1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 struct hugepage_subpool *spool;
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 spin_lock_init(&spool->lock);
139 spool->max_hpages = max_hpages;
141 spool->min_hpages = min_hpages;
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 spool->rsv_hpages = min_hpages;
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
159 unlock_or_release_subpool(spool, flags);
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
178 spin_lock_irq(&spool->lock);
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
205 spin_unlock_irq(&spool->lock);
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
224 spin_lock_irqsave(&spool->lock, flags);
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
245 unlock_or_release_subpool(spool, flags);
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 return HUGETLBFS_SB(inode->i_sb)->spool;
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 return subpool_inode(file_inode(vma->vm_file));
261 * hugetlb vma_lock helper routines
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 down_read(&vma_lock->rw_sema);
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 up_read(&vma_lock->rw_sema);
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 down_write(&vma_lock->rw_sema);
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 up_write(&vma_lock->rw_sema);
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 if (!__vma_shareable_lock(vma))
306 return down_write_trylock(&vma_lock->rw_sema);
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 lockdep_assert_held(&vma_lock->rw_sema);
318 void hugetlb_vma_lock_release(struct kref *kref)
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 struct vm_area_struct *vma = vma_lock->vma;
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 __hugetlb_vma_unlock_write_put(vma_lock);
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
353 * Only present in sharable vmas.
355 if (!vma || !__vma_shareable_lock(vma))
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 struct hugetlb_vma_lock *vma_lock;
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
397 vma->vm_private_data = vma_lock;
400 /* Helper that removes a struct file_region from the resv_map cache and returns
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 struct file_region *nrg;
408 VM_BUG_ON(resv->region_cache_count <= 0);
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
423 #ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 struct resv_map *resv,
435 struct file_region *nrg)
437 #ifdef CONFIG_CGROUP_HUGETLB
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 nrg->reservation_counter = NULL;
466 static void put_uncharge_info(struct file_region *rg)
468 #ifdef CONFIG_CGROUP_HUGETLB
474 static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
477 #ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 struct file_region *nrg, *prg;
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
496 put_uncharge_info(rg);
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
508 put_uncharge_info(rg);
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
518 struct file_region *nrg;
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
526 *regions_needed += 1;
532 * Must be called with resv->lock held.
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
567 /* When we find a region that starts beyond our range, we've
570 if (iter->from >= t) {
571 rg = iter->link.prev;
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
584 last_accounted_offset = iter->to;
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601 static int allocate_file_region_entries(struct resv_map *resv,
603 __must_hold(&resv->lock)
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
609 VM_BUG_ON(regions_needed < 0);
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
636 list_add(&trg->link, &allocated_regions);
639 spin_lock(&resv->lock);
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
663 * regions_needed is the out value provided by a previous call to region_chg.
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
672 static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
676 long add = 0, actual_regions_needed = 0;
678 spin_lock(&resv->lock);
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
701 VM_BUG_ON(t - f <= 1);
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 resv->adds_in_progress -= in_regions_needed;
715 spin_unlock(&resv->lock);
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
739 static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
744 spin_lock(&resv->lock);
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
753 if (allocate_file_region_entries(resv, *out_regions_needed))
756 resv->adds_in_progress += *out_regions_needed;
758 spin_unlock(&resv->lock);
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
775 static void region_abort(struct resv_map *resv, long f, long t,
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
798 static long region_del(struct resv_map *resv, long f, long t)
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
821 if (f > rg->from && t < rg->to) { /* Must split region */
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
831 list_del(&nrg->link);
832 resv->region_cache_count--;
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
847 /* New entry for end of split region */
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 INIT_LIST_HEAD(&nrg->link);
855 /* Original entry is trimmed */
858 list_add(&nrg->link, &rg->link);
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
887 spin_unlock(&resv->lock);
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
901 void hugetlb_fix_reserve_counts(struct inode *inode)
903 struct hugepage_subpool *spool = subpool_inode(inode);
905 bool reserved = false;
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
911 if (!hugetlb_acct_memory(h, 1))
913 } else if (!rsv_adjust) {
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
925 static long region_count(struct resv_map *resv, long f, long t)
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
945 chg += seg_to - seg_from;
947 spin_unlock(&resv->lock);
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 return vma_kernel_pagesize(vma);
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
998 #define HPAGE_RESV_OWNER (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 return (unsigned long)vma->vm_private_data;
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1029 vma->vm_private_data = (void *)value;
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1037 #ifdef CONFIG_CGROUP_HUGETLB
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1051 struct resv_map *resv_map_alloc(void)
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 if (!resv_map || !rg) {
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1066 resv_map->adds_in_progress = 0;
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1082 void resv_map_release(struct kref *ref)
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1097 VM_BUG_ON(resv_map->adds_in_progress);
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1122 return inode_resv_map(inode);
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 return (get_vma_private_data(vma) & flag) != 0;
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1175 vma->vm_private_data = NULL;
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1199 struct resv_map *reservations = vma_resv_map(vma);
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1206 hugetlb_dup_vma_private(vma);
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 if (vma->vm_flags & VM_NORESERVE) {
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1244 * Only the process that called mmap() has reserves for
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 int nid = folio_nid(folio);
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1288 struct folio *folio;
1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 lockdep_assert_held(&hugetlb_lock);
1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 if (pin && !folio_is_longterm_pinnable(folio))
1296 if (folio_test_hwpoison(folio))
1299 list_move(&folio->lru, &h->hugepage_activelist);
1300 folio_ref_unfreeze(folio, 1);
1301 folio_clear_hugetlb_freed(folio);
1302 h->free_huge_pages--;
1303 h->free_huge_pages_node[nid]--;
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 int nid, nodemask_t *nmask)
1313 unsigned int cpuset_mems_cookie;
1314 struct zonelist *zonelist;
1317 int node = NUMA_NO_NODE;
1319 zonelist = node_zonelist(nid, gfp_mask);
1322 cpuset_mems_cookie = read_mems_allowed_begin();
1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 struct folio *folio;
1326 if (!cpuset_zone_allowed(zone, gfp_mask))
1329 * no need to ask again on the same node. Pool is node rather than
1332 if (zone_to_nid(zone) == node)
1334 node = zone_to_nid(zone);
1336 folio = dequeue_hugetlb_folio_node_exact(h, node);
1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 static unsigned long available_huge_pages(struct hstate *h)
1348 return h->free_huge_pages - h->resv_huge_pages;
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 struct vm_area_struct *vma,
1353 unsigned long address, int avoid_reserve,
1356 struct folio *folio = NULL;
1357 struct mempolicy *mpol;
1359 nodemask_t *nodemask;
1363 * A child process with MAP_PRIVATE mappings created by their parent
1364 * have no page reserves. This check ensures that reservations are
1365 * not "stolen". The child may still get SIGKILLed
1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1370 /* If reserves cannot be used, ensure enough pages are in the pool */
1371 if (avoid_reserve && !available_huge_pages(h))
1374 gfp_mask = htlb_alloc_mask(h);
1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 if (mpol_is_preferred_many(mpol)) {
1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1381 /* Fallback to all nodes if page==NULL */
1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 folio_set_hugetlb_restore_reserve(folio);
1391 h->resv_huge_pages--;
1394 mpol_cond_put(mpol);
1402 * common helper functions for hstate_next_node_to_{alloc|free}.
1403 * We may have allocated or freed a huge page based on a different
1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405 * be outside of *nodes_allowed. Ensure that we use an allowed
1406 * node for alloc or free.
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 nid = next_node_in(nid, *nodes_allowed);
1411 VM_BUG_ON(nid >= MAX_NUMNODES);
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 if (!node_isset(nid, *nodes_allowed))
1419 nid = next_node_allowed(nid, nodes_allowed);
1424 * returns the previously saved node ["this node"] from which to
1425 * allocate a persistent huge page for the pool and advance the
1426 * next node from which to allocate, handling wrap at end of node
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 nodemask_t *nodes_allowed)
1434 VM_BUG_ON(!nodes_allowed);
1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1443 * helper for remove_pool_huge_page() - return the previously saved
1444 * node ["this node"] from which to free a huge page. Advance the
1445 * next node id whether or not we find a free huge page to free so
1446 * that the next attempt to free addresses the next node.
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 VM_BUG_ON(!nodes_allowed);
1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1461 for (nr_nodes = nodes_weight(*mask); \
1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 unsigned int order, bool demote)
1477 int nr_pages = 1 << order;
1480 atomic_set(&folio->_entire_mapcount, 0);
1481 atomic_set(&folio->_nr_pages_mapped, 0);
1482 atomic_set(&folio->_pincount, 0);
1484 for (i = 1; i < nr_pages; i++) {
1485 p = folio_page(folio, i);
1487 clear_compound_head(p);
1489 set_page_refcounted(p);
1492 folio_set_order(folio, 0);
1493 __folio_clear_head(folio);
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1499 __destroy_compound_gigantic_folio(folio, order, true);
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1506 __destroy_compound_gigantic_folio(folio, order, false);
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1512 * If the page isn't allocated using the cma allocator,
1513 * cma_release() returns false.
1516 int nid = folio_nid(folio);
1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 free_contig_range(folio_pfn(folio), 1 << order);
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 int nid, nodemask_t *nodemask)
1530 unsigned long nr_pages = pages_per_huge_page(h);
1531 if (nid == NUMA_NO_NODE)
1532 nid = numa_mem_id();
1538 if (hugetlb_cma[nid]) {
1539 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 huge_page_order(h), true);
1542 return page_folio(page);
1545 if (!(gfp_mask & __GFP_THISNODE)) {
1546 for_each_node_mask(node, *nodemask) {
1547 if (node == nid || !hugetlb_cma[node])
1550 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 huge_page_order(h), true);
1553 return page_folio(page);
1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 return page ? page_folio(page) : NULL;
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1569 #endif /* CONFIG_CONTIG_ALLOC */
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 int nid, nodemask_t *nodemask)
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 unsigned int order) { }
1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585 * as just a compound page.
1587 * A reference is held on the folio, except in the case of demote.
1589 * Must be called with hugetlb lock held.
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 bool adjust_surplus,
1595 int nid = folio_nid(folio);
1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1600 lockdep_assert_held(&hugetlb_lock);
1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1604 list_del(&folio->lru);
1606 if (folio_test_hugetlb_freed(folio)) {
1607 h->free_huge_pages--;
1608 h->free_huge_pages_node[nid]--;
1610 if (adjust_surplus) {
1611 h->surplus_huge_pages--;
1612 h->surplus_huge_pages_node[nid]--;
1618 * For non-gigantic pages set the destructor to the normal compound
1619 * page dtor. This is needed in case someone takes an additional
1620 * temporary ref to the page, and freeing is delayed until they drop
1623 * For gigantic pages set the destructor to the null dtor. This
1624 * destructor will never be called. Before freeing the gigantic
1625 * page destroy_compound_gigantic_folio will turn the folio into a
1626 * simple group of pages. After this the destructor does not
1629 * This handles the case where more than one ref is held when and
1630 * after update_and_free_hugetlb_folio is called.
1632 * In the case of demote we do not ref count the page as it will soon
1633 * be turned into a page of smaller size.
1636 folio_ref_unfreeze(folio, 1);
1637 if (hstate_is_gigantic(h))
1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1643 h->nr_huge_pages_node[nid]--;
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus)
1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 bool adjust_surplus)
1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 bool adjust_surplus)
1662 int nid = folio_nid(folio);
1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1666 lockdep_assert_held(&hugetlb_lock);
1668 INIT_LIST_HEAD(&folio->lru);
1670 h->nr_huge_pages_node[nid]++;
1672 if (adjust_surplus) {
1673 h->surplus_huge_pages++;
1674 h->surplus_huge_pages_node[nid]++;
1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 folio_change_private(folio, NULL);
1680 * We have to set hugetlb_vmemmap_optimized again as above
1681 * folio_change_private(folio, NULL) cleared it.
1683 folio_set_hugetlb_vmemmap_optimized(folio);
1686 * This folio is about to be managed by the hugetlb allocator and
1687 * should have no users. Drop our reference, and check for others
1690 zeroed = folio_put_testzero(folio);
1691 if (unlikely(!zeroed))
1693 * It is VERY unlikely soneone else has taken a ref on
1694 * the page. In this case, we simply return as the
1695 * hugetlb destructor (free_huge_page) will be called
1696 * when this other ref is dropped.
1700 arch_clear_hugepage_flags(&folio->page);
1701 enqueue_hugetlb_folio(h, folio);
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 struct folio *folio)
1708 struct page *subpage;
1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 * If we don't know which subpages are hwpoisoned, we can't free
1715 * the hugepage, so it's leaked intentionally.
1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1720 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 spin_lock_irq(&hugetlb_lock);
1723 * If we cannot allocate vmemmap pages, just refuse to free the
1724 * page and put the page back on the hugetlb free list and treat
1725 * as a surplus page.
1727 add_hugetlb_folio(h, folio, true);
1728 spin_unlock_irq(&hugetlb_lock);
1733 * Move PageHWPoison flag from head page to the raw error pages,
1734 * which makes any healthy subpages reusable.
1736 if (unlikely(folio_test_hwpoison(folio)))
1737 folio_clear_hugetlb_hwpoison(folio);
1739 for (i = 0; i < pages_per_huge_page(h); i++) {
1740 subpage = folio_page(folio, i);
1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 1 << PG_referenced | 1 << PG_dirty |
1743 1 << PG_active | 1 << PG_private |
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 * need to be given back to CMA in free_gigantic_folio.
1751 if (hstate_is_gigantic(h) ||
1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 free_gigantic_folio(folio, huge_page_order(h));
1756 __free_pages(&folio->page, huge_page_order(h));
1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764 * the vmemmap pages.
1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767 * freed and frees them one-by-one. As the page->mapping pointer is going
1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769 * structure of a lockless linked list of huge pages to be freed.
1771 static LLIST_HEAD(hpage_freelist);
1773 static void free_hpage_workfn(struct work_struct *work)
1775 struct llist_node *node;
1777 node = llist_del_all(&hpage_freelist);
1783 page = container_of((struct address_space **)node,
1784 struct page, mapping);
1786 page->mapping = NULL;
1788 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 * is going to trigger because a previous call to
1790 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1794 h = size_to_hstate(page_size(page));
1796 __update_and_free_hugetlb_folio(h, page_folio(page));
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803 static inline void flush_free_hpage_work(struct hstate *h)
1805 if (hugetlb_vmemmap_optimizable(h))
1806 flush_work(&free_hpage_work);
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 __update_and_free_hugetlb_folio(h, folio);
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 schedule_work(&free_hpage_work);
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1830 struct page *page, *t_page;
1831 struct folio *folio;
1833 list_for_each_entry_safe(page, t_page, list, lru) {
1834 folio = page_folio(page);
1835 update_and_free_hugetlb_folio(h, folio, false);
1840 struct hstate *size_to_hstate(unsigned long size)
1844 for_each_hstate(h) {
1845 if (huge_page_size(h) == size)
1851 void free_huge_page(struct page *page)
1854 * Can't pass hstate in here because it is called from the
1855 * compound page destructor.
1857 struct folio *folio = page_folio(page);
1858 struct hstate *h = folio_hstate(folio);
1859 int nid = folio_nid(folio);
1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 bool restore_reserve;
1862 unsigned long flags;
1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1867 hugetlb_set_folio_subpool(folio, NULL);
1868 if (folio_test_anon(folio))
1869 __ClearPageAnonExclusive(&folio->page);
1870 folio->mapping = NULL;
1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 folio_clear_hugetlb_restore_reserve(folio);
1875 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 * reservation. If the page was associated with a subpool, there
1877 * would have been a page reserved in the subpool before allocation
1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1879 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 * remove the reserved page from the subpool.
1882 if (!restore_reserve) {
1884 * A return code of zero implies that the subpool will be
1885 * under its minimum size if the reservation is not restored
1886 * after page is free. Therefore, force restore_reserve
1889 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 restore_reserve = true;
1893 spin_lock_irqsave(&hugetlb_lock, flags);
1894 folio_clear_hugetlb_migratable(folio);
1895 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 pages_per_huge_page(h), folio);
1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 pages_per_huge_page(h), folio);
1899 if (restore_reserve)
1900 h->resv_huge_pages++;
1902 if (folio_test_hugetlb_temporary(folio)) {
1903 remove_hugetlb_folio(h, folio, false);
1904 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 update_and_free_hugetlb_folio(h, folio, true);
1906 } else if (h->surplus_huge_pages_node[nid]) {
1907 /* remove the page from active list */
1908 remove_hugetlb_folio(h, folio, true);
1909 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 update_and_free_hugetlb_folio(h, folio, true);
1912 arch_clear_hugepage_flags(page);
1913 enqueue_hugetlb_folio(h, folio);
1914 spin_unlock_irqrestore(&hugetlb_lock, flags);
1919 * Must be called with the hugetlb lock held
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1923 lockdep_assert_held(&hugetlb_lock);
1925 h->nr_huge_pages_node[nid]++;
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1930 hugetlb_vmemmap_optimize(h, &folio->page);
1931 INIT_LIST_HEAD(&folio->lru);
1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 hugetlb_set_folio_subpool(folio, NULL);
1934 set_hugetlb_cgroup(folio, NULL);
1935 set_hugetlb_cgroup_rsvd(folio, NULL);
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1940 __prep_new_hugetlb_folio(h, folio);
1941 spin_lock_irq(&hugetlb_lock);
1942 __prep_account_new_huge_page(h, nid);
1943 spin_unlock_irq(&hugetlb_lock);
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 unsigned int order, bool demote)
1950 int nr_pages = 1 << order;
1953 __folio_clear_reserved(folio);
1954 __folio_set_head(folio);
1955 /* we rely on prep_new_hugetlb_folio to set the destructor */
1956 folio_set_order(folio, order);
1957 for (i = 0; i < nr_pages; i++) {
1958 p = folio_page(folio, i);
1961 * For gigantic hugepages allocated through bootmem at
1962 * boot, it's safer to be consistent with the not-gigantic
1963 * hugepages and clear the PG_reserved bit from all tail pages
1964 * too. Otherwise drivers using get_user_pages() to access tail
1965 * pages may get the reference counting wrong if they see
1966 * PG_reserved set on a tail page (despite the head page not
1967 * having PG_reserved set). Enforcing this consistency between
1968 * head and tail pages allows drivers to optimize away a check
1969 * on the head page when they need know if put_page() is needed
1970 * after get_user_pages().
1972 if (i != 0) /* head page cleared above */
1973 __ClearPageReserved(p);
1975 * Subtle and very unlikely
1977 * Gigantic 'page allocators' such as memblock or cma will
1978 * return a set of pages with each page ref counted. We need
1979 * to turn this set of pages into a compound page with tail
1980 * page ref counts set to zero. Code such as speculative page
1981 * cache adding could take a ref on a 'to be' tail page.
1982 * We need to respect any increased ref count, and only set
1983 * the ref count to zero if count is currently 1. If count
1984 * is not 1, we return an error. An error return indicates
1985 * the set of pages can not be converted to a gigantic page.
1986 * The caller who allocated the pages should then discard the
1987 * pages using the appropriate free interface.
1989 * In the case of demote, the ref count will be zero.
1992 if (!page_ref_freeze(p, 1)) {
1993 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 VM_BUG_ON_PAGE(page_count(p), p);
2000 set_compound_head(p, &folio->page);
2002 atomic_set(&folio->_entire_mapcount, -1);
2003 atomic_set(&folio->_nr_pages_mapped, 0);
2004 atomic_set(&folio->_pincount, 0);
2008 /* undo page modifications made above */
2009 for (j = 0; j < i; j++) {
2010 p = folio_page(folio, j);
2012 clear_compound_head(p);
2013 set_page_refcounted(p);
2015 /* need to clear PG_reserved on remaining tail pages */
2016 for (; j < nr_pages; j++) {
2017 p = folio_page(folio, j);
2018 __ClearPageReserved(p);
2020 folio_set_order(folio, 0);
2021 __folio_clear_head(folio);
2025 static bool prep_compound_gigantic_folio(struct folio *folio,
2028 return __prep_compound_gigantic_folio(folio, order, false);
2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2034 return __prep_compound_gigantic_folio(folio, order, true);
2038 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039 * transparent huge pages. See the PageTransHuge() documentation for more
2042 int PageHuge(struct page *page)
2044 struct folio *folio;
2046 if (!PageCompound(page))
2048 folio = page_folio(page);
2049 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2051 EXPORT_SYMBOL_GPL(PageHuge);
2054 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055 * normal or transparent huge pages.
2057 int PageHeadHuge(struct page *page_head)
2059 struct folio *folio = (struct folio *)page_head;
2060 if (!folio_test_large(folio))
2063 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2065 EXPORT_SYMBOL_GPL(PageHeadHuge);
2068 * Find and lock address space (mapping) in write mode.
2070 * Upon entry, the page is locked which means that page_mapping() is
2071 * stable. Due to locking order, we can only trylock_write. If we can
2072 * not get the lock, simply return NULL to caller.
2074 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076 struct address_space *mapping = page_mapping(hpage);
2081 if (i_mmap_trylock_write(mapping))
2087 pgoff_t hugetlb_basepage_index(struct page *page)
2089 struct page *page_head = compound_head(page);
2090 pgoff_t index = page_index(page_head);
2091 unsigned long compound_idx;
2093 if (compound_order(page_head) >= MAX_ORDER)
2094 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096 compound_idx = page - page_head;
2098 return (index << compound_order(page_head)) + compound_idx;
2101 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2102 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2103 nodemask_t *node_alloc_noretry)
2105 int order = huge_page_order(h);
2107 bool alloc_try_hard = true;
2111 * By default we always try hard to allocate the page with
2112 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2113 * a loop (to adjust global huge page counts) and previous allocation
2114 * failed, do not continue to try hard on the same node. Use the
2115 * node_alloc_noretry bitmap to manage this state information.
2117 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2118 alloc_try_hard = false;
2119 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121 gfp_mask |= __GFP_RETRY_MAYFAIL;
2122 if (nid == NUMA_NO_NODE)
2123 nid = numa_mem_id();
2125 page = __alloc_pages(gfp_mask, order, nid, nmask);
2127 /* Freeze head page */
2128 if (page && !page_ref_freeze(page, 1)) {
2129 __free_pages(page, order);
2130 if (retry) { /* retry once */
2134 /* WOW! twice in a row. */
2135 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2140 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141 * indicates an overall state change. Clear bit so that we resume
2142 * normal 'try hard' allocations.
2144 if (node_alloc_noretry && page && !alloc_try_hard)
2145 node_clear(nid, *node_alloc_noretry);
2148 * If we tried hard to get a page but failed, set bit so that
2149 * subsequent attempts will not try as hard until there is an
2150 * overall state change.
2152 if (node_alloc_noretry && !page && alloc_try_hard)
2153 node_set(nid, *node_alloc_noretry);
2156 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2160 __count_vm_event(HTLB_BUDDY_PGALLOC);
2161 return page_folio(page);
2165 * Common helper to allocate a fresh hugetlb page. All specific allocators
2166 * should use this function to get new hugetlb pages
2168 * Note that returned page is 'frozen': ref count of head page and all tail
2171 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2172 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2173 nodemask_t *node_alloc_noretry)
2175 struct folio *folio;
2179 if (hstate_is_gigantic(h))
2180 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2183 nid, nmask, node_alloc_noretry);
2186 if (hstate_is_gigantic(h)) {
2187 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189 * Rare failure to convert pages to compound page.
2190 * Free pages and try again - ONCE!
2192 free_gigantic_folio(folio, huge_page_order(h));
2200 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2206 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2209 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2210 nodemask_t *node_alloc_noretry)
2212 struct folio *folio;
2214 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2217 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2218 nodes_allowed, node_alloc_noretry);
2220 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2229 * Remove huge page from pool from next node to free. Attempt to keep
2230 * persistent huge pages more or less balanced over allowed nodes.
2231 * This routine only 'removes' the hugetlb page. The caller must make
2232 * an additional call to free the page to low level allocators.
2233 * Called with hugetlb_lock locked.
2235 static struct page *remove_pool_huge_page(struct hstate *h,
2236 nodemask_t *nodes_allowed,
2240 struct page *page = NULL;
2241 struct folio *folio;
2243 lockdep_assert_held(&hugetlb_lock);
2244 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246 * If we're returning unused surplus pages, only examine
2247 * nodes with surplus pages.
2249 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2250 !list_empty(&h->hugepage_freelists[node])) {
2251 page = list_entry(h->hugepage_freelists[node].next,
2253 folio = page_folio(page);
2254 remove_hugetlb_folio(h, folio, acct_surplus);
2263 * Dissolve a given free hugepage into free buddy pages. This function does
2264 * nothing for in-use hugepages and non-hugepages.
2265 * This function returns values like below:
2267 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2268 * when the system is under memory pressure and the feature of
2269 * freeing unused vmemmap pages associated with each hugetlb page
2271 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2272 * (allocated or reserved.)
2273 * 0: successfully dissolved free hugepages or the page is not a
2274 * hugepage (considered as already dissolved)
2276 int dissolve_free_huge_page(struct page *page)
2279 struct folio *folio = page_folio(page);
2282 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2283 if (!folio_test_hugetlb(folio))
2286 spin_lock_irq(&hugetlb_lock);
2287 if (!folio_test_hugetlb(folio)) {
2292 if (!folio_ref_count(folio)) {
2293 struct hstate *h = folio_hstate(folio);
2294 if (!available_huge_pages(h))
2298 * We should make sure that the page is already on the free list
2299 * when it is dissolved.
2301 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2302 spin_unlock_irq(&hugetlb_lock);
2306 * Theoretically, we should return -EBUSY when we
2307 * encounter this race. In fact, we have a chance
2308 * to successfully dissolve the page if we do a
2309 * retry. Because the race window is quite small.
2310 * If we seize this opportunity, it is an optimization
2311 * for increasing the success rate of dissolving page.
2316 remove_hugetlb_folio(h, folio, false);
2317 h->max_huge_pages--;
2318 spin_unlock_irq(&hugetlb_lock);
2321 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2322 * before freeing the page. update_and_free_hugtlb_folio will fail to
2323 * free the page if it can not allocate required vmemmap. We
2324 * need to adjust max_huge_pages if the page is not freed.
2325 * Attempt to allocate vmemmmap here so that we can take
2326 * appropriate action on failure.
2328 rc = hugetlb_vmemmap_restore(h, &folio->page);
2330 update_and_free_hugetlb_folio(h, folio, false);
2332 spin_lock_irq(&hugetlb_lock);
2333 add_hugetlb_folio(h, folio, false);
2334 h->max_huge_pages++;
2335 spin_unlock_irq(&hugetlb_lock);
2341 spin_unlock_irq(&hugetlb_lock);
2346 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2347 * make specified memory blocks removable from the system.
2348 * Note that this will dissolve a free gigantic hugepage completely, if any
2349 * part of it lies within the given range.
2350 * Also note that if dissolve_free_huge_page() returns with an error, all
2351 * free hugepages that were dissolved before that error are lost.
2353 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2361 if (!hugepages_supported())
2364 order = huge_page_order(&default_hstate);
2366 order = min(order, huge_page_order(h));
2368 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2369 page = pfn_to_page(pfn);
2370 rc = dissolve_free_huge_page(page);
2379 * Allocates a fresh surplus page from the page allocator.
2381 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2382 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2384 struct folio *folio = NULL;
2386 if (hstate_is_gigantic(h))
2389 spin_lock_irq(&hugetlb_lock);
2390 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392 spin_unlock_irq(&hugetlb_lock);
2394 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2398 spin_lock_irq(&hugetlb_lock);
2400 * We could have raced with the pool size change.
2401 * Double check that and simply deallocate the new page
2402 * if we would end up overcommiting the surpluses. Abuse
2403 * temporary page to workaround the nasty free_huge_page
2406 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2407 folio_set_hugetlb_temporary(folio);
2408 spin_unlock_irq(&hugetlb_lock);
2409 free_huge_page(&folio->page);
2413 h->surplus_huge_pages++;
2414 h->surplus_huge_pages_node[folio_nid(folio)]++;
2417 spin_unlock_irq(&hugetlb_lock);
2422 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2423 int nid, nodemask_t *nmask)
2425 struct folio *folio;
2427 if (hstate_is_gigantic(h))
2430 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2434 /* fresh huge pages are frozen */
2435 folio_ref_unfreeze(folio, 1);
2437 * We do not account these pages as surplus because they are only
2438 * temporary and will be released properly on the last reference
2440 folio_set_hugetlb_temporary(folio);
2446 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2449 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2450 struct vm_area_struct *vma, unsigned long addr)
2452 struct folio *folio = NULL;
2453 struct mempolicy *mpol;
2454 gfp_t gfp_mask = htlb_alloc_mask(h);
2456 nodemask_t *nodemask;
2458 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2459 if (mpol_is_preferred_many(mpol)) {
2460 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2463 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2465 /* Fallback to all nodes if page==NULL */
2470 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2471 mpol_cond_put(mpol);
2475 /* folio migration callback function */
2476 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2477 nodemask_t *nmask, gfp_t gfp_mask)
2479 spin_lock_irq(&hugetlb_lock);
2480 if (available_huge_pages(h)) {
2481 struct folio *folio;
2483 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2484 preferred_nid, nmask);
2486 spin_unlock_irq(&hugetlb_lock);
2490 spin_unlock_irq(&hugetlb_lock);
2492 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2495 /* mempolicy aware migration callback */
2496 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2497 unsigned long address)
2499 struct mempolicy *mpol;
2500 nodemask_t *nodemask;
2501 struct folio *folio;
2505 gfp_mask = htlb_alloc_mask(h);
2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2508 mpol_cond_put(mpol);
2514 * Increase the hugetlb pool such that it can accommodate a reservation
2517 static int gather_surplus_pages(struct hstate *h, long delta)
2518 __must_hold(&hugetlb_lock)
2520 LIST_HEAD(surplus_list);
2521 struct folio *folio;
2522 struct page *page, *tmp;
2525 long needed, allocated;
2526 bool alloc_ok = true;
2528 lockdep_assert_held(&hugetlb_lock);
2529 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2531 h->resv_huge_pages += delta;
2539 spin_unlock_irq(&hugetlb_lock);
2540 for (i = 0; i < needed; i++) {
2541 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2542 NUMA_NO_NODE, NULL);
2547 list_add(&folio->lru, &surplus_list);
2553 * After retaking hugetlb_lock, we need to recalculate 'needed'
2554 * because either resv_huge_pages or free_huge_pages may have changed.
2556 spin_lock_irq(&hugetlb_lock);
2557 needed = (h->resv_huge_pages + delta) -
2558 (h->free_huge_pages + allocated);
2563 * We were not able to allocate enough pages to
2564 * satisfy the entire reservation so we free what
2565 * we've allocated so far.
2570 * The surplus_list now contains _at_least_ the number of extra pages
2571 * needed to accommodate the reservation. Add the appropriate number
2572 * of pages to the hugetlb pool and free the extras back to the buddy
2573 * allocator. Commit the entire reservation here to prevent another
2574 * process from stealing the pages as they are added to the pool but
2575 * before they are reserved.
2577 needed += allocated;
2578 h->resv_huge_pages += delta;
2581 /* Free the needed pages to the hugetlb pool */
2582 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2585 /* Add the page to the hugetlb allocator */
2586 enqueue_hugetlb_folio(h, page_folio(page));
2589 spin_unlock_irq(&hugetlb_lock);
2592 * Free unnecessary surplus pages to the buddy allocator.
2593 * Pages have no ref count, call free_huge_page directly.
2595 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2596 free_huge_page(page);
2597 spin_lock_irq(&hugetlb_lock);
2603 * This routine has two main purposes:
2604 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2605 * in unused_resv_pages. This corresponds to the prior adjustments made
2606 * to the associated reservation map.
2607 * 2) Free any unused surplus pages that may have been allocated to satisfy
2608 * the reservation. As many as unused_resv_pages may be freed.
2610 static void return_unused_surplus_pages(struct hstate *h,
2611 unsigned long unused_resv_pages)
2613 unsigned long nr_pages;
2615 LIST_HEAD(page_list);
2617 lockdep_assert_held(&hugetlb_lock);
2618 /* Uncommit the reservation */
2619 h->resv_huge_pages -= unused_resv_pages;
2621 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2625 * Part (or even all) of the reservation could have been backed
2626 * by pre-allocated pages. Only free surplus pages.
2628 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2631 * We want to release as many surplus pages as possible, spread
2632 * evenly across all nodes with memory. Iterate across these nodes
2633 * until we can no longer free unreserved surplus pages. This occurs
2634 * when the nodes with surplus pages have no free pages.
2635 * remove_pool_huge_page() will balance the freed pages across the
2636 * on-line nodes with memory and will handle the hstate accounting.
2638 while (nr_pages--) {
2639 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2643 list_add(&page->lru, &page_list);
2647 spin_unlock_irq(&hugetlb_lock);
2648 update_and_free_pages_bulk(h, &page_list);
2649 spin_lock_irq(&hugetlb_lock);
2654 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2655 * are used by the huge page allocation routines to manage reservations.
2657 * vma_needs_reservation is called to determine if the huge page at addr
2658 * within the vma has an associated reservation. If a reservation is
2659 * needed, the value 1 is returned. The caller is then responsible for
2660 * managing the global reservation and subpool usage counts. After
2661 * the huge page has been allocated, vma_commit_reservation is called
2662 * to add the page to the reservation map. If the page allocation fails,
2663 * the reservation must be ended instead of committed. vma_end_reservation
2664 * is called in such cases.
2666 * In the normal case, vma_commit_reservation returns the same value
2667 * as the preceding vma_needs_reservation call. The only time this
2668 * is not the case is if a reserve map was changed between calls. It
2669 * is the responsibility of the caller to notice the difference and
2670 * take appropriate action.
2672 * vma_add_reservation is used in error paths where a reservation must
2673 * be restored when a newly allocated huge page must be freed. It is
2674 * to be called after calling vma_needs_reservation to determine if a
2675 * reservation exists.
2677 * vma_del_reservation is used in error paths where an entry in the reserve
2678 * map was created during huge page allocation and must be removed. It is to
2679 * be called after calling vma_needs_reservation to determine if a reservation
2682 enum vma_resv_mode {
2689 static long __vma_reservation_common(struct hstate *h,
2690 struct vm_area_struct *vma, unsigned long addr,
2691 enum vma_resv_mode mode)
2693 struct resv_map *resv;
2696 long dummy_out_regions_needed;
2698 resv = vma_resv_map(vma);
2702 idx = vma_hugecache_offset(h, vma, addr);
2704 case VMA_NEEDS_RESV:
2705 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2706 /* We assume that vma_reservation_* routines always operate on
2707 * 1 page, and that adding to resv map a 1 page entry can only
2708 * ever require 1 region.
2710 VM_BUG_ON(dummy_out_regions_needed != 1);
2712 case VMA_COMMIT_RESV:
2713 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2714 /* region_add calls of range 1 should never fail. */
2718 region_abort(resv, idx, idx + 1, 1);
2722 if (vma->vm_flags & VM_MAYSHARE) {
2723 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2724 /* region_add calls of range 1 should never fail. */
2727 region_abort(resv, idx, idx + 1, 1);
2728 ret = region_del(resv, idx, idx + 1);
2732 if (vma->vm_flags & VM_MAYSHARE) {
2733 region_abort(resv, idx, idx + 1, 1);
2734 ret = region_del(resv, idx, idx + 1);
2736 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2737 /* region_add calls of range 1 should never fail. */
2745 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2748 * We know private mapping must have HPAGE_RESV_OWNER set.
2750 * In most cases, reserves always exist for private mappings.
2751 * However, a file associated with mapping could have been
2752 * hole punched or truncated after reserves were consumed.
2753 * As subsequent fault on such a range will not use reserves.
2754 * Subtle - The reserve map for private mappings has the
2755 * opposite meaning than that of shared mappings. If NO
2756 * entry is in the reserve map, it means a reservation exists.
2757 * If an entry exists in the reserve map, it means the
2758 * reservation has already been consumed. As a result, the
2759 * return value of this routine is the opposite of the
2760 * value returned from reserve map manipulation routines above.
2769 static long vma_needs_reservation(struct hstate *h,
2770 struct vm_area_struct *vma, unsigned long addr)
2772 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2775 static long vma_commit_reservation(struct hstate *h,
2776 struct vm_area_struct *vma, unsigned long addr)
2778 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2781 static void vma_end_reservation(struct hstate *h,
2782 struct vm_area_struct *vma, unsigned long addr)
2784 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2787 static long vma_add_reservation(struct hstate *h,
2788 struct vm_area_struct *vma, unsigned long addr)
2790 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2793 static long vma_del_reservation(struct hstate *h,
2794 struct vm_area_struct *vma, unsigned long addr)
2796 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2800 * This routine is called to restore reservation information on error paths.
2801 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2802 * and the hugetlb mutex should remain held when calling this routine.
2804 * It handles two specific cases:
2805 * 1) A reservation was in place and the folio consumed the reservation.
2806 * hugetlb_restore_reserve is set in the folio.
2807 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2808 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2810 * In case 1, free_huge_page later in the error path will increment the
2811 * global reserve count. But, free_huge_page does not have enough context
2812 * to adjust the reservation map. This case deals primarily with private
2813 * mappings. Adjust the reserve map here to be consistent with global
2814 * reserve count adjustments to be made by free_huge_page. Make sure the
2815 * reserve map indicates there is a reservation present.
2817 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2819 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2820 unsigned long address, struct folio *folio)
2822 long rc = vma_needs_reservation(h, vma, address);
2824 if (folio_test_hugetlb_restore_reserve(folio)) {
2825 if (unlikely(rc < 0))
2827 * Rare out of memory condition in reserve map
2828 * manipulation. Clear hugetlb_restore_reserve so
2829 * that global reserve count will not be incremented
2830 * by free_huge_page. This will make it appear
2831 * as though the reservation for this folio was
2832 * consumed. This may prevent the task from
2833 * faulting in the folio at a later time. This
2834 * is better than inconsistent global huge page
2835 * accounting of reserve counts.
2837 folio_clear_hugetlb_restore_reserve(folio);
2839 (void)vma_add_reservation(h, vma, address);
2841 vma_end_reservation(h, vma, address);
2845 * This indicates there is an entry in the reserve map
2846 * not added by alloc_hugetlb_folio. We know it was added
2847 * before the alloc_hugetlb_folio call, otherwise
2848 * hugetlb_restore_reserve would be set on the folio.
2849 * Remove the entry so that a subsequent allocation
2850 * does not consume a reservation.
2852 rc = vma_del_reservation(h, vma, address);
2855 * VERY rare out of memory condition. Since
2856 * we can not delete the entry, set
2857 * hugetlb_restore_reserve so that the reserve
2858 * count will be incremented when the folio
2859 * is freed. This reserve will be consumed
2860 * on a subsequent allocation.
2862 folio_set_hugetlb_restore_reserve(folio);
2863 } else if (rc < 0) {
2865 * Rare out of memory condition from
2866 * vma_needs_reservation call. Memory allocation is
2867 * only attempted if a new entry is needed. Therefore,
2868 * this implies there is not an entry in the
2871 * For shared mappings, no entry in the map indicates
2872 * no reservation. We are done.
2874 if (!(vma->vm_flags & VM_MAYSHARE))
2876 * For private mappings, no entry indicates
2877 * a reservation is present. Since we can
2878 * not add an entry, set hugetlb_restore_reserve
2879 * on the folio so reserve count will be
2880 * incremented when freed. This reserve will
2881 * be consumed on a subsequent allocation.
2883 folio_set_hugetlb_restore_reserve(folio);
2886 * No reservation present, do nothing
2888 vma_end_reservation(h, vma, address);
2893 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2895 * @h: struct hstate old page belongs to
2896 * @old_folio: Old folio to dissolve
2897 * @list: List to isolate the page in case we need to
2898 * Returns 0 on success, otherwise negated error.
2900 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2901 struct folio *old_folio, struct list_head *list)
2903 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2904 int nid = folio_nid(old_folio);
2905 struct folio *new_folio;
2909 * Before dissolving the folio, we need to allocate a new one for the
2910 * pool to remain stable. Here, we allocate the folio and 'prep' it
2911 * by doing everything but actually updating counters and adding to
2912 * the pool. This simplifies and let us do most of the processing
2915 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2918 __prep_new_hugetlb_folio(h, new_folio);
2921 spin_lock_irq(&hugetlb_lock);
2922 if (!folio_test_hugetlb(old_folio)) {
2924 * Freed from under us. Drop new_folio too.
2927 } else if (folio_ref_count(old_folio)) {
2931 * Someone has grabbed the folio, try to isolate it here.
2932 * Fail with -EBUSY if not possible.
2934 spin_unlock_irq(&hugetlb_lock);
2935 isolated = isolate_hugetlb(old_folio, list);
2936 ret = isolated ? 0 : -EBUSY;
2937 spin_lock_irq(&hugetlb_lock);
2939 } else if (!folio_test_hugetlb_freed(old_folio)) {
2941 * Folio's refcount is 0 but it has not been enqueued in the
2942 * freelist yet. Race window is small, so we can succeed here if
2945 spin_unlock_irq(&hugetlb_lock);
2950 * Ok, old_folio is still a genuine free hugepage. Remove it from
2951 * the freelist and decrease the counters. These will be
2952 * incremented again when calling __prep_account_new_huge_page()
2953 * and enqueue_hugetlb_folio() for new_folio. The counters will
2954 * remain stable since this happens under the lock.
2956 remove_hugetlb_folio(h, old_folio, false);
2959 * Ref count on new_folio is already zero as it was dropped
2960 * earlier. It can be directly added to the pool free list.
2962 __prep_account_new_huge_page(h, nid);
2963 enqueue_hugetlb_folio(h, new_folio);
2966 * Folio has been replaced, we can safely free the old one.
2968 spin_unlock_irq(&hugetlb_lock);
2969 update_and_free_hugetlb_folio(h, old_folio, false);
2975 spin_unlock_irq(&hugetlb_lock);
2976 /* Folio has a zero ref count, but needs a ref to be freed */
2977 folio_ref_unfreeze(new_folio, 1);
2978 update_and_free_hugetlb_folio(h, new_folio, false);
2983 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2986 struct folio *folio = page_folio(page);
2990 * The page might have been dissolved from under our feet, so make sure
2991 * to carefully check the state under the lock.
2992 * Return success when racing as if we dissolved the page ourselves.
2994 spin_lock_irq(&hugetlb_lock);
2995 if (folio_test_hugetlb(folio)) {
2996 h = folio_hstate(folio);
2998 spin_unlock_irq(&hugetlb_lock);
3001 spin_unlock_irq(&hugetlb_lock);
3004 * Fence off gigantic pages as there is a cyclic dependency between
3005 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3006 * of bailing out right away without further retrying.
3008 if (hstate_is_gigantic(h))
3011 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3013 else if (!folio_ref_count(folio))
3014 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3019 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3020 unsigned long addr, int avoid_reserve)
3022 struct hugepage_subpool *spool = subpool_vma(vma);
3023 struct hstate *h = hstate_vma(vma);
3024 struct folio *folio;
3025 long map_chg, map_commit;
3028 struct hugetlb_cgroup *h_cg = NULL;
3029 bool deferred_reserve;
3031 idx = hstate_index(h);
3033 * Examine the region/reserve map to determine if the process
3034 * has a reservation for the page to be allocated. A return
3035 * code of zero indicates a reservation exists (no change).
3037 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3039 return ERR_PTR(-ENOMEM);
3042 * Processes that did not create the mapping will have no
3043 * reserves as indicated by the region/reserve map. Check
3044 * that the allocation will not exceed the subpool limit.
3045 * Allocations for MAP_NORESERVE mappings also need to be
3046 * checked against any subpool limit.
3048 if (map_chg || avoid_reserve) {
3049 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3051 vma_end_reservation(h, vma, addr);
3052 return ERR_PTR(-ENOSPC);
3056 * Even though there was no reservation in the region/reserve
3057 * map, there could be reservations associated with the
3058 * subpool that can be used. This would be indicated if the
3059 * return value of hugepage_subpool_get_pages() is zero.
3060 * However, if avoid_reserve is specified we still avoid even
3061 * the subpool reservations.
3067 /* If this allocation is not consuming a reservation, charge it now.
3069 deferred_reserve = map_chg || avoid_reserve;
3070 if (deferred_reserve) {
3071 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3072 idx, pages_per_huge_page(h), &h_cg);
3074 goto out_subpool_put;
3077 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3079 goto out_uncharge_cgroup_reservation;
3081 spin_lock_irq(&hugetlb_lock);
3083 * glb_chg is passed to indicate whether or not a page must be taken
3084 * from the global free pool (global change). gbl_chg == 0 indicates
3085 * a reservation exists for the allocation.
3087 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3089 spin_unlock_irq(&hugetlb_lock);
3090 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3092 goto out_uncharge_cgroup;
3093 spin_lock_irq(&hugetlb_lock);
3094 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3095 folio_set_hugetlb_restore_reserve(folio);
3096 h->resv_huge_pages--;
3098 list_add(&folio->lru, &h->hugepage_activelist);
3099 folio_ref_unfreeze(folio, 1);
3103 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3104 /* If allocation is not consuming a reservation, also store the
3105 * hugetlb_cgroup pointer on the page.
3107 if (deferred_reserve) {
3108 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3112 spin_unlock_irq(&hugetlb_lock);
3114 hugetlb_set_folio_subpool(folio, spool);
3116 map_commit = vma_commit_reservation(h, vma, addr);
3117 if (unlikely(map_chg > map_commit)) {
3119 * The page was added to the reservation map between
3120 * vma_needs_reservation and vma_commit_reservation.
3121 * This indicates a race with hugetlb_reserve_pages.
3122 * Adjust for the subpool count incremented above AND
3123 * in hugetlb_reserve_pages for the same page. Also,
3124 * the reservation count added in hugetlb_reserve_pages
3125 * no longer applies.
3129 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3130 hugetlb_acct_memory(h, -rsv_adjust);
3131 if (deferred_reserve)
3132 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3133 pages_per_huge_page(h), folio);
3137 out_uncharge_cgroup:
3138 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3139 out_uncharge_cgroup_reservation:
3140 if (deferred_reserve)
3141 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3144 if (map_chg || avoid_reserve)
3145 hugepage_subpool_put_pages(spool, 1);
3146 vma_end_reservation(h, vma, addr);
3147 return ERR_PTR(-ENOSPC);
3150 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3151 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3152 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3154 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3157 /* do node specific alloc */
3158 if (nid != NUMA_NO_NODE) {
3159 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3160 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3165 /* allocate from next node when distributing huge pages */
3166 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3167 m = memblock_alloc_try_nid_raw(
3168 huge_page_size(h), huge_page_size(h),
3169 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3171 * Use the beginning of the huge page to store the
3172 * huge_bootmem_page struct (until gather_bootmem
3173 * puts them into the mem_map).
3181 /* Put them into a private list first because mem_map is not up yet */
3182 INIT_LIST_HEAD(&m->list);
3183 list_add(&m->list, &huge_boot_pages);
3189 * Put bootmem huge pages into the standard lists after mem_map is up.
3190 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3192 static void __init gather_bootmem_prealloc(void)
3194 struct huge_bootmem_page *m;
3196 list_for_each_entry(m, &huge_boot_pages, list) {
3197 struct page *page = virt_to_page(m);
3198 struct folio *folio = page_folio(page);
3199 struct hstate *h = m->hstate;
3201 VM_BUG_ON(!hstate_is_gigantic(h));
3202 WARN_ON(folio_ref_count(folio) != 1);
3203 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3204 WARN_ON(folio_test_reserved(folio));
3205 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3206 free_huge_page(page); /* add to the hugepage allocator */
3208 /* VERY unlikely inflated ref count on a tail page */
3209 free_gigantic_folio(folio, huge_page_order(h));
3213 * We need to restore the 'stolen' pages to totalram_pages
3214 * in order to fix confusing memory reports from free(1) and
3215 * other side-effects, like CommitLimit going negative.
3217 adjust_managed_page_count(page, pages_per_huge_page(h));
3221 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3226 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3227 if (hstate_is_gigantic(h)) {
3228 if (!alloc_bootmem_huge_page(h, nid))
3231 struct folio *folio;
3232 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3234 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3235 &node_states[N_MEMORY], NULL);
3238 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3242 if (i == h->max_huge_pages_node[nid])
3245 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3246 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3247 h->max_huge_pages_node[nid], buf, nid, i);
3248 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3249 h->max_huge_pages_node[nid] = i;
3252 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3255 nodemask_t *node_alloc_noretry;
3256 bool node_specific_alloc = false;
3258 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3259 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3260 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3264 /* do node specific alloc */
3265 for_each_online_node(i) {
3266 if (h->max_huge_pages_node[i] > 0) {
3267 hugetlb_hstate_alloc_pages_onenode(h, i);
3268 node_specific_alloc = true;
3272 if (node_specific_alloc)
3275 /* below will do all node balanced alloc */
3276 if (!hstate_is_gigantic(h)) {
3278 * Bit mask controlling how hard we retry per-node allocations.
3279 * Ignore errors as lower level routines can deal with
3280 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3281 * time, we are likely in bigger trouble.
3283 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3286 /* allocations done at boot time */
3287 node_alloc_noretry = NULL;
3290 /* bit mask controlling how hard we retry per-node allocations */
3291 if (node_alloc_noretry)
3292 nodes_clear(*node_alloc_noretry);
3294 for (i = 0; i < h->max_huge_pages; ++i) {
3295 if (hstate_is_gigantic(h)) {
3296 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3298 } else if (!alloc_pool_huge_page(h,
3299 &node_states[N_MEMORY],
3300 node_alloc_noretry))
3304 if (i < h->max_huge_pages) {
3307 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3308 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3309 h->max_huge_pages, buf, i);
3310 h->max_huge_pages = i;
3312 kfree(node_alloc_noretry);
3315 static void __init hugetlb_init_hstates(void)
3317 struct hstate *h, *h2;
3319 for_each_hstate(h) {
3320 /* oversize hugepages were init'ed in early boot */
3321 if (!hstate_is_gigantic(h))
3322 hugetlb_hstate_alloc_pages(h);
3325 * Set demote order for each hstate. Note that
3326 * h->demote_order is initially 0.
3327 * - We can not demote gigantic pages if runtime freeing
3328 * is not supported, so skip this.
3329 * - If CMA allocation is possible, we can not demote
3330 * HUGETLB_PAGE_ORDER or smaller size pages.
3332 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3334 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3336 for_each_hstate(h2) {
3339 if (h2->order < h->order &&
3340 h2->order > h->demote_order)
3341 h->demote_order = h2->order;
3346 static void __init report_hugepages(void)
3350 for_each_hstate(h) {
3353 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3354 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3355 buf, h->free_huge_pages);
3356 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3357 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3361 #ifdef CONFIG_HIGHMEM
3362 static void try_to_free_low(struct hstate *h, unsigned long count,
3363 nodemask_t *nodes_allowed)
3366 LIST_HEAD(page_list);
3368 lockdep_assert_held(&hugetlb_lock);
3369 if (hstate_is_gigantic(h))
3373 * Collect pages to be freed on a list, and free after dropping lock
3375 for_each_node_mask(i, *nodes_allowed) {
3376 struct page *page, *next;
3377 struct list_head *freel = &h->hugepage_freelists[i];
3378 list_for_each_entry_safe(page, next, freel, lru) {
3379 if (count >= h->nr_huge_pages)
3381 if (PageHighMem(page))
3383 remove_hugetlb_folio(h, page_folio(page), false);
3384 list_add(&page->lru, &page_list);
3389 spin_unlock_irq(&hugetlb_lock);
3390 update_and_free_pages_bulk(h, &page_list);
3391 spin_lock_irq(&hugetlb_lock);
3394 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3395 nodemask_t *nodes_allowed)
3401 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3402 * balanced by operating on them in a round-robin fashion.
3403 * Returns 1 if an adjustment was made.
3405 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3410 lockdep_assert_held(&hugetlb_lock);
3411 VM_BUG_ON(delta != -1 && delta != 1);
3414 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3415 if (h->surplus_huge_pages_node[node])
3419 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3420 if (h->surplus_huge_pages_node[node] <
3421 h->nr_huge_pages_node[node])
3428 h->surplus_huge_pages += delta;
3429 h->surplus_huge_pages_node[node] += delta;
3433 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3434 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3435 nodemask_t *nodes_allowed)
3437 unsigned long min_count, ret;
3439 LIST_HEAD(page_list);
3440 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3443 * Bit mask controlling how hard we retry per-node allocations.
3444 * If we can not allocate the bit mask, do not attempt to allocate
3445 * the requested huge pages.
3447 if (node_alloc_noretry)
3448 nodes_clear(*node_alloc_noretry);
3453 * resize_lock mutex prevents concurrent adjustments to number of
3454 * pages in hstate via the proc/sysfs interfaces.
3456 mutex_lock(&h->resize_lock);
3457 flush_free_hpage_work(h);
3458 spin_lock_irq(&hugetlb_lock);
3461 * Check for a node specific request.
3462 * Changing node specific huge page count may require a corresponding
3463 * change to the global count. In any case, the passed node mask
3464 * (nodes_allowed) will restrict alloc/free to the specified node.
3466 if (nid != NUMA_NO_NODE) {
3467 unsigned long old_count = count;
3469 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3471 * User may have specified a large count value which caused the
3472 * above calculation to overflow. In this case, they wanted
3473 * to allocate as many huge pages as possible. Set count to
3474 * largest possible value to align with their intention.
3476 if (count < old_count)
3481 * Gigantic pages runtime allocation depend on the capability for large
3482 * page range allocation.
3483 * If the system does not provide this feature, return an error when
3484 * the user tries to allocate gigantic pages but let the user free the
3485 * boottime allocated gigantic pages.
3487 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3488 if (count > persistent_huge_pages(h)) {
3489 spin_unlock_irq(&hugetlb_lock);
3490 mutex_unlock(&h->resize_lock);
3491 NODEMASK_FREE(node_alloc_noretry);
3494 /* Fall through to decrease pool */
3498 * Increase the pool size
3499 * First take pages out of surplus state. Then make up the
3500 * remaining difference by allocating fresh huge pages.
3502 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3503 * to convert a surplus huge page to a normal huge page. That is
3504 * not critical, though, it just means the overall size of the
3505 * pool might be one hugepage larger than it needs to be, but
3506 * within all the constraints specified by the sysctls.
3508 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3509 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3513 while (count > persistent_huge_pages(h)) {
3515 * If this allocation races such that we no longer need the
3516 * page, free_huge_page will handle it by freeing the page
3517 * and reducing the surplus.
3519 spin_unlock_irq(&hugetlb_lock);
3521 /* yield cpu to avoid soft lockup */
3524 ret = alloc_pool_huge_page(h, nodes_allowed,
3525 node_alloc_noretry);
3526 spin_lock_irq(&hugetlb_lock);
3530 /* Bail for signals. Probably ctrl-c from user */
3531 if (signal_pending(current))
3536 * Decrease the pool size
3537 * First return free pages to the buddy allocator (being careful
3538 * to keep enough around to satisfy reservations). Then place
3539 * pages into surplus state as needed so the pool will shrink
3540 * to the desired size as pages become free.
3542 * By placing pages into the surplus state independent of the
3543 * overcommit value, we are allowing the surplus pool size to
3544 * exceed overcommit. There are few sane options here. Since
3545 * alloc_surplus_hugetlb_folio() is checking the global counter,
3546 * though, we'll note that we're not allowed to exceed surplus
3547 * and won't grow the pool anywhere else. Not until one of the
3548 * sysctls are changed, or the surplus pages go out of use.
3550 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3551 min_count = max(count, min_count);
3552 try_to_free_low(h, min_count, nodes_allowed);
3555 * Collect pages to be removed on list without dropping lock
3557 while (min_count < persistent_huge_pages(h)) {
3558 page = remove_pool_huge_page(h, nodes_allowed, 0);
3562 list_add(&page->lru, &page_list);
3564 /* free the pages after dropping lock */
3565 spin_unlock_irq(&hugetlb_lock);
3566 update_and_free_pages_bulk(h, &page_list);
3567 flush_free_hpage_work(h);
3568 spin_lock_irq(&hugetlb_lock);
3570 while (count < persistent_huge_pages(h)) {
3571 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3575 h->max_huge_pages = persistent_huge_pages(h);
3576 spin_unlock_irq(&hugetlb_lock);
3577 mutex_unlock(&h->resize_lock);
3579 NODEMASK_FREE(node_alloc_noretry);
3584 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3586 int i, nid = folio_nid(folio);
3587 struct hstate *target_hstate;
3588 struct page *subpage;
3589 struct folio *inner_folio;
3592 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3594 remove_hugetlb_folio_for_demote(h, folio, false);
3595 spin_unlock_irq(&hugetlb_lock);
3597 rc = hugetlb_vmemmap_restore(h, &folio->page);
3599 /* Allocation of vmemmmap failed, we can not demote folio */
3600 spin_lock_irq(&hugetlb_lock);
3601 folio_ref_unfreeze(folio, 1);
3602 add_hugetlb_folio(h, folio, false);
3607 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3608 * sizes as it will not ref count folios.
3610 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3613 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3614 * Without the mutex, pages added to target hstate could be marked
3617 * Note that we already hold h->resize_lock. To prevent deadlock,
3618 * use the convention of always taking larger size hstate mutex first.
3620 mutex_lock(&target_hstate->resize_lock);
3621 for (i = 0; i < pages_per_huge_page(h);
3622 i += pages_per_huge_page(target_hstate)) {
3623 subpage = folio_page(folio, i);
3624 inner_folio = page_folio(subpage);
3625 if (hstate_is_gigantic(target_hstate))
3626 prep_compound_gigantic_folio_for_demote(inner_folio,
3627 target_hstate->order);
3629 prep_compound_page(subpage, target_hstate->order);
3630 folio_change_private(inner_folio, NULL);
3631 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3632 free_huge_page(subpage);
3634 mutex_unlock(&target_hstate->resize_lock);
3636 spin_lock_irq(&hugetlb_lock);
3639 * Not absolutely necessary, but for consistency update max_huge_pages
3640 * based on pool changes for the demoted page.
3642 h->max_huge_pages--;
3643 target_hstate->max_huge_pages +=
3644 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3649 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3650 __must_hold(&hugetlb_lock)
3653 struct folio *folio;
3655 lockdep_assert_held(&hugetlb_lock);
3657 /* We should never get here if no demote order */
3658 if (!h->demote_order) {
3659 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3660 return -EINVAL; /* internal error */
3663 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3664 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3665 if (folio_test_hwpoison(folio))
3667 return demote_free_hugetlb_folio(h, folio);
3672 * Only way to get here is if all pages on free lists are poisoned.
3673 * Return -EBUSY so that caller will not retry.
3678 #define HSTATE_ATTR_RO(_name) \
3679 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3681 #define HSTATE_ATTR_WO(_name) \
3682 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3684 #define HSTATE_ATTR(_name) \
3685 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3687 static struct kobject *hugepages_kobj;
3688 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3690 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3692 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3696 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3697 if (hstate_kobjs[i] == kobj) {
3699 *nidp = NUMA_NO_NODE;
3703 return kobj_to_node_hstate(kobj, nidp);
3706 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3707 struct kobj_attribute *attr, char *buf)
3710 unsigned long nr_huge_pages;
3713 h = kobj_to_hstate(kobj, &nid);
3714 if (nid == NUMA_NO_NODE)
3715 nr_huge_pages = h->nr_huge_pages;
3717 nr_huge_pages = h->nr_huge_pages_node[nid];
3719 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3722 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3723 struct hstate *h, int nid,
3724 unsigned long count, size_t len)
3727 nodemask_t nodes_allowed, *n_mask;
3729 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3732 if (nid == NUMA_NO_NODE) {
3734 * global hstate attribute
3736 if (!(obey_mempolicy &&
3737 init_nodemask_of_mempolicy(&nodes_allowed)))
3738 n_mask = &node_states[N_MEMORY];
3740 n_mask = &nodes_allowed;
3743 * Node specific request. count adjustment happens in
3744 * set_max_huge_pages() after acquiring hugetlb_lock.
3746 init_nodemask_of_node(&nodes_allowed, nid);
3747 n_mask = &nodes_allowed;
3750 err = set_max_huge_pages(h, count, nid, n_mask);
3752 return err ? err : len;
3755 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3756 struct kobject *kobj, const char *buf,
3760 unsigned long count;
3764 err = kstrtoul(buf, 10, &count);
3768 h = kobj_to_hstate(kobj, &nid);
3769 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3772 static ssize_t nr_hugepages_show(struct kobject *kobj,
3773 struct kobj_attribute *attr, char *buf)
3775 return nr_hugepages_show_common(kobj, attr, buf);
3778 static ssize_t nr_hugepages_store(struct kobject *kobj,
3779 struct kobj_attribute *attr, const char *buf, size_t len)
3781 return nr_hugepages_store_common(false, kobj, buf, len);
3783 HSTATE_ATTR(nr_hugepages);
3788 * hstate attribute for optionally mempolicy-based constraint on persistent
3789 * huge page alloc/free.
3791 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3792 struct kobj_attribute *attr,
3795 return nr_hugepages_show_common(kobj, attr, buf);
3798 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3799 struct kobj_attribute *attr, const char *buf, size_t len)
3801 return nr_hugepages_store_common(true, kobj, buf, len);
3803 HSTATE_ATTR(nr_hugepages_mempolicy);
3807 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3808 struct kobj_attribute *attr, char *buf)
3810 struct hstate *h = kobj_to_hstate(kobj, NULL);
3811 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3814 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3815 struct kobj_attribute *attr, const char *buf, size_t count)
3818 unsigned long input;
3819 struct hstate *h = kobj_to_hstate(kobj, NULL);
3821 if (hstate_is_gigantic(h))
3824 err = kstrtoul(buf, 10, &input);
3828 spin_lock_irq(&hugetlb_lock);
3829 h->nr_overcommit_huge_pages = input;
3830 spin_unlock_irq(&hugetlb_lock);
3834 HSTATE_ATTR(nr_overcommit_hugepages);
3836 static ssize_t free_hugepages_show(struct kobject *kobj,
3837 struct kobj_attribute *attr, char *buf)
3840 unsigned long free_huge_pages;
3843 h = kobj_to_hstate(kobj, &nid);
3844 if (nid == NUMA_NO_NODE)
3845 free_huge_pages = h->free_huge_pages;
3847 free_huge_pages = h->free_huge_pages_node[nid];
3849 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3851 HSTATE_ATTR_RO(free_hugepages);
3853 static ssize_t resv_hugepages_show(struct kobject *kobj,
3854 struct kobj_attribute *attr, char *buf)
3856 struct hstate *h = kobj_to_hstate(kobj, NULL);
3857 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3859 HSTATE_ATTR_RO(resv_hugepages);
3861 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3862 struct kobj_attribute *attr, char *buf)
3865 unsigned long surplus_huge_pages;
3868 h = kobj_to_hstate(kobj, &nid);
3869 if (nid == NUMA_NO_NODE)
3870 surplus_huge_pages = h->surplus_huge_pages;
3872 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3874 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3876 HSTATE_ATTR_RO(surplus_hugepages);
3878 static ssize_t demote_store(struct kobject *kobj,
3879 struct kobj_attribute *attr, const char *buf, size_t len)
3881 unsigned long nr_demote;
3882 unsigned long nr_available;
3883 nodemask_t nodes_allowed, *n_mask;
3888 err = kstrtoul(buf, 10, &nr_demote);
3891 h = kobj_to_hstate(kobj, &nid);
3893 if (nid != NUMA_NO_NODE) {
3894 init_nodemask_of_node(&nodes_allowed, nid);
3895 n_mask = &nodes_allowed;
3897 n_mask = &node_states[N_MEMORY];
3900 /* Synchronize with other sysfs operations modifying huge pages */
3901 mutex_lock(&h->resize_lock);
3902 spin_lock_irq(&hugetlb_lock);
3906 * Check for available pages to demote each time thorough the
3907 * loop as demote_pool_huge_page will drop hugetlb_lock.
3909 if (nid != NUMA_NO_NODE)
3910 nr_available = h->free_huge_pages_node[nid];
3912 nr_available = h->free_huge_pages;
3913 nr_available -= h->resv_huge_pages;
3917 err = demote_pool_huge_page(h, n_mask);
3924 spin_unlock_irq(&hugetlb_lock);
3925 mutex_unlock(&h->resize_lock);
3931 HSTATE_ATTR_WO(demote);
3933 static ssize_t demote_size_show(struct kobject *kobj,
3934 struct kobj_attribute *attr, char *buf)
3936 struct hstate *h = kobj_to_hstate(kobj, NULL);
3937 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3939 return sysfs_emit(buf, "%lukB\n", demote_size);
3942 static ssize_t demote_size_store(struct kobject *kobj,
3943 struct kobj_attribute *attr,
3944 const char *buf, size_t count)
3946 struct hstate *h, *demote_hstate;
3947 unsigned long demote_size;
3948 unsigned int demote_order;
3950 demote_size = (unsigned long)memparse(buf, NULL);
3952 demote_hstate = size_to_hstate(demote_size);
3955 demote_order = demote_hstate->order;
3956 if (demote_order < HUGETLB_PAGE_ORDER)
3959 /* demote order must be smaller than hstate order */
3960 h = kobj_to_hstate(kobj, NULL);
3961 if (demote_order >= h->order)
3964 /* resize_lock synchronizes access to demote size and writes */
3965 mutex_lock(&h->resize_lock);
3966 h->demote_order = demote_order;
3967 mutex_unlock(&h->resize_lock);
3971 HSTATE_ATTR(demote_size);
3973 static struct attribute *hstate_attrs[] = {
3974 &nr_hugepages_attr.attr,
3975 &nr_overcommit_hugepages_attr.attr,
3976 &free_hugepages_attr.attr,
3977 &resv_hugepages_attr.attr,
3978 &surplus_hugepages_attr.attr,
3980 &nr_hugepages_mempolicy_attr.attr,
3985 static const struct attribute_group hstate_attr_group = {
3986 .attrs = hstate_attrs,
3989 static struct attribute *hstate_demote_attrs[] = {
3990 &demote_size_attr.attr,
3995 static const struct attribute_group hstate_demote_attr_group = {
3996 .attrs = hstate_demote_attrs,
3999 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4000 struct kobject **hstate_kobjs,
4001 const struct attribute_group *hstate_attr_group)
4004 int hi = hstate_index(h);
4006 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4007 if (!hstate_kobjs[hi])
4010 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4012 kobject_put(hstate_kobjs[hi]);
4013 hstate_kobjs[hi] = NULL;
4017 if (h->demote_order) {
4018 retval = sysfs_create_group(hstate_kobjs[hi],
4019 &hstate_demote_attr_group);
4021 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4022 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4023 kobject_put(hstate_kobjs[hi]);
4024 hstate_kobjs[hi] = NULL;
4033 static bool hugetlb_sysfs_initialized __ro_after_init;
4036 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4037 * with node devices in node_devices[] using a parallel array. The array
4038 * index of a node device or _hstate == node id.
4039 * This is here to avoid any static dependency of the node device driver, in
4040 * the base kernel, on the hugetlb module.
4042 struct node_hstate {
4043 struct kobject *hugepages_kobj;
4044 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4046 static struct node_hstate node_hstates[MAX_NUMNODES];
4049 * A subset of global hstate attributes for node devices
4051 static struct attribute *per_node_hstate_attrs[] = {
4052 &nr_hugepages_attr.attr,
4053 &free_hugepages_attr.attr,
4054 &surplus_hugepages_attr.attr,
4058 static const struct attribute_group per_node_hstate_attr_group = {
4059 .attrs = per_node_hstate_attrs,
4063 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4064 * Returns node id via non-NULL nidp.
4066 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4070 for (nid = 0; nid < nr_node_ids; nid++) {
4071 struct node_hstate *nhs = &node_hstates[nid];
4073 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4074 if (nhs->hstate_kobjs[i] == kobj) {
4086 * Unregister hstate attributes from a single node device.
4087 * No-op if no hstate attributes attached.
4089 void hugetlb_unregister_node(struct node *node)
4092 struct node_hstate *nhs = &node_hstates[node->dev.id];
4094 if (!nhs->hugepages_kobj)
4095 return; /* no hstate attributes */
4097 for_each_hstate(h) {
4098 int idx = hstate_index(h);
4099 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4103 if (h->demote_order)
4104 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4105 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4106 kobject_put(hstate_kobj);
4107 nhs->hstate_kobjs[idx] = NULL;
4110 kobject_put(nhs->hugepages_kobj);
4111 nhs->hugepages_kobj = NULL;
4116 * Register hstate attributes for a single node device.
4117 * No-op if attributes already registered.
4119 void hugetlb_register_node(struct node *node)
4122 struct node_hstate *nhs = &node_hstates[node->dev.id];
4125 if (!hugetlb_sysfs_initialized)
4128 if (nhs->hugepages_kobj)
4129 return; /* already allocated */
4131 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4133 if (!nhs->hugepages_kobj)
4136 for_each_hstate(h) {
4137 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4139 &per_node_hstate_attr_group);
4141 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4142 h->name, node->dev.id);
4143 hugetlb_unregister_node(node);
4150 * hugetlb init time: register hstate attributes for all registered node
4151 * devices of nodes that have memory. All on-line nodes should have
4152 * registered their associated device by this time.
4154 static void __init hugetlb_register_all_nodes(void)
4158 for_each_online_node(nid)
4159 hugetlb_register_node(node_devices[nid]);
4161 #else /* !CONFIG_NUMA */
4163 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4171 static void hugetlb_register_all_nodes(void) { }
4176 static void __init hugetlb_cma_check(void);
4178 static inline __init void hugetlb_cma_check(void)
4183 static void __init hugetlb_sysfs_init(void)
4188 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4189 if (!hugepages_kobj)
4192 for_each_hstate(h) {
4193 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4194 hstate_kobjs, &hstate_attr_group);
4196 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4200 hugetlb_sysfs_initialized = true;
4202 hugetlb_register_all_nodes();
4205 static int __init hugetlb_init(void)
4209 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4212 if (!hugepages_supported()) {
4213 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4214 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4219 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4220 * architectures depend on setup being done here.
4222 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4223 if (!parsed_default_hugepagesz) {
4225 * If we did not parse a default huge page size, set
4226 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4227 * number of huge pages for this default size was implicitly
4228 * specified, set that here as well.
4229 * Note that the implicit setting will overwrite an explicit
4230 * setting. A warning will be printed in this case.
4232 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4233 if (default_hstate_max_huge_pages) {
4234 if (default_hstate.max_huge_pages) {
4237 string_get_size(huge_page_size(&default_hstate),
4238 1, STRING_UNITS_2, buf, 32);
4239 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4240 default_hstate.max_huge_pages, buf);
4241 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4242 default_hstate_max_huge_pages);
4244 default_hstate.max_huge_pages =
4245 default_hstate_max_huge_pages;
4247 for_each_online_node(i)
4248 default_hstate.max_huge_pages_node[i] =
4249 default_hugepages_in_node[i];
4253 hugetlb_cma_check();
4254 hugetlb_init_hstates();
4255 gather_bootmem_prealloc();
4258 hugetlb_sysfs_init();
4259 hugetlb_cgroup_file_init();
4262 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4264 num_fault_mutexes = 1;
4266 hugetlb_fault_mutex_table =
4267 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4269 BUG_ON(!hugetlb_fault_mutex_table);
4271 for (i = 0; i < num_fault_mutexes; i++)
4272 mutex_init(&hugetlb_fault_mutex_table[i]);
4275 subsys_initcall(hugetlb_init);
4277 /* Overwritten by architectures with more huge page sizes */
4278 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4280 return size == HPAGE_SIZE;
4283 void __init hugetlb_add_hstate(unsigned int order)
4288 if (size_to_hstate(PAGE_SIZE << order)) {
4291 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4293 h = &hstates[hugetlb_max_hstate++];
4294 mutex_init(&h->resize_lock);
4296 h->mask = ~(huge_page_size(h) - 1);
4297 for (i = 0; i < MAX_NUMNODES; ++i)
4298 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4299 INIT_LIST_HEAD(&h->hugepage_activelist);
4300 h->next_nid_to_alloc = first_memory_node;
4301 h->next_nid_to_free = first_memory_node;
4302 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4303 huge_page_size(h)/SZ_1K);
4308 bool __init __weak hugetlb_node_alloc_supported(void)
4313 static void __init hugepages_clear_pages_in_node(void)
4315 if (!hugetlb_max_hstate) {
4316 default_hstate_max_huge_pages = 0;
4317 memset(default_hugepages_in_node, 0,
4318 sizeof(default_hugepages_in_node));
4320 parsed_hstate->max_huge_pages = 0;
4321 memset(parsed_hstate->max_huge_pages_node, 0,
4322 sizeof(parsed_hstate->max_huge_pages_node));
4327 * hugepages command line processing
4328 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4329 * specification. If not, ignore the hugepages value. hugepages can also
4330 * be the first huge page command line option in which case it implicitly
4331 * specifies the number of huge pages for the default size.
4333 static int __init hugepages_setup(char *s)
4336 static unsigned long *last_mhp;
4337 int node = NUMA_NO_NODE;
4342 if (!parsed_valid_hugepagesz) {
4343 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4344 parsed_valid_hugepagesz = true;
4349 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4350 * yet, so this hugepages= parameter goes to the "default hstate".
4351 * Otherwise, it goes with the previously parsed hugepagesz or
4352 * default_hugepagesz.
4354 else if (!hugetlb_max_hstate)
4355 mhp = &default_hstate_max_huge_pages;
4357 mhp = &parsed_hstate->max_huge_pages;
4359 if (mhp == last_mhp) {
4360 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4366 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4368 /* Parameter is node format */
4369 if (p[count] == ':') {
4370 if (!hugetlb_node_alloc_supported()) {
4371 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4374 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4376 node = array_index_nospec(tmp, MAX_NUMNODES);
4378 /* Parse hugepages */
4379 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4381 if (!hugetlb_max_hstate)
4382 default_hugepages_in_node[node] = tmp;
4384 parsed_hstate->max_huge_pages_node[node] = tmp;
4386 /* Go to parse next node*/
4387 if (p[count] == ',')
4400 * Global state is always initialized later in hugetlb_init.
4401 * But we need to allocate gigantic hstates here early to still
4402 * use the bootmem allocator.
4404 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4405 hugetlb_hstate_alloc_pages(parsed_hstate);
4412 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4413 hugepages_clear_pages_in_node();
4416 __setup("hugepages=", hugepages_setup);
4419 * hugepagesz command line processing
4420 * A specific huge page size can only be specified once with hugepagesz.
4421 * hugepagesz is followed by hugepages on the command line. The global
4422 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4423 * hugepagesz argument was valid.
4425 static int __init hugepagesz_setup(char *s)
4430 parsed_valid_hugepagesz = false;
4431 size = (unsigned long)memparse(s, NULL);
4433 if (!arch_hugetlb_valid_size(size)) {
4434 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4438 h = size_to_hstate(size);
4441 * hstate for this size already exists. This is normally
4442 * an error, but is allowed if the existing hstate is the
4443 * default hstate. More specifically, it is only allowed if
4444 * the number of huge pages for the default hstate was not
4445 * previously specified.
4447 if (!parsed_default_hugepagesz || h != &default_hstate ||
4448 default_hstate.max_huge_pages) {
4449 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4454 * No need to call hugetlb_add_hstate() as hstate already
4455 * exists. But, do set parsed_hstate so that a following
4456 * hugepages= parameter will be applied to this hstate.
4459 parsed_valid_hugepagesz = true;
4463 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4464 parsed_valid_hugepagesz = true;
4467 __setup("hugepagesz=", hugepagesz_setup);
4470 * default_hugepagesz command line input
4471 * Only one instance of default_hugepagesz allowed on command line.
4473 static int __init default_hugepagesz_setup(char *s)
4478 parsed_valid_hugepagesz = false;
4479 if (parsed_default_hugepagesz) {
4480 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4484 size = (unsigned long)memparse(s, NULL);
4486 if (!arch_hugetlb_valid_size(size)) {
4487 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4491 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4492 parsed_valid_hugepagesz = true;
4493 parsed_default_hugepagesz = true;
4494 default_hstate_idx = hstate_index(size_to_hstate(size));
4497 * The number of default huge pages (for this size) could have been
4498 * specified as the first hugetlb parameter: hugepages=X. If so,
4499 * then default_hstate_max_huge_pages is set. If the default huge
4500 * page size is gigantic (>= MAX_ORDER), then the pages must be
4501 * allocated here from bootmem allocator.
4503 if (default_hstate_max_huge_pages) {
4504 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4505 for_each_online_node(i)
4506 default_hstate.max_huge_pages_node[i] =
4507 default_hugepages_in_node[i];
4508 if (hstate_is_gigantic(&default_hstate))
4509 hugetlb_hstate_alloc_pages(&default_hstate);
4510 default_hstate_max_huge_pages = 0;
4515 __setup("default_hugepagesz=", default_hugepagesz_setup);
4517 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4520 struct mempolicy *mpol = get_task_policy(current);
4523 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4524 * (from policy_nodemask) specifically for hugetlb case
4526 if (mpol->mode == MPOL_BIND &&
4527 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4528 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4529 return &mpol->nodes;
4534 static unsigned int allowed_mems_nr(struct hstate *h)
4537 unsigned int nr = 0;
4538 nodemask_t *mbind_nodemask;
4539 unsigned int *array = h->free_huge_pages_node;
4540 gfp_t gfp_mask = htlb_alloc_mask(h);
4542 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4543 for_each_node_mask(node, cpuset_current_mems_allowed) {
4544 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4551 #ifdef CONFIG_SYSCTL
4552 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4553 void *buffer, size_t *length,
4554 loff_t *ppos, unsigned long *out)
4556 struct ctl_table dup_table;
4559 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4560 * can duplicate the @table and alter the duplicate of it.
4563 dup_table.data = out;
4565 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4568 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4569 struct ctl_table *table, int write,
4570 void *buffer, size_t *length, loff_t *ppos)
4572 struct hstate *h = &default_hstate;
4573 unsigned long tmp = h->max_huge_pages;
4576 if (!hugepages_supported())
4579 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4585 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4586 NUMA_NO_NODE, tmp, *length);
4591 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4592 void *buffer, size_t *length, loff_t *ppos)
4595 return hugetlb_sysctl_handler_common(false, table, write,
4596 buffer, length, ppos);
4600 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4601 void *buffer, size_t *length, loff_t *ppos)
4603 return hugetlb_sysctl_handler_common(true, table, write,
4604 buffer, length, ppos);
4606 #endif /* CONFIG_NUMA */
4608 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4609 void *buffer, size_t *length, loff_t *ppos)
4611 struct hstate *h = &default_hstate;
4615 if (!hugepages_supported())
4618 tmp = h->nr_overcommit_huge_pages;
4620 if (write && hstate_is_gigantic(h))
4623 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4629 spin_lock_irq(&hugetlb_lock);
4630 h->nr_overcommit_huge_pages = tmp;
4631 spin_unlock_irq(&hugetlb_lock);
4637 #endif /* CONFIG_SYSCTL */
4639 void hugetlb_report_meminfo(struct seq_file *m)
4642 unsigned long total = 0;
4644 if (!hugepages_supported())
4647 for_each_hstate(h) {
4648 unsigned long count = h->nr_huge_pages;
4650 total += huge_page_size(h) * count;
4652 if (h == &default_hstate)
4654 "HugePages_Total: %5lu\n"
4655 "HugePages_Free: %5lu\n"
4656 "HugePages_Rsvd: %5lu\n"
4657 "HugePages_Surp: %5lu\n"
4658 "Hugepagesize: %8lu kB\n",
4662 h->surplus_huge_pages,
4663 huge_page_size(h) / SZ_1K);
4666 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4669 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4671 struct hstate *h = &default_hstate;
4673 if (!hugepages_supported())
4676 return sysfs_emit_at(buf, len,
4677 "Node %d HugePages_Total: %5u\n"
4678 "Node %d HugePages_Free: %5u\n"
4679 "Node %d HugePages_Surp: %5u\n",
4680 nid, h->nr_huge_pages_node[nid],
4681 nid, h->free_huge_pages_node[nid],
4682 nid, h->surplus_huge_pages_node[nid]);
4685 void hugetlb_show_meminfo_node(int nid)
4689 if (!hugepages_supported())
4693 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4695 h->nr_huge_pages_node[nid],
4696 h->free_huge_pages_node[nid],
4697 h->surplus_huge_pages_node[nid],
4698 huge_page_size(h) / SZ_1K);
4701 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4703 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4704 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4707 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4708 unsigned long hugetlb_total_pages(void)
4711 unsigned long nr_total_pages = 0;
4714 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4715 return nr_total_pages;
4718 static int hugetlb_acct_memory(struct hstate *h, long delta)
4725 spin_lock_irq(&hugetlb_lock);
4727 * When cpuset is configured, it breaks the strict hugetlb page
4728 * reservation as the accounting is done on a global variable. Such
4729 * reservation is completely rubbish in the presence of cpuset because
4730 * the reservation is not checked against page availability for the
4731 * current cpuset. Application can still potentially OOM'ed by kernel
4732 * with lack of free htlb page in cpuset that the task is in.
4733 * Attempt to enforce strict accounting with cpuset is almost
4734 * impossible (or too ugly) because cpuset is too fluid that
4735 * task or memory node can be dynamically moved between cpusets.
4737 * The change of semantics for shared hugetlb mapping with cpuset is
4738 * undesirable. However, in order to preserve some of the semantics,
4739 * we fall back to check against current free page availability as
4740 * a best attempt and hopefully to minimize the impact of changing
4741 * semantics that cpuset has.
4743 * Apart from cpuset, we also have memory policy mechanism that
4744 * also determines from which node the kernel will allocate memory
4745 * in a NUMA system. So similar to cpuset, we also should consider
4746 * the memory policy of the current task. Similar to the description
4750 if (gather_surplus_pages(h, delta) < 0)
4753 if (delta > allowed_mems_nr(h)) {
4754 return_unused_surplus_pages(h, delta);
4761 return_unused_surplus_pages(h, (unsigned long) -delta);
4764 spin_unlock_irq(&hugetlb_lock);
4768 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4770 struct resv_map *resv = vma_resv_map(vma);
4773 * HPAGE_RESV_OWNER indicates a private mapping.
4774 * This new VMA should share its siblings reservation map if present.
4775 * The VMA will only ever have a valid reservation map pointer where
4776 * it is being copied for another still existing VMA. As that VMA
4777 * has a reference to the reservation map it cannot disappear until
4778 * after this open call completes. It is therefore safe to take a
4779 * new reference here without additional locking.
4781 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4782 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4783 kref_get(&resv->refs);
4787 * vma_lock structure for sharable mappings is vma specific.
4788 * Clear old pointer (if copied via vm_area_dup) and allocate
4789 * new structure. Before clearing, make sure vma_lock is not
4792 if (vma->vm_flags & VM_MAYSHARE) {
4793 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4796 if (vma_lock->vma != vma) {
4797 vma->vm_private_data = NULL;
4798 hugetlb_vma_lock_alloc(vma);
4800 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4802 hugetlb_vma_lock_alloc(vma);
4806 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4808 struct hstate *h = hstate_vma(vma);
4809 struct resv_map *resv;
4810 struct hugepage_subpool *spool = subpool_vma(vma);
4811 unsigned long reserve, start, end;
4814 hugetlb_vma_lock_free(vma);
4816 resv = vma_resv_map(vma);
4817 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4820 start = vma_hugecache_offset(h, vma, vma->vm_start);
4821 end = vma_hugecache_offset(h, vma, vma->vm_end);
4823 reserve = (end - start) - region_count(resv, start, end);
4824 hugetlb_cgroup_uncharge_counter(resv, start, end);
4827 * Decrement reserve counts. The global reserve count may be
4828 * adjusted if the subpool has a minimum size.
4830 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4831 hugetlb_acct_memory(h, -gbl_reserve);
4834 kref_put(&resv->refs, resv_map_release);
4837 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4839 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4843 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4844 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4845 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4847 if (addr & ~PUD_MASK) {
4849 * hugetlb_vm_op_split is called right before we attempt to
4850 * split the VMA. We will need to unshare PMDs in the old and
4851 * new VMAs, so let's unshare before we split.
4853 unsigned long floor = addr & PUD_MASK;
4854 unsigned long ceil = floor + PUD_SIZE;
4856 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4857 hugetlb_unshare_pmds(vma, floor, ceil);
4863 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4865 return huge_page_size(hstate_vma(vma));
4869 * We cannot handle pagefaults against hugetlb pages at all. They cause
4870 * handle_mm_fault() to try to instantiate regular-sized pages in the
4871 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4874 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4881 * When a new function is introduced to vm_operations_struct and added
4882 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4883 * This is because under System V memory model, mappings created via
4884 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4885 * their original vm_ops are overwritten with shm_vm_ops.
4887 const struct vm_operations_struct hugetlb_vm_ops = {
4888 .fault = hugetlb_vm_op_fault,
4889 .open = hugetlb_vm_op_open,
4890 .close = hugetlb_vm_op_close,
4891 .may_split = hugetlb_vm_op_split,
4892 .pagesize = hugetlb_vm_op_pagesize,
4895 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4899 unsigned int shift = huge_page_shift(hstate_vma(vma));
4902 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4903 vma->vm_page_prot)));
4905 entry = huge_pte_wrprotect(mk_huge_pte(page,
4906 vma->vm_page_prot));
4908 entry = pte_mkyoung(entry);
4909 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4914 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4915 unsigned long address, pte_t *ptep)
4919 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4920 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4921 update_mmu_cache(vma, address, ptep);
4924 bool is_hugetlb_entry_migration(pte_t pte)
4928 if (huge_pte_none(pte) || pte_present(pte))
4930 swp = pte_to_swp_entry(pte);
4931 if (is_migration_entry(swp))
4937 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4941 if (huge_pte_none(pte) || pte_present(pte))
4943 swp = pte_to_swp_entry(pte);
4944 if (is_hwpoison_entry(swp))
4951 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4952 struct folio *new_folio)
4954 __folio_mark_uptodate(new_folio);
4955 hugepage_add_new_anon_rmap(new_folio, vma, addr);
4956 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, &new_folio->page, 1));
4957 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4958 folio_set_hugetlb_migratable(new_folio);
4961 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4962 struct vm_area_struct *dst_vma,
4963 struct vm_area_struct *src_vma)
4965 pte_t *src_pte, *dst_pte, entry;
4966 struct page *ptepage;
4968 bool cow = is_cow_mapping(src_vma->vm_flags);
4969 struct hstate *h = hstate_vma(src_vma);
4970 unsigned long sz = huge_page_size(h);
4971 unsigned long npages = pages_per_huge_page(h);
4972 struct mmu_notifier_range range;
4973 unsigned long last_addr_mask;
4977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4980 mmu_notifier_invalidate_range_start(&range);
4981 mmap_assert_write_locked(src);
4982 raw_write_seqcount_begin(&src->write_protect_seq);
4985 * For shared mappings the vma lock must be held before
4986 * calling hugetlb_walk() in the src vma. Otherwise, the
4987 * returned ptep could go away if part of a shared pmd and
4988 * another thread calls huge_pmd_unshare.
4990 hugetlb_vma_lock_read(src_vma);
4993 last_addr_mask = hugetlb_mask_last_page(h);
4994 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4995 spinlock_t *src_ptl, *dst_ptl;
4996 src_pte = hugetlb_walk(src_vma, addr, sz);
4998 addr |= last_addr_mask;
5001 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5008 * If the pagetables are shared don't copy or take references.
5010 * dst_pte == src_pte is the common case of src/dest sharing.
5011 * However, src could have 'unshared' and dst shares with
5012 * another vma. So page_count of ptep page is checked instead
5013 * to reliably determine whether pte is shared.
5015 if (page_count(virt_to_page(dst_pte)) > 1) {
5016 addr |= last_addr_mask;
5020 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5021 src_ptl = huge_pte_lockptr(h, src, src_pte);
5022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5023 entry = huge_ptep_get(src_pte);
5025 if (huge_pte_none(entry)) {
5027 * Skip if src entry none.
5030 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5031 bool uffd_wp = huge_pte_uffd_wp(entry);
5033 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5034 entry = huge_pte_clear_uffd_wp(entry);
5035 set_huge_pte_at(dst, addr, dst_pte, entry);
5036 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5037 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5038 bool uffd_wp = huge_pte_uffd_wp(entry);
5040 if (!is_readable_migration_entry(swp_entry) && cow) {
5042 * COW mappings require pages in both
5043 * parent and child to be set to read.
5045 swp_entry = make_readable_migration_entry(
5046 swp_offset(swp_entry));
5047 entry = swp_entry_to_pte(swp_entry);
5048 if (userfaultfd_wp(src_vma) && uffd_wp)
5049 entry = huge_pte_mkuffd_wp(entry);
5050 set_huge_pte_at(src, addr, src_pte, entry);
5052 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5053 entry = huge_pte_clear_uffd_wp(entry);
5054 set_huge_pte_at(dst, addr, dst_pte, entry);
5055 } else if (unlikely(is_pte_marker(entry))) {
5056 /* No swap on hugetlb */
5058 is_swapin_error_entry(pte_to_swp_entry(entry)));
5060 * We copy the pte marker only if the dst vma has
5063 if (userfaultfd_wp(dst_vma))
5064 set_huge_pte_at(dst, addr, dst_pte, entry);
5066 entry = huge_ptep_get(src_pte);
5067 ptepage = pte_page(entry);
5071 * Failing to duplicate the anon rmap is a rare case
5072 * where we see pinned hugetlb pages while they're
5073 * prone to COW. We need to do the COW earlier during
5076 * When pre-allocating the page or copying data, we
5077 * need to be without the pgtable locks since we could
5078 * sleep during the process.
5080 if (!PageAnon(ptepage)) {
5081 page_dup_file_rmap(ptepage, true);
5082 } else if (page_try_dup_anon_rmap(ptepage, true,
5084 pte_t src_pte_old = entry;
5085 struct folio *new_folio;
5087 spin_unlock(src_ptl);
5088 spin_unlock(dst_ptl);
5089 /* Do not use reserve as it's private owned */
5090 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5091 if (IS_ERR(new_folio)) {
5093 ret = PTR_ERR(new_folio);
5096 copy_user_huge_page(&new_folio->page, ptepage, addr, dst_vma,
5100 /* Install the new hugetlb folio if src pte stable */
5101 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5102 src_ptl = huge_pte_lockptr(h, src, src_pte);
5103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5104 entry = huge_ptep_get(src_pte);
5105 if (!pte_same(src_pte_old, entry)) {
5106 restore_reserve_on_error(h, dst_vma, addr,
5108 folio_put(new_folio);
5109 /* huge_ptep of dst_pte won't change as in child */
5112 hugetlb_install_folio(dst_vma, dst_pte, addr, new_folio);
5113 spin_unlock(src_ptl);
5114 spin_unlock(dst_ptl);
5120 * No need to notify as we are downgrading page
5121 * table protection not changing it to point
5124 * See Documentation/mm/mmu_notifier.rst
5126 huge_ptep_set_wrprotect(src, addr, src_pte);
5127 entry = huge_pte_wrprotect(entry);
5130 set_huge_pte_at(dst, addr, dst_pte, entry);
5131 hugetlb_count_add(npages, dst);
5133 spin_unlock(src_ptl);
5134 spin_unlock(dst_ptl);
5138 raw_write_seqcount_end(&src->write_protect_seq);
5139 mmu_notifier_invalidate_range_end(&range);
5141 hugetlb_vma_unlock_read(src_vma);
5147 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5148 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5150 struct hstate *h = hstate_vma(vma);
5151 struct mm_struct *mm = vma->vm_mm;
5152 spinlock_t *src_ptl, *dst_ptl;
5155 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5156 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5159 * We don't have to worry about the ordering of src and dst ptlocks
5160 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5162 if (src_ptl != dst_ptl)
5163 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5165 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5166 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5168 if (src_ptl != dst_ptl)
5169 spin_unlock(src_ptl);
5170 spin_unlock(dst_ptl);
5173 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5174 struct vm_area_struct *new_vma,
5175 unsigned long old_addr, unsigned long new_addr,
5178 struct hstate *h = hstate_vma(vma);
5179 struct address_space *mapping = vma->vm_file->f_mapping;
5180 unsigned long sz = huge_page_size(h);
5181 struct mm_struct *mm = vma->vm_mm;
5182 unsigned long old_end = old_addr + len;
5183 unsigned long last_addr_mask;
5184 pte_t *src_pte, *dst_pte;
5185 struct mmu_notifier_range range;
5186 bool shared_pmd = false;
5188 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5190 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5192 * In case of shared PMDs, we should cover the maximum possible
5195 flush_cache_range(vma, range.start, range.end);
5197 mmu_notifier_invalidate_range_start(&range);
5198 last_addr_mask = hugetlb_mask_last_page(h);
5199 /* Prevent race with file truncation */
5200 hugetlb_vma_lock_write(vma);
5201 i_mmap_lock_write(mapping);
5202 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5203 src_pte = hugetlb_walk(vma, old_addr, sz);
5205 old_addr |= last_addr_mask;
5206 new_addr |= last_addr_mask;
5209 if (huge_pte_none(huge_ptep_get(src_pte)))
5212 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5214 old_addr |= last_addr_mask;
5215 new_addr |= last_addr_mask;
5219 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5223 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5227 flush_tlb_range(vma, range.start, range.end);
5229 flush_tlb_range(vma, old_end - len, old_end);
5230 mmu_notifier_invalidate_range_end(&range);
5231 i_mmap_unlock_write(mapping);
5232 hugetlb_vma_unlock_write(vma);
5234 return len + old_addr - old_end;
5237 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5238 unsigned long start, unsigned long end,
5239 struct page *ref_page, zap_flags_t zap_flags)
5241 struct mm_struct *mm = vma->vm_mm;
5242 unsigned long address;
5247 struct hstate *h = hstate_vma(vma);
5248 unsigned long sz = huge_page_size(h);
5249 unsigned long last_addr_mask;
5250 bool force_flush = false;
5252 WARN_ON(!is_vm_hugetlb_page(vma));
5253 BUG_ON(start & ~huge_page_mask(h));
5254 BUG_ON(end & ~huge_page_mask(h));
5257 * This is a hugetlb vma, all the pte entries should point
5260 tlb_change_page_size(tlb, sz);
5261 tlb_start_vma(tlb, vma);
5263 last_addr_mask = hugetlb_mask_last_page(h);
5265 for (; address < end; address += sz) {
5266 ptep = hugetlb_walk(vma, address, sz);
5268 address |= last_addr_mask;
5272 ptl = huge_pte_lock(h, mm, ptep);
5273 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5275 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5277 address |= last_addr_mask;
5281 pte = huge_ptep_get(ptep);
5282 if (huge_pte_none(pte)) {
5288 * Migrating hugepage or HWPoisoned hugepage is already
5289 * unmapped and its refcount is dropped, so just clear pte here.
5291 if (unlikely(!pte_present(pte))) {
5293 * If the pte was wr-protected by uffd-wp in any of the
5294 * swap forms, meanwhile the caller does not want to
5295 * drop the uffd-wp bit in this zap, then replace the
5296 * pte with a marker.
5298 if (pte_swp_uffd_wp_any(pte) &&
5299 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5300 set_huge_pte_at(mm, address, ptep,
5301 make_pte_marker(PTE_MARKER_UFFD_WP));
5303 huge_pte_clear(mm, address, ptep, sz);
5308 page = pte_page(pte);
5310 * If a reference page is supplied, it is because a specific
5311 * page is being unmapped, not a range. Ensure the page we
5312 * are about to unmap is the actual page of interest.
5315 if (page != ref_page) {
5320 * Mark the VMA as having unmapped its page so that
5321 * future faults in this VMA will fail rather than
5322 * looking like data was lost
5324 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5327 pte = huge_ptep_get_and_clear(mm, address, ptep);
5328 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5329 if (huge_pte_dirty(pte))
5330 set_page_dirty(page);
5331 /* Leave a uffd-wp pte marker if needed */
5332 if (huge_pte_uffd_wp(pte) &&
5333 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5334 set_huge_pte_at(mm, address, ptep,
5335 make_pte_marker(PTE_MARKER_UFFD_WP));
5336 hugetlb_count_sub(pages_per_huge_page(h), mm);
5337 page_remove_rmap(page, vma, true);
5340 tlb_remove_page_size(tlb, page, huge_page_size(h));
5342 * Bail out after unmapping reference page if supplied
5347 tlb_end_vma(tlb, vma);
5350 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5351 * could defer the flush until now, since by holding i_mmap_rwsem we
5352 * guaranteed that the last refernece would not be dropped. But we must
5353 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5354 * dropped and the last reference to the shared PMDs page might be
5357 * In theory we could defer the freeing of the PMD pages as well, but
5358 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5359 * detect sharing, so we cannot defer the release of the page either.
5360 * Instead, do flush now.
5363 tlb_flush_mmu_tlbonly(tlb);
5366 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5367 struct vm_area_struct *vma, unsigned long start,
5368 unsigned long end, struct page *ref_page,
5369 zap_flags_t zap_flags)
5371 hugetlb_vma_lock_write(vma);
5372 i_mmap_lock_write(vma->vm_file->f_mapping);
5374 /* mmu notification performed in caller */
5375 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5377 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5379 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5380 * When the vma_lock is freed, this makes the vma ineligible
5381 * for pmd sharing. And, i_mmap_rwsem is required to set up
5382 * pmd sharing. This is important as page tables for this
5383 * unmapped range will be asynchrously deleted. If the page
5384 * tables are shared, there will be issues when accessed by
5387 __hugetlb_vma_unlock_write_free(vma);
5388 i_mmap_unlock_write(vma->vm_file->f_mapping);
5390 i_mmap_unlock_write(vma->vm_file->f_mapping);
5391 hugetlb_vma_unlock_write(vma);
5395 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5396 unsigned long end, struct page *ref_page,
5397 zap_flags_t zap_flags)
5399 struct mmu_notifier_range range;
5400 struct mmu_gather tlb;
5402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5404 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5405 mmu_notifier_invalidate_range_start(&range);
5406 tlb_gather_mmu(&tlb, vma->vm_mm);
5408 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5410 mmu_notifier_invalidate_range_end(&range);
5411 tlb_finish_mmu(&tlb);
5415 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5416 * mapping it owns the reserve page for. The intention is to unmap the page
5417 * from other VMAs and let the children be SIGKILLed if they are faulting the
5420 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5421 struct page *page, unsigned long address)
5423 struct hstate *h = hstate_vma(vma);
5424 struct vm_area_struct *iter_vma;
5425 struct address_space *mapping;
5429 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5430 * from page cache lookup which is in HPAGE_SIZE units.
5432 address = address & huge_page_mask(h);
5433 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5435 mapping = vma->vm_file->f_mapping;
5438 * Take the mapping lock for the duration of the table walk. As
5439 * this mapping should be shared between all the VMAs,
5440 * __unmap_hugepage_range() is called as the lock is already held
5442 i_mmap_lock_write(mapping);
5443 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5444 /* Do not unmap the current VMA */
5445 if (iter_vma == vma)
5449 * Shared VMAs have their own reserves and do not affect
5450 * MAP_PRIVATE accounting but it is possible that a shared
5451 * VMA is using the same page so check and skip such VMAs.
5453 if (iter_vma->vm_flags & VM_MAYSHARE)
5457 * Unmap the page from other VMAs without their own reserves.
5458 * They get marked to be SIGKILLed if they fault in these
5459 * areas. This is because a future no-page fault on this VMA
5460 * could insert a zeroed page instead of the data existing
5461 * from the time of fork. This would look like data corruption
5463 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5464 unmap_hugepage_range(iter_vma, address,
5465 address + huge_page_size(h), page, 0);
5467 i_mmap_unlock_write(mapping);
5471 * hugetlb_wp() should be called with page lock of the original hugepage held.
5472 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5473 * cannot race with other handlers or page migration.
5474 * Keep the pte_same checks anyway to make transition from the mutex easier.
5476 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5477 unsigned long address, pte_t *ptep, unsigned int flags,
5478 struct folio *pagecache_folio, spinlock_t *ptl)
5480 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5482 struct hstate *h = hstate_vma(vma);
5483 struct page *old_page;
5484 struct folio *new_folio;
5485 int outside_reserve = 0;
5487 unsigned long haddr = address & huge_page_mask(h);
5488 struct mmu_notifier_range range;
5491 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5492 * PTE mapped R/O such as maybe_mkwrite() would do.
5494 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5495 return VM_FAULT_SIGSEGV;
5497 /* Let's take out MAP_SHARED mappings first. */
5498 if (vma->vm_flags & VM_MAYSHARE) {
5499 set_huge_ptep_writable(vma, haddr, ptep);
5503 pte = huge_ptep_get(ptep);
5504 old_page = pte_page(pte);
5506 delayacct_wpcopy_start();
5510 * If no-one else is actually using this page, we're the exclusive
5511 * owner and can reuse this page.
5513 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5514 if (!PageAnonExclusive(old_page))
5515 page_move_anon_rmap(old_page, vma);
5516 if (likely(!unshare))
5517 set_huge_ptep_writable(vma, haddr, ptep);
5519 delayacct_wpcopy_end();
5522 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5526 * If the process that created a MAP_PRIVATE mapping is about to
5527 * perform a COW due to a shared page count, attempt to satisfy
5528 * the allocation without using the existing reserves. The pagecache
5529 * page is used to determine if the reserve at this address was
5530 * consumed or not. If reserves were used, a partial faulted mapping
5531 * at the time of fork() could consume its reserves on COW instead
5532 * of the full address range.
5534 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5535 page_folio(old_page) != pagecache_folio)
5536 outside_reserve = 1;
5541 * Drop page table lock as buddy allocator may be called. It will
5542 * be acquired again before returning to the caller, as expected.
5545 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5547 if (IS_ERR(new_folio)) {
5549 * If a process owning a MAP_PRIVATE mapping fails to COW,
5550 * it is due to references held by a child and an insufficient
5551 * huge page pool. To guarantee the original mappers
5552 * reliability, unmap the page from child processes. The child
5553 * may get SIGKILLed if it later faults.
5555 if (outside_reserve) {
5556 struct address_space *mapping = vma->vm_file->f_mapping;
5562 * Drop hugetlb_fault_mutex and vma_lock before
5563 * unmapping. unmapping needs to hold vma_lock
5564 * in write mode. Dropping vma_lock in read mode
5565 * here is OK as COW mappings do not interact with
5568 * Reacquire both after unmap operation.
5570 idx = vma_hugecache_offset(h, vma, haddr);
5571 hash = hugetlb_fault_mutex_hash(mapping, idx);
5572 hugetlb_vma_unlock_read(vma);
5573 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5575 unmap_ref_private(mm, vma, old_page, haddr);
5577 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5578 hugetlb_vma_lock_read(vma);
5580 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5582 pte_same(huge_ptep_get(ptep), pte)))
5583 goto retry_avoidcopy;
5585 * race occurs while re-acquiring page table
5586 * lock, and our job is done.
5588 delayacct_wpcopy_end();
5592 ret = vmf_error(PTR_ERR(new_folio));
5593 goto out_release_old;
5597 * When the original hugepage is shared one, it does not have
5598 * anon_vma prepared.
5600 if (unlikely(anon_vma_prepare(vma))) {
5602 goto out_release_all;
5605 copy_user_huge_page(&new_folio->page, old_page, address, vma,
5606 pages_per_huge_page(h));
5607 __folio_mark_uptodate(new_folio);
5609 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5610 haddr + huge_page_size(h));
5611 mmu_notifier_invalidate_range_start(&range);
5614 * Retake the page table lock to check for racing updates
5615 * before the page tables are altered
5618 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5619 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5620 /* Break COW or unshare */
5621 huge_ptep_clear_flush(vma, haddr, ptep);
5622 mmu_notifier_invalidate_range(mm, range.start, range.end);
5623 page_remove_rmap(old_page, vma, true);
5624 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5625 set_huge_pte_at(mm, haddr, ptep,
5626 make_huge_pte(vma, &new_folio->page, !unshare));
5627 folio_set_hugetlb_migratable(new_folio);
5628 /* Make the old page be freed below */
5629 new_folio = page_folio(old_page);
5632 mmu_notifier_invalidate_range_end(&range);
5635 * No restore in case of successful pagetable update (Break COW or
5638 if (new_folio != page_folio(old_page))
5639 restore_reserve_on_error(h, vma, haddr, new_folio);
5640 folio_put(new_folio);
5644 spin_lock(ptl); /* Caller expects lock to be held */
5646 delayacct_wpcopy_end();
5651 * Return whether there is a pagecache page to back given address within VMA.
5652 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5654 static bool hugetlbfs_pagecache_present(struct hstate *h,
5655 struct vm_area_struct *vma, unsigned long address)
5657 struct address_space *mapping = vma->vm_file->f_mapping;
5658 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5662 present = page_cache_next_miss(mapping, idx, 1) != idx;
5668 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5671 struct inode *inode = mapping->host;
5672 struct hstate *h = hstate_inode(inode);
5675 __folio_set_locked(folio);
5676 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5678 if (unlikely(err)) {
5679 __folio_clear_locked(folio);
5682 folio_clear_hugetlb_restore_reserve(folio);
5685 * mark folio dirty so that it will not be removed from cache/file
5686 * by non-hugetlbfs specific code paths.
5688 folio_mark_dirty(folio);
5690 spin_lock(&inode->i_lock);
5691 inode->i_blocks += blocks_per_huge_page(h);
5692 spin_unlock(&inode->i_lock);
5696 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5697 struct address_space *mapping,
5700 unsigned long haddr,
5702 unsigned long reason)
5705 struct vm_fault vmf = {
5708 .real_address = addr,
5712 * Hard to debug if it ends up being
5713 * used by a callee that assumes
5714 * something about the other
5715 * uninitialized fields... same as in
5721 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5722 * userfault. Also mmap_lock could be dropped due to handling
5723 * userfault, any vma operation should be careful from here.
5725 hugetlb_vma_unlock_read(vma);
5726 hash = hugetlb_fault_mutex_hash(mapping, idx);
5727 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5728 return handle_userfault(&vmf, reason);
5732 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5733 * false if pte changed or is changing.
5735 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5736 pte_t *ptep, pte_t old_pte)
5741 ptl = huge_pte_lock(h, mm, ptep);
5742 same = pte_same(huge_ptep_get(ptep), old_pte);
5748 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5749 struct vm_area_struct *vma,
5750 struct address_space *mapping, pgoff_t idx,
5751 unsigned long address, pte_t *ptep,
5752 pte_t old_pte, unsigned int flags)
5754 struct hstate *h = hstate_vma(vma);
5755 vm_fault_t ret = VM_FAULT_SIGBUS;
5758 struct folio *folio;
5761 unsigned long haddr = address & huge_page_mask(h);
5762 bool new_folio, new_pagecache_folio = false;
5763 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5766 * Currently, we are forced to kill the process in the event the
5767 * original mapper has unmapped pages from the child due to a failed
5768 * COW/unsharing. Warn that such a situation has occurred as it may not
5771 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5772 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5778 * Use page lock to guard against racing truncation
5779 * before we get page_table_lock.
5782 folio = filemap_lock_folio(mapping, idx);
5784 size = i_size_read(mapping->host) >> huge_page_shift(h);
5787 /* Check for page in userfault range */
5788 if (userfaultfd_missing(vma)) {
5790 * Since hugetlb_no_page() was examining pte
5791 * without pgtable lock, we need to re-test under
5792 * lock because the pte may not be stable and could
5793 * have changed from under us. Try to detect
5794 * either changed or during-changing ptes and retry
5795 * properly when needed.
5797 * Note that userfaultfd is actually fine with
5798 * false positives (e.g. caused by pte changed),
5799 * but not wrong logical events (e.g. caused by
5800 * reading a pte during changing). The latter can
5801 * confuse the userspace, so the strictness is very
5802 * much preferred. E.g., MISSING event should
5803 * never happen on the page after UFFDIO_COPY has
5804 * correctly installed the page and returned.
5806 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5811 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5816 folio = alloc_hugetlb_folio(vma, haddr, 0);
5817 if (IS_ERR(folio)) {
5819 * Returning error will result in faulting task being
5820 * sent SIGBUS. The hugetlb fault mutex prevents two
5821 * tasks from racing to fault in the same page which
5822 * could result in false unable to allocate errors.
5823 * Page migration does not take the fault mutex, but
5824 * does a clear then write of pte's under page table
5825 * lock. Page fault code could race with migration,
5826 * notice the clear pte and try to allocate a page
5827 * here. Before returning error, get ptl and make
5828 * sure there really is no pte entry.
5830 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5831 ret = vmf_error(PTR_ERR(folio));
5836 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5837 __folio_mark_uptodate(folio);
5840 if (vma->vm_flags & VM_MAYSHARE) {
5841 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5844 * err can't be -EEXIST which implies someone
5845 * else consumed the reservation since hugetlb
5846 * fault mutex is held when add a hugetlb page
5847 * to the page cache. So it's safe to call
5848 * restore_reserve_on_error() here.
5850 restore_reserve_on_error(h, vma, haddr, folio);
5854 new_pagecache_folio = true;
5857 if (unlikely(anon_vma_prepare(vma))) {
5859 goto backout_unlocked;
5865 * If memory error occurs between mmap() and fault, some process
5866 * don't have hwpoisoned swap entry for errored virtual address.
5867 * So we need to block hugepage fault by PG_hwpoison bit check.
5869 if (unlikely(folio_test_hwpoison(folio))) {
5870 ret = VM_FAULT_HWPOISON_LARGE |
5871 VM_FAULT_SET_HINDEX(hstate_index(h));
5872 goto backout_unlocked;
5875 /* Check for page in userfault range. */
5876 if (userfaultfd_minor(vma)) {
5877 folio_unlock(folio);
5879 /* See comment in userfaultfd_missing() block above */
5880 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5884 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5891 * If we are going to COW a private mapping later, we examine the
5892 * pending reservations for this page now. This will ensure that
5893 * any allocations necessary to record that reservation occur outside
5896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5897 if (vma_needs_reservation(h, vma, haddr) < 0) {
5899 goto backout_unlocked;
5901 /* Just decrements count, does not deallocate */
5902 vma_end_reservation(h, vma, haddr);
5905 ptl = huge_pte_lock(h, mm, ptep);
5907 /* If pte changed from under us, retry */
5908 if (!pte_same(huge_ptep_get(ptep), old_pte))
5912 hugepage_add_new_anon_rmap(folio, vma, haddr);
5914 page_dup_file_rmap(&folio->page, true);
5915 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5916 && (vma->vm_flags & VM_SHARED)));
5918 * If this pte was previously wr-protected, keep it wr-protected even
5921 if (unlikely(pte_marker_uffd_wp(old_pte)))
5922 new_pte = huge_pte_mkuffd_wp(new_pte);
5923 set_huge_pte_at(mm, haddr, ptep, new_pte);
5925 hugetlb_count_add(pages_per_huge_page(h), mm);
5926 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5927 /* Optimization, do the COW without a second fault */
5928 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5934 * Only set hugetlb_migratable in newly allocated pages. Existing pages
5935 * found in the pagecache may not have hugetlb_migratable if they have
5936 * been isolated for migration.
5939 folio_set_hugetlb_migratable(folio);
5941 folio_unlock(folio);
5943 hugetlb_vma_unlock_read(vma);
5944 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5950 if (new_folio && !new_pagecache_folio)
5951 restore_reserve_on_error(h, vma, haddr, folio);
5953 folio_unlock(folio);
5959 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5961 unsigned long key[2];
5964 key[0] = (unsigned long) mapping;
5967 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5969 return hash & (num_fault_mutexes - 1);
5973 * For uniprocessor systems we always use a single mutex, so just
5974 * return 0 and avoid the hashing overhead.
5976 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5982 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5983 unsigned long address, unsigned int flags)
5990 struct page *page = NULL;
5991 struct folio *pagecache_folio = NULL;
5992 struct hstate *h = hstate_vma(vma);
5993 struct address_space *mapping;
5994 int need_wait_lock = 0;
5995 unsigned long haddr = address & huge_page_mask(h);
5998 * Serialize hugepage allocation and instantiation, so that we don't
5999 * get spurious allocation failures if two CPUs race to instantiate
6000 * the same page in the page cache.
6002 mapping = vma->vm_file->f_mapping;
6003 idx = vma_hugecache_offset(h, vma, haddr);
6004 hash = hugetlb_fault_mutex_hash(mapping, idx);
6005 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6008 * Acquire vma lock before calling huge_pte_alloc and hold
6009 * until finished with ptep. This prevents huge_pmd_unshare from
6010 * being called elsewhere and making the ptep no longer valid.
6012 hugetlb_vma_lock_read(vma);
6013 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6015 hugetlb_vma_unlock_read(vma);
6016 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6017 return VM_FAULT_OOM;
6020 entry = huge_ptep_get(ptep);
6021 /* PTE markers should be handled the same way as none pte */
6022 if (huge_pte_none_mostly(entry))
6024 * hugetlb_no_page will drop vma lock and hugetlb fault
6025 * mutex internally, which make us return immediately.
6027 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6033 * entry could be a migration/hwpoison entry at this point, so this
6034 * check prevents the kernel from going below assuming that we have
6035 * an active hugepage in pagecache. This goto expects the 2nd page
6036 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6037 * properly handle it.
6039 if (!pte_present(entry)) {
6040 if (unlikely(is_hugetlb_entry_migration(entry))) {
6042 * Release the hugetlb fault lock now, but retain
6043 * the vma lock, because it is needed to guard the
6044 * huge_pte_lockptr() later in
6045 * migration_entry_wait_huge(). The vma lock will
6046 * be released there.
6048 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6049 migration_entry_wait_huge(vma, ptep);
6051 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6052 ret = VM_FAULT_HWPOISON_LARGE |
6053 VM_FAULT_SET_HINDEX(hstate_index(h));
6058 * If we are going to COW/unshare the mapping later, we examine the
6059 * pending reservations for this page now. This will ensure that any
6060 * allocations necessary to record that reservation occur outside the
6061 * spinlock. Also lookup the pagecache page now as it is used to
6062 * determine if a reservation has been consumed.
6064 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6065 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6066 if (vma_needs_reservation(h, vma, haddr) < 0) {
6070 /* Just decrements count, does not deallocate */
6071 vma_end_reservation(h, vma, haddr);
6073 pagecache_folio = filemap_lock_folio(mapping, idx);
6076 ptl = huge_pte_lock(h, mm, ptep);
6078 /* Check for a racing update before calling hugetlb_wp() */
6079 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6082 /* Handle userfault-wp first, before trying to lock more pages */
6083 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6084 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6085 struct vm_fault vmf = {
6088 .real_address = address,
6093 if (pagecache_folio) {
6094 folio_unlock(pagecache_folio);
6095 folio_put(pagecache_folio);
6097 hugetlb_vma_unlock_read(vma);
6098 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6099 return handle_userfault(&vmf, VM_UFFD_WP);
6103 * hugetlb_wp() requires page locks of pte_page(entry) and
6104 * pagecache_folio, so here we need take the former one
6105 * when page != pagecache_folio or !pagecache_folio.
6107 page = pte_page(entry);
6108 if (page_folio(page) != pagecache_folio)
6109 if (!trylock_page(page)) {
6116 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6117 if (!huge_pte_write(entry)) {
6118 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6119 pagecache_folio, ptl);
6121 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6122 entry = huge_pte_mkdirty(entry);
6125 entry = pte_mkyoung(entry);
6126 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6127 flags & FAULT_FLAG_WRITE))
6128 update_mmu_cache(vma, haddr, ptep);
6130 if (page_folio(page) != pagecache_folio)
6136 if (pagecache_folio) {
6137 folio_unlock(pagecache_folio);
6138 folio_put(pagecache_folio);
6141 hugetlb_vma_unlock_read(vma);
6142 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6144 * Generally it's safe to hold refcount during waiting page lock. But
6145 * here we just wait to defer the next page fault to avoid busy loop and
6146 * the page is not used after unlocked before returning from the current
6147 * page fault. So we are safe from accessing freed page, even if we wait
6148 * here without taking refcount.
6151 wait_on_page_locked(page);
6155 #ifdef CONFIG_USERFAULTFD
6157 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6158 * modifications for huge pages.
6160 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6162 struct vm_area_struct *dst_vma,
6163 unsigned long dst_addr,
6164 unsigned long src_addr,
6165 enum mcopy_atomic_mode mode,
6166 struct page **pagep,
6169 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6170 struct hstate *h = hstate_vma(dst_vma);
6171 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6172 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6174 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6178 struct folio *folio;
6180 bool folio_in_pagecache = false;
6184 folio = filemap_lock_folio(mapping, idx);
6187 folio_in_pagecache = true;
6188 } else if (!*pagep) {
6189 /* If a page already exists, then it's UFFDIO_COPY for
6190 * a non-missing case. Return -EEXIST.
6193 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6198 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6199 if (IS_ERR(folio)) {
6204 ret = copy_huge_page_from_user(&folio->page,
6205 (const void __user *) src_addr,
6206 pages_per_huge_page(h), false);
6208 /* fallback to copy_from_user outside mmap_lock */
6209 if (unlikely(ret)) {
6211 /* Free the allocated folio which may have
6212 * consumed a reservation.
6214 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6217 /* Allocate a temporary folio to hold the copied
6220 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6225 *pagep = &folio->page;
6226 /* Set the outparam pagep and return to the caller to
6227 * copy the contents outside the lock. Don't free the
6234 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6241 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6242 if (IS_ERR(folio)) {
6248 copy_user_huge_page(&folio->page, *pagep, dst_addr, dst_vma,
6249 pages_per_huge_page(h));
6255 * The memory barrier inside __folio_mark_uptodate makes sure that
6256 * preceding stores to the page contents become visible before
6257 * the set_pte_at() write.
6259 __folio_mark_uptodate(folio);
6261 /* Add shared, newly allocated pages to the page cache. */
6262 if (vm_shared && !is_continue) {
6263 size = i_size_read(mapping->host) >> huge_page_shift(h);
6266 goto out_release_nounlock;
6269 * Serialization between remove_inode_hugepages() and
6270 * hugetlb_add_to_page_cache() below happens through the
6271 * hugetlb_fault_mutex_table that here must be hold by
6274 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6276 goto out_release_nounlock;
6277 folio_in_pagecache = true;
6280 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6283 if (folio_test_hwpoison(folio))
6284 goto out_release_unlock;
6287 * We allow to overwrite a pte marker: consider when both MISSING|WP
6288 * registered, we firstly wr-protect a none pte which has no page cache
6289 * page backing it, then access the page.
6292 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6293 goto out_release_unlock;
6295 if (folio_in_pagecache)
6296 page_dup_file_rmap(&folio->page, true);
6298 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6301 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6302 * with wp flag set, don't set pte write bit.
6304 if (wp_copy || (is_continue && !vm_shared))
6307 writable = dst_vma->vm_flags & VM_WRITE;
6309 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6311 * Always mark UFFDIO_COPY page dirty; note that this may not be
6312 * extremely important for hugetlbfs for now since swapping is not
6313 * supported, but we should still be clear in that this page cannot be
6314 * thrown away at will, even if write bit not set.
6316 _dst_pte = huge_pte_mkdirty(_dst_pte);
6317 _dst_pte = pte_mkyoung(_dst_pte);
6320 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6322 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6324 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6326 /* No need to invalidate - it was non-present before */
6327 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6331 folio_set_hugetlb_migratable(folio);
6332 if (vm_shared || is_continue)
6333 folio_unlock(folio);
6339 if (vm_shared || is_continue)
6340 folio_unlock(folio);
6341 out_release_nounlock:
6342 if (!folio_in_pagecache)
6343 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6347 #endif /* CONFIG_USERFAULTFD */
6349 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6350 int refs, struct page **pages,
6351 struct vm_area_struct **vmas)
6355 for (nr = 0; nr < refs; nr++) {
6357 pages[nr] = nth_page(page, nr);
6363 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6364 unsigned int flags, pte_t *pte,
6367 pte_t pteval = huge_ptep_get(pte);
6370 if (is_swap_pte(pteval))
6372 if (huge_pte_write(pteval))
6374 if (flags & FOLL_WRITE)
6376 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6383 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6384 unsigned long address, unsigned int flags)
6386 struct hstate *h = hstate_vma(vma);
6387 struct mm_struct *mm = vma->vm_mm;
6388 unsigned long haddr = address & huge_page_mask(h);
6389 struct page *page = NULL;
6394 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6395 * follow_hugetlb_page().
6397 if (WARN_ON_ONCE(flags & FOLL_PIN))
6400 hugetlb_vma_lock_read(vma);
6401 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6405 ptl = huge_pte_lock(h, mm, pte);
6406 entry = huge_ptep_get(pte);
6407 if (pte_present(entry)) {
6408 page = pte_page(entry) +
6409 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6411 * Note that page may be a sub-page, and with vmemmap
6412 * optimizations the page struct may be read only.
6413 * try_grab_page() will increase the ref count on the
6414 * head page, so this will be OK.
6416 * try_grab_page() should always be able to get the page here,
6417 * because we hold the ptl lock and have verified pte_present().
6419 if (try_grab_page(page, flags)) {
6427 hugetlb_vma_unlock_read(vma);
6431 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6432 struct page **pages, struct vm_area_struct **vmas,
6433 unsigned long *position, unsigned long *nr_pages,
6434 long i, unsigned int flags, int *locked)
6436 unsigned long pfn_offset;
6437 unsigned long vaddr = *position;
6438 unsigned long remainder = *nr_pages;
6439 struct hstate *h = hstate_vma(vma);
6440 int err = -EFAULT, refs;
6442 while (vaddr < vma->vm_end && remainder) {
6444 spinlock_t *ptl = NULL;
6445 bool unshare = false;
6450 * If we have a pending SIGKILL, don't keep faulting pages and
6451 * potentially allocating memory.
6453 if (fatal_signal_pending(current)) {
6458 hugetlb_vma_lock_read(vma);
6460 * Some archs (sparc64, sh*) have multiple pte_ts to
6461 * each hugepage. We have to make sure we get the
6462 * first, for the page indexing below to work.
6464 * Note that page table lock is not held when pte is null.
6466 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6469 ptl = huge_pte_lock(h, mm, pte);
6470 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6473 * When coredumping, it suits get_dump_page if we just return
6474 * an error where there's an empty slot with no huge pagecache
6475 * to back it. This way, we avoid allocating a hugepage, and
6476 * the sparse dumpfile avoids allocating disk blocks, but its
6477 * huge holes still show up with zeroes where they need to be.
6479 if (absent && (flags & FOLL_DUMP) &&
6480 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6483 hugetlb_vma_unlock_read(vma);
6489 * We need call hugetlb_fault for both hugepages under migration
6490 * (in which case hugetlb_fault waits for the migration,) and
6491 * hwpoisoned hugepages (in which case we need to prevent the
6492 * caller from accessing to them.) In order to do this, we use
6493 * here is_swap_pte instead of is_hugetlb_entry_migration and
6494 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6495 * both cases, and because we can't follow correct pages
6496 * directly from any kind of swap entries.
6499 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6501 unsigned int fault_flags = 0;
6505 hugetlb_vma_unlock_read(vma);
6507 if (flags & FOLL_WRITE)
6508 fault_flags |= FAULT_FLAG_WRITE;
6510 fault_flags |= FAULT_FLAG_UNSHARE;
6512 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6513 FAULT_FLAG_KILLABLE;
6514 if (flags & FOLL_INTERRUPTIBLE)
6515 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6517 if (flags & FOLL_NOWAIT)
6518 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6519 FAULT_FLAG_RETRY_NOWAIT;
6520 if (flags & FOLL_TRIED) {
6522 * Note: FAULT_FLAG_ALLOW_RETRY and
6523 * FAULT_FLAG_TRIED can co-exist
6525 fault_flags |= FAULT_FLAG_TRIED;
6527 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6528 if (ret & VM_FAULT_ERROR) {
6529 err = vm_fault_to_errno(ret, flags);
6533 if (ret & VM_FAULT_RETRY) {
6535 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6539 * VM_FAULT_RETRY must not return an
6540 * error, it will return zero
6543 * No need to update "position" as the
6544 * caller will not check it after
6545 * *nr_pages is set to 0.
6552 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6553 page = pte_page(huge_ptep_get(pte));
6555 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6556 !PageAnonExclusive(page), page);
6559 * If subpage information not requested, update counters
6560 * and skip the same_page loop below.
6562 if (!pages && !vmas && !pfn_offset &&
6563 (vaddr + huge_page_size(h) < vma->vm_end) &&
6564 (remainder >= pages_per_huge_page(h))) {
6565 vaddr += huge_page_size(h);
6566 remainder -= pages_per_huge_page(h);
6567 i += pages_per_huge_page(h);
6569 hugetlb_vma_unlock_read(vma);
6573 /* vaddr may not be aligned to PAGE_SIZE */
6574 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6575 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6578 record_subpages_vmas(nth_page(page, pfn_offset),
6580 likely(pages) ? pages + i : NULL,
6581 vmas ? vmas + i : NULL);
6585 * try_grab_folio() should always succeed here,
6586 * because: a) we hold the ptl lock, and b) we've just
6587 * checked that the huge page is present in the page
6588 * tables. If the huge page is present, then the tail
6589 * pages must also be present. The ptl prevents the
6590 * head page and tail pages from being rearranged in
6591 * any way. As this is hugetlb, the pages will never
6592 * be p2pdma or not longterm pinable. So this page
6593 * must be available at this point, unless the page
6594 * refcount overflowed:
6596 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6599 hugetlb_vma_unlock_read(vma);
6606 vaddr += (refs << PAGE_SHIFT);
6611 hugetlb_vma_unlock_read(vma);
6613 *nr_pages = remainder;
6615 * setting position is actually required only if remainder is
6616 * not zero but it's faster not to add a "if (remainder)"
6624 long hugetlb_change_protection(struct vm_area_struct *vma,
6625 unsigned long address, unsigned long end,
6626 pgprot_t newprot, unsigned long cp_flags)
6628 struct mm_struct *mm = vma->vm_mm;
6629 unsigned long start = address;
6632 struct hstate *h = hstate_vma(vma);
6633 long pages = 0, psize = huge_page_size(h);
6634 bool shared_pmd = false;
6635 struct mmu_notifier_range range;
6636 unsigned long last_addr_mask;
6637 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6638 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6641 * In the case of shared PMDs, the area to flush could be beyond
6642 * start/end. Set range.start/range.end to cover the maximum possible
6643 * range if PMD sharing is possible.
6645 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6647 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6649 BUG_ON(address >= end);
6650 flush_cache_range(vma, range.start, range.end);
6652 mmu_notifier_invalidate_range_start(&range);
6653 hugetlb_vma_lock_write(vma);
6654 i_mmap_lock_write(vma->vm_file->f_mapping);
6655 last_addr_mask = hugetlb_mask_last_page(h);
6656 for (; address < end; address += psize) {
6658 ptep = hugetlb_walk(vma, address, psize);
6661 address |= last_addr_mask;
6665 * Userfaultfd wr-protect requires pgtable
6666 * pre-allocations to install pte markers.
6668 ptep = huge_pte_alloc(mm, vma, address, psize);
6674 ptl = huge_pte_lock(h, mm, ptep);
6675 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6677 * When uffd-wp is enabled on the vma, unshare
6678 * shouldn't happen at all. Warn about it if it
6679 * happened due to some reason.
6681 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6685 address |= last_addr_mask;
6688 pte = huge_ptep_get(ptep);
6689 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6690 /* Nothing to do. */
6691 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6692 swp_entry_t entry = pte_to_swp_entry(pte);
6693 struct page *page = pfn_swap_entry_to_page(entry);
6696 if (is_writable_migration_entry(entry)) {
6698 entry = make_readable_exclusive_migration_entry(
6701 entry = make_readable_migration_entry(
6703 newpte = swp_entry_to_pte(entry);
6708 newpte = pte_swp_mkuffd_wp(newpte);
6709 else if (uffd_wp_resolve)
6710 newpte = pte_swp_clear_uffd_wp(newpte);
6711 if (!pte_same(pte, newpte))
6712 set_huge_pte_at(mm, address, ptep, newpte);
6713 } else if (unlikely(is_pte_marker(pte))) {
6714 /* No other markers apply for now. */
6715 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6716 if (uffd_wp_resolve)
6717 /* Safe to modify directly (non-present->none). */
6718 huge_pte_clear(mm, address, ptep, psize);
6719 } else if (!huge_pte_none(pte)) {
6721 unsigned int shift = huge_page_shift(hstate_vma(vma));
6723 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6724 pte = huge_pte_modify(old_pte, newprot);
6725 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6727 pte = huge_pte_mkuffd_wp(pte);
6728 else if (uffd_wp_resolve)
6729 pte = huge_pte_clear_uffd_wp(pte);
6730 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6734 if (unlikely(uffd_wp))
6735 /* Safe to modify directly (none->non-present). */
6736 set_huge_pte_at(mm, address, ptep,
6737 make_pte_marker(PTE_MARKER_UFFD_WP));
6742 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6743 * may have cleared our pud entry and done put_page on the page table:
6744 * once we release i_mmap_rwsem, another task can do the final put_page
6745 * and that page table be reused and filled with junk. If we actually
6746 * did unshare a page of pmds, flush the range corresponding to the pud.
6749 flush_hugetlb_tlb_range(vma, range.start, range.end);
6751 flush_hugetlb_tlb_range(vma, start, end);
6753 * No need to call mmu_notifier_invalidate_range() we are downgrading
6754 * page table protection not changing it to point to a new page.
6756 * See Documentation/mm/mmu_notifier.rst
6758 i_mmap_unlock_write(vma->vm_file->f_mapping);
6759 hugetlb_vma_unlock_write(vma);
6760 mmu_notifier_invalidate_range_end(&range);
6762 return pages > 0 ? (pages << h->order) : pages;
6765 /* Return true if reservation was successful, false otherwise. */
6766 bool hugetlb_reserve_pages(struct inode *inode,
6768 struct vm_area_struct *vma,
6769 vm_flags_t vm_flags)
6771 long chg = -1, add = -1;
6772 struct hstate *h = hstate_inode(inode);
6773 struct hugepage_subpool *spool = subpool_inode(inode);
6774 struct resv_map *resv_map;
6775 struct hugetlb_cgroup *h_cg = NULL;
6776 long gbl_reserve, regions_needed = 0;
6778 /* This should never happen */
6780 VM_WARN(1, "%s called with a negative range\n", __func__);
6785 * vma specific semaphore used for pmd sharing and fault/truncation
6788 hugetlb_vma_lock_alloc(vma);
6791 * Only apply hugepage reservation if asked. At fault time, an
6792 * attempt will be made for VM_NORESERVE to allocate a page
6793 * without using reserves
6795 if (vm_flags & VM_NORESERVE)
6799 * Shared mappings base their reservation on the number of pages that
6800 * are already allocated on behalf of the file. Private mappings need
6801 * to reserve the full area even if read-only as mprotect() may be
6802 * called to make the mapping read-write. Assume !vma is a shm mapping
6804 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6806 * resv_map can not be NULL as hugetlb_reserve_pages is only
6807 * called for inodes for which resv_maps were created (see
6808 * hugetlbfs_get_inode).
6810 resv_map = inode_resv_map(inode);
6812 chg = region_chg(resv_map, from, to, ®ions_needed);
6814 /* Private mapping. */
6815 resv_map = resv_map_alloc();
6821 set_vma_resv_map(vma, resv_map);
6822 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6828 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6829 chg * pages_per_huge_page(h), &h_cg) < 0)
6832 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6833 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6836 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6840 * There must be enough pages in the subpool for the mapping. If
6841 * the subpool has a minimum size, there may be some global
6842 * reservations already in place (gbl_reserve).
6844 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6845 if (gbl_reserve < 0)
6846 goto out_uncharge_cgroup;
6849 * Check enough hugepages are available for the reservation.
6850 * Hand the pages back to the subpool if there are not
6852 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6856 * Account for the reservations made. Shared mappings record regions
6857 * that have reservations as they are shared by multiple VMAs.
6858 * When the last VMA disappears, the region map says how much
6859 * the reservation was and the page cache tells how much of
6860 * the reservation was consumed. Private mappings are per-VMA and
6861 * only the consumed reservations are tracked. When the VMA
6862 * disappears, the original reservation is the VMA size and the
6863 * consumed reservations are stored in the map. Hence, nothing
6864 * else has to be done for private mappings here
6866 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6867 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6869 if (unlikely(add < 0)) {
6870 hugetlb_acct_memory(h, -gbl_reserve);
6872 } else if (unlikely(chg > add)) {
6874 * pages in this range were added to the reserve
6875 * map between region_chg and region_add. This
6876 * indicates a race with alloc_hugetlb_folio. Adjust
6877 * the subpool and reserve counts modified above
6878 * based on the difference.
6883 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6884 * reference to h_cg->css. See comment below for detail.
6886 hugetlb_cgroup_uncharge_cgroup_rsvd(
6888 (chg - add) * pages_per_huge_page(h), h_cg);
6890 rsv_adjust = hugepage_subpool_put_pages(spool,
6892 hugetlb_acct_memory(h, -rsv_adjust);
6895 * The file_regions will hold their own reference to
6896 * h_cg->css. So we should release the reference held
6897 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6900 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6906 /* put back original number of pages, chg */
6907 (void)hugepage_subpool_put_pages(spool, chg);
6908 out_uncharge_cgroup:
6909 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6910 chg * pages_per_huge_page(h), h_cg);
6912 hugetlb_vma_lock_free(vma);
6913 if (!vma || vma->vm_flags & VM_MAYSHARE)
6914 /* Only call region_abort if the region_chg succeeded but the
6915 * region_add failed or didn't run.
6917 if (chg >= 0 && add < 0)
6918 region_abort(resv_map, from, to, regions_needed);
6919 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6920 kref_put(&resv_map->refs, resv_map_release);
6924 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6927 struct hstate *h = hstate_inode(inode);
6928 struct resv_map *resv_map = inode_resv_map(inode);
6930 struct hugepage_subpool *spool = subpool_inode(inode);
6934 * Since this routine can be called in the evict inode path for all
6935 * hugetlbfs inodes, resv_map could be NULL.
6938 chg = region_del(resv_map, start, end);
6940 * region_del() can fail in the rare case where a region
6941 * must be split and another region descriptor can not be
6942 * allocated. If end == LONG_MAX, it will not fail.
6948 spin_lock(&inode->i_lock);
6949 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6950 spin_unlock(&inode->i_lock);
6953 * If the subpool has a minimum size, the number of global
6954 * reservations to be released may be adjusted.
6956 * Note that !resv_map implies freed == 0. So (chg - freed)
6957 * won't go negative.
6959 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6960 hugetlb_acct_memory(h, -gbl_reserve);
6965 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6966 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6967 struct vm_area_struct *vma,
6968 unsigned long addr, pgoff_t idx)
6970 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6972 unsigned long sbase = saddr & PUD_MASK;
6973 unsigned long s_end = sbase + PUD_SIZE;
6975 /* Allow segments to share if only one is marked locked */
6976 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6977 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6980 * match the virtual addresses, permission and the alignment of the
6983 * Also, vma_lock (vm_private_data) is required for sharing.
6985 if (pmd_index(addr) != pmd_index(saddr) ||
6986 vm_flags != svm_flags ||
6987 !range_in_vma(svma, sbase, s_end) ||
6988 !svma->vm_private_data)
6994 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6996 unsigned long start = addr & PUD_MASK;
6997 unsigned long end = start + PUD_SIZE;
6999 #ifdef CONFIG_USERFAULTFD
7000 if (uffd_disable_huge_pmd_share(vma))
7004 * check on proper vm_flags and page table alignment
7006 if (!(vma->vm_flags & VM_MAYSHARE))
7008 if (!vma->vm_private_data) /* vma lock required for sharing */
7010 if (!range_in_vma(vma, start, end))
7016 * Determine if start,end range within vma could be mapped by shared pmd.
7017 * If yes, adjust start and end to cover range associated with possible
7018 * shared pmd mappings.
7020 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7021 unsigned long *start, unsigned long *end)
7023 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7024 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7027 * vma needs to span at least one aligned PUD size, and the range
7028 * must be at least partially within in.
7030 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7031 (*end <= v_start) || (*start >= v_end))
7034 /* Extend the range to be PUD aligned for a worst case scenario */
7035 if (*start > v_start)
7036 *start = ALIGN_DOWN(*start, PUD_SIZE);
7039 *end = ALIGN(*end, PUD_SIZE);
7043 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7044 * and returns the corresponding pte. While this is not necessary for the
7045 * !shared pmd case because we can allocate the pmd later as well, it makes the
7046 * code much cleaner. pmd allocation is essential for the shared case because
7047 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7048 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7049 * bad pmd for sharing.
7051 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7052 unsigned long addr, pud_t *pud)
7054 struct address_space *mapping = vma->vm_file->f_mapping;
7055 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7057 struct vm_area_struct *svma;
7058 unsigned long saddr;
7063 i_mmap_lock_read(mapping);
7064 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7068 saddr = page_table_shareable(svma, vma, addr, idx);
7070 spte = hugetlb_walk(svma, saddr,
7071 vma_mmu_pagesize(svma));
7073 get_page(virt_to_page(spte));
7082 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7083 if (pud_none(*pud)) {
7084 pud_populate(mm, pud,
7085 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7088 put_page(virt_to_page(spte));
7092 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7093 i_mmap_unlock_read(mapping);
7098 * unmap huge page backed by shared pte.
7100 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7101 * indicated by page_count > 1, unmap is achieved by clearing pud and
7102 * decrementing the ref count. If count == 1, the pte page is not shared.
7104 * Called with page table lock held.
7106 * returns: 1 successfully unmapped a shared pte page
7107 * 0 the underlying pte page is not shared, or it is the last user
7109 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7110 unsigned long addr, pte_t *ptep)
7112 pgd_t *pgd = pgd_offset(mm, addr);
7113 p4d_t *p4d = p4d_offset(pgd, addr);
7114 pud_t *pud = pud_offset(p4d, addr);
7116 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7117 hugetlb_vma_assert_locked(vma);
7118 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7119 if (page_count(virt_to_page(ptep)) == 1)
7123 put_page(virt_to_page(ptep));
7128 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7130 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7131 unsigned long addr, pud_t *pud)
7136 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7137 unsigned long addr, pte_t *ptep)
7142 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7143 unsigned long *start, unsigned long *end)
7147 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7151 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7153 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7154 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7155 unsigned long addr, unsigned long sz)
7162 pgd = pgd_offset(mm, addr);
7163 p4d = p4d_alloc(mm, pgd, addr);
7166 pud = pud_alloc(mm, p4d, addr);
7168 if (sz == PUD_SIZE) {
7171 BUG_ON(sz != PMD_SIZE);
7172 if (want_pmd_share(vma, addr) && pud_none(*pud))
7173 pte = huge_pmd_share(mm, vma, addr, pud);
7175 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7178 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7184 * huge_pte_offset() - Walk the page table to resolve the hugepage
7185 * entry at address @addr
7187 * Return: Pointer to page table entry (PUD or PMD) for
7188 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7189 * size @sz doesn't match the hugepage size at this level of the page
7192 pte_t *huge_pte_offset(struct mm_struct *mm,
7193 unsigned long addr, unsigned long sz)
7200 pgd = pgd_offset(mm, addr);
7201 if (!pgd_present(*pgd))
7203 p4d = p4d_offset(pgd, addr);
7204 if (!p4d_present(*p4d))
7207 pud = pud_offset(p4d, addr);
7209 /* must be pud huge, non-present or none */
7210 return (pte_t *)pud;
7211 if (!pud_present(*pud))
7213 /* must have a valid entry and size to go further */
7215 pmd = pmd_offset(pud, addr);
7216 /* must be pmd huge, non-present or none */
7217 return (pte_t *)pmd;
7221 * Return a mask that can be used to update an address to the last huge
7222 * page in a page table page mapping size. Used to skip non-present
7223 * page table entries when linearly scanning address ranges. Architectures
7224 * with unique huge page to page table relationships can define their own
7225 * version of this routine.
7227 unsigned long hugetlb_mask_last_page(struct hstate *h)
7229 unsigned long hp_size = huge_page_size(h);
7231 if (hp_size == PUD_SIZE)
7232 return P4D_SIZE - PUD_SIZE;
7233 else if (hp_size == PMD_SIZE)
7234 return PUD_SIZE - PMD_SIZE;
7241 /* See description above. Architectures can provide their own version. */
7242 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7244 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7245 if (huge_page_size(h) == PMD_SIZE)
7246 return PUD_SIZE - PMD_SIZE;
7251 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7254 * These functions are overwritable if your architecture needs its own
7257 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7261 spin_lock_irq(&hugetlb_lock);
7262 if (!folio_test_hugetlb(folio) ||
7263 !folio_test_hugetlb_migratable(folio) ||
7264 !folio_try_get(folio)) {
7268 folio_clear_hugetlb_migratable(folio);
7269 list_move_tail(&folio->lru, list);
7271 spin_unlock_irq(&hugetlb_lock);
7275 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7280 spin_lock_irq(&hugetlb_lock);
7281 if (folio_test_hugetlb(folio)) {
7283 if (folio_test_hugetlb_freed(folio))
7285 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7286 ret = folio_try_get(folio);
7290 spin_unlock_irq(&hugetlb_lock);
7294 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7295 bool *migratable_cleared)
7299 spin_lock_irq(&hugetlb_lock);
7300 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7301 spin_unlock_irq(&hugetlb_lock);
7305 void folio_putback_active_hugetlb(struct folio *folio)
7307 spin_lock_irq(&hugetlb_lock);
7308 folio_set_hugetlb_migratable(folio);
7309 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7310 spin_unlock_irq(&hugetlb_lock);
7314 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7316 struct hstate *h = folio_hstate(old_folio);
7318 hugetlb_cgroup_migrate(old_folio, new_folio);
7319 set_page_owner_migrate_reason(&new_folio->page, reason);
7322 * transfer temporary state of the new hugetlb folio. This is
7323 * reverse to other transitions because the newpage is going to
7324 * be final while the old one will be freed so it takes over
7325 * the temporary status.
7327 * Also note that we have to transfer the per-node surplus state
7328 * here as well otherwise the global surplus count will not match
7331 if (folio_test_hugetlb_temporary(new_folio)) {
7332 int old_nid = folio_nid(old_folio);
7333 int new_nid = folio_nid(new_folio);
7335 folio_set_hugetlb_temporary(old_folio);
7336 folio_clear_hugetlb_temporary(new_folio);
7340 * There is no need to transfer the per-node surplus state
7341 * when we do not cross the node.
7343 if (new_nid == old_nid)
7345 spin_lock_irq(&hugetlb_lock);
7346 if (h->surplus_huge_pages_node[old_nid]) {
7347 h->surplus_huge_pages_node[old_nid]--;
7348 h->surplus_huge_pages_node[new_nid]++;
7350 spin_unlock_irq(&hugetlb_lock);
7354 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7355 unsigned long start,
7358 struct hstate *h = hstate_vma(vma);
7359 unsigned long sz = huge_page_size(h);
7360 struct mm_struct *mm = vma->vm_mm;
7361 struct mmu_notifier_range range;
7362 unsigned long address;
7366 if (!(vma->vm_flags & VM_MAYSHARE))
7372 flush_cache_range(vma, start, end);
7374 * No need to call adjust_range_if_pmd_sharing_possible(), because
7375 * we have already done the PUD_SIZE alignment.
7377 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7379 mmu_notifier_invalidate_range_start(&range);
7380 hugetlb_vma_lock_write(vma);
7381 i_mmap_lock_write(vma->vm_file->f_mapping);
7382 for (address = start; address < end; address += PUD_SIZE) {
7383 ptep = hugetlb_walk(vma, address, sz);
7386 ptl = huge_pte_lock(h, mm, ptep);
7387 huge_pmd_unshare(mm, vma, address, ptep);
7390 flush_hugetlb_tlb_range(vma, start, end);
7391 i_mmap_unlock_write(vma->vm_file->f_mapping);
7392 hugetlb_vma_unlock_write(vma);
7394 * No need to call mmu_notifier_invalidate_range(), see
7395 * Documentation/mm/mmu_notifier.rst.
7397 mmu_notifier_invalidate_range_end(&range);
7401 * This function will unconditionally remove all the shared pmd pgtable entries
7402 * within the specific vma for a hugetlbfs memory range.
7404 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7406 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7407 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7411 static bool cma_reserve_called __initdata;
7413 static int __init cmdline_parse_hugetlb_cma(char *p)
7420 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7423 if (s[count] == ':') {
7424 if (tmp >= MAX_NUMNODES)
7426 nid = array_index_nospec(tmp, MAX_NUMNODES);
7429 tmp = memparse(s, &s);
7430 hugetlb_cma_size_in_node[nid] = tmp;
7431 hugetlb_cma_size += tmp;
7434 * Skip the separator if have one, otherwise
7435 * break the parsing.
7442 hugetlb_cma_size = memparse(p, &p);
7450 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7452 void __init hugetlb_cma_reserve(int order)
7454 unsigned long size, reserved, per_node;
7455 bool node_specific_cma_alloc = false;
7458 cma_reserve_called = true;
7460 if (!hugetlb_cma_size)
7463 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7464 if (hugetlb_cma_size_in_node[nid] == 0)
7467 if (!node_online(nid)) {
7468 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7469 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7470 hugetlb_cma_size_in_node[nid] = 0;
7474 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7475 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7476 nid, (PAGE_SIZE << order) / SZ_1M);
7477 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7478 hugetlb_cma_size_in_node[nid] = 0;
7480 node_specific_cma_alloc = true;
7484 /* Validate the CMA size again in case some invalid nodes specified. */
7485 if (!hugetlb_cma_size)
7488 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7489 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7490 (PAGE_SIZE << order) / SZ_1M);
7491 hugetlb_cma_size = 0;
7495 if (!node_specific_cma_alloc) {
7497 * If 3 GB area is requested on a machine with 4 numa nodes,
7498 * let's allocate 1 GB on first three nodes and ignore the last one.
7500 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7501 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7502 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7506 for_each_online_node(nid) {
7508 char name[CMA_MAX_NAME];
7510 if (node_specific_cma_alloc) {
7511 if (hugetlb_cma_size_in_node[nid] == 0)
7514 size = hugetlb_cma_size_in_node[nid];
7516 size = min(per_node, hugetlb_cma_size - reserved);
7519 size = round_up(size, PAGE_SIZE << order);
7521 snprintf(name, sizeof(name), "hugetlb%d", nid);
7523 * Note that 'order per bit' is based on smallest size that
7524 * may be returned to CMA allocator in the case of
7525 * huge page demotion.
7527 res = cma_declare_contiguous_nid(0, size, 0,
7528 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7530 &hugetlb_cma[nid], nid);
7532 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7538 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7541 if (reserved >= hugetlb_cma_size)
7547 * hugetlb_cma_size is used to determine if allocations from
7548 * cma are possible. Set to zero if no cma regions are set up.
7550 hugetlb_cma_size = 0;
7553 static void __init hugetlb_cma_check(void)
7555 if (!hugetlb_cma_size || cma_reserve_called)
7558 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7561 #endif /* CONFIG_CMA */