1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
40 #include <asm/pgalloc.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/thp.h>
48 * By default, transparent hugepage support is disabled in order to avoid
49 * risking an increased memory footprint for applications that are not
50 * guaranteed to benefit from it. When transparent hugepage support is
51 * enabled, it is for all mappings, and khugepaged scans all mappings.
52 * Defrag is invoked by khugepaged hugepage allocations and by page faults
53 * for all hugepage allocations.
55 unsigned long transparent_hugepage_flags __read_mostly =
56 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
57 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
60 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
62 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
66 static struct shrinker deferred_split_shrinker;
68 static atomic_t huge_zero_refcount;
69 struct page *huge_zero_page __read_mostly;
70 unsigned long huge_zero_pfn __read_mostly = ~0UL;
72 bool transparent_hugepage_active(struct vm_area_struct *vma)
74 /* The addr is used to check if the vma size fits */
75 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
77 if (!transhuge_vma_suitable(vma, addr))
79 if (vma_is_anonymous(vma))
80 return __transparent_hugepage_enabled(vma);
81 if (vma_is_shmem(vma))
82 return shmem_huge_enabled(vma);
83 if (transhuge_vma_enabled(vma, vma->vm_flags) && file_thp_enabled(vma))
89 static bool get_huge_zero_page(void)
91 struct page *zero_page;
93 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102 count_vm_event(THP_ZERO_PAGE_ALLOC);
104 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
106 __free_pages(zero_page, compound_order(zero_page));
109 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
111 /* We take additional reference here. It will be put back by shrinker */
112 atomic_set(&huge_zero_refcount, 2);
117 static void put_huge_zero_page(void)
120 * Counter should never go to zero here. Only shrinker can put
123 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 return READ_ONCE(huge_zero_page);
131 if (!get_huge_zero_page())
134 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 put_huge_zero_page();
137 return READ_ONCE(huge_zero_page);
140 void mm_put_huge_zero_page(struct mm_struct *mm)
142 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
143 put_huge_zero_page();
146 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
147 struct shrink_control *sc)
149 /* we can free zero page only if last reference remains */
150 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
154 struct shrink_control *sc)
156 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
157 struct page *zero_page = xchg(&huge_zero_page, NULL);
158 BUG_ON(zero_page == NULL);
159 WRITE_ONCE(huge_zero_pfn, ~0UL);
160 __free_pages(zero_page, compound_order(zero_page));
167 static struct shrinker huge_zero_page_shrinker = {
168 .count_objects = shrink_huge_zero_page_count,
169 .scan_objects = shrink_huge_zero_page_scan,
170 .seeks = DEFAULT_SEEKS,
174 static ssize_t enabled_show(struct kobject *kobj,
175 struct kobj_attribute *attr, char *buf)
179 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
180 output = "[always] madvise never";
181 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
182 &transparent_hugepage_flags))
183 output = "always [madvise] never";
185 output = "always madvise [never]";
187 return sysfs_emit(buf, "%s\n", output);
190 static ssize_t enabled_store(struct kobject *kobj,
191 struct kobj_attribute *attr,
192 const char *buf, size_t count)
196 if (sysfs_streq(buf, "always")) {
197 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
199 } else if (sysfs_streq(buf, "madvise")) {
200 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
202 } else if (sysfs_streq(buf, "never")) {
203 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
204 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
209 int err = start_stop_khugepaged();
215 static struct kobj_attribute enabled_attr =
216 __ATTR(enabled, 0644, enabled_show, enabled_store);
218 ssize_t single_hugepage_flag_show(struct kobject *kobj,
219 struct kobj_attribute *attr, char *buf,
220 enum transparent_hugepage_flag flag)
222 return sysfs_emit(buf, "%d\n",
223 !!test_bit(flag, &transparent_hugepage_flags));
226 ssize_t single_hugepage_flag_store(struct kobject *kobj,
227 struct kobj_attribute *attr,
228 const char *buf, size_t count,
229 enum transparent_hugepage_flag flag)
234 ret = kstrtoul(buf, 10, &value);
241 set_bit(flag, &transparent_hugepage_flags);
243 clear_bit(flag, &transparent_hugepage_flags);
248 static ssize_t defrag_show(struct kobject *kobj,
249 struct kobj_attribute *attr, char *buf)
253 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
254 &transparent_hugepage_flags))
255 output = "[always] defer defer+madvise madvise never";
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
257 &transparent_hugepage_flags))
258 output = "always [defer] defer+madvise madvise never";
259 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
260 &transparent_hugepage_flags))
261 output = "always defer [defer+madvise] madvise never";
262 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
263 &transparent_hugepage_flags))
264 output = "always defer defer+madvise [madvise] never";
266 output = "always defer defer+madvise madvise [never]";
268 return sysfs_emit(buf, "%s\n", output);
271 static ssize_t defrag_store(struct kobject *kobj,
272 struct kobj_attribute *attr,
273 const char *buf, size_t count)
275 if (sysfs_streq(buf, "always")) {
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 } else if (sysfs_streq(buf, "defer+madvise")) {
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
285 } else if (sysfs_streq(buf, "defer")) {
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
290 } else if (sysfs_streq(buf, "madvise")) {
291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
294 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
295 } else if (sysfs_streq(buf, "never")) {
296 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
297 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
305 static struct kobj_attribute defrag_attr =
306 __ATTR(defrag, 0644, defrag_show, defrag_store);
308 static ssize_t use_zero_page_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf)
311 return single_hugepage_flag_show(kobj, attr, buf,
312 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
314 static ssize_t use_zero_page_store(struct kobject *kobj,
315 struct kobj_attribute *attr, const char *buf, size_t count)
317 return single_hugepage_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
320 static struct kobj_attribute use_zero_page_attr =
321 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
323 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
324 struct kobj_attribute *attr, char *buf)
326 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
328 static struct kobj_attribute hpage_pmd_size_attr =
329 __ATTR_RO(hpage_pmd_size);
331 static struct attribute *hugepage_attr[] = {
334 &use_zero_page_attr.attr,
335 &hpage_pmd_size_attr.attr,
337 &shmem_enabled_attr.attr,
342 static const struct attribute_group hugepage_attr_group = {
343 .attrs = hugepage_attr,
346 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
352 pr_err("failed to create transparent hugepage kobject\n");
356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
358 pr_err("failed to register transparent hugepage group\n");
362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
364 pr_err("failed to register transparent hugepage group\n");
365 goto remove_hp_group;
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
373 kobject_put(*hugepage_kobj);
377 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
384 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
389 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392 #endif /* CONFIG_SYSFS */
394 static int __init hugepage_init(void)
397 struct kobject *hugepage_kobj;
399 if (!has_transparent_hugepage()) {
401 * Hardware doesn't support hugepages, hence disable
404 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
409 * hugepages can't be allocated by the buddy allocator
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
418 err = hugepage_init_sysfs(&hugepage_kobj);
422 err = khugepaged_init();
426 err = register_shrinker(&huge_zero_page_shrinker);
428 goto err_hzp_shrinker;
429 err = register_shrinker(&deferred_split_shrinker);
431 goto err_split_shrinker;
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 transparent_hugepage_flags = 0;
443 err = start_stop_khugepaged();
449 unregister_shrinker(&deferred_split_shrinker);
451 unregister_shrinker(&huge_zero_page_shrinker);
453 khugepaged_destroy();
455 hugepage_exit_sysfs(hugepage_kobj);
459 subsys_initcall(hugepage_init);
461 static int __init setup_transparent_hugepage(char *str)
466 if (!strcmp(str, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
472 } else if (!strcmp(str, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
478 } else if (!strcmp(str, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
494 if (likely(vma->vm_flags & VM_WRITE))
495 pmd = pmd_mkwrite(pmd);
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 struct mem_cgroup *memcg = page_memcg(compound_head(page));
503 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 return &memcg->deferred_split_queue;
508 return &pgdat->deferred_split_queue;
511 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
513 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
515 return &pgdat->deferred_split_queue;
519 void prep_transhuge_page(struct page *page)
522 * we use page->mapping and page->indexlru in second tail page
523 * as list_head: assuming THP order >= 2
526 INIT_LIST_HEAD(page_deferred_list(page));
527 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 static inline bool is_transparent_hugepage(struct page *page)
532 if (!PageCompound(page))
535 page = compound_head(page);
536 return is_huge_zero_page(page) ||
537 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540 static unsigned long __thp_get_unmapped_area(struct file *filp,
541 unsigned long addr, unsigned long len,
542 loff_t off, unsigned long flags, unsigned long size)
544 loff_t off_end = off + len;
545 loff_t off_align = round_up(off, size);
546 unsigned long len_pad, ret;
548 if (off_end <= off_align || (off_end - off_align) < size)
551 len_pad = len + size;
552 if (len_pad < len || (off + len_pad) < off)
555 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
556 off >> PAGE_SHIFT, flags);
559 * The failure might be due to length padding. The caller will retry
560 * without the padding.
562 if (IS_ERR_VALUE(ret))
566 * Do not try to align to THP boundary if allocation at the address
572 ret += (off - ret) & (size - 1);
576 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
577 unsigned long len, unsigned long pgoff, unsigned long flags)
580 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
582 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
586 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
588 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
590 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
591 struct page *page, gfp_t gfp)
593 struct vm_area_struct *vma = vmf->vma;
595 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
598 VM_BUG_ON_PAGE(!PageCompound(page), page);
600 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
602 count_vm_event(THP_FAULT_FALLBACK);
603 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
604 return VM_FAULT_FALLBACK;
606 cgroup_throttle_swaprate(page, gfp);
608 pgtable = pte_alloc_one(vma->vm_mm);
609 if (unlikely(!pgtable)) {
614 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
616 * The memory barrier inside __SetPageUptodate makes sure that
617 * clear_huge_page writes become visible before the set_pmd_at()
620 __SetPageUptodate(page);
622 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
623 if (unlikely(!pmd_none(*vmf->pmd))) {
628 ret = check_stable_address_space(vma->vm_mm);
632 /* Deliver the page fault to userland */
633 if (userfaultfd_missing(vma)) {
634 spin_unlock(vmf->ptl);
636 pte_free(vma->vm_mm, pgtable);
637 ret = handle_userfault(vmf, VM_UFFD_MISSING);
638 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
642 entry = mk_huge_pmd(page, vma->vm_page_prot);
643 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644 page_add_new_anon_rmap(page, vma, haddr);
645 lru_cache_add_inactive_or_unevictable(page, vma);
646 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
647 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
648 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
649 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
650 mm_inc_nr_ptes(vma->vm_mm);
651 spin_unlock(vmf->ptl);
652 count_vm_event(THP_FAULT_ALLOC);
653 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
658 spin_unlock(vmf->ptl);
661 pte_free(vma->vm_mm, pgtable);
668 * always: directly stall for all thp allocations
669 * defer: wake kswapd and fail if not immediately available
670 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
671 * fail if not immediately available
672 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
674 * never: never stall for any thp allocation
676 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
678 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
680 /* Always do synchronous compaction */
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
682 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
684 /* Kick kcompactd and fail quickly */
685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
686 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
688 /* Synchronous compaction if madvised, otherwise kick kcompactd */
689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 return GFP_TRANSHUGE_LIGHT |
691 (vma_madvised ? __GFP_DIRECT_RECLAIM :
692 __GFP_KSWAPD_RECLAIM);
694 /* Only do synchronous compaction if madvised */
695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
699 return GFP_TRANSHUGE_LIGHT;
702 /* Caller must hold page table lock. */
703 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
704 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
705 struct page *zero_page)
710 entry = mk_pmd(zero_page, vma->vm_page_prot);
711 entry = pmd_mkhuge(entry);
713 pgtable_trans_huge_deposit(mm, pmd, pgtable);
714 set_pmd_at(mm, haddr, pmd, entry);
718 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720 struct vm_area_struct *vma = vmf->vma;
723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725 if (!transhuge_vma_suitable(vma, haddr))
726 return VM_FAULT_FALLBACK;
727 if (unlikely(anon_vma_prepare(vma)))
729 khugepaged_enter(vma, vma->vm_flags);
731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732 !mm_forbids_zeropage(vma->vm_mm) &&
733 transparent_hugepage_use_zero_page()) {
735 struct page *zero_page;
737 pgtable = pte_alloc_one(vma->vm_mm);
738 if (unlikely(!pgtable))
740 zero_page = mm_get_huge_zero_page(vma->vm_mm);
741 if (unlikely(!zero_page)) {
742 pte_free(vma->vm_mm, pgtable);
743 count_vm_event(THP_FAULT_FALLBACK);
744 return VM_FAULT_FALLBACK;
746 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 if (pmd_none(*vmf->pmd)) {
749 ret = check_stable_address_space(vma->vm_mm);
751 spin_unlock(vmf->ptl);
752 pte_free(vma->vm_mm, pgtable);
753 } else if (userfaultfd_missing(vma)) {
754 spin_unlock(vmf->ptl);
755 pte_free(vma->vm_mm, pgtable);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 haddr, vmf->pmd, zero_page);
761 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
762 spin_unlock(vmf->ptl);
765 spin_unlock(vmf->ptl);
766 pte_free(vma->vm_mm, pgtable);
770 gfp = vma_thp_gfp_mask(vma);
771 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
772 if (unlikely(!folio)) {
773 count_vm_event(THP_FAULT_FALLBACK);
774 return VM_FAULT_FALLBACK;
776 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
779 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
780 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
783 struct mm_struct *mm = vma->vm_mm;
787 ptl = pmd_lock(mm, pmd);
788 if (!pmd_none(*pmd)) {
790 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
791 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
794 entry = pmd_mkyoung(*pmd);
795 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
796 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
797 update_mmu_cache_pmd(vma, addr, pmd);
803 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
804 if (pfn_t_devmap(pfn))
805 entry = pmd_mkdevmap(entry);
807 entry = pmd_mkyoung(pmd_mkdirty(entry));
808 entry = maybe_pmd_mkwrite(entry, vma);
812 pgtable_trans_huge_deposit(mm, pmd, pgtable);
817 set_pmd_at(mm, addr, pmd, entry);
818 update_mmu_cache_pmd(vma, addr, pmd);
823 pte_free(mm, pgtable);
827 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
828 * @vmf: Structure describing the fault
829 * @pfn: pfn to insert
830 * @pgprot: page protection to use
831 * @write: whether it's a write fault
833 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
834 * also consult the vmf_insert_mixed_prot() documentation when
835 * @pgprot != @vmf->vma->vm_page_prot.
837 * Return: vm_fault_t value.
839 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
840 pgprot_t pgprot, bool write)
842 unsigned long addr = vmf->address & PMD_MASK;
843 struct vm_area_struct *vma = vmf->vma;
844 pgtable_t pgtable = NULL;
847 * If we had pmd_special, we could avoid all these restrictions,
848 * but we need to be consistent with PTEs and architectures that
849 * can't support a 'special' bit.
851 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
853 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
854 (VM_PFNMAP|VM_MIXEDMAP));
855 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
857 if (addr < vma->vm_start || addr >= vma->vm_end)
858 return VM_FAULT_SIGBUS;
860 if (arch_needs_pgtable_deposit()) {
861 pgtable = pte_alloc_one(vma->vm_mm);
866 track_pfn_insert(vma, &pgprot, pfn);
868 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
869 return VM_FAULT_NOPAGE;
871 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
873 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
874 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
876 if (likely(vma->vm_flags & VM_WRITE))
877 pud = pud_mkwrite(pud);
881 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
882 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
884 struct mm_struct *mm = vma->vm_mm;
888 ptl = pud_lock(mm, pud);
889 if (!pud_none(*pud)) {
891 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
892 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
895 entry = pud_mkyoung(*pud);
896 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
897 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
898 update_mmu_cache_pud(vma, addr, pud);
903 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
904 if (pfn_t_devmap(pfn))
905 entry = pud_mkdevmap(entry);
907 entry = pud_mkyoung(pud_mkdirty(entry));
908 entry = maybe_pud_mkwrite(entry, vma);
910 set_pud_at(mm, addr, pud, entry);
911 update_mmu_cache_pud(vma, addr, pud);
918 * vmf_insert_pfn_pud_prot - insert a pud size pfn
919 * @vmf: Structure describing the fault
920 * @pfn: pfn to insert
921 * @pgprot: page protection to use
922 * @write: whether it's a write fault
924 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
925 * also consult the vmf_insert_mixed_prot() documentation when
926 * @pgprot != @vmf->vma->vm_page_prot.
928 * Return: vm_fault_t value.
930 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
931 pgprot_t pgprot, bool write)
933 unsigned long addr = vmf->address & PUD_MASK;
934 struct vm_area_struct *vma = vmf->vma;
937 * If we had pud_special, we could avoid all these restrictions,
938 * but we need to be consistent with PTEs and architectures that
939 * can't support a 'special' bit.
941 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
943 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
944 (VM_PFNMAP|VM_MIXEDMAP));
945 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
947 if (addr < vma->vm_start || addr >= vma->vm_end)
948 return VM_FAULT_SIGBUS;
950 track_pfn_insert(vma, &pgprot, pfn);
952 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
953 return VM_FAULT_NOPAGE;
955 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
956 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
958 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
959 pmd_t *pmd, int flags)
963 _pmd = pmd_mkyoung(*pmd);
964 if (flags & FOLL_WRITE)
965 _pmd = pmd_mkdirty(_pmd);
966 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
967 pmd, _pmd, flags & FOLL_WRITE))
968 update_mmu_cache_pmd(vma, addr, pmd);
971 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
972 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
974 unsigned long pfn = pmd_pfn(*pmd);
975 struct mm_struct *mm = vma->vm_mm;
978 assert_spin_locked(pmd_lockptr(mm, pmd));
981 * When we COW a devmap PMD entry, we split it into PTEs, so we should
982 * not be in this function with `flags & FOLL_COW` set.
984 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
986 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
987 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
988 (FOLL_PIN | FOLL_GET)))
991 if (flags & FOLL_WRITE && !pmd_write(*pmd))
994 if (pmd_present(*pmd) && pmd_devmap(*pmd))
999 if (flags & FOLL_TOUCH)
1000 touch_pmd(vma, addr, pmd, flags);
1003 * device mapped pages can only be returned if the
1004 * caller will manage the page reference count.
1006 if (!(flags & (FOLL_GET | FOLL_PIN)))
1007 return ERR_PTR(-EEXIST);
1009 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1010 *pgmap = get_dev_pagemap(pfn, *pgmap);
1012 return ERR_PTR(-EFAULT);
1013 page = pfn_to_page(pfn);
1014 if (!try_grab_page(page, flags))
1015 page = ERR_PTR(-ENOMEM);
1020 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1022 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1024 spinlock_t *dst_ptl, *src_ptl;
1025 struct page *src_page;
1027 pgtable_t pgtable = NULL;
1030 /* Skip if can be re-fill on fault */
1031 if (!vma_is_anonymous(dst_vma))
1034 pgtable = pte_alloc_one(dst_mm);
1035 if (unlikely(!pgtable))
1038 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1039 src_ptl = pmd_lockptr(src_mm, src_pmd);
1040 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1045 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1046 if (unlikely(is_swap_pmd(pmd))) {
1047 swp_entry_t entry = pmd_to_swp_entry(pmd);
1049 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1050 if (!is_readable_migration_entry(entry)) {
1051 entry = make_readable_migration_entry(
1053 pmd = swp_entry_to_pmd(entry);
1054 if (pmd_swp_soft_dirty(*src_pmd))
1055 pmd = pmd_swp_mksoft_dirty(pmd);
1056 if (pmd_swp_uffd_wp(*src_pmd))
1057 pmd = pmd_swp_mkuffd_wp(pmd);
1058 set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1061 mm_inc_nr_ptes(dst_mm);
1062 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1063 if (!userfaultfd_wp(dst_vma))
1064 pmd = pmd_swp_clear_uffd_wp(pmd);
1065 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1071 if (unlikely(!pmd_trans_huge(pmd))) {
1072 pte_free(dst_mm, pgtable);
1076 * When page table lock is held, the huge zero pmd should not be
1077 * under splitting since we don't split the page itself, only pmd to
1080 if (is_huge_zero_pmd(pmd)) {
1082 * get_huge_zero_page() will never allocate a new page here,
1083 * since we already have a zero page to copy. It just takes a
1086 mm_get_huge_zero_page(dst_mm);
1090 src_page = pmd_page(pmd);
1091 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1094 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1095 /* Page maybe pinned: split and retry the fault on PTEs. */
1097 pte_free(dst_mm, pgtable);
1098 spin_unlock(src_ptl);
1099 spin_unlock(dst_ptl);
1100 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1103 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1105 mm_inc_nr_ptes(dst_mm);
1106 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1107 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1108 if (!userfaultfd_wp(dst_vma))
1109 pmd = pmd_clear_uffd_wp(pmd);
1110 pmd = pmd_mkold(pmd_wrprotect(pmd));
1111 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1115 spin_unlock(src_ptl);
1116 spin_unlock(dst_ptl);
1121 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1122 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1123 pud_t *pud, int flags)
1127 _pud = pud_mkyoung(*pud);
1128 if (flags & FOLL_WRITE)
1129 _pud = pud_mkdirty(_pud);
1130 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1131 pud, _pud, flags & FOLL_WRITE))
1132 update_mmu_cache_pud(vma, addr, pud);
1135 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1136 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1138 unsigned long pfn = pud_pfn(*pud);
1139 struct mm_struct *mm = vma->vm_mm;
1142 assert_spin_locked(pud_lockptr(mm, pud));
1144 if (flags & FOLL_WRITE && !pud_write(*pud))
1147 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1148 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1149 (FOLL_PIN | FOLL_GET)))
1152 if (pud_present(*pud) && pud_devmap(*pud))
1157 if (flags & FOLL_TOUCH)
1158 touch_pud(vma, addr, pud, flags);
1161 * device mapped pages can only be returned if the
1162 * caller will manage the page reference count.
1164 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1166 if (!(flags & (FOLL_GET | FOLL_PIN)))
1167 return ERR_PTR(-EEXIST);
1169 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1170 *pgmap = get_dev_pagemap(pfn, *pgmap);
1172 return ERR_PTR(-EFAULT);
1173 page = pfn_to_page(pfn);
1174 if (!try_grab_page(page, flags))
1175 page = ERR_PTR(-ENOMEM);
1180 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1181 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1182 struct vm_area_struct *vma)
1184 spinlock_t *dst_ptl, *src_ptl;
1188 dst_ptl = pud_lock(dst_mm, dst_pud);
1189 src_ptl = pud_lockptr(src_mm, src_pud);
1190 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1194 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1198 * When page table lock is held, the huge zero pud should not be
1199 * under splitting since we don't split the page itself, only pud to
1202 if (is_huge_zero_pud(pud)) {
1203 /* No huge zero pud yet */
1207 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1208 * and split if duplicating fails.
1210 pudp_set_wrprotect(src_mm, addr, src_pud);
1211 pud = pud_mkold(pud_wrprotect(pud));
1212 set_pud_at(dst_mm, addr, dst_pud, pud);
1216 spin_unlock(src_ptl);
1217 spin_unlock(dst_ptl);
1221 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1224 unsigned long haddr;
1225 bool write = vmf->flags & FAULT_FLAG_WRITE;
1227 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1228 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1231 entry = pud_mkyoung(orig_pud);
1233 entry = pud_mkdirty(entry);
1234 haddr = vmf->address & HPAGE_PUD_MASK;
1235 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1236 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1239 spin_unlock(vmf->ptl);
1241 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1243 void huge_pmd_set_accessed(struct vm_fault *vmf)
1246 unsigned long haddr;
1247 bool write = vmf->flags & FAULT_FLAG_WRITE;
1248 pmd_t orig_pmd = vmf->orig_pmd;
1250 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1251 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1254 entry = pmd_mkyoung(orig_pmd);
1256 entry = pmd_mkdirty(entry);
1257 haddr = vmf->address & HPAGE_PMD_MASK;
1258 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1259 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1262 spin_unlock(vmf->ptl);
1265 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1267 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1268 struct vm_area_struct *vma = vmf->vma;
1270 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1271 pmd_t orig_pmd = vmf->orig_pmd;
1273 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1274 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1276 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1277 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1279 if (is_huge_zero_pmd(orig_pmd))
1282 spin_lock(vmf->ptl);
1284 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1285 spin_unlock(vmf->ptl);
1289 page = pmd_page(orig_pmd);
1290 VM_BUG_ON_PAGE(!PageHead(page), page);
1292 /* Early check when only holding the PT lock. */
1293 if (PageAnonExclusive(page))
1296 if (!trylock_page(page)) {
1298 spin_unlock(vmf->ptl);
1300 spin_lock(vmf->ptl);
1301 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1302 spin_unlock(vmf->ptl);
1310 /* Recheck after temporarily dropping the PT lock. */
1311 if (PageAnonExclusive(page)) {
1317 * See do_wp_page(): we can only reuse the page exclusively if there are
1318 * no additional references. Note that we always drain the LRU
1319 * pagevecs immediately after adding a THP.
1321 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1322 goto unlock_fallback;
1323 if (PageSwapCache(page))
1324 try_to_free_swap(page);
1325 if (page_count(page) == 1) {
1328 page_move_anon_rmap(page, vma);
1331 if (unlikely(unshare)) {
1332 spin_unlock(vmf->ptl);
1335 entry = pmd_mkyoung(orig_pmd);
1336 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1337 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1338 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1339 spin_unlock(vmf->ptl);
1340 return VM_FAULT_WRITE;
1345 spin_unlock(vmf->ptl);
1347 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1348 return VM_FAULT_FALLBACK;
1352 * FOLL_FORCE can write to even unwritable pmd's, but only
1353 * after we've gone through a COW cycle and they are dirty.
1355 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1357 return pmd_write(pmd) ||
1358 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1361 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1366 struct mm_struct *mm = vma->vm_mm;
1367 struct page *page = NULL;
1369 assert_spin_locked(pmd_lockptr(mm, pmd));
1371 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1374 /* Avoid dumping huge zero page */
1375 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1376 return ERR_PTR(-EFAULT);
1378 /* Full NUMA hinting faults to serialise migration in fault paths */
1379 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1382 page = pmd_page(*pmd);
1383 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1385 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1386 return ERR_PTR(-EMLINK);
1388 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1389 !PageAnonExclusive(page), page);
1391 if (!try_grab_page(page, flags))
1392 return ERR_PTR(-ENOMEM);
1394 if (flags & FOLL_TOUCH)
1395 touch_pmd(vma, addr, pmd, flags);
1397 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1398 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1404 /* NUMA hinting page fault entry point for trans huge pmds */
1405 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1407 struct vm_area_struct *vma = vmf->vma;
1408 pmd_t oldpmd = vmf->orig_pmd;
1411 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1412 int page_nid = NUMA_NO_NODE;
1413 int target_nid, last_cpupid = -1;
1414 bool migrated = false;
1415 bool was_writable = pmd_savedwrite(oldpmd);
1418 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1419 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1420 spin_unlock(vmf->ptl);
1424 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1425 page = vm_normal_page_pmd(vma, haddr, pmd);
1429 /* See similar comment in do_numa_page for explanation */
1431 flags |= TNF_NO_GROUP;
1433 page_nid = page_to_nid(page);
1434 last_cpupid = page_cpupid_last(page);
1435 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1438 if (target_nid == NUMA_NO_NODE) {
1443 spin_unlock(vmf->ptl);
1445 migrated = migrate_misplaced_page(page, vma, target_nid);
1447 flags |= TNF_MIGRATED;
1448 page_nid = target_nid;
1450 flags |= TNF_MIGRATE_FAIL;
1451 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1452 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1453 spin_unlock(vmf->ptl);
1460 if (page_nid != NUMA_NO_NODE)
1461 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1467 /* Restore the PMD */
1468 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1469 pmd = pmd_mkyoung(pmd);
1471 pmd = pmd_mkwrite(pmd);
1472 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1473 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1474 spin_unlock(vmf->ptl);
1479 * Return true if we do MADV_FREE successfully on entire pmd page.
1480 * Otherwise, return false.
1482 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1483 pmd_t *pmd, unsigned long addr, unsigned long next)
1488 struct mm_struct *mm = tlb->mm;
1491 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1493 ptl = pmd_trans_huge_lock(pmd, vma);
1498 if (is_huge_zero_pmd(orig_pmd))
1501 if (unlikely(!pmd_present(orig_pmd))) {
1502 VM_BUG_ON(thp_migration_supported() &&
1503 !is_pmd_migration_entry(orig_pmd));
1507 page = pmd_page(orig_pmd);
1509 * If other processes are mapping this page, we couldn't discard
1510 * the page unless they all do MADV_FREE so let's skip the page.
1512 if (total_mapcount(page) != 1)
1515 if (!trylock_page(page))
1519 * If user want to discard part-pages of THP, split it so MADV_FREE
1520 * will deactivate only them.
1522 if (next - addr != HPAGE_PMD_SIZE) {
1525 split_huge_page(page);
1531 if (PageDirty(page))
1532 ClearPageDirty(page);
1535 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1536 pmdp_invalidate(vma, addr, pmd);
1537 orig_pmd = pmd_mkold(orig_pmd);
1538 orig_pmd = pmd_mkclean(orig_pmd);
1540 set_pmd_at(mm, addr, pmd, orig_pmd);
1541 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1544 mark_page_lazyfree(page);
1552 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1556 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1557 pte_free(mm, pgtable);
1561 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562 pmd_t *pmd, unsigned long addr)
1567 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1569 ptl = __pmd_trans_huge_lock(pmd, vma);
1573 * For architectures like ppc64 we look at deposited pgtable
1574 * when calling pmdp_huge_get_and_clear. So do the
1575 * pgtable_trans_huge_withdraw after finishing pmdp related
1578 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1580 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1581 if (vma_is_special_huge(vma)) {
1582 if (arch_needs_pgtable_deposit())
1583 zap_deposited_table(tlb->mm, pmd);
1585 } else if (is_huge_zero_pmd(orig_pmd)) {
1586 zap_deposited_table(tlb->mm, pmd);
1589 struct page *page = NULL;
1590 int flush_needed = 1;
1592 if (pmd_present(orig_pmd)) {
1593 page = pmd_page(orig_pmd);
1594 page_remove_rmap(page, vma, true);
1595 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1596 VM_BUG_ON_PAGE(!PageHead(page), page);
1597 } else if (thp_migration_supported()) {
1600 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1601 entry = pmd_to_swp_entry(orig_pmd);
1602 page = pfn_swap_entry_to_page(entry);
1605 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1607 if (PageAnon(page)) {
1608 zap_deposited_table(tlb->mm, pmd);
1609 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1611 if (arch_needs_pgtable_deposit())
1612 zap_deposited_table(tlb->mm, pmd);
1613 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1618 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1623 #ifndef pmd_move_must_withdraw
1624 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1625 spinlock_t *old_pmd_ptl,
1626 struct vm_area_struct *vma)
1629 * With split pmd lock we also need to move preallocated
1630 * PTE page table if new_pmd is on different PMD page table.
1632 * We also don't deposit and withdraw tables for file pages.
1634 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1638 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1640 #ifdef CONFIG_MEM_SOFT_DIRTY
1641 if (unlikely(is_pmd_migration_entry(pmd)))
1642 pmd = pmd_swp_mksoft_dirty(pmd);
1643 else if (pmd_present(pmd))
1644 pmd = pmd_mksoft_dirty(pmd);
1649 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1650 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1652 spinlock_t *old_ptl, *new_ptl;
1654 struct mm_struct *mm = vma->vm_mm;
1655 bool force_flush = false;
1658 * The destination pmd shouldn't be established, free_pgtables()
1659 * should have release it.
1661 if (WARN_ON(!pmd_none(*new_pmd))) {
1662 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1667 * We don't have to worry about the ordering of src and dst
1668 * ptlocks because exclusive mmap_lock prevents deadlock.
1670 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1672 new_ptl = pmd_lockptr(mm, new_pmd);
1673 if (new_ptl != old_ptl)
1674 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1675 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1676 if (pmd_present(pmd))
1678 VM_BUG_ON(!pmd_none(*new_pmd));
1680 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1682 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1683 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1685 pmd = move_soft_dirty_pmd(pmd);
1686 set_pmd_at(mm, new_addr, new_pmd, pmd);
1688 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1689 if (new_ptl != old_ptl)
1690 spin_unlock(new_ptl);
1691 spin_unlock(old_ptl);
1699 * - 0 if PMD could not be locked
1700 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1701 * or if prot_numa but THP migration is not supported
1702 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1704 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1705 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1706 unsigned long cp_flags)
1708 struct mm_struct *mm = vma->vm_mm;
1710 pmd_t oldpmd, entry;
1711 bool preserve_write;
1713 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1714 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1715 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1717 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1719 if (prot_numa && !thp_migration_supported())
1722 ptl = __pmd_trans_huge_lock(pmd, vma);
1726 preserve_write = prot_numa && pmd_write(*pmd);
1729 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1730 if (is_swap_pmd(*pmd)) {
1731 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1732 struct page *page = pfn_swap_entry_to_page(entry);
1734 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1735 if (is_writable_migration_entry(entry)) {
1738 * A protection check is difficult so
1739 * just be safe and disable write
1742 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1744 entry = make_readable_migration_entry(swp_offset(entry));
1745 newpmd = swp_entry_to_pmd(entry);
1746 if (pmd_swp_soft_dirty(*pmd))
1747 newpmd = pmd_swp_mksoft_dirty(newpmd);
1748 if (pmd_swp_uffd_wp(*pmd))
1749 newpmd = pmd_swp_mkuffd_wp(newpmd);
1750 set_pmd_at(mm, addr, pmd, newpmd);
1759 * Avoid trapping faults against the zero page. The read-only
1760 * data is likely to be read-cached on the local CPU and
1761 * local/remote hits to the zero page are not interesting.
1763 if (is_huge_zero_pmd(*pmd))
1766 if (pmd_protnone(*pmd))
1769 page = pmd_page(*pmd);
1771 * Skip scanning top tier node if normal numa
1772 * balancing is disabled
1774 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1775 node_is_toptier(page_to_nid(page)))
1779 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1780 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1781 * which is also under mmap_read_lock(mm):
1784 * change_huge_pmd(prot_numa=1)
1785 * pmdp_huge_get_and_clear_notify()
1786 * madvise_dontneed()
1788 * pmd_trans_huge(*pmd) == 0 (without ptl)
1791 * // pmd is re-established
1793 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1794 * which may break userspace.
1796 * pmdp_invalidate_ad() is required to make sure we don't miss
1797 * dirty/young flags set by hardware.
1799 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1801 entry = pmd_modify(oldpmd, newprot);
1803 entry = pmd_mk_savedwrite(entry);
1805 entry = pmd_wrprotect(entry);
1806 entry = pmd_mkuffd_wp(entry);
1807 } else if (uffd_wp_resolve) {
1809 * Leave the write bit to be handled by PF interrupt
1810 * handler, then things like COW could be properly
1813 entry = pmd_clear_uffd_wp(entry);
1816 set_pmd_at(mm, addr, pmd, entry);
1818 if (huge_pmd_needs_flush(oldpmd, entry))
1819 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1821 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1828 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1830 * Note that if it returns page table lock pointer, this routine returns without
1831 * unlocking page table lock. So callers must unlock it.
1833 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1836 ptl = pmd_lock(vma->vm_mm, pmd);
1837 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1845 * Returns true if a given pud maps a thp, false otherwise.
1847 * Note that if it returns true, this routine returns without unlocking page
1848 * table lock. So callers must unlock it.
1850 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1854 ptl = pud_lock(vma->vm_mm, pud);
1855 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1861 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1862 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1863 pud_t *pud, unsigned long addr)
1867 ptl = __pud_trans_huge_lock(pud, vma);
1871 * For architectures like ppc64 we look at deposited pgtable
1872 * when calling pudp_huge_get_and_clear. So do the
1873 * pgtable_trans_huge_withdraw after finishing pudp related
1876 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1877 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1878 if (vma_is_special_huge(vma)) {
1880 /* No zero page support yet */
1882 /* No support for anonymous PUD pages yet */
1888 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1889 unsigned long haddr)
1891 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1892 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1893 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1894 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1896 count_vm_event(THP_SPLIT_PUD);
1898 pudp_huge_clear_flush_notify(vma, haddr, pud);
1901 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1902 unsigned long address)
1905 struct mmu_notifier_range range;
1907 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1908 address & HPAGE_PUD_MASK,
1909 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1910 mmu_notifier_invalidate_range_start(&range);
1911 ptl = pud_lock(vma->vm_mm, pud);
1912 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1914 __split_huge_pud_locked(vma, pud, range.start);
1919 * No need to double call mmu_notifier->invalidate_range() callback as
1920 * the above pudp_huge_clear_flush_notify() did already call it.
1922 mmu_notifier_invalidate_range_only_end(&range);
1924 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1926 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1927 unsigned long haddr, pmd_t *pmd)
1929 struct mm_struct *mm = vma->vm_mm;
1935 * Leave pmd empty until pte is filled note that it is fine to delay
1936 * notification until mmu_notifier_invalidate_range_end() as we are
1937 * replacing a zero pmd write protected page with a zero pte write
1940 * See Documentation/vm/mmu_notifier.rst
1942 pmdp_huge_clear_flush(vma, haddr, pmd);
1944 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1945 pmd_populate(mm, &_pmd, pgtable);
1947 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1949 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1950 entry = pte_mkspecial(entry);
1951 pte = pte_offset_map(&_pmd, haddr);
1952 VM_BUG_ON(!pte_none(*pte));
1953 set_pte_at(mm, haddr, pte, entry);
1956 smp_wmb(); /* make pte visible before pmd */
1957 pmd_populate(mm, pmd, pgtable);
1960 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1961 unsigned long haddr, bool freeze)
1963 struct mm_struct *mm = vma->vm_mm;
1966 pmd_t old_pmd, _pmd;
1967 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1968 bool anon_exclusive = false;
1972 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1973 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1974 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1975 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1976 && !pmd_devmap(*pmd));
1978 count_vm_event(THP_SPLIT_PMD);
1980 if (!vma_is_anonymous(vma)) {
1981 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1983 * We are going to unmap this huge page. So
1984 * just go ahead and zap it
1986 if (arch_needs_pgtable_deposit())
1987 zap_deposited_table(mm, pmd);
1988 if (vma_is_special_huge(vma))
1990 if (unlikely(is_pmd_migration_entry(old_pmd))) {
1993 entry = pmd_to_swp_entry(old_pmd);
1994 page = pfn_swap_entry_to_page(entry);
1996 page = pmd_page(old_pmd);
1997 if (!PageDirty(page) && pmd_dirty(old_pmd))
1998 set_page_dirty(page);
1999 if (!PageReferenced(page) && pmd_young(old_pmd))
2000 SetPageReferenced(page);
2001 page_remove_rmap(page, vma, true);
2004 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2008 if (is_huge_zero_pmd(*pmd)) {
2010 * FIXME: Do we want to invalidate secondary mmu by calling
2011 * mmu_notifier_invalidate_range() see comments below inside
2012 * __split_huge_pmd() ?
2014 * We are going from a zero huge page write protected to zero
2015 * small page also write protected so it does not seems useful
2016 * to invalidate secondary mmu at this time.
2018 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2022 * Up to this point the pmd is present and huge and userland has the
2023 * whole access to the hugepage during the split (which happens in
2024 * place). If we overwrite the pmd with the not-huge version pointing
2025 * to the pte here (which of course we could if all CPUs were bug
2026 * free), userland could trigger a small page size TLB miss on the
2027 * small sized TLB while the hugepage TLB entry is still established in
2028 * the huge TLB. Some CPU doesn't like that.
2029 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2030 * 383 on page 105. Intel should be safe but is also warns that it's
2031 * only safe if the permission and cache attributes of the two entries
2032 * loaded in the two TLB is identical (which should be the case here).
2033 * But it is generally safer to never allow small and huge TLB entries
2034 * for the same virtual address to be loaded simultaneously. So instead
2035 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2036 * current pmd notpresent (atomically because here the pmd_trans_huge
2037 * must remain set at all times on the pmd until the split is complete
2038 * for this pmd), then we flush the SMP TLB and finally we write the
2039 * non-huge version of the pmd entry with pmd_populate.
2041 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2043 pmd_migration = is_pmd_migration_entry(old_pmd);
2044 if (unlikely(pmd_migration)) {
2047 entry = pmd_to_swp_entry(old_pmd);
2048 page = pfn_swap_entry_to_page(entry);
2049 write = is_writable_migration_entry(entry);
2051 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2053 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2054 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2056 page = pmd_page(old_pmd);
2057 if (pmd_dirty(old_pmd))
2059 write = pmd_write(old_pmd);
2060 young = pmd_young(old_pmd);
2061 soft_dirty = pmd_soft_dirty(old_pmd);
2062 uffd_wp = pmd_uffd_wp(old_pmd);
2064 VM_BUG_ON_PAGE(!page_count(page), page);
2065 page_ref_add(page, HPAGE_PMD_NR - 1);
2068 * Without "freeze", we'll simply split the PMD, propagating the
2069 * PageAnonExclusive() flag for each PTE by setting it for
2070 * each subpage -- no need to (temporarily) clear.
2072 * With "freeze" we want to replace mapped pages by
2073 * migration entries right away. This is only possible if we
2074 * managed to clear PageAnonExclusive() -- see
2075 * set_pmd_migration_entry().
2077 * In case we cannot clear PageAnonExclusive(), split the PMD
2078 * only and let try_to_migrate_one() fail later.
2080 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2081 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2086 * Withdraw the table only after we mark the pmd entry invalid.
2087 * This's critical for some architectures (Power).
2089 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2090 pmd_populate(mm, &_pmd, pgtable);
2092 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2095 * Note that NUMA hinting access restrictions are not
2096 * transferred to avoid any possibility of altering
2097 * permissions across VMAs.
2099 if (freeze || pmd_migration) {
2100 swp_entry_t swp_entry;
2102 swp_entry = make_writable_migration_entry(
2103 page_to_pfn(page + i));
2104 else if (anon_exclusive)
2105 swp_entry = make_readable_exclusive_migration_entry(
2106 page_to_pfn(page + i));
2108 swp_entry = make_readable_migration_entry(
2109 page_to_pfn(page + i));
2110 entry = swp_entry_to_pte(swp_entry);
2112 entry = pte_swp_mksoft_dirty(entry);
2114 entry = pte_swp_mkuffd_wp(entry);
2116 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117 entry = maybe_mkwrite(entry, vma);
2119 SetPageAnonExclusive(page + i);
2121 entry = pte_wrprotect(entry);
2123 entry = pte_mkold(entry);
2125 entry = pte_mksoft_dirty(entry);
2127 entry = pte_mkuffd_wp(entry);
2129 pte = pte_offset_map(&_pmd, addr);
2130 BUG_ON(!pte_none(*pte));
2131 set_pte_at(mm, addr, pte, entry);
2133 atomic_inc(&page[i]._mapcount);
2137 if (!pmd_migration) {
2139 * Set PG_double_map before dropping compound_mapcount to avoid
2140 * false-negative page_mapped().
2142 if (compound_mapcount(page) > 1 &&
2143 !TestSetPageDoubleMap(page)) {
2144 for (i = 0; i < HPAGE_PMD_NR; i++)
2145 atomic_inc(&page[i]._mapcount);
2148 lock_page_memcg(page);
2149 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2150 /* Last compound_mapcount is gone. */
2151 __mod_lruvec_page_state(page, NR_ANON_THPS,
2153 if (TestClearPageDoubleMap(page)) {
2154 /* No need in mapcount reference anymore */
2155 for (i = 0; i < HPAGE_PMD_NR; i++)
2156 atomic_dec(&page[i]._mapcount);
2159 unlock_page_memcg(page);
2161 /* Above is effectively page_remove_rmap(page, vma, true) */
2162 munlock_vma_page(page, vma, true);
2165 smp_wmb(); /* make pte visible before pmd */
2166 pmd_populate(mm, pmd, pgtable);
2169 for (i = 0; i < HPAGE_PMD_NR; i++) {
2170 page_remove_rmap(page + i, vma, false);
2176 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2177 unsigned long address, bool freeze, struct folio *folio)
2180 struct mmu_notifier_range range;
2182 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2183 address & HPAGE_PMD_MASK,
2184 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2185 mmu_notifier_invalidate_range_start(&range);
2186 ptl = pmd_lock(vma->vm_mm, pmd);
2189 * If caller asks to setup a migration entry, we need a folio to check
2190 * pmd against. Otherwise we can end up replacing wrong folio.
2192 VM_BUG_ON(freeze && !folio);
2193 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2195 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2196 is_pmd_migration_entry(*pmd)) {
2197 if (folio && folio != page_folio(pmd_page(*pmd)))
2199 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2205 * No need to double call mmu_notifier->invalidate_range() callback.
2206 * They are 3 cases to consider inside __split_huge_pmd_locked():
2207 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2208 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2209 * fault will trigger a flush_notify before pointing to a new page
2210 * (it is fine if the secondary mmu keeps pointing to the old zero
2211 * page in the meantime)
2212 * 3) Split a huge pmd into pte pointing to the same page. No need
2213 * to invalidate secondary tlb entry they are all still valid.
2214 * any further changes to individual pte will notify. So no need
2215 * to call mmu_notifier->invalidate_range()
2217 mmu_notifier_invalidate_range_only_end(&range);
2220 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2221 bool freeze, struct folio *folio)
2228 pgd = pgd_offset(vma->vm_mm, address);
2229 if (!pgd_present(*pgd))
2232 p4d = p4d_offset(pgd, address);
2233 if (!p4d_present(*p4d))
2236 pud = pud_offset(p4d, address);
2237 if (!pud_present(*pud))
2240 pmd = pmd_offset(pud, address);
2242 __split_huge_pmd(vma, pmd, address, freeze, folio);
2245 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2248 * If the new address isn't hpage aligned and it could previously
2249 * contain an hugepage: check if we need to split an huge pmd.
2251 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2252 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2253 ALIGN(address, HPAGE_PMD_SIZE)))
2254 split_huge_pmd_address(vma, address, false, NULL);
2257 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2258 unsigned long start,
2262 /* Check if we need to split start first. */
2263 split_huge_pmd_if_needed(vma, start);
2265 /* Check if we need to split end next. */
2266 split_huge_pmd_if_needed(vma, end);
2269 * If we're also updating the vma->vm_next->vm_start,
2270 * check if we need to split it.
2272 if (adjust_next > 0) {
2273 struct vm_area_struct *next = vma->vm_next;
2274 unsigned long nstart = next->vm_start;
2275 nstart += adjust_next;
2276 split_huge_pmd_if_needed(next, nstart);
2280 static void unmap_page(struct page *page)
2282 struct folio *folio = page_folio(page);
2283 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2286 VM_BUG_ON_PAGE(!PageHead(page), page);
2289 * Anon pages need migration entries to preserve them, but file
2290 * pages can simply be left unmapped, then faulted back on demand.
2291 * If that is ever changed (perhaps for mlock), update remap_page().
2293 if (folio_test_anon(folio))
2294 try_to_migrate(folio, ttu_flags);
2296 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2299 static void remap_page(struct folio *folio, unsigned long nr)
2303 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2304 if (!folio_test_anon(folio))
2307 remove_migration_ptes(folio, folio, true);
2308 i += folio_nr_pages(folio);
2311 folio = folio_next(folio);
2315 static void lru_add_page_tail(struct page *head, struct page *tail,
2316 struct lruvec *lruvec, struct list_head *list)
2318 VM_BUG_ON_PAGE(!PageHead(head), head);
2319 VM_BUG_ON_PAGE(PageCompound(tail), head);
2320 VM_BUG_ON_PAGE(PageLRU(tail), head);
2321 lockdep_assert_held(&lruvec->lru_lock);
2324 /* page reclaim is reclaiming a huge page */
2325 VM_WARN_ON(PageLRU(head));
2327 list_add_tail(&tail->lru, list);
2329 /* head is still on lru (and we have it frozen) */
2330 VM_WARN_ON(!PageLRU(head));
2331 if (PageUnevictable(tail))
2332 tail->mlock_count = 0;
2334 list_add_tail(&tail->lru, &head->lru);
2339 static void __split_huge_page_tail(struct page *head, int tail,
2340 struct lruvec *lruvec, struct list_head *list)
2342 struct page *page_tail = head + tail;
2344 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2347 * Clone page flags before unfreezing refcount.
2349 * After successful get_page_unless_zero() might follow flags change,
2350 * for example lock_page() which set PG_waiters.
2352 * Note that for mapped sub-pages of an anonymous THP,
2353 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2354 * the migration entry instead from where remap_page() will restore it.
2355 * We can still have PG_anon_exclusive set on effectively unmapped and
2356 * unreferenced sub-pages of an anonymous THP: we can simply drop
2357 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2359 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2360 page_tail->flags |= (head->flags &
2361 ((1L << PG_referenced) |
2362 (1L << PG_swapbacked) |
2363 (1L << PG_swapcache) |
2364 (1L << PG_mlocked) |
2365 (1L << PG_uptodate) |
2367 (1L << PG_workingset) |
2369 (1L << PG_unevictable) |
2375 /* ->mapping in first tail page is compound_mapcount */
2376 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2378 page_tail->mapping = head->mapping;
2379 page_tail->index = head->index + tail;
2380 page_tail->private = 0;
2382 /* Page flags must be visible before we make the page non-compound. */
2386 * Clear PageTail before unfreezing page refcount.
2388 * After successful get_page_unless_zero() might follow put_page()
2389 * which needs correct compound_head().
2391 clear_compound_head(page_tail);
2393 /* Finally unfreeze refcount. Additional reference from page cache. */
2394 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2395 PageSwapCache(head)));
2397 if (page_is_young(head))
2398 set_page_young(page_tail);
2399 if (page_is_idle(head))
2400 set_page_idle(page_tail);
2402 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2405 * always add to the tail because some iterators expect new
2406 * pages to show after the currently processed elements - e.g.
2409 lru_add_page_tail(head, page_tail, lruvec, list);
2412 static void __split_huge_page(struct page *page, struct list_head *list,
2415 struct folio *folio = page_folio(page);
2416 struct page *head = &folio->page;
2417 struct lruvec *lruvec;
2418 struct address_space *swap_cache = NULL;
2419 unsigned long offset = 0;
2420 unsigned int nr = thp_nr_pages(head);
2423 /* complete memcg works before add pages to LRU */
2424 split_page_memcg(head, nr);
2426 if (PageAnon(head) && PageSwapCache(head)) {
2427 swp_entry_t entry = { .val = page_private(head) };
2429 offset = swp_offset(entry);
2430 swap_cache = swap_address_space(entry);
2431 xa_lock(&swap_cache->i_pages);
2434 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2435 lruvec = folio_lruvec_lock(folio);
2437 ClearPageHasHWPoisoned(head);
2439 for (i = nr - 1; i >= 1; i--) {
2440 __split_huge_page_tail(head, i, lruvec, list);
2441 /* Some pages can be beyond EOF: drop them from page cache */
2442 if (head[i].index >= end) {
2443 ClearPageDirty(head + i);
2444 __delete_from_page_cache(head + i, NULL);
2445 if (shmem_mapping(head->mapping))
2446 shmem_uncharge(head->mapping->host, 1);
2448 } else if (!PageAnon(page)) {
2449 __xa_store(&head->mapping->i_pages, head[i].index,
2451 } else if (swap_cache) {
2452 __xa_store(&swap_cache->i_pages, offset + i,
2457 ClearPageCompound(head);
2458 unlock_page_lruvec(lruvec);
2459 /* Caller disabled irqs, so they are still disabled here */
2461 split_page_owner(head, nr);
2463 /* See comment in __split_huge_page_tail() */
2464 if (PageAnon(head)) {
2465 /* Additional pin to swap cache */
2466 if (PageSwapCache(head)) {
2467 page_ref_add(head, 2);
2468 xa_unlock(&swap_cache->i_pages);
2473 /* Additional pin to page cache */
2474 page_ref_add(head, 2);
2475 xa_unlock(&head->mapping->i_pages);
2479 remap_page(folio, nr);
2481 if (PageSwapCache(head)) {
2482 swp_entry_t entry = { .val = page_private(head) };
2484 split_swap_cluster(entry);
2487 for (i = 0; i < nr; i++) {
2488 struct page *subpage = head + i;
2489 if (subpage == page)
2491 unlock_page(subpage);
2494 * Subpages may be freed if there wasn't any mapping
2495 * like if add_to_swap() is running on a lru page that
2496 * had its mapping zapped. And freeing these pages
2497 * requires taking the lru_lock so we do the put_page
2498 * of the tail pages after the split is complete.
2504 /* Racy check whether the huge page can be split */
2505 bool can_split_folio(struct folio *folio, int *pextra_pins)
2509 /* Additional pins from page cache */
2510 if (folio_test_anon(folio))
2511 extra_pins = folio_test_swapcache(folio) ?
2512 folio_nr_pages(folio) : 0;
2514 extra_pins = folio_nr_pages(folio);
2516 *pextra_pins = extra_pins;
2517 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2521 * This function splits huge page into normal pages. @page can point to any
2522 * subpage of huge page to split. Split doesn't change the position of @page.
2524 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2525 * The huge page must be locked.
2527 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2529 * Both head page and tail pages will inherit mapping, flags, and so on from
2532 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2533 * they are not mapped.
2535 * Returns 0 if the hugepage is split successfully.
2536 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2539 int split_huge_page_to_list(struct page *page, struct list_head *list)
2541 struct folio *folio = page_folio(page);
2542 struct page *head = &folio->page;
2543 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2544 XA_STATE(xas, &head->mapping->i_pages, head->index);
2545 struct anon_vma *anon_vma = NULL;
2546 struct address_space *mapping = NULL;
2547 int extra_pins, ret;
2551 VM_BUG_ON_PAGE(!PageLocked(head), head);
2552 VM_BUG_ON_PAGE(!PageCompound(head), head);
2554 is_hzp = is_huge_zero_page(head);
2555 VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2559 if (PageWriteback(head))
2562 if (PageAnon(head)) {
2564 * The caller does not necessarily hold an mmap_lock that would
2565 * prevent the anon_vma disappearing so we first we take a
2566 * reference to it and then lock the anon_vma for write. This
2567 * is similar to folio_lock_anon_vma_read except the write lock
2568 * is taken to serialise against parallel split or collapse
2571 anon_vma = page_get_anon_vma(head);
2578 anon_vma_lock_write(anon_vma);
2580 mapping = head->mapping;
2588 xas_split_alloc(&xas, head, compound_order(head),
2589 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2590 if (xas_error(&xas)) {
2591 ret = xas_error(&xas);
2596 i_mmap_lock_read(mapping);
2599 *__split_huge_page() may need to trim off pages beyond EOF:
2600 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2601 * which cannot be nested inside the page tree lock. So note
2602 * end now: i_size itself may be changed at any moment, but
2603 * head page lock is good enough to serialize the trimming.
2605 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2606 if (shmem_mapping(mapping))
2607 end = shmem_fallocend(mapping->host, end);
2611 * Racy check if we can split the page, before unmap_page() will
2614 if (!can_split_folio(folio, &extra_pins)) {
2621 /* block interrupt reentry in xa_lock and spinlock */
2622 local_irq_disable();
2625 * Check if the head page is present in page cache.
2626 * We assume all tail are present too, if head is there.
2630 if (xas_load(&xas) != head)
2634 /* Prevent deferred_split_scan() touching ->_refcount */
2635 spin_lock(&ds_queue->split_queue_lock);
2636 if (page_ref_freeze(head, 1 + extra_pins)) {
2637 if (!list_empty(page_deferred_list(head))) {
2638 ds_queue->split_queue_len--;
2639 list_del(page_deferred_list(head));
2641 spin_unlock(&ds_queue->split_queue_lock);
2643 int nr = thp_nr_pages(head);
2645 xas_split(&xas, head, thp_order(head));
2646 if (PageSwapBacked(head)) {
2647 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2650 __mod_lruvec_page_state(head, NR_FILE_THPS,
2652 filemap_nr_thps_dec(mapping);
2656 __split_huge_page(page, list, end);
2659 spin_unlock(&ds_queue->split_queue_lock);
2664 remap_page(folio, folio_nr_pages(folio));
2670 anon_vma_unlock_write(anon_vma);
2671 put_anon_vma(anon_vma);
2674 i_mmap_unlock_read(mapping);
2677 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2681 void free_transhuge_page(struct page *page)
2683 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2684 unsigned long flags;
2686 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2687 if (!list_empty(page_deferred_list(page))) {
2688 ds_queue->split_queue_len--;
2689 list_del(page_deferred_list(page));
2691 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2692 free_compound_page(page);
2695 void deferred_split_huge_page(struct page *page)
2697 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2699 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2701 unsigned long flags;
2703 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2706 * The try_to_unmap() in page reclaim path might reach here too,
2707 * this may cause a race condition to corrupt deferred split queue.
2708 * And, if page reclaim is already handling the same page, it is
2709 * unnecessary to handle it again in shrinker.
2711 * Check PageSwapCache to determine if the page is being
2712 * handled by page reclaim since THP swap would add the page into
2713 * swap cache before calling try_to_unmap().
2715 if (PageSwapCache(page))
2718 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2719 if (list_empty(page_deferred_list(page))) {
2720 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2721 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2722 ds_queue->split_queue_len++;
2725 set_shrinker_bit(memcg, page_to_nid(page),
2726 deferred_split_shrinker.id);
2729 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2732 static unsigned long deferred_split_count(struct shrinker *shrink,
2733 struct shrink_control *sc)
2735 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2736 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2740 ds_queue = &sc->memcg->deferred_split_queue;
2742 return READ_ONCE(ds_queue->split_queue_len);
2745 static unsigned long deferred_split_scan(struct shrinker *shrink,
2746 struct shrink_control *sc)
2748 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2749 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2750 unsigned long flags;
2751 LIST_HEAD(list), *pos, *next;
2757 ds_queue = &sc->memcg->deferred_split_queue;
2760 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2761 /* Take pin on all head pages to avoid freeing them under us */
2762 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2763 page = list_entry((void *)pos, struct page, deferred_list);
2764 page = compound_head(page);
2765 if (get_page_unless_zero(page)) {
2766 list_move(page_deferred_list(page), &list);
2768 /* We lost race with put_compound_page() */
2769 list_del_init(page_deferred_list(page));
2770 ds_queue->split_queue_len--;
2772 if (!--sc->nr_to_scan)
2775 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2777 list_for_each_safe(pos, next, &list) {
2778 page = list_entry((void *)pos, struct page, deferred_list);
2779 if (!trylock_page(page))
2781 /* split_huge_page() removes page from list on success */
2782 if (!split_huge_page(page))
2789 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2790 list_splice_tail(&list, &ds_queue->split_queue);
2791 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2794 * Stop shrinker if we didn't split any page, but the queue is empty.
2795 * This can happen if pages were freed under us.
2797 if (!split && list_empty(&ds_queue->split_queue))
2802 static struct shrinker deferred_split_shrinker = {
2803 .count_objects = deferred_split_count,
2804 .scan_objects = deferred_split_scan,
2805 .seeks = DEFAULT_SEEKS,
2806 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2810 #ifdef CONFIG_DEBUG_FS
2811 static void split_huge_pages_all(void)
2815 unsigned long pfn, max_zone_pfn;
2816 unsigned long total = 0, split = 0;
2818 pr_debug("Split all THPs\n");
2819 for_each_populated_zone(zone) {
2820 max_zone_pfn = zone_end_pfn(zone);
2821 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2822 if (!pfn_valid(pfn))
2825 page = pfn_to_page(pfn);
2826 if (!get_page_unless_zero(page))
2829 if (zone != page_zone(page))
2832 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2837 if (!split_huge_page(page))
2846 pr_debug("%lu of %lu THP split\n", split, total);
2849 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2851 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2852 is_vm_hugetlb_page(vma);
2855 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2856 unsigned long vaddr_end)
2859 struct task_struct *task;
2860 struct mm_struct *mm;
2861 unsigned long total = 0, split = 0;
2864 vaddr_start &= PAGE_MASK;
2865 vaddr_end &= PAGE_MASK;
2867 /* Find the task_struct from pid */
2869 task = find_task_by_vpid(pid);
2875 get_task_struct(task);
2878 /* Find the mm_struct */
2879 mm = get_task_mm(task);
2880 put_task_struct(task);
2887 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2888 pid, vaddr_start, vaddr_end);
2892 * always increase addr by PAGE_SIZE, since we could have a PTE page
2893 * table filled with PTE-mapped THPs, each of which is distinct.
2895 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2896 struct vm_area_struct *vma = find_vma(mm, addr);
2899 if (!vma || addr < vma->vm_start)
2902 /* skip special VMA and hugetlb VMA */
2903 if (vma_not_suitable_for_thp_split(vma)) {
2908 /* FOLL_DUMP to ignore special (like zero) pages */
2909 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2916 if (!is_transparent_hugepage(page))
2920 if (!can_split_folio(page_folio(page), NULL))
2923 if (!trylock_page(page))
2926 if (!split_huge_page(page))
2934 mmap_read_unlock(mm);
2937 pr_debug("%lu of %lu THP split\n", split, total);
2943 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2946 struct filename *file;
2947 struct file *candidate;
2948 struct address_space *mapping;
2952 unsigned long total = 0, split = 0;
2954 file = getname_kernel(file_path);
2958 candidate = file_open_name(file, O_RDONLY, 0);
2959 if (IS_ERR(candidate))
2962 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2963 file_path, off_start, off_end);
2965 mapping = candidate->f_mapping;
2967 for (index = off_start; index < off_end; index += nr_pages) {
2968 struct page *fpage = pagecache_get_page(mapping, index,
2969 FGP_ENTRY | FGP_HEAD, 0);
2972 if (xa_is_value(fpage) || !fpage)
2975 if (!is_transparent_hugepage(fpage))
2979 nr_pages = thp_nr_pages(fpage);
2981 if (!trylock_page(fpage))
2984 if (!split_huge_page(fpage))
2993 filp_close(candidate, NULL);
2996 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3002 #define MAX_INPUT_BUF_SZ 255
3004 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3005 size_t count, loff_t *ppops)
3007 static DEFINE_MUTEX(split_debug_mutex);
3009 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3010 char input_buf[MAX_INPUT_BUF_SZ];
3012 unsigned long vaddr_start, vaddr_end;
3014 ret = mutex_lock_interruptible(&split_debug_mutex);
3020 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3021 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3024 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3026 if (input_buf[0] == '/') {
3028 char *buf = input_buf;
3029 char file_path[MAX_INPUT_BUF_SZ];
3030 pgoff_t off_start = 0, off_end = 0;
3031 size_t input_len = strlen(input_buf);
3033 tok = strsep(&buf, ",");
3035 strcpy(file_path, tok);
3041 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3046 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3053 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3054 if (ret == 1 && pid == 1) {
3055 split_huge_pages_all();
3056 ret = strlen(input_buf);
3058 } else if (ret != 3) {
3063 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3065 ret = strlen(input_buf);
3067 mutex_unlock(&split_debug_mutex);
3072 static const struct file_operations split_huge_pages_fops = {
3073 .owner = THIS_MODULE,
3074 .write = split_huge_pages_write,
3075 .llseek = no_llseek,
3078 static int __init split_huge_pages_debugfs(void)
3080 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3081 &split_huge_pages_fops);
3084 late_initcall(split_huge_pages_debugfs);
3087 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3088 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3091 struct vm_area_struct *vma = pvmw->vma;
3092 struct mm_struct *mm = vma->vm_mm;
3093 unsigned long address = pvmw->address;
3094 bool anon_exclusive;
3099 if (!(pvmw->pmd && !pvmw->pte))
3102 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3103 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3105 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3106 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3107 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3111 if (pmd_dirty(pmdval))
3112 set_page_dirty(page);
3113 if (pmd_write(pmdval))
3114 entry = make_writable_migration_entry(page_to_pfn(page));
3115 else if (anon_exclusive)
3116 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3118 entry = make_readable_migration_entry(page_to_pfn(page));
3119 pmdswp = swp_entry_to_pmd(entry);
3120 if (pmd_soft_dirty(pmdval))
3121 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3122 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3123 page_remove_rmap(page, vma, true);
3125 trace_set_migration_pmd(address, pmd_val(pmdswp));
3130 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3132 struct vm_area_struct *vma = pvmw->vma;
3133 struct mm_struct *mm = vma->vm_mm;
3134 unsigned long address = pvmw->address;
3135 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3139 if (!(pvmw->pmd && !pvmw->pte))
3142 entry = pmd_to_swp_entry(*pvmw->pmd);
3144 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3145 if (pmd_swp_soft_dirty(*pvmw->pmd))
3146 pmde = pmd_mksoft_dirty(pmde);
3147 if (is_writable_migration_entry(entry))
3148 pmde = maybe_pmd_mkwrite(pmde, vma);
3149 if (pmd_swp_uffd_wp(*pvmw->pmd))
3150 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3152 if (PageAnon(new)) {
3153 rmap_t rmap_flags = RMAP_COMPOUND;
3155 if (!is_readable_migration_entry(entry))
3156 rmap_flags |= RMAP_EXCLUSIVE;
3158 page_add_anon_rmap(new, vma, mmun_start, rmap_flags);
3160 page_add_file_rmap(new, vma, true);
3162 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3163 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3165 /* No need to invalidate - it was non-present before */
3166 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3167 trace_remove_migration_pmd(address, pmd_val(pmde));