1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
41 #include <asm/pgalloc.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
49 * By default, transparent hugepage support is disabled in order to avoid
50 * risking an increased memory footprint for applications that are not
51 * guaranteed to benefit from it. When transparent hugepage support is
52 * enabled, it is for all mappings, and khugepaged scans all mappings.
53 * Defrag is invoked by khugepaged hugepage allocations and by page faults
54 * for all hugepage allocations.
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 static struct shrinker deferred_split_shrinker;
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 bool hugepage_vma_check(struct vm_area_struct *vma,
74 unsigned long vm_flags,
75 bool smaps, bool in_pf)
77 if (!vma->vm_mm) /* vdso */
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
89 * If the hardware/firmware marked hugepage support disabled.
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
103 if (vm_flags & VM_NO_KHUGEPAGED)
107 * Check alignment for file vma and size for both file and anon vma.
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_huge_enabled(vma);
124 if (!hugepage_flags_enabled())
127 /* THP settings require madvise. */
128 if (!(vm_flags & VM_HUGEPAGE) && !hugepage_flags_always())
131 /* Only regular file is valid */
132 if (!in_pf && file_thp_enabled(vma))
135 if (!vma_is_anonymous(vma))
138 if (vma_is_temporary_stack(vma))
142 * THPeligible bit of smaps should show 1 for proper VMAs even
143 * though anon_vma is not initialized yet.
145 * Allow page fault since anon_vma may be not initialized until
146 * the first page fault.
149 return (smaps || in_pf);
154 static bool get_huge_zero_page(void)
156 struct page *zero_page;
158 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
167 count_vm_event(THP_ZERO_PAGE_ALLOC);
169 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
171 __free_pages(zero_page, compound_order(zero_page));
174 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
176 /* We take additional reference here. It will be put back by shrinker */
177 atomic_set(&huge_zero_refcount, 2);
182 static void put_huge_zero_page(void)
185 * Counter should never go to zero here. Only shrinker can put
188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 return READ_ONCE(huge_zero_page);
196 if (!get_huge_zero_page())
199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 put_huge_zero_page();
202 return READ_ONCE(huge_zero_page);
205 void mm_put_huge_zero_page(struct mm_struct *mm)
207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 put_huge_zero_page();
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 WRITE_ONCE(huge_zero_pfn, ~0UL);
225 __free_pages(zero_page, compound_order(zero_page));
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
239 static ssize_t enabled_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf)
244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 output = "[always] madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [madvise] never";
250 output = "always madvise [never]";
252 return sysfs_emit(buf, "%s\n", output);
255 static ssize_t enabled_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
261 if (sysfs_streq(buf, "always")) {
262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "never")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
274 int err = start_stop_khugepaged();
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf,
285 enum transparent_hugepage_flag flag)
287 return sysfs_emit(buf, "%d\n",
288 !!test_bit(flag, &transparent_hugepage_flags));
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count,
294 enum transparent_hugepage_flag flag)
299 ret = kstrtoul(buf, 10, &value);
306 set_bit(flag, &transparent_hugepage_flags);
308 clear_bit(flag, &transparent_hugepage_flags);
313 static ssize_t defrag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 &transparent_hugepage_flags))
320 output = "[always] defer defer+madvise madvise never";
321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 &transparent_hugepage_flags))
323 output = "always [defer] defer+madvise madvise never";
324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 &transparent_hugepage_flags))
326 output = "always defer [defer+madvise] madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 &transparent_hugepage_flags))
329 output = "always defer defer+madvise [madvise] never";
331 output = "always defer defer+madvise madvise [never]";
333 return sysfs_emit(buf, "%s\n", output);
336 static ssize_t defrag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count)
340 if (sysfs_streq(buf, "always")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "defer+madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "defer")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 } else if (sysfs_streq(buf, "madvise")) {
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 } else if (sysfs_streq(buf, "never")) {
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
375 return single_hugepage_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
381 return single_hugepage_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 struct kobj_attribute *attr, char *buf)
389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
391 static struct kobj_attribute hpage_pmd_size_attr =
392 __ATTR_RO(hpage_pmd_size);
394 static struct attribute *hugepage_attr[] = {
397 &use_zero_page_attr.attr,
398 &hpage_pmd_size_attr.attr,
400 &shmem_enabled_attr.attr,
405 static const struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 if (unlikely(!*hugepage_kobj)) {
415 pr_err("failed to create transparent hugepage kobject\n");
419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
421 pr_err("failed to register transparent hugepage group\n");
425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
427 pr_err("failed to register transparent hugepage group\n");
428 goto remove_hp_group;
434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
436 kobject_put(*hugepage_kobj);
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 kobject_put(hugepage_kobj);
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
455 #endif /* CONFIG_SYSFS */
457 static int __init hugepage_init(void)
460 struct kobject *hugepage_kobj;
462 if (!has_transparent_hugepage()) {
464 * Hardware doesn't support hugepages, hence disable
467 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
472 * hugepages can't be allocated by the buddy allocator
474 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
476 * we use page->mapping and page->index in second tail page
477 * as list_head: assuming THP order >= 2
479 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
481 err = hugepage_init_sysfs(&hugepage_kobj);
485 err = khugepaged_init();
489 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
491 goto err_hzp_shrinker;
492 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
494 goto err_split_shrinker;
497 * By default disable transparent hugepages on smaller systems,
498 * where the extra memory used could hurt more than TLB overhead
499 * is likely to save. The admin can still enable it through /sys.
501 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502 transparent_hugepage_flags = 0;
506 err = start_stop_khugepaged();
512 unregister_shrinker(&deferred_split_shrinker);
514 unregister_shrinker(&huge_zero_page_shrinker);
516 khugepaged_destroy();
518 hugepage_exit_sysfs(hugepage_kobj);
522 subsys_initcall(hugepage_init);
524 static int __init setup_transparent_hugepage(char *str)
529 if (!strcmp(str, "always")) {
530 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531 &transparent_hugepage_flags);
532 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533 &transparent_hugepage_flags);
535 } else if (!strcmp(str, "madvise")) {
536 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537 &transparent_hugepage_flags);
538 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539 &transparent_hugepage_flags);
541 } else if (!strcmp(str, "never")) {
542 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543 &transparent_hugepage_flags);
544 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545 &transparent_hugepage_flags);
550 pr_warn("transparent_hugepage= cannot parse, ignored\n");
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
557 if (likely(vma->vm_flags & VM_WRITE))
558 pmd = pmd_mkwrite(pmd);
563 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
565 struct mem_cgroup *memcg = page_memcg(compound_head(page));
566 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
569 return &memcg->deferred_split_queue;
571 return &pgdat->deferred_split_queue;
574 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
576 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
578 return &pgdat->deferred_split_queue;
582 void prep_transhuge_page(struct page *page)
585 * we use page->mapping and page->index in second tail page
586 * as list_head: assuming THP order >= 2
589 INIT_LIST_HEAD(page_deferred_list(page));
590 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
593 static inline bool is_transparent_hugepage(struct page *page)
595 if (!PageCompound(page))
598 page = compound_head(page);
599 return is_huge_zero_page(page) ||
600 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
603 static unsigned long __thp_get_unmapped_area(struct file *filp,
604 unsigned long addr, unsigned long len,
605 loff_t off, unsigned long flags, unsigned long size)
607 loff_t off_end = off + len;
608 loff_t off_align = round_up(off, size);
609 unsigned long len_pad, ret;
611 if (off_end <= off_align || (off_end - off_align) < size)
614 len_pad = len + size;
615 if (len_pad < len || (off + len_pad) < off)
618 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
619 off >> PAGE_SHIFT, flags);
622 * The failure might be due to length padding. The caller will retry
623 * without the padding.
625 if (IS_ERR_VALUE(ret))
629 * Do not try to align to THP boundary if allocation at the address
635 ret += (off - ret) & (size - 1);
639 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
640 unsigned long len, unsigned long pgoff, unsigned long flags)
643 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
645 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
649 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
651 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
653 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
654 struct page *page, gfp_t gfp)
656 struct vm_area_struct *vma = vmf->vma;
658 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
661 VM_BUG_ON_PAGE(!PageCompound(page), page);
663 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
665 count_vm_event(THP_FAULT_FALLBACK);
666 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
667 return VM_FAULT_FALLBACK;
669 cgroup_throttle_swaprate(page, gfp);
671 pgtable = pte_alloc_one(vma->vm_mm);
672 if (unlikely(!pgtable)) {
677 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
679 * The memory barrier inside __SetPageUptodate makes sure that
680 * clear_huge_page writes become visible before the set_pmd_at()
683 __SetPageUptodate(page);
685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 if (unlikely(!pmd_none(*vmf->pmd))) {
691 ret = check_stable_address_space(vma->vm_mm);
695 /* Deliver the page fault to userland */
696 if (userfaultfd_missing(vma)) {
697 spin_unlock(vmf->ptl);
699 pte_free(vma->vm_mm, pgtable);
700 ret = handle_userfault(vmf, VM_UFFD_MISSING);
701 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
705 entry = mk_huge_pmd(page, vma->vm_page_prot);
706 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
707 page_add_new_anon_rmap(page, vma, haddr);
708 lru_cache_add_inactive_or_unevictable(page, vma);
709 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
710 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
711 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
712 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
713 mm_inc_nr_ptes(vma->vm_mm);
714 spin_unlock(vmf->ptl);
715 count_vm_event(THP_FAULT_ALLOC);
716 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
721 spin_unlock(vmf->ptl);
724 pte_free(vma->vm_mm, pgtable);
731 * always: directly stall for all thp allocations
732 * defer: wake kswapd and fail if not immediately available
733 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
734 * fail if not immediately available
735 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
737 * never: never stall for any thp allocation
739 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
741 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
743 /* Always do synchronous compaction */
744 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
745 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
747 /* Kick kcompactd and fail quickly */
748 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
749 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
751 /* Synchronous compaction if madvised, otherwise kick kcompactd */
752 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
753 return GFP_TRANSHUGE_LIGHT |
754 (vma_madvised ? __GFP_DIRECT_RECLAIM :
755 __GFP_KSWAPD_RECLAIM);
757 /* Only do synchronous compaction if madvised */
758 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
759 return GFP_TRANSHUGE_LIGHT |
760 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
762 return GFP_TRANSHUGE_LIGHT;
765 /* Caller must hold page table lock. */
766 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
767 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
768 struct page *zero_page)
773 entry = mk_pmd(zero_page, vma->vm_page_prot);
774 entry = pmd_mkhuge(entry);
776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
777 set_pmd_at(mm, haddr, pmd, entry);
781 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
783 struct vm_area_struct *vma = vmf->vma;
786 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
788 if (!transhuge_vma_suitable(vma, haddr))
789 return VM_FAULT_FALLBACK;
790 if (unlikely(anon_vma_prepare(vma)))
792 khugepaged_enter_vma(vma, vma->vm_flags);
794 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
795 !mm_forbids_zeropage(vma->vm_mm) &&
796 transparent_hugepage_use_zero_page()) {
798 struct page *zero_page;
800 pgtable = pte_alloc_one(vma->vm_mm);
801 if (unlikely(!pgtable))
803 zero_page = mm_get_huge_zero_page(vma->vm_mm);
804 if (unlikely(!zero_page)) {
805 pte_free(vma->vm_mm, pgtable);
806 count_vm_event(THP_FAULT_FALLBACK);
807 return VM_FAULT_FALLBACK;
809 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
811 if (pmd_none(*vmf->pmd)) {
812 ret = check_stable_address_space(vma->vm_mm);
814 spin_unlock(vmf->ptl);
815 pte_free(vma->vm_mm, pgtable);
816 } else if (userfaultfd_missing(vma)) {
817 spin_unlock(vmf->ptl);
818 pte_free(vma->vm_mm, pgtable);
819 ret = handle_userfault(vmf, VM_UFFD_MISSING);
820 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
822 set_huge_zero_page(pgtable, vma->vm_mm, vma,
823 haddr, vmf->pmd, zero_page);
824 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
825 spin_unlock(vmf->ptl);
828 spin_unlock(vmf->ptl);
829 pte_free(vma->vm_mm, pgtable);
833 gfp = vma_thp_gfp_mask(vma);
834 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
835 if (unlikely(!folio)) {
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
839 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
842 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
843 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
846 struct mm_struct *mm = vma->vm_mm;
850 ptl = pmd_lock(mm, pmd);
851 if (!pmd_none(*pmd)) {
853 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
854 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
857 entry = pmd_mkyoung(*pmd);
858 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
859 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
860 update_mmu_cache_pmd(vma, addr, pmd);
866 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
867 if (pfn_t_devmap(pfn))
868 entry = pmd_mkdevmap(entry);
870 entry = pmd_mkyoung(pmd_mkdirty(entry));
871 entry = maybe_pmd_mkwrite(entry, vma);
875 pgtable_trans_huge_deposit(mm, pmd, pgtable);
880 set_pmd_at(mm, addr, pmd, entry);
881 update_mmu_cache_pmd(vma, addr, pmd);
886 pte_free(mm, pgtable);
890 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
891 * @vmf: Structure describing the fault
892 * @pfn: pfn to insert
893 * @pgprot: page protection to use
894 * @write: whether it's a write fault
896 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
897 * also consult the vmf_insert_mixed_prot() documentation when
898 * @pgprot != @vmf->vma->vm_page_prot.
900 * Return: vm_fault_t value.
902 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
903 pgprot_t pgprot, bool write)
905 unsigned long addr = vmf->address & PMD_MASK;
906 struct vm_area_struct *vma = vmf->vma;
907 pgtable_t pgtable = NULL;
910 * If we had pmd_special, we could avoid all these restrictions,
911 * but we need to be consistent with PTEs and architectures that
912 * can't support a 'special' bit.
914 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
916 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
917 (VM_PFNMAP|VM_MIXEDMAP));
918 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
920 if (addr < vma->vm_start || addr >= vma->vm_end)
921 return VM_FAULT_SIGBUS;
923 if (arch_needs_pgtable_deposit()) {
924 pgtable = pte_alloc_one(vma->vm_mm);
929 track_pfn_insert(vma, &pgprot, pfn);
931 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
932 return VM_FAULT_NOPAGE;
934 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
936 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
937 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
939 if (likely(vma->vm_flags & VM_WRITE))
940 pud = pud_mkwrite(pud);
944 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
945 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
947 struct mm_struct *mm = vma->vm_mm;
951 ptl = pud_lock(mm, pud);
952 if (!pud_none(*pud)) {
954 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
955 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
958 entry = pud_mkyoung(*pud);
959 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
960 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
961 update_mmu_cache_pud(vma, addr, pud);
966 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
967 if (pfn_t_devmap(pfn))
968 entry = pud_mkdevmap(entry);
970 entry = pud_mkyoung(pud_mkdirty(entry));
971 entry = maybe_pud_mkwrite(entry, vma);
973 set_pud_at(mm, addr, pud, entry);
974 update_mmu_cache_pud(vma, addr, pud);
981 * vmf_insert_pfn_pud_prot - insert a pud size pfn
982 * @vmf: Structure describing the fault
983 * @pfn: pfn to insert
984 * @pgprot: page protection to use
985 * @write: whether it's a write fault
987 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
988 * also consult the vmf_insert_mixed_prot() documentation when
989 * @pgprot != @vmf->vma->vm_page_prot.
991 * Return: vm_fault_t value.
993 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
994 pgprot_t pgprot, bool write)
996 unsigned long addr = vmf->address & PUD_MASK;
997 struct vm_area_struct *vma = vmf->vma;
1000 * If we had pud_special, we could avoid all these restrictions,
1001 * but we need to be consistent with PTEs and architectures that
1002 * can't support a 'special' bit.
1004 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1005 !pfn_t_devmap(pfn));
1006 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1007 (VM_PFNMAP|VM_MIXEDMAP));
1008 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1010 if (addr < vma->vm_start || addr >= vma->vm_end)
1011 return VM_FAULT_SIGBUS;
1013 track_pfn_insert(vma, &pgprot, pfn);
1015 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1016 return VM_FAULT_NOPAGE;
1018 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1021 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1022 pmd_t *pmd, bool write)
1026 _pmd = pmd_mkyoung(*pmd);
1028 _pmd = pmd_mkdirty(_pmd);
1029 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031 update_mmu_cache_pmd(vma, addr, pmd);
1034 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1035 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1037 unsigned long pfn = pmd_pfn(*pmd);
1038 struct mm_struct *mm = vma->vm_mm;
1041 assert_spin_locked(pmd_lockptr(mm, pmd));
1043 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1044 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1045 (FOLL_PIN | FOLL_GET)))
1048 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1051 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1056 if (flags & FOLL_TOUCH)
1057 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1060 * device mapped pages can only be returned if the
1061 * caller will manage the page reference count.
1063 if (!(flags & (FOLL_GET | FOLL_PIN)))
1064 return ERR_PTR(-EEXIST);
1066 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1067 *pgmap = get_dev_pagemap(pfn, *pgmap);
1069 return ERR_PTR(-EFAULT);
1070 page = pfn_to_page(pfn);
1071 if (!try_grab_page(page, flags))
1072 page = ERR_PTR(-ENOMEM);
1077 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1081 spinlock_t *dst_ptl, *src_ptl;
1082 struct page *src_page;
1084 pgtable_t pgtable = NULL;
1087 /* Skip if can be re-fill on fault */
1088 if (!vma_is_anonymous(dst_vma))
1091 pgtable = pte_alloc_one(dst_mm);
1092 if (unlikely(!pgtable))
1095 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096 src_ptl = pmd_lockptr(src_mm, src_pmd);
1097 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1102 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103 if (unlikely(is_swap_pmd(pmd))) {
1104 swp_entry_t entry = pmd_to_swp_entry(pmd);
1106 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107 if (!is_readable_migration_entry(entry)) {
1108 entry = make_readable_migration_entry(
1110 pmd = swp_entry_to_pmd(entry);
1111 if (pmd_swp_soft_dirty(*src_pmd))
1112 pmd = pmd_swp_mksoft_dirty(pmd);
1113 if (pmd_swp_uffd_wp(*src_pmd))
1114 pmd = pmd_swp_mkuffd_wp(pmd);
1115 set_pmd_at(src_mm, addr, src_pmd, pmd);
1117 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 mm_inc_nr_ptes(dst_mm);
1119 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120 if (!userfaultfd_wp(dst_vma))
1121 pmd = pmd_swp_clear_uffd_wp(pmd);
1122 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1128 if (unlikely(!pmd_trans_huge(pmd))) {
1129 pte_free(dst_mm, pgtable);
1133 * When page table lock is held, the huge zero pmd should not be
1134 * under splitting since we don't split the page itself, only pmd to
1137 if (is_huge_zero_pmd(pmd)) {
1139 * get_huge_zero_page() will never allocate a new page here,
1140 * since we already have a zero page to copy. It just takes a
1143 mm_get_huge_zero_page(dst_mm);
1147 src_page = pmd_page(pmd);
1148 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1151 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152 /* Page maybe pinned: split and retry the fault on PTEs. */
1154 pte_free(dst_mm, pgtable);
1155 spin_unlock(src_ptl);
1156 spin_unlock(dst_ptl);
1157 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1160 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1162 mm_inc_nr_ptes(dst_mm);
1163 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165 if (!userfaultfd_wp(dst_vma))
1166 pmd = pmd_clear_uffd_wp(pmd);
1167 pmd = pmd_mkold(pmd_wrprotect(pmd));
1168 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1172 spin_unlock(src_ptl);
1173 spin_unlock(dst_ptl);
1178 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180 pud_t *pud, bool write)
1184 _pud = pud_mkyoung(*pud);
1186 _pud = pud_mkdirty(_pud);
1187 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1189 update_mmu_cache_pud(vma, addr, pud);
1192 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1195 unsigned long pfn = pud_pfn(*pud);
1196 struct mm_struct *mm = vma->vm_mm;
1199 assert_spin_locked(pud_lockptr(mm, pud));
1201 if (flags & FOLL_WRITE && !pud_write(*pud))
1204 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1205 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1206 (FOLL_PIN | FOLL_GET)))
1209 if (pud_present(*pud) && pud_devmap(*pud))
1214 if (flags & FOLL_TOUCH)
1215 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1218 * device mapped pages can only be returned if the
1219 * caller will manage the page reference count.
1221 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223 if (!(flags & (FOLL_GET | FOLL_PIN)))
1224 return ERR_PTR(-EEXIST);
1226 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1227 *pgmap = get_dev_pagemap(pfn, *pgmap);
1229 return ERR_PTR(-EFAULT);
1230 page = pfn_to_page(pfn);
1231 if (!try_grab_page(page, flags))
1232 page = ERR_PTR(-ENOMEM);
1237 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1238 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1239 struct vm_area_struct *vma)
1241 spinlock_t *dst_ptl, *src_ptl;
1245 dst_ptl = pud_lock(dst_mm, dst_pud);
1246 src_ptl = pud_lockptr(src_mm, src_pud);
1247 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1251 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255 * When page table lock is held, the huge zero pud should not be
1256 * under splitting since we don't split the page itself, only pud to
1259 if (is_huge_zero_pud(pud)) {
1260 /* No huge zero pud yet */
1264 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1265 * and split if duplicating fails.
1267 pudp_set_wrprotect(src_mm, addr, src_pud);
1268 pud = pud_mkold(pud_wrprotect(pud));
1269 set_pud_at(dst_mm, addr, dst_pud, pud);
1273 spin_unlock(src_ptl);
1274 spin_unlock(dst_ptl);
1278 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1280 bool write = vmf->flags & FAULT_FLAG_WRITE;
1282 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1283 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1286 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1288 spin_unlock(vmf->ptl);
1290 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1292 void huge_pmd_set_accessed(struct vm_fault *vmf)
1294 bool write = vmf->flags & FAULT_FLAG_WRITE;
1296 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1297 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1300 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1303 spin_unlock(vmf->ptl);
1306 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1308 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1309 struct vm_area_struct *vma = vmf->vma;
1311 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1312 pmd_t orig_pmd = vmf->orig_pmd;
1314 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1315 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1317 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1318 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1320 if (is_huge_zero_pmd(orig_pmd))
1323 spin_lock(vmf->ptl);
1325 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1326 spin_unlock(vmf->ptl);
1330 page = pmd_page(orig_pmd);
1331 VM_BUG_ON_PAGE(!PageHead(page), page);
1333 /* Early check when only holding the PT lock. */
1334 if (PageAnonExclusive(page))
1337 if (!trylock_page(page)) {
1339 spin_unlock(vmf->ptl);
1341 spin_lock(vmf->ptl);
1342 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343 spin_unlock(vmf->ptl);
1351 /* Recheck after temporarily dropping the PT lock. */
1352 if (PageAnonExclusive(page)) {
1358 * See do_wp_page(): we can only reuse the page exclusively if there are
1359 * no additional references. Note that we always drain the LRU
1360 * pagevecs immediately after adding a THP.
1362 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1363 goto unlock_fallback;
1364 if (PageSwapCache(page))
1365 try_to_free_swap(page);
1366 if (page_count(page) == 1) {
1369 page_move_anon_rmap(page, vma);
1372 if (unlikely(unshare)) {
1373 spin_unlock(vmf->ptl);
1376 entry = pmd_mkyoung(orig_pmd);
1377 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1379 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1380 spin_unlock(vmf->ptl);
1381 return VM_FAULT_WRITE;
1386 spin_unlock(vmf->ptl);
1388 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1389 return VM_FAULT_FALLBACK;
1392 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1393 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1394 struct vm_area_struct *vma,
1397 /* If the pmd is writable, we can write to the page. */
1401 /* Maybe FOLL_FORCE is set to override it? */
1402 if (!(flags & FOLL_FORCE))
1405 /* But FOLL_FORCE has no effect on shared mappings */
1406 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1409 /* ... or read-only private ones */
1410 if (!(vma->vm_flags & VM_MAYWRITE))
1413 /* ... or already writable ones that just need to take a write fault */
1414 if (vma->vm_flags & VM_WRITE)
1418 * See can_change_pte_writable(): we broke COW and could map the page
1419 * writable if we have an exclusive anonymous page ...
1421 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1424 /* ... and a write-fault isn't required for other reasons. */
1425 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1427 return !userfaultfd_huge_pmd_wp(vma, pmd);
1430 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1435 struct mm_struct *mm = vma->vm_mm;
1438 assert_spin_locked(pmd_lockptr(mm, pmd));
1440 page = pmd_page(*pmd);
1441 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1443 if ((flags & FOLL_WRITE) &&
1444 !can_follow_write_pmd(*pmd, page, vma, flags))
1447 /* Avoid dumping huge zero page */
1448 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1449 return ERR_PTR(-EFAULT);
1451 /* Full NUMA hinting faults to serialise migration in fault paths */
1452 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1455 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1456 return ERR_PTR(-EMLINK);
1458 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1459 !PageAnonExclusive(page), page);
1461 if (!try_grab_page(page, flags))
1462 return ERR_PTR(-ENOMEM);
1464 if (flags & FOLL_TOUCH)
1465 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1467 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1468 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1473 /* NUMA hinting page fault entry point for trans huge pmds */
1474 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1476 struct vm_area_struct *vma = vmf->vma;
1477 pmd_t oldpmd = vmf->orig_pmd;
1480 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1481 int page_nid = NUMA_NO_NODE;
1482 int target_nid, last_cpupid = -1;
1483 bool migrated = false;
1484 bool was_writable = pmd_savedwrite(oldpmd);
1487 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1488 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1489 spin_unlock(vmf->ptl);
1493 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1494 page = vm_normal_page_pmd(vma, haddr, pmd);
1498 /* See similar comment in do_numa_page for explanation */
1500 flags |= TNF_NO_GROUP;
1502 page_nid = page_to_nid(page);
1503 last_cpupid = page_cpupid_last(page);
1504 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1507 if (target_nid == NUMA_NO_NODE) {
1512 spin_unlock(vmf->ptl);
1514 migrated = migrate_misplaced_page(page, vma, target_nid);
1516 flags |= TNF_MIGRATED;
1517 page_nid = target_nid;
1519 flags |= TNF_MIGRATE_FAIL;
1520 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1521 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1522 spin_unlock(vmf->ptl);
1529 if (page_nid != NUMA_NO_NODE)
1530 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1536 /* Restore the PMD */
1537 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1538 pmd = pmd_mkyoung(pmd);
1540 pmd = pmd_mkwrite(pmd);
1541 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1542 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543 spin_unlock(vmf->ptl);
1548 * Return true if we do MADV_FREE successfully on entire pmd page.
1549 * Otherwise, return false.
1551 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1552 pmd_t *pmd, unsigned long addr, unsigned long next)
1557 struct mm_struct *mm = tlb->mm;
1560 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1562 ptl = pmd_trans_huge_lock(pmd, vma);
1567 if (is_huge_zero_pmd(orig_pmd))
1570 if (unlikely(!pmd_present(orig_pmd))) {
1571 VM_BUG_ON(thp_migration_supported() &&
1572 !is_pmd_migration_entry(orig_pmd));
1576 page = pmd_page(orig_pmd);
1578 * If other processes are mapping this page, we couldn't discard
1579 * the page unless they all do MADV_FREE so let's skip the page.
1581 if (total_mapcount(page) != 1)
1584 if (!trylock_page(page))
1588 * If user want to discard part-pages of THP, split it so MADV_FREE
1589 * will deactivate only them.
1591 if (next - addr != HPAGE_PMD_SIZE) {
1594 split_huge_page(page);
1600 if (PageDirty(page))
1601 ClearPageDirty(page);
1604 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1605 pmdp_invalidate(vma, addr, pmd);
1606 orig_pmd = pmd_mkold(orig_pmd);
1607 orig_pmd = pmd_mkclean(orig_pmd);
1609 set_pmd_at(mm, addr, pmd, orig_pmd);
1610 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1613 mark_page_lazyfree(page);
1621 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1625 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1626 pte_free(mm, pgtable);
1630 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1631 pmd_t *pmd, unsigned long addr)
1636 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1638 ptl = __pmd_trans_huge_lock(pmd, vma);
1642 * For architectures like ppc64 we look at deposited pgtable
1643 * when calling pmdp_huge_get_and_clear. So do the
1644 * pgtable_trans_huge_withdraw after finishing pmdp related
1647 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1649 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1650 if (vma_is_special_huge(vma)) {
1651 if (arch_needs_pgtable_deposit())
1652 zap_deposited_table(tlb->mm, pmd);
1654 } else if (is_huge_zero_pmd(orig_pmd)) {
1655 zap_deposited_table(tlb->mm, pmd);
1658 struct page *page = NULL;
1659 int flush_needed = 1;
1661 if (pmd_present(orig_pmd)) {
1662 page = pmd_page(orig_pmd);
1663 page_remove_rmap(page, vma, true);
1664 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1665 VM_BUG_ON_PAGE(!PageHead(page), page);
1666 } else if (thp_migration_supported()) {
1669 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1670 entry = pmd_to_swp_entry(orig_pmd);
1671 page = pfn_swap_entry_to_page(entry);
1674 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1676 if (PageAnon(page)) {
1677 zap_deposited_table(tlb->mm, pmd);
1678 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1680 if (arch_needs_pgtable_deposit())
1681 zap_deposited_table(tlb->mm, pmd);
1682 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1687 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1692 #ifndef pmd_move_must_withdraw
1693 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1694 spinlock_t *old_pmd_ptl,
1695 struct vm_area_struct *vma)
1698 * With split pmd lock we also need to move preallocated
1699 * PTE page table if new_pmd is on different PMD page table.
1701 * We also don't deposit and withdraw tables for file pages.
1703 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1707 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1709 #ifdef CONFIG_MEM_SOFT_DIRTY
1710 if (unlikely(is_pmd_migration_entry(pmd)))
1711 pmd = pmd_swp_mksoft_dirty(pmd);
1712 else if (pmd_present(pmd))
1713 pmd = pmd_mksoft_dirty(pmd);
1718 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1719 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1721 spinlock_t *old_ptl, *new_ptl;
1723 struct mm_struct *mm = vma->vm_mm;
1724 bool force_flush = false;
1727 * The destination pmd shouldn't be established, free_pgtables()
1728 * should have release it.
1730 if (WARN_ON(!pmd_none(*new_pmd))) {
1731 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1736 * We don't have to worry about the ordering of src and dst
1737 * ptlocks because exclusive mmap_lock prevents deadlock.
1739 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1741 new_ptl = pmd_lockptr(mm, new_pmd);
1742 if (new_ptl != old_ptl)
1743 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1744 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1745 if (pmd_present(pmd))
1747 VM_BUG_ON(!pmd_none(*new_pmd));
1749 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1751 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1752 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1754 pmd = move_soft_dirty_pmd(pmd);
1755 set_pmd_at(mm, new_addr, new_pmd, pmd);
1757 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1758 if (new_ptl != old_ptl)
1759 spin_unlock(new_ptl);
1760 spin_unlock(old_ptl);
1768 * - 0 if PMD could not be locked
1769 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1770 * or if prot_numa but THP migration is not supported
1771 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1773 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1774 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1775 unsigned long cp_flags)
1777 struct mm_struct *mm = vma->vm_mm;
1779 pmd_t oldpmd, entry;
1780 bool preserve_write;
1782 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1783 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1784 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1786 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1788 if (prot_numa && !thp_migration_supported())
1791 ptl = __pmd_trans_huge_lock(pmd, vma);
1795 preserve_write = prot_numa && pmd_write(*pmd);
1798 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1799 if (is_swap_pmd(*pmd)) {
1800 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1801 struct page *page = pfn_swap_entry_to_page(entry);
1803 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1804 if (is_writable_migration_entry(entry)) {
1807 * A protection check is difficult so
1808 * just be safe and disable write
1811 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1813 entry = make_readable_migration_entry(swp_offset(entry));
1814 newpmd = swp_entry_to_pmd(entry);
1815 if (pmd_swp_soft_dirty(*pmd))
1816 newpmd = pmd_swp_mksoft_dirty(newpmd);
1817 if (pmd_swp_uffd_wp(*pmd))
1818 newpmd = pmd_swp_mkuffd_wp(newpmd);
1819 set_pmd_at(mm, addr, pmd, newpmd);
1828 * Avoid trapping faults against the zero page. The read-only
1829 * data is likely to be read-cached on the local CPU and
1830 * local/remote hits to the zero page are not interesting.
1832 if (is_huge_zero_pmd(*pmd))
1835 if (pmd_protnone(*pmd))
1838 page = pmd_page(*pmd);
1840 * Skip scanning top tier node if normal numa
1841 * balancing is disabled
1843 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1844 node_is_toptier(page_to_nid(page)))
1848 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1849 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1850 * which is also under mmap_read_lock(mm):
1853 * change_huge_pmd(prot_numa=1)
1854 * pmdp_huge_get_and_clear_notify()
1855 * madvise_dontneed()
1857 * pmd_trans_huge(*pmd) == 0 (without ptl)
1860 * // pmd is re-established
1862 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1863 * which may break userspace.
1865 * pmdp_invalidate_ad() is required to make sure we don't miss
1866 * dirty/young flags set by hardware.
1868 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1870 entry = pmd_modify(oldpmd, newprot);
1872 entry = pmd_mk_savedwrite(entry);
1874 entry = pmd_wrprotect(entry);
1875 entry = pmd_mkuffd_wp(entry);
1876 } else if (uffd_wp_resolve) {
1878 * Leave the write bit to be handled by PF interrupt
1879 * handler, then things like COW could be properly
1882 entry = pmd_clear_uffd_wp(entry);
1885 set_pmd_at(mm, addr, pmd, entry);
1887 if (huge_pmd_needs_flush(oldpmd, entry))
1888 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1890 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1897 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1899 * Note that if it returns page table lock pointer, this routine returns without
1900 * unlocking page table lock. So callers must unlock it.
1902 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1905 ptl = pmd_lock(vma->vm_mm, pmd);
1906 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1914 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1916 * Note that if it returns page table lock pointer, this routine returns without
1917 * unlocking page table lock. So callers must unlock it.
1919 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1923 ptl = pud_lock(vma->vm_mm, pud);
1924 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932 pud_t *pud, unsigned long addr)
1936 ptl = __pud_trans_huge_lock(pud, vma);
1940 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1941 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1942 if (vma_is_special_huge(vma)) {
1944 /* No zero page support yet */
1946 /* No support for anonymous PUD pages yet */
1952 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1953 unsigned long haddr)
1955 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1956 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1957 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1958 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1960 count_vm_event(THP_SPLIT_PUD);
1962 pudp_huge_clear_flush_notify(vma, haddr, pud);
1965 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1966 unsigned long address)
1969 struct mmu_notifier_range range;
1971 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1972 address & HPAGE_PUD_MASK,
1973 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1974 mmu_notifier_invalidate_range_start(&range);
1975 ptl = pud_lock(vma->vm_mm, pud);
1976 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1978 __split_huge_pud_locked(vma, pud, range.start);
1983 * No need to double call mmu_notifier->invalidate_range() callback as
1984 * the above pudp_huge_clear_flush_notify() did already call it.
1986 mmu_notifier_invalidate_range_only_end(&range);
1988 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1990 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1991 unsigned long haddr, pmd_t *pmd)
1993 struct mm_struct *mm = vma->vm_mm;
1999 * Leave pmd empty until pte is filled note that it is fine to delay
2000 * notification until mmu_notifier_invalidate_range_end() as we are
2001 * replacing a zero pmd write protected page with a zero pte write
2004 * See Documentation/mm/mmu_notifier.rst
2006 pmdp_huge_clear_flush(vma, haddr, pmd);
2008 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2009 pmd_populate(mm, &_pmd, pgtable);
2011 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2013 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2014 entry = pte_mkspecial(entry);
2015 pte = pte_offset_map(&_pmd, haddr);
2016 VM_BUG_ON(!pte_none(*pte));
2017 set_pte_at(mm, haddr, pte, entry);
2020 smp_wmb(); /* make pte visible before pmd */
2021 pmd_populate(mm, pmd, pgtable);
2024 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2025 unsigned long haddr, bool freeze)
2027 struct mm_struct *mm = vma->vm_mm;
2030 pmd_t old_pmd, _pmd;
2031 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2032 bool anon_exclusive = false;
2036 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2037 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2038 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2039 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2040 && !pmd_devmap(*pmd));
2042 count_vm_event(THP_SPLIT_PMD);
2044 if (!vma_is_anonymous(vma)) {
2045 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2047 * We are going to unmap this huge page. So
2048 * just go ahead and zap it
2050 if (arch_needs_pgtable_deposit())
2051 zap_deposited_table(mm, pmd);
2052 if (vma_is_special_huge(vma))
2054 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2057 entry = pmd_to_swp_entry(old_pmd);
2058 page = pfn_swap_entry_to_page(entry);
2060 page = pmd_page(old_pmd);
2061 if (!PageDirty(page) && pmd_dirty(old_pmd))
2062 set_page_dirty(page);
2063 if (!PageReferenced(page) && pmd_young(old_pmd))
2064 SetPageReferenced(page);
2065 page_remove_rmap(page, vma, true);
2068 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2072 if (is_huge_zero_pmd(*pmd)) {
2074 * FIXME: Do we want to invalidate secondary mmu by calling
2075 * mmu_notifier_invalidate_range() see comments below inside
2076 * __split_huge_pmd() ?
2078 * We are going from a zero huge page write protected to zero
2079 * small page also write protected so it does not seems useful
2080 * to invalidate secondary mmu at this time.
2082 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2086 * Up to this point the pmd is present and huge and userland has the
2087 * whole access to the hugepage during the split (which happens in
2088 * place). If we overwrite the pmd with the not-huge version pointing
2089 * to the pte here (which of course we could if all CPUs were bug
2090 * free), userland could trigger a small page size TLB miss on the
2091 * small sized TLB while the hugepage TLB entry is still established in
2092 * the huge TLB. Some CPU doesn't like that.
2093 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2094 * 383 on page 105. Intel should be safe but is also warns that it's
2095 * only safe if the permission and cache attributes of the two entries
2096 * loaded in the two TLB is identical (which should be the case here).
2097 * But it is generally safer to never allow small and huge TLB entries
2098 * for the same virtual address to be loaded simultaneously. So instead
2099 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2100 * current pmd notpresent (atomically because here the pmd_trans_huge
2101 * must remain set at all times on the pmd until the split is complete
2102 * for this pmd), then we flush the SMP TLB and finally we write the
2103 * non-huge version of the pmd entry with pmd_populate.
2105 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2107 pmd_migration = is_pmd_migration_entry(old_pmd);
2108 if (unlikely(pmd_migration)) {
2111 entry = pmd_to_swp_entry(old_pmd);
2112 page = pfn_swap_entry_to_page(entry);
2113 write = is_writable_migration_entry(entry);
2115 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2117 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2118 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2120 page = pmd_page(old_pmd);
2121 if (pmd_dirty(old_pmd))
2123 write = pmd_write(old_pmd);
2124 young = pmd_young(old_pmd);
2125 soft_dirty = pmd_soft_dirty(old_pmd);
2126 uffd_wp = pmd_uffd_wp(old_pmd);
2128 VM_BUG_ON_PAGE(!page_count(page), page);
2129 page_ref_add(page, HPAGE_PMD_NR - 1);
2132 * Without "freeze", we'll simply split the PMD, propagating the
2133 * PageAnonExclusive() flag for each PTE by setting it for
2134 * each subpage -- no need to (temporarily) clear.
2136 * With "freeze" we want to replace mapped pages by
2137 * migration entries right away. This is only possible if we
2138 * managed to clear PageAnonExclusive() -- see
2139 * set_pmd_migration_entry().
2141 * In case we cannot clear PageAnonExclusive(), split the PMD
2142 * only and let try_to_migrate_one() fail later.
2144 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2145 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2150 * Withdraw the table only after we mark the pmd entry invalid.
2151 * This's critical for some architectures (Power).
2153 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154 pmd_populate(mm, &_pmd, pgtable);
2156 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2159 * Note that NUMA hinting access restrictions are not
2160 * transferred to avoid any possibility of altering
2161 * permissions across VMAs.
2163 if (freeze || pmd_migration) {
2164 swp_entry_t swp_entry;
2166 swp_entry = make_writable_migration_entry(
2167 page_to_pfn(page + i));
2168 else if (anon_exclusive)
2169 swp_entry = make_readable_exclusive_migration_entry(
2170 page_to_pfn(page + i));
2172 swp_entry = make_readable_migration_entry(
2173 page_to_pfn(page + i));
2174 entry = swp_entry_to_pte(swp_entry);
2176 entry = pte_swp_mksoft_dirty(entry);
2178 entry = pte_swp_mkuffd_wp(entry);
2180 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2181 entry = maybe_mkwrite(entry, vma);
2183 SetPageAnonExclusive(page + i);
2185 entry = pte_wrprotect(entry);
2187 entry = pte_mkold(entry);
2189 entry = pte_mksoft_dirty(entry);
2191 entry = pte_mkuffd_wp(entry);
2193 pte = pte_offset_map(&_pmd, addr);
2194 BUG_ON(!pte_none(*pte));
2195 set_pte_at(mm, addr, pte, entry);
2197 atomic_inc(&page[i]._mapcount);
2201 if (!pmd_migration) {
2203 * Set PG_double_map before dropping compound_mapcount to avoid
2204 * false-negative page_mapped().
2206 if (compound_mapcount(page) > 1 &&
2207 !TestSetPageDoubleMap(page)) {
2208 for (i = 0; i < HPAGE_PMD_NR; i++)
2209 atomic_inc(&page[i]._mapcount);
2212 lock_page_memcg(page);
2213 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2214 /* Last compound_mapcount is gone. */
2215 __mod_lruvec_page_state(page, NR_ANON_THPS,
2217 if (TestClearPageDoubleMap(page)) {
2218 /* No need in mapcount reference anymore */
2219 for (i = 0; i < HPAGE_PMD_NR; i++)
2220 atomic_dec(&page[i]._mapcount);
2223 unlock_page_memcg(page);
2225 /* Above is effectively page_remove_rmap(page, vma, true) */
2226 munlock_vma_page(page, vma, true);
2229 smp_wmb(); /* make pte visible before pmd */
2230 pmd_populate(mm, pmd, pgtable);
2233 for (i = 0; i < HPAGE_PMD_NR; i++) {
2234 page_remove_rmap(page + i, vma, false);
2240 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2241 unsigned long address, bool freeze, struct folio *folio)
2244 struct mmu_notifier_range range;
2246 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2247 address & HPAGE_PMD_MASK,
2248 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2249 mmu_notifier_invalidate_range_start(&range);
2250 ptl = pmd_lock(vma->vm_mm, pmd);
2253 * If caller asks to setup a migration entry, we need a folio to check
2254 * pmd against. Otherwise we can end up replacing wrong folio.
2256 VM_BUG_ON(freeze && !folio);
2257 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2259 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2260 is_pmd_migration_entry(*pmd)) {
2262 * It's safe to call pmd_page when folio is set because it's
2263 * guaranteed that pmd is present.
2265 if (folio && folio != page_folio(pmd_page(*pmd)))
2267 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2273 * No need to double call mmu_notifier->invalidate_range() callback.
2274 * They are 3 cases to consider inside __split_huge_pmd_locked():
2275 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2276 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2277 * fault will trigger a flush_notify before pointing to a new page
2278 * (it is fine if the secondary mmu keeps pointing to the old zero
2279 * page in the meantime)
2280 * 3) Split a huge pmd into pte pointing to the same page. No need
2281 * to invalidate secondary tlb entry they are all still valid.
2282 * any further changes to individual pte will notify. So no need
2283 * to call mmu_notifier->invalidate_range()
2285 mmu_notifier_invalidate_range_only_end(&range);
2288 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2289 bool freeze, struct folio *folio)
2296 pgd = pgd_offset(vma->vm_mm, address);
2297 if (!pgd_present(*pgd))
2300 p4d = p4d_offset(pgd, address);
2301 if (!p4d_present(*p4d))
2304 pud = pud_offset(p4d, address);
2305 if (!pud_present(*pud))
2308 pmd = pmd_offset(pud, address);
2310 __split_huge_pmd(vma, pmd, address, freeze, folio);
2313 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2316 * If the new address isn't hpage aligned and it could previously
2317 * contain an hugepage: check if we need to split an huge pmd.
2319 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2320 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2321 ALIGN(address, HPAGE_PMD_SIZE)))
2322 split_huge_pmd_address(vma, address, false, NULL);
2325 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2326 unsigned long start,
2330 /* Check if we need to split start first. */
2331 split_huge_pmd_if_needed(vma, start);
2333 /* Check if we need to split end next. */
2334 split_huge_pmd_if_needed(vma, end);
2337 * If we're also updating the vma->vm_next->vm_start,
2338 * check if we need to split it.
2340 if (adjust_next > 0) {
2341 struct vm_area_struct *next = vma->vm_next;
2342 unsigned long nstart = next->vm_start;
2343 nstart += adjust_next;
2344 split_huge_pmd_if_needed(next, nstart);
2348 static void unmap_page(struct page *page)
2350 struct folio *folio = page_folio(page);
2351 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2354 VM_BUG_ON_PAGE(!PageHead(page), page);
2357 * Anon pages need migration entries to preserve them, but file
2358 * pages can simply be left unmapped, then faulted back on demand.
2359 * If that is ever changed (perhaps for mlock), update remap_page().
2361 if (folio_test_anon(folio))
2362 try_to_migrate(folio, ttu_flags);
2364 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2367 static void remap_page(struct folio *folio, unsigned long nr)
2371 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2372 if (!folio_test_anon(folio))
2375 remove_migration_ptes(folio, folio, true);
2376 i += folio_nr_pages(folio);
2379 folio = folio_next(folio);
2383 static void lru_add_page_tail(struct page *head, struct page *tail,
2384 struct lruvec *lruvec, struct list_head *list)
2386 VM_BUG_ON_PAGE(!PageHead(head), head);
2387 VM_BUG_ON_PAGE(PageCompound(tail), head);
2388 VM_BUG_ON_PAGE(PageLRU(tail), head);
2389 lockdep_assert_held(&lruvec->lru_lock);
2392 /* page reclaim is reclaiming a huge page */
2393 VM_WARN_ON(PageLRU(head));
2395 list_add_tail(&tail->lru, list);
2397 /* head is still on lru (and we have it frozen) */
2398 VM_WARN_ON(!PageLRU(head));
2399 if (PageUnevictable(tail))
2400 tail->mlock_count = 0;
2402 list_add_tail(&tail->lru, &head->lru);
2407 static void __split_huge_page_tail(struct page *head, int tail,
2408 struct lruvec *lruvec, struct list_head *list)
2410 struct page *page_tail = head + tail;
2412 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2415 * Clone page flags before unfreezing refcount.
2417 * After successful get_page_unless_zero() might follow flags change,
2418 * for example lock_page() which set PG_waiters.
2420 * Note that for mapped sub-pages of an anonymous THP,
2421 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2422 * the migration entry instead from where remap_page() will restore it.
2423 * We can still have PG_anon_exclusive set on effectively unmapped and
2424 * unreferenced sub-pages of an anonymous THP: we can simply drop
2425 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2427 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2428 page_tail->flags |= (head->flags &
2429 ((1L << PG_referenced) |
2430 (1L << PG_swapbacked) |
2431 (1L << PG_swapcache) |
2432 (1L << PG_mlocked) |
2433 (1L << PG_uptodate) |
2435 (1L << PG_workingset) |
2437 (1L << PG_unevictable) |
2443 /* ->mapping in first tail page is compound_mapcount */
2444 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2446 page_tail->mapping = head->mapping;
2447 page_tail->index = head->index + tail;
2448 page_tail->private = 0;
2450 /* Page flags must be visible before we make the page non-compound. */
2454 * Clear PageTail before unfreezing page refcount.
2456 * After successful get_page_unless_zero() might follow put_page()
2457 * which needs correct compound_head().
2459 clear_compound_head(page_tail);
2461 /* Finally unfreeze refcount. Additional reference from page cache. */
2462 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2463 PageSwapCache(head)));
2465 if (page_is_young(head))
2466 set_page_young(page_tail);
2467 if (page_is_idle(head))
2468 set_page_idle(page_tail);
2470 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2473 * always add to the tail because some iterators expect new
2474 * pages to show after the currently processed elements - e.g.
2477 lru_add_page_tail(head, page_tail, lruvec, list);
2480 static void __split_huge_page(struct page *page, struct list_head *list,
2483 struct folio *folio = page_folio(page);
2484 struct page *head = &folio->page;
2485 struct lruvec *lruvec;
2486 struct address_space *swap_cache = NULL;
2487 unsigned long offset = 0;
2488 unsigned int nr = thp_nr_pages(head);
2491 /* complete memcg works before add pages to LRU */
2492 split_page_memcg(head, nr);
2494 if (PageAnon(head) && PageSwapCache(head)) {
2495 swp_entry_t entry = { .val = page_private(head) };
2497 offset = swp_offset(entry);
2498 swap_cache = swap_address_space(entry);
2499 xa_lock(&swap_cache->i_pages);
2502 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2503 lruvec = folio_lruvec_lock(folio);
2505 ClearPageHasHWPoisoned(head);
2507 for (i = nr - 1; i >= 1; i--) {
2508 __split_huge_page_tail(head, i, lruvec, list);
2509 /* Some pages can be beyond EOF: drop them from page cache */
2510 if (head[i].index >= end) {
2511 struct folio *tail = page_folio(head + i);
2513 if (shmem_mapping(head->mapping))
2514 shmem_uncharge(head->mapping->host, 1);
2515 else if (folio_test_clear_dirty(tail))
2516 folio_account_cleaned(tail,
2517 inode_to_wb(folio->mapping->host));
2518 __filemap_remove_folio(tail, NULL);
2520 } else if (!PageAnon(page)) {
2521 __xa_store(&head->mapping->i_pages, head[i].index,
2523 } else if (swap_cache) {
2524 __xa_store(&swap_cache->i_pages, offset + i,
2529 ClearPageCompound(head);
2530 unlock_page_lruvec(lruvec);
2531 /* Caller disabled irqs, so they are still disabled here */
2533 split_page_owner(head, nr);
2535 /* See comment in __split_huge_page_tail() */
2536 if (PageAnon(head)) {
2537 /* Additional pin to swap cache */
2538 if (PageSwapCache(head)) {
2539 page_ref_add(head, 2);
2540 xa_unlock(&swap_cache->i_pages);
2545 /* Additional pin to page cache */
2546 page_ref_add(head, 2);
2547 xa_unlock(&head->mapping->i_pages);
2551 remap_page(folio, nr);
2553 if (PageSwapCache(head)) {
2554 swp_entry_t entry = { .val = page_private(head) };
2556 split_swap_cluster(entry);
2559 for (i = 0; i < nr; i++) {
2560 struct page *subpage = head + i;
2561 if (subpage == page)
2563 unlock_page(subpage);
2566 * Subpages may be freed if there wasn't any mapping
2567 * like if add_to_swap() is running on a lru page that
2568 * had its mapping zapped. And freeing these pages
2569 * requires taking the lru_lock so we do the put_page
2570 * of the tail pages after the split is complete.
2572 free_page_and_swap_cache(subpage);
2576 /* Racy check whether the huge page can be split */
2577 bool can_split_folio(struct folio *folio, int *pextra_pins)
2581 /* Additional pins from page cache */
2582 if (folio_test_anon(folio))
2583 extra_pins = folio_test_swapcache(folio) ?
2584 folio_nr_pages(folio) : 0;
2586 extra_pins = folio_nr_pages(folio);
2588 *pextra_pins = extra_pins;
2589 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2593 * This function splits huge page into normal pages. @page can point to any
2594 * subpage of huge page to split. Split doesn't change the position of @page.
2596 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597 * The huge page must be locked.
2599 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601 * Both head page and tail pages will inherit mapping, flags, and so on from
2604 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605 * they are not mapped.
2607 * Returns 0 if the hugepage is split successfully.
2608 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2611 int split_huge_page_to_list(struct page *page, struct list_head *list)
2613 struct folio *folio = page_folio(page);
2614 struct page *head = &folio->page;
2615 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2616 XA_STATE(xas, &head->mapping->i_pages, head->index);
2617 struct anon_vma *anon_vma = NULL;
2618 struct address_space *mapping = NULL;
2619 int extra_pins, ret;
2623 VM_BUG_ON_PAGE(!PageLocked(head), head);
2624 VM_BUG_ON_PAGE(!PageCompound(head), head);
2626 is_hzp = is_huge_zero_page(head);
2627 VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2631 if (PageWriteback(head))
2634 if (PageAnon(head)) {
2636 * The caller does not necessarily hold an mmap_lock that would
2637 * prevent the anon_vma disappearing so we first we take a
2638 * reference to it and then lock the anon_vma for write. This
2639 * is similar to folio_lock_anon_vma_read except the write lock
2640 * is taken to serialise against parallel split or collapse
2643 anon_vma = page_get_anon_vma(head);
2650 anon_vma_lock_write(anon_vma);
2652 mapping = head->mapping;
2660 xas_split_alloc(&xas, head, compound_order(head),
2661 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2662 if (xas_error(&xas)) {
2663 ret = xas_error(&xas);
2668 i_mmap_lock_read(mapping);
2671 *__split_huge_page() may need to trim off pages beyond EOF:
2672 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2673 * which cannot be nested inside the page tree lock. So note
2674 * end now: i_size itself may be changed at any moment, but
2675 * head page lock is good enough to serialize the trimming.
2677 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2678 if (shmem_mapping(mapping))
2679 end = shmem_fallocend(mapping->host, end);
2683 * Racy check if we can split the page, before unmap_page() will
2686 if (!can_split_folio(folio, &extra_pins)) {
2693 /* block interrupt reentry in xa_lock and spinlock */
2694 local_irq_disable();
2697 * Check if the head page is present in page cache.
2698 * We assume all tail are present too, if head is there.
2702 if (xas_load(&xas) != head)
2706 /* Prevent deferred_split_scan() touching ->_refcount */
2707 spin_lock(&ds_queue->split_queue_lock);
2708 if (page_ref_freeze(head, 1 + extra_pins)) {
2709 if (!list_empty(page_deferred_list(head))) {
2710 ds_queue->split_queue_len--;
2711 list_del(page_deferred_list(head));
2713 spin_unlock(&ds_queue->split_queue_lock);
2715 int nr = thp_nr_pages(head);
2717 xas_split(&xas, head, thp_order(head));
2718 if (PageSwapBacked(head)) {
2719 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2722 __mod_lruvec_page_state(head, NR_FILE_THPS,
2724 filemap_nr_thps_dec(mapping);
2728 __split_huge_page(page, list, end);
2731 spin_unlock(&ds_queue->split_queue_lock);
2736 remap_page(folio, folio_nr_pages(folio));
2742 anon_vma_unlock_write(anon_vma);
2743 put_anon_vma(anon_vma);
2746 i_mmap_unlock_read(mapping);
2749 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2753 void free_transhuge_page(struct page *page)
2755 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2756 unsigned long flags;
2758 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2759 if (!list_empty(page_deferred_list(page))) {
2760 ds_queue->split_queue_len--;
2761 list_del(page_deferred_list(page));
2763 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2764 free_compound_page(page);
2767 void deferred_split_huge_page(struct page *page)
2769 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2771 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2773 unsigned long flags;
2775 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2778 * The try_to_unmap() in page reclaim path might reach here too,
2779 * this may cause a race condition to corrupt deferred split queue.
2780 * And, if page reclaim is already handling the same page, it is
2781 * unnecessary to handle it again in shrinker.
2783 * Check PageSwapCache to determine if the page is being
2784 * handled by page reclaim since THP swap would add the page into
2785 * swap cache before calling try_to_unmap().
2787 if (PageSwapCache(page))
2790 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2791 if (list_empty(page_deferred_list(page))) {
2792 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2793 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2794 ds_queue->split_queue_len++;
2797 set_shrinker_bit(memcg, page_to_nid(page),
2798 deferred_split_shrinker.id);
2801 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2804 static unsigned long deferred_split_count(struct shrinker *shrink,
2805 struct shrink_control *sc)
2807 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2808 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2812 ds_queue = &sc->memcg->deferred_split_queue;
2814 return READ_ONCE(ds_queue->split_queue_len);
2817 static unsigned long deferred_split_scan(struct shrinker *shrink,
2818 struct shrink_control *sc)
2820 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2821 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2822 unsigned long flags;
2823 LIST_HEAD(list), *pos, *next;
2829 ds_queue = &sc->memcg->deferred_split_queue;
2832 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2833 /* Take pin on all head pages to avoid freeing them under us */
2834 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2835 page = list_entry((void *)pos, struct page, deferred_list);
2836 page = compound_head(page);
2837 if (get_page_unless_zero(page)) {
2838 list_move(page_deferred_list(page), &list);
2840 /* We lost race with put_compound_page() */
2841 list_del_init(page_deferred_list(page));
2842 ds_queue->split_queue_len--;
2844 if (!--sc->nr_to_scan)
2847 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2849 list_for_each_safe(pos, next, &list) {
2850 page = list_entry((void *)pos, struct page, deferred_list);
2851 if (!trylock_page(page))
2853 /* split_huge_page() removes page from list on success */
2854 if (!split_huge_page(page))
2861 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2862 list_splice_tail(&list, &ds_queue->split_queue);
2863 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2866 * Stop shrinker if we didn't split any page, but the queue is empty.
2867 * This can happen if pages were freed under us.
2869 if (!split && list_empty(&ds_queue->split_queue))
2874 static struct shrinker deferred_split_shrinker = {
2875 .count_objects = deferred_split_count,
2876 .scan_objects = deferred_split_scan,
2877 .seeks = DEFAULT_SEEKS,
2878 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2882 #ifdef CONFIG_DEBUG_FS
2883 static void split_huge_pages_all(void)
2887 unsigned long pfn, max_zone_pfn;
2888 unsigned long total = 0, split = 0;
2890 pr_debug("Split all THPs\n");
2891 for_each_zone(zone) {
2892 if (!managed_zone(zone))
2894 max_zone_pfn = zone_end_pfn(zone);
2895 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2898 page = pfn_to_online_page(pfn);
2899 if (!page || !get_page_unless_zero(page))
2902 if (zone != page_zone(page))
2905 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2910 nr_pages = thp_nr_pages(page);
2911 if (!split_huge_page(page))
2913 pfn += nr_pages - 1;
2921 pr_debug("%lu of %lu THP split\n", split, total);
2924 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2926 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2927 is_vm_hugetlb_page(vma);
2930 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2931 unsigned long vaddr_end)
2934 struct task_struct *task;
2935 struct mm_struct *mm;
2936 unsigned long total = 0, split = 0;
2939 vaddr_start &= PAGE_MASK;
2940 vaddr_end &= PAGE_MASK;
2942 /* Find the task_struct from pid */
2944 task = find_task_by_vpid(pid);
2950 get_task_struct(task);
2953 /* Find the mm_struct */
2954 mm = get_task_mm(task);
2955 put_task_struct(task);
2962 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2963 pid, vaddr_start, vaddr_end);
2967 * always increase addr by PAGE_SIZE, since we could have a PTE page
2968 * table filled with PTE-mapped THPs, each of which is distinct.
2970 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2971 struct vm_area_struct *vma = vma_lookup(mm, addr);
2977 /* skip special VMA and hugetlb VMA */
2978 if (vma_not_suitable_for_thp_split(vma)) {
2983 /* FOLL_DUMP to ignore special (like zero) pages */
2984 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2986 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
2989 if (!is_transparent_hugepage(page))
2993 if (!can_split_folio(page_folio(page), NULL))
2996 if (!trylock_page(page))
2999 if (!split_huge_page(page))
3007 mmap_read_unlock(mm);
3010 pr_debug("%lu of %lu THP split\n", split, total);
3016 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3019 struct filename *file;
3020 struct file *candidate;
3021 struct address_space *mapping;
3025 unsigned long total = 0, split = 0;
3027 file = getname_kernel(file_path);
3031 candidate = file_open_name(file, O_RDONLY, 0);
3032 if (IS_ERR(candidate))
3035 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3036 file_path, off_start, off_end);
3038 mapping = candidate->f_mapping;
3040 for (index = off_start; index < off_end; index += nr_pages) {
3041 struct page *fpage = pagecache_get_page(mapping, index,
3042 FGP_ENTRY | FGP_HEAD, 0);
3045 if (xa_is_value(fpage) || !fpage)
3048 if (!is_transparent_hugepage(fpage))
3052 nr_pages = thp_nr_pages(fpage);
3054 if (!trylock_page(fpage))
3057 if (!split_huge_page(fpage))
3066 filp_close(candidate, NULL);
3069 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3075 #define MAX_INPUT_BUF_SZ 255
3077 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3078 size_t count, loff_t *ppops)
3080 static DEFINE_MUTEX(split_debug_mutex);
3082 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3083 char input_buf[MAX_INPUT_BUF_SZ];
3085 unsigned long vaddr_start, vaddr_end;
3087 ret = mutex_lock_interruptible(&split_debug_mutex);
3093 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3094 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3097 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3099 if (input_buf[0] == '/') {
3101 char *buf = input_buf;
3102 char file_path[MAX_INPUT_BUF_SZ];
3103 pgoff_t off_start = 0, off_end = 0;
3104 size_t input_len = strlen(input_buf);
3106 tok = strsep(&buf, ",");
3108 strcpy(file_path, tok);
3114 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3119 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3126 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3127 if (ret == 1 && pid == 1) {
3128 split_huge_pages_all();
3129 ret = strlen(input_buf);
3131 } else if (ret != 3) {
3136 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3138 ret = strlen(input_buf);
3140 mutex_unlock(&split_debug_mutex);
3145 static const struct file_operations split_huge_pages_fops = {
3146 .owner = THIS_MODULE,
3147 .write = split_huge_pages_write,
3148 .llseek = no_llseek,
3151 static int __init split_huge_pages_debugfs(void)
3153 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3154 &split_huge_pages_fops);
3157 late_initcall(split_huge_pages_debugfs);
3160 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3161 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3164 struct vm_area_struct *vma = pvmw->vma;
3165 struct mm_struct *mm = vma->vm_mm;
3166 unsigned long address = pvmw->address;
3167 bool anon_exclusive;
3172 if (!(pvmw->pmd && !pvmw->pte))
3175 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3176 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3178 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3179 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3180 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3184 if (pmd_dirty(pmdval))
3185 set_page_dirty(page);
3186 if (pmd_write(pmdval))
3187 entry = make_writable_migration_entry(page_to_pfn(page));
3188 else if (anon_exclusive)
3189 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3191 entry = make_readable_migration_entry(page_to_pfn(page));
3192 pmdswp = swp_entry_to_pmd(entry);
3193 if (pmd_soft_dirty(pmdval))
3194 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3195 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3196 page_remove_rmap(page, vma, true);
3198 trace_set_migration_pmd(address, pmd_val(pmdswp));
3203 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3205 struct vm_area_struct *vma = pvmw->vma;
3206 struct mm_struct *mm = vma->vm_mm;
3207 unsigned long address = pvmw->address;
3208 unsigned long haddr = address & HPAGE_PMD_MASK;
3212 if (!(pvmw->pmd && !pvmw->pte))
3215 entry = pmd_to_swp_entry(*pvmw->pmd);
3217 pmde = pmd_mkold(mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)));
3218 if (pmd_swp_soft_dirty(*pvmw->pmd))
3219 pmde = pmd_mksoft_dirty(pmde);
3220 if (is_writable_migration_entry(entry))
3221 pmde = maybe_pmd_mkwrite(pmde, vma);
3222 if (pmd_swp_uffd_wp(*pvmw->pmd))
3223 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3225 if (PageAnon(new)) {
3226 rmap_t rmap_flags = RMAP_COMPOUND;
3228 if (!is_readable_migration_entry(entry))
3229 rmap_flags |= RMAP_EXCLUSIVE;
3231 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3233 page_add_file_rmap(new, vma, true);
3235 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3236 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3238 /* No need to invalidate - it was non-present before */
3239 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3240 trace_remove_migration_pmd(address, pmd_val(pmde));