mm: numa: split_huge_page: transfer the NUMA type from the pmd to the pte
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24
25 /*
26  * By default transparent hugepage support is enabled for all mappings
27  * and khugepaged scans all mappings. Defrag is only invoked by
28  * khugepaged hugepage allocations and by page faults inside
29  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30  * allocations.
31  */
32 unsigned long transparent_hugepage_flags __read_mostly =
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
34         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
35 #endif
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38 #endif
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
40         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42 /* default scan 8*512 pte (or vmas) every 30 second */
43 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44 static unsigned int khugepaged_pages_collapsed;
45 static unsigned int khugepaged_full_scans;
46 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47 /* during fragmentation poll the hugepage allocator once every minute */
48 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49 static struct task_struct *khugepaged_thread __read_mostly;
50 static DEFINE_MUTEX(khugepaged_mutex);
51 static DEFINE_SPINLOCK(khugepaged_mm_lock);
52 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 /*
54  * default collapse hugepages if there is at least one pte mapped like
55  * it would have happened if the vma was large enough during page
56  * fault.
57  */
58 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59
60 static int khugepaged(void *none);
61 static int mm_slots_hash_init(void);
62 static int khugepaged_slab_init(void);
63 static void khugepaged_slab_free(void);
64
65 #define MM_SLOTS_HASH_HEADS 1024
66 static struct hlist_head *mm_slots_hash __read_mostly;
67 static struct kmem_cache *mm_slot_cache __read_mostly;
68
69 /**
70  * struct mm_slot - hash lookup from mm to mm_slot
71  * @hash: hash collision list
72  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
73  * @mm: the mm that this information is valid for
74  */
75 struct mm_slot {
76         struct hlist_node hash;
77         struct list_head mm_node;
78         struct mm_struct *mm;
79 };
80
81 /**
82  * struct khugepaged_scan - cursor for scanning
83  * @mm_head: the head of the mm list to scan
84  * @mm_slot: the current mm_slot we are scanning
85  * @address: the next address inside that to be scanned
86  *
87  * There is only the one khugepaged_scan instance of this cursor structure.
88  */
89 struct khugepaged_scan {
90         struct list_head mm_head;
91         struct mm_slot *mm_slot;
92         unsigned long address;
93 };
94 static struct khugepaged_scan khugepaged_scan = {
95         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
96 };
97
98
99 static int set_recommended_min_free_kbytes(void)
100 {
101         struct zone *zone;
102         int nr_zones = 0;
103         unsigned long recommended_min;
104         extern int min_free_kbytes;
105
106         if (!khugepaged_enabled())
107                 return 0;
108
109         for_each_populated_zone(zone)
110                 nr_zones++;
111
112         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113         recommended_min = pageblock_nr_pages * nr_zones * 2;
114
115         /*
116          * Make sure that on average at least two pageblocks are almost free
117          * of another type, one for a migratetype to fall back to and a
118          * second to avoid subsequent fallbacks of other types There are 3
119          * MIGRATE_TYPES we care about.
120          */
121         recommended_min += pageblock_nr_pages * nr_zones *
122                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
123
124         /* don't ever allow to reserve more than 5% of the lowmem */
125         recommended_min = min(recommended_min,
126                               (unsigned long) nr_free_buffer_pages() / 20);
127         recommended_min <<= (PAGE_SHIFT-10);
128
129         if (recommended_min > min_free_kbytes)
130                 min_free_kbytes = recommended_min;
131         setup_per_zone_wmarks();
132         return 0;
133 }
134 late_initcall(set_recommended_min_free_kbytes);
135
136 static int start_khugepaged(void)
137 {
138         int err = 0;
139         if (khugepaged_enabled()) {
140                 if (!khugepaged_thread)
141                         khugepaged_thread = kthread_run(khugepaged, NULL,
142                                                         "khugepaged");
143                 if (unlikely(IS_ERR(khugepaged_thread))) {
144                         printk(KERN_ERR
145                                "khugepaged: kthread_run(khugepaged) failed\n");
146                         err = PTR_ERR(khugepaged_thread);
147                         khugepaged_thread = NULL;
148                 }
149
150                 if (!list_empty(&khugepaged_scan.mm_head))
151                         wake_up_interruptible(&khugepaged_wait);
152
153                 set_recommended_min_free_kbytes();
154         } else if (khugepaged_thread) {
155                 kthread_stop(khugepaged_thread);
156                 khugepaged_thread = NULL;
157         }
158
159         return err;
160 }
161
162 #ifdef CONFIG_SYSFS
163
164 static ssize_t double_flag_show(struct kobject *kobj,
165                                 struct kobj_attribute *attr, char *buf,
166                                 enum transparent_hugepage_flag enabled,
167                                 enum transparent_hugepage_flag req_madv)
168 {
169         if (test_bit(enabled, &transparent_hugepage_flags)) {
170                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
171                 return sprintf(buf, "[always] madvise never\n");
172         } else if (test_bit(req_madv, &transparent_hugepage_flags))
173                 return sprintf(buf, "always [madvise] never\n");
174         else
175                 return sprintf(buf, "always madvise [never]\n");
176 }
177 static ssize_t double_flag_store(struct kobject *kobj,
178                                  struct kobj_attribute *attr,
179                                  const char *buf, size_t count,
180                                  enum transparent_hugepage_flag enabled,
181                                  enum transparent_hugepage_flag req_madv)
182 {
183         if (!memcmp("always", buf,
184                     min(sizeof("always")-1, count))) {
185                 set_bit(enabled, &transparent_hugepage_flags);
186                 clear_bit(req_madv, &transparent_hugepage_flags);
187         } else if (!memcmp("madvise", buf,
188                            min(sizeof("madvise")-1, count))) {
189                 clear_bit(enabled, &transparent_hugepage_flags);
190                 set_bit(req_madv, &transparent_hugepage_flags);
191         } else if (!memcmp("never", buf,
192                            min(sizeof("never")-1, count))) {
193                 clear_bit(enabled, &transparent_hugepage_flags);
194                 clear_bit(req_madv, &transparent_hugepage_flags);
195         } else
196                 return -EINVAL;
197
198         return count;
199 }
200
201 static ssize_t enabled_show(struct kobject *kobj,
202                             struct kobj_attribute *attr, char *buf)
203 {
204         return double_flag_show(kobj, attr, buf,
205                                 TRANSPARENT_HUGEPAGE_FLAG,
206                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
207 }
208 static ssize_t enabled_store(struct kobject *kobj,
209                              struct kobj_attribute *attr,
210                              const char *buf, size_t count)
211 {
212         ssize_t ret;
213
214         ret = double_flag_store(kobj, attr, buf, count,
215                                 TRANSPARENT_HUGEPAGE_FLAG,
216                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
217
218         if (ret > 0) {
219                 int err;
220
221                 mutex_lock(&khugepaged_mutex);
222                 err = start_khugepaged();
223                 mutex_unlock(&khugepaged_mutex);
224
225                 if (err)
226                         ret = err;
227         }
228
229         return ret;
230 }
231 static struct kobj_attribute enabled_attr =
232         __ATTR(enabled, 0644, enabled_show, enabled_store);
233
234 static ssize_t single_flag_show(struct kobject *kobj,
235                                 struct kobj_attribute *attr, char *buf,
236                                 enum transparent_hugepage_flag flag)
237 {
238         return sprintf(buf, "%d\n",
239                        !!test_bit(flag, &transparent_hugepage_flags));
240 }
241
242 static ssize_t single_flag_store(struct kobject *kobj,
243                                  struct kobj_attribute *attr,
244                                  const char *buf, size_t count,
245                                  enum transparent_hugepage_flag flag)
246 {
247         unsigned long value;
248         int ret;
249
250         ret = kstrtoul(buf, 10, &value);
251         if (ret < 0)
252                 return ret;
253         if (value > 1)
254                 return -EINVAL;
255
256         if (value)
257                 set_bit(flag, &transparent_hugepage_flags);
258         else
259                 clear_bit(flag, &transparent_hugepage_flags);
260
261         return count;
262 }
263
264 /*
265  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
266  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
267  * memory just to allocate one more hugepage.
268  */
269 static ssize_t defrag_show(struct kobject *kobj,
270                            struct kobj_attribute *attr, char *buf)
271 {
272         return double_flag_show(kobj, attr, buf,
273                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
274                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
275 }
276 static ssize_t defrag_store(struct kobject *kobj,
277                             struct kobj_attribute *attr,
278                             const char *buf, size_t count)
279 {
280         return double_flag_store(kobj, attr, buf, count,
281                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
282                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
283 }
284 static struct kobj_attribute defrag_attr =
285         __ATTR(defrag, 0644, defrag_show, defrag_store);
286
287 #ifdef CONFIG_DEBUG_VM
288 static ssize_t debug_cow_show(struct kobject *kobj,
289                                 struct kobj_attribute *attr, char *buf)
290 {
291         return single_flag_show(kobj, attr, buf,
292                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
293 }
294 static ssize_t debug_cow_store(struct kobject *kobj,
295                                struct kobj_attribute *attr,
296                                const char *buf, size_t count)
297 {
298         return single_flag_store(kobj, attr, buf, count,
299                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
300 }
301 static struct kobj_attribute debug_cow_attr =
302         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
303 #endif /* CONFIG_DEBUG_VM */
304
305 static struct attribute *hugepage_attr[] = {
306         &enabled_attr.attr,
307         &defrag_attr.attr,
308 #ifdef CONFIG_DEBUG_VM
309         &debug_cow_attr.attr,
310 #endif
311         NULL,
312 };
313
314 static struct attribute_group hugepage_attr_group = {
315         .attrs = hugepage_attr,
316 };
317
318 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
319                                          struct kobj_attribute *attr,
320                                          char *buf)
321 {
322         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
323 }
324
325 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
326                                           struct kobj_attribute *attr,
327                                           const char *buf, size_t count)
328 {
329         unsigned long msecs;
330         int err;
331
332         err = strict_strtoul(buf, 10, &msecs);
333         if (err || msecs > UINT_MAX)
334                 return -EINVAL;
335
336         khugepaged_scan_sleep_millisecs = msecs;
337         wake_up_interruptible(&khugepaged_wait);
338
339         return count;
340 }
341 static struct kobj_attribute scan_sleep_millisecs_attr =
342         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
343                scan_sleep_millisecs_store);
344
345 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
346                                           struct kobj_attribute *attr,
347                                           char *buf)
348 {
349         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
350 }
351
352 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
353                                            struct kobj_attribute *attr,
354                                            const char *buf, size_t count)
355 {
356         unsigned long msecs;
357         int err;
358
359         err = strict_strtoul(buf, 10, &msecs);
360         if (err || msecs > UINT_MAX)
361                 return -EINVAL;
362
363         khugepaged_alloc_sleep_millisecs = msecs;
364         wake_up_interruptible(&khugepaged_wait);
365
366         return count;
367 }
368 static struct kobj_attribute alloc_sleep_millisecs_attr =
369         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
370                alloc_sleep_millisecs_store);
371
372 static ssize_t pages_to_scan_show(struct kobject *kobj,
373                                   struct kobj_attribute *attr,
374                                   char *buf)
375 {
376         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
377 }
378 static ssize_t pages_to_scan_store(struct kobject *kobj,
379                                    struct kobj_attribute *attr,
380                                    const char *buf, size_t count)
381 {
382         int err;
383         unsigned long pages;
384
385         err = strict_strtoul(buf, 10, &pages);
386         if (err || !pages || pages > UINT_MAX)
387                 return -EINVAL;
388
389         khugepaged_pages_to_scan = pages;
390
391         return count;
392 }
393 static struct kobj_attribute pages_to_scan_attr =
394         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
395                pages_to_scan_store);
396
397 static ssize_t pages_collapsed_show(struct kobject *kobj,
398                                     struct kobj_attribute *attr,
399                                     char *buf)
400 {
401         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
402 }
403 static struct kobj_attribute pages_collapsed_attr =
404         __ATTR_RO(pages_collapsed);
405
406 static ssize_t full_scans_show(struct kobject *kobj,
407                                struct kobj_attribute *attr,
408                                char *buf)
409 {
410         return sprintf(buf, "%u\n", khugepaged_full_scans);
411 }
412 static struct kobj_attribute full_scans_attr =
413         __ATTR_RO(full_scans);
414
415 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
416                                       struct kobj_attribute *attr, char *buf)
417 {
418         return single_flag_show(kobj, attr, buf,
419                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
420 }
421 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
422                                        struct kobj_attribute *attr,
423                                        const char *buf, size_t count)
424 {
425         return single_flag_store(kobj, attr, buf, count,
426                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
427 }
428 static struct kobj_attribute khugepaged_defrag_attr =
429         __ATTR(defrag, 0644, khugepaged_defrag_show,
430                khugepaged_defrag_store);
431
432 /*
433  * max_ptes_none controls if khugepaged should collapse hugepages over
434  * any unmapped ptes in turn potentially increasing the memory
435  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
436  * reduce the available free memory in the system as it
437  * runs. Increasing max_ptes_none will instead potentially reduce the
438  * free memory in the system during the khugepaged scan.
439  */
440 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
441                                              struct kobj_attribute *attr,
442                                              char *buf)
443 {
444         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
445 }
446 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
447                                               struct kobj_attribute *attr,
448                                               const char *buf, size_t count)
449 {
450         int err;
451         unsigned long max_ptes_none;
452
453         err = strict_strtoul(buf, 10, &max_ptes_none);
454         if (err || max_ptes_none > HPAGE_PMD_NR-1)
455                 return -EINVAL;
456
457         khugepaged_max_ptes_none = max_ptes_none;
458
459         return count;
460 }
461 static struct kobj_attribute khugepaged_max_ptes_none_attr =
462         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
463                khugepaged_max_ptes_none_store);
464
465 static struct attribute *khugepaged_attr[] = {
466         &khugepaged_defrag_attr.attr,
467         &khugepaged_max_ptes_none_attr.attr,
468         &pages_to_scan_attr.attr,
469         &pages_collapsed_attr.attr,
470         &full_scans_attr.attr,
471         &scan_sleep_millisecs_attr.attr,
472         &alloc_sleep_millisecs_attr.attr,
473         NULL,
474 };
475
476 static struct attribute_group khugepaged_attr_group = {
477         .attrs = khugepaged_attr,
478         .name = "khugepaged",
479 };
480
481 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
482 {
483         int err;
484
485         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
486         if (unlikely(!*hugepage_kobj)) {
487                 printk(KERN_ERR "hugepage: failed kobject create\n");
488                 return -ENOMEM;
489         }
490
491         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
492         if (err) {
493                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
494                 goto delete_obj;
495         }
496
497         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
498         if (err) {
499                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
500                 goto remove_hp_group;
501         }
502
503         return 0;
504
505 remove_hp_group:
506         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
507 delete_obj:
508         kobject_put(*hugepage_kobj);
509         return err;
510 }
511
512 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
513 {
514         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
515         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
516         kobject_put(hugepage_kobj);
517 }
518 #else
519 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
520 {
521         return 0;
522 }
523
524 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
525 {
526 }
527 #endif /* CONFIG_SYSFS */
528
529 static int __init hugepage_init(void)
530 {
531         int err;
532         struct kobject *hugepage_kobj;
533
534         if (!has_transparent_hugepage()) {
535                 transparent_hugepage_flags = 0;
536                 return -EINVAL;
537         }
538
539         err = hugepage_init_sysfs(&hugepage_kobj);
540         if (err)
541                 return err;
542
543         err = khugepaged_slab_init();
544         if (err)
545                 goto out;
546
547         err = mm_slots_hash_init();
548         if (err) {
549                 khugepaged_slab_free();
550                 goto out;
551         }
552
553         /*
554          * By default disable transparent hugepages on smaller systems,
555          * where the extra memory used could hurt more than TLB overhead
556          * is likely to save.  The admin can still enable it through /sys.
557          */
558         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
559                 transparent_hugepage_flags = 0;
560
561         start_khugepaged();
562
563         return 0;
564 out:
565         hugepage_exit_sysfs(hugepage_kobj);
566         return err;
567 }
568 module_init(hugepage_init)
569
570 static int __init setup_transparent_hugepage(char *str)
571 {
572         int ret = 0;
573         if (!str)
574                 goto out;
575         if (!strcmp(str, "always")) {
576                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
577                         &transparent_hugepage_flags);
578                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
579                           &transparent_hugepage_flags);
580                 ret = 1;
581         } else if (!strcmp(str, "madvise")) {
582                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
583                           &transparent_hugepage_flags);
584                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
585                         &transparent_hugepage_flags);
586                 ret = 1;
587         } else if (!strcmp(str, "never")) {
588                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
589                           &transparent_hugepage_flags);
590                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591                           &transparent_hugepage_flags);
592                 ret = 1;
593         }
594 out:
595         if (!ret)
596                 printk(KERN_WARNING
597                        "transparent_hugepage= cannot parse, ignored\n");
598         return ret;
599 }
600 __setup("transparent_hugepage=", setup_transparent_hugepage);
601
602 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
603 {
604         if (likely(vma->vm_flags & VM_WRITE))
605                 pmd = pmd_mkwrite(pmd);
606         return pmd;
607 }
608
609 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
610                                         struct vm_area_struct *vma,
611                                         unsigned long haddr, pmd_t *pmd,
612                                         struct page *page)
613 {
614         pgtable_t pgtable;
615
616         VM_BUG_ON(!PageCompound(page));
617         pgtable = pte_alloc_one(mm, haddr);
618         if (unlikely(!pgtable))
619                 return VM_FAULT_OOM;
620
621         clear_huge_page(page, haddr, HPAGE_PMD_NR);
622         __SetPageUptodate(page);
623
624         spin_lock(&mm->page_table_lock);
625         if (unlikely(!pmd_none(*pmd))) {
626                 spin_unlock(&mm->page_table_lock);
627                 mem_cgroup_uncharge_page(page);
628                 put_page(page);
629                 pte_free(mm, pgtable);
630         } else {
631                 pmd_t entry;
632                 entry = mk_pmd(page, vma->vm_page_prot);
633                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634                 entry = pmd_mkhuge(entry);
635                 /*
636                  * The spinlocking to take the lru_lock inside
637                  * page_add_new_anon_rmap() acts as a full memory
638                  * barrier to be sure clear_huge_page writes become
639                  * visible after the set_pmd_at() write.
640                  */
641                 page_add_new_anon_rmap(page, vma, haddr);
642                 set_pmd_at(mm, haddr, pmd, entry);
643                 pgtable_trans_huge_deposit(mm, pgtable);
644                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645                 mm->nr_ptes++;
646                 spin_unlock(&mm->page_table_lock);
647         }
648
649         return 0;
650 }
651
652 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
653 {
654         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
655 }
656
657 static inline struct page *alloc_hugepage_vma(int defrag,
658                                               struct vm_area_struct *vma,
659                                               unsigned long haddr, int nd,
660                                               gfp_t extra_gfp)
661 {
662         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
663                                HPAGE_PMD_ORDER, vma, haddr, nd);
664 }
665
666 #ifndef CONFIG_NUMA
667 static inline struct page *alloc_hugepage(int defrag)
668 {
669         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
670                            HPAGE_PMD_ORDER);
671 }
672 #endif
673
674 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
675                                unsigned long address, pmd_t *pmd,
676                                unsigned int flags)
677 {
678         struct page *page;
679         unsigned long haddr = address & HPAGE_PMD_MASK;
680         pte_t *pte;
681
682         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
683                 if (unlikely(anon_vma_prepare(vma)))
684                         return VM_FAULT_OOM;
685                 if (unlikely(khugepaged_enter(vma)))
686                         return VM_FAULT_OOM;
687                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
688                                           vma, haddr, numa_node_id(), 0);
689                 if (unlikely(!page)) {
690                         count_vm_event(THP_FAULT_FALLBACK);
691                         goto out;
692                 }
693                 count_vm_event(THP_FAULT_ALLOC);
694                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
695                         put_page(page);
696                         goto out;
697                 }
698                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
699                                                           page))) {
700                         mem_cgroup_uncharge_page(page);
701                         put_page(page);
702                         goto out;
703                 }
704
705                 return 0;
706         }
707 out:
708         /*
709          * Use __pte_alloc instead of pte_alloc_map, because we can't
710          * run pte_offset_map on the pmd, if an huge pmd could
711          * materialize from under us from a different thread.
712          */
713         if (unlikely(pmd_none(*pmd)) &&
714             unlikely(__pte_alloc(mm, vma, pmd, address)))
715                 return VM_FAULT_OOM;
716         /* if an huge pmd materialized from under us just retry later */
717         if (unlikely(pmd_trans_huge(*pmd)))
718                 return 0;
719         /*
720          * A regular pmd is established and it can't morph into a huge pmd
721          * from under us anymore at this point because we hold the mmap_sem
722          * read mode and khugepaged takes it in write mode. So now it's
723          * safe to run pte_offset_map().
724          */
725         pte = pte_offset_map(pmd, address);
726         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
727 }
728
729 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
731                   struct vm_area_struct *vma)
732 {
733         struct page *src_page;
734         pmd_t pmd;
735         pgtable_t pgtable;
736         int ret;
737
738         ret = -ENOMEM;
739         pgtable = pte_alloc_one(dst_mm, addr);
740         if (unlikely(!pgtable))
741                 goto out;
742
743         spin_lock(&dst_mm->page_table_lock);
744         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
745
746         ret = -EAGAIN;
747         pmd = *src_pmd;
748         if (unlikely(!pmd_trans_huge(pmd))) {
749                 pte_free(dst_mm, pgtable);
750                 goto out_unlock;
751         }
752         if (unlikely(pmd_trans_splitting(pmd))) {
753                 /* split huge page running from under us */
754                 spin_unlock(&src_mm->page_table_lock);
755                 spin_unlock(&dst_mm->page_table_lock);
756                 pte_free(dst_mm, pgtable);
757
758                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
759                 goto out;
760         }
761         src_page = pmd_page(pmd);
762         VM_BUG_ON(!PageHead(src_page));
763         get_page(src_page);
764         page_dup_rmap(src_page);
765         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
766
767         pmdp_set_wrprotect(src_mm, addr, src_pmd);
768         pmd = pmd_mkold(pmd_wrprotect(pmd));
769         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
770         pgtable_trans_huge_deposit(dst_mm, pgtable);
771         dst_mm->nr_ptes++;
772
773         ret = 0;
774 out_unlock:
775         spin_unlock(&src_mm->page_table_lock);
776         spin_unlock(&dst_mm->page_table_lock);
777 out:
778         return ret;
779 }
780
781 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
782                                         struct vm_area_struct *vma,
783                                         unsigned long address,
784                                         pmd_t *pmd, pmd_t orig_pmd,
785                                         struct page *page,
786                                         unsigned long haddr)
787 {
788         pgtable_t pgtable;
789         pmd_t _pmd;
790         int ret = 0, i;
791         struct page **pages;
792         unsigned long mmun_start;       /* For mmu_notifiers */
793         unsigned long mmun_end;         /* For mmu_notifiers */
794
795         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
796                         GFP_KERNEL);
797         if (unlikely(!pages)) {
798                 ret |= VM_FAULT_OOM;
799                 goto out;
800         }
801
802         for (i = 0; i < HPAGE_PMD_NR; i++) {
803                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
804                                                __GFP_OTHER_NODE,
805                                                vma, address, page_to_nid(page));
806                 if (unlikely(!pages[i] ||
807                              mem_cgroup_newpage_charge(pages[i], mm,
808                                                        GFP_KERNEL))) {
809                         if (pages[i])
810                                 put_page(pages[i]);
811                         mem_cgroup_uncharge_start();
812                         while (--i >= 0) {
813                                 mem_cgroup_uncharge_page(pages[i]);
814                                 put_page(pages[i]);
815                         }
816                         mem_cgroup_uncharge_end();
817                         kfree(pages);
818                         ret |= VM_FAULT_OOM;
819                         goto out;
820                 }
821         }
822
823         for (i = 0; i < HPAGE_PMD_NR; i++) {
824                 copy_user_highpage(pages[i], page + i,
825                                    haddr + PAGE_SIZE * i, vma);
826                 __SetPageUptodate(pages[i]);
827                 cond_resched();
828         }
829
830         mmun_start = haddr;
831         mmun_end   = haddr + HPAGE_PMD_SIZE;
832         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
833
834         spin_lock(&mm->page_table_lock);
835         if (unlikely(!pmd_same(*pmd, orig_pmd)))
836                 goto out_free_pages;
837         VM_BUG_ON(!PageHead(page));
838
839         pmdp_clear_flush(vma, haddr, pmd);
840         /* leave pmd empty until pte is filled */
841
842         pgtable = pgtable_trans_huge_withdraw(mm);
843         pmd_populate(mm, &_pmd, pgtable);
844
845         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
846                 pte_t *pte, entry;
847                 entry = mk_pte(pages[i], vma->vm_page_prot);
848                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
849                 page_add_new_anon_rmap(pages[i], vma, haddr);
850                 pte = pte_offset_map(&_pmd, haddr);
851                 VM_BUG_ON(!pte_none(*pte));
852                 set_pte_at(mm, haddr, pte, entry);
853                 pte_unmap(pte);
854         }
855         kfree(pages);
856
857         smp_wmb(); /* make pte visible before pmd */
858         pmd_populate(mm, pmd, pgtable);
859         page_remove_rmap(page);
860         spin_unlock(&mm->page_table_lock);
861
862         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
863
864         ret |= VM_FAULT_WRITE;
865         put_page(page);
866
867 out:
868         return ret;
869
870 out_free_pages:
871         spin_unlock(&mm->page_table_lock);
872         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
873         mem_cgroup_uncharge_start();
874         for (i = 0; i < HPAGE_PMD_NR; i++) {
875                 mem_cgroup_uncharge_page(pages[i]);
876                 put_page(pages[i]);
877         }
878         mem_cgroup_uncharge_end();
879         kfree(pages);
880         goto out;
881 }
882
883 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
884                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
885 {
886         int ret = 0;
887         struct page *page, *new_page;
888         unsigned long haddr;
889         unsigned long mmun_start;       /* For mmu_notifiers */
890         unsigned long mmun_end;         /* For mmu_notifiers */
891
892         VM_BUG_ON(!vma->anon_vma);
893         spin_lock(&mm->page_table_lock);
894         if (unlikely(!pmd_same(*pmd, orig_pmd)))
895                 goto out_unlock;
896
897         page = pmd_page(orig_pmd);
898         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
899         haddr = address & HPAGE_PMD_MASK;
900         if (page_mapcount(page) == 1) {
901                 pmd_t entry;
902                 entry = pmd_mkyoung(orig_pmd);
903                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
904                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
905                         update_mmu_cache_pmd(vma, address, pmd);
906                 ret |= VM_FAULT_WRITE;
907                 goto out_unlock;
908         }
909         get_page(page);
910         spin_unlock(&mm->page_table_lock);
911
912         if (transparent_hugepage_enabled(vma) &&
913             !transparent_hugepage_debug_cow())
914                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
915                                               vma, haddr, numa_node_id(), 0);
916         else
917                 new_page = NULL;
918
919         if (unlikely(!new_page)) {
920                 count_vm_event(THP_FAULT_FALLBACK);
921                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
922                                                    pmd, orig_pmd, page, haddr);
923                 if (ret & VM_FAULT_OOM)
924                         split_huge_page(page);
925                 put_page(page);
926                 goto out;
927         }
928         count_vm_event(THP_FAULT_ALLOC);
929
930         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
931                 put_page(new_page);
932                 split_huge_page(page);
933                 put_page(page);
934                 ret |= VM_FAULT_OOM;
935                 goto out;
936         }
937
938         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
939         __SetPageUptodate(new_page);
940
941         mmun_start = haddr;
942         mmun_end   = haddr + HPAGE_PMD_SIZE;
943         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
944
945         spin_lock(&mm->page_table_lock);
946         put_page(page);
947         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
948                 spin_unlock(&mm->page_table_lock);
949                 mem_cgroup_uncharge_page(new_page);
950                 put_page(new_page);
951                 goto out_mn;
952         } else {
953                 pmd_t entry;
954                 VM_BUG_ON(!PageHead(page));
955                 entry = mk_pmd(new_page, vma->vm_page_prot);
956                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
957                 entry = pmd_mkhuge(entry);
958                 pmdp_clear_flush(vma, haddr, pmd);
959                 page_add_new_anon_rmap(new_page, vma, haddr);
960                 set_pmd_at(mm, haddr, pmd, entry);
961                 update_mmu_cache_pmd(vma, address, pmd);
962                 page_remove_rmap(page);
963                 put_page(page);
964                 ret |= VM_FAULT_WRITE;
965         }
966         spin_unlock(&mm->page_table_lock);
967 out_mn:
968         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
969 out:
970         return ret;
971 out_unlock:
972         spin_unlock(&mm->page_table_lock);
973         return ret;
974 }
975
976 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
977                                    unsigned long addr,
978                                    pmd_t *pmd,
979                                    unsigned int flags)
980 {
981         struct mm_struct *mm = vma->vm_mm;
982         struct page *page = NULL;
983
984         assert_spin_locked(&mm->page_table_lock);
985
986         if (flags & FOLL_WRITE && !pmd_write(*pmd))
987                 goto out;
988
989         page = pmd_page(*pmd);
990         VM_BUG_ON(!PageHead(page));
991         if (flags & FOLL_TOUCH) {
992                 pmd_t _pmd;
993                 /*
994                  * We should set the dirty bit only for FOLL_WRITE but
995                  * for now the dirty bit in the pmd is meaningless.
996                  * And if the dirty bit will become meaningful and
997                  * we'll only set it with FOLL_WRITE, an atomic
998                  * set_bit will be required on the pmd to set the
999                  * young bit, instead of the current set_pmd_at.
1000                  */
1001                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1002                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1003         }
1004         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1005                 if (page->mapping && trylock_page(page)) {
1006                         lru_add_drain();
1007                         if (page->mapping)
1008                                 mlock_vma_page(page);
1009                         unlock_page(page);
1010                 }
1011         }
1012         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1013         VM_BUG_ON(!PageCompound(page));
1014         if (flags & FOLL_GET)
1015                 get_page_foll(page);
1016
1017 out:
1018         return page;
1019 }
1020
1021 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1022                  pmd_t *pmd, unsigned long addr)
1023 {
1024         int ret = 0;
1025
1026         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1027                 struct page *page;
1028                 pgtable_t pgtable;
1029                 pmd_t orig_pmd;
1030                 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1031                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1032                 page = pmd_page(orig_pmd);
1033                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1034                 page_remove_rmap(page);
1035                 VM_BUG_ON(page_mapcount(page) < 0);
1036                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1037                 VM_BUG_ON(!PageHead(page));
1038                 tlb->mm->nr_ptes--;
1039                 spin_unlock(&tlb->mm->page_table_lock);
1040                 tlb_remove_page(tlb, page);
1041                 pte_free(tlb->mm, pgtable);
1042                 ret = 1;
1043         }
1044         return ret;
1045 }
1046
1047 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1048                 unsigned long addr, unsigned long end,
1049                 unsigned char *vec)
1050 {
1051         int ret = 0;
1052
1053         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1054                 /*
1055                  * All logical pages in the range are present
1056                  * if backed by a huge page.
1057                  */
1058                 spin_unlock(&vma->vm_mm->page_table_lock);
1059                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1060                 ret = 1;
1061         }
1062
1063         return ret;
1064 }
1065
1066 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1067                   unsigned long old_addr,
1068                   unsigned long new_addr, unsigned long old_end,
1069                   pmd_t *old_pmd, pmd_t *new_pmd)
1070 {
1071         int ret = 0;
1072         pmd_t pmd;
1073
1074         struct mm_struct *mm = vma->vm_mm;
1075
1076         if ((old_addr & ~HPAGE_PMD_MASK) ||
1077             (new_addr & ~HPAGE_PMD_MASK) ||
1078             old_end - old_addr < HPAGE_PMD_SIZE ||
1079             (new_vma->vm_flags & VM_NOHUGEPAGE))
1080                 goto out;
1081
1082         /*
1083          * The destination pmd shouldn't be established, free_pgtables()
1084          * should have release it.
1085          */
1086         if (WARN_ON(!pmd_none(*new_pmd))) {
1087                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1088                 goto out;
1089         }
1090
1091         ret = __pmd_trans_huge_lock(old_pmd, vma);
1092         if (ret == 1) {
1093                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1094                 VM_BUG_ON(!pmd_none(*new_pmd));
1095                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1096                 spin_unlock(&mm->page_table_lock);
1097         }
1098 out:
1099         return ret;
1100 }
1101
1102 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1103                 unsigned long addr, pgprot_t newprot)
1104 {
1105         struct mm_struct *mm = vma->vm_mm;
1106         int ret = 0;
1107
1108         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1109                 pmd_t entry;
1110                 entry = pmdp_get_and_clear(mm, addr, pmd);
1111                 entry = pmd_modify(entry, newprot);
1112                 set_pmd_at(mm, addr, pmd, entry);
1113                 spin_unlock(&vma->vm_mm->page_table_lock);
1114                 ret = 1;
1115         }
1116
1117         return ret;
1118 }
1119
1120 /*
1121  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1122  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1123  *
1124  * Note that if it returns 1, this routine returns without unlocking page
1125  * table locks. So callers must unlock them.
1126  */
1127 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1128 {
1129         spin_lock(&vma->vm_mm->page_table_lock);
1130         if (likely(pmd_trans_huge(*pmd))) {
1131                 if (unlikely(pmd_trans_splitting(*pmd))) {
1132                         spin_unlock(&vma->vm_mm->page_table_lock);
1133                         wait_split_huge_page(vma->anon_vma, pmd);
1134                         return -1;
1135                 } else {
1136                         /* Thp mapped by 'pmd' is stable, so we can
1137                          * handle it as it is. */
1138                         return 1;
1139                 }
1140         }
1141         spin_unlock(&vma->vm_mm->page_table_lock);
1142         return 0;
1143 }
1144
1145 pmd_t *page_check_address_pmd(struct page *page,
1146                               struct mm_struct *mm,
1147                               unsigned long address,
1148                               enum page_check_address_pmd_flag flag)
1149 {
1150         pgd_t *pgd;
1151         pud_t *pud;
1152         pmd_t *pmd, *ret = NULL;
1153
1154         if (address & ~HPAGE_PMD_MASK)
1155                 goto out;
1156
1157         pgd = pgd_offset(mm, address);
1158         if (!pgd_present(*pgd))
1159                 goto out;
1160
1161         pud = pud_offset(pgd, address);
1162         if (!pud_present(*pud))
1163                 goto out;
1164
1165         pmd = pmd_offset(pud, address);
1166         if (pmd_none(*pmd))
1167                 goto out;
1168         if (pmd_page(*pmd) != page)
1169                 goto out;
1170         /*
1171          * split_vma() may create temporary aliased mappings. There is
1172          * no risk as long as all huge pmd are found and have their
1173          * splitting bit set before __split_huge_page_refcount
1174          * runs. Finding the same huge pmd more than once during the
1175          * same rmap walk is not a problem.
1176          */
1177         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1178             pmd_trans_splitting(*pmd))
1179                 goto out;
1180         if (pmd_trans_huge(*pmd)) {
1181                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1182                           !pmd_trans_splitting(*pmd));
1183                 ret = pmd;
1184         }
1185 out:
1186         return ret;
1187 }
1188
1189 static int __split_huge_page_splitting(struct page *page,
1190                                        struct vm_area_struct *vma,
1191                                        unsigned long address)
1192 {
1193         struct mm_struct *mm = vma->vm_mm;
1194         pmd_t *pmd;
1195         int ret = 0;
1196         /* For mmu_notifiers */
1197         const unsigned long mmun_start = address;
1198         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1199
1200         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1201         spin_lock(&mm->page_table_lock);
1202         pmd = page_check_address_pmd(page, mm, address,
1203                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1204         if (pmd) {
1205                 /*
1206                  * We can't temporarily set the pmd to null in order
1207                  * to split it, the pmd must remain marked huge at all
1208                  * times or the VM won't take the pmd_trans_huge paths
1209                  * and it won't wait on the anon_vma->root->mutex to
1210                  * serialize against split_huge_page*.
1211                  */
1212                 pmdp_splitting_flush(vma, address, pmd);
1213                 ret = 1;
1214         }
1215         spin_unlock(&mm->page_table_lock);
1216         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1217
1218         return ret;
1219 }
1220
1221 static void __split_huge_page_refcount(struct page *page)
1222 {
1223         int i;
1224         struct zone *zone = page_zone(page);
1225         struct lruvec *lruvec;
1226         int tail_count = 0;
1227
1228         /* prevent PageLRU to go away from under us, and freeze lru stats */
1229         spin_lock_irq(&zone->lru_lock);
1230         lruvec = mem_cgroup_page_lruvec(page, zone);
1231
1232         compound_lock(page);
1233         /* complete memcg works before add pages to LRU */
1234         mem_cgroup_split_huge_fixup(page);
1235
1236         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1237                 struct page *page_tail = page + i;
1238
1239                 /* tail_page->_mapcount cannot change */
1240                 BUG_ON(page_mapcount(page_tail) < 0);
1241                 tail_count += page_mapcount(page_tail);
1242                 /* check for overflow */
1243                 BUG_ON(tail_count < 0);
1244                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1245                 /*
1246                  * tail_page->_count is zero and not changing from
1247                  * under us. But get_page_unless_zero() may be running
1248                  * from under us on the tail_page. If we used
1249                  * atomic_set() below instead of atomic_add(), we
1250                  * would then run atomic_set() concurrently with
1251                  * get_page_unless_zero(), and atomic_set() is
1252                  * implemented in C not using locked ops. spin_unlock
1253                  * on x86 sometime uses locked ops because of PPro
1254                  * errata 66, 92, so unless somebody can guarantee
1255                  * atomic_set() here would be safe on all archs (and
1256                  * not only on x86), it's safer to use atomic_add().
1257                  */
1258                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1259                            &page_tail->_count);
1260
1261                 /* after clearing PageTail the gup refcount can be released */
1262                 smp_mb();
1263
1264                 /*
1265                  * retain hwpoison flag of the poisoned tail page:
1266                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1267                  *   by the memory-failure.
1268                  */
1269                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1270                 page_tail->flags |= (page->flags &
1271                                      ((1L << PG_referenced) |
1272                                       (1L << PG_swapbacked) |
1273                                       (1L << PG_mlocked) |
1274                                       (1L << PG_uptodate)));
1275                 page_tail->flags |= (1L << PG_dirty);
1276
1277                 /* clear PageTail before overwriting first_page */
1278                 smp_wmb();
1279
1280                 /*
1281                  * __split_huge_page_splitting() already set the
1282                  * splitting bit in all pmd that could map this
1283                  * hugepage, that will ensure no CPU can alter the
1284                  * mapcount on the head page. The mapcount is only
1285                  * accounted in the head page and it has to be
1286                  * transferred to all tail pages in the below code. So
1287                  * for this code to be safe, the split the mapcount
1288                  * can't change. But that doesn't mean userland can't
1289                  * keep changing and reading the page contents while
1290                  * we transfer the mapcount, so the pmd splitting
1291                  * status is achieved setting a reserved bit in the
1292                  * pmd, not by clearing the present bit.
1293                 */
1294                 page_tail->_mapcount = page->_mapcount;
1295
1296                 BUG_ON(page_tail->mapping);
1297                 page_tail->mapping = page->mapping;
1298
1299                 page_tail->index = page->index + i;
1300
1301                 BUG_ON(!PageAnon(page_tail));
1302                 BUG_ON(!PageUptodate(page_tail));
1303                 BUG_ON(!PageDirty(page_tail));
1304                 BUG_ON(!PageSwapBacked(page_tail));
1305
1306                 lru_add_page_tail(page, page_tail, lruvec);
1307         }
1308         atomic_sub(tail_count, &page->_count);
1309         BUG_ON(atomic_read(&page->_count) <= 0);
1310
1311         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1312         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1313
1314         ClearPageCompound(page);
1315         compound_unlock(page);
1316         spin_unlock_irq(&zone->lru_lock);
1317
1318         for (i = 1; i < HPAGE_PMD_NR; i++) {
1319                 struct page *page_tail = page + i;
1320                 BUG_ON(page_count(page_tail) <= 0);
1321                 /*
1322                  * Tail pages may be freed if there wasn't any mapping
1323                  * like if add_to_swap() is running on a lru page that
1324                  * had its mapping zapped. And freeing these pages
1325                  * requires taking the lru_lock so we do the put_page
1326                  * of the tail pages after the split is complete.
1327                  */
1328                 put_page(page_tail);
1329         }
1330
1331         /*
1332          * Only the head page (now become a regular page) is required
1333          * to be pinned by the caller.
1334          */
1335         BUG_ON(page_count(page) <= 0);
1336 }
1337
1338 static int __split_huge_page_map(struct page *page,
1339                                  struct vm_area_struct *vma,
1340                                  unsigned long address)
1341 {
1342         struct mm_struct *mm = vma->vm_mm;
1343         pmd_t *pmd, _pmd;
1344         int ret = 0, i;
1345         pgtable_t pgtable;
1346         unsigned long haddr;
1347
1348         spin_lock(&mm->page_table_lock);
1349         pmd = page_check_address_pmd(page, mm, address,
1350                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1351         if (pmd) {
1352                 pgtable = pgtable_trans_huge_withdraw(mm);
1353                 pmd_populate(mm, &_pmd, pgtable);
1354
1355                 haddr = address;
1356                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1357                         pte_t *pte, entry;
1358                         BUG_ON(PageCompound(page+i));
1359                         entry = mk_pte(page + i, vma->vm_page_prot);
1360                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1361                         if (!pmd_write(*pmd))
1362                                 entry = pte_wrprotect(entry);
1363                         else
1364                                 BUG_ON(page_mapcount(page) != 1);
1365                         if (!pmd_young(*pmd))
1366                                 entry = pte_mkold(entry);
1367                         if (pmd_numa(*pmd))
1368                                 entry = pte_mknuma(entry);
1369                         pte = pte_offset_map(&_pmd, haddr);
1370                         BUG_ON(!pte_none(*pte));
1371                         set_pte_at(mm, haddr, pte, entry);
1372                         pte_unmap(pte);
1373                 }
1374
1375                 smp_wmb(); /* make pte visible before pmd */
1376                 /*
1377                  * Up to this point the pmd is present and huge and
1378                  * userland has the whole access to the hugepage
1379                  * during the split (which happens in place). If we
1380                  * overwrite the pmd with the not-huge version
1381                  * pointing to the pte here (which of course we could
1382                  * if all CPUs were bug free), userland could trigger
1383                  * a small page size TLB miss on the small sized TLB
1384                  * while the hugepage TLB entry is still established
1385                  * in the huge TLB. Some CPU doesn't like that. See
1386                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1387                  * Erratum 383 on page 93. Intel should be safe but is
1388                  * also warns that it's only safe if the permission
1389                  * and cache attributes of the two entries loaded in
1390                  * the two TLB is identical (which should be the case
1391                  * here). But it is generally safer to never allow
1392                  * small and huge TLB entries for the same virtual
1393                  * address to be loaded simultaneously. So instead of
1394                  * doing "pmd_populate(); flush_tlb_range();" we first
1395                  * mark the current pmd notpresent (atomically because
1396                  * here the pmd_trans_huge and pmd_trans_splitting
1397                  * must remain set at all times on the pmd until the
1398                  * split is complete for this pmd), then we flush the
1399                  * SMP TLB and finally we write the non-huge version
1400                  * of the pmd entry with pmd_populate.
1401                  */
1402                 pmdp_invalidate(vma, address, pmd);
1403                 pmd_populate(mm, pmd, pgtable);
1404                 ret = 1;
1405         }
1406         spin_unlock(&mm->page_table_lock);
1407
1408         return ret;
1409 }
1410
1411 /* must be called with anon_vma->root->mutex hold */
1412 static void __split_huge_page(struct page *page,
1413                               struct anon_vma *anon_vma)
1414 {
1415         int mapcount, mapcount2;
1416         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1417         struct anon_vma_chain *avc;
1418
1419         BUG_ON(!PageHead(page));
1420         BUG_ON(PageTail(page));
1421
1422         mapcount = 0;
1423         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1424                 struct vm_area_struct *vma = avc->vma;
1425                 unsigned long addr = vma_address(page, vma);
1426                 BUG_ON(is_vma_temporary_stack(vma));
1427                 mapcount += __split_huge_page_splitting(page, vma, addr);
1428         }
1429         /*
1430          * It is critical that new vmas are added to the tail of the
1431          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1432          * and establishes a child pmd before
1433          * __split_huge_page_splitting() freezes the parent pmd (so if
1434          * we fail to prevent copy_huge_pmd() from running until the
1435          * whole __split_huge_page() is complete), we will still see
1436          * the newly established pmd of the child later during the
1437          * walk, to be able to set it as pmd_trans_splitting too.
1438          */
1439         if (mapcount != page_mapcount(page))
1440                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1441                        mapcount, page_mapcount(page));
1442         BUG_ON(mapcount != page_mapcount(page));
1443
1444         __split_huge_page_refcount(page);
1445
1446         mapcount2 = 0;
1447         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1448                 struct vm_area_struct *vma = avc->vma;
1449                 unsigned long addr = vma_address(page, vma);
1450                 BUG_ON(is_vma_temporary_stack(vma));
1451                 mapcount2 += __split_huge_page_map(page, vma, addr);
1452         }
1453         if (mapcount != mapcount2)
1454                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1455                        mapcount, mapcount2, page_mapcount(page));
1456         BUG_ON(mapcount != mapcount2);
1457 }
1458
1459 int split_huge_page(struct page *page)
1460 {
1461         struct anon_vma *anon_vma;
1462         int ret = 1;
1463
1464         BUG_ON(!PageAnon(page));
1465         anon_vma = page_lock_anon_vma(page);
1466         if (!anon_vma)
1467                 goto out;
1468         ret = 0;
1469         if (!PageCompound(page))
1470                 goto out_unlock;
1471
1472         BUG_ON(!PageSwapBacked(page));
1473         __split_huge_page(page, anon_vma);
1474         count_vm_event(THP_SPLIT);
1475
1476         BUG_ON(PageCompound(page));
1477 out_unlock:
1478         page_unlock_anon_vma(anon_vma);
1479 out:
1480         return ret;
1481 }
1482
1483 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1484
1485 int hugepage_madvise(struct vm_area_struct *vma,
1486                      unsigned long *vm_flags, int advice)
1487 {
1488         struct mm_struct *mm = vma->vm_mm;
1489
1490         switch (advice) {
1491         case MADV_HUGEPAGE:
1492                 /*
1493                  * Be somewhat over-protective like KSM for now!
1494                  */
1495                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1496                         return -EINVAL;
1497                 if (mm->def_flags & VM_NOHUGEPAGE)
1498                         return -EINVAL;
1499                 *vm_flags &= ~VM_NOHUGEPAGE;
1500                 *vm_flags |= VM_HUGEPAGE;
1501                 /*
1502                  * If the vma become good for khugepaged to scan,
1503                  * register it here without waiting a page fault that
1504                  * may not happen any time soon.
1505                  */
1506                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1507                         return -ENOMEM;
1508                 break;
1509         case MADV_NOHUGEPAGE:
1510                 /*
1511                  * Be somewhat over-protective like KSM for now!
1512                  */
1513                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1514                         return -EINVAL;
1515                 *vm_flags &= ~VM_HUGEPAGE;
1516                 *vm_flags |= VM_NOHUGEPAGE;
1517                 /*
1518                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1519                  * this vma even if we leave the mm registered in khugepaged if
1520                  * it got registered before VM_NOHUGEPAGE was set.
1521                  */
1522                 break;
1523         }
1524
1525         return 0;
1526 }
1527
1528 static int __init khugepaged_slab_init(void)
1529 {
1530         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1531                                           sizeof(struct mm_slot),
1532                                           __alignof__(struct mm_slot), 0, NULL);
1533         if (!mm_slot_cache)
1534                 return -ENOMEM;
1535
1536         return 0;
1537 }
1538
1539 static void __init khugepaged_slab_free(void)
1540 {
1541         kmem_cache_destroy(mm_slot_cache);
1542         mm_slot_cache = NULL;
1543 }
1544
1545 static inline struct mm_slot *alloc_mm_slot(void)
1546 {
1547         if (!mm_slot_cache)     /* initialization failed */
1548                 return NULL;
1549         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1550 }
1551
1552 static inline void free_mm_slot(struct mm_slot *mm_slot)
1553 {
1554         kmem_cache_free(mm_slot_cache, mm_slot);
1555 }
1556
1557 static int __init mm_slots_hash_init(void)
1558 {
1559         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1560                                 GFP_KERNEL);
1561         if (!mm_slots_hash)
1562                 return -ENOMEM;
1563         return 0;
1564 }
1565
1566 #if 0
1567 static void __init mm_slots_hash_free(void)
1568 {
1569         kfree(mm_slots_hash);
1570         mm_slots_hash = NULL;
1571 }
1572 #endif
1573
1574 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1575 {
1576         struct mm_slot *mm_slot;
1577         struct hlist_head *bucket;
1578         struct hlist_node *node;
1579
1580         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1581                                 % MM_SLOTS_HASH_HEADS];
1582         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1583                 if (mm == mm_slot->mm)
1584                         return mm_slot;
1585         }
1586         return NULL;
1587 }
1588
1589 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1590                                     struct mm_slot *mm_slot)
1591 {
1592         struct hlist_head *bucket;
1593
1594         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1595                                 % MM_SLOTS_HASH_HEADS];
1596         mm_slot->mm = mm;
1597         hlist_add_head(&mm_slot->hash, bucket);
1598 }
1599
1600 static inline int khugepaged_test_exit(struct mm_struct *mm)
1601 {
1602         return atomic_read(&mm->mm_users) == 0;
1603 }
1604
1605 int __khugepaged_enter(struct mm_struct *mm)
1606 {
1607         struct mm_slot *mm_slot;
1608         int wakeup;
1609
1610         mm_slot = alloc_mm_slot();
1611         if (!mm_slot)
1612                 return -ENOMEM;
1613
1614         /* __khugepaged_exit() must not run from under us */
1615         VM_BUG_ON(khugepaged_test_exit(mm));
1616         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1617                 free_mm_slot(mm_slot);
1618                 return 0;
1619         }
1620
1621         spin_lock(&khugepaged_mm_lock);
1622         insert_to_mm_slots_hash(mm, mm_slot);
1623         /*
1624          * Insert just behind the scanning cursor, to let the area settle
1625          * down a little.
1626          */
1627         wakeup = list_empty(&khugepaged_scan.mm_head);
1628         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1629         spin_unlock(&khugepaged_mm_lock);
1630
1631         atomic_inc(&mm->mm_count);
1632         if (wakeup)
1633                 wake_up_interruptible(&khugepaged_wait);
1634
1635         return 0;
1636 }
1637
1638 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1639 {
1640         unsigned long hstart, hend;
1641         if (!vma->anon_vma)
1642                 /*
1643                  * Not yet faulted in so we will register later in the
1644                  * page fault if needed.
1645                  */
1646                 return 0;
1647         if (vma->vm_ops)
1648                 /* khugepaged not yet working on file or special mappings */
1649                 return 0;
1650         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1651         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1652         hend = vma->vm_end & HPAGE_PMD_MASK;
1653         if (hstart < hend)
1654                 return khugepaged_enter(vma);
1655         return 0;
1656 }
1657
1658 void __khugepaged_exit(struct mm_struct *mm)
1659 {
1660         struct mm_slot *mm_slot;
1661         int free = 0;
1662
1663         spin_lock(&khugepaged_mm_lock);
1664         mm_slot = get_mm_slot(mm);
1665         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1666                 hlist_del(&mm_slot->hash);
1667                 list_del(&mm_slot->mm_node);
1668                 free = 1;
1669         }
1670         spin_unlock(&khugepaged_mm_lock);
1671
1672         if (free) {
1673                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1674                 free_mm_slot(mm_slot);
1675                 mmdrop(mm);
1676         } else if (mm_slot) {
1677                 /*
1678                  * This is required to serialize against
1679                  * khugepaged_test_exit() (which is guaranteed to run
1680                  * under mmap sem read mode). Stop here (after we
1681                  * return all pagetables will be destroyed) until
1682                  * khugepaged has finished working on the pagetables
1683                  * under the mmap_sem.
1684                  */
1685                 down_write(&mm->mmap_sem);
1686                 up_write(&mm->mmap_sem);
1687         }
1688 }
1689
1690 static void release_pte_page(struct page *page)
1691 {
1692         /* 0 stands for page_is_file_cache(page) == false */
1693         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1694         unlock_page(page);
1695         putback_lru_page(page);
1696 }
1697
1698 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1699 {
1700         while (--_pte >= pte) {
1701                 pte_t pteval = *_pte;
1702                 if (!pte_none(pteval))
1703                         release_pte_page(pte_page(pteval));
1704         }
1705 }
1706
1707 static void release_all_pte_pages(pte_t *pte)
1708 {
1709         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1710 }
1711
1712 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1713                                         unsigned long address,
1714                                         pte_t *pte)
1715 {
1716         struct page *page;
1717         pte_t *_pte;
1718         int referenced = 0, isolated = 0, none = 0;
1719         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1720              _pte++, address += PAGE_SIZE) {
1721                 pte_t pteval = *_pte;
1722                 if (pte_none(pteval)) {
1723                         if (++none <= khugepaged_max_ptes_none)
1724                                 continue;
1725                         else {
1726                                 release_pte_pages(pte, _pte);
1727                                 goto out;
1728                         }
1729                 }
1730                 if (!pte_present(pteval) || !pte_write(pteval)) {
1731                         release_pte_pages(pte, _pte);
1732                         goto out;
1733                 }
1734                 page = vm_normal_page(vma, address, pteval);
1735                 if (unlikely(!page)) {
1736                         release_pte_pages(pte, _pte);
1737                         goto out;
1738                 }
1739                 VM_BUG_ON(PageCompound(page));
1740                 BUG_ON(!PageAnon(page));
1741                 VM_BUG_ON(!PageSwapBacked(page));
1742
1743                 /* cannot use mapcount: can't collapse if there's a gup pin */
1744                 if (page_count(page) != 1) {
1745                         release_pte_pages(pte, _pte);
1746                         goto out;
1747                 }
1748                 /*
1749                  * We can do it before isolate_lru_page because the
1750                  * page can't be freed from under us. NOTE: PG_lock
1751                  * is needed to serialize against split_huge_page
1752                  * when invoked from the VM.
1753                  */
1754                 if (!trylock_page(page)) {
1755                         release_pte_pages(pte, _pte);
1756                         goto out;
1757                 }
1758                 /*
1759                  * Isolate the page to avoid collapsing an hugepage
1760                  * currently in use by the VM.
1761                  */
1762                 if (isolate_lru_page(page)) {
1763                         unlock_page(page);
1764                         release_pte_pages(pte, _pte);
1765                         goto out;
1766                 }
1767                 /* 0 stands for page_is_file_cache(page) == false */
1768                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1769                 VM_BUG_ON(!PageLocked(page));
1770                 VM_BUG_ON(PageLRU(page));
1771
1772                 /* If there is no mapped pte young don't collapse the page */
1773                 if (pte_young(pteval) || PageReferenced(page) ||
1774                     mmu_notifier_test_young(vma->vm_mm, address))
1775                         referenced = 1;
1776         }
1777         if (unlikely(!referenced))
1778                 release_all_pte_pages(pte);
1779         else
1780                 isolated = 1;
1781 out:
1782         return isolated;
1783 }
1784
1785 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1786                                       struct vm_area_struct *vma,
1787                                       unsigned long address,
1788                                       spinlock_t *ptl)
1789 {
1790         pte_t *_pte;
1791         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1792                 pte_t pteval = *_pte;
1793                 struct page *src_page;
1794
1795                 if (pte_none(pteval)) {
1796                         clear_user_highpage(page, address);
1797                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1798                 } else {
1799                         src_page = pte_page(pteval);
1800                         copy_user_highpage(page, src_page, address, vma);
1801                         VM_BUG_ON(page_mapcount(src_page) != 1);
1802                         release_pte_page(src_page);
1803                         /*
1804                          * ptl mostly unnecessary, but preempt has to
1805                          * be disabled to update the per-cpu stats
1806                          * inside page_remove_rmap().
1807                          */
1808                         spin_lock(ptl);
1809                         /*
1810                          * paravirt calls inside pte_clear here are
1811                          * superfluous.
1812                          */
1813                         pte_clear(vma->vm_mm, address, _pte);
1814                         page_remove_rmap(src_page);
1815                         spin_unlock(ptl);
1816                         free_page_and_swap_cache(src_page);
1817                 }
1818
1819                 address += PAGE_SIZE;
1820                 page++;
1821         }
1822 }
1823
1824 static void khugepaged_alloc_sleep(void)
1825 {
1826         wait_event_freezable_timeout(khugepaged_wait, false,
1827                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1828 }
1829
1830 #ifdef CONFIG_NUMA
1831 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1832 {
1833         if (IS_ERR(*hpage)) {
1834                 if (!*wait)
1835                         return false;
1836
1837                 *wait = false;
1838                 *hpage = NULL;
1839                 khugepaged_alloc_sleep();
1840         } else if (*hpage) {
1841                 put_page(*hpage);
1842                 *hpage = NULL;
1843         }
1844
1845         return true;
1846 }
1847
1848 static struct page
1849 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1850                        struct vm_area_struct *vma, unsigned long address,
1851                        int node)
1852 {
1853         VM_BUG_ON(*hpage);
1854         /*
1855          * Allocate the page while the vma is still valid and under
1856          * the mmap_sem read mode so there is no memory allocation
1857          * later when we take the mmap_sem in write mode. This is more
1858          * friendly behavior (OTOH it may actually hide bugs) to
1859          * filesystems in userland with daemons allocating memory in
1860          * the userland I/O paths.  Allocating memory with the
1861          * mmap_sem in read mode is good idea also to allow greater
1862          * scalability.
1863          */
1864         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1865                                       node, __GFP_OTHER_NODE);
1866
1867         /*
1868          * After allocating the hugepage, release the mmap_sem read lock in
1869          * preparation for taking it in write mode.
1870          */
1871         up_read(&mm->mmap_sem);
1872         if (unlikely(!*hpage)) {
1873                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1874                 *hpage = ERR_PTR(-ENOMEM);
1875                 return NULL;
1876         }
1877
1878         count_vm_event(THP_COLLAPSE_ALLOC);
1879         return *hpage;
1880 }
1881 #else
1882 static struct page *khugepaged_alloc_hugepage(bool *wait)
1883 {
1884         struct page *hpage;
1885
1886         do {
1887                 hpage = alloc_hugepage(khugepaged_defrag());
1888                 if (!hpage) {
1889                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1890                         if (!*wait)
1891                                 return NULL;
1892
1893                         *wait = false;
1894                         khugepaged_alloc_sleep();
1895                 } else
1896                         count_vm_event(THP_COLLAPSE_ALLOC);
1897         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1898
1899         return hpage;
1900 }
1901
1902 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1903 {
1904         if (!*hpage)
1905                 *hpage = khugepaged_alloc_hugepage(wait);
1906
1907         if (unlikely(!*hpage))
1908                 return false;
1909
1910         return true;
1911 }
1912
1913 static struct page
1914 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1915                        struct vm_area_struct *vma, unsigned long address,
1916                        int node)
1917 {
1918         up_read(&mm->mmap_sem);
1919         VM_BUG_ON(!*hpage);
1920         return  *hpage;
1921 }
1922 #endif
1923
1924 static void collapse_huge_page(struct mm_struct *mm,
1925                                    unsigned long address,
1926                                    struct page **hpage,
1927                                    struct vm_area_struct *vma,
1928                                    int node)
1929 {
1930         pgd_t *pgd;
1931         pud_t *pud;
1932         pmd_t *pmd, _pmd;
1933         pte_t *pte;
1934         pgtable_t pgtable;
1935         struct page *new_page;
1936         spinlock_t *ptl;
1937         int isolated;
1938         unsigned long hstart, hend;
1939         unsigned long mmun_start;       /* For mmu_notifiers */
1940         unsigned long mmun_end;         /* For mmu_notifiers */
1941
1942         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1943
1944         /* release the mmap_sem read lock. */
1945         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1946         if (!new_page)
1947                 return;
1948
1949         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1950                 return;
1951
1952         /*
1953          * Prevent all access to pagetables with the exception of
1954          * gup_fast later hanlded by the ptep_clear_flush and the VM
1955          * handled by the anon_vma lock + PG_lock.
1956          */
1957         down_write(&mm->mmap_sem);
1958         if (unlikely(khugepaged_test_exit(mm)))
1959                 goto out;
1960
1961         vma = find_vma(mm, address);
1962         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1963         hend = vma->vm_end & HPAGE_PMD_MASK;
1964         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1965                 goto out;
1966
1967         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1968             (vma->vm_flags & VM_NOHUGEPAGE))
1969                 goto out;
1970
1971         if (!vma->anon_vma || vma->vm_ops)
1972                 goto out;
1973         if (is_vma_temporary_stack(vma))
1974                 goto out;
1975         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1976
1977         pgd = pgd_offset(mm, address);
1978         if (!pgd_present(*pgd))
1979                 goto out;
1980
1981         pud = pud_offset(pgd, address);
1982         if (!pud_present(*pud))
1983                 goto out;
1984
1985         pmd = pmd_offset(pud, address);
1986         /* pmd can't go away or become huge under us */
1987         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1988                 goto out;
1989
1990         anon_vma_lock(vma->anon_vma);
1991
1992         pte = pte_offset_map(pmd, address);
1993         ptl = pte_lockptr(mm, pmd);
1994
1995         mmun_start = address;
1996         mmun_end   = address + HPAGE_PMD_SIZE;
1997         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1998         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1999         /*
2000          * After this gup_fast can't run anymore. This also removes
2001          * any huge TLB entry from the CPU so we won't allow
2002          * huge and small TLB entries for the same virtual address
2003          * to avoid the risk of CPU bugs in that area.
2004          */
2005         _pmd = pmdp_clear_flush(vma, address, pmd);
2006         spin_unlock(&mm->page_table_lock);
2007         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2008
2009         spin_lock(ptl);
2010         isolated = __collapse_huge_page_isolate(vma, address, pte);
2011         spin_unlock(ptl);
2012
2013         if (unlikely(!isolated)) {
2014                 pte_unmap(pte);
2015                 spin_lock(&mm->page_table_lock);
2016                 BUG_ON(!pmd_none(*pmd));
2017                 set_pmd_at(mm, address, pmd, _pmd);
2018                 spin_unlock(&mm->page_table_lock);
2019                 anon_vma_unlock(vma->anon_vma);
2020                 goto out;
2021         }
2022
2023         /*
2024          * All pages are isolated and locked so anon_vma rmap
2025          * can't run anymore.
2026          */
2027         anon_vma_unlock(vma->anon_vma);
2028
2029         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2030         pte_unmap(pte);
2031         __SetPageUptodate(new_page);
2032         pgtable = pmd_pgtable(_pmd);
2033
2034         _pmd = mk_pmd(new_page, vma->vm_page_prot);
2035         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2036         _pmd = pmd_mkhuge(_pmd);
2037
2038         /*
2039          * spin_lock() below is not the equivalent of smp_wmb(), so
2040          * this is needed to avoid the copy_huge_page writes to become
2041          * visible after the set_pmd_at() write.
2042          */
2043         smp_wmb();
2044
2045         spin_lock(&mm->page_table_lock);
2046         BUG_ON(!pmd_none(*pmd));
2047         page_add_new_anon_rmap(new_page, vma, address);
2048         set_pmd_at(mm, address, pmd, _pmd);
2049         update_mmu_cache_pmd(vma, address, pmd);
2050         pgtable_trans_huge_deposit(mm, pgtable);
2051         spin_unlock(&mm->page_table_lock);
2052
2053         *hpage = NULL;
2054
2055         khugepaged_pages_collapsed++;
2056 out_up_write:
2057         up_write(&mm->mmap_sem);
2058         return;
2059
2060 out:
2061         mem_cgroup_uncharge_page(new_page);
2062         goto out_up_write;
2063 }
2064
2065 static int khugepaged_scan_pmd(struct mm_struct *mm,
2066                                struct vm_area_struct *vma,
2067                                unsigned long address,
2068                                struct page **hpage)
2069 {
2070         pgd_t *pgd;
2071         pud_t *pud;
2072         pmd_t *pmd;
2073         pte_t *pte, *_pte;
2074         int ret = 0, referenced = 0, none = 0;
2075         struct page *page;
2076         unsigned long _address;
2077         spinlock_t *ptl;
2078         int node = -1;
2079
2080         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2081
2082         pgd = pgd_offset(mm, address);
2083         if (!pgd_present(*pgd))
2084                 goto out;
2085
2086         pud = pud_offset(pgd, address);
2087         if (!pud_present(*pud))
2088                 goto out;
2089
2090         pmd = pmd_offset(pud, address);
2091         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2092                 goto out;
2093
2094         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2095         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2096              _pte++, _address += PAGE_SIZE) {
2097                 pte_t pteval = *_pte;
2098                 if (pte_none(pteval)) {
2099                         if (++none <= khugepaged_max_ptes_none)
2100                                 continue;
2101                         else
2102                                 goto out_unmap;
2103                 }
2104                 if (!pte_present(pteval) || !pte_write(pteval))
2105                         goto out_unmap;
2106                 page = vm_normal_page(vma, _address, pteval);
2107                 if (unlikely(!page))
2108                         goto out_unmap;
2109                 /*
2110                  * Chose the node of the first page. This could
2111                  * be more sophisticated and look at more pages,
2112                  * but isn't for now.
2113                  */
2114                 if (node == -1)
2115                         node = page_to_nid(page);
2116                 VM_BUG_ON(PageCompound(page));
2117                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2118                         goto out_unmap;
2119                 /* cannot use mapcount: can't collapse if there's a gup pin */
2120                 if (page_count(page) != 1)
2121                         goto out_unmap;
2122                 if (pte_young(pteval) || PageReferenced(page) ||
2123                     mmu_notifier_test_young(vma->vm_mm, address))
2124                         referenced = 1;
2125         }
2126         if (referenced)
2127                 ret = 1;
2128 out_unmap:
2129         pte_unmap_unlock(pte, ptl);
2130         if (ret)
2131                 /* collapse_huge_page will return with the mmap_sem released */
2132                 collapse_huge_page(mm, address, hpage, vma, node);
2133 out:
2134         return ret;
2135 }
2136
2137 static void collect_mm_slot(struct mm_slot *mm_slot)
2138 {
2139         struct mm_struct *mm = mm_slot->mm;
2140
2141         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2142
2143         if (khugepaged_test_exit(mm)) {
2144                 /* free mm_slot */
2145                 hlist_del(&mm_slot->hash);
2146                 list_del(&mm_slot->mm_node);
2147
2148                 /*
2149                  * Not strictly needed because the mm exited already.
2150                  *
2151                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2152                  */
2153
2154                 /* khugepaged_mm_lock actually not necessary for the below */
2155                 free_mm_slot(mm_slot);
2156                 mmdrop(mm);
2157         }
2158 }
2159
2160 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2161                                             struct page **hpage)
2162         __releases(&khugepaged_mm_lock)
2163         __acquires(&khugepaged_mm_lock)
2164 {
2165         struct mm_slot *mm_slot;
2166         struct mm_struct *mm;
2167         struct vm_area_struct *vma;
2168         int progress = 0;
2169
2170         VM_BUG_ON(!pages);
2171         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2172
2173         if (khugepaged_scan.mm_slot)
2174                 mm_slot = khugepaged_scan.mm_slot;
2175         else {
2176                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2177                                      struct mm_slot, mm_node);
2178                 khugepaged_scan.address = 0;
2179                 khugepaged_scan.mm_slot = mm_slot;
2180         }
2181         spin_unlock(&khugepaged_mm_lock);
2182
2183         mm = mm_slot->mm;
2184         down_read(&mm->mmap_sem);
2185         if (unlikely(khugepaged_test_exit(mm)))
2186                 vma = NULL;
2187         else
2188                 vma = find_vma(mm, khugepaged_scan.address);
2189
2190         progress++;
2191         for (; vma; vma = vma->vm_next) {
2192                 unsigned long hstart, hend;
2193
2194                 cond_resched();
2195                 if (unlikely(khugepaged_test_exit(mm))) {
2196                         progress++;
2197                         break;
2198                 }
2199
2200                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2201                      !khugepaged_always()) ||
2202                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2203                 skip:
2204                         progress++;
2205                         continue;
2206                 }
2207                 if (!vma->anon_vma || vma->vm_ops)
2208                         goto skip;
2209                 if (is_vma_temporary_stack(vma))
2210                         goto skip;
2211                 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2212
2213                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2214                 hend = vma->vm_end & HPAGE_PMD_MASK;
2215                 if (hstart >= hend)
2216                         goto skip;
2217                 if (khugepaged_scan.address > hend)
2218                         goto skip;
2219                 if (khugepaged_scan.address < hstart)
2220                         khugepaged_scan.address = hstart;
2221                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2222
2223                 while (khugepaged_scan.address < hend) {
2224                         int ret;
2225                         cond_resched();
2226                         if (unlikely(khugepaged_test_exit(mm)))
2227                                 goto breakouterloop;
2228
2229                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2230                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2231                                   hend);
2232                         ret = khugepaged_scan_pmd(mm, vma,
2233                                                   khugepaged_scan.address,
2234                                                   hpage);
2235                         /* move to next address */
2236                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2237                         progress += HPAGE_PMD_NR;
2238                         if (ret)
2239                                 /* we released mmap_sem so break loop */
2240                                 goto breakouterloop_mmap_sem;
2241                         if (progress >= pages)
2242                                 goto breakouterloop;
2243                 }
2244         }
2245 breakouterloop:
2246         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2247 breakouterloop_mmap_sem:
2248
2249         spin_lock(&khugepaged_mm_lock);
2250         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2251         /*
2252          * Release the current mm_slot if this mm is about to die, or
2253          * if we scanned all vmas of this mm.
2254          */
2255         if (khugepaged_test_exit(mm) || !vma) {
2256                 /*
2257                  * Make sure that if mm_users is reaching zero while
2258                  * khugepaged runs here, khugepaged_exit will find
2259                  * mm_slot not pointing to the exiting mm.
2260                  */
2261                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2262                         khugepaged_scan.mm_slot = list_entry(
2263                                 mm_slot->mm_node.next,
2264                                 struct mm_slot, mm_node);
2265                         khugepaged_scan.address = 0;
2266                 } else {
2267                         khugepaged_scan.mm_slot = NULL;
2268                         khugepaged_full_scans++;
2269                 }
2270
2271                 collect_mm_slot(mm_slot);
2272         }
2273
2274         return progress;
2275 }
2276
2277 static int khugepaged_has_work(void)
2278 {
2279         return !list_empty(&khugepaged_scan.mm_head) &&
2280                 khugepaged_enabled();
2281 }
2282
2283 static int khugepaged_wait_event(void)
2284 {
2285         return !list_empty(&khugepaged_scan.mm_head) ||
2286                 kthread_should_stop();
2287 }
2288
2289 static void khugepaged_do_scan(void)
2290 {
2291         struct page *hpage = NULL;
2292         unsigned int progress = 0, pass_through_head = 0;
2293         unsigned int pages = khugepaged_pages_to_scan;
2294         bool wait = true;
2295
2296         barrier(); /* write khugepaged_pages_to_scan to local stack */
2297
2298         while (progress < pages) {
2299                 if (!khugepaged_prealloc_page(&hpage, &wait))
2300                         break;
2301
2302                 cond_resched();
2303
2304                 if (unlikely(kthread_should_stop() || freezing(current)))
2305                         break;
2306
2307                 spin_lock(&khugepaged_mm_lock);
2308                 if (!khugepaged_scan.mm_slot)
2309                         pass_through_head++;
2310                 if (khugepaged_has_work() &&
2311                     pass_through_head < 2)
2312                         progress += khugepaged_scan_mm_slot(pages - progress,
2313                                                             &hpage);
2314                 else
2315                         progress = pages;
2316                 spin_unlock(&khugepaged_mm_lock);
2317         }
2318
2319         if (!IS_ERR_OR_NULL(hpage))
2320                 put_page(hpage);
2321 }
2322
2323 static void khugepaged_wait_work(void)
2324 {
2325         try_to_freeze();
2326
2327         if (khugepaged_has_work()) {
2328                 if (!khugepaged_scan_sleep_millisecs)
2329                         return;
2330
2331                 wait_event_freezable_timeout(khugepaged_wait,
2332                                              kthread_should_stop(),
2333                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2334                 return;
2335         }
2336
2337         if (khugepaged_enabled())
2338                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2339 }
2340
2341 static int khugepaged(void *none)
2342 {
2343         struct mm_slot *mm_slot;
2344
2345         set_freezable();
2346         set_user_nice(current, 19);
2347
2348         while (!kthread_should_stop()) {
2349                 khugepaged_do_scan();
2350                 khugepaged_wait_work();
2351         }
2352
2353         spin_lock(&khugepaged_mm_lock);
2354         mm_slot = khugepaged_scan.mm_slot;
2355         khugepaged_scan.mm_slot = NULL;
2356         if (mm_slot)
2357                 collect_mm_slot(mm_slot);
2358         spin_unlock(&khugepaged_mm_lock);
2359         return 0;
2360 }
2361
2362 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2363 {
2364         struct page *page;
2365
2366         spin_lock(&mm->page_table_lock);
2367         if (unlikely(!pmd_trans_huge(*pmd))) {
2368                 spin_unlock(&mm->page_table_lock);
2369                 return;
2370         }
2371         page = pmd_page(*pmd);
2372         VM_BUG_ON(!page_count(page));
2373         get_page(page);
2374         spin_unlock(&mm->page_table_lock);
2375
2376         split_huge_page(page);
2377
2378         put_page(page);
2379         BUG_ON(pmd_trans_huge(*pmd));
2380 }
2381
2382 static void split_huge_page_address(struct mm_struct *mm,
2383                                     unsigned long address)
2384 {
2385         pgd_t *pgd;
2386         pud_t *pud;
2387         pmd_t *pmd;
2388
2389         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2390
2391         pgd = pgd_offset(mm, address);
2392         if (!pgd_present(*pgd))
2393                 return;
2394
2395         pud = pud_offset(pgd, address);
2396         if (!pud_present(*pud))
2397                 return;
2398
2399         pmd = pmd_offset(pud, address);
2400         if (!pmd_present(*pmd))
2401                 return;
2402         /*
2403          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2404          * materialize from under us.
2405          */
2406         split_huge_page_pmd(mm, pmd);
2407 }
2408
2409 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2410                              unsigned long start,
2411                              unsigned long end,
2412                              long adjust_next)
2413 {
2414         /*
2415          * If the new start address isn't hpage aligned and it could
2416          * previously contain an hugepage: check if we need to split
2417          * an huge pmd.
2418          */
2419         if (start & ~HPAGE_PMD_MASK &&
2420             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2421             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2422                 split_huge_page_address(vma->vm_mm, start);
2423
2424         /*
2425          * If the new end address isn't hpage aligned and it could
2426          * previously contain an hugepage: check if we need to split
2427          * an huge pmd.
2428          */
2429         if (end & ~HPAGE_PMD_MASK &&
2430             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2431             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2432                 split_huge_page_address(vma->vm_mm, end);
2433
2434         /*
2435          * If we're also updating the vma->vm_next->vm_start, if the new
2436          * vm_next->vm_start isn't page aligned and it could previously
2437          * contain an hugepage: check if we need to split an huge pmd.
2438          */
2439         if (adjust_next > 0) {
2440                 struct vm_area_struct *next = vma->vm_next;
2441                 unsigned long nstart = next->vm_start;
2442                 nstart += adjust_next << PAGE_SHIFT;
2443                 if (nstart & ~HPAGE_PMD_MASK &&
2444                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2445                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2446                         split_huge_page_address(next->vm_mm, nstart);
2447         }
2448 }