Merge tag 'stable/for-linus-3.14-rc0-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81         struct hlist_node hash;
82         struct list_head mm_node;
83         struct mm_struct *mm;
84 };
85
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95         struct list_head mm_head;
96         struct mm_slot *mm_slot;
97         unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102
103
104 static int set_recommended_min_free_kbytes(void)
105 {
106         struct zone *zone;
107         int nr_zones = 0;
108         unsigned long recommended_min;
109
110         if (!khugepaged_enabled())
111                 return 0;
112
113         for_each_populated_zone(zone)
114                 nr_zones++;
115
116         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117         recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119         /*
120          * Make sure that on average at least two pageblocks are almost free
121          * of another type, one for a migratetype to fall back to and a
122          * second to avoid subsequent fallbacks of other types There are 3
123          * MIGRATE_TYPES we care about.
124          */
125         recommended_min += pageblock_nr_pages * nr_zones *
126                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128         /* don't ever allow to reserve more than 5% of the lowmem */
129         recommended_min = min(recommended_min,
130                               (unsigned long) nr_free_buffer_pages() / 20);
131         recommended_min <<= (PAGE_SHIFT-10);
132
133         if (recommended_min > min_free_kbytes) {
134                 if (user_min_free_kbytes >= 0)
135                         pr_info("raising min_free_kbytes from %d to %lu "
136                                 "to help transparent hugepage allocations\n",
137                                 min_free_kbytes, recommended_min);
138
139                 min_free_kbytes = recommended_min;
140         }
141         setup_per_zone_wmarks();
142         return 0;
143 }
144 late_initcall(set_recommended_min_free_kbytes);
145
146 static int start_khugepaged(void)
147 {
148         int err = 0;
149         if (khugepaged_enabled()) {
150                 if (!khugepaged_thread)
151                         khugepaged_thread = kthread_run(khugepaged, NULL,
152                                                         "khugepaged");
153                 if (unlikely(IS_ERR(khugepaged_thread))) {
154                         printk(KERN_ERR
155                                "khugepaged: kthread_run(khugepaged) failed\n");
156                         err = PTR_ERR(khugepaged_thread);
157                         khugepaged_thread = NULL;
158                 }
159
160                 if (!list_empty(&khugepaged_scan.mm_head))
161                         wake_up_interruptible(&khugepaged_wait);
162
163                 set_recommended_min_free_kbytes();
164         } else if (khugepaged_thread) {
165                 kthread_stop(khugepaged_thread);
166                 khugepaged_thread = NULL;
167         }
168
169         return err;
170 }
171
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
174
175 static inline bool is_huge_zero_page(struct page *page)
176 {
177         return ACCESS_ONCE(huge_zero_page) == page;
178 }
179
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
181 {
182         return is_huge_zero_page(pmd_page(pmd));
183 }
184
185 static struct page *get_huge_zero_page(void)
186 {
187         struct page *zero_page;
188 retry:
189         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190                 return ACCESS_ONCE(huge_zero_page);
191
192         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193                         HPAGE_PMD_ORDER);
194         if (!zero_page) {
195                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196                 return NULL;
197         }
198         count_vm_event(THP_ZERO_PAGE_ALLOC);
199         preempt_disable();
200         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201                 preempt_enable();
202                 __free_page(zero_page);
203                 goto retry;
204         }
205
206         /* We take additional reference here. It will be put back by shrinker */
207         atomic_set(&huge_zero_refcount, 2);
208         preempt_enable();
209         return ACCESS_ONCE(huge_zero_page);
210 }
211
212 static void put_huge_zero_page(void)
213 {
214         /*
215          * Counter should never go to zero here. Only shrinker can put
216          * last reference.
217          */
218         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219 }
220
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222                                         struct shrink_control *sc)
223 {
224         /* we can free zero page only if last reference remains */
225         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229                                        struct shrink_control *sc)
230 {
231         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232                 struct page *zero_page = xchg(&huge_zero_page, NULL);
233                 BUG_ON(zero_page == NULL);
234                 __free_page(zero_page);
235                 return HPAGE_PMD_NR;
236         }
237
238         return 0;
239 }
240
241 static struct shrinker huge_zero_page_shrinker = {
242         .count_objects = shrink_huge_zero_page_count,
243         .scan_objects = shrink_huge_zero_page_scan,
244         .seeks = DEFAULT_SEEKS,
245 };
246
247 #ifdef CONFIG_SYSFS
248
249 static ssize_t double_flag_show(struct kobject *kobj,
250                                 struct kobj_attribute *attr, char *buf,
251                                 enum transparent_hugepage_flag enabled,
252                                 enum transparent_hugepage_flag req_madv)
253 {
254         if (test_bit(enabled, &transparent_hugepage_flags)) {
255                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256                 return sprintf(buf, "[always] madvise never\n");
257         } else if (test_bit(req_madv, &transparent_hugepage_flags))
258                 return sprintf(buf, "always [madvise] never\n");
259         else
260                 return sprintf(buf, "always madvise [never]\n");
261 }
262 static ssize_t double_flag_store(struct kobject *kobj,
263                                  struct kobj_attribute *attr,
264                                  const char *buf, size_t count,
265                                  enum transparent_hugepage_flag enabled,
266                                  enum transparent_hugepage_flag req_madv)
267 {
268         if (!memcmp("always", buf,
269                     min(sizeof("always")-1, count))) {
270                 set_bit(enabled, &transparent_hugepage_flags);
271                 clear_bit(req_madv, &transparent_hugepage_flags);
272         } else if (!memcmp("madvise", buf,
273                            min(sizeof("madvise")-1, count))) {
274                 clear_bit(enabled, &transparent_hugepage_flags);
275                 set_bit(req_madv, &transparent_hugepage_flags);
276         } else if (!memcmp("never", buf,
277                            min(sizeof("never")-1, count))) {
278                 clear_bit(enabled, &transparent_hugepage_flags);
279                 clear_bit(req_madv, &transparent_hugepage_flags);
280         } else
281                 return -EINVAL;
282
283         return count;
284 }
285
286 static ssize_t enabled_show(struct kobject *kobj,
287                             struct kobj_attribute *attr, char *buf)
288 {
289         return double_flag_show(kobj, attr, buf,
290                                 TRANSPARENT_HUGEPAGE_FLAG,
291                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 }
293 static ssize_t enabled_store(struct kobject *kobj,
294                              struct kobj_attribute *attr,
295                              const char *buf, size_t count)
296 {
297         ssize_t ret;
298
299         ret = double_flag_store(kobj, attr, buf, count,
300                                 TRANSPARENT_HUGEPAGE_FLAG,
301                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302
303         if (ret > 0) {
304                 int err;
305
306                 mutex_lock(&khugepaged_mutex);
307                 err = start_khugepaged();
308                 mutex_unlock(&khugepaged_mutex);
309
310                 if (err)
311                         ret = err;
312         }
313
314         return ret;
315 }
316 static struct kobj_attribute enabled_attr =
317         __ATTR(enabled, 0644, enabled_show, enabled_store);
318
319 static ssize_t single_flag_show(struct kobject *kobj,
320                                 struct kobj_attribute *attr, char *buf,
321                                 enum transparent_hugepage_flag flag)
322 {
323         return sprintf(buf, "%d\n",
324                        !!test_bit(flag, &transparent_hugepage_flags));
325 }
326
327 static ssize_t single_flag_store(struct kobject *kobj,
328                                  struct kobj_attribute *attr,
329                                  const char *buf, size_t count,
330                                  enum transparent_hugepage_flag flag)
331 {
332         unsigned long value;
333         int ret;
334
335         ret = kstrtoul(buf, 10, &value);
336         if (ret < 0)
337                 return ret;
338         if (value > 1)
339                 return -EINVAL;
340
341         if (value)
342                 set_bit(flag, &transparent_hugepage_flags);
343         else
344                 clear_bit(flag, &transparent_hugepage_flags);
345
346         return count;
347 }
348
349 /*
350  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352  * memory just to allocate one more hugepage.
353  */
354 static ssize_t defrag_show(struct kobject *kobj,
355                            struct kobj_attribute *attr, char *buf)
356 {
357         return double_flag_show(kobj, attr, buf,
358                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 }
361 static ssize_t defrag_store(struct kobject *kobj,
362                             struct kobj_attribute *attr,
363                             const char *buf, size_t count)
364 {
365         return double_flag_store(kobj, attr, buf, count,
366                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368 }
369 static struct kobj_attribute defrag_attr =
370         __ATTR(defrag, 0644, defrag_show, defrag_store);
371
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373                 struct kobj_attribute *attr, char *buf)
374 {
375         return single_flag_show(kobj, attr, buf,
376                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379                 struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381         return single_flag_store(kobj, attr, buf, count,
382                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr =
385         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388                                 struct kobj_attribute *attr, char *buf)
389 {
390         return single_flag_show(kobj, attr, buf,
391                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static ssize_t debug_cow_store(struct kobject *kobj,
394                                struct kobj_attribute *attr,
395                                const char *buf, size_t count)
396 {
397         return single_flag_store(kobj, attr, buf, count,
398                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399 }
400 static struct kobj_attribute debug_cow_attr =
401         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
403
404 static struct attribute *hugepage_attr[] = {
405         &enabled_attr.attr,
406         &defrag_attr.attr,
407         &use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409         &debug_cow_attr.attr,
410 #endif
411         NULL,
412 };
413
414 static struct attribute_group hugepage_attr_group = {
415         .attrs = hugepage_attr,
416 };
417
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419                                          struct kobj_attribute *attr,
420                                          char *buf)
421 {
422         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423 }
424
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426                                           struct kobj_attribute *attr,
427                                           const char *buf, size_t count)
428 {
429         unsigned long msecs;
430         int err;
431
432         err = kstrtoul(buf, 10, &msecs);
433         if (err || msecs > UINT_MAX)
434                 return -EINVAL;
435
436         khugepaged_scan_sleep_millisecs = msecs;
437         wake_up_interruptible(&khugepaged_wait);
438
439         return count;
440 }
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443                scan_sleep_millisecs_store);
444
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446                                           struct kobj_attribute *attr,
447                                           char *buf)
448 {
449         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450 }
451
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453                                            struct kobj_attribute *attr,
454                                            const char *buf, size_t count)
455 {
456         unsigned long msecs;
457         int err;
458
459         err = kstrtoul(buf, 10, &msecs);
460         if (err || msecs > UINT_MAX)
461                 return -EINVAL;
462
463         khugepaged_alloc_sleep_millisecs = msecs;
464         wake_up_interruptible(&khugepaged_wait);
465
466         return count;
467 }
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470                alloc_sleep_millisecs_store);
471
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473                                   struct kobj_attribute *attr,
474                                   char *buf)
475 {
476         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477 }
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479                                    struct kobj_attribute *attr,
480                                    const char *buf, size_t count)
481 {
482         int err;
483         unsigned long pages;
484
485         err = kstrtoul(buf, 10, &pages);
486         if (err || !pages || pages > UINT_MAX)
487                 return -EINVAL;
488
489         khugepaged_pages_to_scan = pages;
490
491         return count;
492 }
493 static struct kobj_attribute pages_to_scan_attr =
494         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
495                pages_to_scan_store);
496
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498                                     struct kobj_attribute *attr,
499                                     char *buf)
500 {
501         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502 }
503 static struct kobj_attribute pages_collapsed_attr =
504         __ATTR_RO(pages_collapsed);
505
506 static ssize_t full_scans_show(struct kobject *kobj,
507                                struct kobj_attribute *attr,
508                                char *buf)
509 {
510         return sprintf(buf, "%u\n", khugepaged_full_scans);
511 }
512 static struct kobj_attribute full_scans_attr =
513         __ATTR_RO(full_scans);
514
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516                                       struct kobj_attribute *attr, char *buf)
517 {
518         return single_flag_show(kobj, attr, buf,
519                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522                                        struct kobj_attribute *attr,
523                                        const char *buf, size_t count)
524 {
525         return single_flag_store(kobj, attr, buf, count,
526                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527 }
528 static struct kobj_attribute khugepaged_defrag_attr =
529         __ATTR(defrag, 0644, khugepaged_defrag_show,
530                khugepaged_defrag_store);
531
532 /*
533  * max_ptes_none controls if khugepaged should collapse hugepages over
534  * any unmapped ptes in turn potentially increasing the memory
535  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536  * reduce the available free memory in the system as it
537  * runs. Increasing max_ptes_none will instead potentially reduce the
538  * free memory in the system during the khugepaged scan.
539  */
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541                                              struct kobj_attribute *attr,
542                                              char *buf)
543 {
544         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545 }
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547                                               struct kobj_attribute *attr,
548                                               const char *buf, size_t count)
549 {
550         int err;
551         unsigned long max_ptes_none;
552
553         err = kstrtoul(buf, 10, &max_ptes_none);
554         if (err || max_ptes_none > HPAGE_PMD_NR-1)
555                 return -EINVAL;
556
557         khugepaged_max_ptes_none = max_ptes_none;
558
559         return count;
560 }
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563                khugepaged_max_ptes_none_store);
564
565 static struct attribute *khugepaged_attr[] = {
566         &khugepaged_defrag_attr.attr,
567         &khugepaged_max_ptes_none_attr.attr,
568         &pages_to_scan_attr.attr,
569         &pages_collapsed_attr.attr,
570         &full_scans_attr.attr,
571         &scan_sleep_millisecs_attr.attr,
572         &alloc_sleep_millisecs_attr.attr,
573         NULL,
574 };
575
576 static struct attribute_group khugepaged_attr_group = {
577         .attrs = khugepaged_attr,
578         .name = "khugepaged",
579 };
580
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582 {
583         int err;
584
585         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586         if (unlikely(!*hugepage_kobj)) {
587                 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588                 return -ENOMEM;
589         }
590
591         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592         if (err) {
593                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594                 goto delete_obj;
595         }
596
597         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598         if (err) {
599                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600                 goto remove_hp_group;
601         }
602
603         return 0;
604
605 remove_hp_group:
606         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608         kobject_put(*hugepage_kobj);
609         return err;
610 }
611
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616         kobject_put(hugepage_kobj);
617 }
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 {
621         return 0;
622 }
623
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625 {
626 }
627 #endif /* CONFIG_SYSFS */
628
629 static int __init hugepage_init(void)
630 {
631         int err;
632         struct kobject *hugepage_kobj;
633
634         if (!has_transparent_hugepage()) {
635                 transparent_hugepage_flags = 0;
636                 return -EINVAL;
637         }
638
639         err = hugepage_init_sysfs(&hugepage_kobj);
640         if (err)
641                 return err;
642
643         err = khugepaged_slab_init();
644         if (err)
645                 goto out;
646
647         register_shrinker(&huge_zero_page_shrinker);
648
649         /*
650          * By default disable transparent hugepages on smaller systems,
651          * where the extra memory used could hurt more than TLB overhead
652          * is likely to save.  The admin can still enable it through /sys.
653          */
654         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655                 transparent_hugepage_flags = 0;
656
657         start_khugepaged();
658
659         return 0;
660 out:
661         hugepage_exit_sysfs(hugepage_kobj);
662         return err;
663 }
664 subsys_initcall(hugepage_init);
665
666 static int __init setup_transparent_hugepage(char *str)
667 {
668         int ret = 0;
669         if (!str)
670                 goto out;
671         if (!strcmp(str, "always")) {
672                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673                         &transparent_hugepage_flags);
674                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675                           &transparent_hugepage_flags);
676                 ret = 1;
677         } else if (!strcmp(str, "madvise")) {
678                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679                           &transparent_hugepage_flags);
680                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681                         &transparent_hugepage_flags);
682                 ret = 1;
683         } else if (!strcmp(str, "never")) {
684                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685                           &transparent_hugepage_flags);
686                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687                           &transparent_hugepage_flags);
688                 ret = 1;
689         }
690 out:
691         if (!ret)
692                 printk(KERN_WARNING
693                        "transparent_hugepage= cannot parse, ignored\n");
694         return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700         if (likely(vma->vm_flags & VM_WRITE))
701                 pmd = pmd_mkwrite(pmd);
702         return pmd;
703 }
704
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707         pmd_t entry;
708         entry = mk_pmd(page, prot);
709         entry = pmd_mkhuge(entry);
710         return entry;
711 }
712
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714                                         struct vm_area_struct *vma,
715                                         unsigned long haddr, pmd_t *pmd,
716                                         struct page *page)
717 {
718         pgtable_t pgtable;
719         spinlock_t *ptl;
720
721         VM_BUG_ON_PAGE(!PageCompound(page), page);
722         pgtable = pte_alloc_one(mm, haddr);
723         if (unlikely(!pgtable))
724                 return VM_FAULT_OOM;
725
726         clear_huge_page(page, haddr, HPAGE_PMD_NR);
727         /*
728          * The memory barrier inside __SetPageUptodate makes sure that
729          * clear_huge_page writes become visible before the set_pmd_at()
730          * write.
731          */
732         __SetPageUptodate(page);
733
734         ptl = pmd_lock(mm, pmd);
735         if (unlikely(!pmd_none(*pmd))) {
736                 spin_unlock(ptl);
737                 mem_cgroup_uncharge_page(page);
738                 put_page(page);
739                 pte_free(mm, pgtable);
740         } else {
741                 pmd_t entry;
742                 entry = mk_huge_pmd(page, vma->vm_page_prot);
743                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744                 page_add_new_anon_rmap(page, vma, haddr);
745                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
746                 set_pmd_at(mm, haddr, pmd, entry);
747                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748                 atomic_long_inc(&mm->nr_ptes);
749                 spin_unlock(ptl);
750         }
751
752         return 0;
753 }
754
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759
760 static inline struct page *alloc_hugepage_vma(int defrag,
761                                               struct vm_area_struct *vma,
762                                               unsigned long haddr, int nd,
763                                               gfp_t extra_gfp)
764 {
765         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766                                HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772                 struct page *zero_page)
773 {
774         pmd_t entry;
775         if (!pmd_none(*pmd))
776                 return false;
777         entry = mk_pmd(zero_page, vma->vm_page_prot);
778         entry = pmd_wrprotect(entry);
779         entry = pmd_mkhuge(entry);
780         pgtable_trans_huge_deposit(mm, pmd, pgtable);
781         set_pmd_at(mm, haddr, pmd, entry);
782         atomic_long_inc(&mm->nr_ptes);
783         return true;
784 }
785
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787                                unsigned long address, pmd_t *pmd,
788                                unsigned int flags)
789 {
790         struct page *page;
791         unsigned long haddr = address & HPAGE_PMD_MASK;
792
793         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794                 return VM_FAULT_FALLBACK;
795         if (unlikely(anon_vma_prepare(vma)))
796                 return VM_FAULT_OOM;
797         if (unlikely(khugepaged_enter(vma)))
798                 return VM_FAULT_OOM;
799         if (!(flags & FAULT_FLAG_WRITE) &&
800                         transparent_hugepage_use_zero_page()) {
801                 spinlock_t *ptl;
802                 pgtable_t pgtable;
803                 struct page *zero_page;
804                 bool set;
805                 pgtable = pte_alloc_one(mm, haddr);
806                 if (unlikely(!pgtable))
807                         return VM_FAULT_OOM;
808                 zero_page = get_huge_zero_page();
809                 if (unlikely(!zero_page)) {
810                         pte_free(mm, pgtable);
811                         count_vm_event(THP_FAULT_FALLBACK);
812                         return VM_FAULT_FALLBACK;
813                 }
814                 ptl = pmd_lock(mm, pmd);
815                 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816                                 zero_page);
817                 spin_unlock(ptl);
818                 if (!set) {
819                         pte_free(mm, pgtable);
820                         put_huge_zero_page();
821                 }
822                 return 0;
823         }
824         page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825                         vma, haddr, numa_node_id(), 0);
826         if (unlikely(!page)) {
827                 count_vm_event(THP_FAULT_FALLBACK);
828                 return VM_FAULT_FALLBACK;
829         }
830         if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
831                 put_page(page);
832                 count_vm_event(THP_FAULT_FALLBACK);
833                 return VM_FAULT_FALLBACK;
834         }
835         if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836                 mem_cgroup_uncharge_page(page);
837                 put_page(page);
838                 count_vm_event(THP_FAULT_FALLBACK);
839                 return VM_FAULT_FALLBACK;
840         }
841
842         count_vm_event(THP_FAULT_ALLOC);
843         return 0;
844 }
845
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848                   struct vm_area_struct *vma)
849 {
850         spinlock_t *dst_ptl, *src_ptl;
851         struct page *src_page;
852         pmd_t pmd;
853         pgtable_t pgtable;
854         int ret;
855
856         ret = -ENOMEM;
857         pgtable = pte_alloc_one(dst_mm, addr);
858         if (unlikely(!pgtable))
859                 goto out;
860
861         dst_ptl = pmd_lock(dst_mm, dst_pmd);
862         src_ptl = pmd_lockptr(src_mm, src_pmd);
863         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864
865         ret = -EAGAIN;
866         pmd = *src_pmd;
867         if (unlikely(!pmd_trans_huge(pmd))) {
868                 pte_free(dst_mm, pgtable);
869                 goto out_unlock;
870         }
871         /*
872          * When page table lock is held, the huge zero pmd should not be
873          * under splitting since we don't split the page itself, only pmd to
874          * a page table.
875          */
876         if (is_huge_zero_pmd(pmd)) {
877                 struct page *zero_page;
878                 bool set;
879                 /*
880                  * get_huge_zero_page() will never allocate a new page here,
881                  * since we already have a zero page to copy. It just takes a
882                  * reference.
883                  */
884                 zero_page = get_huge_zero_page();
885                 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886                                 zero_page);
887                 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888                 ret = 0;
889                 goto out_unlock;
890         }
891
892         if (unlikely(pmd_trans_splitting(pmd))) {
893                 /* split huge page running from under us */
894                 spin_unlock(src_ptl);
895                 spin_unlock(dst_ptl);
896                 pte_free(dst_mm, pgtable);
897
898                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899                 goto out;
900         }
901         src_page = pmd_page(pmd);
902         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903         get_page(src_page);
904         page_dup_rmap(src_page);
905         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906
907         pmdp_set_wrprotect(src_mm, addr, src_pmd);
908         pmd = pmd_mkold(pmd_wrprotect(pmd));
909         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911         atomic_long_inc(&dst_mm->nr_ptes);
912
913         ret = 0;
914 out_unlock:
915         spin_unlock(src_ptl);
916         spin_unlock(dst_ptl);
917 out:
918         return ret;
919 }
920
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922                            struct vm_area_struct *vma,
923                            unsigned long address,
924                            pmd_t *pmd, pmd_t orig_pmd,
925                            int dirty)
926 {
927         spinlock_t *ptl;
928         pmd_t entry;
929         unsigned long haddr;
930
931         ptl = pmd_lock(mm, pmd);
932         if (unlikely(!pmd_same(*pmd, orig_pmd)))
933                 goto unlock;
934
935         entry = pmd_mkyoung(orig_pmd);
936         haddr = address & HPAGE_PMD_MASK;
937         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938                 update_mmu_cache_pmd(vma, address, pmd);
939
940 unlock:
941         spin_unlock(ptl);
942 }
943
944 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
945                 struct vm_area_struct *vma, unsigned long address,
946                 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
947 {
948         spinlock_t *ptl;
949         pgtable_t pgtable;
950         pmd_t _pmd;
951         struct page *page;
952         int i, ret = 0;
953         unsigned long mmun_start;       /* For mmu_notifiers */
954         unsigned long mmun_end;         /* For mmu_notifiers */
955
956         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
957         if (!page) {
958                 ret |= VM_FAULT_OOM;
959                 goto out;
960         }
961
962         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
963                 put_page(page);
964                 ret |= VM_FAULT_OOM;
965                 goto out;
966         }
967
968         clear_user_highpage(page, address);
969         __SetPageUptodate(page);
970
971         mmun_start = haddr;
972         mmun_end   = haddr + HPAGE_PMD_SIZE;
973         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
974
975         ptl = pmd_lock(mm, pmd);
976         if (unlikely(!pmd_same(*pmd, orig_pmd)))
977                 goto out_free_page;
978
979         pmdp_clear_flush(vma, haddr, pmd);
980         /* leave pmd empty until pte is filled */
981
982         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
983         pmd_populate(mm, &_pmd, pgtable);
984
985         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
986                 pte_t *pte, entry;
987                 if (haddr == (address & PAGE_MASK)) {
988                         entry = mk_pte(page, vma->vm_page_prot);
989                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
990                         page_add_new_anon_rmap(page, vma, haddr);
991                 } else {
992                         entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
993                         entry = pte_mkspecial(entry);
994                 }
995                 pte = pte_offset_map(&_pmd, haddr);
996                 VM_BUG_ON(!pte_none(*pte));
997                 set_pte_at(mm, haddr, pte, entry);
998                 pte_unmap(pte);
999         }
1000         smp_wmb(); /* make pte visible before pmd */
1001         pmd_populate(mm, pmd, pgtable);
1002         spin_unlock(ptl);
1003         put_huge_zero_page();
1004         inc_mm_counter(mm, MM_ANONPAGES);
1005
1006         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007
1008         ret |= VM_FAULT_WRITE;
1009 out:
1010         return ret;
1011 out_free_page:
1012         spin_unlock(ptl);
1013         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1014         mem_cgroup_uncharge_page(page);
1015         put_page(page);
1016         goto out;
1017 }
1018
1019 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1020                                         struct vm_area_struct *vma,
1021                                         unsigned long address,
1022                                         pmd_t *pmd, pmd_t orig_pmd,
1023                                         struct page *page,
1024                                         unsigned long haddr)
1025 {
1026         spinlock_t *ptl;
1027         pgtable_t pgtable;
1028         pmd_t _pmd;
1029         int ret = 0, i;
1030         struct page **pages;
1031         unsigned long mmun_start;       /* For mmu_notifiers */
1032         unsigned long mmun_end;         /* For mmu_notifiers */
1033
1034         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1035                         GFP_KERNEL);
1036         if (unlikely(!pages)) {
1037                 ret |= VM_FAULT_OOM;
1038                 goto out;
1039         }
1040
1041         for (i = 0; i < HPAGE_PMD_NR; i++) {
1042                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1043                                                __GFP_OTHER_NODE,
1044                                                vma, address, page_to_nid(page));
1045                 if (unlikely(!pages[i] ||
1046                              mem_cgroup_newpage_charge(pages[i], mm,
1047                                                        GFP_KERNEL))) {
1048                         if (pages[i])
1049                                 put_page(pages[i]);
1050                         mem_cgroup_uncharge_start();
1051                         while (--i >= 0) {
1052                                 mem_cgroup_uncharge_page(pages[i]);
1053                                 put_page(pages[i]);
1054                         }
1055                         mem_cgroup_uncharge_end();
1056                         kfree(pages);
1057                         ret |= VM_FAULT_OOM;
1058                         goto out;
1059                 }
1060         }
1061
1062         for (i = 0; i < HPAGE_PMD_NR; i++) {
1063                 copy_user_highpage(pages[i], page + i,
1064                                    haddr + PAGE_SIZE * i, vma);
1065                 __SetPageUptodate(pages[i]);
1066                 cond_resched();
1067         }
1068
1069         mmun_start = haddr;
1070         mmun_end   = haddr + HPAGE_PMD_SIZE;
1071         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1072
1073         ptl = pmd_lock(mm, pmd);
1074         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1075                 goto out_free_pages;
1076         VM_BUG_ON_PAGE(!PageHead(page), page);
1077
1078         pmdp_clear_flush(vma, haddr, pmd);
1079         /* leave pmd empty until pte is filled */
1080
1081         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1082         pmd_populate(mm, &_pmd, pgtable);
1083
1084         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1085                 pte_t *pte, entry;
1086                 entry = mk_pte(pages[i], vma->vm_page_prot);
1087                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1088                 page_add_new_anon_rmap(pages[i], vma, haddr);
1089                 pte = pte_offset_map(&_pmd, haddr);
1090                 VM_BUG_ON(!pte_none(*pte));
1091                 set_pte_at(mm, haddr, pte, entry);
1092                 pte_unmap(pte);
1093         }
1094         kfree(pages);
1095
1096         smp_wmb(); /* make pte visible before pmd */
1097         pmd_populate(mm, pmd, pgtable);
1098         page_remove_rmap(page);
1099         spin_unlock(ptl);
1100
1101         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1102
1103         ret |= VM_FAULT_WRITE;
1104         put_page(page);
1105
1106 out:
1107         return ret;
1108
1109 out_free_pages:
1110         spin_unlock(ptl);
1111         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1112         mem_cgroup_uncharge_start();
1113         for (i = 0; i < HPAGE_PMD_NR; i++) {
1114                 mem_cgroup_uncharge_page(pages[i]);
1115                 put_page(pages[i]);
1116         }
1117         mem_cgroup_uncharge_end();
1118         kfree(pages);
1119         goto out;
1120 }
1121
1122 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1123                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1124 {
1125         spinlock_t *ptl;
1126         int ret = 0;
1127         struct page *page = NULL, *new_page;
1128         unsigned long haddr;
1129         unsigned long mmun_start;       /* For mmu_notifiers */
1130         unsigned long mmun_end;         /* For mmu_notifiers */
1131
1132         ptl = pmd_lockptr(mm, pmd);
1133         VM_BUG_ON(!vma->anon_vma);
1134         haddr = address & HPAGE_PMD_MASK;
1135         if (is_huge_zero_pmd(orig_pmd))
1136                 goto alloc;
1137         spin_lock(ptl);
1138         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1139                 goto out_unlock;
1140
1141         page = pmd_page(orig_pmd);
1142         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1143         if (page_mapcount(page) == 1) {
1144                 pmd_t entry;
1145                 entry = pmd_mkyoung(orig_pmd);
1146                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1147                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1148                         update_mmu_cache_pmd(vma, address, pmd);
1149                 ret |= VM_FAULT_WRITE;
1150                 goto out_unlock;
1151         }
1152         get_page(page);
1153         spin_unlock(ptl);
1154 alloc:
1155         if (transparent_hugepage_enabled(vma) &&
1156             !transparent_hugepage_debug_cow())
1157                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1158                                               vma, haddr, numa_node_id(), 0);
1159         else
1160                 new_page = NULL;
1161
1162         if (unlikely(!new_page)) {
1163                 if (!page) {
1164                         ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1165                                         address, pmd, orig_pmd, haddr);
1166                 } else {
1167                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1168                                         pmd, orig_pmd, page, haddr);
1169                         if (ret & VM_FAULT_OOM)
1170                                 split_huge_page(page);
1171                         put_page(page);
1172                 }
1173                 count_vm_event(THP_FAULT_FALLBACK);
1174                 goto out;
1175         }
1176
1177         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1178                 put_page(new_page);
1179                 if (page) {
1180                         split_huge_page(page);
1181                         put_page(page);
1182                 }
1183                 count_vm_event(THP_FAULT_FALLBACK);
1184                 ret |= VM_FAULT_OOM;
1185                 goto out;
1186         }
1187
1188         count_vm_event(THP_FAULT_ALLOC);
1189
1190         if (!page)
1191                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1192         else
1193                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1194         __SetPageUptodate(new_page);
1195
1196         mmun_start = haddr;
1197         mmun_end   = haddr + HPAGE_PMD_SIZE;
1198         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1199
1200         spin_lock(ptl);
1201         if (page)
1202                 put_page(page);
1203         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1204                 spin_unlock(ptl);
1205                 mem_cgroup_uncharge_page(new_page);
1206                 put_page(new_page);
1207                 goto out_mn;
1208         } else {
1209                 pmd_t entry;
1210                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1211                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1212                 pmdp_clear_flush(vma, haddr, pmd);
1213                 page_add_new_anon_rmap(new_page, vma, haddr);
1214                 set_pmd_at(mm, haddr, pmd, entry);
1215                 update_mmu_cache_pmd(vma, address, pmd);
1216                 if (!page) {
1217                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1218                         put_huge_zero_page();
1219                 } else {
1220                         VM_BUG_ON_PAGE(!PageHead(page), page);
1221                         page_remove_rmap(page);
1222                         put_page(page);
1223                 }
1224                 ret |= VM_FAULT_WRITE;
1225         }
1226         spin_unlock(ptl);
1227 out_mn:
1228         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1229 out:
1230         return ret;
1231 out_unlock:
1232         spin_unlock(ptl);
1233         return ret;
1234 }
1235
1236 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1237                                    unsigned long addr,
1238                                    pmd_t *pmd,
1239                                    unsigned int flags)
1240 {
1241         struct mm_struct *mm = vma->vm_mm;
1242         struct page *page = NULL;
1243
1244         assert_spin_locked(pmd_lockptr(mm, pmd));
1245
1246         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1247                 goto out;
1248
1249         /* Avoid dumping huge zero page */
1250         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1251                 return ERR_PTR(-EFAULT);
1252
1253         /* Full NUMA hinting faults to serialise migration in fault paths */
1254         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1255                 goto out;
1256
1257         page = pmd_page(*pmd);
1258         VM_BUG_ON_PAGE(!PageHead(page), page);
1259         if (flags & FOLL_TOUCH) {
1260                 pmd_t _pmd;
1261                 /*
1262                  * We should set the dirty bit only for FOLL_WRITE but
1263                  * for now the dirty bit in the pmd is meaningless.
1264                  * And if the dirty bit will become meaningful and
1265                  * we'll only set it with FOLL_WRITE, an atomic
1266                  * set_bit will be required on the pmd to set the
1267                  * young bit, instead of the current set_pmd_at.
1268                  */
1269                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1270                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1271                                           pmd, _pmd,  1))
1272                         update_mmu_cache_pmd(vma, addr, pmd);
1273         }
1274         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1275                 if (page->mapping && trylock_page(page)) {
1276                         lru_add_drain();
1277                         if (page->mapping)
1278                                 mlock_vma_page(page);
1279                         unlock_page(page);
1280                 }
1281         }
1282         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1283         VM_BUG_ON_PAGE(!PageCompound(page), page);
1284         if (flags & FOLL_GET)
1285                 get_page_foll(page);
1286
1287 out:
1288         return page;
1289 }
1290
1291 /* NUMA hinting page fault entry point for trans huge pmds */
1292 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1293                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1294 {
1295         spinlock_t *ptl;
1296         struct anon_vma *anon_vma = NULL;
1297         struct page *page;
1298         unsigned long haddr = addr & HPAGE_PMD_MASK;
1299         int page_nid = -1, this_nid = numa_node_id();
1300         int target_nid, last_cpupid = -1;
1301         bool page_locked;
1302         bool migrated = false;
1303         int flags = 0;
1304
1305         ptl = pmd_lock(mm, pmdp);
1306         if (unlikely(!pmd_same(pmd, *pmdp)))
1307                 goto out_unlock;
1308
1309         /*
1310          * If there are potential migrations, wait for completion and retry
1311          * without disrupting NUMA hinting information. Do not relock and
1312          * check_same as the page may no longer be mapped.
1313          */
1314         if (unlikely(pmd_trans_migrating(*pmdp))) {
1315                 spin_unlock(ptl);
1316                 wait_migrate_huge_page(vma->anon_vma, pmdp);
1317                 goto out;
1318         }
1319
1320         page = pmd_page(pmd);
1321         BUG_ON(is_huge_zero_page(page));
1322         page_nid = page_to_nid(page);
1323         last_cpupid = page_cpupid_last(page);
1324         count_vm_numa_event(NUMA_HINT_FAULTS);
1325         if (page_nid == this_nid) {
1326                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1327                 flags |= TNF_FAULT_LOCAL;
1328         }
1329
1330         /*
1331          * Avoid grouping on DSO/COW pages in specific and RO pages
1332          * in general, RO pages shouldn't hurt as much anyway since
1333          * they can be in shared cache state.
1334          */
1335         if (!pmd_write(pmd))
1336                 flags |= TNF_NO_GROUP;
1337
1338         /*
1339          * Acquire the page lock to serialise THP migrations but avoid dropping
1340          * page_table_lock if at all possible
1341          */
1342         page_locked = trylock_page(page);
1343         target_nid = mpol_misplaced(page, vma, haddr);
1344         if (target_nid == -1) {
1345                 /* If the page was locked, there are no parallel migrations */
1346                 if (page_locked)
1347                         goto clear_pmdnuma;
1348         }
1349
1350         /* Migration could have started since the pmd_trans_migrating check */
1351         if (!page_locked) {
1352                 spin_unlock(ptl);
1353                 wait_on_page_locked(page);
1354                 page_nid = -1;
1355                 goto out;
1356         }
1357
1358         /*
1359          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1360          * to serialises splits
1361          */
1362         get_page(page);
1363         spin_unlock(ptl);
1364         anon_vma = page_lock_anon_vma_read(page);
1365
1366         /* Confirm the PMD did not change while page_table_lock was released */
1367         spin_lock(ptl);
1368         if (unlikely(!pmd_same(pmd, *pmdp))) {
1369                 unlock_page(page);
1370                 put_page(page);
1371                 page_nid = -1;
1372                 goto out_unlock;
1373         }
1374
1375         /* Bail if we fail to protect against THP splits for any reason */
1376         if (unlikely(!anon_vma)) {
1377                 put_page(page);
1378                 page_nid = -1;
1379                 goto clear_pmdnuma;
1380         }
1381
1382         /*
1383          * Migrate the THP to the requested node, returns with page unlocked
1384          * and pmd_numa cleared.
1385          */
1386         spin_unlock(ptl);
1387         migrated = migrate_misplaced_transhuge_page(mm, vma,
1388                                 pmdp, pmd, addr, page, target_nid);
1389         if (migrated) {
1390                 flags |= TNF_MIGRATED;
1391                 page_nid = target_nid;
1392         }
1393
1394         goto out;
1395 clear_pmdnuma:
1396         BUG_ON(!PageLocked(page));
1397         pmd = pmd_mknonnuma(pmd);
1398         set_pmd_at(mm, haddr, pmdp, pmd);
1399         VM_BUG_ON(pmd_numa(*pmdp));
1400         update_mmu_cache_pmd(vma, addr, pmdp);
1401         unlock_page(page);
1402 out_unlock:
1403         spin_unlock(ptl);
1404
1405 out:
1406         if (anon_vma)
1407                 page_unlock_anon_vma_read(anon_vma);
1408
1409         if (page_nid != -1)
1410                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1411
1412         return 0;
1413 }
1414
1415 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1416                  pmd_t *pmd, unsigned long addr)
1417 {
1418         spinlock_t *ptl;
1419         int ret = 0;
1420
1421         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1422                 struct page *page;
1423                 pgtable_t pgtable;
1424                 pmd_t orig_pmd;
1425                 /*
1426                  * For architectures like ppc64 we look at deposited pgtable
1427                  * when calling pmdp_get_and_clear. So do the
1428                  * pgtable_trans_huge_withdraw after finishing pmdp related
1429                  * operations.
1430                  */
1431                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1432                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1433                 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1434                 if (is_huge_zero_pmd(orig_pmd)) {
1435                         atomic_long_dec(&tlb->mm->nr_ptes);
1436                         spin_unlock(ptl);
1437                         put_huge_zero_page();
1438                 } else {
1439                         page = pmd_page(orig_pmd);
1440                         page_remove_rmap(page);
1441                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1442                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1443                         VM_BUG_ON_PAGE(!PageHead(page), page);
1444                         atomic_long_dec(&tlb->mm->nr_ptes);
1445                         spin_unlock(ptl);
1446                         tlb_remove_page(tlb, page);
1447                 }
1448                 pte_free(tlb->mm, pgtable);
1449                 ret = 1;
1450         }
1451         return ret;
1452 }
1453
1454 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1455                 unsigned long addr, unsigned long end,
1456                 unsigned char *vec)
1457 {
1458         spinlock_t *ptl;
1459         int ret = 0;
1460
1461         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1462                 /*
1463                  * All logical pages in the range are present
1464                  * if backed by a huge page.
1465                  */
1466                 spin_unlock(ptl);
1467                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1468                 ret = 1;
1469         }
1470
1471         return ret;
1472 }
1473
1474 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1475                   unsigned long old_addr,
1476                   unsigned long new_addr, unsigned long old_end,
1477                   pmd_t *old_pmd, pmd_t *new_pmd)
1478 {
1479         spinlock_t *old_ptl, *new_ptl;
1480         int ret = 0;
1481         pmd_t pmd;
1482
1483         struct mm_struct *mm = vma->vm_mm;
1484
1485         if ((old_addr & ~HPAGE_PMD_MASK) ||
1486             (new_addr & ~HPAGE_PMD_MASK) ||
1487             old_end - old_addr < HPAGE_PMD_SIZE ||
1488             (new_vma->vm_flags & VM_NOHUGEPAGE))
1489                 goto out;
1490
1491         /*
1492          * The destination pmd shouldn't be established, free_pgtables()
1493          * should have release it.
1494          */
1495         if (WARN_ON(!pmd_none(*new_pmd))) {
1496                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1497                 goto out;
1498         }
1499
1500         /*
1501          * We don't have to worry about the ordering of src and dst
1502          * ptlocks because exclusive mmap_sem prevents deadlock.
1503          */
1504         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1505         if (ret == 1) {
1506                 new_ptl = pmd_lockptr(mm, new_pmd);
1507                 if (new_ptl != old_ptl)
1508                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1509                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1510                 VM_BUG_ON(!pmd_none(*new_pmd));
1511                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1512                 if (new_ptl != old_ptl) {
1513                         pgtable_t pgtable;
1514
1515                         /*
1516                          * Move preallocated PTE page table if new_pmd is on
1517                          * different PMD page table.
1518                          */
1519                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1520                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1521
1522                         spin_unlock(new_ptl);
1523                 }
1524                 spin_unlock(old_ptl);
1525         }
1526 out:
1527         return ret;
1528 }
1529
1530 /*
1531  * Returns
1532  *  - 0 if PMD could not be locked
1533  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1534  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1535  */
1536 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1537                 unsigned long addr, pgprot_t newprot, int prot_numa)
1538 {
1539         struct mm_struct *mm = vma->vm_mm;
1540         spinlock_t *ptl;
1541         int ret = 0;
1542
1543         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1544                 pmd_t entry;
1545                 ret = 1;
1546                 if (!prot_numa) {
1547                         entry = pmdp_get_and_clear(mm, addr, pmd);
1548                         if (pmd_numa(entry))
1549                                 entry = pmd_mknonnuma(entry);
1550                         entry = pmd_modify(entry, newprot);
1551                         ret = HPAGE_PMD_NR;
1552                         BUG_ON(pmd_write(entry));
1553                 } else {
1554                         struct page *page = pmd_page(*pmd);
1555
1556                         /*
1557                          * Do not trap faults against the zero page. The
1558                          * read-only data is likely to be read-cached on the
1559                          * local CPU cache and it is less useful to know about
1560                          * local vs remote hits on the zero page.
1561                          */
1562                         if (!is_huge_zero_page(page) &&
1563                             !pmd_numa(*pmd)) {
1564                                 entry = *pmd;
1565                                 entry = pmd_mknuma(entry);
1566                                 ret = HPAGE_PMD_NR;
1567                         }
1568                 }
1569
1570                 /* Set PMD if cleared earlier */
1571                 if (ret == HPAGE_PMD_NR)
1572                         set_pmd_at(mm, addr, pmd, entry);
1573
1574                 spin_unlock(ptl);
1575         }
1576
1577         return ret;
1578 }
1579
1580 /*
1581  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1582  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1583  *
1584  * Note that if it returns 1, this routine returns without unlocking page
1585  * table locks. So callers must unlock them.
1586  */
1587 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1588                 spinlock_t **ptl)
1589 {
1590         *ptl = pmd_lock(vma->vm_mm, pmd);
1591         if (likely(pmd_trans_huge(*pmd))) {
1592                 if (unlikely(pmd_trans_splitting(*pmd))) {
1593                         spin_unlock(*ptl);
1594                         wait_split_huge_page(vma->anon_vma, pmd);
1595                         return -1;
1596                 } else {
1597                         /* Thp mapped by 'pmd' is stable, so we can
1598                          * handle it as it is. */
1599                         return 1;
1600                 }
1601         }
1602         spin_unlock(*ptl);
1603         return 0;
1604 }
1605
1606 /*
1607  * This function returns whether a given @page is mapped onto the @address
1608  * in the virtual space of @mm.
1609  *
1610  * When it's true, this function returns *pmd with holding the page table lock
1611  * and passing it back to the caller via @ptl.
1612  * If it's false, returns NULL without holding the page table lock.
1613  */
1614 pmd_t *page_check_address_pmd(struct page *page,
1615                               struct mm_struct *mm,
1616                               unsigned long address,
1617                               enum page_check_address_pmd_flag flag,
1618                               spinlock_t **ptl)
1619 {
1620         pmd_t *pmd;
1621
1622         if (address & ~HPAGE_PMD_MASK)
1623                 return NULL;
1624
1625         pmd = mm_find_pmd(mm, address);
1626         if (!pmd)
1627                 return NULL;
1628         *ptl = pmd_lock(mm, pmd);
1629         if (pmd_none(*pmd))
1630                 goto unlock;
1631         if (pmd_page(*pmd) != page)
1632                 goto unlock;
1633         /*
1634          * split_vma() may create temporary aliased mappings. There is
1635          * no risk as long as all huge pmd are found and have their
1636          * splitting bit set before __split_huge_page_refcount
1637          * runs. Finding the same huge pmd more than once during the
1638          * same rmap walk is not a problem.
1639          */
1640         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1641             pmd_trans_splitting(*pmd))
1642                 goto unlock;
1643         if (pmd_trans_huge(*pmd)) {
1644                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1645                           !pmd_trans_splitting(*pmd));
1646                 return pmd;
1647         }
1648 unlock:
1649         spin_unlock(*ptl);
1650         return NULL;
1651 }
1652
1653 static int __split_huge_page_splitting(struct page *page,
1654                                        struct vm_area_struct *vma,
1655                                        unsigned long address)
1656 {
1657         struct mm_struct *mm = vma->vm_mm;
1658         spinlock_t *ptl;
1659         pmd_t *pmd;
1660         int ret = 0;
1661         /* For mmu_notifiers */
1662         const unsigned long mmun_start = address;
1663         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1664
1665         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1666         pmd = page_check_address_pmd(page, mm, address,
1667                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1668         if (pmd) {
1669                 /*
1670                  * We can't temporarily set the pmd to null in order
1671                  * to split it, the pmd must remain marked huge at all
1672                  * times or the VM won't take the pmd_trans_huge paths
1673                  * and it won't wait on the anon_vma->root->rwsem to
1674                  * serialize against split_huge_page*.
1675                  */
1676                 pmdp_splitting_flush(vma, address, pmd);
1677                 ret = 1;
1678                 spin_unlock(ptl);
1679         }
1680         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1681
1682         return ret;
1683 }
1684
1685 static void __split_huge_page_refcount(struct page *page,
1686                                        struct list_head *list)
1687 {
1688         int i;
1689         struct zone *zone = page_zone(page);
1690         struct lruvec *lruvec;
1691         int tail_count = 0;
1692
1693         /* prevent PageLRU to go away from under us, and freeze lru stats */
1694         spin_lock_irq(&zone->lru_lock);
1695         lruvec = mem_cgroup_page_lruvec(page, zone);
1696
1697         compound_lock(page);
1698         /* complete memcg works before add pages to LRU */
1699         mem_cgroup_split_huge_fixup(page);
1700
1701         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1702                 struct page *page_tail = page + i;
1703
1704                 /* tail_page->_mapcount cannot change */
1705                 BUG_ON(page_mapcount(page_tail) < 0);
1706                 tail_count += page_mapcount(page_tail);
1707                 /* check for overflow */
1708                 BUG_ON(tail_count < 0);
1709                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1710                 /*
1711                  * tail_page->_count is zero and not changing from
1712                  * under us. But get_page_unless_zero() may be running
1713                  * from under us on the tail_page. If we used
1714                  * atomic_set() below instead of atomic_add(), we
1715                  * would then run atomic_set() concurrently with
1716                  * get_page_unless_zero(), and atomic_set() is
1717                  * implemented in C not using locked ops. spin_unlock
1718                  * on x86 sometime uses locked ops because of PPro
1719                  * errata 66, 92, so unless somebody can guarantee
1720                  * atomic_set() here would be safe on all archs (and
1721                  * not only on x86), it's safer to use atomic_add().
1722                  */
1723                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1724                            &page_tail->_count);
1725
1726                 /* after clearing PageTail the gup refcount can be released */
1727                 smp_mb();
1728
1729                 /*
1730                  * retain hwpoison flag of the poisoned tail page:
1731                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1732                  *   by the memory-failure.
1733                  */
1734                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1735                 page_tail->flags |= (page->flags &
1736                                      ((1L << PG_referenced) |
1737                                       (1L << PG_swapbacked) |
1738                                       (1L << PG_mlocked) |
1739                                       (1L << PG_uptodate) |
1740                                       (1L << PG_active) |
1741                                       (1L << PG_unevictable)));
1742                 page_tail->flags |= (1L << PG_dirty);
1743
1744                 /* clear PageTail before overwriting first_page */
1745                 smp_wmb();
1746
1747                 /*
1748                  * __split_huge_page_splitting() already set the
1749                  * splitting bit in all pmd that could map this
1750                  * hugepage, that will ensure no CPU can alter the
1751                  * mapcount on the head page. The mapcount is only
1752                  * accounted in the head page and it has to be
1753                  * transferred to all tail pages in the below code. So
1754                  * for this code to be safe, the split the mapcount
1755                  * can't change. But that doesn't mean userland can't
1756                  * keep changing and reading the page contents while
1757                  * we transfer the mapcount, so the pmd splitting
1758                  * status is achieved setting a reserved bit in the
1759                  * pmd, not by clearing the present bit.
1760                 */
1761                 page_tail->_mapcount = page->_mapcount;
1762
1763                 BUG_ON(page_tail->mapping);
1764                 page_tail->mapping = page->mapping;
1765
1766                 page_tail->index = page->index + i;
1767                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1768
1769                 BUG_ON(!PageAnon(page_tail));
1770                 BUG_ON(!PageUptodate(page_tail));
1771                 BUG_ON(!PageDirty(page_tail));
1772                 BUG_ON(!PageSwapBacked(page_tail));
1773
1774                 lru_add_page_tail(page, page_tail, lruvec, list);
1775         }
1776         atomic_sub(tail_count, &page->_count);
1777         BUG_ON(atomic_read(&page->_count) <= 0);
1778
1779         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1780
1781         ClearPageCompound(page);
1782         compound_unlock(page);
1783         spin_unlock_irq(&zone->lru_lock);
1784
1785         for (i = 1; i < HPAGE_PMD_NR; i++) {
1786                 struct page *page_tail = page + i;
1787                 BUG_ON(page_count(page_tail) <= 0);
1788                 /*
1789                  * Tail pages may be freed if there wasn't any mapping
1790                  * like if add_to_swap() is running on a lru page that
1791                  * had its mapping zapped. And freeing these pages
1792                  * requires taking the lru_lock so we do the put_page
1793                  * of the tail pages after the split is complete.
1794                  */
1795                 put_page(page_tail);
1796         }
1797
1798         /*
1799          * Only the head page (now become a regular page) is required
1800          * to be pinned by the caller.
1801          */
1802         BUG_ON(page_count(page) <= 0);
1803 }
1804
1805 static int __split_huge_page_map(struct page *page,
1806                                  struct vm_area_struct *vma,
1807                                  unsigned long address)
1808 {
1809         struct mm_struct *mm = vma->vm_mm;
1810         spinlock_t *ptl;
1811         pmd_t *pmd, _pmd;
1812         int ret = 0, i;
1813         pgtable_t pgtable;
1814         unsigned long haddr;
1815
1816         pmd = page_check_address_pmd(page, mm, address,
1817                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1818         if (pmd) {
1819                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1820                 pmd_populate(mm, &_pmd, pgtable);
1821
1822                 haddr = address;
1823                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1824                         pte_t *pte, entry;
1825                         BUG_ON(PageCompound(page+i));
1826                         entry = mk_pte(page + i, vma->vm_page_prot);
1827                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1828                         if (!pmd_write(*pmd))
1829                                 entry = pte_wrprotect(entry);
1830                         else
1831                                 BUG_ON(page_mapcount(page) != 1);
1832                         if (!pmd_young(*pmd))
1833                                 entry = pte_mkold(entry);
1834                         if (pmd_numa(*pmd))
1835                                 entry = pte_mknuma(entry);
1836                         pte = pte_offset_map(&_pmd, haddr);
1837                         BUG_ON(!pte_none(*pte));
1838                         set_pte_at(mm, haddr, pte, entry);
1839                         pte_unmap(pte);
1840                 }
1841
1842                 smp_wmb(); /* make pte visible before pmd */
1843                 /*
1844                  * Up to this point the pmd is present and huge and
1845                  * userland has the whole access to the hugepage
1846                  * during the split (which happens in place). If we
1847                  * overwrite the pmd with the not-huge version
1848                  * pointing to the pte here (which of course we could
1849                  * if all CPUs were bug free), userland could trigger
1850                  * a small page size TLB miss on the small sized TLB
1851                  * while the hugepage TLB entry is still established
1852                  * in the huge TLB. Some CPU doesn't like that. See
1853                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1854                  * Erratum 383 on page 93. Intel should be safe but is
1855                  * also warns that it's only safe if the permission
1856                  * and cache attributes of the two entries loaded in
1857                  * the two TLB is identical (which should be the case
1858                  * here). But it is generally safer to never allow
1859                  * small and huge TLB entries for the same virtual
1860                  * address to be loaded simultaneously. So instead of
1861                  * doing "pmd_populate(); flush_tlb_range();" we first
1862                  * mark the current pmd notpresent (atomically because
1863                  * here the pmd_trans_huge and pmd_trans_splitting
1864                  * must remain set at all times on the pmd until the
1865                  * split is complete for this pmd), then we flush the
1866                  * SMP TLB and finally we write the non-huge version
1867                  * of the pmd entry with pmd_populate.
1868                  */
1869                 pmdp_invalidate(vma, address, pmd);
1870                 pmd_populate(mm, pmd, pgtable);
1871                 ret = 1;
1872                 spin_unlock(ptl);
1873         }
1874
1875         return ret;
1876 }
1877
1878 /* must be called with anon_vma->root->rwsem held */
1879 static void __split_huge_page(struct page *page,
1880                               struct anon_vma *anon_vma,
1881                               struct list_head *list)
1882 {
1883         int mapcount, mapcount2;
1884         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1885         struct anon_vma_chain *avc;
1886
1887         BUG_ON(!PageHead(page));
1888         BUG_ON(PageTail(page));
1889
1890         mapcount = 0;
1891         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1892                 struct vm_area_struct *vma = avc->vma;
1893                 unsigned long addr = vma_address(page, vma);
1894                 BUG_ON(is_vma_temporary_stack(vma));
1895                 mapcount += __split_huge_page_splitting(page, vma, addr);
1896         }
1897         /*
1898          * It is critical that new vmas are added to the tail of the
1899          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1900          * and establishes a child pmd before
1901          * __split_huge_page_splitting() freezes the parent pmd (so if
1902          * we fail to prevent copy_huge_pmd() from running until the
1903          * whole __split_huge_page() is complete), we will still see
1904          * the newly established pmd of the child later during the
1905          * walk, to be able to set it as pmd_trans_splitting too.
1906          */
1907         if (mapcount != page_mapcount(page))
1908                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1909                        mapcount, page_mapcount(page));
1910         BUG_ON(mapcount != page_mapcount(page));
1911
1912         __split_huge_page_refcount(page, list);
1913
1914         mapcount2 = 0;
1915         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1916                 struct vm_area_struct *vma = avc->vma;
1917                 unsigned long addr = vma_address(page, vma);
1918                 BUG_ON(is_vma_temporary_stack(vma));
1919                 mapcount2 += __split_huge_page_map(page, vma, addr);
1920         }
1921         if (mapcount != mapcount2)
1922                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1923                        mapcount, mapcount2, page_mapcount(page));
1924         BUG_ON(mapcount != mapcount2);
1925 }
1926
1927 /*
1928  * Split a hugepage into normal pages. This doesn't change the position of head
1929  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1930  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1931  * from the hugepage.
1932  * Return 0 if the hugepage is split successfully otherwise return 1.
1933  */
1934 int split_huge_page_to_list(struct page *page, struct list_head *list)
1935 {
1936         struct anon_vma *anon_vma;
1937         int ret = 1;
1938
1939         BUG_ON(is_huge_zero_page(page));
1940         BUG_ON(!PageAnon(page));
1941
1942         /*
1943          * The caller does not necessarily hold an mmap_sem that would prevent
1944          * the anon_vma disappearing so we first we take a reference to it
1945          * and then lock the anon_vma for write. This is similar to
1946          * page_lock_anon_vma_read except the write lock is taken to serialise
1947          * against parallel split or collapse operations.
1948          */
1949         anon_vma = page_get_anon_vma(page);
1950         if (!anon_vma)
1951                 goto out;
1952         anon_vma_lock_write(anon_vma);
1953
1954         ret = 0;
1955         if (!PageCompound(page))
1956                 goto out_unlock;
1957
1958         BUG_ON(!PageSwapBacked(page));
1959         __split_huge_page(page, anon_vma, list);
1960         count_vm_event(THP_SPLIT);
1961
1962         BUG_ON(PageCompound(page));
1963 out_unlock:
1964         anon_vma_unlock_write(anon_vma);
1965         put_anon_vma(anon_vma);
1966 out:
1967         return ret;
1968 }
1969
1970 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1971
1972 int hugepage_madvise(struct vm_area_struct *vma,
1973                      unsigned long *vm_flags, int advice)
1974 {
1975         struct mm_struct *mm = vma->vm_mm;
1976
1977         switch (advice) {
1978         case MADV_HUGEPAGE:
1979                 /*
1980                  * Be somewhat over-protective like KSM for now!
1981                  */
1982                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1983                         return -EINVAL;
1984                 if (mm->def_flags & VM_NOHUGEPAGE)
1985                         return -EINVAL;
1986                 *vm_flags &= ~VM_NOHUGEPAGE;
1987                 *vm_flags |= VM_HUGEPAGE;
1988                 /*
1989                  * If the vma become good for khugepaged to scan,
1990                  * register it here without waiting a page fault that
1991                  * may not happen any time soon.
1992                  */
1993                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1994                         return -ENOMEM;
1995                 break;
1996         case MADV_NOHUGEPAGE:
1997                 /*
1998                  * Be somewhat over-protective like KSM for now!
1999                  */
2000                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
2001                         return -EINVAL;
2002                 *vm_flags &= ~VM_HUGEPAGE;
2003                 *vm_flags |= VM_NOHUGEPAGE;
2004                 /*
2005                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2006                  * this vma even if we leave the mm registered in khugepaged if
2007                  * it got registered before VM_NOHUGEPAGE was set.
2008                  */
2009                 break;
2010         }
2011
2012         return 0;
2013 }
2014
2015 static int __init khugepaged_slab_init(void)
2016 {
2017         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2018                                           sizeof(struct mm_slot),
2019                                           __alignof__(struct mm_slot), 0, NULL);
2020         if (!mm_slot_cache)
2021                 return -ENOMEM;
2022
2023         return 0;
2024 }
2025
2026 static inline struct mm_slot *alloc_mm_slot(void)
2027 {
2028         if (!mm_slot_cache)     /* initialization failed */
2029                 return NULL;
2030         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2031 }
2032
2033 static inline void free_mm_slot(struct mm_slot *mm_slot)
2034 {
2035         kmem_cache_free(mm_slot_cache, mm_slot);
2036 }
2037
2038 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2039 {
2040         struct mm_slot *mm_slot;
2041
2042         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2043                 if (mm == mm_slot->mm)
2044                         return mm_slot;
2045
2046         return NULL;
2047 }
2048
2049 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2050                                     struct mm_slot *mm_slot)
2051 {
2052         mm_slot->mm = mm;
2053         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2054 }
2055
2056 static inline int khugepaged_test_exit(struct mm_struct *mm)
2057 {
2058         return atomic_read(&mm->mm_users) == 0;
2059 }
2060
2061 int __khugepaged_enter(struct mm_struct *mm)
2062 {
2063         struct mm_slot *mm_slot;
2064         int wakeup;
2065
2066         mm_slot = alloc_mm_slot();
2067         if (!mm_slot)
2068                 return -ENOMEM;
2069
2070         /* __khugepaged_exit() must not run from under us */
2071         VM_BUG_ON(khugepaged_test_exit(mm));
2072         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2073                 free_mm_slot(mm_slot);
2074                 return 0;
2075         }
2076
2077         spin_lock(&khugepaged_mm_lock);
2078         insert_to_mm_slots_hash(mm, mm_slot);
2079         /*
2080          * Insert just behind the scanning cursor, to let the area settle
2081          * down a little.
2082          */
2083         wakeup = list_empty(&khugepaged_scan.mm_head);
2084         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2085         spin_unlock(&khugepaged_mm_lock);
2086
2087         atomic_inc(&mm->mm_count);
2088         if (wakeup)
2089                 wake_up_interruptible(&khugepaged_wait);
2090
2091         return 0;
2092 }
2093
2094 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2095 {
2096         unsigned long hstart, hend;
2097         if (!vma->anon_vma)
2098                 /*
2099                  * Not yet faulted in so we will register later in the
2100                  * page fault if needed.
2101                  */
2102                 return 0;
2103         if (vma->vm_ops)
2104                 /* khugepaged not yet working on file or special mappings */
2105                 return 0;
2106         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2107         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2108         hend = vma->vm_end & HPAGE_PMD_MASK;
2109         if (hstart < hend)
2110                 return khugepaged_enter(vma);
2111         return 0;
2112 }
2113
2114 void __khugepaged_exit(struct mm_struct *mm)
2115 {
2116         struct mm_slot *mm_slot;
2117         int free = 0;
2118
2119         spin_lock(&khugepaged_mm_lock);
2120         mm_slot = get_mm_slot(mm);
2121         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2122                 hash_del(&mm_slot->hash);
2123                 list_del(&mm_slot->mm_node);
2124                 free = 1;
2125         }
2126         spin_unlock(&khugepaged_mm_lock);
2127
2128         if (free) {
2129                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2130                 free_mm_slot(mm_slot);
2131                 mmdrop(mm);
2132         } else if (mm_slot) {
2133                 /*
2134                  * This is required to serialize against
2135                  * khugepaged_test_exit() (which is guaranteed to run
2136                  * under mmap sem read mode). Stop here (after we
2137                  * return all pagetables will be destroyed) until
2138                  * khugepaged has finished working on the pagetables
2139                  * under the mmap_sem.
2140                  */
2141                 down_write(&mm->mmap_sem);
2142                 up_write(&mm->mmap_sem);
2143         }
2144 }
2145
2146 static void release_pte_page(struct page *page)
2147 {
2148         /* 0 stands for page_is_file_cache(page) == false */
2149         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2150         unlock_page(page);
2151         putback_lru_page(page);
2152 }
2153
2154 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2155 {
2156         while (--_pte >= pte) {
2157                 pte_t pteval = *_pte;
2158                 if (!pte_none(pteval))
2159                         release_pte_page(pte_page(pteval));
2160         }
2161 }
2162
2163 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2164                                         unsigned long address,
2165                                         pte_t *pte)
2166 {
2167         struct page *page;
2168         pte_t *_pte;
2169         int referenced = 0, none = 0;
2170         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2171              _pte++, address += PAGE_SIZE) {
2172                 pte_t pteval = *_pte;
2173                 if (pte_none(pteval)) {
2174                         if (++none <= khugepaged_max_ptes_none)
2175                                 continue;
2176                         else
2177                                 goto out;
2178                 }
2179                 if (!pte_present(pteval) || !pte_write(pteval))
2180                         goto out;
2181                 page = vm_normal_page(vma, address, pteval);
2182                 if (unlikely(!page))
2183                         goto out;
2184
2185                 VM_BUG_ON_PAGE(PageCompound(page), page);
2186                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2187                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2188
2189                 /* cannot use mapcount: can't collapse if there's a gup pin */
2190                 if (page_count(page) != 1)
2191                         goto out;
2192                 /*
2193                  * We can do it before isolate_lru_page because the
2194                  * page can't be freed from under us. NOTE: PG_lock
2195                  * is needed to serialize against split_huge_page
2196                  * when invoked from the VM.
2197                  */
2198                 if (!trylock_page(page))
2199                         goto out;
2200                 /*
2201                  * Isolate the page to avoid collapsing an hugepage
2202                  * currently in use by the VM.
2203                  */
2204                 if (isolate_lru_page(page)) {
2205                         unlock_page(page);
2206                         goto out;
2207                 }
2208                 /* 0 stands for page_is_file_cache(page) == false */
2209                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2210                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2211                 VM_BUG_ON_PAGE(PageLRU(page), page);
2212
2213                 /* If there is no mapped pte young don't collapse the page */
2214                 if (pte_young(pteval) || PageReferenced(page) ||
2215                     mmu_notifier_test_young(vma->vm_mm, address))
2216                         referenced = 1;
2217         }
2218         if (likely(referenced))
2219                 return 1;
2220 out:
2221         release_pte_pages(pte, _pte);
2222         return 0;
2223 }
2224
2225 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2226                                       struct vm_area_struct *vma,
2227                                       unsigned long address,
2228                                       spinlock_t *ptl)
2229 {
2230         pte_t *_pte;
2231         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2232                 pte_t pteval = *_pte;
2233                 struct page *src_page;
2234
2235                 if (pte_none(pteval)) {
2236                         clear_user_highpage(page, address);
2237                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2238                 } else {
2239                         src_page = pte_page(pteval);
2240                         copy_user_highpage(page, src_page, address, vma);
2241                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2242                         release_pte_page(src_page);
2243                         /*
2244                          * ptl mostly unnecessary, but preempt has to
2245                          * be disabled to update the per-cpu stats
2246                          * inside page_remove_rmap().
2247                          */
2248                         spin_lock(ptl);
2249                         /*
2250                          * paravirt calls inside pte_clear here are
2251                          * superfluous.
2252                          */
2253                         pte_clear(vma->vm_mm, address, _pte);
2254                         page_remove_rmap(src_page);
2255                         spin_unlock(ptl);
2256                         free_page_and_swap_cache(src_page);
2257                 }
2258
2259                 address += PAGE_SIZE;
2260                 page++;
2261         }
2262 }
2263
2264 static void khugepaged_alloc_sleep(void)
2265 {
2266         wait_event_freezable_timeout(khugepaged_wait, false,
2267                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2268 }
2269
2270 static int khugepaged_node_load[MAX_NUMNODES];
2271
2272 #ifdef CONFIG_NUMA
2273 static int khugepaged_find_target_node(void)
2274 {
2275         static int last_khugepaged_target_node = NUMA_NO_NODE;
2276         int nid, target_node = 0, max_value = 0;
2277
2278         /* find first node with max normal pages hit */
2279         for (nid = 0; nid < MAX_NUMNODES; nid++)
2280                 if (khugepaged_node_load[nid] > max_value) {
2281                         max_value = khugepaged_node_load[nid];
2282                         target_node = nid;
2283                 }
2284
2285         /* do some balance if several nodes have the same hit record */
2286         if (target_node <= last_khugepaged_target_node)
2287                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2288                                 nid++)
2289                         if (max_value == khugepaged_node_load[nid]) {
2290                                 target_node = nid;
2291                                 break;
2292                         }
2293
2294         last_khugepaged_target_node = target_node;
2295         return target_node;
2296 }
2297
2298 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2299 {
2300         if (IS_ERR(*hpage)) {
2301                 if (!*wait)
2302                         return false;
2303
2304                 *wait = false;
2305                 *hpage = NULL;
2306                 khugepaged_alloc_sleep();
2307         } else if (*hpage) {
2308                 put_page(*hpage);
2309                 *hpage = NULL;
2310         }
2311
2312         return true;
2313 }
2314
2315 static struct page
2316 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2317                        struct vm_area_struct *vma, unsigned long address,
2318                        int node)
2319 {
2320         VM_BUG_ON_PAGE(*hpage, *hpage);
2321         /*
2322          * Allocate the page while the vma is still valid and under
2323          * the mmap_sem read mode so there is no memory allocation
2324          * later when we take the mmap_sem in write mode. This is more
2325          * friendly behavior (OTOH it may actually hide bugs) to
2326          * filesystems in userland with daemons allocating memory in
2327          * the userland I/O paths.  Allocating memory with the
2328          * mmap_sem in read mode is good idea also to allow greater
2329          * scalability.
2330          */
2331         *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2332                 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2333         /*
2334          * After allocating the hugepage, release the mmap_sem read lock in
2335          * preparation for taking it in write mode.
2336          */
2337         up_read(&mm->mmap_sem);
2338         if (unlikely(!*hpage)) {
2339                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2340                 *hpage = ERR_PTR(-ENOMEM);
2341                 return NULL;
2342         }
2343
2344         count_vm_event(THP_COLLAPSE_ALLOC);
2345         return *hpage;
2346 }
2347 #else
2348 static int khugepaged_find_target_node(void)
2349 {
2350         return 0;
2351 }
2352
2353 static inline struct page *alloc_hugepage(int defrag)
2354 {
2355         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2356                            HPAGE_PMD_ORDER);
2357 }
2358
2359 static struct page *khugepaged_alloc_hugepage(bool *wait)
2360 {
2361         struct page *hpage;
2362
2363         do {
2364                 hpage = alloc_hugepage(khugepaged_defrag());
2365                 if (!hpage) {
2366                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2367                         if (!*wait)
2368                                 return NULL;
2369
2370                         *wait = false;
2371                         khugepaged_alloc_sleep();
2372                 } else
2373                         count_vm_event(THP_COLLAPSE_ALLOC);
2374         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2375
2376         return hpage;
2377 }
2378
2379 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2380 {
2381         if (!*hpage)
2382                 *hpage = khugepaged_alloc_hugepage(wait);
2383
2384         if (unlikely(!*hpage))
2385                 return false;
2386
2387         return true;
2388 }
2389
2390 static struct page
2391 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2392                        struct vm_area_struct *vma, unsigned long address,
2393                        int node)
2394 {
2395         up_read(&mm->mmap_sem);
2396         VM_BUG_ON(!*hpage);
2397         return  *hpage;
2398 }
2399 #endif
2400
2401 static bool hugepage_vma_check(struct vm_area_struct *vma)
2402 {
2403         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2404             (vma->vm_flags & VM_NOHUGEPAGE))
2405                 return false;
2406
2407         if (!vma->anon_vma || vma->vm_ops)
2408                 return false;
2409         if (is_vma_temporary_stack(vma))
2410                 return false;
2411         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2412         return true;
2413 }
2414
2415 static void collapse_huge_page(struct mm_struct *mm,
2416                                    unsigned long address,
2417                                    struct page **hpage,
2418                                    struct vm_area_struct *vma,
2419                                    int node)
2420 {
2421         pmd_t *pmd, _pmd;
2422         pte_t *pte;
2423         pgtable_t pgtable;
2424         struct page *new_page;
2425         spinlock_t *pmd_ptl, *pte_ptl;
2426         int isolated;
2427         unsigned long hstart, hend;
2428         unsigned long mmun_start;       /* For mmu_notifiers */
2429         unsigned long mmun_end;         /* For mmu_notifiers */
2430
2431         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2432
2433         /* release the mmap_sem read lock. */
2434         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2435         if (!new_page)
2436                 return;
2437
2438         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2439                 return;
2440
2441         /*
2442          * Prevent all access to pagetables with the exception of
2443          * gup_fast later hanlded by the ptep_clear_flush and the VM
2444          * handled by the anon_vma lock + PG_lock.
2445          */
2446         down_write(&mm->mmap_sem);
2447         if (unlikely(khugepaged_test_exit(mm)))
2448                 goto out;
2449
2450         vma = find_vma(mm, address);
2451         if (!vma)
2452                 goto out;
2453         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2454         hend = vma->vm_end & HPAGE_PMD_MASK;
2455         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2456                 goto out;
2457         if (!hugepage_vma_check(vma))
2458                 goto out;
2459         pmd = mm_find_pmd(mm, address);
2460         if (!pmd)
2461                 goto out;
2462         if (pmd_trans_huge(*pmd))
2463                 goto out;
2464
2465         anon_vma_lock_write(vma->anon_vma);
2466
2467         pte = pte_offset_map(pmd, address);
2468         pte_ptl = pte_lockptr(mm, pmd);
2469
2470         mmun_start = address;
2471         mmun_end   = address + HPAGE_PMD_SIZE;
2472         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2473         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2474         /*
2475          * After this gup_fast can't run anymore. This also removes
2476          * any huge TLB entry from the CPU so we won't allow
2477          * huge and small TLB entries for the same virtual address
2478          * to avoid the risk of CPU bugs in that area.
2479          */
2480         _pmd = pmdp_clear_flush(vma, address, pmd);
2481         spin_unlock(pmd_ptl);
2482         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2483
2484         spin_lock(pte_ptl);
2485         isolated = __collapse_huge_page_isolate(vma, address, pte);
2486         spin_unlock(pte_ptl);
2487
2488         if (unlikely(!isolated)) {
2489                 pte_unmap(pte);
2490                 spin_lock(pmd_ptl);
2491                 BUG_ON(!pmd_none(*pmd));
2492                 /*
2493                  * We can only use set_pmd_at when establishing
2494                  * hugepmds and never for establishing regular pmds that
2495                  * points to regular pagetables. Use pmd_populate for that
2496                  */
2497                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2498                 spin_unlock(pmd_ptl);
2499                 anon_vma_unlock_write(vma->anon_vma);
2500                 goto out;
2501         }
2502
2503         /*
2504          * All pages are isolated and locked so anon_vma rmap
2505          * can't run anymore.
2506          */
2507         anon_vma_unlock_write(vma->anon_vma);
2508
2509         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2510         pte_unmap(pte);
2511         __SetPageUptodate(new_page);
2512         pgtable = pmd_pgtable(_pmd);
2513
2514         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2515         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2516
2517         /*
2518          * spin_lock() below is not the equivalent of smp_wmb(), so
2519          * this is needed to avoid the copy_huge_page writes to become
2520          * visible after the set_pmd_at() write.
2521          */
2522         smp_wmb();
2523
2524         spin_lock(pmd_ptl);
2525         BUG_ON(!pmd_none(*pmd));
2526         page_add_new_anon_rmap(new_page, vma, address);
2527         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2528         set_pmd_at(mm, address, pmd, _pmd);
2529         update_mmu_cache_pmd(vma, address, pmd);
2530         spin_unlock(pmd_ptl);
2531
2532         *hpage = NULL;
2533
2534         khugepaged_pages_collapsed++;
2535 out_up_write:
2536         up_write(&mm->mmap_sem);
2537         return;
2538
2539 out:
2540         mem_cgroup_uncharge_page(new_page);
2541         goto out_up_write;
2542 }
2543
2544 static int khugepaged_scan_pmd(struct mm_struct *mm,
2545                                struct vm_area_struct *vma,
2546                                unsigned long address,
2547                                struct page **hpage)
2548 {
2549         pmd_t *pmd;
2550         pte_t *pte, *_pte;
2551         int ret = 0, referenced = 0, none = 0;
2552         struct page *page;
2553         unsigned long _address;
2554         spinlock_t *ptl;
2555         int node = NUMA_NO_NODE;
2556
2557         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2558
2559         pmd = mm_find_pmd(mm, address);
2560         if (!pmd)
2561                 goto out;
2562         if (pmd_trans_huge(*pmd))
2563                 goto out;
2564
2565         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2566         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2567         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2568              _pte++, _address += PAGE_SIZE) {
2569                 pte_t pteval = *_pte;
2570                 if (pte_none(pteval)) {
2571                         if (++none <= khugepaged_max_ptes_none)
2572                                 continue;
2573                         else
2574                                 goto out_unmap;
2575                 }
2576                 if (!pte_present(pteval) || !pte_write(pteval))
2577                         goto out_unmap;
2578                 page = vm_normal_page(vma, _address, pteval);
2579                 if (unlikely(!page))
2580                         goto out_unmap;
2581                 /*
2582                  * Record which node the original page is from and save this
2583                  * information to khugepaged_node_load[].
2584                  * Khupaged will allocate hugepage from the node has the max
2585                  * hit record.
2586                  */
2587                 node = page_to_nid(page);
2588                 khugepaged_node_load[node]++;
2589                 VM_BUG_ON_PAGE(PageCompound(page), page);
2590                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2591                         goto out_unmap;
2592                 /* cannot use mapcount: can't collapse if there's a gup pin */
2593                 if (page_count(page) != 1)
2594                         goto out_unmap;
2595                 if (pte_young(pteval) || PageReferenced(page) ||
2596                     mmu_notifier_test_young(vma->vm_mm, address))
2597                         referenced = 1;
2598         }
2599         if (referenced)
2600                 ret = 1;
2601 out_unmap:
2602         pte_unmap_unlock(pte, ptl);
2603         if (ret) {
2604                 node = khugepaged_find_target_node();
2605                 /* collapse_huge_page will return with the mmap_sem released */
2606                 collapse_huge_page(mm, address, hpage, vma, node);
2607         }
2608 out:
2609         return ret;
2610 }
2611
2612 static void collect_mm_slot(struct mm_slot *mm_slot)
2613 {
2614         struct mm_struct *mm = mm_slot->mm;
2615
2616         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2617
2618         if (khugepaged_test_exit(mm)) {
2619                 /* free mm_slot */
2620                 hash_del(&mm_slot->hash);
2621                 list_del(&mm_slot->mm_node);
2622
2623                 /*
2624                  * Not strictly needed because the mm exited already.
2625                  *
2626                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2627                  */
2628
2629                 /* khugepaged_mm_lock actually not necessary for the below */
2630                 free_mm_slot(mm_slot);
2631                 mmdrop(mm);
2632         }
2633 }
2634
2635 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2636                                             struct page **hpage)
2637         __releases(&khugepaged_mm_lock)
2638         __acquires(&khugepaged_mm_lock)
2639 {
2640         struct mm_slot *mm_slot;
2641         struct mm_struct *mm;
2642         struct vm_area_struct *vma;
2643         int progress = 0;
2644
2645         VM_BUG_ON(!pages);
2646         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2647
2648         if (khugepaged_scan.mm_slot)
2649                 mm_slot = khugepaged_scan.mm_slot;
2650         else {
2651                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2652                                      struct mm_slot, mm_node);
2653                 khugepaged_scan.address = 0;
2654                 khugepaged_scan.mm_slot = mm_slot;
2655         }
2656         spin_unlock(&khugepaged_mm_lock);
2657
2658         mm = mm_slot->mm;
2659         down_read(&mm->mmap_sem);
2660         if (unlikely(khugepaged_test_exit(mm)))
2661                 vma = NULL;
2662         else
2663                 vma = find_vma(mm, khugepaged_scan.address);
2664
2665         progress++;
2666         for (; vma; vma = vma->vm_next) {
2667                 unsigned long hstart, hend;
2668
2669                 cond_resched();
2670                 if (unlikely(khugepaged_test_exit(mm))) {
2671                         progress++;
2672                         break;
2673                 }
2674                 if (!hugepage_vma_check(vma)) {
2675 skip:
2676                         progress++;
2677                         continue;
2678                 }
2679                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2680                 hend = vma->vm_end & HPAGE_PMD_MASK;
2681                 if (hstart >= hend)
2682                         goto skip;
2683                 if (khugepaged_scan.address > hend)
2684                         goto skip;
2685                 if (khugepaged_scan.address < hstart)
2686                         khugepaged_scan.address = hstart;
2687                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2688
2689                 while (khugepaged_scan.address < hend) {
2690                         int ret;
2691                         cond_resched();
2692                         if (unlikely(khugepaged_test_exit(mm)))
2693                                 goto breakouterloop;
2694
2695                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2696                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2697                                   hend);
2698                         ret = khugepaged_scan_pmd(mm, vma,
2699                                                   khugepaged_scan.address,
2700                                                   hpage);
2701                         /* move to next address */
2702                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2703                         progress += HPAGE_PMD_NR;
2704                         if (ret)
2705                                 /* we released mmap_sem so break loop */
2706                                 goto breakouterloop_mmap_sem;
2707                         if (progress >= pages)
2708                                 goto breakouterloop;
2709                 }
2710         }
2711 breakouterloop:
2712         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2713 breakouterloop_mmap_sem:
2714
2715         spin_lock(&khugepaged_mm_lock);
2716         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2717         /*
2718          * Release the current mm_slot if this mm is about to die, or
2719          * if we scanned all vmas of this mm.
2720          */
2721         if (khugepaged_test_exit(mm) || !vma) {
2722                 /*
2723                  * Make sure that if mm_users is reaching zero while
2724                  * khugepaged runs here, khugepaged_exit will find
2725                  * mm_slot not pointing to the exiting mm.
2726                  */
2727                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2728                         khugepaged_scan.mm_slot = list_entry(
2729                                 mm_slot->mm_node.next,
2730                                 struct mm_slot, mm_node);
2731                         khugepaged_scan.address = 0;
2732                 } else {
2733                         khugepaged_scan.mm_slot = NULL;
2734                         khugepaged_full_scans++;
2735                 }
2736
2737                 collect_mm_slot(mm_slot);
2738         }
2739
2740         return progress;
2741 }
2742
2743 static int khugepaged_has_work(void)
2744 {
2745         return !list_empty(&khugepaged_scan.mm_head) &&
2746                 khugepaged_enabled();
2747 }
2748
2749 static int khugepaged_wait_event(void)
2750 {
2751         return !list_empty(&khugepaged_scan.mm_head) ||
2752                 kthread_should_stop();
2753 }
2754
2755 static void khugepaged_do_scan(void)
2756 {
2757         struct page *hpage = NULL;
2758         unsigned int progress = 0, pass_through_head = 0;
2759         unsigned int pages = khugepaged_pages_to_scan;
2760         bool wait = true;
2761
2762         barrier(); /* write khugepaged_pages_to_scan to local stack */
2763
2764         while (progress < pages) {
2765                 if (!khugepaged_prealloc_page(&hpage, &wait))
2766                         break;
2767
2768                 cond_resched();
2769
2770                 if (unlikely(kthread_should_stop() || freezing(current)))
2771                         break;
2772
2773                 spin_lock(&khugepaged_mm_lock);
2774                 if (!khugepaged_scan.mm_slot)
2775                         pass_through_head++;
2776                 if (khugepaged_has_work() &&
2777                     pass_through_head < 2)
2778                         progress += khugepaged_scan_mm_slot(pages - progress,
2779                                                             &hpage);
2780                 else
2781                         progress = pages;
2782                 spin_unlock(&khugepaged_mm_lock);
2783         }
2784
2785         if (!IS_ERR_OR_NULL(hpage))
2786                 put_page(hpage);
2787 }
2788
2789 static void khugepaged_wait_work(void)
2790 {
2791         try_to_freeze();
2792
2793         if (khugepaged_has_work()) {
2794                 if (!khugepaged_scan_sleep_millisecs)
2795                         return;
2796
2797                 wait_event_freezable_timeout(khugepaged_wait,
2798                                              kthread_should_stop(),
2799                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2800                 return;
2801         }
2802
2803         if (khugepaged_enabled())
2804                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2805 }
2806
2807 static int khugepaged(void *none)
2808 {
2809         struct mm_slot *mm_slot;
2810
2811         set_freezable();
2812         set_user_nice(current, 19);
2813
2814         while (!kthread_should_stop()) {
2815                 khugepaged_do_scan();
2816                 khugepaged_wait_work();
2817         }
2818
2819         spin_lock(&khugepaged_mm_lock);
2820         mm_slot = khugepaged_scan.mm_slot;
2821         khugepaged_scan.mm_slot = NULL;
2822         if (mm_slot)
2823                 collect_mm_slot(mm_slot);
2824         spin_unlock(&khugepaged_mm_lock);
2825         return 0;
2826 }
2827
2828 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2829                 unsigned long haddr, pmd_t *pmd)
2830 {
2831         struct mm_struct *mm = vma->vm_mm;
2832         pgtable_t pgtable;
2833         pmd_t _pmd;
2834         int i;
2835
2836         pmdp_clear_flush(vma, haddr, pmd);
2837         /* leave pmd empty until pte is filled */
2838
2839         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2840         pmd_populate(mm, &_pmd, pgtable);
2841
2842         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2843                 pte_t *pte, entry;
2844                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2845                 entry = pte_mkspecial(entry);
2846                 pte = pte_offset_map(&_pmd, haddr);
2847                 VM_BUG_ON(!pte_none(*pte));
2848                 set_pte_at(mm, haddr, pte, entry);
2849                 pte_unmap(pte);
2850         }
2851         smp_wmb(); /* make pte visible before pmd */
2852         pmd_populate(mm, pmd, pgtable);
2853         put_huge_zero_page();
2854 }
2855
2856 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2857                 pmd_t *pmd)
2858 {
2859         spinlock_t *ptl;
2860         struct page *page;
2861         struct mm_struct *mm = vma->vm_mm;
2862         unsigned long haddr = address & HPAGE_PMD_MASK;
2863         unsigned long mmun_start;       /* For mmu_notifiers */
2864         unsigned long mmun_end;         /* For mmu_notifiers */
2865
2866         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2867
2868         mmun_start = haddr;
2869         mmun_end   = haddr + HPAGE_PMD_SIZE;
2870 again:
2871         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2872         ptl = pmd_lock(mm, pmd);
2873         if (unlikely(!pmd_trans_huge(*pmd))) {
2874                 spin_unlock(ptl);
2875                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2876                 return;
2877         }
2878         if (is_huge_zero_pmd(*pmd)) {
2879                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2880                 spin_unlock(ptl);
2881                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2882                 return;
2883         }
2884         page = pmd_page(*pmd);
2885         VM_BUG_ON_PAGE(!page_count(page), page);
2886         get_page(page);
2887         spin_unlock(ptl);
2888         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2889
2890         split_huge_page(page);
2891
2892         put_page(page);
2893
2894         /*
2895          * We don't always have down_write of mmap_sem here: a racing
2896          * do_huge_pmd_wp_page() might have copied-on-write to another
2897          * huge page before our split_huge_page() got the anon_vma lock.
2898          */
2899         if (unlikely(pmd_trans_huge(*pmd)))
2900                 goto again;
2901 }
2902
2903 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2904                 pmd_t *pmd)
2905 {
2906         struct vm_area_struct *vma;
2907
2908         vma = find_vma(mm, address);
2909         BUG_ON(vma == NULL);
2910         split_huge_page_pmd(vma, address, pmd);
2911 }
2912
2913 static void split_huge_page_address(struct mm_struct *mm,
2914                                     unsigned long address)
2915 {
2916         pmd_t *pmd;
2917
2918         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2919
2920         pmd = mm_find_pmd(mm, address);
2921         if (!pmd)
2922                 return;
2923         /*
2924          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2925          * materialize from under us.
2926          */
2927         split_huge_page_pmd_mm(mm, address, pmd);
2928 }
2929
2930 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2931                              unsigned long start,
2932                              unsigned long end,
2933                              long adjust_next)
2934 {
2935         /*
2936          * If the new start address isn't hpage aligned and it could
2937          * previously contain an hugepage: check if we need to split
2938          * an huge pmd.
2939          */
2940         if (start & ~HPAGE_PMD_MASK &&
2941             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2942             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2943                 split_huge_page_address(vma->vm_mm, start);
2944
2945         /*
2946          * If the new end address isn't hpage aligned and it could
2947          * previously contain an hugepage: check if we need to split
2948          * an huge pmd.
2949          */
2950         if (end & ~HPAGE_PMD_MASK &&
2951             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2952             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2953                 split_huge_page_address(vma->vm_mm, end);
2954
2955         /*
2956          * If we're also updating the vma->vm_next->vm_start, if the new
2957          * vm_next->vm_start isn't page aligned and it could previously
2958          * contain an hugepage: check if we need to split an huge pmd.
2959          */
2960         if (adjust_next > 0) {
2961                 struct vm_area_struct *next = vma->vm_next;
2962                 unsigned long nstart = next->vm_start;
2963                 nstart += adjust_next << PAGE_SHIFT;
2964                 if (nstart & ~HPAGE_PMD_MASK &&
2965                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2966                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2967                         split_huge_page_address(next->vm_mm, nstart);
2968         }
2969 }