound page.
3104 *nr_pages = remainder;
3107 return i ? i : -EFAULT;
3110 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3111 unsigned long address, unsigned long end, pgprot_t newprot)
3113 struct mm_struct *mm = vma->vm_mm;
3114 unsigned long start = address;
3117 struct hstate *h = hstate_vma(vma);
3118 unsigned long pages = 0;
3120 BUG_ON(address >= end);
3121 flush_cache_range(vma, address, end);
3123 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3124 for (; address < end; address += huge_page_size(h)) {
3126 ptep = huge_pte_offset(mm, address);
3129 ptl = huge_pte_lock(h, mm, ptep);
3130 if (huge_pmd_unshare(mm, &address, ptep)) {
3135 if (!huge_pte_none(huge_ptep_get(ptep))) {
3136 pte = huge_ptep_get_and_clear(mm, address, ptep);
3137 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3138 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3139 set_huge_pte_at(mm, address, ptep, pte);
3145 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3146 * may have cleared our pud entry and done put_page on the page table:
3147 * once we release i_mmap_mutex, another task can do the final put_page
3148 * and that page table be reused and filled with junk.
3150 flush_tlb_range(vma, start, end);
3151 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3153 return pages << h->order;
3156 int hugetlb_reserve_pages(struct inode *inode,
3158 struct vm_area_struct *vma,
3159 vm_flags_t vm_flags)
3162 struct hstate *h = hstate_inode(inode);
3163 struct hugepage_subpool *spool = subpool_inode(inode);
3166 * Only apply hugepage reservation if asked. At fault time, an
3167 * attempt will be made for VM_NORESERVE to allocate a page
3168 * without using reserves
3170 if (vm_flags & VM_NORESERVE)
3174 * Shared mappings base their reservation on the number of pages that
3175 * are already allocated on behalf of the file. Private mappings need
3176 * to reserve the full area even if read-only as mprotect() may be
3177 * called to make the mapping read-write. Assume !vma is a shm mapping
3179 if (!vma || vma->vm_flags & VM_MAYSHARE)
3180 chg = region_chg(&inode->i_mapping->private_list, from, to);
3182 struct resv_map *resv_map = resv_map_alloc();
3188 set_vma_resv_map(vma, resv_map);
3189 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3197 /* There must be enough pages in the subpool for the mapping */
3198 if (hugepage_subpool_get_pages(spool, chg)) {
3204 * Check enough hugepages are available for the reservation.
3205 * Hand the pages back to the subpool if there are not
3207 ret = hugetlb_acct_memory(h, chg);
3209 hugepage_subpool_put_pages(spool, chg);
3214 * Account for the reservations made. Shared mappings record regions
3215 * that have reservations as they are shared by multiple VMAs.
3216 * When the last VMA disappears, the region map says how much
3217 * the reservation was and the page cache tells how much of
3218 * the reservation was consumed. Private mappings are per-VMA and
3219 * only the consumed reservations are tracked. When the VMA
3220 * disappears, the original reservation is the VMA size and the
3221 * consumed reservations are stored in the map. Hence, nothing
3222 * else has to be done for private mappings here
3224 if (!vma || vma->vm_flags & VM_MAYSHARE)
3225 region_add(&inode->i_mapping->private_list, from, to);
3233 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3235 struct hstate *h = hstate_inode(inode);
3236 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3237 struct hugepage_subpool *spool = subpool_inode(inode);
3239 spin_lock(&inode->i_lock);
3240 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3241 spin_unlock(&inode->i_lock);
3243 hugepage_subpool_put_pages(spool, (chg - freed));
3244 hugetlb_acct_memory(h, -(chg - freed));
3247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3248 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3249 struct vm_area_struct *vma,
3250 unsigned long addr, pgoff_t idx)
3252 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3254 unsigned long sbase = saddr & PUD_MASK;
3255 unsigned long s_end = sbase + PUD_SIZE;
3257 /* Allow segments to share if only one is marked locked */
3258 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3259 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3262 * match the virtual addresses, permission and the alignment of the
3265 if (pmd_index(addr) != pmd_index(saddr) ||
3266 vm_flags != svm_flags ||
3267 sbase < svma->vm_start || svma->vm_end < s_end)
3273 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3275 unsigned long base = addr & PUD_MASK;
3276 unsigned long end = base + PUD_SIZE;
3279 * check on proper vm_flags and page table alignment
3281 if (vma->vm_flags & VM_MAYSHARE &&
3282 vma->vm_start <= base && end <= vma->vm_end)
3288 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3289 * and returns the corresponding pte. While this is not necessary for the
3290 * !shared pmd case because we can allocate the pmd later as well, it makes the
3291 * code much cleaner. pmd allocation is essential for the shared case because
3292 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3293 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3294 * bad pmd for sharing.
3296 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3298 struct vm_area_struct *vma = find_vma(mm, addr);
3299 struct address_space *mapping = vma->vm_file->f_mapping;
3300 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3302 struct vm_area_struct *svma;
3303 unsigned long saddr;
3308 if (!vma_shareable(vma, addr))
3309 return (pte_t *)pmd_alloc(mm, pud, addr);
3311 mutex_lock(&mapping->i_mmap_mutex);
3312 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3316 saddr = page_table_shareable(svma, vma, addr, idx);
3318 spte = huge_pte_offset(svma->vm_mm, saddr);
3320 get_page(virt_to_page(spte));
3329 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3332 pud_populate(mm, pud,
3333 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3335 put_page(virt_to_page(spte));
3338 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3339 mutex_unlock(&mapping->i_mmap_mutex);
3344 * unmap huge page backed by shared pte.
3346 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3347 * indicated by page_count > 1, unmap is achieved by clearing pud and
3348 * decrementing the ref count. If count == 1, the pte page is not shared.
3350 * called with page table lock held.
3352 * returns: 1 successfully unmapped a shared pte page
3353 * 0 the underlying pte page is not shared, or it is the last user
3355 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3357 pgd_t *pgd = pgd_offset(mm, *addr);
3358 pud_t *pud = pud_offset(pgd, *addr);
3360 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3361 if (page_count(virt_to_page(ptep)) == 1)
3365 put_page(virt_to_page(ptep));
3366 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3369 #define want_pmd_share() (1)
3370 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3371 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3375 #define want_pmd_share() (0)
3376 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3378 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3379 pte_t *huge_pte_alloc(struct mm_struct *mm,
3380 unsigned long addr, unsigned long sz)
3386 pgd = pgd_offset(mm, addr);
3387 pud = pud_alloc(mm, pgd, addr);
3389 if (sz == PUD_SIZE) {
3392 BUG_ON(sz != PMD_SIZE);
3393 if (want_pmd_share() && pud_none(*pud))
3394 pte = huge_pmd_share(mm, addr, pud);
3396 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3399 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3404 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3410 pgd = pgd_offset(mm, addr);
3411 if (pgd_present(*pgd)) {
3412 pud = pud_offset(pgd, addr);
3413 if (pud_present(*pud)) {
3415 return (pte_t *)pud;
3416 pmd = pmd_offset(pud, addr);
3419 return (pte_t *) pmd;
3423 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3424 pmd_t *pmd, int write)
3428 page = pte_page(*(pte_t *)pmd);
3430 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3435 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3436 pud_t *pud, int write)
3440 page = pte_page(*(pte_t *)pud);
3442 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3446 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3448 /* Can be overriden by architectures */
3449 __attribute__((weak)) struct page *
3450 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3451 pud_t *pud, int write)
3457 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3459 #ifdef CONFIG_MEMORY_FAILURE
3461 /* Should be called in hugetlb_lock */
3462 static int is_hugepage_on_freelist(struct page *hpage)
3466 struct hstate *h = page_hstate(hpage);
3467 int nid = page_to_nid(hpage);
3469 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3476 * This function is called from memory failure code.
3477 * Assume the caller holds page lock of the head page.
3479 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3481 struct hstate *h = page_hstate(hpage);
3482 int nid = page_to_nid(hpage);
3485 spin_lock(&hugetlb_lock);
3486 if (is_hugepage_on_freelist(hpage)) {
3488 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3489 * but dangling hpage->lru can trigger list-debug warnings
3490 * (this happens when we call unpoison_memory() on it),
3491 * so let it point to itself with list_del_init().
3493 list_del_init(&hpage->lru);
3494 set_page_refcounted(hpage);
3495 h->free_huge_pages--;
3496 h->free_huge_pages_node[nid]--;
3499 spin_unlock(&hugetlb_lock);
3504 bool isolate_huge_page(struct page *page, struct list_head *list)
3506 VM_BUG_ON(!PageHead(page));
3507 if (!get_page_unless_zero(page))
3509 spin_lock(&hugetlb_lock);
3510 list_move_tail(&page->lru, list);
3511 spin_unlock(&hugetlb_lock);
3515 void putback_active_hugepage(struct page *page)
3517 VM_BUG_ON(!PageHead(page));
3518 spin_lock(&hugetlb_lock);
3519 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3520 spin_unlock(&hugetlb_lock);
3524 bool is_hugepage_active(struct page *page)
3526 VM_BUG_ON(!PageHuge(page));
3528 * This function can be called for a tail page because the caller,
3529 * scan_movable_pages, scans through a given pfn-range which typically
3530 * covers one memory block. In systems using gigantic hugepage (1GB
3531 * for x86_64,) a hugepage is larger than a memory block, and we don't
3532 * support migrating such large hugepages for now, so return false
3533 * when called for tail pages.
3538 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3539 * so we should return false for them.
3541 if (unlikely(PageHWPoison(page)))
3543 return page_count(page) > 0;