1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 if (!transhuge_vma_suitable(vma, addr))
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
80 static bool get_huge_zero_page(void)
82 struct page *zero_page;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 __free_pages(zero_page, compound_order(zero_page));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page);
130 void mm_put_huge_zero_page(struct mm_struct *mm)
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 output = "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 &transparent_hugepage_flags))
172 output = "always [madvise] never";
174 output = "always madvise [never]";
176 return sysfs_emit(buf, "%s\n", output);
179 static ssize_t enabled_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
185 if (sysfs_streq(buf, "always")) {
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 } else if (sysfs_streq(buf, "madvise")) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 } else if (sysfs_streq(buf, "never")) {
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 int err = start_stop_khugepaged();
204 static struct kobj_attribute enabled_attr =
205 __ATTR(enabled, 0644, enabled_show, enabled_store);
207 ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 struct kobj_attribute *attr, char *buf,
209 enum transparent_hugepage_flag flag)
211 return sysfs_emit(buf, "%d\n",
212 !!test_bit(flag, &transparent_hugepage_flags));
215 ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count,
218 enum transparent_hugepage_flag flag)
223 ret = kstrtoul(buf, 10, &value);
230 set_bit(flag, &transparent_hugepage_flags);
232 clear_bit(flag, &transparent_hugepage_flags);
237 static ssize_t defrag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf)
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 &transparent_hugepage_flags))
244 output = "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 &transparent_hugepage_flags))
250 output = "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 &transparent_hugepage_flags))
253 output = "always defer defer+madvise [madvise] never";
255 output = "always defer defer+madvise madvise [never]";
257 return sysfs_emit(buf, "%s\n", output);
260 static ssize_t defrag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
264 if (sysfs_streq(buf, "always")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 } else if (sysfs_streq(buf, "defer+madvise")) {
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 } else if (sysfs_streq(buf, "defer")) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 } else if (sysfs_streq(buf, "madvise")) {
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 } else if (sysfs_streq(buf, "never")) {
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
294 static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
297 static ssize_t use_zero_page_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
300 return single_hugepage_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
303 static ssize_t use_zero_page_store(struct kobject *kobj,
304 struct kobj_attribute *attr, const char *buf, size_t count)
306 return single_hugepage_flag_store(kobj, attr, buf, count,
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
309 static struct kobj_attribute use_zero_page_attr =
310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
312 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
317 static struct kobj_attribute hpage_pmd_size_attr =
318 __ATTR_RO(hpage_pmd_size);
320 static struct attribute *hugepage_attr[] = {
323 &use_zero_page_attr.attr,
324 &hpage_pmd_size_attr.attr,
326 &shmem_enabled_attr.attr,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
347 pr_err("failed to register transparent hugepage group\n");
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362 kobject_put(*hugepage_kobj);
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
390 * Hardware doesn't support hugepages, hence disable
393 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
398 * hugepages can't be allocated by the buddy allocator
400 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
402 * we use page->mapping and page->index in second tail page
403 * as list_head: assuming THP order >= 2
405 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
407 err = hugepage_init_sysfs(&hugepage_kobj);
411 err = khugepaged_init();
415 err = register_shrinker(&huge_zero_page_shrinker);
417 goto err_hzp_shrinker;
418 err = register_shrinker(&deferred_split_shrinker);
420 goto err_split_shrinker;
423 * By default disable transparent hugepages on smaller systems,
424 * where the extra memory used could hurt more than TLB overhead
425 * is likely to save. The admin can still enable it through /sys.
427 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428 transparent_hugepage_flags = 0;
432 err = start_stop_khugepaged();
438 unregister_shrinker(&deferred_split_shrinker);
440 unregister_shrinker(&huge_zero_page_shrinker);
442 khugepaged_destroy();
444 hugepage_exit_sysfs(hugepage_kobj);
448 subsys_initcall(hugepage_init);
450 static int __init setup_transparent_hugepage(char *str)
455 if (!strcmp(str, "always")) {
456 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
461 } else if (!strcmp(str, "madvise")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
467 } else if (!strcmp(str, "never")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
476 pr_warn("transparent_hugepage= cannot parse, ignored\n");
479 __setup("transparent_hugepage=", setup_transparent_hugepage);
481 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
483 if (likely(vma->vm_flags & VM_WRITE))
484 pmd = pmd_mkwrite(pmd);
489 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
491 struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
495 return &memcg->deferred_split_queue;
497 return &pgdat->deferred_split_queue;
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504 return &pgdat->deferred_split_queue;
508 void prep_transhuge_page(struct page *page)
511 * we use page->mapping and page->indexlru in second tail page
512 * as list_head: assuming THP order >= 2
515 INIT_LIST_HEAD(page_deferred_list(page));
516 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
519 bool is_transparent_hugepage(struct page *page)
521 if (!PageCompound(page))
524 page = compound_head(page);
525 return is_huge_zero_page(page) ||
526 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
528 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
530 static unsigned long __thp_get_unmapped_area(struct file *filp,
531 unsigned long addr, unsigned long len,
532 loff_t off, unsigned long flags, unsigned long size)
534 loff_t off_end = off + len;
535 loff_t off_align = round_up(off, size);
536 unsigned long len_pad, ret;
538 if (off_end <= off_align || (off_end - off_align) < size)
541 len_pad = len + size;
542 if (len_pad < len || (off + len_pad) < off)
545 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546 off >> PAGE_SHIFT, flags);
549 * The failure might be due to length padding. The caller will retry
550 * without the padding.
552 if (IS_ERR_VALUE(ret))
556 * Do not try to align to THP boundary if allocation at the address
562 ret += (off - ret) & (size - 1);
566 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 unsigned long len, unsigned long pgoff, unsigned long flags)
570 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
572 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
575 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
581 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
583 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 struct page *page, gfp_t gfp)
586 struct vm_area_struct *vma = vmf->vma;
588 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
591 VM_BUG_ON_PAGE(!PageCompound(page), page);
593 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
595 count_vm_event(THP_FAULT_FALLBACK);
596 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 return VM_FAULT_FALLBACK;
599 cgroup_throttle_swaprate(page, gfp);
601 pgtable = pte_alloc_one(vma->vm_mm);
602 if (unlikely(!pgtable)) {
607 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
609 * The memory barrier inside __SetPageUptodate makes sure that
610 * clear_huge_page writes become visible before the set_pmd_at()
613 __SetPageUptodate(page);
615 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616 if (unlikely(!pmd_none(*vmf->pmd))) {
621 ret = check_stable_address_space(vma->vm_mm);
625 /* Deliver the page fault to userland */
626 if (userfaultfd_missing(vma)) {
627 spin_unlock(vmf->ptl);
629 pte_free(vma->vm_mm, pgtable);
630 ret = handle_userfault(vmf, VM_UFFD_MISSING);
631 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
635 entry = mk_huge_pmd(page, vma->vm_page_prot);
636 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
637 page_add_new_anon_rmap(page, vma, haddr, true);
638 lru_cache_add_inactive_or_unevictable(page, vma);
639 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
640 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
641 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
642 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
643 mm_inc_nr_ptes(vma->vm_mm);
644 spin_unlock(vmf->ptl);
645 count_vm_event(THP_FAULT_ALLOC);
646 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
651 spin_unlock(vmf->ptl);
654 pte_free(vma->vm_mm, pgtable);
661 * always: directly stall for all thp allocations
662 * defer: wake kswapd and fail if not immediately available
663 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
664 * fail if not immediately available
665 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
667 * never: never stall for any thp allocation
669 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
671 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
673 /* Always do synchronous compaction */
674 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
675 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
677 /* Kick kcompactd and fail quickly */
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
679 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
681 /* Synchronous compaction if madvised, otherwise kick kcompactd */
682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
683 return GFP_TRANSHUGE_LIGHT |
684 (vma_madvised ? __GFP_DIRECT_RECLAIM :
685 __GFP_KSWAPD_RECLAIM);
687 /* Only do synchronous compaction if madvised */
688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
689 return GFP_TRANSHUGE_LIGHT |
690 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
692 return GFP_TRANSHUGE_LIGHT;
695 /* Caller must hold page table lock. */
696 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
697 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
698 struct page *zero_page)
703 entry = mk_pmd(zero_page, vma->vm_page_prot);
704 entry = pmd_mkhuge(entry);
706 pgtable_trans_huge_deposit(mm, pmd, pgtable);
707 set_pmd_at(mm, haddr, pmd, entry);
711 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
713 struct vm_area_struct *vma = vmf->vma;
716 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
718 if (!transhuge_vma_suitable(vma, haddr))
719 return VM_FAULT_FALLBACK;
720 if (unlikely(anon_vma_prepare(vma)))
722 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
724 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
725 !mm_forbids_zeropage(vma->vm_mm) &&
726 transparent_hugepage_use_zero_page()) {
728 struct page *zero_page;
730 pgtable = pte_alloc_one(vma->vm_mm);
731 if (unlikely(!pgtable))
733 zero_page = mm_get_huge_zero_page(vma->vm_mm);
734 if (unlikely(!zero_page)) {
735 pte_free(vma->vm_mm, pgtable);
736 count_vm_event(THP_FAULT_FALLBACK);
737 return VM_FAULT_FALLBACK;
739 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
741 if (pmd_none(*vmf->pmd)) {
742 ret = check_stable_address_space(vma->vm_mm);
744 spin_unlock(vmf->ptl);
745 pte_free(vma->vm_mm, pgtable);
746 } else if (userfaultfd_missing(vma)) {
747 spin_unlock(vmf->ptl);
748 pte_free(vma->vm_mm, pgtable);
749 ret = handle_userfault(vmf, VM_UFFD_MISSING);
750 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
752 set_huge_zero_page(pgtable, vma->vm_mm, vma,
753 haddr, vmf->pmd, zero_page);
754 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
755 spin_unlock(vmf->ptl);
758 spin_unlock(vmf->ptl);
759 pte_free(vma->vm_mm, pgtable);
763 gfp = vma_thp_gfp_mask(vma);
764 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
765 if (unlikely(!page)) {
766 count_vm_event(THP_FAULT_FALLBACK);
767 return VM_FAULT_FALLBACK;
769 prep_transhuge_page(page);
770 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
773 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
774 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
777 struct mm_struct *mm = vma->vm_mm;
781 ptl = pmd_lock(mm, pmd);
782 if (!pmd_none(*pmd)) {
784 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
785 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
788 entry = pmd_mkyoung(*pmd);
789 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
790 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
791 update_mmu_cache_pmd(vma, addr, pmd);
797 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
798 if (pfn_t_devmap(pfn))
799 entry = pmd_mkdevmap(entry);
801 entry = pmd_mkyoung(pmd_mkdirty(entry));
802 entry = maybe_pmd_mkwrite(entry, vma);
806 pgtable_trans_huge_deposit(mm, pmd, pgtable);
811 set_pmd_at(mm, addr, pmd, entry);
812 update_mmu_cache_pmd(vma, addr, pmd);
817 pte_free(mm, pgtable);
821 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
822 * @vmf: Structure describing the fault
823 * @pfn: pfn to insert
824 * @pgprot: page protection to use
825 * @write: whether it's a write fault
827 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
828 * also consult the vmf_insert_mixed_prot() documentation when
829 * @pgprot != @vmf->vma->vm_page_prot.
831 * Return: vm_fault_t value.
833 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
834 pgprot_t pgprot, bool write)
836 unsigned long addr = vmf->address & PMD_MASK;
837 struct vm_area_struct *vma = vmf->vma;
838 pgtable_t pgtable = NULL;
841 * If we had pmd_special, we could avoid all these restrictions,
842 * but we need to be consistent with PTEs and architectures that
843 * can't support a 'special' bit.
845 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
847 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
848 (VM_PFNMAP|VM_MIXEDMAP));
849 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
851 if (addr < vma->vm_start || addr >= vma->vm_end)
852 return VM_FAULT_SIGBUS;
854 if (arch_needs_pgtable_deposit()) {
855 pgtable = pte_alloc_one(vma->vm_mm);
860 track_pfn_insert(vma, &pgprot, pfn);
862 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
863 return VM_FAULT_NOPAGE;
865 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
867 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
868 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
870 if (likely(vma->vm_flags & VM_WRITE))
871 pud = pud_mkwrite(pud);
875 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
876 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
878 struct mm_struct *mm = vma->vm_mm;
882 ptl = pud_lock(mm, pud);
883 if (!pud_none(*pud)) {
885 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
886 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
889 entry = pud_mkyoung(*pud);
890 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
891 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
892 update_mmu_cache_pud(vma, addr, pud);
897 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
898 if (pfn_t_devmap(pfn))
899 entry = pud_mkdevmap(entry);
901 entry = pud_mkyoung(pud_mkdirty(entry));
902 entry = maybe_pud_mkwrite(entry, vma);
904 set_pud_at(mm, addr, pud, entry);
905 update_mmu_cache_pud(vma, addr, pud);
912 * vmf_insert_pfn_pud_prot - insert a pud size pfn
913 * @vmf: Structure describing the fault
914 * @pfn: pfn to insert
915 * @pgprot: page protection to use
916 * @write: whether it's a write fault
918 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
919 * also consult the vmf_insert_mixed_prot() documentation when
920 * @pgprot != @vmf->vma->vm_page_prot.
922 * Return: vm_fault_t value.
924 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
925 pgprot_t pgprot, bool write)
927 unsigned long addr = vmf->address & PUD_MASK;
928 struct vm_area_struct *vma = vmf->vma;
931 * If we had pud_special, we could avoid all these restrictions,
932 * but we need to be consistent with PTEs and architectures that
933 * can't support a 'special' bit.
935 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
937 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
938 (VM_PFNMAP|VM_MIXEDMAP));
939 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
941 if (addr < vma->vm_start || addr >= vma->vm_end)
942 return VM_FAULT_SIGBUS;
944 track_pfn_insert(vma, &pgprot, pfn);
946 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
947 return VM_FAULT_NOPAGE;
949 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
950 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
952 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
953 pmd_t *pmd, int flags)
957 _pmd = pmd_mkyoung(*pmd);
958 if (flags & FOLL_WRITE)
959 _pmd = pmd_mkdirty(_pmd);
960 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
961 pmd, _pmd, flags & FOLL_WRITE))
962 update_mmu_cache_pmd(vma, addr, pmd);
965 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
966 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
968 unsigned long pfn = pmd_pfn(*pmd);
969 struct mm_struct *mm = vma->vm_mm;
972 assert_spin_locked(pmd_lockptr(mm, pmd));
975 * When we COW a devmap PMD entry, we split it into PTEs, so we should
976 * not be in this function with `flags & FOLL_COW` set.
978 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
980 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
981 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
982 (FOLL_PIN | FOLL_GET)))
985 if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 if (pmd_present(*pmd) && pmd_devmap(*pmd))
993 if (flags & FOLL_TOUCH)
994 touch_pmd(vma, addr, pmd, flags);
997 * device mapped pages can only be returned if the
998 * caller will manage the page reference count.
1000 if (!(flags & (FOLL_GET | FOLL_PIN)))
1001 return ERR_PTR(-EEXIST);
1003 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1004 *pgmap = get_dev_pagemap(pfn, *pgmap);
1006 return ERR_PTR(-EFAULT);
1007 page = pfn_to_page(pfn);
1008 if (!try_grab_page(page, flags))
1009 page = ERR_PTR(-ENOMEM);
1014 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1016 struct vm_area_struct *vma)
1018 spinlock_t *dst_ptl, *src_ptl;
1019 struct page *src_page;
1021 pgtable_t pgtable = NULL;
1024 /* Skip if can be re-fill on fault */
1025 if (!vma_is_anonymous(vma))
1028 pgtable = pte_alloc_one(dst_mm);
1029 if (unlikely(!pgtable))
1032 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1033 src_ptl = pmd_lockptr(src_mm, src_pmd);
1034 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1041 * does not have the VM_UFFD_WP, which means that the uffd
1042 * fork event is not enabled.
1044 if (!(vma->vm_flags & VM_UFFD_WP))
1045 pmd = pmd_clear_uffd_wp(pmd);
1047 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1048 if (unlikely(is_swap_pmd(pmd))) {
1049 swp_entry_t entry = pmd_to_swp_entry(pmd);
1051 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1052 if (is_write_migration_entry(entry)) {
1053 make_migration_entry_read(&entry);
1054 pmd = swp_entry_to_pmd(entry);
1055 if (pmd_swp_soft_dirty(*src_pmd))
1056 pmd = pmd_swp_mksoft_dirty(pmd);
1057 set_pmd_at(src_mm, addr, src_pmd, pmd);
1059 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1060 mm_inc_nr_ptes(dst_mm);
1061 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1062 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1068 if (unlikely(!pmd_trans_huge(pmd))) {
1069 pte_free(dst_mm, pgtable);
1073 * When page table lock is held, the huge zero pmd should not be
1074 * under splitting since we don't split the page itself, only pmd to
1077 if (is_huge_zero_pmd(pmd)) {
1078 struct page *zero_page;
1080 * get_huge_zero_page() will never allocate a new page here,
1081 * since we already have a zero page to copy. It just takes a
1084 zero_page = mm_get_huge_zero_page(dst_mm);
1085 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1091 src_page = pmd_page(pmd);
1092 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1095 * If this page is a potentially pinned page, split and retry the fault
1096 * with smaller page size. Normally this should not happen because the
1097 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1098 * best effort that the pinned pages won't be replaced by another
1099 * random page during the coming copy-on-write.
1101 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1102 pte_free(dst_mm, pgtable);
1103 spin_unlock(src_ptl);
1104 spin_unlock(dst_ptl);
1105 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1110 page_dup_rmap(src_page, true);
1111 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1112 mm_inc_nr_ptes(dst_mm);
1113 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1115 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1116 pmd = pmd_mkold(pmd_wrprotect(pmd));
1117 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1121 spin_unlock(src_ptl);
1122 spin_unlock(dst_ptl);
1127 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1128 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1129 pud_t *pud, int flags)
1133 _pud = pud_mkyoung(*pud);
1134 if (flags & FOLL_WRITE)
1135 _pud = pud_mkdirty(_pud);
1136 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1137 pud, _pud, flags & FOLL_WRITE))
1138 update_mmu_cache_pud(vma, addr, pud);
1141 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1142 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1144 unsigned long pfn = pud_pfn(*pud);
1145 struct mm_struct *mm = vma->vm_mm;
1148 assert_spin_locked(pud_lockptr(mm, pud));
1150 if (flags & FOLL_WRITE && !pud_write(*pud))
1153 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1154 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1155 (FOLL_PIN | FOLL_GET)))
1158 if (pud_present(*pud) && pud_devmap(*pud))
1163 if (flags & FOLL_TOUCH)
1164 touch_pud(vma, addr, pud, flags);
1167 * device mapped pages can only be returned if the
1168 * caller will manage the page reference count.
1170 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1172 if (!(flags & (FOLL_GET | FOLL_PIN)))
1173 return ERR_PTR(-EEXIST);
1175 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1176 *pgmap = get_dev_pagemap(pfn, *pgmap);
1178 return ERR_PTR(-EFAULT);
1179 page = pfn_to_page(pfn);
1180 if (!try_grab_page(page, flags))
1181 page = ERR_PTR(-ENOMEM);
1186 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1187 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1188 struct vm_area_struct *vma)
1190 spinlock_t *dst_ptl, *src_ptl;
1194 dst_ptl = pud_lock(dst_mm, dst_pud);
1195 src_ptl = pud_lockptr(src_mm, src_pud);
1196 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1200 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1204 * When page table lock is held, the huge zero pud should not be
1205 * under splitting since we don't split the page itself, only pud to
1208 if (is_huge_zero_pud(pud)) {
1209 /* No huge zero pud yet */
1212 /* Please refer to comments in copy_huge_pmd() */
1213 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1214 spin_unlock(src_ptl);
1215 spin_unlock(dst_ptl);
1216 __split_huge_pud(vma, src_pud, addr);
1220 pudp_set_wrprotect(src_mm, addr, src_pud);
1221 pud = pud_mkold(pud_wrprotect(pud));
1222 set_pud_at(dst_mm, addr, dst_pud, pud);
1226 spin_unlock(src_ptl);
1227 spin_unlock(dst_ptl);
1231 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1234 unsigned long haddr;
1235 bool write = vmf->flags & FAULT_FLAG_WRITE;
1237 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1238 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1241 entry = pud_mkyoung(orig_pud);
1243 entry = pud_mkdirty(entry);
1244 haddr = vmf->address & HPAGE_PUD_MASK;
1245 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1246 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1249 spin_unlock(vmf->ptl);
1251 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1253 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1256 unsigned long haddr;
1257 bool write = vmf->flags & FAULT_FLAG_WRITE;
1259 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1260 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1263 entry = pmd_mkyoung(orig_pmd);
1265 entry = pmd_mkdirty(entry);
1266 haddr = vmf->address & HPAGE_PMD_MASK;
1267 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1268 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1271 spin_unlock(vmf->ptl);
1274 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1276 struct vm_area_struct *vma = vmf->vma;
1278 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1280 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1281 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1283 if (is_huge_zero_pmd(orig_pmd))
1286 spin_lock(vmf->ptl);
1288 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1289 spin_unlock(vmf->ptl);
1293 page = pmd_page(orig_pmd);
1294 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1296 /* Lock page for reuse_swap_page() */
1297 if (!trylock_page(page)) {
1299 spin_unlock(vmf->ptl);
1301 spin_lock(vmf->ptl);
1302 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1303 spin_unlock(vmf->ptl);
1312 * We can only reuse the page if nobody else maps the huge page or it's
1315 if (reuse_swap_page(page, NULL)) {
1317 entry = pmd_mkyoung(orig_pmd);
1318 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1319 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1320 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1322 spin_unlock(vmf->ptl);
1323 return VM_FAULT_WRITE;
1327 spin_unlock(vmf->ptl);
1329 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1330 return VM_FAULT_FALLBACK;
1334 * FOLL_FORCE can write to even unwritable pmd's, but only
1335 * after we've gone through a COW cycle and they are dirty.
1337 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1339 return pmd_write(pmd) ||
1340 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1343 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1348 struct mm_struct *mm = vma->vm_mm;
1349 struct page *page = NULL;
1351 assert_spin_locked(pmd_lockptr(mm, pmd));
1353 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1356 /* Avoid dumping huge zero page */
1357 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1358 return ERR_PTR(-EFAULT);
1360 /* Full NUMA hinting faults to serialise migration in fault paths */
1361 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1364 page = pmd_page(*pmd);
1365 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1367 if (!try_grab_page(page, flags))
1368 return ERR_PTR(-ENOMEM);
1370 if (flags & FOLL_TOUCH)
1371 touch_pmd(vma, addr, pmd, flags);
1373 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1375 * We don't mlock() pte-mapped THPs. This way we can avoid
1376 * leaking mlocked pages into non-VM_LOCKED VMAs.
1380 * In most cases the pmd is the only mapping of the page as we
1381 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1382 * writable private mappings in populate_vma_page_range().
1384 * The only scenario when we have the page shared here is if we
1385 * mlocking read-only mapping shared over fork(). We skip
1386 * mlocking such pages.
1390 * We can expect PageDoubleMap() to be stable under page lock:
1391 * for file pages we set it in page_add_file_rmap(), which
1392 * requires page to be locked.
1395 if (PageAnon(page) && compound_mapcount(page) != 1)
1397 if (PageDoubleMap(page) || !page->mapping)
1399 if (!trylock_page(page))
1401 if (page->mapping && !PageDoubleMap(page))
1402 mlock_vma_page(page);
1406 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1407 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1413 /* NUMA hinting page fault entry point for trans huge pmds */
1414 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1416 struct vm_area_struct *vma = vmf->vma;
1417 struct anon_vma *anon_vma = NULL;
1419 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1420 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1421 int target_nid, last_cpupid = -1;
1423 bool migrated = false;
1427 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1428 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1432 * If there are potential migrations, wait for completion and retry
1433 * without disrupting NUMA hinting information. Do not relock and
1434 * check_same as the page may no longer be mapped.
1436 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1437 page = pmd_page(*vmf->pmd);
1438 if (!get_page_unless_zero(page))
1440 spin_unlock(vmf->ptl);
1441 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1445 page = pmd_page(pmd);
1446 BUG_ON(is_huge_zero_page(page));
1447 page_nid = page_to_nid(page);
1448 last_cpupid = page_cpupid_last(page);
1449 count_vm_numa_event(NUMA_HINT_FAULTS);
1450 if (page_nid == this_nid) {
1451 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1452 flags |= TNF_FAULT_LOCAL;
1455 /* See similar comment in do_numa_page for explanation */
1456 if (!pmd_savedwrite(pmd))
1457 flags |= TNF_NO_GROUP;
1460 * Acquire the page lock to serialise THP migrations but avoid dropping
1461 * page_table_lock if at all possible
1463 page_locked = trylock_page(page);
1464 target_nid = mpol_misplaced(page, vma, haddr);
1465 /* Migration could have started since the pmd_trans_migrating check */
1467 page_nid = NUMA_NO_NODE;
1468 if (!get_page_unless_zero(page))
1470 spin_unlock(vmf->ptl);
1471 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1473 } else if (target_nid == NUMA_NO_NODE) {
1474 /* There are no parallel migrations and page is in the right
1475 * node. Clear the numa hinting info in this pmd.
1481 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1482 * to serialises splits
1485 spin_unlock(vmf->ptl);
1486 anon_vma = page_lock_anon_vma_read(page);
1488 /* Confirm the PMD did not change while page_table_lock was released */
1489 spin_lock(vmf->ptl);
1490 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1493 page_nid = NUMA_NO_NODE;
1497 /* Bail if we fail to protect against THP splits for any reason */
1498 if (unlikely(!anon_vma)) {
1500 page_nid = NUMA_NO_NODE;
1505 * Since we took the NUMA fault, we must have observed the !accessible
1506 * bit. Make sure all other CPUs agree with that, to avoid them
1507 * modifying the page we're about to migrate.
1509 * Must be done under PTL such that we'll observe the relevant
1510 * inc_tlb_flush_pending().
1512 * We are not sure a pending tlb flush here is for a huge page
1513 * mapping or not. Hence use the tlb range variant
1515 if (mm_tlb_flush_pending(vma->vm_mm)) {
1516 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1518 * change_huge_pmd() released the pmd lock before
1519 * invalidating the secondary MMUs sharing the primary
1520 * MMU pagetables (with ->invalidate_range()). The
1521 * mmu_notifier_invalidate_range_end() (which
1522 * internally calls ->invalidate_range()) in
1523 * change_pmd_range() will run after us, so we can't
1524 * rely on it here and we need an explicit invalidate.
1526 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1527 haddr + HPAGE_PMD_SIZE);
1531 * Migrate the THP to the requested node, returns with page unlocked
1532 * and access rights restored.
1534 spin_unlock(vmf->ptl);
1536 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1537 vmf->pmd, pmd, vmf->address, page, target_nid);
1539 flags |= TNF_MIGRATED;
1540 page_nid = target_nid;
1542 flags |= TNF_MIGRATE_FAIL;
1546 BUG_ON(!PageLocked(page));
1547 was_writable = pmd_savedwrite(pmd);
1548 pmd = pmd_modify(pmd, vma->vm_page_prot);
1549 pmd = pmd_mkyoung(pmd);
1551 pmd = pmd_mkwrite(pmd);
1552 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1553 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1556 spin_unlock(vmf->ptl);
1560 page_unlock_anon_vma_read(anon_vma);
1562 if (page_nid != NUMA_NO_NODE)
1563 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1570 * Return true if we do MADV_FREE successfully on entire pmd page.
1571 * Otherwise, return false.
1573 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1574 pmd_t *pmd, unsigned long addr, unsigned long next)
1579 struct mm_struct *mm = tlb->mm;
1582 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1584 ptl = pmd_trans_huge_lock(pmd, vma);
1589 if (is_huge_zero_pmd(orig_pmd))
1592 if (unlikely(!pmd_present(orig_pmd))) {
1593 VM_BUG_ON(thp_migration_supported() &&
1594 !is_pmd_migration_entry(orig_pmd));
1598 page = pmd_page(orig_pmd);
1600 * If other processes are mapping this page, we couldn't discard
1601 * the page unless they all do MADV_FREE so let's skip the page.
1603 if (page_mapcount(page) != 1)
1606 if (!trylock_page(page))
1610 * If user want to discard part-pages of THP, split it so MADV_FREE
1611 * will deactivate only them.
1613 if (next - addr != HPAGE_PMD_SIZE) {
1616 split_huge_page(page);
1622 if (PageDirty(page))
1623 ClearPageDirty(page);
1626 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1627 pmdp_invalidate(vma, addr, pmd);
1628 orig_pmd = pmd_mkold(orig_pmd);
1629 orig_pmd = pmd_mkclean(orig_pmd);
1631 set_pmd_at(mm, addr, pmd, orig_pmd);
1632 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1635 mark_page_lazyfree(page);
1643 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1647 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1648 pte_free(mm, pgtable);
1652 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1653 pmd_t *pmd, unsigned long addr)
1658 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1660 ptl = __pmd_trans_huge_lock(pmd, vma);
1664 * For architectures like ppc64 we look at deposited pgtable
1665 * when calling pmdp_huge_get_and_clear. So do the
1666 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1671 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672 if (vma_is_special_huge(vma)) {
1673 if (arch_needs_pgtable_deposit())
1674 zap_deposited_table(tlb->mm, pmd);
1676 if (is_huge_zero_pmd(orig_pmd))
1677 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1678 } else if (is_huge_zero_pmd(orig_pmd)) {
1679 zap_deposited_table(tlb->mm, pmd);
1681 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1683 struct page *page = NULL;
1684 int flush_needed = 1;
1686 if (pmd_present(orig_pmd)) {
1687 page = pmd_page(orig_pmd);
1688 page_remove_rmap(page, true);
1689 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1690 VM_BUG_ON_PAGE(!PageHead(page), page);
1691 } else if (thp_migration_supported()) {
1694 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1695 entry = pmd_to_swp_entry(orig_pmd);
1696 page = pfn_to_page(swp_offset(entry));
1699 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1701 if (PageAnon(page)) {
1702 zap_deposited_table(tlb->mm, pmd);
1703 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1705 if (arch_needs_pgtable_deposit())
1706 zap_deposited_table(tlb->mm, pmd);
1707 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1712 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1717 #ifndef pmd_move_must_withdraw
1718 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1719 spinlock_t *old_pmd_ptl,
1720 struct vm_area_struct *vma)
1723 * With split pmd lock we also need to move preallocated
1724 * PTE page table if new_pmd is on different PMD page table.
1726 * We also don't deposit and withdraw tables for file pages.
1728 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1732 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1734 #ifdef CONFIG_MEM_SOFT_DIRTY
1735 if (unlikely(is_pmd_migration_entry(pmd)))
1736 pmd = pmd_swp_mksoft_dirty(pmd);
1737 else if (pmd_present(pmd))
1738 pmd = pmd_mksoft_dirty(pmd);
1743 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1744 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1746 spinlock_t *old_ptl, *new_ptl;
1748 struct mm_struct *mm = vma->vm_mm;
1749 bool force_flush = false;
1752 * The destination pmd shouldn't be established, free_pgtables()
1753 * should have release it.
1755 if (WARN_ON(!pmd_none(*new_pmd))) {
1756 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1761 * We don't have to worry about the ordering of src and dst
1762 * ptlocks because exclusive mmap_lock prevents deadlock.
1764 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1766 new_ptl = pmd_lockptr(mm, new_pmd);
1767 if (new_ptl != old_ptl)
1768 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1769 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1770 if (pmd_present(pmd))
1772 VM_BUG_ON(!pmd_none(*new_pmd));
1774 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1776 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1777 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1779 pmd = move_soft_dirty_pmd(pmd);
1780 set_pmd_at(mm, new_addr, new_pmd, pmd);
1782 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1783 if (new_ptl != old_ptl)
1784 spin_unlock(new_ptl);
1785 spin_unlock(old_ptl);
1793 * - 0 if PMD could not be locked
1794 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1795 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1797 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1798 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1800 struct mm_struct *mm = vma->vm_mm;
1803 bool preserve_write;
1805 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1806 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1807 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1809 ptl = __pmd_trans_huge_lock(pmd, vma);
1813 preserve_write = prot_numa && pmd_write(*pmd);
1816 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1817 if (is_swap_pmd(*pmd)) {
1818 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1820 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1821 if (is_write_migration_entry(entry)) {
1824 * A protection check is difficult so
1825 * just be safe and disable write
1827 make_migration_entry_read(&entry);
1828 newpmd = swp_entry_to_pmd(entry);
1829 if (pmd_swp_soft_dirty(*pmd))
1830 newpmd = pmd_swp_mksoft_dirty(newpmd);
1831 set_pmd_at(mm, addr, pmd, newpmd);
1838 * Avoid trapping faults against the zero page. The read-only
1839 * data is likely to be read-cached on the local CPU and
1840 * local/remote hits to the zero page are not interesting.
1842 if (prot_numa && is_huge_zero_pmd(*pmd))
1845 if (prot_numa && pmd_protnone(*pmd))
1849 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1850 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1851 * which is also under mmap_read_lock(mm):
1854 * change_huge_pmd(prot_numa=1)
1855 * pmdp_huge_get_and_clear_notify()
1856 * madvise_dontneed()
1858 * pmd_trans_huge(*pmd) == 0 (without ptl)
1861 * // pmd is re-established
1863 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1864 * which may break userspace.
1866 * pmdp_invalidate() is required to make sure we don't miss
1867 * dirty/young flags set by hardware.
1869 entry = pmdp_invalidate(vma, addr, pmd);
1871 entry = pmd_modify(entry, newprot);
1873 entry = pmd_mk_savedwrite(entry);
1875 entry = pmd_wrprotect(entry);
1876 entry = pmd_mkuffd_wp(entry);
1877 } else if (uffd_wp_resolve) {
1879 * Leave the write bit to be handled by PF interrupt
1880 * handler, then things like COW could be properly
1883 entry = pmd_clear_uffd_wp(entry);
1886 set_pmd_at(mm, addr, pmd, entry);
1887 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1894 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1896 * Note that if it returns page table lock pointer, this routine returns without
1897 * unlocking page table lock. So callers must unlock it.
1899 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1902 ptl = pmd_lock(vma->vm_mm, pmd);
1903 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1911 * Returns true if a given pud maps a thp, false otherwise.
1913 * Note that if it returns true, this routine returns without unlocking page
1914 * table lock. So callers must unlock it.
1916 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1920 ptl = pud_lock(vma->vm_mm, pud);
1921 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1927 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1928 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1929 pud_t *pud, unsigned long addr)
1933 ptl = __pud_trans_huge_lock(pud, vma);
1937 * For architectures like ppc64 we look at deposited pgtable
1938 * when calling pudp_huge_get_and_clear. So do the
1939 * pgtable_trans_huge_withdraw after finishing pudp related
1942 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1943 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1944 if (vma_is_special_huge(vma)) {
1946 /* No zero page support yet */
1948 /* No support for anonymous PUD pages yet */
1954 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1955 unsigned long haddr)
1957 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1958 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1959 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1960 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1962 count_vm_event(THP_SPLIT_PUD);
1964 pudp_huge_clear_flush_notify(vma, haddr, pud);
1967 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1968 unsigned long address)
1971 struct mmu_notifier_range range;
1973 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1974 address & HPAGE_PUD_MASK,
1975 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1976 mmu_notifier_invalidate_range_start(&range);
1977 ptl = pud_lock(vma->vm_mm, pud);
1978 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1980 __split_huge_pud_locked(vma, pud, range.start);
1985 * No need to double call mmu_notifier->invalidate_range() callback as
1986 * the above pudp_huge_clear_flush_notify() did already call it.
1988 mmu_notifier_invalidate_range_only_end(&range);
1990 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1992 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1993 unsigned long haddr, pmd_t *pmd)
1995 struct mm_struct *mm = vma->vm_mm;
2001 * Leave pmd empty until pte is filled note that it is fine to delay
2002 * notification until mmu_notifier_invalidate_range_end() as we are
2003 * replacing a zero pmd write protected page with a zero pte write
2006 * See Documentation/vm/mmu_notifier.rst
2008 pmdp_huge_clear_flush(vma, haddr, pmd);
2010 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2011 pmd_populate(mm, &_pmd, pgtable);
2013 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2015 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2016 entry = pte_mkspecial(entry);
2017 pte = pte_offset_map(&_pmd, haddr);
2018 VM_BUG_ON(!pte_none(*pte));
2019 set_pte_at(mm, haddr, pte, entry);
2022 smp_wmb(); /* make pte visible before pmd */
2023 pmd_populate(mm, pmd, pgtable);
2026 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2027 unsigned long haddr, bool freeze)
2029 struct mm_struct *mm = vma->vm_mm;
2032 pmd_t old_pmd, _pmd;
2033 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2037 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2038 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2039 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2040 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2041 && !pmd_devmap(*pmd));
2043 count_vm_event(THP_SPLIT_PMD);
2045 if (!vma_is_anonymous(vma)) {
2046 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2048 * We are going to unmap this huge page. So
2049 * just go ahead and zap it
2051 if (arch_needs_pgtable_deposit())
2052 zap_deposited_table(mm, pmd);
2053 if (vma_is_special_huge(vma))
2055 page = pmd_page(_pmd);
2056 if (!PageDirty(page) && pmd_dirty(_pmd))
2057 set_page_dirty(page);
2058 if (!PageReferenced(page) && pmd_young(_pmd))
2059 SetPageReferenced(page);
2060 page_remove_rmap(page, true);
2062 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2064 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2066 * FIXME: Do we want to invalidate secondary mmu by calling
2067 * mmu_notifier_invalidate_range() see comments below inside
2068 * __split_huge_pmd() ?
2070 * We are going from a zero huge page write protected to zero
2071 * small page also write protected so it does not seems useful
2072 * to invalidate secondary mmu at this time.
2074 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2078 * Up to this point the pmd is present and huge and userland has the
2079 * whole access to the hugepage during the split (which happens in
2080 * place). If we overwrite the pmd with the not-huge version pointing
2081 * to the pte here (which of course we could if all CPUs were bug
2082 * free), userland could trigger a small page size TLB miss on the
2083 * small sized TLB while the hugepage TLB entry is still established in
2084 * the huge TLB. Some CPU doesn't like that.
2085 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2086 * 383 on page 105. Intel should be safe but is also warns that it's
2087 * only safe if the permission and cache attributes of the two entries
2088 * loaded in the two TLB is identical (which should be the case here).
2089 * But it is generally safer to never allow small and huge TLB entries
2090 * for the same virtual address to be loaded simultaneously. So instead
2091 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2092 * current pmd notpresent (atomically because here the pmd_trans_huge
2093 * must remain set at all times on the pmd until the split is complete
2094 * for this pmd), then we flush the SMP TLB and finally we write the
2095 * non-huge version of the pmd entry with pmd_populate.
2097 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2099 pmd_migration = is_pmd_migration_entry(old_pmd);
2100 if (unlikely(pmd_migration)) {
2103 entry = pmd_to_swp_entry(old_pmd);
2104 page = pfn_to_page(swp_offset(entry));
2105 write = is_write_migration_entry(entry);
2107 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2108 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2110 page = pmd_page(old_pmd);
2111 if (pmd_dirty(old_pmd))
2113 write = pmd_write(old_pmd);
2114 young = pmd_young(old_pmd);
2115 soft_dirty = pmd_soft_dirty(old_pmd);
2116 uffd_wp = pmd_uffd_wp(old_pmd);
2118 VM_BUG_ON_PAGE(!page_count(page), page);
2119 page_ref_add(page, HPAGE_PMD_NR - 1);
2122 * Withdraw the table only after we mark the pmd entry invalid.
2123 * This's critical for some architectures (Power).
2125 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2126 pmd_populate(mm, &_pmd, pgtable);
2128 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2131 * Note that NUMA hinting access restrictions are not
2132 * transferred to avoid any possibility of altering
2133 * permissions across VMAs.
2135 if (freeze || pmd_migration) {
2136 swp_entry_t swp_entry;
2137 swp_entry = make_migration_entry(page + i, write);
2138 entry = swp_entry_to_pte(swp_entry);
2140 entry = pte_swp_mksoft_dirty(entry);
2142 entry = pte_swp_mkuffd_wp(entry);
2144 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2145 entry = maybe_mkwrite(entry, vma);
2147 entry = pte_wrprotect(entry);
2149 entry = pte_mkold(entry);
2151 entry = pte_mksoft_dirty(entry);
2153 entry = pte_mkuffd_wp(entry);
2155 pte = pte_offset_map(&_pmd, addr);
2156 BUG_ON(!pte_none(*pte));
2157 set_pte_at(mm, addr, pte, entry);
2159 atomic_inc(&page[i]._mapcount);
2163 if (!pmd_migration) {
2165 * Set PG_double_map before dropping compound_mapcount to avoid
2166 * false-negative page_mapped().
2168 if (compound_mapcount(page) > 1 &&
2169 !TestSetPageDoubleMap(page)) {
2170 for (i = 0; i < HPAGE_PMD_NR; i++)
2171 atomic_inc(&page[i]._mapcount);
2174 lock_page_memcg(page);
2175 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2176 /* Last compound_mapcount is gone. */
2177 __mod_lruvec_page_state(page, NR_ANON_THPS,
2179 if (TestClearPageDoubleMap(page)) {
2180 /* No need in mapcount reference anymore */
2181 for (i = 0; i < HPAGE_PMD_NR; i++)
2182 atomic_dec(&page[i]._mapcount);
2185 unlock_page_memcg(page);
2188 smp_wmb(); /* make pte visible before pmd */
2189 pmd_populate(mm, pmd, pgtable);
2192 for (i = 0; i < HPAGE_PMD_NR; i++) {
2193 page_remove_rmap(page + i, false);
2199 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2200 unsigned long address, bool freeze, struct page *page)
2203 struct mmu_notifier_range range;
2204 bool do_unlock_page = false;
2207 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2208 address & HPAGE_PMD_MASK,
2209 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2210 mmu_notifier_invalidate_range_start(&range);
2211 ptl = pmd_lock(vma->vm_mm, pmd);
2214 * If caller asks to setup a migration entries, we need a page to check
2215 * pmd against. Otherwise we can end up replacing wrong page.
2217 VM_BUG_ON(freeze && !page);
2219 VM_WARN_ON_ONCE(!PageLocked(page));
2220 if (page != pmd_page(*pmd))
2225 if (pmd_trans_huge(*pmd)) {
2227 page = pmd_page(*pmd);
2229 * An anonymous page must be locked, to ensure that a
2230 * concurrent reuse_swap_page() sees stable mapcount;
2231 * but reuse_swap_page() is not used on shmem or file,
2232 * and page lock must not be taken when zap_pmd_range()
2233 * calls __split_huge_pmd() while i_mmap_lock is held.
2235 if (PageAnon(page)) {
2236 if (unlikely(!trylock_page(page))) {
2242 if (unlikely(!pmd_same(*pmd, _pmd))) {
2250 do_unlock_page = true;
2253 if (PageMlocked(page))
2254 clear_page_mlock(page);
2255 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2257 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2263 * No need to double call mmu_notifier->invalidate_range() callback.
2264 * They are 3 cases to consider inside __split_huge_pmd_locked():
2265 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2266 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2267 * fault will trigger a flush_notify before pointing to a new page
2268 * (it is fine if the secondary mmu keeps pointing to the old zero
2269 * page in the meantime)
2270 * 3) Split a huge pmd into pte pointing to the same page. No need
2271 * to invalidate secondary tlb entry they are all still valid.
2272 * any further changes to individual pte will notify. So no need
2273 * to call mmu_notifier->invalidate_range()
2275 mmu_notifier_invalidate_range_only_end(&range);
2278 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2279 bool freeze, struct page *page)
2286 pgd = pgd_offset(vma->vm_mm, address);
2287 if (!pgd_present(*pgd))
2290 p4d = p4d_offset(pgd, address);
2291 if (!p4d_present(*p4d))
2294 pud = pud_offset(p4d, address);
2295 if (!pud_present(*pud))
2298 pmd = pmd_offset(pud, address);
2300 __split_huge_pmd(vma, pmd, address, freeze, page);
2303 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2306 * If the new address isn't hpage aligned and it could previously
2307 * contain an hugepage: check if we need to split an huge pmd.
2309 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2310 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2311 ALIGN(address, HPAGE_PMD_SIZE)))
2312 split_huge_pmd_address(vma, address, false, NULL);
2315 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2316 unsigned long start,
2320 /* Check if we need to split start first. */
2321 split_huge_pmd_if_needed(vma, start);
2323 /* Check if we need to split end next. */
2324 split_huge_pmd_if_needed(vma, end);
2327 * If we're also updating the vma->vm_next->vm_start,
2328 * check if we need to split it.
2330 if (adjust_next > 0) {
2331 struct vm_area_struct *next = vma->vm_next;
2332 unsigned long nstart = next->vm_start;
2333 nstart += adjust_next;
2334 split_huge_pmd_if_needed(next, nstart);
2338 static void unmap_page(struct page *page)
2340 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2341 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2344 VM_BUG_ON_PAGE(!PageHead(page), page);
2347 ttu_flags |= TTU_SPLIT_FREEZE;
2349 unmap_success = try_to_unmap(page, ttu_flags);
2350 VM_BUG_ON_PAGE(!unmap_success, page);
2353 static void remap_page(struct page *page, unsigned int nr)
2356 if (PageTransHuge(page)) {
2357 remove_migration_ptes(page, page, true);
2359 for (i = 0; i < nr; i++)
2360 remove_migration_ptes(page + i, page + i, true);
2364 static void lru_add_page_tail(struct page *head, struct page *tail,
2365 struct lruvec *lruvec, struct list_head *list)
2367 VM_BUG_ON_PAGE(!PageHead(head), head);
2368 VM_BUG_ON_PAGE(PageCompound(tail), head);
2369 VM_BUG_ON_PAGE(PageLRU(tail), head);
2370 lockdep_assert_held(&lruvec->lru_lock);
2373 /* page reclaim is reclaiming a huge page */
2374 VM_WARN_ON(PageLRU(head));
2376 list_add_tail(&tail->lru, list);
2378 /* head is still on lru (and we have it frozen) */
2379 VM_WARN_ON(!PageLRU(head));
2381 list_add_tail(&tail->lru, &head->lru);
2385 static void __split_huge_page_tail(struct page *head, int tail,
2386 struct lruvec *lruvec, struct list_head *list)
2388 struct page *page_tail = head + tail;
2390 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2393 * Clone page flags before unfreezing refcount.
2395 * After successful get_page_unless_zero() might follow flags change,
2396 * for example lock_page() which set PG_waiters.
2398 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2399 page_tail->flags |= (head->flags &
2400 ((1L << PG_referenced) |
2401 (1L << PG_swapbacked) |
2402 (1L << PG_swapcache) |
2403 (1L << PG_mlocked) |
2404 (1L << PG_uptodate) |
2406 (1L << PG_workingset) |
2408 (1L << PG_unevictable) |
2414 /* ->mapping in first tail page is compound_mapcount */
2415 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2417 page_tail->mapping = head->mapping;
2418 page_tail->index = head->index + tail;
2420 /* Page flags must be visible before we make the page non-compound. */
2424 * Clear PageTail before unfreezing page refcount.
2426 * After successful get_page_unless_zero() might follow put_page()
2427 * which needs correct compound_head().
2429 clear_compound_head(page_tail);
2431 /* Finally unfreeze refcount. Additional reference from page cache. */
2432 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2433 PageSwapCache(head)));
2435 if (page_is_young(head))
2436 set_page_young(page_tail);
2437 if (page_is_idle(head))
2438 set_page_idle(page_tail);
2440 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2443 * always add to the tail because some iterators expect new
2444 * pages to show after the currently processed elements - e.g.
2447 lru_add_page_tail(head, page_tail, lruvec, list);
2450 static void __split_huge_page(struct page *page, struct list_head *list,
2453 struct page *head = compound_head(page);
2454 struct lruvec *lruvec;
2455 struct address_space *swap_cache = NULL;
2456 unsigned long offset = 0;
2457 unsigned int nr = thp_nr_pages(head);
2460 /* complete memcg works before add pages to LRU */
2461 split_page_memcg(head, nr);
2463 if (PageAnon(head) && PageSwapCache(head)) {
2464 swp_entry_t entry = { .val = page_private(head) };
2466 offset = swp_offset(entry);
2467 swap_cache = swap_address_space(entry);
2468 xa_lock(&swap_cache->i_pages);
2471 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2472 lruvec = lock_page_lruvec(head);
2474 for (i = nr - 1; i >= 1; i--) {
2475 __split_huge_page_tail(head, i, lruvec, list);
2476 /* Some pages can be beyond i_size: drop them from page cache */
2477 if (head[i].index >= end) {
2478 ClearPageDirty(head + i);
2479 __delete_from_page_cache(head + i, NULL);
2480 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2481 shmem_uncharge(head->mapping->host, 1);
2483 } else if (!PageAnon(page)) {
2484 __xa_store(&head->mapping->i_pages, head[i].index,
2486 } else if (swap_cache) {
2487 __xa_store(&swap_cache->i_pages, offset + i,
2492 ClearPageCompound(head);
2493 unlock_page_lruvec(lruvec);
2494 /* Caller disabled irqs, so they are still disabled here */
2496 split_page_owner(head, nr);
2498 /* See comment in __split_huge_page_tail() */
2499 if (PageAnon(head)) {
2500 /* Additional pin to swap cache */
2501 if (PageSwapCache(head)) {
2502 page_ref_add(head, 2);
2503 xa_unlock(&swap_cache->i_pages);
2508 /* Additional pin to page cache */
2509 page_ref_add(head, 2);
2510 xa_unlock(&head->mapping->i_pages);
2514 remap_page(head, nr);
2516 if (PageSwapCache(head)) {
2517 swp_entry_t entry = { .val = page_private(head) };
2519 split_swap_cluster(entry);
2522 for (i = 0; i < nr; i++) {
2523 struct page *subpage = head + i;
2524 if (subpage == page)
2526 unlock_page(subpage);
2529 * Subpages may be freed if there wasn't any mapping
2530 * like if add_to_swap() is running on a lru page that
2531 * had its mapping zapped. And freeing these pages
2532 * requires taking the lru_lock so we do the put_page
2533 * of the tail pages after the split is complete.
2539 int total_mapcount(struct page *page)
2541 int i, compound, nr, ret;
2543 VM_BUG_ON_PAGE(PageTail(page), page);
2545 if (likely(!PageCompound(page)))
2546 return atomic_read(&page->_mapcount) + 1;
2548 compound = compound_mapcount(page);
2549 nr = compound_nr(page);
2553 for (i = 0; i < nr; i++)
2554 ret += atomic_read(&page[i]._mapcount) + 1;
2555 /* File pages has compound_mapcount included in _mapcount */
2556 if (!PageAnon(page))
2557 return ret - compound * nr;
2558 if (PageDoubleMap(page))
2564 * This calculates accurately how many mappings a transparent hugepage
2565 * has (unlike page_mapcount() which isn't fully accurate). This full
2566 * accuracy is primarily needed to know if copy-on-write faults can
2567 * reuse the page and change the mapping to read-write instead of
2568 * copying them. At the same time this returns the total_mapcount too.
2570 * The function returns the highest mapcount any one of the subpages
2571 * has. If the return value is one, even if different processes are
2572 * mapping different subpages of the transparent hugepage, they can
2573 * all reuse it, because each process is reusing a different subpage.
2575 * The total_mapcount is instead counting all virtual mappings of the
2576 * subpages. If the total_mapcount is equal to "one", it tells the
2577 * caller all mappings belong to the same "mm" and in turn the
2578 * anon_vma of the transparent hugepage can become the vma->anon_vma
2579 * local one as no other process may be mapping any of the subpages.
2581 * It would be more accurate to replace page_mapcount() with
2582 * page_trans_huge_mapcount(), however we only use
2583 * page_trans_huge_mapcount() in the copy-on-write faults where we
2584 * need full accuracy to avoid breaking page pinning, because
2585 * page_trans_huge_mapcount() is slower than page_mapcount().
2587 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2589 int i, ret, _total_mapcount, mapcount;
2591 /* hugetlbfs shouldn't call it */
2592 VM_BUG_ON_PAGE(PageHuge(page), page);
2594 if (likely(!PageTransCompound(page))) {
2595 mapcount = atomic_read(&page->_mapcount) + 1;
2597 *total_mapcount = mapcount;
2601 page = compound_head(page);
2603 _total_mapcount = ret = 0;
2604 for (i = 0; i < thp_nr_pages(page); i++) {
2605 mapcount = atomic_read(&page[i]._mapcount) + 1;
2606 ret = max(ret, mapcount);
2607 _total_mapcount += mapcount;
2609 if (PageDoubleMap(page)) {
2611 _total_mapcount -= thp_nr_pages(page);
2613 mapcount = compound_mapcount(page);
2615 _total_mapcount += mapcount;
2617 *total_mapcount = _total_mapcount;
2621 /* Racy check whether the huge page can be split */
2622 bool can_split_huge_page(struct page *page, int *pextra_pins)
2626 /* Additional pins from page cache */
2628 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2630 extra_pins = thp_nr_pages(page);
2632 *pextra_pins = extra_pins;
2633 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2637 * This function splits huge page into normal pages. @page can point to any
2638 * subpage of huge page to split. Split doesn't change the position of @page.
2640 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2641 * The huge page must be locked.
2643 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2645 * Both head page and tail pages will inherit mapping, flags, and so on from
2648 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2649 * they are not mapped.
2651 * Returns 0 if the hugepage is split successfully.
2652 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2655 int split_huge_page_to_list(struct page *page, struct list_head *list)
2657 struct page *head = compound_head(page);
2658 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2659 struct anon_vma *anon_vma = NULL;
2660 struct address_space *mapping = NULL;
2661 int count, mapcount, extra_pins, ret;
2664 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2665 VM_BUG_ON_PAGE(!PageLocked(head), head);
2666 VM_BUG_ON_PAGE(!PageCompound(head), head);
2668 if (PageWriteback(head))
2671 if (PageAnon(head)) {
2673 * The caller does not necessarily hold an mmap_lock that would
2674 * prevent the anon_vma disappearing so we first we take a
2675 * reference to it and then lock the anon_vma for write. This
2676 * is similar to page_lock_anon_vma_read except the write lock
2677 * is taken to serialise against parallel split or collapse
2680 anon_vma = page_get_anon_vma(head);
2687 anon_vma_lock_write(anon_vma);
2689 mapping = head->mapping;
2698 i_mmap_lock_read(mapping);
2701 *__split_huge_page() may need to trim off pages beyond EOF:
2702 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2703 * which cannot be nested inside the page tree lock. So note
2704 * end now: i_size itself may be changed at any moment, but
2705 * head page lock is good enough to serialize the trimming.
2707 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2711 * Racy check if we can split the page, before unmap_page() will
2714 if (!can_split_huge_page(head, &extra_pins)) {
2720 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2722 /* block interrupt reentry in xa_lock and spinlock */
2723 local_irq_disable();
2725 XA_STATE(xas, &mapping->i_pages, page_index(head));
2728 * Check if the head page is present in page cache.
2729 * We assume all tail are present too, if head is there.
2731 xa_lock(&mapping->i_pages);
2732 if (xas_load(&xas) != head)
2736 /* Prevent deferred_split_scan() touching ->_refcount */
2737 spin_lock(&ds_queue->split_queue_lock);
2738 count = page_count(head);
2739 mapcount = total_mapcount(head);
2740 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2741 if (!list_empty(page_deferred_list(head))) {
2742 ds_queue->split_queue_len--;
2743 list_del(page_deferred_list(head));
2745 spin_unlock(&ds_queue->split_queue_lock);
2747 int nr = thp_nr_pages(head);
2749 if (PageSwapBacked(head))
2750 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2753 __mod_lruvec_page_state(head, NR_FILE_THPS,
2757 __split_huge_page(page, list, end);
2760 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2761 pr_alert("total_mapcount: %u, page_count(): %u\n",
2764 dump_page(head, NULL);
2765 dump_page(page, "total_mapcount(head) > 0");
2768 spin_unlock(&ds_queue->split_queue_lock);
2770 xa_unlock(&mapping->i_pages);
2772 remap_page(head, thp_nr_pages(head));
2778 anon_vma_unlock_write(anon_vma);
2779 put_anon_vma(anon_vma);
2782 i_mmap_unlock_read(mapping);
2784 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2788 void free_transhuge_page(struct page *page)
2790 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2791 unsigned long flags;
2793 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2794 if (!list_empty(page_deferred_list(page))) {
2795 ds_queue->split_queue_len--;
2796 list_del(page_deferred_list(page));
2798 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2799 free_compound_page(page);
2802 void deferred_split_huge_page(struct page *page)
2804 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2808 unsigned long flags;
2810 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2813 * The try_to_unmap() in page reclaim path might reach here too,
2814 * this may cause a race condition to corrupt deferred split queue.
2815 * And, if page reclaim is already handling the same page, it is
2816 * unnecessary to handle it again in shrinker.
2818 * Check PageSwapCache to determine if the page is being
2819 * handled by page reclaim since THP swap would add the page into
2820 * swap cache before calling try_to_unmap().
2822 if (PageSwapCache(page))
2825 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2826 if (list_empty(page_deferred_list(page))) {
2827 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2828 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2829 ds_queue->split_queue_len++;
2832 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2833 deferred_split_shrinker.id);
2836 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2839 static unsigned long deferred_split_count(struct shrinker *shrink,
2840 struct shrink_control *sc)
2842 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2843 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 ds_queue = &sc->memcg->deferred_split_queue;
2849 return READ_ONCE(ds_queue->split_queue_len);
2852 static unsigned long deferred_split_scan(struct shrinker *shrink,
2853 struct shrink_control *sc)
2855 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2856 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2857 unsigned long flags;
2858 LIST_HEAD(list), *pos, *next;
2864 ds_queue = &sc->memcg->deferred_split_queue;
2867 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2868 /* Take pin on all head pages to avoid freeing them under us */
2869 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2870 page = list_entry((void *)pos, struct page, mapping);
2871 page = compound_head(page);
2872 if (get_page_unless_zero(page)) {
2873 list_move(page_deferred_list(page), &list);
2875 /* We lost race with put_compound_page() */
2876 list_del_init(page_deferred_list(page));
2877 ds_queue->split_queue_len--;
2879 if (!--sc->nr_to_scan)
2882 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2884 list_for_each_safe(pos, next, &list) {
2885 page = list_entry((void *)pos, struct page, mapping);
2886 if (!trylock_page(page))
2888 /* split_huge_page() removes page from list on success */
2889 if (!split_huge_page(page))
2896 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2897 list_splice_tail(&list, &ds_queue->split_queue);
2898 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2901 * Stop shrinker if we didn't split any page, but the queue is empty.
2902 * This can happen if pages were freed under us.
2904 if (!split && list_empty(&ds_queue->split_queue))
2909 static struct shrinker deferred_split_shrinker = {
2910 .count_objects = deferred_split_count,
2911 .scan_objects = deferred_split_scan,
2912 .seeks = DEFAULT_SEEKS,
2913 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2917 #ifdef CONFIG_DEBUG_FS
2918 static int split_huge_pages_set(void *data, u64 val)
2922 unsigned long pfn, max_zone_pfn;
2923 unsigned long total = 0, split = 0;
2928 for_each_populated_zone(zone) {
2929 max_zone_pfn = zone_end_pfn(zone);
2930 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2931 if (!pfn_valid(pfn))
2934 page = pfn_to_page(pfn);
2935 if (!get_page_unless_zero(page))
2938 if (zone != page_zone(page))
2941 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2946 if (!split_huge_page(page))
2954 pr_info("%lu of %lu THP split\n", split, total);
2958 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2961 static int __init split_huge_pages_debugfs(void)
2963 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2964 &split_huge_pages_fops);
2967 late_initcall(split_huge_pages_debugfs);
2970 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2971 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2974 struct vm_area_struct *vma = pvmw->vma;
2975 struct mm_struct *mm = vma->vm_mm;
2976 unsigned long address = pvmw->address;
2981 if (!(pvmw->pmd && !pvmw->pte))
2984 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2985 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2986 if (pmd_dirty(pmdval))
2987 set_page_dirty(page);
2988 entry = make_migration_entry(page, pmd_write(pmdval));
2989 pmdswp = swp_entry_to_pmd(entry);
2990 if (pmd_soft_dirty(pmdval))
2991 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2992 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2993 page_remove_rmap(page, true);
2997 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2999 struct vm_area_struct *vma = pvmw->vma;
3000 struct mm_struct *mm = vma->vm_mm;
3001 unsigned long address = pvmw->address;
3002 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3006 if (!(pvmw->pmd && !pvmw->pte))
3009 entry = pmd_to_swp_entry(*pvmw->pmd);
3011 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3012 if (pmd_swp_soft_dirty(*pvmw->pmd))
3013 pmde = pmd_mksoft_dirty(pmde);
3014 if (is_write_migration_entry(entry))
3015 pmde = maybe_pmd_mkwrite(pmde, vma);
3017 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3019 page_add_anon_rmap(new, vma, mmun_start, true);
3021 page_add_file_rmap(new, true);
3022 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3023 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3024 mlock_vma_page(new);
3025 update_mmu_cache_pmd(vma, address, pvmw->pmd);