Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-starfive.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68 static struct shrinker deferred_split_shrinker;
69
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75                         bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77         if (!vma->vm_mm)                /* vdso */
78                 return false;
79
80         /*
81          * Explicitly disabled through madvise or prctl, or some
82          * architectures may disable THP for some mappings, for
83          * example, s390 kvm.
84          * */
85         if ((vm_flags & VM_NOHUGEPAGE) ||
86             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87                 return false;
88         /*
89          * If the hardware/firmware marked hugepage support disabled.
90          */
91         if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92                 return false;
93
94         /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95         if (vma_is_dax(vma))
96                 return in_pf;
97
98         /*
99          * Special VMA and hugetlb VMA.
100          * Must be checked after dax since some dax mappings may have
101          * VM_MIXEDMAP set.
102          */
103         if (vm_flags & VM_NO_KHUGEPAGED)
104                 return false;
105
106         /*
107          * Check alignment for file vma and size for both file and anon vma.
108          *
109          * Skip the check for page fault. Huge fault does the check in fault
110          * handlers. And this check is not suitable for huge PUD fault.
111          */
112         if (!in_pf &&
113             !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114                 return false;
115
116         /*
117          * Enabled via shmem mount options or sysfs settings.
118          * Must be done before hugepage flags check since shmem has its
119          * own flags.
120          */
121         if (!in_pf && shmem_file(vma->vm_file))
122                 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123                                      !enforce_sysfs, vma->vm_mm, vm_flags);
124
125         /* Enforce sysfs THP requirements as necessary */
126         if (enforce_sysfs &&
127             (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128                                            !hugepage_flags_always())))
129                 return false;
130
131         /* Only regular file is valid */
132         if (!in_pf && file_thp_enabled(vma))
133                 return true;
134
135         if (!vma_is_anonymous(vma))
136                 return false;
137
138         if (vma_is_temporary_stack(vma))
139                 return false;
140
141         /*
142          * THPeligible bit of smaps should show 1 for proper VMAs even
143          * though anon_vma is not initialized yet.
144          *
145          * Allow page fault since anon_vma may be not initialized until
146          * the first page fault.
147          */
148         if (!vma->anon_vma)
149                 return (smaps || in_pf);
150
151         return true;
152 }
153
154 static bool get_huge_zero_page(void)
155 {
156         struct page *zero_page;
157 retry:
158         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159                 return true;
160
161         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162                         HPAGE_PMD_ORDER);
163         if (!zero_page) {
164                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165                 return false;
166         }
167         preempt_disable();
168         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169                 preempt_enable();
170                 __free_pages(zero_page, compound_order(zero_page));
171                 goto retry;
172         }
173         WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174
175         /* We take additional reference here. It will be put back by shrinker */
176         atomic_set(&huge_zero_refcount, 2);
177         preempt_enable();
178         count_vm_event(THP_ZERO_PAGE_ALLOC);
179         return true;
180 }
181
182 static void put_huge_zero_page(void)
183 {
184         /*
185          * Counter should never go to zero here. Only shrinker can put
186          * last reference.
187          */
188         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194                 return READ_ONCE(huge_zero_page);
195
196         if (!get_huge_zero_page())
197                 return NULL;
198
199         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200                 put_huge_zero_page();
201
202         return READ_ONCE(huge_zero_page);
203 }
204
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208                 put_huge_zero_page();
209 }
210
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212                                         struct shrink_control *sc)
213 {
214         /* we can free zero page only if last reference remains */
215         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219                                        struct shrink_control *sc)
220 {
221         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222                 struct page *zero_page = xchg(&huge_zero_page, NULL);
223                 BUG_ON(zero_page == NULL);
224                 WRITE_ONCE(huge_zero_pfn, ~0UL);
225                 __free_pages(zero_page, compound_order(zero_page));
226                 return HPAGE_PMD_NR;
227         }
228
229         return 0;
230 }
231
232 static struct shrinker huge_zero_page_shrinker = {
233         .count_objects = shrink_huge_zero_page_count,
234         .scan_objects = shrink_huge_zero_page_scan,
235         .seeks = DEFAULT_SEEKS,
236 };
237
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240                             struct kobj_attribute *attr, char *buf)
241 {
242         const char *output;
243
244         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245                 output = "[always] madvise never";
246         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247                           &transparent_hugepage_flags))
248                 output = "always [madvise] never";
249         else
250                 output = "always madvise [never]";
251
252         return sysfs_emit(buf, "%s\n", output);
253 }
254
255 static ssize_t enabled_store(struct kobject *kobj,
256                              struct kobj_attribute *attr,
257                              const char *buf, size_t count)
258 {
259         ssize_t ret = count;
260
261         if (sysfs_streq(buf, "always")) {
262                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264         } else if (sysfs_streq(buf, "madvise")) {
265                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267         } else if (sysfs_streq(buf, "never")) {
268                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270         } else
271                 ret = -EINVAL;
272
273         if (ret > 0) {
274                 int err = start_stop_khugepaged();
275                 if (err)
276                         ret = err;
277         }
278         return ret;
279 }
280
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284                                   struct kobj_attribute *attr, char *buf,
285                                   enum transparent_hugepage_flag flag)
286 {
287         return sysfs_emit(buf, "%d\n",
288                           !!test_bit(flag, &transparent_hugepage_flags));
289 }
290
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292                                  struct kobj_attribute *attr,
293                                  const char *buf, size_t count,
294                                  enum transparent_hugepage_flag flag)
295 {
296         unsigned long value;
297         int ret;
298
299         ret = kstrtoul(buf, 10, &value);
300         if (ret < 0)
301                 return ret;
302         if (value > 1)
303                 return -EINVAL;
304
305         if (value)
306                 set_bit(flag, &transparent_hugepage_flags);
307         else
308                 clear_bit(flag, &transparent_hugepage_flags);
309
310         return count;
311 }
312
313 static ssize_t defrag_show(struct kobject *kobj,
314                            struct kobj_attribute *attr, char *buf)
315 {
316         const char *output;
317
318         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319                      &transparent_hugepage_flags))
320                 output = "[always] defer defer+madvise madvise never";
321         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322                           &transparent_hugepage_flags))
323                 output = "always [defer] defer+madvise madvise never";
324         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325                           &transparent_hugepage_flags))
326                 output = "always defer [defer+madvise] madvise never";
327         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328                           &transparent_hugepage_flags))
329                 output = "always defer defer+madvise [madvise] never";
330         else
331                 output = "always defer defer+madvise madvise [never]";
332
333         return sysfs_emit(buf, "%s\n", output);
334 }
335
336 static ssize_t defrag_store(struct kobject *kobj,
337                             struct kobj_attribute *attr,
338                             const char *buf, size_t count)
339 {
340         if (sysfs_streq(buf, "always")) {
341                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345         } else if (sysfs_streq(buf, "defer+madvise")) {
346                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350         } else if (sysfs_streq(buf, "defer")) {
351                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355         } else if (sysfs_streq(buf, "madvise")) {
356                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360         } else if (sysfs_streq(buf, "never")) {
361                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365         } else
366                 return -EINVAL;
367
368         return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373                                   struct kobj_attribute *attr, char *buf)
374 {
375         return single_hugepage_flag_show(kobj, attr, buf,
376                                          TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379                 struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381         return single_hugepage_flag_store(kobj, attr, buf, count,
382                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387                                    struct kobj_attribute *attr, char *buf)
388 {
389         return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392         __ATTR_RO(hpage_pmd_size);
393
394 static struct attribute *hugepage_attr[] = {
395         &enabled_attr.attr,
396         &defrag_attr.attr,
397         &use_zero_page_attr.attr,
398         &hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400         &shmem_enabled_attr.attr,
401 #endif
402         NULL,
403 };
404
405 static const struct attribute_group hugepage_attr_group = {
406         .attrs = hugepage_attr,
407 };
408
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411         int err;
412
413         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414         if (unlikely(!*hugepage_kobj)) {
415                 pr_err("failed to create transparent hugepage kobject\n");
416                 return -ENOMEM;
417         }
418
419         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420         if (err) {
421                 pr_err("failed to register transparent hugepage group\n");
422                 goto delete_obj;
423         }
424
425         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426         if (err) {
427                 pr_err("failed to register transparent hugepage group\n");
428                 goto remove_hp_group;
429         }
430
431         return 0;
432
433 remove_hp_group:
434         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436         kobject_put(*hugepage_kobj);
437         return err;
438 }
439
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444         kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449         return 0;
450 }
451
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456
457 static int __init hugepage_init(void)
458 {
459         int err;
460         struct kobject *hugepage_kobj;
461
462         if (!has_transparent_hugepage()) {
463                 /*
464                  * Hardware doesn't support hugepages, hence disable
465                  * DAX PMD support.
466                  */
467                 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
468                 return -EINVAL;
469         }
470
471         /*
472          * hugepages can't be allocated by the buddy allocator
473          */
474         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
475         /*
476          * we use page->mapping and page->index in second tail page
477          * as list_head: assuming THP order >= 2
478          */
479         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
480
481         err = hugepage_init_sysfs(&hugepage_kobj);
482         if (err)
483                 goto err_sysfs;
484
485         err = khugepaged_init();
486         if (err)
487                 goto err_slab;
488
489         err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
490         if (err)
491                 goto err_hzp_shrinker;
492         err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
493         if (err)
494                 goto err_split_shrinker;
495
496         /*
497          * By default disable transparent hugepages on smaller systems,
498          * where the extra memory used could hurt more than TLB overhead
499          * is likely to save.  The admin can still enable it through /sys.
500          */
501         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502                 transparent_hugepage_flags = 0;
503                 return 0;
504         }
505
506         err = start_stop_khugepaged();
507         if (err)
508                 goto err_khugepaged;
509
510         return 0;
511 err_khugepaged:
512         unregister_shrinker(&deferred_split_shrinker);
513 err_split_shrinker:
514         unregister_shrinker(&huge_zero_page_shrinker);
515 err_hzp_shrinker:
516         khugepaged_destroy();
517 err_slab:
518         hugepage_exit_sysfs(hugepage_kobj);
519 err_sysfs:
520         return err;
521 }
522 subsys_initcall(hugepage_init);
523
524 static int __init setup_transparent_hugepage(char *str)
525 {
526         int ret = 0;
527         if (!str)
528                 goto out;
529         if (!strcmp(str, "always")) {
530                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531                         &transparent_hugepage_flags);
532                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533                           &transparent_hugepage_flags);
534                 ret = 1;
535         } else if (!strcmp(str, "madvise")) {
536                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537                           &transparent_hugepage_flags);
538                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539                         &transparent_hugepage_flags);
540                 ret = 1;
541         } else if (!strcmp(str, "never")) {
542                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543                           &transparent_hugepage_flags);
544                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545                           &transparent_hugepage_flags);
546                 ret = 1;
547         }
548 out:
549         if (!ret)
550                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
551         return ret;
552 }
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
554
555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
556 {
557         if (likely(vma->vm_flags & VM_WRITE))
558                 pmd = pmd_mkwrite(pmd);
559         return pmd;
560 }
561
562 #ifdef CONFIG_MEMCG
563 static inline
564 struct deferred_split *get_deferred_split_queue(struct folio *folio)
565 {
566         struct mem_cgroup *memcg = folio_memcg(folio);
567         struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
568
569         if (memcg)
570                 return &memcg->deferred_split_queue;
571         else
572                 return &pgdat->deferred_split_queue;
573 }
574 #else
575 static inline
576 struct deferred_split *get_deferred_split_queue(struct folio *folio)
577 {
578         struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
579
580         return &pgdat->deferred_split_queue;
581 }
582 #endif
583
584 void prep_transhuge_page(struct page *page)
585 {
586         struct folio *folio = (struct folio *)page;
587
588         VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
589         INIT_LIST_HEAD(&folio->_deferred_list);
590         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
591 }
592
593 static inline bool is_transparent_hugepage(struct page *page)
594 {
595         struct folio *folio;
596
597         if (!PageCompound(page))
598                 return false;
599
600         folio = page_folio(page);
601         return is_huge_zero_page(&folio->page) ||
602                folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
603 }
604
605 static unsigned long __thp_get_unmapped_area(struct file *filp,
606                 unsigned long addr, unsigned long len,
607                 loff_t off, unsigned long flags, unsigned long size)
608 {
609         loff_t off_end = off + len;
610         loff_t off_align = round_up(off, size);
611         unsigned long len_pad, ret;
612
613         if (off_end <= off_align || (off_end - off_align) < size)
614                 return 0;
615
616         len_pad = len + size;
617         if (len_pad < len || (off + len_pad) < off)
618                 return 0;
619
620         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
621                                               off >> PAGE_SHIFT, flags);
622
623         /*
624          * The failure might be due to length padding. The caller will retry
625          * without the padding.
626          */
627         if (IS_ERR_VALUE(ret))
628                 return 0;
629
630         /*
631          * Do not try to align to THP boundary if allocation at the address
632          * hint succeeds.
633          */
634         if (ret == addr)
635                 return addr;
636
637         ret += (off - ret) & (size - 1);
638         return ret;
639 }
640
641 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
642                 unsigned long len, unsigned long pgoff, unsigned long flags)
643 {
644         unsigned long ret;
645         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
646
647         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
648         if (ret)
649                 return ret;
650
651         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
652 }
653 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
654
655 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
656                         struct page *page, gfp_t gfp)
657 {
658         struct vm_area_struct *vma = vmf->vma;
659         pgtable_t pgtable;
660         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
661         vm_fault_t ret = 0;
662
663         VM_BUG_ON_PAGE(!PageCompound(page), page);
664
665         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
666                 put_page(page);
667                 count_vm_event(THP_FAULT_FALLBACK);
668                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
669                 return VM_FAULT_FALLBACK;
670         }
671         cgroup_throttle_swaprate(page, gfp);
672
673         pgtable = pte_alloc_one(vma->vm_mm);
674         if (unlikely(!pgtable)) {
675                 ret = VM_FAULT_OOM;
676                 goto release;
677         }
678
679         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
680         /*
681          * The memory barrier inside __SetPageUptodate makes sure that
682          * clear_huge_page writes become visible before the set_pmd_at()
683          * write.
684          */
685         __SetPageUptodate(page);
686
687         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
688         if (unlikely(!pmd_none(*vmf->pmd))) {
689                 goto unlock_release;
690         } else {
691                 pmd_t entry;
692
693                 ret = check_stable_address_space(vma->vm_mm);
694                 if (ret)
695                         goto unlock_release;
696
697                 /* Deliver the page fault to userland */
698                 if (userfaultfd_missing(vma)) {
699                         spin_unlock(vmf->ptl);
700                         put_page(page);
701                         pte_free(vma->vm_mm, pgtable);
702                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
703                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
704                         return ret;
705                 }
706
707                 entry = mk_huge_pmd(page, vma->vm_page_prot);
708                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
709                 page_add_new_anon_rmap(page, vma, haddr);
710                 lru_cache_add_inactive_or_unevictable(page, vma);
711                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
712                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
713                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
714                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
715                 mm_inc_nr_ptes(vma->vm_mm);
716                 spin_unlock(vmf->ptl);
717                 count_vm_event(THP_FAULT_ALLOC);
718                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
719         }
720
721         return 0;
722 unlock_release:
723         spin_unlock(vmf->ptl);
724 release:
725         if (pgtable)
726                 pte_free(vma->vm_mm, pgtable);
727         put_page(page);
728         return ret;
729
730 }
731
732 /*
733  * always: directly stall for all thp allocations
734  * defer: wake kswapd and fail if not immediately available
735  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
736  *                fail if not immediately available
737  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
738  *          available
739  * never: never stall for any thp allocation
740  */
741 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
742 {
743         const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
744
745         /* Always do synchronous compaction */
746         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
747                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
748
749         /* Kick kcompactd and fail quickly */
750         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
751                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
752
753         /* Synchronous compaction if madvised, otherwise kick kcompactd */
754         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
755                 return GFP_TRANSHUGE_LIGHT |
756                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
757                                         __GFP_KSWAPD_RECLAIM);
758
759         /* Only do synchronous compaction if madvised */
760         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
761                 return GFP_TRANSHUGE_LIGHT |
762                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
763
764         return GFP_TRANSHUGE_LIGHT;
765 }
766
767 /* Caller must hold page table lock. */
768 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
769                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
770                 struct page *zero_page)
771 {
772         pmd_t entry;
773         if (!pmd_none(*pmd))
774                 return;
775         entry = mk_pmd(zero_page, vma->vm_page_prot);
776         entry = pmd_mkhuge(entry);
777         pgtable_trans_huge_deposit(mm, pmd, pgtable);
778         set_pmd_at(mm, haddr, pmd, entry);
779         mm_inc_nr_ptes(mm);
780 }
781
782 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
783 {
784         struct vm_area_struct *vma = vmf->vma;
785         gfp_t gfp;
786         struct folio *folio;
787         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
788
789         if (!transhuge_vma_suitable(vma, haddr))
790                 return VM_FAULT_FALLBACK;
791         if (unlikely(anon_vma_prepare(vma)))
792                 return VM_FAULT_OOM;
793         khugepaged_enter_vma(vma, vma->vm_flags);
794
795         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
796                         !mm_forbids_zeropage(vma->vm_mm) &&
797                         transparent_hugepage_use_zero_page()) {
798                 pgtable_t pgtable;
799                 struct page *zero_page;
800                 vm_fault_t ret;
801                 pgtable = pte_alloc_one(vma->vm_mm);
802                 if (unlikely(!pgtable))
803                         return VM_FAULT_OOM;
804                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
805                 if (unlikely(!zero_page)) {
806                         pte_free(vma->vm_mm, pgtable);
807                         count_vm_event(THP_FAULT_FALLBACK);
808                         return VM_FAULT_FALLBACK;
809                 }
810                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
811                 ret = 0;
812                 if (pmd_none(*vmf->pmd)) {
813                         ret = check_stable_address_space(vma->vm_mm);
814                         if (ret) {
815                                 spin_unlock(vmf->ptl);
816                                 pte_free(vma->vm_mm, pgtable);
817                         } else if (userfaultfd_missing(vma)) {
818                                 spin_unlock(vmf->ptl);
819                                 pte_free(vma->vm_mm, pgtable);
820                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
821                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
822                         } else {
823                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
824                                                    haddr, vmf->pmd, zero_page);
825                                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
826                                 spin_unlock(vmf->ptl);
827                         }
828                 } else {
829                         spin_unlock(vmf->ptl);
830                         pte_free(vma->vm_mm, pgtable);
831                 }
832                 return ret;
833         }
834         gfp = vma_thp_gfp_mask(vma);
835         folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
836         if (unlikely(!folio)) {
837                 count_vm_event(THP_FAULT_FALLBACK);
838                 return VM_FAULT_FALLBACK;
839         }
840         return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
841 }
842
843 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
844                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
845                 pgtable_t pgtable)
846 {
847         struct mm_struct *mm = vma->vm_mm;
848         pmd_t entry;
849         spinlock_t *ptl;
850
851         ptl = pmd_lock(mm, pmd);
852         if (!pmd_none(*pmd)) {
853                 if (write) {
854                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
855                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
856                                 goto out_unlock;
857                         }
858                         entry = pmd_mkyoung(*pmd);
859                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
860                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
861                                 update_mmu_cache_pmd(vma, addr, pmd);
862                 }
863
864                 goto out_unlock;
865         }
866
867         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
868         if (pfn_t_devmap(pfn))
869                 entry = pmd_mkdevmap(entry);
870         if (write) {
871                 entry = pmd_mkyoung(pmd_mkdirty(entry));
872                 entry = maybe_pmd_mkwrite(entry, vma);
873         }
874
875         if (pgtable) {
876                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
877                 mm_inc_nr_ptes(mm);
878                 pgtable = NULL;
879         }
880
881         set_pmd_at(mm, addr, pmd, entry);
882         update_mmu_cache_pmd(vma, addr, pmd);
883
884 out_unlock:
885         spin_unlock(ptl);
886         if (pgtable)
887                 pte_free(mm, pgtable);
888 }
889
890 /**
891  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
892  * @vmf: Structure describing the fault
893  * @pfn: pfn to insert
894  * @pgprot: page protection to use
895  * @write: whether it's a write fault
896  *
897  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
898  * also consult the vmf_insert_mixed_prot() documentation when
899  * @pgprot != @vmf->vma->vm_page_prot.
900  *
901  * Return: vm_fault_t value.
902  */
903 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
904                                    pgprot_t pgprot, bool write)
905 {
906         unsigned long addr = vmf->address & PMD_MASK;
907         struct vm_area_struct *vma = vmf->vma;
908         pgtable_t pgtable = NULL;
909
910         /*
911          * If we had pmd_special, we could avoid all these restrictions,
912          * but we need to be consistent with PTEs and architectures that
913          * can't support a 'special' bit.
914          */
915         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
916                         !pfn_t_devmap(pfn));
917         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
918                                                 (VM_PFNMAP|VM_MIXEDMAP));
919         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
920
921         if (addr < vma->vm_start || addr >= vma->vm_end)
922                 return VM_FAULT_SIGBUS;
923
924         if (arch_needs_pgtable_deposit()) {
925                 pgtable = pte_alloc_one(vma->vm_mm);
926                 if (!pgtable)
927                         return VM_FAULT_OOM;
928         }
929
930         track_pfn_insert(vma, &pgprot, pfn);
931
932         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
933         return VM_FAULT_NOPAGE;
934 }
935 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
936
937 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
938 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
939 {
940         if (likely(vma->vm_flags & VM_WRITE))
941                 pud = pud_mkwrite(pud);
942         return pud;
943 }
944
945 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
946                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
947 {
948         struct mm_struct *mm = vma->vm_mm;
949         pud_t entry;
950         spinlock_t *ptl;
951
952         ptl = pud_lock(mm, pud);
953         if (!pud_none(*pud)) {
954                 if (write) {
955                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
956                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
957                                 goto out_unlock;
958                         }
959                         entry = pud_mkyoung(*pud);
960                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
961                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
962                                 update_mmu_cache_pud(vma, addr, pud);
963                 }
964                 goto out_unlock;
965         }
966
967         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
968         if (pfn_t_devmap(pfn))
969                 entry = pud_mkdevmap(entry);
970         if (write) {
971                 entry = pud_mkyoung(pud_mkdirty(entry));
972                 entry = maybe_pud_mkwrite(entry, vma);
973         }
974         set_pud_at(mm, addr, pud, entry);
975         update_mmu_cache_pud(vma, addr, pud);
976
977 out_unlock:
978         spin_unlock(ptl);
979 }
980
981 /**
982  * vmf_insert_pfn_pud_prot - insert a pud size pfn
983  * @vmf: Structure describing the fault
984  * @pfn: pfn to insert
985  * @pgprot: page protection to use
986  * @write: whether it's a write fault
987  *
988  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
989  * also consult the vmf_insert_mixed_prot() documentation when
990  * @pgprot != @vmf->vma->vm_page_prot.
991  *
992  * Return: vm_fault_t value.
993  */
994 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
995                                    pgprot_t pgprot, bool write)
996 {
997         unsigned long addr = vmf->address & PUD_MASK;
998         struct vm_area_struct *vma = vmf->vma;
999
1000         /*
1001          * If we had pud_special, we could avoid all these restrictions,
1002          * but we need to be consistent with PTEs and architectures that
1003          * can't support a 'special' bit.
1004          */
1005         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1006                         !pfn_t_devmap(pfn));
1007         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1008                                                 (VM_PFNMAP|VM_MIXEDMAP));
1009         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1010
1011         if (addr < vma->vm_start || addr >= vma->vm_end)
1012                 return VM_FAULT_SIGBUS;
1013
1014         track_pfn_insert(vma, &pgprot, pfn);
1015
1016         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1017         return VM_FAULT_NOPAGE;
1018 }
1019 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1020 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1021
1022 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1023                       pmd_t *pmd, bool write)
1024 {
1025         pmd_t _pmd;
1026
1027         _pmd = pmd_mkyoung(*pmd);
1028         if (write)
1029                 _pmd = pmd_mkdirty(_pmd);
1030         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031                                   pmd, _pmd, write))
1032                 update_mmu_cache_pmd(vma, addr, pmd);
1033 }
1034
1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1037 {
1038         unsigned long pfn = pmd_pfn(*pmd);
1039         struct mm_struct *mm = vma->vm_mm;
1040         struct page *page;
1041         int ret;
1042
1043         assert_spin_locked(pmd_lockptr(mm, pmd));
1044
1045         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046                 return NULL;
1047
1048         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049                 /* pass */;
1050         else
1051                 return NULL;
1052
1053         if (flags & FOLL_TOUCH)
1054                 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1055
1056         /*
1057          * device mapped pages can only be returned if the
1058          * caller will manage the page reference count.
1059          */
1060         if (!(flags & (FOLL_GET | FOLL_PIN)))
1061                 return ERR_PTR(-EEXIST);
1062
1063         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064         *pgmap = get_dev_pagemap(pfn, *pgmap);
1065         if (!*pgmap)
1066                 return ERR_PTR(-EFAULT);
1067         page = pfn_to_page(pfn);
1068         ret = try_grab_page(page, flags);
1069         if (ret)
1070                 page = ERR_PTR(ret);
1071
1072         return page;
1073 }
1074
1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077                   struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1078 {
1079         spinlock_t *dst_ptl, *src_ptl;
1080         struct page *src_page;
1081         pmd_t pmd;
1082         pgtable_t pgtable = NULL;
1083         int ret = -ENOMEM;
1084
1085         /* Skip if can be re-fill on fault */
1086         if (!vma_is_anonymous(dst_vma))
1087                 return 0;
1088
1089         pgtable = pte_alloc_one(dst_mm);
1090         if (unlikely(!pgtable))
1091                 goto out;
1092
1093         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1094         src_ptl = pmd_lockptr(src_mm, src_pmd);
1095         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1096
1097         ret = -EAGAIN;
1098         pmd = *src_pmd;
1099
1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1101         if (unlikely(is_swap_pmd(pmd))) {
1102                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1103
1104                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1105                 if (!is_readable_migration_entry(entry)) {
1106                         entry = make_readable_migration_entry(
1107                                                         swp_offset(entry));
1108                         pmd = swp_entry_to_pmd(entry);
1109                         if (pmd_swp_soft_dirty(*src_pmd))
1110                                 pmd = pmd_swp_mksoft_dirty(pmd);
1111                         if (pmd_swp_uffd_wp(*src_pmd))
1112                                 pmd = pmd_swp_mkuffd_wp(pmd);
1113                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1114                 }
1115                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116                 mm_inc_nr_ptes(dst_mm);
1117                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118                 if (!userfaultfd_wp(dst_vma))
1119                         pmd = pmd_swp_clear_uffd_wp(pmd);
1120                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1121                 ret = 0;
1122                 goto out_unlock;
1123         }
1124 #endif
1125
1126         if (unlikely(!pmd_trans_huge(pmd))) {
1127                 pte_free(dst_mm, pgtable);
1128                 goto out_unlock;
1129         }
1130         /*
1131          * When page table lock is held, the huge zero pmd should not be
1132          * under splitting since we don't split the page itself, only pmd to
1133          * a page table.
1134          */
1135         if (is_huge_zero_pmd(pmd)) {
1136                 /*
1137                  * get_huge_zero_page() will never allocate a new page here,
1138                  * since we already have a zero page to copy. It just takes a
1139                  * reference.
1140                  */
1141                 mm_get_huge_zero_page(dst_mm);
1142                 goto out_zero_page;
1143         }
1144
1145         src_page = pmd_page(pmd);
1146         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1147
1148         get_page(src_page);
1149         if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1150                 /* Page maybe pinned: split and retry the fault on PTEs. */
1151                 put_page(src_page);
1152                 pte_free(dst_mm, pgtable);
1153                 spin_unlock(src_ptl);
1154                 spin_unlock(dst_ptl);
1155                 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1156                 return -EAGAIN;
1157         }
1158         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1159 out_zero_page:
1160         mm_inc_nr_ptes(dst_mm);
1161         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1162         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1163         if (!userfaultfd_wp(dst_vma))
1164                 pmd = pmd_clear_uffd_wp(pmd);
1165         pmd = pmd_mkold(pmd_wrprotect(pmd));
1166         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1167
1168         ret = 0;
1169 out_unlock:
1170         spin_unlock(src_ptl);
1171         spin_unlock(dst_ptl);
1172 out:
1173         return ret;
1174 }
1175
1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1178                       pud_t *pud, bool write)
1179 {
1180         pud_t _pud;
1181
1182         _pud = pud_mkyoung(*pud);
1183         if (write)
1184                 _pud = pud_mkdirty(_pud);
1185         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1186                                   pud, _pud, write))
1187                 update_mmu_cache_pud(vma, addr, pud);
1188 }
1189
1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1191                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1192 {
1193         unsigned long pfn = pud_pfn(*pud);
1194         struct mm_struct *mm = vma->vm_mm;
1195         struct page *page;
1196         int ret;
1197
1198         assert_spin_locked(pud_lockptr(mm, pud));
1199
1200         if (flags & FOLL_WRITE && !pud_write(*pud))
1201                 return NULL;
1202
1203         if (pud_present(*pud) && pud_devmap(*pud))
1204                 /* pass */;
1205         else
1206                 return NULL;
1207
1208         if (flags & FOLL_TOUCH)
1209                 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1210
1211         /*
1212          * device mapped pages can only be returned if the
1213          * caller will manage the page reference count.
1214          *
1215          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1216          */
1217         if (!(flags & (FOLL_GET | FOLL_PIN)))
1218                 return ERR_PTR(-EEXIST);
1219
1220         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1221         *pgmap = get_dev_pagemap(pfn, *pgmap);
1222         if (!*pgmap)
1223                 return ERR_PTR(-EFAULT);
1224         page = pfn_to_page(pfn);
1225
1226         ret = try_grab_page(page, flags);
1227         if (ret)
1228                 page = ERR_PTR(ret);
1229
1230         return page;
1231 }
1232
1233 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1234                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235                   struct vm_area_struct *vma)
1236 {
1237         spinlock_t *dst_ptl, *src_ptl;
1238         pud_t pud;
1239         int ret;
1240
1241         dst_ptl = pud_lock(dst_mm, dst_pud);
1242         src_ptl = pud_lockptr(src_mm, src_pud);
1243         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1244
1245         ret = -EAGAIN;
1246         pud = *src_pud;
1247         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1248                 goto out_unlock;
1249
1250         /*
1251          * When page table lock is held, the huge zero pud should not be
1252          * under splitting since we don't split the page itself, only pud to
1253          * a page table.
1254          */
1255         if (is_huge_zero_pud(pud)) {
1256                 /* No huge zero pud yet */
1257         }
1258
1259         /*
1260          * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1261          * and split if duplicating fails.
1262          */
1263         pudp_set_wrprotect(src_mm, addr, src_pud);
1264         pud = pud_mkold(pud_wrprotect(pud));
1265         set_pud_at(dst_mm, addr, dst_pud, pud);
1266
1267         ret = 0;
1268 out_unlock:
1269         spin_unlock(src_ptl);
1270         spin_unlock(dst_ptl);
1271         return ret;
1272 }
1273
1274 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1275 {
1276         bool write = vmf->flags & FAULT_FLAG_WRITE;
1277
1278         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1279         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1280                 goto unlock;
1281
1282         touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1283 unlock:
1284         spin_unlock(vmf->ptl);
1285 }
1286 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1287
1288 void huge_pmd_set_accessed(struct vm_fault *vmf)
1289 {
1290         bool write = vmf->flags & FAULT_FLAG_WRITE;
1291
1292         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1293         if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1294                 goto unlock;
1295
1296         touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1297
1298 unlock:
1299         spin_unlock(vmf->ptl);
1300 }
1301
1302 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1303 {
1304         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1305         struct vm_area_struct *vma = vmf->vma;
1306         struct folio *folio;
1307         struct page *page;
1308         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1309         pmd_t orig_pmd = vmf->orig_pmd;
1310
1311         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1312         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1313
1314         if (is_huge_zero_pmd(orig_pmd))
1315                 goto fallback;
1316
1317         spin_lock(vmf->ptl);
1318
1319         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1320                 spin_unlock(vmf->ptl);
1321                 return 0;
1322         }
1323
1324         page = pmd_page(orig_pmd);
1325         folio = page_folio(page);
1326         VM_BUG_ON_PAGE(!PageHead(page), page);
1327
1328         /* Early check when only holding the PT lock. */
1329         if (PageAnonExclusive(page))
1330                 goto reuse;
1331
1332         if (!folio_trylock(folio)) {
1333                 folio_get(folio);
1334                 spin_unlock(vmf->ptl);
1335                 folio_lock(folio);
1336                 spin_lock(vmf->ptl);
1337                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1338                         spin_unlock(vmf->ptl);
1339                         folio_unlock(folio);
1340                         folio_put(folio);
1341                         return 0;
1342                 }
1343                 folio_put(folio);
1344         }
1345
1346         /* Recheck after temporarily dropping the PT lock. */
1347         if (PageAnonExclusive(page)) {
1348                 folio_unlock(folio);
1349                 goto reuse;
1350         }
1351
1352         /*
1353          * See do_wp_page(): we can only reuse the folio exclusively if
1354          * there are no additional references. Note that we always drain
1355          * the LRU pagevecs immediately after adding a THP.
1356          */
1357         if (folio_ref_count(folio) >
1358                         1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1359                 goto unlock_fallback;
1360         if (folio_test_swapcache(folio))
1361                 folio_free_swap(folio);
1362         if (folio_ref_count(folio) == 1) {
1363                 pmd_t entry;
1364
1365                 page_move_anon_rmap(page, vma);
1366                 folio_unlock(folio);
1367 reuse:
1368                 if (unlikely(unshare)) {
1369                         spin_unlock(vmf->ptl);
1370                         return 0;
1371                 }
1372                 entry = pmd_mkyoung(orig_pmd);
1373                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1374                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1375                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1376                 spin_unlock(vmf->ptl);
1377                 return 0;
1378         }
1379
1380 unlock_fallback:
1381         folio_unlock(folio);
1382         spin_unlock(vmf->ptl);
1383 fallback:
1384         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1385         return VM_FAULT_FALLBACK;
1386 }
1387
1388 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1389                                            unsigned long addr, pmd_t pmd)
1390 {
1391         struct page *page;
1392
1393         if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1394                 return false;
1395
1396         /* Don't touch entries that are not even readable (NUMA hinting). */
1397         if (pmd_protnone(pmd))
1398                 return false;
1399
1400         /* Do we need write faults for softdirty tracking? */
1401         if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1402                 return false;
1403
1404         /* Do we need write faults for uffd-wp tracking? */
1405         if (userfaultfd_huge_pmd_wp(vma, pmd))
1406                 return false;
1407
1408         if (!(vma->vm_flags & VM_SHARED)) {
1409                 /* See can_change_pte_writable(). */
1410                 page = vm_normal_page_pmd(vma, addr, pmd);
1411                 return page && PageAnon(page) && PageAnonExclusive(page);
1412         }
1413
1414         /* See can_change_pte_writable(). */
1415         return pmd_dirty(pmd);
1416 }
1417
1418 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1419 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1420                                         struct vm_area_struct *vma,
1421                                         unsigned int flags)
1422 {
1423         /* If the pmd is writable, we can write to the page. */
1424         if (pmd_write(pmd))
1425                 return true;
1426
1427         /* Maybe FOLL_FORCE is set to override it? */
1428         if (!(flags & FOLL_FORCE))
1429                 return false;
1430
1431         /* But FOLL_FORCE has no effect on shared mappings */
1432         if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1433                 return false;
1434
1435         /* ... or read-only private ones */
1436         if (!(vma->vm_flags & VM_MAYWRITE))
1437                 return false;
1438
1439         /* ... or already writable ones that just need to take a write fault */
1440         if (vma->vm_flags & VM_WRITE)
1441                 return false;
1442
1443         /*
1444          * See can_change_pte_writable(): we broke COW and could map the page
1445          * writable if we have an exclusive anonymous page ...
1446          */
1447         if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1448                 return false;
1449
1450         /* ... and a write-fault isn't required for other reasons. */
1451         if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1452                 return false;
1453         return !userfaultfd_huge_pmd_wp(vma, pmd);
1454 }
1455
1456 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1457                                    unsigned long addr,
1458                                    pmd_t *pmd,
1459                                    unsigned int flags)
1460 {
1461         struct mm_struct *mm = vma->vm_mm;
1462         struct page *page;
1463         int ret;
1464
1465         assert_spin_locked(pmd_lockptr(mm, pmd));
1466
1467         page = pmd_page(*pmd);
1468         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1469
1470         if ((flags & FOLL_WRITE) &&
1471             !can_follow_write_pmd(*pmd, page, vma, flags))
1472                 return NULL;
1473
1474         /* Avoid dumping huge zero page */
1475         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1476                 return ERR_PTR(-EFAULT);
1477
1478         /* Full NUMA hinting faults to serialise migration in fault paths */
1479         if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1480                 return NULL;
1481
1482         if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1483                 return ERR_PTR(-EMLINK);
1484
1485         VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1486                         !PageAnonExclusive(page), page);
1487
1488         ret = try_grab_page(page, flags);
1489         if (ret)
1490                 return ERR_PTR(ret);
1491
1492         if (flags & FOLL_TOUCH)
1493                 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1494
1495         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1496         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1497
1498         return page;
1499 }
1500
1501 /* NUMA hinting page fault entry point for trans huge pmds */
1502 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1503 {
1504         struct vm_area_struct *vma = vmf->vma;
1505         pmd_t oldpmd = vmf->orig_pmd;
1506         pmd_t pmd;
1507         struct page *page;
1508         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1509         int page_nid = NUMA_NO_NODE;
1510         int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1511         bool migrated = false, writable = false;
1512         int flags = 0;
1513
1514         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1515         if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1516                 spin_unlock(vmf->ptl);
1517                 goto out;
1518         }
1519
1520         pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1521
1522         /*
1523          * Detect now whether the PMD could be writable; this information
1524          * is only valid while holding the PT lock.
1525          */
1526         writable = pmd_write(pmd);
1527         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1528             can_change_pmd_writable(vma, vmf->address, pmd))
1529                 writable = true;
1530
1531         page = vm_normal_page_pmd(vma, haddr, pmd);
1532         if (!page)
1533                 goto out_map;
1534
1535         /* See similar comment in do_numa_page for explanation */
1536         if (!writable)
1537                 flags |= TNF_NO_GROUP;
1538
1539         page_nid = page_to_nid(page);
1540         /*
1541          * For memory tiering mode, cpupid of slow memory page is used
1542          * to record page access time.  So use default value.
1543          */
1544         if (node_is_toptier(page_nid))
1545                 last_cpupid = page_cpupid_last(page);
1546         target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1547                                        &flags);
1548
1549         if (target_nid == NUMA_NO_NODE) {
1550                 put_page(page);
1551                 goto out_map;
1552         }
1553
1554         spin_unlock(vmf->ptl);
1555         writable = false;
1556
1557         migrated = migrate_misplaced_page(page, vma, target_nid);
1558         if (migrated) {
1559                 flags |= TNF_MIGRATED;
1560                 page_nid = target_nid;
1561         } else {
1562                 flags |= TNF_MIGRATE_FAIL;
1563                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1564                 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1565                         spin_unlock(vmf->ptl);
1566                         goto out;
1567                 }
1568                 goto out_map;
1569         }
1570
1571 out:
1572         if (page_nid != NUMA_NO_NODE)
1573                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1574                                 flags);
1575
1576         return 0;
1577
1578 out_map:
1579         /* Restore the PMD */
1580         pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1581         pmd = pmd_mkyoung(pmd);
1582         if (writable)
1583                 pmd = pmd_mkwrite(pmd);
1584         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1585         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586         spin_unlock(vmf->ptl);
1587         goto out;
1588 }
1589
1590 /*
1591  * Return true if we do MADV_FREE successfully on entire pmd page.
1592  * Otherwise, return false.
1593  */
1594 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1595                 pmd_t *pmd, unsigned long addr, unsigned long next)
1596 {
1597         spinlock_t *ptl;
1598         pmd_t orig_pmd;
1599         struct folio *folio;
1600         struct mm_struct *mm = tlb->mm;
1601         bool ret = false;
1602
1603         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1604
1605         ptl = pmd_trans_huge_lock(pmd, vma);
1606         if (!ptl)
1607                 goto out_unlocked;
1608
1609         orig_pmd = *pmd;
1610         if (is_huge_zero_pmd(orig_pmd))
1611                 goto out;
1612
1613         if (unlikely(!pmd_present(orig_pmd))) {
1614                 VM_BUG_ON(thp_migration_supported() &&
1615                                   !is_pmd_migration_entry(orig_pmd));
1616                 goto out;
1617         }
1618
1619         folio = pfn_folio(pmd_pfn(orig_pmd));
1620         /*
1621          * If other processes are mapping this folio, we couldn't discard
1622          * the folio unless they all do MADV_FREE so let's skip the folio.
1623          */
1624         if (folio_mapcount(folio) != 1)
1625                 goto out;
1626
1627         if (!folio_trylock(folio))
1628                 goto out;
1629
1630         /*
1631          * If user want to discard part-pages of THP, split it so MADV_FREE
1632          * will deactivate only them.
1633          */
1634         if (next - addr != HPAGE_PMD_SIZE) {
1635                 folio_get(folio);
1636                 spin_unlock(ptl);
1637                 split_folio(folio);
1638                 folio_unlock(folio);
1639                 folio_put(folio);
1640                 goto out_unlocked;
1641         }
1642
1643         if (folio_test_dirty(folio))
1644                 folio_clear_dirty(folio);
1645         folio_unlock(folio);
1646
1647         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1648                 pmdp_invalidate(vma, addr, pmd);
1649                 orig_pmd = pmd_mkold(orig_pmd);
1650                 orig_pmd = pmd_mkclean(orig_pmd);
1651
1652                 set_pmd_at(mm, addr, pmd, orig_pmd);
1653                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654         }
1655
1656         folio_mark_lazyfree(folio);
1657         ret = true;
1658 out:
1659         spin_unlock(ptl);
1660 out_unlocked:
1661         return ret;
1662 }
1663
1664 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1665 {
1666         pgtable_t pgtable;
1667
1668         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1669         pte_free(mm, pgtable);
1670         mm_dec_nr_ptes(mm);
1671 }
1672
1673 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1674                  pmd_t *pmd, unsigned long addr)
1675 {
1676         pmd_t orig_pmd;
1677         spinlock_t *ptl;
1678
1679         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1680
1681         ptl = __pmd_trans_huge_lock(pmd, vma);
1682         if (!ptl)
1683                 return 0;
1684         /*
1685          * For architectures like ppc64 we look at deposited pgtable
1686          * when calling pmdp_huge_get_and_clear. So do the
1687          * pgtable_trans_huge_withdraw after finishing pmdp related
1688          * operations.
1689          */
1690         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1691                                                 tlb->fullmm);
1692         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1693         if (vma_is_special_huge(vma)) {
1694                 if (arch_needs_pgtable_deposit())
1695                         zap_deposited_table(tlb->mm, pmd);
1696                 spin_unlock(ptl);
1697         } else if (is_huge_zero_pmd(orig_pmd)) {
1698                 zap_deposited_table(tlb->mm, pmd);
1699                 spin_unlock(ptl);
1700         } else {
1701                 struct page *page = NULL;
1702                 int flush_needed = 1;
1703
1704                 if (pmd_present(orig_pmd)) {
1705                         page = pmd_page(orig_pmd);
1706                         page_remove_rmap(page, vma, true);
1707                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1708                         VM_BUG_ON_PAGE(!PageHead(page), page);
1709                 } else if (thp_migration_supported()) {
1710                         swp_entry_t entry;
1711
1712                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1713                         entry = pmd_to_swp_entry(orig_pmd);
1714                         page = pfn_swap_entry_to_page(entry);
1715                         flush_needed = 0;
1716                 } else
1717                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1718
1719                 if (PageAnon(page)) {
1720                         zap_deposited_table(tlb->mm, pmd);
1721                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1722                 } else {
1723                         if (arch_needs_pgtable_deposit())
1724                                 zap_deposited_table(tlb->mm, pmd);
1725                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1726                 }
1727
1728                 spin_unlock(ptl);
1729                 if (flush_needed)
1730                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1731         }
1732         return 1;
1733 }
1734
1735 #ifndef pmd_move_must_withdraw
1736 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1737                                          spinlock_t *old_pmd_ptl,
1738                                          struct vm_area_struct *vma)
1739 {
1740         /*
1741          * With split pmd lock we also need to move preallocated
1742          * PTE page table if new_pmd is on different PMD page table.
1743          *
1744          * We also don't deposit and withdraw tables for file pages.
1745          */
1746         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1747 }
1748 #endif
1749
1750 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1751 {
1752 #ifdef CONFIG_MEM_SOFT_DIRTY
1753         if (unlikely(is_pmd_migration_entry(pmd)))
1754                 pmd = pmd_swp_mksoft_dirty(pmd);
1755         else if (pmd_present(pmd))
1756                 pmd = pmd_mksoft_dirty(pmd);
1757 #endif
1758         return pmd;
1759 }
1760
1761 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1762                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1763 {
1764         spinlock_t *old_ptl, *new_ptl;
1765         pmd_t pmd;
1766         struct mm_struct *mm = vma->vm_mm;
1767         bool force_flush = false;
1768
1769         /*
1770          * The destination pmd shouldn't be established, free_pgtables()
1771          * should have release it.
1772          */
1773         if (WARN_ON(!pmd_none(*new_pmd))) {
1774                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1775                 return false;
1776         }
1777
1778         /*
1779          * We don't have to worry about the ordering of src and dst
1780          * ptlocks because exclusive mmap_lock prevents deadlock.
1781          */
1782         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1783         if (old_ptl) {
1784                 new_ptl = pmd_lockptr(mm, new_pmd);
1785                 if (new_ptl != old_ptl)
1786                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1787                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1788                 if (pmd_present(pmd))
1789                         force_flush = true;
1790                 VM_BUG_ON(!pmd_none(*new_pmd));
1791
1792                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1793                         pgtable_t pgtable;
1794                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1795                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1796                 }
1797                 pmd = move_soft_dirty_pmd(pmd);
1798                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1799                 if (force_flush)
1800                         flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1801                 if (new_ptl != old_ptl)
1802                         spin_unlock(new_ptl);
1803                 spin_unlock(old_ptl);
1804                 return true;
1805         }
1806         return false;
1807 }
1808
1809 /*
1810  * Returns
1811  *  - 0 if PMD could not be locked
1812  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1813  *      or if prot_numa but THP migration is not supported
1814  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1815  */
1816 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1817                     pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1818                     unsigned long cp_flags)
1819 {
1820         struct mm_struct *mm = vma->vm_mm;
1821         spinlock_t *ptl;
1822         pmd_t oldpmd, entry;
1823         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1824         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1825         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1826         int ret = 1;
1827
1828         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1829
1830         if (prot_numa && !thp_migration_supported())
1831                 return 1;
1832
1833         ptl = __pmd_trans_huge_lock(pmd, vma);
1834         if (!ptl)
1835                 return 0;
1836
1837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1838         if (is_swap_pmd(*pmd)) {
1839                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1840                 struct page *page = pfn_swap_entry_to_page(entry);
1841
1842                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1843                 if (is_writable_migration_entry(entry)) {
1844                         pmd_t newpmd;
1845                         /*
1846                          * A protection check is difficult so
1847                          * just be safe and disable write
1848                          */
1849                         if (PageAnon(page))
1850                                 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1851                         else
1852                                 entry = make_readable_migration_entry(swp_offset(entry));
1853                         newpmd = swp_entry_to_pmd(entry);
1854                         if (pmd_swp_soft_dirty(*pmd))
1855                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1856                         if (pmd_swp_uffd_wp(*pmd))
1857                                 newpmd = pmd_swp_mkuffd_wp(newpmd);
1858                         set_pmd_at(mm, addr, pmd, newpmd);
1859                 }
1860                 goto unlock;
1861         }
1862 #endif
1863
1864         if (prot_numa) {
1865                 struct page *page;
1866                 bool toptier;
1867                 /*
1868                  * Avoid trapping faults against the zero page. The read-only
1869                  * data is likely to be read-cached on the local CPU and
1870                  * local/remote hits to the zero page are not interesting.
1871                  */
1872                 if (is_huge_zero_pmd(*pmd))
1873                         goto unlock;
1874
1875                 if (pmd_protnone(*pmd))
1876                         goto unlock;
1877
1878                 page = pmd_page(*pmd);
1879                 toptier = node_is_toptier(page_to_nid(page));
1880                 /*
1881                  * Skip scanning top tier node if normal numa
1882                  * balancing is disabled
1883                  */
1884                 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1885                     toptier)
1886                         goto unlock;
1887
1888                 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1889                     !toptier)
1890                         xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1891         }
1892         /*
1893          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1894          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895          * which is also under mmap_read_lock(mm):
1896          *
1897          *      CPU0:                           CPU1:
1898          *                              change_huge_pmd(prot_numa=1)
1899          *                               pmdp_huge_get_and_clear_notify()
1900          * madvise_dontneed()
1901          *  zap_pmd_range()
1902          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903          *   // skip the pmd
1904          *                               set_pmd_at();
1905          *                               // pmd is re-established
1906          *
1907          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908          * which may break userspace.
1909          *
1910          * pmdp_invalidate_ad() is required to make sure we don't miss
1911          * dirty/young flags set by hardware.
1912          */
1913         oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1914
1915         entry = pmd_modify(oldpmd, newprot);
1916         if (uffd_wp)
1917                 entry = pmd_mkuffd_wp(entry);
1918         else if (uffd_wp_resolve)
1919                 /*
1920                  * Leave the write bit to be handled by PF interrupt
1921                  * handler, then things like COW could be properly
1922                  * handled.
1923                  */
1924                 entry = pmd_clear_uffd_wp(entry);
1925
1926         /* See change_pte_range(). */
1927         if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1928             can_change_pmd_writable(vma, addr, entry))
1929                 entry = pmd_mkwrite(entry);
1930
1931         ret = HPAGE_PMD_NR;
1932         set_pmd_at(mm, addr, pmd, entry);
1933
1934         if (huge_pmd_needs_flush(oldpmd, entry))
1935                 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1936 unlock:
1937         spin_unlock(ptl);
1938         return ret;
1939 }
1940
1941 /*
1942  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1943  *
1944  * Note that if it returns page table lock pointer, this routine returns without
1945  * unlocking page table lock. So callers must unlock it.
1946  */
1947 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1948 {
1949         spinlock_t *ptl;
1950         ptl = pmd_lock(vma->vm_mm, pmd);
1951         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1952                         pmd_devmap(*pmd)))
1953                 return ptl;
1954         spin_unlock(ptl);
1955         return NULL;
1956 }
1957
1958 /*
1959  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1960  *
1961  * Note that if it returns page table lock pointer, this routine returns without
1962  * unlocking page table lock. So callers must unlock it.
1963  */
1964 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1965 {
1966         spinlock_t *ptl;
1967
1968         ptl = pud_lock(vma->vm_mm, pud);
1969         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1970                 return ptl;
1971         spin_unlock(ptl);
1972         return NULL;
1973 }
1974
1975 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1976 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1977                  pud_t *pud, unsigned long addr)
1978 {
1979         spinlock_t *ptl;
1980
1981         ptl = __pud_trans_huge_lock(pud, vma);
1982         if (!ptl)
1983                 return 0;
1984
1985         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1986         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1987         if (vma_is_special_huge(vma)) {
1988                 spin_unlock(ptl);
1989                 /* No zero page support yet */
1990         } else {
1991                 /* No support for anonymous PUD pages yet */
1992                 BUG();
1993         }
1994         return 1;
1995 }
1996
1997 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1998                 unsigned long haddr)
1999 {
2000         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2001         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2002         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2003         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2004
2005         count_vm_event(THP_SPLIT_PUD);
2006
2007         pudp_huge_clear_flush_notify(vma, haddr, pud);
2008 }
2009
2010 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2011                 unsigned long address)
2012 {
2013         spinlock_t *ptl;
2014         struct mmu_notifier_range range;
2015
2016         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2017                                 address & HPAGE_PUD_MASK,
2018                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2019         mmu_notifier_invalidate_range_start(&range);
2020         ptl = pud_lock(vma->vm_mm, pud);
2021         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2022                 goto out;
2023         __split_huge_pud_locked(vma, pud, range.start);
2024
2025 out:
2026         spin_unlock(ptl);
2027         /*
2028          * No need to double call mmu_notifier->invalidate_range() callback as
2029          * the above pudp_huge_clear_flush_notify() did already call it.
2030          */
2031         mmu_notifier_invalidate_range_only_end(&range);
2032 }
2033 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2034
2035 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2036                 unsigned long haddr, pmd_t *pmd)
2037 {
2038         struct mm_struct *mm = vma->vm_mm;
2039         pgtable_t pgtable;
2040         pmd_t _pmd, old_pmd;
2041         int i;
2042
2043         /*
2044          * Leave pmd empty until pte is filled note that it is fine to delay
2045          * notification until mmu_notifier_invalidate_range_end() as we are
2046          * replacing a zero pmd write protected page with a zero pte write
2047          * protected page.
2048          *
2049          * See Documentation/mm/mmu_notifier.rst
2050          */
2051         old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2052
2053         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2054         pmd_populate(mm, &_pmd, pgtable);
2055
2056         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2057                 pte_t *pte, entry;
2058                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2059                 entry = pte_mkspecial(entry);
2060                 if (pmd_uffd_wp(old_pmd))
2061                         entry = pte_mkuffd_wp(entry);
2062                 pte = pte_offset_map(&_pmd, haddr);
2063                 VM_BUG_ON(!pte_none(*pte));
2064                 set_pte_at(mm, haddr, pte, entry);
2065                 pte_unmap(pte);
2066         }
2067         smp_wmb(); /* make pte visible before pmd */
2068         pmd_populate(mm, pmd, pgtable);
2069 }
2070
2071 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2072                 unsigned long haddr, bool freeze)
2073 {
2074         struct mm_struct *mm = vma->vm_mm;
2075         struct page *page;
2076         pgtable_t pgtable;
2077         pmd_t old_pmd, _pmd;
2078         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2079         bool anon_exclusive = false, dirty = false;
2080         unsigned long addr;
2081         int i;
2082
2083         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2084         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2085         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2086         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2087                                 && !pmd_devmap(*pmd));
2088
2089         count_vm_event(THP_SPLIT_PMD);
2090
2091         if (!vma_is_anonymous(vma)) {
2092                 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2093                 /*
2094                  * We are going to unmap this huge page. So
2095                  * just go ahead and zap it
2096                  */
2097                 if (arch_needs_pgtable_deposit())
2098                         zap_deposited_table(mm, pmd);
2099                 if (vma_is_special_huge(vma))
2100                         return;
2101                 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2102                         swp_entry_t entry;
2103
2104                         entry = pmd_to_swp_entry(old_pmd);
2105                         page = pfn_swap_entry_to_page(entry);
2106                 } else {
2107                         page = pmd_page(old_pmd);
2108                         if (!PageDirty(page) && pmd_dirty(old_pmd))
2109                                 set_page_dirty(page);
2110                         if (!PageReferenced(page) && pmd_young(old_pmd))
2111                                 SetPageReferenced(page);
2112                         page_remove_rmap(page, vma, true);
2113                         put_page(page);
2114                 }
2115                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2116                 return;
2117         }
2118
2119         if (is_huge_zero_pmd(*pmd)) {
2120                 /*
2121                  * FIXME: Do we want to invalidate secondary mmu by calling
2122                  * mmu_notifier_invalidate_range() see comments below inside
2123                  * __split_huge_pmd() ?
2124                  *
2125                  * We are going from a zero huge page write protected to zero
2126                  * small page also write protected so it does not seems useful
2127                  * to invalidate secondary mmu at this time.
2128                  */
2129                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2130         }
2131
2132         /*
2133          * Up to this point the pmd is present and huge and userland has the
2134          * whole access to the hugepage during the split (which happens in
2135          * place). If we overwrite the pmd with the not-huge version pointing
2136          * to the pte here (which of course we could if all CPUs were bug
2137          * free), userland could trigger a small page size TLB miss on the
2138          * small sized TLB while the hugepage TLB entry is still established in
2139          * the huge TLB. Some CPU doesn't like that.
2140          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2141          * 383 on page 105. Intel should be safe but is also warns that it's
2142          * only safe if the permission and cache attributes of the two entries
2143          * loaded in the two TLB is identical (which should be the case here).
2144          * But it is generally safer to never allow small and huge TLB entries
2145          * for the same virtual address to be loaded simultaneously. So instead
2146          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2147          * current pmd notpresent (atomically because here the pmd_trans_huge
2148          * must remain set at all times on the pmd until the split is complete
2149          * for this pmd), then we flush the SMP TLB and finally we write the
2150          * non-huge version of the pmd entry with pmd_populate.
2151          */
2152         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2153
2154         pmd_migration = is_pmd_migration_entry(old_pmd);
2155         if (unlikely(pmd_migration)) {
2156                 swp_entry_t entry;
2157
2158                 entry = pmd_to_swp_entry(old_pmd);
2159                 page = pfn_swap_entry_to_page(entry);
2160                 write = is_writable_migration_entry(entry);
2161                 if (PageAnon(page))
2162                         anon_exclusive = is_readable_exclusive_migration_entry(entry);
2163                 young = is_migration_entry_young(entry);
2164                 dirty = is_migration_entry_dirty(entry);
2165                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2166                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2167         } else {
2168                 page = pmd_page(old_pmd);
2169                 if (pmd_dirty(old_pmd)) {
2170                         dirty = true;
2171                         SetPageDirty(page);
2172                 }
2173                 write = pmd_write(old_pmd);
2174                 young = pmd_young(old_pmd);
2175                 soft_dirty = pmd_soft_dirty(old_pmd);
2176                 uffd_wp = pmd_uffd_wp(old_pmd);
2177
2178                 VM_BUG_ON_PAGE(!page_count(page), page);
2179
2180                 /*
2181                  * Without "freeze", we'll simply split the PMD, propagating the
2182                  * PageAnonExclusive() flag for each PTE by setting it for
2183                  * each subpage -- no need to (temporarily) clear.
2184                  *
2185                  * With "freeze" we want to replace mapped pages by
2186                  * migration entries right away. This is only possible if we
2187                  * managed to clear PageAnonExclusive() -- see
2188                  * set_pmd_migration_entry().
2189                  *
2190                  * In case we cannot clear PageAnonExclusive(), split the PMD
2191                  * only and let try_to_migrate_one() fail later.
2192                  *
2193                  * See page_try_share_anon_rmap(): invalidate PMD first.
2194                  */
2195                 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2196                 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2197                         freeze = false;
2198                 if (!freeze)
2199                         page_ref_add(page, HPAGE_PMD_NR - 1);
2200         }
2201
2202         /*
2203          * Withdraw the table only after we mark the pmd entry invalid.
2204          * This's critical for some architectures (Power).
2205          */
2206         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2207         pmd_populate(mm, &_pmd, pgtable);
2208
2209         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2210                 pte_t entry, *pte;
2211                 /*
2212                  * Note that NUMA hinting access restrictions are not
2213                  * transferred to avoid any possibility of altering
2214                  * permissions across VMAs.
2215                  */
2216                 if (freeze || pmd_migration) {
2217                         swp_entry_t swp_entry;
2218                         if (write)
2219                                 swp_entry = make_writable_migration_entry(
2220                                                         page_to_pfn(page + i));
2221                         else if (anon_exclusive)
2222                                 swp_entry = make_readable_exclusive_migration_entry(
2223                                                         page_to_pfn(page + i));
2224                         else
2225                                 swp_entry = make_readable_migration_entry(
2226                                                         page_to_pfn(page + i));
2227                         if (young)
2228                                 swp_entry = make_migration_entry_young(swp_entry);
2229                         if (dirty)
2230                                 swp_entry = make_migration_entry_dirty(swp_entry);
2231                         entry = swp_entry_to_pte(swp_entry);
2232                         if (soft_dirty)
2233                                 entry = pte_swp_mksoft_dirty(entry);
2234                         if (uffd_wp)
2235                                 entry = pte_swp_mkuffd_wp(entry);
2236                 } else {
2237                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2238                         entry = maybe_mkwrite(entry, vma);
2239                         if (anon_exclusive)
2240                                 SetPageAnonExclusive(page + i);
2241                         if (!young)
2242                                 entry = pte_mkold(entry);
2243                         /* NOTE: this may set soft-dirty too on some archs */
2244                         if (dirty)
2245                                 entry = pte_mkdirty(entry);
2246                         /*
2247                          * NOTE: this needs to happen after pte_mkdirty,
2248                          * because some archs (sparc64, loongarch) could
2249                          * set hw write bit when mkdirty.
2250                          */
2251                         if (!write)
2252                                 entry = pte_wrprotect(entry);
2253                         if (soft_dirty)
2254                                 entry = pte_mksoft_dirty(entry);
2255                         if (uffd_wp)
2256                                 entry = pte_mkuffd_wp(entry);
2257                         page_add_anon_rmap(page + i, vma, addr, false);
2258                 }
2259                 pte = pte_offset_map(&_pmd, addr);
2260                 BUG_ON(!pte_none(*pte));
2261                 set_pte_at(mm, addr, pte, entry);
2262                 pte_unmap(pte);
2263         }
2264
2265         if (!pmd_migration)
2266                 page_remove_rmap(page, vma, true);
2267         if (freeze)
2268                 put_page(page);
2269
2270         smp_wmb(); /* make pte visible before pmd */
2271         pmd_populate(mm, pmd, pgtable);
2272 }
2273
2274 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2275                 unsigned long address, bool freeze, struct folio *folio)
2276 {
2277         spinlock_t *ptl;
2278         struct mmu_notifier_range range;
2279
2280         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2281                                 address & HPAGE_PMD_MASK,
2282                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2283         mmu_notifier_invalidate_range_start(&range);
2284         ptl = pmd_lock(vma->vm_mm, pmd);
2285
2286         /*
2287          * If caller asks to setup a migration entry, we need a folio to check
2288          * pmd against. Otherwise we can end up replacing wrong folio.
2289          */
2290         VM_BUG_ON(freeze && !folio);
2291         VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2292
2293         if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2294             is_pmd_migration_entry(*pmd)) {
2295                 /*
2296                  * It's safe to call pmd_page when folio is set because it's
2297                  * guaranteed that pmd is present.
2298                  */
2299                 if (folio && folio != page_folio(pmd_page(*pmd)))
2300                         goto out;
2301                 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2302         }
2303
2304 out:
2305         spin_unlock(ptl);
2306         /*
2307          * No need to double call mmu_notifier->invalidate_range() callback.
2308          * They are 3 cases to consider inside __split_huge_pmd_locked():
2309          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2310          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2311          *    fault will trigger a flush_notify before pointing to a new page
2312          *    (it is fine if the secondary mmu keeps pointing to the old zero
2313          *    page in the meantime)
2314          *  3) Split a huge pmd into pte pointing to the same page. No need
2315          *     to invalidate secondary tlb entry they are all still valid.
2316          *     any further changes to individual pte will notify. So no need
2317          *     to call mmu_notifier->invalidate_range()
2318          */
2319         mmu_notifier_invalidate_range_only_end(&range);
2320 }
2321
2322 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2323                 bool freeze, struct folio *folio)
2324 {
2325         pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2326
2327         if (!pmd)
2328                 return;
2329
2330         __split_huge_pmd(vma, pmd, address, freeze, folio);
2331 }
2332
2333 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2334 {
2335         /*
2336          * If the new address isn't hpage aligned and it could previously
2337          * contain an hugepage: check if we need to split an huge pmd.
2338          */
2339         if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2340             range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2341                          ALIGN(address, HPAGE_PMD_SIZE)))
2342                 split_huge_pmd_address(vma, address, false, NULL);
2343 }
2344
2345 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2346                              unsigned long start,
2347                              unsigned long end,
2348                              long adjust_next)
2349 {
2350         /* Check if we need to split start first. */
2351         split_huge_pmd_if_needed(vma, start);
2352
2353         /* Check if we need to split end next. */
2354         split_huge_pmd_if_needed(vma, end);
2355
2356         /*
2357          * If we're also updating the next vma vm_start,
2358          * check if we need to split it.
2359          */
2360         if (adjust_next > 0) {
2361                 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2362                 unsigned long nstart = next->vm_start;
2363                 nstart += adjust_next;
2364                 split_huge_pmd_if_needed(next, nstart);
2365         }
2366 }
2367
2368 static void unmap_folio(struct folio *folio)
2369 {
2370         enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2371                 TTU_SYNC;
2372
2373         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2374
2375         /*
2376          * Anon pages need migration entries to preserve them, but file
2377          * pages can simply be left unmapped, then faulted back on demand.
2378          * If that is ever changed (perhaps for mlock), update remap_page().
2379          */
2380         if (folio_test_anon(folio))
2381                 try_to_migrate(folio, ttu_flags);
2382         else
2383                 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2384 }
2385
2386 static void remap_page(struct folio *folio, unsigned long nr)
2387 {
2388         int i = 0;
2389
2390         /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2391         if (!folio_test_anon(folio))
2392                 return;
2393         for (;;) {
2394                 remove_migration_ptes(folio, folio, true);
2395                 i += folio_nr_pages(folio);
2396                 if (i >= nr)
2397                         break;
2398                 folio = folio_next(folio);
2399         }
2400 }
2401
2402 static void lru_add_page_tail(struct page *head, struct page *tail,
2403                 struct lruvec *lruvec, struct list_head *list)
2404 {
2405         VM_BUG_ON_PAGE(!PageHead(head), head);
2406         VM_BUG_ON_PAGE(PageCompound(tail), head);
2407         VM_BUG_ON_PAGE(PageLRU(tail), head);
2408         lockdep_assert_held(&lruvec->lru_lock);
2409
2410         if (list) {
2411                 /* page reclaim is reclaiming a huge page */
2412                 VM_WARN_ON(PageLRU(head));
2413                 get_page(tail);
2414                 list_add_tail(&tail->lru, list);
2415         } else {
2416                 /* head is still on lru (and we have it frozen) */
2417                 VM_WARN_ON(!PageLRU(head));
2418                 if (PageUnevictable(tail))
2419                         tail->mlock_count = 0;
2420                 else
2421                         list_add_tail(&tail->lru, &head->lru);
2422                 SetPageLRU(tail);
2423         }
2424 }
2425
2426 static void __split_huge_page_tail(struct page *head, int tail,
2427                 struct lruvec *lruvec, struct list_head *list)
2428 {
2429         struct page *page_tail = head + tail;
2430
2431         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2432
2433         /*
2434          * Clone page flags before unfreezing refcount.
2435          *
2436          * After successful get_page_unless_zero() might follow flags change,
2437          * for example lock_page() which set PG_waiters.
2438          *
2439          * Note that for mapped sub-pages of an anonymous THP,
2440          * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2441          * the migration entry instead from where remap_page() will restore it.
2442          * We can still have PG_anon_exclusive set on effectively unmapped and
2443          * unreferenced sub-pages of an anonymous THP: we can simply drop
2444          * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2445          */
2446         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2447         page_tail->flags |= (head->flags &
2448                         ((1L << PG_referenced) |
2449                          (1L << PG_swapbacked) |
2450                          (1L << PG_swapcache) |
2451                          (1L << PG_mlocked) |
2452                          (1L << PG_uptodate) |
2453                          (1L << PG_active) |
2454                          (1L << PG_workingset) |
2455                          (1L << PG_locked) |
2456                          (1L << PG_unevictable) |
2457 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2458                          (1L << PG_arch_2) |
2459                          (1L << PG_arch_3) |
2460 #endif
2461                          (1L << PG_dirty) |
2462                          LRU_GEN_MASK | LRU_REFS_MASK));
2463
2464         /* ->mapping in first and second tail page is replaced by other uses */
2465         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2466                         page_tail);
2467         page_tail->mapping = head->mapping;
2468         page_tail->index = head->index + tail;
2469
2470         /*
2471          * page->private should not be set in tail pages with the exception
2472          * of swap cache pages that store the swp_entry_t in tail pages.
2473          * Fix up and warn once if private is unexpectedly set.
2474          *
2475          * What of 32-bit systems, on which folio->_pincount overlays
2476          * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2477          * pincount must be 0 for folio_ref_freeze() to have succeeded.
2478          */
2479         if (!folio_test_swapcache(page_folio(head))) {
2480                 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2481                 page_tail->private = 0;
2482         }
2483
2484         /* Page flags must be visible before we make the page non-compound. */
2485         smp_wmb();
2486
2487         /*
2488          * Clear PageTail before unfreezing page refcount.
2489          *
2490          * After successful get_page_unless_zero() might follow put_page()
2491          * which needs correct compound_head().
2492          */
2493         clear_compound_head(page_tail);
2494
2495         /* Finally unfreeze refcount. Additional reference from page cache. */
2496         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2497                                           PageSwapCache(head)));
2498
2499         if (page_is_young(head))
2500                 set_page_young(page_tail);
2501         if (page_is_idle(head))
2502                 set_page_idle(page_tail);
2503
2504         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2505
2506         /*
2507          * always add to the tail because some iterators expect new
2508          * pages to show after the currently processed elements - e.g.
2509          * migrate_pages
2510          */
2511         lru_add_page_tail(head, page_tail, lruvec, list);
2512 }
2513
2514 static void __split_huge_page(struct page *page, struct list_head *list,
2515                 pgoff_t end)
2516 {
2517         struct folio *folio = page_folio(page);
2518         struct page *head = &folio->page;
2519         struct lruvec *lruvec;
2520         struct address_space *swap_cache = NULL;
2521         unsigned long offset = 0;
2522         unsigned int nr = thp_nr_pages(head);
2523         int i;
2524
2525         /* complete memcg works before add pages to LRU */
2526         split_page_memcg(head, nr);
2527
2528         if (PageAnon(head) && PageSwapCache(head)) {
2529                 swp_entry_t entry = { .val = page_private(head) };
2530
2531                 offset = swp_offset(entry);
2532                 swap_cache = swap_address_space(entry);
2533                 xa_lock(&swap_cache->i_pages);
2534         }
2535
2536         /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2537         lruvec = folio_lruvec_lock(folio);
2538
2539         ClearPageHasHWPoisoned(head);
2540
2541         for (i = nr - 1; i >= 1; i--) {
2542                 __split_huge_page_tail(head, i, lruvec, list);
2543                 /* Some pages can be beyond EOF: drop them from page cache */
2544                 if (head[i].index >= end) {
2545                         struct folio *tail = page_folio(head + i);
2546
2547                         if (shmem_mapping(head->mapping))
2548                                 shmem_uncharge(head->mapping->host, 1);
2549                         else if (folio_test_clear_dirty(tail))
2550                                 folio_account_cleaned(tail,
2551                                         inode_to_wb(folio->mapping->host));
2552                         __filemap_remove_folio(tail, NULL);
2553                         folio_put(tail);
2554                 } else if (!PageAnon(page)) {
2555                         __xa_store(&head->mapping->i_pages, head[i].index,
2556                                         head + i, 0);
2557                 } else if (swap_cache) {
2558                         __xa_store(&swap_cache->i_pages, offset + i,
2559                                         head + i, 0);
2560                 }
2561         }
2562
2563         ClearPageCompound(head);
2564         unlock_page_lruvec(lruvec);
2565         /* Caller disabled irqs, so they are still disabled here */
2566
2567         split_page_owner(head, nr);
2568
2569         /* See comment in __split_huge_page_tail() */
2570         if (PageAnon(head)) {
2571                 /* Additional pin to swap cache */
2572                 if (PageSwapCache(head)) {
2573                         page_ref_add(head, 2);
2574                         xa_unlock(&swap_cache->i_pages);
2575                 } else {
2576                         page_ref_inc(head);
2577                 }
2578         } else {
2579                 /* Additional pin to page cache */
2580                 page_ref_add(head, 2);
2581                 xa_unlock(&head->mapping->i_pages);
2582         }
2583         local_irq_enable();
2584
2585         remap_page(folio, nr);
2586
2587         if (PageSwapCache(head)) {
2588                 swp_entry_t entry = { .val = page_private(head) };
2589
2590                 split_swap_cluster(entry);
2591         }
2592
2593         for (i = 0; i < nr; i++) {
2594                 struct page *subpage = head + i;
2595                 if (subpage == page)
2596                         continue;
2597                 unlock_page(subpage);
2598
2599                 /*
2600                  * Subpages may be freed if there wasn't any mapping
2601                  * like if add_to_swap() is running on a lru page that
2602                  * had its mapping zapped. And freeing these pages
2603                  * requires taking the lru_lock so we do the put_page
2604                  * of the tail pages after the split is complete.
2605                  */
2606                 free_page_and_swap_cache(subpage);
2607         }
2608 }
2609
2610 /* Racy check whether the huge page can be split */
2611 bool can_split_folio(struct folio *folio, int *pextra_pins)
2612 {
2613         int extra_pins;
2614
2615         /* Additional pins from page cache */
2616         if (folio_test_anon(folio))
2617                 extra_pins = folio_test_swapcache(folio) ?
2618                                 folio_nr_pages(folio) : 0;
2619         else
2620                 extra_pins = folio_nr_pages(folio);
2621         if (pextra_pins)
2622                 *pextra_pins = extra_pins;
2623         return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2624 }
2625
2626 /*
2627  * This function splits huge page into normal pages. @page can point to any
2628  * subpage of huge page to split. Split doesn't change the position of @page.
2629  *
2630  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2631  * The huge page must be locked.
2632  *
2633  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2634  *
2635  * Both head page and tail pages will inherit mapping, flags, and so on from
2636  * the hugepage.
2637  *
2638  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2639  * they are not mapped.
2640  *
2641  * Returns 0 if the hugepage is split successfully.
2642  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2643  * us.
2644  */
2645 int split_huge_page_to_list(struct page *page, struct list_head *list)
2646 {
2647         struct folio *folio = page_folio(page);
2648         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2649         XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2650         struct anon_vma *anon_vma = NULL;
2651         struct address_space *mapping = NULL;
2652         int extra_pins, ret;
2653         pgoff_t end;
2654         bool is_hzp;
2655
2656         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2657         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2658
2659         is_hzp = is_huge_zero_page(&folio->page);
2660         VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2661         if (is_hzp)
2662                 return -EBUSY;
2663
2664         if (folio_test_writeback(folio))
2665                 return -EBUSY;
2666
2667         if (folio_test_anon(folio)) {
2668                 /*
2669                  * The caller does not necessarily hold an mmap_lock that would
2670                  * prevent the anon_vma disappearing so we first we take a
2671                  * reference to it and then lock the anon_vma for write. This
2672                  * is similar to folio_lock_anon_vma_read except the write lock
2673                  * is taken to serialise against parallel split or collapse
2674                  * operations.
2675                  */
2676                 anon_vma = folio_get_anon_vma(folio);
2677                 if (!anon_vma) {
2678                         ret = -EBUSY;
2679                         goto out;
2680                 }
2681                 end = -1;
2682                 mapping = NULL;
2683                 anon_vma_lock_write(anon_vma);
2684         } else {
2685                 gfp_t gfp;
2686
2687                 mapping = folio->mapping;
2688
2689                 /* Truncated ? */
2690                 if (!mapping) {
2691                         ret = -EBUSY;
2692                         goto out;
2693                 }
2694
2695                 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2696                                                         GFP_RECLAIM_MASK);
2697
2698                 if (folio_test_private(folio) &&
2699                                 !filemap_release_folio(folio, gfp)) {
2700                         ret = -EBUSY;
2701                         goto out;
2702                 }
2703
2704                 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2705                 if (xas_error(&xas)) {
2706                         ret = xas_error(&xas);
2707                         goto out;
2708                 }
2709
2710                 anon_vma = NULL;
2711                 i_mmap_lock_read(mapping);
2712
2713                 /*
2714                  *__split_huge_page() may need to trim off pages beyond EOF:
2715                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716                  * which cannot be nested inside the page tree lock. So note
2717                  * end now: i_size itself may be changed at any moment, but
2718                  * folio lock is good enough to serialize the trimming.
2719                  */
2720                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2721                 if (shmem_mapping(mapping))
2722                         end = shmem_fallocend(mapping->host, end);
2723         }
2724
2725         /*
2726          * Racy check if we can split the page, before unmap_folio() will
2727          * split PMDs
2728          */
2729         if (!can_split_folio(folio, &extra_pins)) {
2730                 ret = -EAGAIN;
2731                 goto out_unlock;
2732         }
2733
2734         unmap_folio(folio);
2735
2736         /* block interrupt reentry in xa_lock and spinlock */
2737         local_irq_disable();
2738         if (mapping) {
2739                 /*
2740                  * Check if the folio is present in page cache.
2741                  * We assume all tail are present too, if folio is there.
2742                  */
2743                 xas_lock(&xas);
2744                 xas_reset(&xas);
2745                 if (xas_load(&xas) != folio)
2746                         goto fail;
2747         }
2748
2749         /* Prevent deferred_split_scan() touching ->_refcount */
2750         spin_lock(&ds_queue->split_queue_lock);
2751         if (folio_ref_freeze(folio, 1 + extra_pins)) {
2752                 if (!list_empty(&folio->_deferred_list)) {
2753                         ds_queue->split_queue_len--;
2754                         list_del(&folio->_deferred_list);
2755                 }
2756                 spin_unlock(&ds_queue->split_queue_lock);
2757                 if (mapping) {
2758                         int nr = folio_nr_pages(folio);
2759
2760                         xas_split(&xas, folio, folio_order(folio));
2761                         if (folio_test_swapbacked(folio)) {
2762                                 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2763                                                         -nr);
2764                         } else {
2765                                 __lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2766                                                         -nr);
2767                                 filemap_nr_thps_dec(mapping);
2768                         }
2769                 }
2770
2771                 __split_huge_page(page, list, end);
2772                 ret = 0;
2773         } else {
2774                 spin_unlock(&ds_queue->split_queue_lock);
2775 fail:
2776                 if (mapping)
2777                         xas_unlock(&xas);
2778                 local_irq_enable();
2779                 remap_page(folio, folio_nr_pages(folio));
2780                 ret = -EAGAIN;
2781         }
2782
2783 out_unlock:
2784         if (anon_vma) {
2785                 anon_vma_unlock_write(anon_vma);
2786                 put_anon_vma(anon_vma);
2787         }
2788         if (mapping)
2789                 i_mmap_unlock_read(mapping);
2790 out:
2791         xas_destroy(&xas);
2792         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2793         return ret;
2794 }
2795
2796 void free_transhuge_page(struct page *page)
2797 {
2798         struct folio *folio = (struct folio *)page;
2799         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2800         unsigned long flags;
2801
2802         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803         if (!list_empty(&folio->_deferred_list)) {
2804                 ds_queue->split_queue_len--;
2805                 list_del(&folio->_deferred_list);
2806         }
2807         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808         free_compound_page(page);
2809 }
2810
2811 void deferred_split_folio(struct folio *folio)
2812 {
2813         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2814 #ifdef CONFIG_MEMCG
2815         struct mem_cgroup *memcg = folio_memcg(folio);
2816 #endif
2817         unsigned long flags;
2818
2819         VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2820
2821         /*
2822          * The try_to_unmap() in page reclaim path might reach here too,
2823          * this may cause a race condition to corrupt deferred split queue.
2824          * And, if page reclaim is already handling the same folio, it is
2825          * unnecessary to handle it again in shrinker.
2826          *
2827          * Check the swapcache flag to determine if the folio is being
2828          * handled by page reclaim since THP swap would add the folio into
2829          * swap cache before calling try_to_unmap().
2830          */
2831         if (folio_test_swapcache(folio))
2832                 return;
2833
2834         if (!list_empty(&folio->_deferred_list))
2835                 return;
2836
2837         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2838         if (list_empty(&folio->_deferred_list)) {
2839                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2840                 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2841                 ds_queue->split_queue_len++;
2842 #ifdef CONFIG_MEMCG
2843                 if (memcg)
2844                         set_shrinker_bit(memcg, folio_nid(folio),
2845                                          deferred_split_shrinker.id);
2846 #endif
2847         }
2848         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2849 }
2850
2851 static unsigned long deferred_split_count(struct shrinker *shrink,
2852                 struct shrink_control *sc)
2853 {
2854         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2855         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2856
2857 #ifdef CONFIG_MEMCG
2858         if (sc->memcg)
2859                 ds_queue = &sc->memcg->deferred_split_queue;
2860 #endif
2861         return READ_ONCE(ds_queue->split_queue_len);
2862 }
2863
2864 static unsigned long deferred_split_scan(struct shrinker *shrink,
2865                 struct shrink_control *sc)
2866 {
2867         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2868         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2869         unsigned long flags;
2870         LIST_HEAD(list);
2871         struct folio *folio, *next;
2872         int split = 0;
2873
2874 #ifdef CONFIG_MEMCG
2875         if (sc->memcg)
2876                 ds_queue = &sc->memcg->deferred_split_queue;
2877 #endif
2878
2879         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2880         /* Take pin on all head pages to avoid freeing them under us */
2881         list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2882                                                         _deferred_list) {
2883                 if (folio_try_get(folio)) {
2884                         list_move(&folio->_deferred_list, &list);
2885                 } else {
2886                         /* We lost race with folio_put() */
2887                         list_del_init(&folio->_deferred_list);
2888                         ds_queue->split_queue_len--;
2889                 }
2890                 if (!--sc->nr_to_scan)
2891                         break;
2892         }
2893         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2894
2895         list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2896                 if (!folio_trylock(folio))
2897                         goto next;
2898                 /* split_huge_page() removes page from list on success */
2899                 if (!split_folio(folio))
2900                         split++;
2901                 folio_unlock(folio);
2902 next:
2903                 folio_put(folio);
2904         }
2905
2906         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2907         list_splice_tail(&list, &ds_queue->split_queue);
2908         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2909
2910         /*
2911          * Stop shrinker if we didn't split any page, but the queue is empty.
2912          * This can happen if pages were freed under us.
2913          */
2914         if (!split && list_empty(&ds_queue->split_queue))
2915                 return SHRINK_STOP;
2916         return split;
2917 }
2918
2919 static struct shrinker deferred_split_shrinker = {
2920         .count_objects = deferred_split_count,
2921         .scan_objects = deferred_split_scan,
2922         .seeks = DEFAULT_SEEKS,
2923         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2924                  SHRINKER_NONSLAB,
2925 };
2926
2927 #ifdef CONFIG_DEBUG_FS
2928 static void split_huge_pages_all(void)
2929 {
2930         struct zone *zone;
2931         struct page *page;
2932         struct folio *folio;
2933         unsigned long pfn, max_zone_pfn;
2934         unsigned long total = 0, split = 0;
2935
2936         pr_debug("Split all THPs\n");
2937         for_each_zone(zone) {
2938                 if (!managed_zone(zone))
2939                         continue;
2940                 max_zone_pfn = zone_end_pfn(zone);
2941                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2942                         int nr_pages;
2943
2944                         page = pfn_to_online_page(pfn);
2945                         if (!page || PageTail(page))
2946                                 continue;
2947                         folio = page_folio(page);
2948                         if (!folio_try_get(folio))
2949                                 continue;
2950
2951                         if (unlikely(page_folio(page) != folio))
2952                                 goto next;
2953
2954                         if (zone != folio_zone(folio))
2955                                 goto next;
2956
2957                         if (!folio_test_large(folio)
2958                                 || folio_test_hugetlb(folio)
2959                                 || !folio_test_lru(folio))
2960                                 goto next;
2961
2962                         total++;
2963                         folio_lock(folio);
2964                         nr_pages = folio_nr_pages(folio);
2965                         if (!split_folio(folio))
2966                                 split++;
2967                         pfn += nr_pages - 1;
2968                         folio_unlock(folio);
2969 next:
2970                         folio_put(folio);
2971                         cond_resched();
2972                 }
2973         }
2974
2975         pr_debug("%lu of %lu THP split\n", split, total);
2976 }
2977
2978 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2979 {
2980         return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2981                     is_vm_hugetlb_page(vma);
2982 }
2983
2984 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2985                                 unsigned long vaddr_end)
2986 {
2987         int ret = 0;
2988         struct task_struct *task;
2989         struct mm_struct *mm;
2990         unsigned long total = 0, split = 0;
2991         unsigned long addr;
2992
2993         vaddr_start &= PAGE_MASK;
2994         vaddr_end &= PAGE_MASK;
2995
2996         /* Find the task_struct from pid */
2997         rcu_read_lock();
2998         task = find_task_by_vpid(pid);
2999         if (!task) {
3000                 rcu_read_unlock();
3001                 ret = -ESRCH;
3002                 goto out;
3003         }
3004         get_task_struct(task);
3005         rcu_read_unlock();
3006
3007         /* Find the mm_struct */
3008         mm = get_task_mm(task);
3009         put_task_struct(task);
3010
3011         if (!mm) {
3012                 ret = -EINVAL;
3013                 goto out;
3014         }
3015
3016         pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3017                  pid, vaddr_start, vaddr_end);
3018
3019         mmap_read_lock(mm);
3020         /*
3021          * always increase addr by PAGE_SIZE, since we could have a PTE page
3022          * table filled with PTE-mapped THPs, each of which is distinct.
3023          */
3024         for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3025                 struct vm_area_struct *vma = vma_lookup(mm, addr);
3026                 struct page *page;
3027
3028                 if (!vma)
3029                         break;
3030
3031                 /* skip special VMA and hugetlb VMA */
3032                 if (vma_not_suitable_for_thp_split(vma)) {
3033                         addr = vma->vm_end;
3034                         continue;
3035                 }
3036
3037                 /* FOLL_DUMP to ignore special (like zero) pages */
3038                 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3039
3040                 if (IS_ERR_OR_NULL(page))
3041                         continue;
3042
3043                 if (!is_transparent_hugepage(page))
3044                         goto next;
3045
3046                 total++;
3047                 if (!can_split_folio(page_folio(page), NULL))
3048                         goto next;
3049
3050                 if (!trylock_page(page))
3051                         goto next;
3052
3053                 if (!split_huge_page(page))
3054                         split++;
3055
3056                 unlock_page(page);
3057 next:
3058                 put_page(page);
3059                 cond_resched();
3060         }
3061         mmap_read_unlock(mm);
3062         mmput(mm);
3063
3064         pr_debug("%lu of %lu THP split\n", split, total);
3065
3066 out:
3067         return ret;
3068 }
3069
3070 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3071                                 pgoff_t off_end)
3072 {
3073         struct filename *file;
3074         struct file *candidate;
3075         struct address_space *mapping;
3076         int ret = -EINVAL;
3077         pgoff_t index;
3078         int nr_pages = 1;
3079         unsigned long total = 0, split = 0;
3080
3081         file = getname_kernel(file_path);
3082         if (IS_ERR(file))
3083                 return ret;
3084
3085         candidate = file_open_name(file, O_RDONLY, 0);
3086         if (IS_ERR(candidate))
3087                 goto out;
3088
3089         pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3090                  file_path, off_start, off_end);
3091
3092         mapping = candidate->f_mapping;
3093
3094         for (index = off_start; index < off_end; index += nr_pages) {
3095                 struct folio *folio = __filemap_get_folio(mapping, index,
3096                                                 FGP_ENTRY, 0);
3097
3098                 nr_pages = 1;
3099                 if (xa_is_value(folio) || !folio)
3100                         continue;
3101
3102                 if (!folio_test_large(folio))
3103                         goto next;
3104
3105                 total++;
3106                 nr_pages = folio_nr_pages(folio);
3107
3108                 if (!folio_trylock(folio))
3109                         goto next;
3110
3111                 if (!split_folio(folio))
3112                         split++;
3113
3114                 folio_unlock(folio);
3115 next:
3116                 folio_put(folio);
3117                 cond_resched();
3118         }
3119
3120         filp_close(candidate, NULL);
3121         ret = 0;
3122
3123         pr_debug("%lu of %lu file-backed THP split\n", split, total);
3124 out:
3125         putname(file);
3126         return ret;
3127 }
3128
3129 #define MAX_INPUT_BUF_SZ 255
3130
3131 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3132                                 size_t count, loff_t *ppops)
3133 {
3134         static DEFINE_MUTEX(split_debug_mutex);
3135         ssize_t ret;
3136         /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3137         char input_buf[MAX_INPUT_BUF_SZ];
3138         int pid;
3139         unsigned long vaddr_start, vaddr_end;
3140
3141         ret = mutex_lock_interruptible(&split_debug_mutex);
3142         if (ret)
3143                 return ret;
3144
3145         ret = -EFAULT;
3146
3147         memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3148         if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3149                 goto out;
3150
3151         input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3152
3153         if (input_buf[0] == '/') {
3154                 char *tok;
3155                 char *buf = input_buf;
3156                 char file_path[MAX_INPUT_BUF_SZ];
3157                 pgoff_t off_start = 0, off_end = 0;
3158                 size_t input_len = strlen(input_buf);
3159
3160                 tok = strsep(&buf, ",");
3161                 if (tok) {
3162                         strcpy(file_path, tok);
3163                 } else {
3164                         ret = -EINVAL;
3165                         goto out;
3166                 }
3167
3168                 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3169                 if (ret != 2) {
3170                         ret = -EINVAL;
3171                         goto out;
3172                 }
3173                 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3174                 if (!ret)
3175                         ret = input_len;
3176
3177                 goto out;
3178         }
3179
3180         ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3181         if (ret == 1 && pid == 1) {
3182                 split_huge_pages_all();
3183                 ret = strlen(input_buf);
3184                 goto out;
3185         } else if (ret != 3) {
3186                 ret = -EINVAL;
3187                 goto out;
3188         }
3189
3190         ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3191         if (!ret)
3192                 ret = strlen(input_buf);
3193 out:
3194         mutex_unlock(&split_debug_mutex);
3195         return ret;
3196
3197 }
3198
3199 static const struct file_operations split_huge_pages_fops = {
3200         .owner   = THIS_MODULE,
3201         .write   = split_huge_pages_write,
3202         .llseek  = no_llseek,
3203 };
3204
3205 static int __init split_huge_pages_debugfs(void)
3206 {
3207         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3208                             &split_huge_pages_fops);
3209         return 0;
3210 }
3211 late_initcall(split_huge_pages_debugfs);
3212 #endif
3213
3214 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3215 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3216                 struct page *page)
3217 {
3218         struct vm_area_struct *vma = pvmw->vma;
3219         struct mm_struct *mm = vma->vm_mm;
3220         unsigned long address = pvmw->address;
3221         bool anon_exclusive;
3222         pmd_t pmdval;
3223         swp_entry_t entry;
3224         pmd_t pmdswp;
3225
3226         if (!(pvmw->pmd && !pvmw->pte))
3227                 return 0;
3228
3229         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3230         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3231
3232         /* See page_try_share_anon_rmap(): invalidate PMD first. */
3233         anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3234         if (anon_exclusive && page_try_share_anon_rmap(page)) {
3235                 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3236                 return -EBUSY;
3237         }
3238
3239         if (pmd_dirty(pmdval))
3240                 set_page_dirty(page);
3241         if (pmd_write(pmdval))
3242                 entry = make_writable_migration_entry(page_to_pfn(page));
3243         else if (anon_exclusive)
3244                 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3245         else
3246                 entry = make_readable_migration_entry(page_to_pfn(page));
3247         if (pmd_young(pmdval))
3248                 entry = make_migration_entry_young(entry);
3249         if (pmd_dirty(pmdval))
3250                 entry = make_migration_entry_dirty(entry);
3251         pmdswp = swp_entry_to_pmd(entry);
3252         if (pmd_soft_dirty(pmdval))
3253                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3254         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3255         page_remove_rmap(page, vma, true);
3256         put_page(page);
3257         trace_set_migration_pmd(address, pmd_val(pmdswp));
3258
3259         return 0;
3260 }
3261
3262 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3263 {
3264         struct vm_area_struct *vma = pvmw->vma;
3265         struct mm_struct *mm = vma->vm_mm;
3266         unsigned long address = pvmw->address;
3267         unsigned long haddr = address & HPAGE_PMD_MASK;
3268         pmd_t pmde;
3269         swp_entry_t entry;
3270
3271         if (!(pvmw->pmd && !pvmw->pte))
3272                 return;
3273
3274         entry = pmd_to_swp_entry(*pvmw->pmd);
3275         get_page(new);
3276         pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3277         if (pmd_swp_soft_dirty(*pvmw->pmd))
3278                 pmde = pmd_mksoft_dirty(pmde);
3279         if (pmd_swp_uffd_wp(*pvmw->pmd))
3280                 pmde = pmd_mkuffd_wp(pmde);
3281         if (!is_migration_entry_young(entry))
3282                 pmde = pmd_mkold(pmde);
3283         /* NOTE: this may contain setting soft-dirty on some archs */
3284         if (PageDirty(new) && is_migration_entry_dirty(entry))
3285                 pmde = pmd_mkdirty(pmde);
3286         if (is_writable_migration_entry(entry))
3287                 pmde = maybe_pmd_mkwrite(pmde, vma);
3288         else
3289                 pmde = pmd_wrprotect(pmde);
3290
3291         if (PageAnon(new)) {
3292                 rmap_t rmap_flags = RMAP_COMPOUND;
3293
3294                 if (!is_readable_migration_entry(entry))
3295                         rmap_flags |= RMAP_EXCLUSIVE;
3296
3297                 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3298         } else {
3299                 page_add_file_rmap(new, vma, true);
3300         }
3301         VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3302         set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3303
3304         /* No need to invalidate - it was non-present before */
3305         update_mmu_cache_pmd(vma, address, pvmw->pmd);
3306         trace_remove_migration_pmd(address, pmd_val(pmde));
3307 }
3308 #endif