1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
39 #include <asm/pgalloc.h>
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
61 static struct shrinker deferred_split_shrinker;
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
68 /* The addr is used to check if the vma size fits */
69 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
71 if (!transhuge_vma_suitable(vma, addr))
73 if (vma_is_anonymous(vma))
74 return __transparent_hugepage_enabled(vma);
75 if (vma_is_shmem(vma))
76 return shmem_huge_enabled(vma);
81 static bool get_huge_zero_page(void)
83 struct page *zero_page;
85 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
88 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
91 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
94 count_vm_event(THP_ZERO_PAGE_ALLOC);
96 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
98 __free_pages(zero_page, compound_order(zero_page));
102 /* We take additional reference here. It will be put back by shrinker */
103 atomic_set(&huge_zero_refcount, 2);
108 static void put_huge_zero_page(void)
111 * Counter should never go to zero here. Only shrinker can put
114 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
117 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
119 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
120 return READ_ONCE(huge_zero_page);
122 if (!get_huge_zero_page())
125 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
126 put_huge_zero_page();
128 return READ_ONCE(huge_zero_page);
131 void mm_put_huge_zero_page(struct mm_struct *mm)
133 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
134 put_huge_zero_page();
137 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
138 struct shrink_control *sc)
140 /* we can free zero page only if last reference remains */
141 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
144 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
145 struct shrink_control *sc)
147 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
148 struct page *zero_page = xchg(&huge_zero_page, NULL);
149 BUG_ON(zero_page == NULL);
150 __free_pages(zero_page, compound_order(zero_page));
157 static struct shrinker huge_zero_page_shrinker = {
158 .count_objects = shrink_huge_zero_page_count,
159 .scan_objects = shrink_huge_zero_page_scan,
160 .seeks = DEFAULT_SEEKS,
164 static ssize_t enabled_show(struct kobject *kobj,
165 struct kobj_attribute *attr, char *buf)
169 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
170 output = "[always] madvise never";
171 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
172 &transparent_hugepage_flags))
173 output = "always [madvise] never";
175 output = "always madvise [never]";
177 return sysfs_emit(buf, "%s\n", output);
180 static ssize_t enabled_store(struct kobject *kobj,
181 struct kobj_attribute *attr,
182 const char *buf, size_t count)
186 if (sysfs_streq(buf, "always")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
189 } else if (sysfs_streq(buf, "madvise")) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 } else if (sysfs_streq(buf, "never")) {
193 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
194 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
199 int err = start_stop_khugepaged();
205 static struct kobj_attribute enabled_attr =
206 __ATTR(enabled, 0644, enabled_show, enabled_store);
208 ssize_t single_hugepage_flag_show(struct kobject *kobj,
209 struct kobj_attribute *attr, char *buf,
210 enum transparent_hugepage_flag flag)
212 return sysfs_emit(buf, "%d\n",
213 !!test_bit(flag, &transparent_hugepage_flags));
216 ssize_t single_hugepage_flag_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count,
219 enum transparent_hugepage_flag flag)
224 ret = kstrtoul(buf, 10, &value);
231 set_bit(flag, &transparent_hugepage_flags);
233 clear_bit(flag, &transparent_hugepage_flags);
238 static ssize_t defrag_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf)
243 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
244 &transparent_hugepage_flags))
245 output = "[always] defer defer+madvise madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [defer] defer+madvise madvise never";
249 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
250 &transparent_hugepage_flags))
251 output = "always defer [defer+madvise] madvise never";
252 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
253 &transparent_hugepage_flags))
254 output = "always defer defer+madvise [madvise] never";
256 output = "always defer defer+madvise madvise [never]";
258 return sysfs_emit(buf, "%s\n", output);
261 static ssize_t defrag_store(struct kobject *kobj,
262 struct kobj_attribute *attr,
263 const char *buf, size_t count)
265 if (sysfs_streq(buf, "always")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "defer+madvise")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
274 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 } else if (sysfs_streq(buf, "defer")) {
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 } else if (sysfs_streq(buf, "madvise")) {
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
284 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
285 } else if (sysfs_streq(buf, "never")) {
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
295 static struct kobj_attribute defrag_attr =
296 __ATTR(defrag, 0644, defrag_show, defrag_store);
298 static ssize_t use_zero_page_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
301 return single_hugepage_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
304 static ssize_t use_zero_page_store(struct kobject *kobj,
305 struct kobj_attribute *attr, const char *buf, size_t count)
307 return single_hugepage_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
310 static struct kobj_attribute use_zero_page_attr =
311 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
313 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
316 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
318 static struct kobj_attribute hpage_pmd_size_attr =
319 __ATTR_RO(hpage_pmd_size);
321 static struct attribute *hugepage_attr[] = {
324 &use_zero_page_attr.attr,
325 &hpage_pmd_size_attr.attr,
327 &shmem_enabled_attr.attr,
332 static const struct attribute_group hugepage_attr_group = {
333 .attrs = hugepage_attr,
336 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
340 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 if (unlikely(!*hugepage_kobj)) {
342 pr_err("failed to create transparent hugepage kobject\n");
346 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
348 pr_err("failed to register transparent hugepage group\n");
352 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
354 pr_err("failed to register transparent hugepage group\n");
355 goto remove_hp_group;
361 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
363 kobject_put(*hugepage_kobj);
367 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
369 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 kobject_put(hugepage_kobj);
374 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
379 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382 #endif /* CONFIG_SYSFS */
384 static int __init hugepage_init(void)
387 struct kobject *hugepage_kobj;
389 if (!has_transparent_hugepage()) {
391 * Hardware doesn't support hugepages, hence disable
394 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
399 * hugepages can't be allocated by the buddy allocator
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
403 * we use page->mapping and page->index in second tail page
404 * as list_head: assuming THP order >= 2
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
408 err = hugepage_init_sysfs(&hugepage_kobj);
412 err = khugepaged_init();
416 err = register_shrinker(&huge_zero_page_shrinker);
418 goto err_hzp_shrinker;
419 err = register_shrinker(&deferred_split_shrinker);
421 goto err_split_shrinker;
424 * By default disable transparent hugepages on smaller systems,
425 * where the extra memory used could hurt more than TLB overhead
426 * is likely to save. The admin can still enable it through /sys.
428 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
429 transparent_hugepage_flags = 0;
433 err = start_stop_khugepaged();
439 unregister_shrinker(&deferred_split_shrinker);
441 unregister_shrinker(&huge_zero_page_shrinker);
443 khugepaged_destroy();
445 hugepage_exit_sysfs(hugepage_kobj);
449 subsys_initcall(hugepage_init);
451 static int __init setup_transparent_hugepage(char *str)
456 if (!strcmp(str, "always")) {
457 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
458 &transparent_hugepage_flags);
459 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
460 &transparent_hugepage_flags);
462 } else if (!strcmp(str, "madvise")) {
463 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
468 } else if (!strcmp(str, "never")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
477 pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 __setup("transparent_hugepage=", setup_transparent_hugepage);
482 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
484 if (likely(vma->vm_flags & VM_WRITE))
485 pmd = pmd_mkwrite(pmd);
490 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
492 struct mem_cgroup *memcg = page_memcg(compound_head(page));
493 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496 return &memcg->deferred_split_queue;
498 return &pgdat->deferred_split_queue;
501 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
505 return &pgdat->deferred_split_queue;
509 void prep_transhuge_page(struct page *page)
512 * we use page->mapping and page->indexlru in second tail page
513 * as list_head: assuming THP order >= 2
516 INIT_LIST_HEAD(page_deferred_list(page));
517 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520 bool is_transparent_hugepage(struct page *page)
522 if (!PageCompound(page))
525 page = compound_head(page);
526 return is_huge_zero_page(page) ||
527 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
529 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
531 static unsigned long __thp_get_unmapped_area(struct file *filp,
532 unsigned long addr, unsigned long len,
533 loff_t off, unsigned long flags, unsigned long size)
535 loff_t off_end = off + len;
536 loff_t off_align = round_up(off, size);
537 unsigned long len_pad, ret;
539 if (off_end <= off_align || (off_end - off_align) < size)
542 len_pad = len + size;
543 if (len_pad < len || (off + len_pad) < off)
546 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
547 off >> PAGE_SHIFT, flags);
550 * The failure might be due to length padding. The caller will retry
551 * without the padding.
553 if (IS_ERR_VALUE(ret))
557 * Do not try to align to THP boundary if allocation at the address
563 ret += (off - ret) & (size - 1);
567 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
568 unsigned long len, unsigned long pgoff, unsigned long flags)
571 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
573 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
580 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
582 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
584 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
585 struct page *page, gfp_t gfp)
587 struct vm_area_struct *vma = vmf->vma;
589 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
592 VM_BUG_ON_PAGE(!PageCompound(page), page);
594 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
596 count_vm_event(THP_FAULT_FALLBACK);
597 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
598 return VM_FAULT_FALLBACK;
600 cgroup_throttle_swaprate(page, gfp);
602 pgtable = pte_alloc_one(vma->vm_mm);
603 if (unlikely(!pgtable)) {
608 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
610 * The memory barrier inside __SetPageUptodate makes sure that
611 * clear_huge_page writes become visible before the set_pmd_at()
614 __SetPageUptodate(page);
616 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
617 if (unlikely(!pmd_none(*vmf->pmd))) {
622 ret = check_stable_address_space(vma->vm_mm);
626 /* Deliver the page fault to userland */
627 if (userfaultfd_missing(vma)) {
628 spin_unlock(vmf->ptl);
630 pte_free(vma->vm_mm, pgtable);
631 ret = handle_userfault(vmf, VM_UFFD_MISSING);
632 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
636 entry = mk_huge_pmd(page, vma->vm_page_prot);
637 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
638 page_add_new_anon_rmap(page, vma, haddr, true);
639 lru_cache_add_inactive_or_unevictable(page, vma);
640 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
641 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
642 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
643 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 mm_inc_nr_ptes(vma->vm_mm);
645 spin_unlock(vmf->ptl);
646 count_vm_event(THP_FAULT_ALLOC);
647 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
652 spin_unlock(vmf->ptl);
655 pte_free(vma->vm_mm, pgtable);
662 * always: directly stall for all thp allocations
663 * defer: wake kswapd and fail if not immediately available
664 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
665 * fail if not immediately available
666 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
668 * never: never stall for any thp allocation
670 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
672 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
674 /* Always do synchronous compaction */
675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
676 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
678 /* Kick kcompactd and fail quickly */
679 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
680 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
682 /* Synchronous compaction if madvised, otherwise kick kcompactd */
683 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
684 return GFP_TRANSHUGE_LIGHT |
685 (vma_madvised ? __GFP_DIRECT_RECLAIM :
686 __GFP_KSWAPD_RECLAIM);
688 /* Only do synchronous compaction if madvised */
689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
690 return GFP_TRANSHUGE_LIGHT |
691 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
693 return GFP_TRANSHUGE_LIGHT;
696 /* Caller must hold page table lock. */
697 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
698 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
699 struct page *zero_page)
704 entry = mk_pmd(zero_page, vma->vm_page_prot);
705 entry = pmd_mkhuge(entry);
707 pgtable_trans_huge_deposit(mm, pmd, pgtable);
708 set_pmd_at(mm, haddr, pmd, entry);
712 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
714 struct vm_area_struct *vma = vmf->vma;
717 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
719 if (!transhuge_vma_suitable(vma, haddr))
720 return VM_FAULT_FALLBACK;
721 if (unlikely(anon_vma_prepare(vma)))
723 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
725 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
726 !mm_forbids_zeropage(vma->vm_mm) &&
727 transparent_hugepage_use_zero_page()) {
729 struct page *zero_page;
731 pgtable = pte_alloc_one(vma->vm_mm);
732 if (unlikely(!pgtable))
734 zero_page = mm_get_huge_zero_page(vma->vm_mm);
735 if (unlikely(!zero_page)) {
736 pte_free(vma->vm_mm, pgtable);
737 count_vm_event(THP_FAULT_FALLBACK);
738 return VM_FAULT_FALLBACK;
740 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
742 if (pmd_none(*vmf->pmd)) {
743 ret = check_stable_address_space(vma->vm_mm);
745 spin_unlock(vmf->ptl);
746 pte_free(vma->vm_mm, pgtable);
747 } else if (userfaultfd_missing(vma)) {
748 spin_unlock(vmf->ptl);
749 pte_free(vma->vm_mm, pgtable);
750 ret = handle_userfault(vmf, VM_UFFD_MISSING);
751 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
753 set_huge_zero_page(pgtable, vma->vm_mm, vma,
754 haddr, vmf->pmd, zero_page);
755 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
756 spin_unlock(vmf->ptl);
759 spin_unlock(vmf->ptl);
760 pte_free(vma->vm_mm, pgtable);
764 gfp = vma_thp_gfp_mask(vma);
765 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
766 if (unlikely(!page)) {
767 count_vm_event(THP_FAULT_FALLBACK);
768 return VM_FAULT_FALLBACK;
770 prep_transhuge_page(page);
771 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
774 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
775 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
778 struct mm_struct *mm = vma->vm_mm;
782 ptl = pmd_lock(mm, pmd);
783 if (!pmd_none(*pmd)) {
785 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
786 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
789 entry = pmd_mkyoung(*pmd);
790 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
791 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
792 update_mmu_cache_pmd(vma, addr, pmd);
798 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
799 if (pfn_t_devmap(pfn))
800 entry = pmd_mkdevmap(entry);
802 entry = pmd_mkyoung(pmd_mkdirty(entry));
803 entry = maybe_pmd_mkwrite(entry, vma);
807 pgtable_trans_huge_deposit(mm, pmd, pgtable);
812 set_pmd_at(mm, addr, pmd, entry);
813 update_mmu_cache_pmd(vma, addr, pmd);
818 pte_free(mm, pgtable);
822 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
823 * @vmf: Structure describing the fault
824 * @pfn: pfn to insert
825 * @pgprot: page protection to use
826 * @write: whether it's a write fault
828 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
829 * also consult the vmf_insert_mixed_prot() documentation when
830 * @pgprot != @vmf->vma->vm_page_prot.
832 * Return: vm_fault_t value.
834 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
835 pgprot_t pgprot, bool write)
837 unsigned long addr = vmf->address & PMD_MASK;
838 struct vm_area_struct *vma = vmf->vma;
839 pgtable_t pgtable = NULL;
842 * If we had pmd_special, we could avoid all these restrictions,
843 * but we need to be consistent with PTEs and architectures that
844 * can't support a 'special' bit.
846 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
848 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
849 (VM_PFNMAP|VM_MIXEDMAP));
850 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
852 if (addr < vma->vm_start || addr >= vma->vm_end)
853 return VM_FAULT_SIGBUS;
855 if (arch_needs_pgtable_deposit()) {
856 pgtable = pte_alloc_one(vma->vm_mm);
861 track_pfn_insert(vma, &pgprot, pfn);
863 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
864 return VM_FAULT_NOPAGE;
866 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
868 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
869 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871 if (likely(vma->vm_flags & VM_WRITE))
872 pud = pud_mkwrite(pud);
876 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
877 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
879 struct mm_struct *mm = vma->vm_mm;
883 ptl = pud_lock(mm, pud);
884 if (!pud_none(*pud)) {
886 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
887 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
890 entry = pud_mkyoung(*pud);
891 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
892 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
893 update_mmu_cache_pud(vma, addr, pud);
898 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
899 if (pfn_t_devmap(pfn))
900 entry = pud_mkdevmap(entry);
902 entry = pud_mkyoung(pud_mkdirty(entry));
903 entry = maybe_pud_mkwrite(entry, vma);
905 set_pud_at(mm, addr, pud, entry);
906 update_mmu_cache_pud(vma, addr, pud);
913 * vmf_insert_pfn_pud_prot - insert a pud size pfn
914 * @vmf: Structure describing the fault
915 * @pfn: pfn to insert
916 * @pgprot: page protection to use
917 * @write: whether it's a write fault
919 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
920 * also consult the vmf_insert_mixed_prot() documentation when
921 * @pgprot != @vmf->vma->vm_page_prot.
923 * Return: vm_fault_t value.
925 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
926 pgprot_t pgprot, bool write)
928 unsigned long addr = vmf->address & PUD_MASK;
929 struct vm_area_struct *vma = vmf->vma;
932 * If we had pud_special, we could avoid all these restrictions,
933 * but we need to be consistent with PTEs and architectures that
934 * can't support a 'special' bit.
936 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
939 (VM_PFNMAP|VM_MIXEDMAP));
940 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
942 if (addr < vma->vm_start || addr >= vma->vm_end)
943 return VM_FAULT_SIGBUS;
945 track_pfn_insert(vma, &pgprot, pfn);
947 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
948 return VM_FAULT_NOPAGE;
950 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
951 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
953 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
954 pmd_t *pmd, int flags)
958 _pmd = pmd_mkyoung(*pmd);
959 if (flags & FOLL_WRITE)
960 _pmd = pmd_mkdirty(_pmd);
961 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
962 pmd, _pmd, flags & FOLL_WRITE))
963 update_mmu_cache_pmd(vma, addr, pmd);
966 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
967 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
969 unsigned long pfn = pmd_pfn(*pmd);
970 struct mm_struct *mm = vma->vm_mm;
973 assert_spin_locked(pmd_lockptr(mm, pmd));
976 * When we COW a devmap PMD entry, we split it into PTEs, so we should
977 * not be in this function with `flags & FOLL_COW` set.
979 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
981 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
982 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
983 (FOLL_PIN | FOLL_GET)))
986 if (flags & FOLL_WRITE && !pmd_write(*pmd))
989 if (pmd_present(*pmd) && pmd_devmap(*pmd))
994 if (flags & FOLL_TOUCH)
995 touch_pmd(vma, addr, pmd, flags);
998 * device mapped pages can only be returned if the
999 * caller will manage the page reference count.
1001 if (!(flags & (FOLL_GET | FOLL_PIN)))
1002 return ERR_PTR(-EEXIST);
1004 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1005 *pgmap = get_dev_pagemap(pfn, *pgmap);
1007 return ERR_PTR(-EFAULT);
1008 page = pfn_to_page(pfn);
1009 if (!try_grab_page(page, flags))
1010 page = ERR_PTR(-ENOMEM);
1015 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1017 struct vm_area_struct *vma)
1019 spinlock_t *dst_ptl, *src_ptl;
1020 struct page *src_page;
1022 pgtable_t pgtable = NULL;
1025 /* Skip if can be re-fill on fault */
1026 if (!vma_is_anonymous(vma))
1029 pgtable = pte_alloc_one(dst_mm);
1030 if (unlikely(!pgtable))
1033 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1034 src_ptl = pmd_lockptr(src_mm, src_pmd);
1035 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1041 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1042 * does not have the VM_UFFD_WP, which means that the uffd
1043 * fork event is not enabled.
1045 if (!(vma->vm_flags & VM_UFFD_WP))
1046 pmd = pmd_clear_uffd_wp(pmd);
1048 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1049 if (unlikely(is_swap_pmd(pmd))) {
1050 swp_entry_t entry = pmd_to_swp_entry(pmd);
1052 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1053 if (is_write_migration_entry(entry)) {
1054 make_migration_entry_read(&entry);
1055 pmd = swp_entry_to_pmd(entry);
1056 if (pmd_swp_soft_dirty(*src_pmd))
1057 pmd = pmd_swp_mksoft_dirty(pmd);
1058 set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1061 mm_inc_nr_ptes(dst_mm);
1062 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1063 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1069 if (unlikely(!pmd_trans_huge(pmd))) {
1070 pte_free(dst_mm, pgtable);
1074 * When page table lock is held, the huge zero pmd should not be
1075 * under splitting since we don't split the page itself, only pmd to
1078 if (is_huge_zero_pmd(pmd)) {
1079 struct page *zero_page;
1081 * get_huge_zero_page() will never allocate a new page here,
1082 * since we already have a zero page to copy. It just takes a
1085 zero_page = mm_get_huge_zero_page(dst_mm);
1086 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1092 src_page = pmd_page(pmd);
1093 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1096 * If this page is a potentially pinned page, split and retry the fault
1097 * with smaller page size. Normally this should not happen because the
1098 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1099 * best effort that the pinned pages won't be replaced by another
1100 * random page during the coming copy-on-write.
1102 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1103 pte_free(dst_mm, pgtable);
1104 spin_unlock(src_ptl);
1105 spin_unlock(dst_ptl);
1106 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1111 page_dup_rmap(src_page, true);
1112 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113 mm_inc_nr_ptes(dst_mm);
1114 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1116 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1117 pmd = pmd_mkold(pmd_wrprotect(pmd));
1118 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1122 spin_unlock(src_ptl);
1123 spin_unlock(dst_ptl);
1128 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1129 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1130 pud_t *pud, int flags)
1134 _pud = pud_mkyoung(*pud);
1135 if (flags & FOLL_WRITE)
1136 _pud = pud_mkdirty(_pud);
1137 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1138 pud, _pud, flags & FOLL_WRITE))
1139 update_mmu_cache_pud(vma, addr, pud);
1142 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1143 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1145 unsigned long pfn = pud_pfn(*pud);
1146 struct mm_struct *mm = vma->vm_mm;
1149 assert_spin_locked(pud_lockptr(mm, pud));
1151 if (flags & FOLL_WRITE && !pud_write(*pud))
1154 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1155 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1156 (FOLL_PIN | FOLL_GET)))
1159 if (pud_present(*pud) && pud_devmap(*pud))
1164 if (flags & FOLL_TOUCH)
1165 touch_pud(vma, addr, pud, flags);
1168 * device mapped pages can only be returned if the
1169 * caller will manage the page reference count.
1171 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1173 if (!(flags & (FOLL_GET | FOLL_PIN)))
1174 return ERR_PTR(-EEXIST);
1176 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1177 *pgmap = get_dev_pagemap(pfn, *pgmap);
1179 return ERR_PTR(-EFAULT);
1180 page = pfn_to_page(pfn);
1181 if (!try_grab_page(page, flags))
1182 page = ERR_PTR(-ENOMEM);
1187 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1188 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1189 struct vm_area_struct *vma)
1191 spinlock_t *dst_ptl, *src_ptl;
1195 dst_ptl = pud_lock(dst_mm, dst_pud);
1196 src_ptl = pud_lockptr(src_mm, src_pud);
1197 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1201 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1205 * When page table lock is held, the huge zero pud should not be
1206 * under splitting since we don't split the page itself, only pud to
1209 if (is_huge_zero_pud(pud)) {
1210 /* No huge zero pud yet */
1213 /* Please refer to comments in copy_huge_pmd() */
1214 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1215 spin_unlock(src_ptl);
1216 spin_unlock(dst_ptl);
1217 __split_huge_pud(vma, src_pud, addr);
1221 pudp_set_wrprotect(src_mm, addr, src_pud);
1222 pud = pud_mkold(pud_wrprotect(pud));
1223 set_pud_at(dst_mm, addr, dst_pud, pud);
1227 spin_unlock(src_ptl);
1228 spin_unlock(dst_ptl);
1232 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1235 unsigned long haddr;
1236 bool write = vmf->flags & FAULT_FLAG_WRITE;
1238 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1239 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1242 entry = pud_mkyoung(orig_pud);
1244 entry = pud_mkdirty(entry);
1245 haddr = vmf->address & HPAGE_PUD_MASK;
1246 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1247 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1250 spin_unlock(vmf->ptl);
1252 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1254 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1257 unsigned long haddr;
1258 bool write = vmf->flags & FAULT_FLAG_WRITE;
1260 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1264 entry = pmd_mkyoung(orig_pmd);
1266 entry = pmd_mkdirty(entry);
1267 haddr = vmf->address & HPAGE_PMD_MASK;
1268 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1269 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1272 spin_unlock(vmf->ptl);
1275 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1277 struct vm_area_struct *vma = vmf->vma;
1279 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1281 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1282 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1284 if (is_huge_zero_pmd(orig_pmd))
1287 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 spin_unlock(vmf->ptl);
1294 page = pmd_page(orig_pmd);
1295 VM_BUG_ON_PAGE(!PageHead(page), page);
1297 /* Lock page for reuse_swap_page() */
1298 if (!trylock_page(page)) {
1300 spin_unlock(vmf->ptl);
1302 spin_lock(vmf->ptl);
1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1304 spin_unlock(vmf->ptl);
1313 * We can only reuse the page if nobody else maps the huge page or it's
1316 if (reuse_swap_page(page, NULL)) {
1318 entry = pmd_mkyoung(orig_pmd);
1319 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1320 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1321 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1323 spin_unlock(vmf->ptl);
1324 return VM_FAULT_WRITE;
1328 spin_unlock(vmf->ptl);
1330 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1331 return VM_FAULT_FALLBACK;
1335 * FOLL_FORCE can write to even unwritable pmd's, but only
1336 * after we've gone through a COW cycle and they are dirty.
1338 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1340 return pmd_write(pmd) ||
1341 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1344 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1349 struct mm_struct *mm = vma->vm_mm;
1350 struct page *page = NULL;
1352 assert_spin_locked(pmd_lockptr(mm, pmd));
1354 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1357 /* Avoid dumping huge zero page */
1358 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1359 return ERR_PTR(-EFAULT);
1361 /* Full NUMA hinting faults to serialise migration in fault paths */
1362 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1365 page = pmd_page(*pmd);
1366 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1368 if (!try_grab_page(page, flags))
1369 return ERR_PTR(-ENOMEM);
1371 if (flags & FOLL_TOUCH)
1372 touch_pmd(vma, addr, pmd, flags);
1374 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1376 * We don't mlock() pte-mapped THPs. This way we can avoid
1377 * leaking mlocked pages into non-VM_LOCKED VMAs.
1381 * In most cases the pmd is the only mapping of the page as we
1382 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1383 * writable private mappings in populate_vma_page_range().
1385 * The only scenario when we have the page shared here is if we
1386 * mlocking read-only mapping shared over fork(). We skip
1387 * mlocking such pages.
1391 * We can expect PageDoubleMap() to be stable under page lock:
1392 * for file pages we set it in page_add_file_rmap(), which
1393 * requires page to be locked.
1396 if (PageAnon(page) && compound_mapcount(page) != 1)
1398 if (PageDoubleMap(page) || !page->mapping)
1400 if (!trylock_page(page))
1402 if (page->mapping && !PageDoubleMap(page))
1403 mlock_vma_page(page);
1407 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1408 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1414 /* NUMA hinting page fault entry point for trans huge pmds */
1415 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1417 struct vm_area_struct *vma = vmf->vma;
1418 struct anon_vma *anon_vma = NULL;
1420 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1421 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1422 int target_nid, last_cpupid = -1;
1424 bool migrated = false;
1428 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1429 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1433 * If there are potential migrations, wait for completion and retry
1434 * without disrupting NUMA hinting information. Do not relock and
1435 * check_same as the page may no longer be mapped.
1437 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1438 page = pmd_page(*vmf->pmd);
1439 if (!get_page_unless_zero(page))
1441 spin_unlock(vmf->ptl);
1442 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1446 page = pmd_page(pmd);
1447 BUG_ON(is_huge_zero_page(page));
1448 page_nid = page_to_nid(page);
1449 last_cpupid = page_cpupid_last(page);
1450 count_vm_numa_event(NUMA_HINT_FAULTS);
1451 if (page_nid == this_nid) {
1452 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1453 flags |= TNF_FAULT_LOCAL;
1456 /* See similar comment in do_numa_page for explanation */
1457 if (!pmd_savedwrite(pmd))
1458 flags |= TNF_NO_GROUP;
1461 * Acquire the page lock to serialise THP migrations but avoid dropping
1462 * page_table_lock if at all possible
1464 page_locked = trylock_page(page);
1465 target_nid = mpol_misplaced(page, vma, haddr);
1466 /* Migration could have started since the pmd_trans_migrating check */
1468 page_nid = NUMA_NO_NODE;
1469 if (!get_page_unless_zero(page))
1471 spin_unlock(vmf->ptl);
1472 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1474 } else if (target_nid == NUMA_NO_NODE) {
1475 /* There are no parallel migrations and page is in the right
1476 * node. Clear the numa hinting info in this pmd.
1482 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1483 * to serialises splits
1486 spin_unlock(vmf->ptl);
1487 anon_vma = page_lock_anon_vma_read(page);
1489 /* Confirm the PMD did not change while page_table_lock was released */
1490 spin_lock(vmf->ptl);
1491 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1494 page_nid = NUMA_NO_NODE;
1498 /* Bail if we fail to protect against THP splits for any reason */
1499 if (unlikely(!anon_vma)) {
1501 page_nid = NUMA_NO_NODE;
1506 * Since we took the NUMA fault, we must have observed the !accessible
1507 * bit. Make sure all other CPUs agree with that, to avoid them
1508 * modifying the page we're about to migrate.
1510 * Must be done under PTL such that we'll observe the relevant
1511 * inc_tlb_flush_pending().
1513 * We are not sure a pending tlb flush here is for a huge page
1514 * mapping or not. Hence use the tlb range variant
1516 if (mm_tlb_flush_pending(vma->vm_mm)) {
1517 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1519 * change_huge_pmd() released the pmd lock before
1520 * invalidating the secondary MMUs sharing the primary
1521 * MMU pagetables (with ->invalidate_range()). The
1522 * mmu_notifier_invalidate_range_end() (which
1523 * internally calls ->invalidate_range()) in
1524 * change_pmd_range() will run after us, so we can't
1525 * rely on it here and we need an explicit invalidate.
1527 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1528 haddr + HPAGE_PMD_SIZE);
1532 * Migrate the THP to the requested node, returns with page unlocked
1533 * and access rights restored.
1535 spin_unlock(vmf->ptl);
1537 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1538 vmf->pmd, pmd, vmf->address, page, target_nid);
1540 flags |= TNF_MIGRATED;
1541 page_nid = target_nid;
1543 flags |= TNF_MIGRATE_FAIL;
1547 BUG_ON(!PageLocked(page));
1548 was_writable = pmd_savedwrite(pmd);
1549 pmd = pmd_modify(pmd, vma->vm_page_prot);
1550 pmd = pmd_mkyoung(pmd);
1552 pmd = pmd_mkwrite(pmd);
1553 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1554 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1557 spin_unlock(vmf->ptl);
1561 page_unlock_anon_vma_read(anon_vma);
1563 if (page_nid != NUMA_NO_NODE)
1564 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1571 * Return true if we do MADV_FREE successfully on entire pmd page.
1572 * Otherwise, return false.
1574 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1575 pmd_t *pmd, unsigned long addr, unsigned long next)
1580 struct mm_struct *mm = tlb->mm;
1583 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1585 ptl = pmd_trans_huge_lock(pmd, vma);
1590 if (is_huge_zero_pmd(orig_pmd))
1593 if (unlikely(!pmd_present(orig_pmd))) {
1594 VM_BUG_ON(thp_migration_supported() &&
1595 !is_pmd_migration_entry(orig_pmd));
1599 page = pmd_page(orig_pmd);
1601 * If other processes are mapping this page, we couldn't discard
1602 * the page unless they all do MADV_FREE so let's skip the page.
1604 if (page_mapcount(page) != 1)
1607 if (!trylock_page(page))
1611 * If user want to discard part-pages of THP, split it so MADV_FREE
1612 * will deactivate only them.
1614 if (next - addr != HPAGE_PMD_SIZE) {
1617 split_huge_page(page);
1623 if (PageDirty(page))
1624 ClearPageDirty(page);
1627 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1628 pmdp_invalidate(vma, addr, pmd);
1629 orig_pmd = pmd_mkold(orig_pmd);
1630 orig_pmd = pmd_mkclean(orig_pmd);
1632 set_pmd_at(mm, addr, pmd, orig_pmd);
1633 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1636 mark_page_lazyfree(page);
1644 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1648 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1649 pte_free(mm, pgtable);
1653 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1654 pmd_t *pmd, unsigned long addr)
1659 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1661 ptl = __pmd_trans_huge_lock(pmd, vma);
1665 * For architectures like ppc64 we look at deposited pgtable
1666 * when calling pmdp_huge_get_and_clear. So do the
1667 * pgtable_trans_huge_withdraw after finishing pmdp related
1670 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1672 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1673 if (vma_is_special_huge(vma)) {
1674 if (arch_needs_pgtable_deposit())
1675 zap_deposited_table(tlb->mm, pmd);
1677 if (is_huge_zero_pmd(orig_pmd))
1678 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1679 } else if (is_huge_zero_pmd(orig_pmd)) {
1680 zap_deposited_table(tlb->mm, pmd);
1682 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1684 struct page *page = NULL;
1685 int flush_needed = 1;
1687 if (pmd_present(orig_pmd)) {
1688 page = pmd_page(orig_pmd);
1689 page_remove_rmap(page, true);
1690 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691 VM_BUG_ON_PAGE(!PageHead(page), page);
1692 } else if (thp_migration_supported()) {
1695 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1696 entry = pmd_to_swp_entry(orig_pmd);
1697 page = migration_entry_to_page(entry);
1700 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1702 if (PageAnon(page)) {
1703 zap_deposited_table(tlb->mm, pmd);
1704 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1706 if (arch_needs_pgtable_deposit())
1707 zap_deposited_table(tlb->mm, pmd);
1708 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1713 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1718 #ifndef pmd_move_must_withdraw
1719 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1720 spinlock_t *old_pmd_ptl,
1721 struct vm_area_struct *vma)
1724 * With split pmd lock we also need to move preallocated
1725 * PTE page table if new_pmd is on different PMD page table.
1727 * We also don't deposit and withdraw tables for file pages.
1729 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1733 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1735 #ifdef CONFIG_MEM_SOFT_DIRTY
1736 if (unlikely(is_pmd_migration_entry(pmd)))
1737 pmd = pmd_swp_mksoft_dirty(pmd);
1738 else if (pmd_present(pmd))
1739 pmd = pmd_mksoft_dirty(pmd);
1744 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1745 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1747 spinlock_t *old_ptl, *new_ptl;
1749 struct mm_struct *mm = vma->vm_mm;
1750 bool force_flush = false;
1753 * The destination pmd shouldn't be established, free_pgtables()
1754 * should have release it.
1756 if (WARN_ON(!pmd_none(*new_pmd))) {
1757 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1762 * We don't have to worry about the ordering of src and dst
1763 * ptlocks because exclusive mmap_lock prevents deadlock.
1765 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1767 new_ptl = pmd_lockptr(mm, new_pmd);
1768 if (new_ptl != old_ptl)
1769 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1770 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1771 if (pmd_present(pmd))
1773 VM_BUG_ON(!pmd_none(*new_pmd));
1775 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1777 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1778 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1780 pmd = move_soft_dirty_pmd(pmd);
1781 set_pmd_at(mm, new_addr, new_pmd, pmd);
1783 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1784 if (new_ptl != old_ptl)
1785 spin_unlock(new_ptl);
1786 spin_unlock(old_ptl);
1794 * - 0 if PMD could not be locked
1795 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1796 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1798 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1799 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1801 struct mm_struct *mm = vma->vm_mm;
1804 bool preserve_write;
1806 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1807 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1808 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1810 ptl = __pmd_trans_huge_lock(pmd, vma);
1814 preserve_write = prot_numa && pmd_write(*pmd);
1817 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1818 if (is_swap_pmd(*pmd)) {
1819 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1821 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1822 if (is_write_migration_entry(entry)) {
1825 * A protection check is difficult so
1826 * just be safe and disable write
1828 make_migration_entry_read(&entry);
1829 newpmd = swp_entry_to_pmd(entry);
1830 if (pmd_swp_soft_dirty(*pmd))
1831 newpmd = pmd_swp_mksoft_dirty(newpmd);
1832 set_pmd_at(mm, addr, pmd, newpmd);
1839 * Avoid trapping faults against the zero page. The read-only
1840 * data is likely to be read-cached on the local CPU and
1841 * local/remote hits to the zero page are not interesting.
1843 if (prot_numa && is_huge_zero_pmd(*pmd))
1846 if (prot_numa && pmd_protnone(*pmd))
1850 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1851 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1852 * which is also under mmap_read_lock(mm):
1855 * change_huge_pmd(prot_numa=1)
1856 * pmdp_huge_get_and_clear_notify()
1857 * madvise_dontneed()
1859 * pmd_trans_huge(*pmd) == 0 (without ptl)
1862 * // pmd is re-established
1864 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1865 * which may break userspace.
1867 * pmdp_invalidate() is required to make sure we don't miss
1868 * dirty/young flags set by hardware.
1870 entry = pmdp_invalidate(vma, addr, pmd);
1872 entry = pmd_modify(entry, newprot);
1874 entry = pmd_mk_savedwrite(entry);
1876 entry = pmd_wrprotect(entry);
1877 entry = pmd_mkuffd_wp(entry);
1878 } else if (uffd_wp_resolve) {
1880 * Leave the write bit to be handled by PF interrupt
1881 * handler, then things like COW could be properly
1884 entry = pmd_clear_uffd_wp(entry);
1887 set_pmd_at(mm, addr, pmd, entry);
1888 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1895 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1897 * Note that if it returns page table lock pointer, this routine returns without
1898 * unlocking page table lock. So callers must unlock it.
1900 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1903 ptl = pmd_lock(vma->vm_mm, pmd);
1904 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1912 * Returns true if a given pud maps a thp, false otherwise.
1914 * Note that if it returns true, this routine returns without unlocking page
1915 * table lock. So callers must unlock it.
1917 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1921 ptl = pud_lock(vma->vm_mm, pud);
1922 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1928 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1929 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1930 pud_t *pud, unsigned long addr)
1934 ptl = __pud_trans_huge_lock(pud, vma);
1938 * For architectures like ppc64 we look at deposited pgtable
1939 * when calling pudp_huge_get_and_clear. So do the
1940 * pgtable_trans_huge_withdraw after finishing pudp related
1943 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1944 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1945 if (vma_is_special_huge(vma)) {
1947 /* No zero page support yet */
1949 /* No support for anonymous PUD pages yet */
1955 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1956 unsigned long haddr)
1958 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1959 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1960 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1961 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1963 count_vm_event(THP_SPLIT_PUD);
1965 pudp_huge_clear_flush_notify(vma, haddr, pud);
1968 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1969 unsigned long address)
1972 struct mmu_notifier_range range;
1974 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1975 address & HPAGE_PUD_MASK,
1976 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1977 mmu_notifier_invalidate_range_start(&range);
1978 ptl = pud_lock(vma->vm_mm, pud);
1979 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1981 __split_huge_pud_locked(vma, pud, range.start);
1986 * No need to double call mmu_notifier->invalidate_range() callback as
1987 * the above pudp_huge_clear_flush_notify() did already call it.
1989 mmu_notifier_invalidate_range_only_end(&range);
1991 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1993 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1994 unsigned long haddr, pmd_t *pmd)
1996 struct mm_struct *mm = vma->vm_mm;
2002 * Leave pmd empty until pte is filled note that it is fine to delay
2003 * notification until mmu_notifier_invalidate_range_end() as we are
2004 * replacing a zero pmd write protected page with a zero pte write
2007 * See Documentation/vm/mmu_notifier.rst
2009 pmdp_huge_clear_flush(vma, haddr, pmd);
2011 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2012 pmd_populate(mm, &_pmd, pgtable);
2014 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2016 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2017 entry = pte_mkspecial(entry);
2018 pte = pte_offset_map(&_pmd, haddr);
2019 VM_BUG_ON(!pte_none(*pte));
2020 set_pte_at(mm, haddr, pte, entry);
2023 smp_wmb(); /* make pte visible before pmd */
2024 pmd_populate(mm, pmd, pgtable);
2027 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2028 unsigned long haddr, bool freeze)
2030 struct mm_struct *mm = vma->vm_mm;
2033 pmd_t old_pmd, _pmd;
2034 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2038 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2039 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2040 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2041 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2042 && !pmd_devmap(*pmd));
2044 count_vm_event(THP_SPLIT_PMD);
2046 if (!vma_is_anonymous(vma)) {
2047 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2049 * We are going to unmap this huge page. So
2050 * just go ahead and zap it
2052 if (arch_needs_pgtable_deposit())
2053 zap_deposited_table(mm, pmd);
2054 if (vma_is_special_huge(vma))
2056 page = pmd_page(_pmd);
2057 if (!PageDirty(page) && pmd_dirty(_pmd))
2058 set_page_dirty(page);
2059 if (!PageReferenced(page) && pmd_young(_pmd))
2060 SetPageReferenced(page);
2061 page_remove_rmap(page, true);
2063 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2065 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2067 * FIXME: Do we want to invalidate secondary mmu by calling
2068 * mmu_notifier_invalidate_range() see comments below inside
2069 * __split_huge_pmd() ?
2071 * We are going from a zero huge page write protected to zero
2072 * small page also write protected so it does not seems useful
2073 * to invalidate secondary mmu at this time.
2075 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2079 * Up to this point the pmd is present and huge and userland has the
2080 * whole access to the hugepage during the split (which happens in
2081 * place). If we overwrite the pmd with the not-huge version pointing
2082 * to the pte here (which of course we could if all CPUs were bug
2083 * free), userland could trigger a small page size TLB miss on the
2084 * small sized TLB while the hugepage TLB entry is still established in
2085 * the huge TLB. Some CPU doesn't like that.
2086 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2087 * 383 on page 105. Intel should be safe but is also warns that it's
2088 * only safe if the permission and cache attributes of the two entries
2089 * loaded in the two TLB is identical (which should be the case here).
2090 * But it is generally safer to never allow small and huge TLB entries
2091 * for the same virtual address to be loaded simultaneously. So instead
2092 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2093 * current pmd notpresent (atomically because here the pmd_trans_huge
2094 * must remain set at all times on the pmd until the split is complete
2095 * for this pmd), then we flush the SMP TLB and finally we write the
2096 * non-huge version of the pmd entry with pmd_populate.
2098 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2100 pmd_migration = is_pmd_migration_entry(old_pmd);
2101 if (unlikely(pmd_migration)) {
2104 entry = pmd_to_swp_entry(old_pmd);
2105 page = migration_entry_to_page(entry);
2106 write = is_write_migration_entry(entry);
2108 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2109 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2111 page = pmd_page(old_pmd);
2112 if (pmd_dirty(old_pmd))
2114 write = pmd_write(old_pmd);
2115 young = pmd_young(old_pmd);
2116 soft_dirty = pmd_soft_dirty(old_pmd);
2117 uffd_wp = pmd_uffd_wp(old_pmd);
2119 VM_BUG_ON_PAGE(!page_count(page), page);
2120 page_ref_add(page, HPAGE_PMD_NR - 1);
2123 * Withdraw the table only after we mark the pmd entry invalid.
2124 * This's critical for some architectures (Power).
2126 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2127 pmd_populate(mm, &_pmd, pgtable);
2129 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2132 * Note that NUMA hinting access restrictions are not
2133 * transferred to avoid any possibility of altering
2134 * permissions across VMAs.
2136 if (freeze || pmd_migration) {
2137 swp_entry_t swp_entry;
2138 swp_entry = make_migration_entry(page + i, write);
2139 entry = swp_entry_to_pte(swp_entry);
2141 entry = pte_swp_mksoft_dirty(entry);
2143 entry = pte_swp_mkuffd_wp(entry);
2145 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2146 entry = maybe_mkwrite(entry, vma);
2148 entry = pte_wrprotect(entry);
2150 entry = pte_mkold(entry);
2152 entry = pte_mksoft_dirty(entry);
2154 entry = pte_mkuffd_wp(entry);
2156 pte = pte_offset_map(&_pmd, addr);
2157 BUG_ON(!pte_none(*pte));
2158 set_pte_at(mm, addr, pte, entry);
2160 atomic_inc(&page[i]._mapcount);
2164 if (!pmd_migration) {
2166 * Set PG_double_map before dropping compound_mapcount to avoid
2167 * false-negative page_mapped().
2169 if (compound_mapcount(page) > 1 &&
2170 !TestSetPageDoubleMap(page)) {
2171 for (i = 0; i < HPAGE_PMD_NR; i++)
2172 atomic_inc(&page[i]._mapcount);
2175 lock_page_memcg(page);
2176 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2177 /* Last compound_mapcount is gone. */
2178 __mod_lruvec_page_state(page, NR_ANON_THPS,
2180 if (TestClearPageDoubleMap(page)) {
2181 /* No need in mapcount reference anymore */
2182 for (i = 0; i < HPAGE_PMD_NR; i++)
2183 atomic_dec(&page[i]._mapcount);
2186 unlock_page_memcg(page);
2189 smp_wmb(); /* make pte visible before pmd */
2190 pmd_populate(mm, pmd, pgtable);
2193 for (i = 0; i < HPAGE_PMD_NR; i++) {
2194 page_remove_rmap(page + i, false);
2200 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2201 unsigned long address, bool freeze, struct page *page)
2204 struct mmu_notifier_range range;
2205 bool do_unlock_page = false;
2208 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2209 address & HPAGE_PMD_MASK,
2210 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2211 mmu_notifier_invalidate_range_start(&range);
2212 ptl = pmd_lock(vma->vm_mm, pmd);
2215 * If caller asks to setup a migration entries, we need a page to check
2216 * pmd against. Otherwise we can end up replacing wrong page.
2218 VM_BUG_ON(freeze && !page);
2220 VM_WARN_ON_ONCE(!PageLocked(page));
2221 if (page != pmd_page(*pmd))
2226 if (pmd_trans_huge(*pmd)) {
2228 page = pmd_page(*pmd);
2230 * An anonymous page must be locked, to ensure that a
2231 * concurrent reuse_swap_page() sees stable mapcount;
2232 * but reuse_swap_page() is not used on shmem or file,
2233 * and page lock must not be taken when zap_pmd_range()
2234 * calls __split_huge_pmd() while i_mmap_lock is held.
2236 if (PageAnon(page)) {
2237 if (unlikely(!trylock_page(page))) {
2243 if (unlikely(!pmd_same(*pmd, _pmd))) {
2251 do_unlock_page = true;
2254 if (PageMlocked(page))
2255 clear_page_mlock(page);
2256 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2258 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2264 * No need to double call mmu_notifier->invalidate_range() callback.
2265 * They are 3 cases to consider inside __split_huge_pmd_locked():
2266 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2267 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2268 * fault will trigger a flush_notify before pointing to a new page
2269 * (it is fine if the secondary mmu keeps pointing to the old zero
2270 * page in the meantime)
2271 * 3) Split a huge pmd into pte pointing to the same page. No need
2272 * to invalidate secondary tlb entry they are all still valid.
2273 * any further changes to individual pte will notify. So no need
2274 * to call mmu_notifier->invalidate_range()
2276 mmu_notifier_invalidate_range_only_end(&range);
2279 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2280 bool freeze, struct page *page)
2287 pgd = pgd_offset(vma->vm_mm, address);
2288 if (!pgd_present(*pgd))
2291 p4d = p4d_offset(pgd, address);
2292 if (!p4d_present(*p4d))
2295 pud = pud_offset(p4d, address);
2296 if (!pud_present(*pud))
2299 pmd = pmd_offset(pud, address);
2301 __split_huge_pmd(vma, pmd, address, freeze, page);
2304 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2307 * If the new address isn't hpage aligned and it could previously
2308 * contain an hugepage: check if we need to split an huge pmd.
2310 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2311 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2312 ALIGN(address, HPAGE_PMD_SIZE)))
2313 split_huge_pmd_address(vma, address, false, NULL);
2316 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2317 unsigned long start,
2321 /* Check if we need to split start first. */
2322 split_huge_pmd_if_needed(vma, start);
2324 /* Check if we need to split end next. */
2325 split_huge_pmd_if_needed(vma, end);
2328 * If we're also updating the vma->vm_next->vm_start,
2329 * check if we need to split it.
2331 if (adjust_next > 0) {
2332 struct vm_area_struct *next = vma->vm_next;
2333 unsigned long nstart = next->vm_start;
2334 nstart += adjust_next;
2335 split_huge_pmd_if_needed(next, nstart);
2339 static void unmap_page(struct page *page)
2341 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2342 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2345 VM_BUG_ON_PAGE(!PageHead(page), page);
2348 ttu_flags |= TTU_SPLIT_FREEZE;
2350 unmap_success = try_to_unmap(page, ttu_flags);
2351 VM_BUG_ON_PAGE(!unmap_success, page);
2354 static void remap_page(struct page *page, unsigned int nr)
2357 if (PageTransHuge(page)) {
2358 remove_migration_ptes(page, page, true);
2360 for (i = 0; i < nr; i++)
2361 remove_migration_ptes(page + i, page + i, true);
2365 static void lru_add_page_tail(struct page *head, struct page *tail,
2366 struct lruvec *lruvec, struct list_head *list)
2368 VM_BUG_ON_PAGE(!PageHead(head), head);
2369 VM_BUG_ON_PAGE(PageCompound(tail), head);
2370 VM_BUG_ON_PAGE(PageLRU(tail), head);
2371 lockdep_assert_held(&lruvec->lru_lock);
2374 /* page reclaim is reclaiming a huge page */
2375 VM_WARN_ON(PageLRU(head));
2377 list_add_tail(&tail->lru, list);
2379 /* head is still on lru (and we have it frozen) */
2380 VM_WARN_ON(!PageLRU(head));
2382 list_add_tail(&tail->lru, &head->lru);
2386 static void __split_huge_page_tail(struct page *head, int tail,
2387 struct lruvec *lruvec, struct list_head *list)
2389 struct page *page_tail = head + tail;
2391 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2394 * Clone page flags before unfreezing refcount.
2396 * After successful get_page_unless_zero() might follow flags change,
2397 * for example lock_page() which set PG_waiters.
2399 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2400 page_tail->flags |= (head->flags &
2401 ((1L << PG_referenced) |
2402 (1L << PG_swapbacked) |
2403 (1L << PG_swapcache) |
2404 (1L << PG_mlocked) |
2405 (1L << PG_uptodate) |
2407 (1L << PG_workingset) |
2409 (1L << PG_unevictable) |
2415 /* ->mapping in first tail page is compound_mapcount */
2416 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2418 page_tail->mapping = head->mapping;
2419 page_tail->index = head->index + tail;
2421 /* Page flags must be visible before we make the page non-compound. */
2425 * Clear PageTail before unfreezing page refcount.
2427 * After successful get_page_unless_zero() might follow put_page()
2428 * which needs correct compound_head().
2430 clear_compound_head(page_tail);
2432 /* Finally unfreeze refcount. Additional reference from page cache. */
2433 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2434 PageSwapCache(head)));
2436 if (page_is_young(head))
2437 set_page_young(page_tail);
2438 if (page_is_idle(head))
2439 set_page_idle(page_tail);
2441 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2444 * always add to the tail because some iterators expect new
2445 * pages to show after the currently processed elements - e.g.
2448 lru_add_page_tail(head, page_tail, lruvec, list);
2451 static void __split_huge_page(struct page *page, struct list_head *list,
2454 struct page *head = compound_head(page);
2455 struct lruvec *lruvec;
2456 struct address_space *swap_cache = NULL;
2457 unsigned long offset = 0;
2458 unsigned int nr = thp_nr_pages(head);
2461 /* complete memcg works before add pages to LRU */
2462 split_page_memcg(head, nr);
2464 if (PageAnon(head) && PageSwapCache(head)) {
2465 swp_entry_t entry = { .val = page_private(head) };
2467 offset = swp_offset(entry);
2468 swap_cache = swap_address_space(entry);
2469 xa_lock(&swap_cache->i_pages);
2472 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2473 lruvec = lock_page_lruvec(head);
2475 for (i = nr - 1; i >= 1; i--) {
2476 __split_huge_page_tail(head, i, lruvec, list);
2477 /* Some pages can be beyond i_size: drop them from page cache */
2478 if (head[i].index >= end) {
2479 ClearPageDirty(head + i);
2480 __delete_from_page_cache(head + i, NULL);
2481 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2482 shmem_uncharge(head->mapping->host, 1);
2484 } else if (!PageAnon(page)) {
2485 __xa_store(&head->mapping->i_pages, head[i].index,
2487 } else if (swap_cache) {
2488 __xa_store(&swap_cache->i_pages, offset + i,
2493 ClearPageCompound(head);
2494 unlock_page_lruvec(lruvec);
2495 /* Caller disabled irqs, so they are still disabled here */
2497 split_page_owner(head, nr);
2499 /* See comment in __split_huge_page_tail() */
2500 if (PageAnon(head)) {
2501 /* Additional pin to swap cache */
2502 if (PageSwapCache(head)) {
2503 page_ref_add(head, 2);
2504 xa_unlock(&swap_cache->i_pages);
2509 /* Additional pin to page cache */
2510 page_ref_add(head, 2);
2511 xa_unlock(&head->mapping->i_pages);
2515 remap_page(head, nr);
2517 if (PageSwapCache(head)) {
2518 swp_entry_t entry = { .val = page_private(head) };
2520 split_swap_cluster(entry);
2523 for (i = 0; i < nr; i++) {
2524 struct page *subpage = head + i;
2525 if (subpage == page)
2527 unlock_page(subpage);
2530 * Subpages may be freed if there wasn't any mapping
2531 * like if add_to_swap() is running on a lru page that
2532 * had its mapping zapped. And freeing these pages
2533 * requires taking the lru_lock so we do the put_page
2534 * of the tail pages after the split is complete.
2540 int total_mapcount(struct page *page)
2542 int i, compound, nr, ret;
2544 VM_BUG_ON_PAGE(PageTail(page), page);
2546 if (likely(!PageCompound(page)))
2547 return atomic_read(&page->_mapcount) + 1;
2549 compound = compound_mapcount(page);
2550 nr = compound_nr(page);
2554 for (i = 0; i < nr; i++)
2555 ret += atomic_read(&page[i]._mapcount) + 1;
2556 /* File pages has compound_mapcount included in _mapcount */
2557 if (!PageAnon(page))
2558 return ret - compound * nr;
2559 if (PageDoubleMap(page))
2565 * This calculates accurately how many mappings a transparent hugepage
2566 * has (unlike page_mapcount() which isn't fully accurate). This full
2567 * accuracy is primarily needed to know if copy-on-write faults can
2568 * reuse the page and change the mapping to read-write instead of
2569 * copying them. At the same time this returns the total_mapcount too.
2571 * The function returns the highest mapcount any one of the subpages
2572 * has. If the return value is one, even if different processes are
2573 * mapping different subpages of the transparent hugepage, they can
2574 * all reuse it, because each process is reusing a different subpage.
2576 * The total_mapcount is instead counting all virtual mappings of the
2577 * subpages. If the total_mapcount is equal to "one", it tells the
2578 * caller all mappings belong to the same "mm" and in turn the
2579 * anon_vma of the transparent hugepage can become the vma->anon_vma
2580 * local one as no other process may be mapping any of the subpages.
2582 * It would be more accurate to replace page_mapcount() with
2583 * page_trans_huge_mapcount(), however we only use
2584 * page_trans_huge_mapcount() in the copy-on-write faults where we
2585 * need full accuracy to avoid breaking page pinning, because
2586 * page_trans_huge_mapcount() is slower than page_mapcount().
2588 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2590 int i, ret, _total_mapcount, mapcount;
2592 /* hugetlbfs shouldn't call it */
2593 VM_BUG_ON_PAGE(PageHuge(page), page);
2595 if (likely(!PageTransCompound(page))) {
2596 mapcount = atomic_read(&page->_mapcount) + 1;
2598 *total_mapcount = mapcount;
2602 page = compound_head(page);
2604 _total_mapcount = ret = 0;
2605 for (i = 0; i < thp_nr_pages(page); i++) {
2606 mapcount = atomic_read(&page[i]._mapcount) + 1;
2607 ret = max(ret, mapcount);
2608 _total_mapcount += mapcount;
2610 if (PageDoubleMap(page)) {
2612 _total_mapcount -= thp_nr_pages(page);
2614 mapcount = compound_mapcount(page);
2616 _total_mapcount += mapcount;
2618 *total_mapcount = _total_mapcount;
2622 /* Racy check whether the huge page can be split */
2623 bool can_split_huge_page(struct page *page, int *pextra_pins)
2627 /* Additional pins from page cache */
2629 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2631 extra_pins = thp_nr_pages(page);
2633 *pextra_pins = extra_pins;
2634 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2638 * This function splits huge page into normal pages. @page can point to any
2639 * subpage of huge page to split. Split doesn't change the position of @page.
2641 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2642 * The huge page must be locked.
2644 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2646 * Both head page and tail pages will inherit mapping, flags, and so on from
2649 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2650 * they are not mapped.
2652 * Returns 0 if the hugepage is split successfully.
2653 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2656 int split_huge_page_to_list(struct page *page, struct list_head *list)
2658 struct page *head = compound_head(page);
2659 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2660 struct anon_vma *anon_vma = NULL;
2661 struct address_space *mapping = NULL;
2662 int count, mapcount, extra_pins, ret;
2665 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2666 VM_BUG_ON_PAGE(!PageLocked(head), head);
2667 VM_BUG_ON_PAGE(!PageCompound(head), head);
2669 if (PageWriteback(head))
2672 if (PageAnon(head)) {
2674 * The caller does not necessarily hold an mmap_lock that would
2675 * prevent the anon_vma disappearing so we first we take a
2676 * reference to it and then lock the anon_vma for write. This
2677 * is similar to page_lock_anon_vma_read except the write lock
2678 * is taken to serialise against parallel split or collapse
2681 anon_vma = page_get_anon_vma(head);
2688 anon_vma_lock_write(anon_vma);
2690 mapping = head->mapping;
2699 i_mmap_lock_read(mapping);
2702 *__split_huge_page() may need to trim off pages beyond EOF:
2703 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2704 * which cannot be nested inside the page tree lock. So note
2705 * end now: i_size itself may be changed at any moment, but
2706 * head page lock is good enough to serialize the trimming.
2708 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2712 * Racy check if we can split the page, before unmap_page() will
2715 if (!can_split_huge_page(head, &extra_pins)) {
2721 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2723 /* block interrupt reentry in xa_lock and spinlock */
2724 local_irq_disable();
2726 XA_STATE(xas, &mapping->i_pages, page_index(head));
2729 * Check if the head page is present in page cache.
2730 * We assume all tail are present too, if head is there.
2732 xa_lock(&mapping->i_pages);
2733 if (xas_load(&xas) != head)
2737 /* Prevent deferred_split_scan() touching ->_refcount */
2738 spin_lock(&ds_queue->split_queue_lock);
2739 count = page_count(head);
2740 mapcount = total_mapcount(head);
2741 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2742 if (!list_empty(page_deferred_list(head))) {
2743 ds_queue->split_queue_len--;
2744 list_del(page_deferred_list(head));
2746 spin_unlock(&ds_queue->split_queue_lock);
2748 int nr = thp_nr_pages(head);
2750 if (PageSwapBacked(head))
2751 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2754 __mod_lruvec_page_state(head, NR_FILE_THPS,
2758 __split_huge_page(page, list, end);
2761 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2762 pr_alert("total_mapcount: %u, page_count(): %u\n",
2765 dump_page(head, NULL);
2766 dump_page(page, "total_mapcount(head) > 0");
2769 spin_unlock(&ds_queue->split_queue_lock);
2771 xa_unlock(&mapping->i_pages);
2773 remap_page(head, thp_nr_pages(head));
2779 anon_vma_unlock_write(anon_vma);
2780 put_anon_vma(anon_vma);
2783 i_mmap_unlock_read(mapping);
2785 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2789 void free_transhuge_page(struct page *page)
2791 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2792 unsigned long flags;
2794 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2795 if (!list_empty(page_deferred_list(page))) {
2796 ds_queue->split_queue_len--;
2797 list_del(page_deferred_list(page));
2799 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2800 free_compound_page(page);
2803 void deferred_split_huge_page(struct page *page)
2805 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2807 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2809 unsigned long flags;
2811 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814 * The try_to_unmap() in page reclaim path might reach here too,
2815 * this may cause a race condition to corrupt deferred split queue.
2816 * And, if page reclaim is already handling the same page, it is
2817 * unnecessary to handle it again in shrinker.
2819 * Check PageSwapCache to determine if the page is being
2820 * handled by page reclaim since THP swap would add the page into
2821 * swap cache before calling try_to_unmap().
2823 if (PageSwapCache(page))
2826 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2827 if (list_empty(page_deferred_list(page))) {
2828 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2829 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2830 ds_queue->split_queue_len++;
2833 set_shrinker_bit(memcg, page_to_nid(page),
2834 deferred_split_shrinker.id);
2837 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 static unsigned long deferred_split_count(struct shrinker *shrink,
2841 struct shrink_control *sc)
2843 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2844 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2848 ds_queue = &sc->memcg->deferred_split_queue;
2850 return READ_ONCE(ds_queue->split_queue_len);
2853 static unsigned long deferred_split_scan(struct shrinker *shrink,
2854 struct shrink_control *sc)
2856 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2857 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2858 unsigned long flags;
2859 LIST_HEAD(list), *pos, *next;
2865 ds_queue = &sc->memcg->deferred_split_queue;
2868 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2869 /* Take pin on all head pages to avoid freeing them under us */
2870 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2871 page = list_entry((void *)pos, struct page, mapping);
2872 page = compound_head(page);
2873 if (get_page_unless_zero(page)) {
2874 list_move(page_deferred_list(page), &list);
2876 /* We lost race with put_compound_page() */
2877 list_del_init(page_deferred_list(page));
2878 ds_queue->split_queue_len--;
2880 if (!--sc->nr_to_scan)
2883 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2885 list_for_each_safe(pos, next, &list) {
2886 page = list_entry((void *)pos, struct page, mapping);
2887 if (!trylock_page(page))
2889 /* split_huge_page() removes page from list on success */
2890 if (!split_huge_page(page))
2897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 list_splice_tail(&list, &ds_queue->split_queue);
2899 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902 * Stop shrinker if we didn't split any page, but the queue is empty.
2903 * This can happen if pages were freed under us.
2905 if (!split && list_empty(&ds_queue->split_queue))
2910 static struct shrinker deferred_split_shrinker = {
2911 .count_objects = deferred_split_count,
2912 .scan_objects = deferred_split_scan,
2913 .seeks = DEFAULT_SEEKS,
2914 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2918 #ifdef CONFIG_DEBUG_FS
2919 static void split_huge_pages_all(void)
2923 unsigned long pfn, max_zone_pfn;
2924 unsigned long total = 0, split = 0;
2926 pr_debug("Split all THPs\n");
2927 for_each_populated_zone(zone) {
2928 max_zone_pfn = zone_end_pfn(zone);
2929 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2930 if (!pfn_valid(pfn))
2933 page = pfn_to_page(pfn);
2934 if (!get_page_unless_zero(page))
2937 if (zone != page_zone(page))
2940 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2945 if (!split_huge_page(page))
2954 pr_debug("%lu of %lu THP split\n", split, total);
2957 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2959 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2960 is_vm_hugetlb_page(vma);
2963 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2964 unsigned long vaddr_end)
2967 struct task_struct *task;
2968 struct mm_struct *mm;
2969 unsigned long total = 0, split = 0;
2972 vaddr_start &= PAGE_MASK;
2973 vaddr_end &= PAGE_MASK;
2975 /* Find the task_struct from pid */
2977 task = find_task_by_vpid(pid);
2983 get_task_struct(task);
2986 /* Find the mm_struct */
2987 mm = get_task_mm(task);
2988 put_task_struct(task);
2995 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2996 pid, vaddr_start, vaddr_end);
3000 * always increase addr by PAGE_SIZE, since we could have a PTE page
3001 * table filled with PTE-mapped THPs, each of which is distinct.
3003 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3004 struct vm_area_struct *vma = find_vma(mm, addr);
3005 unsigned int follflags;
3008 if (!vma || addr < vma->vm_start)
3011 /* skip special VMA and hugetlb VMA */
3012 if (vma_not_suitable_for_thp_split(vma)) {
3017 /* FOLL_DUMP to ignore special (like zero) pages */
3018 follflags = FOLL_GET | FOLL_DUMP;
3019 page = follow_page(vma, addr, follflags);
3026 if (!is_transparent_hugepage(page))
3030 if (!can_split_huge_page(compound_head(page), NULL))
3033 if (!trylock_page(page))
3036 if (!split_huge_page(page))
3044 mmap_read_unlock(mm);
3047 pr_debug("%lu of %lu THP split\n", split, total);
3053 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3056 struct filename *file;
3057 struct file *candidate;
3058 struct address_space *mapping;
3062 unsigned long total = 0, split = 0;
3064 file = getname_kernel(file_path);
3068 candidate = file_open_name(file, O_RDONLY, 0);
3069 if (IS_ERR(candidate))
3072 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3073 file_path, off_start, off_end);
3075 mapping = candidate->f_mapping;
3077 for (index = off_start; index < off_end; index += nr_pages) {
3078 struct page *fpage = pagecache_get_page(mapping, index,
3079 FGP_ENTRY | FGP_HEAD, 0);
3082 if (xa_is_value(fpage) || !fpage)
3085 if (!is_transparent_hugepage(fpage))
3089 nr_pages = thp_nr_pages(fpage);
3091 if (!trylock_page(fpage))
3094 if (!split_huge_page(fpage))
3103 filp_close(candidate, NULL);
3106 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3112 #define MAX_INPUT_BUF_SZ 255
3114 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3115 size_t count, loff_t *ppops)
3117 static DEFINE_MUTEX(split_debug_mutex);
3119 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3120 char input_buf[MAX_INPUT_BUF_SZ];
3122 unsigned long vaddr_start, vaddr_end;
3124 ret = mutex_lock_interruptible(&split_debug_mutex);
3130 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3131 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3134 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3136 if (input_buf[0] == '/') {
3138 char *buf = input_buf;
3139 char file_path[MAX_INPUT_BUF_SZ];
3140 pgoff_t off_start = 0, off_end = 0;
3141 size_t input_len = strlen(input_buf);
3143 tok = strsep(&buf, ",");
3145 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3151 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3156 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3163 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3164 if (ret == 1 && pid == 1) {
3165 split_huge_pages_all();
3166 ret = strlen(input_buf);
3168 } else if (ret != 3) {
3173 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3175 ret = strlen(input_buf);
3177 mutex_unlock(&split_debug_mutex);
3182 static const struct file_operations split_huge_pages_fops = {
3183 .owner = THIS_MODULE,
3184 .write = split_huge_pages_write,
3185 .llseek = no_llseek,
3188 static int __init split_huge_pages_debugfs(void)
3190 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3191 &split_huge_pages_fops);
3194 late_initcall(split_huge_pages_debugfs);
3197 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3198 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3201 struct vm_area_struct *vma = pvmw->vma;
3202 struct mm_struct *mm = vma->vm_mm;
3203 unsigned long address = pvmw->address;
3208 if (!(pvmw->pmd && !pvmw->pte))
3211 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3212 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3213 if (pmd_dirty(pmdval))
3214 set_page_dirty(page);
3215 entry = make_migration_entry(page, pmd_write(pmdval));
3216 pmdswp = swp_entry_to_pmd(entry);
3217 if (pmd_soft_dirty(pmdval))
3218 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3219 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3220 page_remove_rmap(page, true);
3224 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3226 struct vm_area_struct *vma = pvmw->vma;
3227 struct mm_struct *mm = vma->vm_mm;
3228 unsigned long address = pvmw->address;
3229 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3233 if (!(pvmw->pmd && !pvmw->pte))
3236 entry = pmd_to_swp_entry(*pvmw->pmd);
3238 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3239 if (pmd_swp_soft_dirty(*pvmw->pmd))
3240 pmde = pmd_mksoft_dirty(pmde);
3241 if (is_write_migration_entry(entry))
3242 pmde = maybe_pmd_mkwrite(pmde, vma);
3244 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3246 page_add_anon_rmap(new, vma, mmun_start, true);
3248 page_add_file_rmap(new, true);
3249 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3250 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3251 mlock_vma_page(new);
3252 update_mmu_cache_pmd(vma, address, pvmw->pmd);