1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 if (!transhuge_vma_suitable(vma, addr))
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
80 static struct page *get_huge_zero_page(void)
82 struct page *zero_page;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 __free_pages(zero_page, compound_order(zero_page));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
104 return READ_ONCE(huge_zero_page);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page);
130 void mm_put_huge_zero_page(struct mm_struct *mm)
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 output = "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 &transparent_hugepage_flags))
172 output = "always [madvise] never";
174 output = "always madvise [never]";
176 return sysfs_emit(buf, "%s\n", output);
179 static ssize_t enabled_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
185 if (sysfs_streq(buf, "always")) {
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 } else if (sysfs_streq(buf, "madvise")) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 } else if (sysfs_streq(buf, "never")) {
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 int err = start_stop_khugepaged();
204 static struct kobj_attribute enabled_attr =
205 __ATTR(enabled, 0644, enabled_show, enabled_store);
207 ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 struct kobj_attribute *attr, char *buf,
209 enum transparent_hugepage_flag flag)
211 return sysfs_emit(buf, "%d\n",
212 !!test_bit(flag, &transparent_hugepage_flags));
215 ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count,
218 enum transparent_hugepage_flag flag)
223 ret = kstrtoul(buf, 10, &value);
230 set_bit(flag, &transparent_hugepage_flags);
232 clear_bit(flag, &transparent_hugepage_flags);
237 static ssize_t defrag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf)
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 &transparent_hugepage_flags))
244 output = "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 &transparent_hugepage_flags))
250 output = "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 &transparent_hugepage_flags))
253 output = "always defer defer+madvise [madvise] never";
255 output = "always defer defer+madvise madvise [never]";
257 return sysfs_emit(buf, "%s\n", output);
260 static ssize_t defrag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
264 if (sysfs_streq(buf, "always")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 } else if (sysfs_streq(buf, "defer+madvise")) {
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 } else if (sysfs_streq(buf, "defer")) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 } else if (sysfs_streq(buf, "madvise")) {
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 } else if (sysfs_streq(buf, "never")) {
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
294 static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
297 static ssize_t use_zero_page_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
300 return single_hugepage_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
303 static ssize_t use_zero_page_store(struct kobject *kobj,
304 struct kobj_attribute *attr, const char *buf, size_t count)
306 return single_hugepage_flag_store(kobj, attr, buf, count,
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
309 static struct kobj_attribute use_zero_page_attr =
310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
312 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
317 static struct kobj_attribute hpage_pmd_size_attr =
318 __ATTR_RO(hpage_pmd_size);
320 static struct attribute *hugepage_attr[] = {
323 &use_zero_page_attr.attr,
324 &hpage_pmd_size_attr.attr,
326 &shmem_enabled_attr.attr,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
347 pr_err("failed to register transparent hugepage group\n");
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362 kobject_put(*hugepage_kobj);
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
390 * Hardware doesn't support hugepages, hence disable
393 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
398 * hugepages can't be allocated by the buddy allocator
400 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
402 * we use page->mapping and page->index in second tail page
403 * as list_head: assuming THP order >= 2
405 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
407 err = hugepage_init_sysfs(&hugepage_kobj);
411 err = khugepaged_init();
415 err = register_shrinker(&huge_zero_page_shrinker);
417 goto err_hzp_shrinker;
418 err = register_shrinker(&deferred_split_shrinker);
420 goto err_split_shrinker;
423 * By default disable transparent hugepages on smaller systems,
424 * where the extra memory used could hurt more than TLB overhead
425 * is likely to save. The admin can still enable it through /sys.
427 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428 transparent_hugepage_flags = 0;
432 err = start_stop_khugepaged();
438 unregister_shrinker(&deferred_split_shrinker);
440 unregister_shrinker(&huge_zero_page_shrinker);
442 khugepaged_destroy();
444 hugepage_exit_sysfs(hugepage_kobj);
448 subsys_initcall(hugepage_init);
450 static int __init setup_transparent_hugepage(char *str)
455 if (!strcmp(str, "always")) {
456 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
461 } else if (!strcmp(str, "madvise")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
467 } else if (!strcmp(str, "never")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
476 pr_warn("transparent_hugepage= cannot parse, ignored\n");
479 __setup("transparent_hugepage=", setup_transparent_hugepage);
481 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
483 if (likely(vma->vm_flags & VM_WRITE))
484 pmd = pmd_mkwrite(pmd);
489 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
491 struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
495 return &memcg->deferred_split_queue;
497 return &pgdat->deferred_split_queue;
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504 return &pgdat->deferred_split_queue;
508 void prep_transhuge_page(struct page *page)
511 * we use page->mapping and page->indexlru in second tail page
512 * as list_head: assuming THP order >= 2
515 INIT_LIST_HEAD(page_deferred_list(page));
516 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
519 bool is_transparent_hugepage(struct page *page)
521 if (!PageCompound(page))
524 page = compound_head(page);
525 return is_huge_zero_page(page) ||
526 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
528 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
530 static unsigned long __thp_get_unmapped_area(struct file *filp,
531 unsigned long addr, unsigned long len,
532 loff_t off, unsigned long flags, unsigned long size)
534 loff_t off_end = off + len;
535 loff_t off_align = round_up(off, size);
536 unsigned long len_pad, ret;
538 if (off_end <= off_align || (off_end - off_align) < size)
541 len_pad = len + size;
542 if (len_pad < len || (off + len_pad) < off)
545 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546 off >> PAGE_SHIFT, flags);
549 * The failure might be due to length padding. The caller will retry
550 * without the padding.
552 if (IS_ERR_VALUE(ret))
556 * Do not try to align to THP boundary if allocation at the address
562 ret += (off - ret) & (size - 1);
566 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 unsigned long len, unsigned long pgoff, unsigned long flags)
570 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
572 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
575 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
581 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
583 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 struct page *page, gfp_t gfp)
586 struct vm_area_struct *vma = vmf->vma;
588 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
591 VM_BUG_ON_PAGE(!PageCompound(page), page);
593 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
595 count_vm_event(THP_FAULT_FALLBACK);
596 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 return VM_FAULT_FALLBACK;
599 cgroup_throttle_swaprate(page, gfp);
601 pgtable = pte_alloc_one(vma->vm_mm);
602 if (unlikely(!pgtable)) {
607 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
609 * The memory barrier inside __SetPageUptodate makes sure that
610 * clear_huge_page writes become visible before the set_pmd_at()
613 __SetPageUptodate(page);
615 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616 if (unlikely(!pmd_none(*vmf->pmd))) {
621 ret = check_stable_address_space(vma->vm_mm);
625 /* Deliver the page fault to userland */
626 if (userfaultfd_missing(vma)) {
629 spin_unlock(vmf->ptl);
631 pte_free(vma->vm_mm, pgtable);
632 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
633 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 entry = mk_huge_pmd(page, vma->vm_page_prot);
638 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639 page_add_new_anon_rmap(page, vma, haddr, true);
640 lru_cache_add_inactive_or_unevictable(page, vma);
641 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
642 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
643 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
644 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 mm_inc_nr_ptes(vma->vm_mm);
646 spin_unlock(vmf->ptl);
647 count_vm_event(THP_FAULT_ALLOC);
648 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
653 spin_unlock(vmf->ptl);
656 pte_free(vma->vm_mm, pgtable);
663 * always: directly stall for all thp allocations
664 * defer: wake kswapd and fail if not immediately available
665 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
666 * fail if not immediately available
667 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
669 * never: never stall for any thp allocation
671 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
673 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
675 /* Always do synchronous compaction */
676 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
677 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
679 /* Kick kcompactd and fail quickly */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
683 /* Synchronous compaction if madvised, otherwise kick kcompactd */
684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
685 return GFP_TRANSHUGE_LIGHT |
686 (vma_madvised ? __GFP_DIRECT_RECLAIM :
687 __GFP_KSWAPD_RECLAIM);
689 /* Only do synchronous compaction if madvised */
690 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
691 return GFP_TRANSHUGE_LIGHT |
692 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
694 return GFP_TRANSHUGE_LIGHT;
697 /* Caller must hold page table lock. */
698 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
699 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
700 struct page *zero_page)
705 entry = mk_pmd(zero_page, vma->vm_page_prot);
706 entry = pmd_mkhuge(entry);
708 pgtable_trans_huge_deposit(mm, pmd, pgtable);
709 set_pmd_at(mm, haddr, pmd, entry);
713 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
715 struct vm_area_struct *vma = vmf->vma;
718 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
720 if (!transhuge_vma_suitable(vma, haddr))
721 return VM_FAULT_FALLBACK;
722 if (unlikely(anon_vma_prepare(vma)))
724 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
726 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
727 !mm_forbids_zeropage(vma->vm_mm) &&
728 transparent_hugepage_use_zero_page()) {
730 struct page *zero_page;
732 pgtable = pte_alloc_one(vma->vm_mm);
733 if (unlikely(!pgtable))
735 zero_page = mm_get_huge_zero_page(vma->vm_mm);
736 if (unlikely(!zero_page)) {
737 pte_free(vma->vm_mm, pgtable);
738 count_vm_event(THP_FAULT_FALLBACK);
739 return VM_FAULT_FALLBACK;
741 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
743 if (pmd_none(*vmf->pmd)) {
744 ret = check_stable_address_space(vma->vm_mm);
746 spin_unlock(vmf->ptl);
747 pte_free(vma->vm_mm, pgtable);
748 } else if (userfaultfd_missing(vma)) {
749 spin_unlock(vmf->ptl);
750 pte_free(vma->vm_mm, pgtable);
751 ret = handle_userfault(vmf, VM_UFFD_MISSING);
752 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
754 set_huge_zero_page(pgtable, vma->vm_mm, vma,
755 haddr, vmf->pmd, zero_page);
756 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
757 spin_unlock(vmf->ptl);
760 spin_unlock(vmf->ptl);
761 pte_free(vma->vm_mm, pgtable);
765 gfp = vma_thp_gfp_mask(vma);
766 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
767 if (unlikely(!page)) {
768 count_vm_event(THP_FAULT_FALLBACK);
769 return VM_FAULT_FALLBACK;
771 prep_transhuge_page(page);
772 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
775 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
779 struct mm_struct *mm = vma->vm_mm;
783 ptl = pmd_lock(mm, pmd);
784 if (!pmd_none(*pmd)) {
786 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
787 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
790 entry = pmd_mkyoung(*pmd);
791 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
792 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
793 update_mmu_cache_pmd(vma, addr, pmd);
799 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
800 if (pfn_t_devmap(pfn))
801 entry = pmd_mkdevmap(entry);
803 entry = pmd_mkyoung(pmd_mkdirty(entry));
804 entry = maybe_pmd_mkwrite(entry, vma);
808 pgtable_trans_huge_deposit(mm, pmd, pgtable);
813 set_pmd_at(mm, addr, pmd, entry);
814 update_mmu_cache_pmd(vma, addr, pmd);
819 pte_free(mm, pgtable);
823 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
824 * @vmf: Structure describing the fault
825 * @pfn: pfn to insert
826 * @pgprot: page protection to use
827 * @write: whether it's a write fault
829 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
830 * also consult the vmf_insert_mixed_prot() documentation when
831 * @pgprot != @vmf->vma->vm_page_prot.
833 * Return: vm_fault_t value.
835 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
836 pgprot_t pgprot, bool write)
838 unsigned long addr = vmf->address & PMD_MASK;
839 struct vm_area_struct *vma = vmf->vma;
840 pgtable_t pgtable = NULL;
843 * If we had pmd_special, we could avoid all these restrictions,
844 * but we need to be consistent with PTEs and architectures that
845 * can't support a 'special' bit.
847 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
849 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
850 (VM_PFNMAP|VM_MIXEDMAP));
851 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
853 if (addr < vma->vm_start || addr >= vma->vm_end)
854 return VM_FAULT_SIGBUS;
856 if (arch_needs_pgtable_deposit()) {
857 pgtable = pte_alloc_one(vma->vm_mm);
862 track_pfn_insert(vma, &pgprot, pfn);
864 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865 return VM_FAULT_NOPAGE;
867 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
869 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
872 if (likely(vma->vm_flags & VM_WRITE))
873 pud = pud_mkwrite(pud);
877 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
878 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
880 struct mm_struct *mm = vma->vm_mm;
884 ptl = pud_lock(mm, pud);
885 if (!pud_none(*pud)) {
887 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
888 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
891 entry = pud_mkyoung(*pud);
892 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
893 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
894 update_mmu_cache_pud(vma, addr, pud);
899 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
900 if (pfn_t_devmap(pfn))
901 entry = pud_mkdevmap(entry);
903 entry = pud_mkyoung(pud_mkdirty(entry));
904 entry = maybe_pud_mkwrite(entry, vma);
906 set_pud_at(mm, addr, pud, entry);
907 update_mmu_cache_pud(vma, addr, pud);
914 * vmf_insert_pfn_pud_prot - insert a pud size pfn
915 * @vmf: Structure describing the fault
916 * @pfn: pfn to insert
917 * @pgprot: page protection to use
918 * @write: whether it's a write fault
920 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
921 * also consult the vmf_insert_mixed_prot() documentation when
922 * @pgprot != @vmf->vma->vm_page_prot.
924 * Return: vm_fault_t value.
926 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
927 pgprot_t pgprot, bool write)
929 unsigned long addr = vmf->address & PUD_MASK;
930 struct vm_area_struct *vma = vmf->vma;
933 * If we had pud_special, we could avoid all these restrictions,
934 * but we need to be consistent with PTEs and architectures that
935 * can't support a 'special' bit.
937 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
939 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 (VM_PFNMAP|VM_MIXEDMAP));
941 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
943 if (addr < vma->vm_start || addr >= vma->vm_end)
944 return VM_FAULT_SIGBUS;
946 track_pfn_insert(vma, &pgprot, pfn);
948 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
949 return VM_FAULT_NOPAGE;
951 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
952 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
954 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
955 pmd_t *pmd, int flags)
959 _pmd = pmd_mkyoung(*pmd);
960 if (flags & FOLL_WRITE)
961 _pmd = pmd_mkdirty(_pmd);
962 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
963 pmd, _pmd, flags & FOLL_WRITE))
964 update_mmu_cache_pmd(vma, addr, pmd);
967 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
968 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
970 unsigned long pfn = pmd_pfn(*pmd);
971 struct mm_struct *mm = vma->vm_mm;
974 assert_spin_locked(pmd_lockptr(mm, pmd));
977 * When we COW a devmap PMD entry, we split it into PTEs, so we should
978 * not be in this function with `flags & FOLL_COW` set.
980 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
982 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
983 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
984 (FOLL_PIN | FOLL_GET)))
987 if (flags & FOLL_WRITE && !pmd_write(*pmd))
990 if (pmd_present(*pmd) && pmd_devmap(*pmd))
995 if (flags & FOLL_TOUCH)
996 touch_pmd(vma, addr, pmd, flags);
999 * device mapped pages can only be returned if the
1000 * caller will manage the page reference count.
1002 if (!(flags & (FOLL_GET | FOLL_PIN)))
1003 return ERR_PTR(-EEXIST);
1005 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 *pgmap = get_dev_pagemap(pfn, *pgmap);
1008 return ERR_PTR(-EFAULT);
1009 page = pfn_to_page(pfn);
1010 if (!try_grab_page(page, flags))
1011 page = ERR_PTR(-ENOMEM);
1016 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1017 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1018 struct vm_area_struct *vma)
1020 spinlock_t *dst_ptl, *src_ptl;
1021 struct page *src_page;
1023 pgtable_t pgtable = NULL;
1026 /* Skip if can be re-fill on fault */
1027 if (!vma_is_anonymous(vma))
1030 pgtable = pte_alloc_one(dst_mm);
1031 if (unlikely(!pgtable))
1034 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1035 src_ptl = pmd_lockptr(src_mm, src_pmd);
1036 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1043 * does not have the VM_UFFD_WP, which means that the uffd
1044 * fork event is not enabled.
1046 if (!(vma->vm_flags & VM_UFFD_WP))
1047 pmd = pmd_clear_uffd_wp(pmd);
1049 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1050 if (unlikely(is_swap_pmd(pmd))) {
1051 swp_entry_t entry = pmd_to_swp_entry(pmd);
1053 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1054 if (is_write_migration_entry(entry)) {
1055 make_migration_entry_read(&entry);
1056 pmd = swp_entry_to_pmd(entry);
1057 if (pmd_swp_soft_dirty(*src_pmd))
1058 pmd = pmd_swp_mksoft_dirty(pmd);
1059 set_pmd_at(src_mm, addr, src_pmd, pmd);
1061 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062 mm_inc_nr_ptes(dst_mm);
1063 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1070 if (unlikely(!pmd_trans_huge(pmd))) {
1071 pte_free(dst_mm, pgtable);
1075 * When page table lock is held, the huge zero pmd should not be
1076 * under splitting since we don't split the page itself, only pmd to
1079 if (is_huge_zero_pmd(pmd)) {
1080 struct page *zero_page;
1082 * get_huge_zero_page() will never allocate a new page here,
1083 * since we already have a zero page to copy. It just takes a
1086 zero_page = mm_get_huge_zero_page(dst_mm);
1087 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1093 src_page = pmd_page(pmd);
1094 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1097 * If this page is a potentially pinned page, split and retry the fault
1098 * with smaller page size. Normally this should not happen because the
1099 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1100 * best effort that the pinned pages won't be replaced by another
1101 * random page during the coming copy-on-write.
1103 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1104 pte_free(dst_mm, pgtable);
1105 spin_unlock(src_ptl);
1106 spin_unlock(dst_ptl);
1107 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1112 page_dup_rmap(src_page, true);
1113 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1114 mm_inc_nr_ptes(dst_mm);
1115 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1117 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1118 pmd = pmd_mkold(pmd_wrprotect(pmd));
1119 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123 spin_unlock(src_ptl);
1124 spin_unlock(dst_ptl);
1129 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1130 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1131 pud_t *pud, int flags)
1135 _pud = pud_mkyoung(*pud);
1136 if (flags & FOLL_WRITE)
1137 _pud = pud_mkdirty(_pud);
1138 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1139 pud, _pud, flags & FOLL_WRITE))
1140 update_mmu_cache_pud(vma, addr, pud);
1143 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1144 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1146 unsigned long pfn = pud_pfn(*pud);
1147 struct mm_struct *mm = vma->vm_mm;
1150 assert_spin_locked(pud_lockptr(mm, pud));
1152 if (flags & FOLL_WRITE && !pud_write(*pud))
1155 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1156 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1157 (FOLL_PIN | FOLL_GET)))
1160 if (pud_present(*pud) && pud_devmap(*pud))
1165 if (flags & FOLL_TOUCH)
1166 touch_pud(vma, addr, pud, flags);
1169 * device mapped pages can only be returned if the
1170 * caller will manage the page reference count.
1172 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1174 if (!(flags & (FOLL_GET | FOLL_PIN)))
1175 return ERR_PTR(-EEXIST);
1177 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1178 *pgmap = get_dev_pagemap(pfn, *pgmap);
1180 return ERR_PTR(-EFAULT);
1181 page = pfn_to_page(pfn);
1182 if (!try_grab_page(page, flags))
1183 page = ERR_PTR(-ENOMEM);
1188 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1189 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1190 struct vm_area_struct *vma)
1192 spinlock_t *dst_ptl, *src_ptl;
1196 dst_ptl = pud_lock(dst_mm, dst_pud);
1197 src_ptl = pud_lockptr(src_mm, src_pud);
1198 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1202 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1206 * When page table lock is held, the huge zero pud should not be
1207 * under splitting since we don't split the page itself, only pud to
1210 if (is_huge_zero_pud(pud)) {
1211 /* No huge zero pud yet */
1214 /* Please refer to comments in copy_huge_pmd() */
1215 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1216 spin_unlock(src_ptl);
1217 spin_unlock(dst_ptl);
1218 __split_huge_pud(vma, src_pud, addr);
1222 pudp_set_wrprotect(src_mm, addr, src_pud);
1223 pud = pud_mkold(pud_wrprotect(pud));
1224 set_pud_at(dst_mm, addr, dst_pud, pud);
1228 spin_unlock(src_ptl);
1229 spin_unlock(dst_ptl);
1233 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1236 unsigned long haddr;
1237 bool write = vmf->flags & FAULT_FLAG_WRITE;
1239 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1240 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1243 entry = pud_mkyoung(orig_pud);
1245 entry = pud_mkdirty(entry);
1246 haddr = vmf->address & HPAGE_PUD_MASK;
1247 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1248 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1251 spin_unlock(vmf->ptl);
1253 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1255 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1258 unsigned long haddr;
1259 bool write = vmf->flags & FAULT_FLAG_WRITE;
1261 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1262 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1265 entry = pmd_mkyoung(orig_pmd);
1267 entry = pmd_mkdirty(entry);
1268 haddr = vmf->address & HPAGE_PMD_MASK;
1269 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1270 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1273 spin_unlock(vmf->ptl);
1276 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1278 struct vm_area_struct *vma = vmf->vma;
1280 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1282 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1283 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1285 if (is_huge_zero_pmd(orig_pmd))
1288 spin_lock(vmf->ptl);
1290 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291 spin_unlock(vmf->ptl);
1295 page = pmd_page(orig_pmd);
1296 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1298 /* Lock page for reuse_swap_page() */
1299 if (!trylock_page(page)) {
1301 spin_unlock(vmf->ptl);
1303 spin_lock(vmf->ptl);
1304 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1305 spin_unlock(vmf->ptl);
1314 * We can only reuse the page if nobody else maps the huge page or it's
1317 if (reuse_swap_page(page, NULL)) {
1319 entry = pmd_mkyoung(orig_pmd);
1320 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1321 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1322 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1324 spin_unlock(vmf->ptl);
1325 return VM_FAULT_WRITE;
1329 spin_unlock(vmf->ptl);
1331 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1332 return VM_FAULT_FALLBACK;
1336 * FOLL_FORCE can write to even unwritable pmd's, but only
1337 * after we've gone through a COW cycle and they are dirty.
1339 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1341 return pmd_write(pmd) ||
1342 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1345 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1350 struct mm_struct *mm = vma->vm_mm;
1351 struct page *page = NULL;
1353 assert_spin_locked(pmd_lockptr(mm, pmd));
1355 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1358 /* Avoid dumping huge zero page */
1359 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1360 return ERR_PTR(-EFAULT);
1362 /* Full NUMA hinting faults to serialise migration in fault paths */
1363 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1366 page = pmd_page(*pmd);
1367 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1369 if (!try_grab_page(page, flags))
1370 return ERR_PTR(-ENOMEM);
1372 if (flags & FOLL_TOUCH)
1373 touch_pmd(vma, addr, pmd, flags);
1375 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1377 * We don't mlock() pte-mapped THPs. This way we can avoid
1378 * leaking mlocked pages into non-VM_LOCKED VMAs.
1382 * In most cases the pmd is the only mapping of the page as we
1383 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384 * writable private mappings in populate_vma_page_range().
1386 * The only scenario when we have the page shared here is if we
1387 * mlocking read-only mapping shared over fork(). We skip
1388 * mlocking such pages.
1392 * We can expect PageDoubleMap() to be stable under page lock:
1393 * for file pages we set it in page_add_file_rmap(), which
1394 * requires page to be locked.
1397 if (PageAnon(page) && compound_mapcount(page) != 1)
1399 if (PageDoubleMap(page) || !page->mapping)
1401 if (!trylock_page(page))
1403 if (page->mapping && !PageDoubleMap(page))
1404 mlock_vma_page(page);
1408 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1409 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1415 /* NUMA hinting page fault entry point for trans huge pmds */
1416 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1418 struct vm_area_struct *vma = vmf->vma;
1419 struct anon_vma *anon_vma = NULL;
1421 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1422 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1423 int target_nid, last_cpupid = -1;
1425 bool migrated = false;
1429 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1430 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1434 * If there are potential migrations, wait for completion and retry
1435 * without disrupting NUMA hinting information. Do not relock and
1436 * check_same as the page may no longer be mapped.
1438 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1439 page = pmd_page(*vmf->pmd);
1440 if (!get_page_unless_zero(page))
1442 spin_unlock(vmf->ptl);
1443 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1447 page = pmd_page(pmd);
1448 BUG_ON(is_huge_zero_page(page));
1449 page_nid = page_to_nid(page);
1450 last_cpupid = page_cpupid_last(page);
1451 count_vm_numa_event(NUMA_HINT_FAULTS);
1452 if (page_nid == this_nid) {
1453 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1454 flags |= TNF_FAULT_LOCAL;
1457 /* See similar comment in do_numa_page for explanation */
1458 if (!pmd_savedwrite(pmd))
1459 flags |= TNF_NO_GROUP;
1462 * Acquire the page lock to serialise THP migrations but avoid dropping
1463 * page_table_lock if at all possible
1465 page_locked = trylock_page(page);
1466 target_nid = mpol_misplaced(page, vma, haddr);
1467 if (target_nid == NUMA_NO_NODE) {
1468 /* If the page was locked, there are no parallel migrations */
1473 /* Migration could have started since the pmd_trans_migrating check */
1475 page_nid = NUMA_NO_NODE;
1476 if (!get_page_unless_zero(page))
1478 spin_unlock(vmf->ptl);
1479 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1484 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1485 * to serialises splits
1488 spin_unlock(vmf->ptl);
1489 anon_vma = page_lock_anon_vma_read(page);
1491 /* Confirm the PMD did not change while page_table_lock was released */
1492 spin_lock(vmf->ptl);
1493 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1496 page_nid = NUMA_NO_NODE;
1500 /* Bail if we fail to protect against THP splits for any reason */
1501 if (unlikely(!anon_vma)) {
1503 page_nid = NUMA_NO_NODE;
1508 * Since we took the NUMA fault, we must have observed the !accessible
1509 * bit. Make sure all other CPUs agree with that, to avoid them
1510 * modifying the page we're about to migrate.
1512 * Must be done under PTL such that we'll observe the relevant
1513 * inc_tlb_flush_pending().
1515 * We are not sure a pending tlb flush here is for a huge page
1516 * mapping or not. Hence use the tlb range variant
1518 if (mm_tlb_flush_pending(vma->vm_mm)) {
1519 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1521 * change_huge_pmd() released the pmd lock before
1522 * invalidating the secondary MMUs sharing the primary
1523 * MMU pagetables (with ->invalidate_range()). The
1524 * mmu_notifier_invalidate_range_end() (which
1525 * internally calls ->invalidate_range()) in
1526 * change_pmd_range() will run after us, so we can't
1527 * rely on it here and we need an explicit invalidate.
1529 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1530 haddr + HPAGE_PMD_SIZE);
1534 * Migrate the THP to the requested node, returns with page unlocked
1535 * and access rights restored.
1537 spin_unlock(vmf->ptl);
1539 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1540 vmf->pmd, pmd, vmf->address, page, target_nid);
1542 flags |= TNF_MIGRATED;
1543 page_nid = target_nid;
1545 flags |= TNF_MIGRATE_FAIL;
1549 BUG_ON(!PageLocked(page));
1550 was_writable = pmd_savedwrite(pmd);
1551 pmd = pmd_modify(pmd, vma->vm_page_prot);
1552 pmd = pmd_mkyoung(pmd);
1554 pmd = pmd_mkwrite(pmd);
1555 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1556 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1559 spin_unlock(vmf->ptl);
1563 page_unlock_anon_vma_read(anon_vma);
1565 if (page_nid != NUMA_NO_NODE)
1566 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1573 * Return true if we do MADV_FREE successfully on entire pmd page.
1574 * Otherwise, return false.
1576 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1577 pmd_t *pmd, unsigned long addr, unsigned long next)
1582 struct mm_struct *mm = tlb->mm;
1585 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587 ptl = pmd_trans_huge_lock(pmd, vma);
1592 if (is_huge_zero_pmd(orig_pmd))
1595 if (unlikely(!pmd_present(orig_pmd))) {
1596 VM_BUG_ON(thp_migration_supported() &&
1597 !is_pmd_migration_entry(orig_pmd));
1601 page = pmd_page(orig_pmd);
1603 * If other processes are mapping this page, we couldn't discard
1604 * the page unless they all do MADV_FREE so let's skip the page.
1606 if (page_mapcount(page) != 1)
1609 if (!trylock_page(page))
1613 * If user want to discard part-pages of THP, split it so MADV_FREE
1614 * will deactivate only them.
1616 if (next - addr != HPAGE_PMD_SIZE) {
1619 split_huge_page(page);
1625 if (PageDirty(page))
1626 ClearPageDirty(page);
1629 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1630 pmdp_invalidate(vma, addr, pmd);
1631 orig_pmd = pmd_mkold(orig_pmd);
1632 orig_pmd = pmd_mkclean(orig_pmd);
1634 set_pmd_at(mm, addr, pmd, orig_pmd);
1635 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1638 mark_page_lazyfree(page);
1646 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1650 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1651 pte_free(mm, pgtable);
1655 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1656 pmd_t *pmd, unsigned long addr)
1661 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1663 ptl = __pmd_trans_huge_lock(pmd, vma);
1667 * For architectures like ppc64 we look at deposited pgtable
1668 * when calling pmdp_huge_get_and_clear. So do the
1669 * pgtable_trans_huge_withdraw after finishing pmdp related
1672 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1674 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1675 if (vma_is_special_huge(vma)) {
1676 if (arch_needs_pgtable_deposit())
1677 zap_deposited_table(tlb->mm, pmd);
1679 if (is_huge_zero_pmd(orig_pmd))
1680 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1681 } else if (is_huge_zero_pmd(orig_pmd)) {
1682 zap_deposited_table(tlb->mm, pmd);
1684 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1686 struct page *page = NULL;
1687 int flush_needed = 1;
1689 if (pmd_present(orig_pmd)) {
1690 page = pmd_page(orig_pmd);
1691 page_remove_rmap(page, true);
1692 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1693 VM_BUG_ON_PAGE(!PageHead(page), page);
1694 } else if (thp_migration_supported()) {
1697 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1698 entry = pmd_to_swp_entry(orig_pmd);
1699 page = pfn_to_page(swp_offset(entry));
1702 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1704 if (PageAnon(page)) {
1705 zap_deposited_table(tlb->mm, pmd);
1706 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1708 if (arch_needs_pgtable_deposit())
1709 zap_deposited_table(tlb->mm, pmd);
1710 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1715 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1720 #ifndef pmd_move_must_withdraw
1721 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1722 spinlock_t *old_pmd_ptl,
1723 struct vm_area_struct *vma)
1726 * With split pmd lock we also need to move preallocated
1727 * PTE page table if new_pmd is on different PMD page table.
1729 * We also don't deposit and withdraw tables for file pages.
1731 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1735 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1737 #ifdef CONFIG_MEM_SOFT_DIRTY
1738 if (unlikely(is_pmd_migration_entry(pmd)))
1739 pmd = pmd_swp_mksoft_dirty(pmd);
1740 else if (pmd_present(pmd))
1741 pmd = pmd_mksoft_dirty(pmd);
1746 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1747 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1749 spinlock_t *old_ptl, *new_ptl;
1751 struct mm_struct *mm = vma->vm_mm;
1752 bool force_flush = false;
1755 * The destination pmd shouldn't be established, free_pgtables()
1756 * should have release it.
1758 if (WARN_ON(!pmd_none(*new_pmd))) {
1759 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1764 * We don't have to worry about the ordering of src and dst
1765 * ptlocks because exclusive mmap_lock prevents deadlock.
1767 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1769 new_ptl = pmd_lockptr(mm, new_pmd);
1770 if (new_ptl != old_ptl)
1771 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1772 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1773 if (pmd_present(pmd))
1775 VM_BUG_ON(!pmd_none(*new_pmd));
1777 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1779 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1780 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1782 pmd = move_soft_dirty_pmd(pmd);
1783 set_pmd_at(mm, new_addr, new_pmd, pmd);
1785 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1786 if (new_ptl != old_ptl)
1787 spin_unlock(new_ptl);
1788 spin_unlock(old_ptl);
1796 * - 0 if PMD could not be locked
1797 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1798 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1800 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1801 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1803 struct mm_struct *mm = vma->vm_mm;
1806 bool preserve_write;
1808 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1809 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1810 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1812 ptl = __pmd_trans_huge_lock(pmd, vma);
1816 preserve_write = prot_numa && pmd_write(*pmd);
1819 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1820 if (is_swap_pmd(*pmd)) {
1821 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1823 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1824 if (is_write_migration_entry(entry)) {
1827 * A protection check is difficult so
1828 * just be safe and disable write
1830 make_migration_entry_read(&entry);
1831 newpmd = swp_entry_to_pmd(entry);
1832 if (pmd_swp_soft_dirty(*pmd))
1833 newpmd = pmd_swp_mksoft_dirty(newpmd);
1834 set_pmd_at(mm, addr, pmd, newpmd);
1841 * Avoid trapping faults against the zero page. The read-only
1842 * data is likely to be read-cached on the local CPU and
1843 * local/remote hits to the zero page are not interesting.
1845 if (prot_numa && is_huge_zero_pmd(*pmd))
1848 if (prot_numa && pmd_protnone(*pmd))
1852 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1853 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1854 * which is also under mmap_read_lock(mm):
1857 * change_huge_pmd(prot_numa=1)
1858 * pmdp_huge_get_and_clear_notify()
1859 * madvise_dontneed()
1861 * pmd_trans_huge(*pmd) == 0 (without ptl)
1864 * // pmd is re-established
1866 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1867 * which may break userspace.
1869 * pmdp_invalidate() is required to make sure we don't miss
1870 * dirty/young flags set by hardware.
1872 entry = pmdp_invalidate(vma, addr, pmd);
1874 entry = pmd_modify(entry, newprot);
1876 entry = pmd_mk_savedwrite(entry);
1878 entry = pmd_wrprotect(entry);
1879 entry = pmd_mkuffd_wp(entry);
1880 } else if (uffd_wp_resolve) {
1882 * Leave the write bit to be handled by PF interrupt
1883 * handler, then things like COW could be properly
1886 entry = pmd_clear_uffd_wp(entry);
1889 set_pmd_at(mm, addr, pmd, entry);
1890 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1897 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1899 * Note that if it returns page table lock pointer, this routine returns without
1900 * unlocking page table lock. So callers must unlock it.
1902 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1905 ptl = pmd_lock(vma->vm_mm, pmd);
1906 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1914 * Returns true if a given pud maps a thp, false otherwise.
1916 * Note that if it returns true, this routine returns without unlocking page
1917 * table lock. So callers must unlock it.
1919 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1923 ptl = pud_lock(vma->vm_mm, pud);
1924 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932 pud_t *pud, unsigned long addr)
1936 ptl = __pud_trans_huge_lock(pud, vma);
1940 * For architectures like ppc64 we look at deposited pgtable
1941 * when calling pudp_huge_get_and_clear. So do the
1942 * pgtable_trans_huge_withdraw after finishing pudp related
1945 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1946 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1947 if (vma_is_special_huge(vma)) {
1949 /* No zero page support yet */
1951 /* No support for anonymous PUD pages yet */
1957 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1958 unsigned long haddr)
1960 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1961 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1962 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1963 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1965 count_vm_event(THP_SPLIT_PUD);
1967 pudp_huge_clear_flush_notify(vma, haddr, pud);
1970 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1971 unsigned long address)
1974 struct mmu_notifier_range range;
1976 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1977 address & HPAGE_PUD_MASK,
1978 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1979 mmu_notifier_invalidate_range_start(&range);
1980 ptl = pud_lock(vma->vm_mm, pud);
1981 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1983 __split_huge_pud_locked(vma, pud, range.start);
1988 * No need to double call mmu_notifier->invalidate_range() callback as
1989 * the above pudp_huge_clear_flush_notify() did already call it.
1991 mmu_notifier_invalidate_range_only_end(&range);
1993 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1995 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1996 unsigned long haddr, pmd_t *pmd)
1998 struct mm_struct *mm = vma->vm_mm;
2004 * Leave pmd empty until pte is filled note that it is fine to delay
2005 * notification until mmu_notifier_invalidate_range_end() as we are
2006 * replacing a zero pmd write protected page with a zero pte write
2009 * See Documentation/vm/mmu_notifier.rst
2011 pmdp_huge_clear_flush(vma, haddr, pmd);
2013 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2014 pmd_populate(mm, &_pmd, pgtable);
2016 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2018 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2019 entry = pte_mkspecial(entry);
2020 pte = pte_offset_map(&_pmd, haddr);
2021 VM_BUG_ON(!pte_none(*pte));
2022 set_pte_at(mm, haddr, pte, entry);
2025 smp_wmb(); /* make pte visible before pmd */
2026 pmd_populate(mm, pmd, pgtable);
2029 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2030 unsigned long haddr, bool freeze)
2032 struct mm_struct *mm = vma->vm_mm;
2035 pmd_t old_pmd, _pmd;
2036 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2040 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2041 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2042 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2043 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2044 && !pmd_devmap(*pmd));
2046 count_vm_event(THP_SPLIT_PMD);
2048 if (!vma_is_anonymous(vma)) {
2049 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2051 * We are going to unmap this huge page. So
2052 * just go ahead and zap it
2054 if (arch_needs_pgtable_deposit())
2055 zap_deposited_table(mm, pmd);
2056 if (vma_is_special_huge(vma))
2058 page = pmd_page(_pmd);
2059 if (!PageDirty(page) && pmd_dirty(_pmd))
2060 set_page_dirty(page);
2061 if (!PageReferenced(page) && pmd_young(_pmd))
2062 SetPageReferenced(page);
2063 page_remove_rmap(page, true);
2065 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2067 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2069 * FIXME: Do we want to invalidate secondary mmu by calling
2070 * mmu_notifier_invalidate_range() see comments below inside
2071 * __split_huge_pmd() ?
2073 * We are going from a zero huge page write protected to zero
2074 * small page also write protected so it does not seems useful
2075 * to invalidate secondary mmu at this time.
2077 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2081 * Up to this point the pmd is present and huge and userland has the
2082 * whole access to the hugepage during the split (which happens in
2083 * place). If we overwrite the pmd with the not-huge version pointing
2084 * to the pte here (which of course we could if all CPUs were bug
2085 * free), userland could trigger a small page size TLB miss on the
2086 * small sized TLB while the hugepage TLB entry is still established in
2087 * the huge TLB. Some CPU doesn't like that.
2088 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2089 * 383 on page 105. Intel should be safe but is also warns that it's
2090 * only safe if the permission and cache attributes of the two entries
2091 * loaded in the two TLB is identical (which should be the case here).
2092 * But it is generally safer to never allow small and huge TLB entries
2093 * for the same virtual address to be loaded simultaneously. So instead
2094 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2095 * current pmd notpresent (atomically because here the pmd_trans_huge
2096 * must remain set at all times on the pmd until the split is complete
2097 * for this pmd), then we flush the SMP TLB and finally we write the
2098 * non-huge version of the pmd entry with pmd_populate.
2100 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2102 pmd_migration = is_pmd_migration_entry(old_pmd);
2103 if (unlikely(pmd_migration)) {
2106 entry = pmd_to_swp_entry(old_pmd);
2107 page = pfn_to_page(swp_offset(entry));
2108 write = is_write_migration_entry(entry);
2110 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2111 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2113 page = pmd_page(old_pmd);
2114 if (pmd_dirty(old_pmd))
2116 write = pmd_write(old_pmd);
2117 young = pmd_young(old_pmd);
2118 soft_dirty = pmd_soft_dirty(old_pmd);
2119 uffd_wp = pmd_uffd_wp(old_pmd);
2121 VM_BUG_ON_PAGE(!page_count(page), page);
2122 page_ref_add(page, HPAGE_PMD_NR - 1);
2125 * Withdraw the table only after we mark the pmd entry invalid.
2126 * This's critical for some architectures (Power).
2128 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2129 pmd_populate(mm, &_pmd, pgtable);
2131 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2134 * Note that NUMA hinting access restrictions are not
2135 * transferred to avoid any possibility of altering
2136 * permissions across VMAs.
2138 if (freeze || pmd_migration) {
2139 swp_entry_t swp_entry;
2140 swp_entry = make_migration_entry(page + i, write);
2141 entry = swp_entry_to_pte(swp_entry);
2143 entry = pte_swp_mksoft_dirty(entry);
2145 entry = pte_swp_mkuffd_wp(entry);
2147 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2148 entry = maybe_mkwrite(entry, vma);
2150 entry = pte_wrprotect(entry);
2152 entry = pte_mkold(entry);
2154 entry = pte_mksoft_dirty(entry);
2156 entry = pte_mkuffd_wp(entry);
2158 pte = pte_offset_map(&_pmd, addr);
2159 BUG_ON(!pte_none(*pte));
2160 set_pte_at(mm, addr, pte, entry);
2162 atomic_inc(&page[i]._mapcount);
2166 if (!pmd_migration) {
2168 * Set PG_double_map before dropping compound_mapcount to avoid
2169 * false-negative page_mapped().
2171 if (compound_mapcount(page) > 1 &&
2172 !TestSetPageDoubleMap(page)) {
2173 for (i = 0; i < HPAGE_PMD_NR; i++)
2174 atomic_inc(&page[i]._mapcount);
2177 lock_page_memcg(page);
2178 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2179 /* Last compound_mapcount is gone. */
2180 __mod_lruvec_page_state(page, NR_ANON_THPS,
2182 if (TestClearPageDoubleMap(page)) {
2183 /* No need in mapcount reference anymore */
2184 for (i = 0; i < HPAGE_PMD_NR; i++)
2185 atomic_dec(&page[i]._mapcount);
2188 unlock_page_memcg(page);
2191 smp_wmb(); /* make pte visible before pmd */
2192 pmd_populate(mm, pmd, pgtable);
2195 for (i = 0; i < HPAGE_PMD_NR; i++) {
2196 page_remove_rmap(page + i, false);
2202 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2203 unsigned long address, bool freeze, struct page *page)
2206 struct mmu_notifier_range range;
2207 bool do_unlock_page = false;
2210 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2211 address & HPAGE_PMD_MASK,
2212 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2213 mmu_notifier_invalidate_range_start(&range);
2214 ptl = pmd_lock(vma->vm_mm, pmd);
2217 * If caller asks to setup a migration entries, we need a page to check
2218 * pmd against. Otherwise we can end up replacing wrong page.
2220 VM_BUG_ON(freeze && !page);
2222 VM_WARN_ON_ONCE(!PageLocked(page));
2223 if (page != pmd_page(*pmd))
2228 if (pmd_trans_huge(*pmd)) {
2230 page = pmd_page(*pmd);
2232 * An anonymous page must be locked, to ensure that a
2233 * concurrent reuse_swap_page() sees stable mapcount;
2234 * but reuse_swap_page() is not used on shmem or file,
2235 * and page lock must not be taken when zap_pmd_range()
2236 * calls __split_huge_pmd() while i_mmap_lock is held.
2238 if (PageAnon(page)) {
2239 if (unlikely(!trylock_page(page))) {
2245 if (unlikely(!pmd_same(*pmd, _pmd))) {
2253 do_unlock_page = true;
2256 if (PageMlocked(page))
2257 clear_page_mlock(page);
2258 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2260 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2266 * No need to double call mmu_notifier->invalidate_range() callback.
2267 * They are 3 cases to consider inside __split_huge_pmd_locked():
2268 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2269 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2270 * fault will trigger a flush_notify before pointing to a new page
2271 * (it is fine if the secondary mmu keeps pointing to the old zero
2272 * page in the meantime)
2273 * 3) Split a huge pmd into pte pointing to the same page. No need
2274 * to invalidate secondary tlb entry they are all still valid.
2275 * any further changes to individual pte will notify. So no need
2276 * to call mmu_notifier->invalidate_range()
2278 mmu_notifier_invalidate_range_only_end(&range);
2281 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2282 bool freeze, struct page *page)
2289 pgd = pgd_offset(vma->vm_mm, address);
2290 if (!pgd_present(*pgd))
2293 p4d = p4d_offset(pgd, address);
2294 if (!p4d_present(*p4d))
2297 pud = pud_offset(p4d, address);
2298 if (!pud_present(*pud))
2301 pmd = pmd_offset(pud, address);
2303 __split_huge_pmd(vma, pmd, address, freeze, page);
2306 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2307 unsigned long start,
2312 * If the new start address isn't hpage aligned and it could
2313 * previously contain an hugepage: check if we need to split
2316 if (start & ~HPAGE_PMD_MASK &&
2317 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2318 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2319 split_huge_pmd_address(vma, start, false, NULL);
2322 * If the new end address isn't hpage aligned and it could
2323 * previously contain an hugepage: check if we need to split
2326 if (end & ~HPAGE_PMD_MASK &&
2327 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2328 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2329 split_huge_pmd_address(vma, end, false, NULL);
2332 * If we're also updating the vma->vm_next->vm_start, if the new
2333 * vm_next->vm_start isn't hpage aligned and it could previously
2334 * contain an hugepage: check if we need to split an huge pmd.
2336 if (adjust_next > 0) {
2337 struct vm_area_struct *next = vma->vm_next;
2338 unsigned long nstart = next->vm_start;
2339 nstart += adjust_next;
2340 if (nstart & ~HPAGE_PMD_MASK &&
2341 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2342 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2343 split_huge_pmd_address(next, nstart, false, NULL);
2347 static void unmap_page(struct page *page)
2349 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2350 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2353 VM_BUG_ON_PAGE(!PageHead(page), page);
2356 ttu_flags |= TTU_SPLIT_FREEZE;
2358 unmap_success = try_to_unmap(page, ttu_flags);
2359 VM_BUG_ON_PAGE(!unmap_success, page);
2362 static void remap_page(struct page *page, unsigned int nr)
2365 if (PageTransHuge(page)) {
2366 remove_migration_ptes(page, page, true);
2368 for (i = 0; i < nr; i++)
2369 remove_migration_ptes(page + i, page + i, true);
2373 static void lru_add_page_tail(struct page *head, struct page *tail,
2374 struct lruvec *lruvec, struct list_head *list)
2376 VM_BUG_ON_PAGE(!PageHead(head), head);
2377 VM_BUG_ON_PAGE(PageCompound(tail), head);
2378 VM_BUG_ON_PAGE(PageLRU(tail), head);
2379 lockdep_assert_held(&lruvec->lru_lock);
2382 /* page reclaim is reclaiming a huge page */
2383 VM_WARN_ON(PageLRU(head));
2385 list_add_tail(&tail->lru, list);
2387 /* head is still on lru (and we have it frozen) */
2388 VM_WARN_ON(!PageLRU(head));
2390 list_add_tail(&tail->lru, &head->lru);
2394 static void __split_huge_page_tail(struct page *head, int tail,
2395 struct lruvec *lruvec, struct list_head *list)
2397 struct page *page_tail = head + tail;
2399 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2402 * Clone page flags before unfreezing refcount.
2404 * After successful get_page_unless_zero() might follow flags change,
2405 * for example lock_page() which set PG_waiters.
2407 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2408 page_tail->flags |= (head->flags &
2409 ((1L << PG_referenced) |
2410 (1L << PG_swapbacked) |
2411 (1L << PG_swapcache) |
2412 (1L << PG_mlocked) |
2413 (1L << PG_uptodate) |
2415 (1L << PG_workingset) |
2417 (1L << PG_unevictable) |
2423 /* ->mapping in first tail page is compound_mapcount */
2424 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2426 page_tail->mapping = head->mapping;
2427 page_tail->index = head->index + tail;
2429 /* Page flags must be visible before we make the page non-compound. */
2433 * Clear PageTail before unfreezing page refcount.
2435 * After successful get_page_unless_zero() might follow put_page()
2436 * which needs correct compound_head().
2438 clear_compound_head(page_tail);
2440 /* Finally unfreeze refcount. Additional reference from page cache. */
2441 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2442 PageSwapCache(head)));
2444 if (page_is_young(head))
2445 set_page_young(page_tail);
2446 if (page_is_idle(head))
2447 set_page_idle(page_tail);
2449 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2452 * always add to the tail because some iterators expect new
2453 * pages to show after the currently processed elements - e.g.
2456 lru_add_page_tail(head, page_tail, lruvec, list);
2459 static void __split_huge_page(struct page *page, struct list_head *list,
2462 struct page *head = compound_head(page);
2463 struct lruvec *lruvec;
2464 struct address_space *swap_cache = NULL;
2465 unsigned long offset = 0;
2466 unsigned int nr = thp_nr_pages(head);
2469 /* complete memcg works before add pages to LRU */
2470 split_page_memcg(head, nr);
2472 if (PageAnon(head) && PageSwapCache(head)) {
2473 swp_entry_t entry = { .val = page_private(head) };
2475 offset = swp_offset(entry);
2476 swap_cache = swap_address_space(entry);
2477 xa_lock(&swap_cache->i_pages);
2480 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2481 lruvec = lock_page_lruvec(head);
2483 for (i = nr - 1; i >= 1; i--) {
2484 __split_huge_page_tail(head, i, lruvec, list);
2485 /* Some pages can be beyond i_size: drop them from page cache */
2486 if (head[i].index >= end) {
2487 ClearPageDirty(head + i);
2488 __delete_from_page_cache(head + i, NULL);
2489 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2490 shmem_uncharge(head->mapping->host, 1);
2492 } else if (!PageAnon(page)) {
2493 __xa_store(&head->mapping->i_pages, head[i].index,
2495 } else if (swap_cache) {
2496 __xa_store(&swap_cache->i_pages, offset + i,
2501 ClearPageCompound(head);
2502 unlock_page_lruvec(lruvec);
2503 /* Caller disabled irqs, so they are still disabled here */
2505 split_page_owner(head, nr);
2507 /* See comment in __split_huge_page_tail() */
2508 if (PageAnon(head)) {
2509 /* Additional pin to swap cache */
2510 if (PageSwapCache(head)) {
2511 page_ref_add(head, 2);
2512 xa_unlock(&swap_cache->i_pages);
2517 /* Additional pin to page cache */
2518 page_ref_add(head, 2);
2519 xa_unlock(&head->mapping->i_pages);
2523 remap_page(head, nr);
2525 if (PageSwapCache(head)) {
2526 swp_entry_t entry = { .val = page_private(head) };
2528 split_swap_cluster(entry);
2531 for (i = 0; i < nr; i++) {
2532 struct page *subpage = head + i;
2533 if (subpage == page)
2535 unlock_page(subpage);
2538 * Subpages may be freed if there wasn't any mapping
2539 * like if add_to_swap() is running on a lru page that
2540 * had its mapping zapped. And freeing these pages
2541 * requires taking the lru_lock so we do the put_page
2542 * of the tail pages after the split is complete.
2548 int total_mapcount(struct page *page)
2550 int i, compound, nr, ret;
2552 VM_BUG_ON_PAGE(PageTail(page), page);
2554 if (likely(!PageCompound(page)))
2555 return atomic_read(&page->_mapcount) + 1;
2557 compound = compound_mapcount(page);
2558 nr = compound_nr(page);
2562 for (i = 0; i < nr; i++)
2563 ret += atomic_read(&page[i]._mapcount) + 1;
2564 /* File pages has compound_mapcount included in _mapcount */
2565 if (!PageAnon(page))
2566 return ret - compound * nr;
2567 if (PageDoubleMap(page))
2573 * This calculates accurately how many mappings a transparent hugepage
2574 * has (unlike page_mapcount() which isn't fully accurate). This full
2575 * accuracy is primarily needed to know if copy-on-write faults can
2576 * reuse the page and change the mapping to read-write instead of
2577 * copying them. At the same time this returns the total_mapcount too.
2579 * The function returns the highest mapcount any one of the subpages
2580 * has. If the return value is one, even if different processes are
2581 * mapping different subpages of the transparent hugepage, they can
2582 * all reuse it, because each process is reusing a different subpage.
2584 * The total_mapcount is instead counting all virtual mappings of the
2585 * subpages. If the total_mapcount is equal to "one", it tells the
2586 * caller all mappings belong to the same "mm" and in turn the
2587 * anon_vma of the transparent hugepage can become the vma->anon_vma
2588 * local one as no other process may be mapping any of the subpages.
2590 * It would be more accurate to replace page_mapcount() with
2591 * page_trans_huge_mapcount(), however we only use
2592 * page_trans_huge_mapcount() in the copy-on-write faults where we
2593 * need full accuracy to avoid breaking page pinning, because
2594 * page_trans_huge_mapcount() is slower than page_mapcount().
2596 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2598 int i, ret, _total_mapcount, mapcount;
2600 /* hugetlbfs shouldn't call it */
2601 VM_BUG_ON_PAGE(PageHuge(page), page);
2603 if (likely(!PageTransCompound(page))) {
2604 mapcount = atomic_read(&page->_mapcount) + 1;
2606 *total_mapcount = mapcount;
2610 page = compound_head(page);
2612 _total_mapcount = ret = 0;
2613 for (i = 0; i < thp_nr_pages(page); i++) {
2614 mapcount = atomic_read(&page[i]._mapcount) + 1;
2615 ret = max(ret, mapcount);
2616 _total_mapcount += mapcount;
2618 if (PageDoubleMap(page)) {
2620 _total_mapcount -= thp_nr_pages(page);
2622 mapcount = compound_mapcount(page);
2624 _total_mapcount += mapcount;
2626 *total_mapcount = _total_mapcount;
2630 /* Racy check whether the huge page can be split */
2631 bool can_split_huge_page(struct page *page, int *pextra_pins)
2635 /* Additional pins from page cache */
2637 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2639 extra_pins = thp_nr_pages(page);
2641 *pextra_pins = extra_pins;
2642 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2646 * This function splits huge page into normal pages. @page can point to any
2647 * subpage of huge page to split. Split doesn't change the position of @page.
2649 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2650 * The huge page must be locked.
2652 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2654 * Both head page and tail pages will inherit mapping, flags, and so on from
2657 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2658 * they are not mapped.
2660 * Returns 0 if the hugepage is split successfully.
2661 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2664 int split_huge_page_to_list(struct page *page, struct list_head *list)
2666 struct page *head = compound_head(page);
2667 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2668 struct anon_vma *anon_vma = NULL;
2669 struct address_space *mapping = NULL;
2670 int count, mapcount, extra_pins, ret;
2673 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2674 VM_BUG_ON_PAGE(!PageLocked(head), head);
2675 VM_BUG_ON_PAGE(!PageCompound(head), head);
2677 if (PageWriteback(head))
2680 if (PageAnon(head)) {
2682 * The caller does not necessarily hold an mmap_lock that would
2683 * prevent the anon_vma disappearing so we first we take a
2684 * reference to it and then lock the anon_vma for write. This
2685 * is similar to page_lock_anon_vma_read except the write lock
2686 * is taken to serialise against parallel split or collapse
2689 anon_vma = page_get_anon_vma(head);
2696 anon_vma_lock_write(anon_vma);
2698 mapping = head->mapping;
2707 i_mmap_lock_read(mapping);
2710 *__split_huge_page() may need to trim off pages beyond EOF:
2711 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2712 * which cannot be nested inside the page tree lock. So note
2713 * end now: i_size itself may be changed at any moment, but
2714 * head page lock is good enough to serialize the trimming.
2716 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2720 * Racy check if we can split the page, before unmap_page() will
2723 if (!can_split_huge_page(head, &extra_pins)) {
2729 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2731 /* block interrupt reentry in xa_lock and spinlock */
2732 local_irq_disable();
2734 XA_STATE(xas, &mapping->i_pages, page_index(head));
2737 * Check if the head page is present in page cache.
2738 * We assume all tail are present too, if head is there.
2740 xa_lock(&mapping->i_pages);
2741 if (xas_load(&xas) != head)
2745 /* Prevent deferred_split_scan() touching ->_refcount */
2746 spin_lock(&ds_queue->split_queue_lock);
2747 count = page_count(head);
2748 mapcount = total_mapcount(head);
2749 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2750 if (!list_empty(page_deferred_list(head))) {
2751 ds_queue->split_queue_len--;
2752 list_del(page_deferred_list(head));
2754 spin_unlock(&ds_queue->split_queue_lock);
2756 int nr = thp_nr_pages(head);
2758 if (PageSwapBacked(head))
2759 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2762 __mod_lruvec_page_state(head, NR_FILE_THPS,
2766 __split_huge_page(page, list, end);
2769 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2770 pr_alert("total_mapcount: %u, page_count(): %u\n",
2773 dump_page(head, NULL);
2774 dump_page(page, "total_mapcount(head) > 0");
2777 spin_unlock(&ds_queue->split_queue_lock);
2779 xa_unlock(&mapping->i_pages);
2781 remap_page(head, thp_nr_pages(head));
2787 anon_vma_unlock_write(anon_vma);
2788 put_anon_vma(anon_vma);
2791 i_mmap_unlock_read(mapping);
2793 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2797 void free_transhuge_page(struct page *page)
2799 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2800 unsigned long flags;
2802 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803 if (!list_empty(page_deferred_list(page))) {
2804 ds_queue->split_queue_len--;
2805 list_del(page_deferred_list(page));
2807 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 free_compound_page(page);
2811 void deferred_split_huge_page(struct page *page)
2813 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2815 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2817 unsigned long flags;
2819 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2822 * The try_to_unmap() in page reclaim path might reach here too,
2823 * this may cause a race condition to corrupt deferred split queue.
2824 * And, if page reclaim is already handling the same page, it is
2825 * unnecessary to handle it again in shrinker.
2827 * Check PageSwapCache to determine if the page is being
2828 * handled by page reclaim since THP swap would add the page into
2829 * swap cache before calling try_to_unmap().
2831 if (PageSwapCache(page))
2834 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2835 if (list_empty(page_deferred_list(page))) {
2836 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2837 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2838 ds_queue->split_queue_len++;
2841 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2842 deferred_split_shrinker.id);
2845 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2848 static unsigned long deferred_split_count(struct shrinker *shrink,
2849 struct shrink_control *sc)
2851 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2856 ds_queue = &sc->memcg->deferred_split_queue;
2858 return READ_ONCE(ds_queue->split_queue_len);
2861 static unsigned long deferred_split_scan(struct shrinker *shrink,
2862 struct shrink_control *sc)
2864 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2865 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2866 unsigned long flags;
2867 LIST_HEAD(list), *pos, *next;
2873 ds_queue = &sc->memcg->deferred_split_queue;
2876 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2877 /* Take pin on all head pages to avoid freeing them under us */
2878 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2879 page = list_entry((void *)pos, struct page, mapping);
2880 page = compound_head(page);
2881 if (get_page_unless_zero(page)) {
2882 list_move(page_deferred_list(page), &list);
2884 /* We lost race with put_compound_page() */
2885 list_del_init(page_deferred_list(page));
2886 ds_queue->split_queue_len--;
2888 if (!--sc->nr_to_scan)
2891 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2893 list_for_each_safe(pos, next, &list) {
2894 page = list_entry((void *)pos, struct page, mapping);
2895 if (!trylock_page(page))
2897 /* split_huge_page() removes page from list on success */
2898 if (!split_huge_page(page))
2905 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2906 list_splice_tail(&list, &ds_queue->split_queue);
2907 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2910 * Stop shrinker if we didn't split any page, but the queue is empty.
2911 * This can happen if pages were freed under us.
2913 if (!split && list_empty(&ds_queue->split_queue))
2918 static struct shrinker deferred_split_shrinker = {
2919 .count_objects = deferred_split_count,
2920 .scan_objects = deferred_split_scan,
2921 .seeks = DEFAULT_SEEKS,
2922 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2926 #ifdef CONFIG_DEBUG_FS
2927 static int split_huge_pages_set(void *data, u64 val)
2931 unsigned long pfn, max_zone_pfn;
2932 unsigned long total = 0, split = 0;
2937 for_each_populated_zone(zone) {
2938 max_zone_pfn = zone_end_pfn(zone);
2939 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2940 if (!pfn_valid(pfn))
2943 page = pfn_to_page(pfn);
2944 if (!get_page_unless_zero(page))
2947 if (zone != page_zone(page))
2950 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2955 if (!split_huge_page(page))
2963 pr_info("%lu of %lu THP split\n", split, total);
2967 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2970 static int __init split_huge_pages_debugfs(void)
2972 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2973 &split_huge_pages_fops);
2976 late_initcall(split_huge_pages_debugfs);
2979 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2980 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2983 struct vm_area_struct *vma = pvmw->vma;
2984 struct mm_struct *mm = vma->vm_mm;
2985 unsigned long address = pvmw->address;
2990 if (!(pvmw->pmd && !pvmw->pte))
2993 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2994 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2995 if (pmd_dirty(pmdval))
2996 set_page_dirty(page);
2997 entry = make_migration_entry(page, pmd_write(pmdval));
2998 pmdswp = swp_entry_to_pmd(entry);
2999 if (pmd_soft_dirty(pmdval))
3000 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3001 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3002 page_remove_rmap(page, true);
3006 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3008 struct vm_area_struct *vma = pvmw->vma;
3009 struct mm_struct *mm = vma->vm_mm;
3010 unsigned long address = pvmw->address;
3011 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3015 if (!(pvmw->pmd && !pvmw->pte))
3018 entry = pmd_to_swp_entry(*pvmw->pmd);
3020 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3021 if (pmd_swp_soft_dirty(*pvmw->pmd))
3022 pmde = pmd_mksoft_dirty(pmde);
3023 if (is_write_migration_entry(entry))
3024 pmde = maybe_pmd_mkwrite(pmde, vma);
3026 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3028 page_add_anon_rmap(new, vma, mmun_start, true);
3030 page_add_file_rmap(new, true);
3031 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3032 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3033 mlock_vma_page(new);
3034 update_mmu_cache_pmd(vma, address, pvmw->pmd);