1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 if (!transhuge_vma_suitable(vma, addr))
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
80 static struct page *get_huge_zero_page(void)
82 struct page *zero_page;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 __free_pages(zero_page, compound_order(zero_page));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
104 return READ_ONCE(huge_zero_page);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page);
130 void mm_put_huge_zero_page(struct mm_struct *mm)
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
171 return sprintf(buf, "always madvise [never]\n");
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
193 int err = start_stop_khugepaged();
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
218 ret = kstrtoul(buf, 10, &value);
225 set_bit(flag, &transparent_hugepage_flags);
227 clear_bit(flag, &transparent_hugepage_flags);
232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
310 return single_hugepage_flag_show(kobj, attr, buf,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
317 return single_hugepage_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute *hugepage_attr[] = {
327 &use_zero_page_attr.attr,
328 &hpage_pmd_size_attr.attr,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 &shmem_enabled_attr.attr,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
338 static const struct attribute_group hugepage_attr_group = {
339 .attrs = hugepage_attr,
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
348 pr_err("failed to create transparent hugepage kobject\n");
352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
354 pr_err("failed to register transparent hugepage group\n");
358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group;
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
369 kobject_put(*hugepage_kobj);
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
388 #endif /* CONFIG_SYSFS */
390 static int __init hugepage_init(void)
393 struct kobject *hugepage_kobj;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
410 err = hugepage_init_sysfs(&hugepage_kobj);
414 err = khugepaged_init();
418 err = register_shrinker(&huge_zero_page_shrinker);
420 goto err_hzp_shrinker;
421 err = register_shrinker(&deferred_split_shrinker);
423 goto err_split_shrinker;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431 transparent_hugepage_flags = 0;
435 err = start_stop_khugepaged();
441 unregister_shrinker(&deferred_split_shrinker);
443 unregister_shrinker(&huge_zero_page_shrinker);
445 khugepaged_destroy();
447 hugepage_exit_sysfs(hugepage_kobj);
451 subsys_initcall(hugepage_init);
453 static int __init setup_transparent_hugepage(char *str)
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
486 if (likely(vma->vm_flags & VM_WRITE))
487 pmd = pmd_mkwrite(pmd);
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
498 return &memcg->deferred_split_queue;
500 return &pgdat->deferred_split_queue;
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
507 return &pgdat->deferred_split_queue;
511 void prep_transhuge_page(struct page *page)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
522 bool is_transparent_hugepage(struct page *page)
524 if (!PageCompound(page))
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
535 loff_t off, unsigned long flags, unsigned long size)
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
539 unsigned long len_pad, ret;
541 if (off_end <= off_align || (off_end - off_align) < size)
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549 off >> PAGE_SHIFT, flags);
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
555 if (IS_ERR_VALUE(ret))
559 * Do not try to align to THP boundary if allocation at the address
565 ret += (off - ret) & (size - 1);
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
589 struct vm_area_struct *vma = vmf->vma;
590 struct mem_cgroup *memcg;
592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
595 VM_BUG_ON_PAGE(!PageCompound(page), page);
597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
599 count_vm_event(THP_FAULT_FALLBACK);
600 return VM_FAULT_FALLBACK;
603 pgtable = pte_alloc_one(vma->vm_mm);
604 if (unlikely(!pgtable)) {
609 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 * The memory barrier inside __SetPageUptodate makes sure that
612 * clear_huge_page writes become visible before the set_pmd_at()
615 __SetPageUptodate(page);
617 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
618 if (unlikely(!pmd_none(*vmf->pmd))) {
623 ret = check_stable_address_space(vma->vm_mm);
627 /* Deliver the page fault to userland */
628 if (userfaultfd_missing(vma)) {
631 spin_unlock(vmf->ptl);
632 mem_cgroup_cancel_charge(page, memcg, true);
634 pte_free(vma->vm_mm, pgtable);
635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
640 entry = mk_huge_pmd(page, vma->vm_page_prot);
641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642 page_add_new_anon_rmap(page, vma, haddr, true);
643 mem_cgroup_commit_charge(page, memcg, false, true);
644 lru_cache_add_active_or_unevictable(page, vma);
645 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
646 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
647 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
648 mm_inc_nr_ptes(vma->vm_mm);
649 spin_unlock(vmf->ptl);
650 count_vm_event(THP_FAULT_ALLOC);
651 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
656 spin_unlock(vmf->ptl);
659 pte_free(vma->vm_mm, pgtable);
660 mem_cgroup_cancel_charge(page, memcg, true);
667 * always: directly stall for all thp allocations
668 * defer: wake kswapd and fail if not immediately available
669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670 * fail if not immediately available
671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
673 * never: never stall for any thp allocation
675 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
677 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
679 /* Always do synchronous compaction */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683 /* Kick kcompactd and fail quickly */
684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
685 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687 /* Synchronous compaction if madvised, otherwise kick kcompactd */
688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
689 return GFP_TRANSHUGE_LIGHT |
690 (vma_madvised ? __GFP_DIRECT_RECLAIM :
691 __GFP_KSWAPD_RECLAIM);
693 /* Only do synchronous compaction if madvised */
694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
695 return GFP_TRANSHUGE_LIGHT |
696 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698 return GFP_TRANSHUGE_LIGHT;
701 /* Caller must hold page table lock. */
702 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
703 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
704 struct page *zero_page)
709 entry = mk_pmd(zero_page, vma->vm_page_prot);
710 entry = pmd_mkhuge(entry);
712 pgtable_trans_huge_deposit(mm, pmd, pgtable);
713 set_pmd_at(mm, haddr, pmd, entry);
718 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720 struct vm_area_struct *vma = vmf->vma;
723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725 if (!transhuge_vma_suitable(vma, haddr))
726 return VM_FAULT_FALLBACK;
727 if (unlikely(anon_vma_prepare(vma)))
729 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732 !mm_forbids_zeropage(vma->vm_mm) &&
733 transparent_hugepage_use_zero_page()) {
735 struct page *zero_page;
738 pgtable = pte_alloc_one(vma->vm_mm);
739 if (unlikely(!pgtable))
741 zero_page = mm_get_huge_zero_page(vma->vm_mm);
742 if (unlikely(!zero_page)) {
743 pte_free(vma->vm_mm, pgtable);
744 count_vm_event(THP_FAULT_FALLBACK);
745 return VM_FAULT_FALLBACK;
747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
750 if (pmd_none(*vmf->pmd)) {
751 ret = check_stable_address_space(vma->vm_mm);
753 spin_unlock(vmf->ptl);
754 } else if (userfaultfd_missing(vma)) {
755 spin_unlock(vmf->ptl);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 haddr, vmf->pmd, zero_page);
761 spin_unlock(vmf->ptl);
765 spin_unlock(vmf->ptl);
767 pte_free(vma->vm_mm, pgtable);
770 gfp = alloc_hugepage_direct_gfpmask(vma);
771 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
772 if (unlikely(!page)) {
773 count_vm_event(THP_FAULT_FALLBACK);
774 return VM_FAULT_FALLBACK;
776 prep_transhuge_page(page);
777 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
784 struct mm_struct *mm = vma->vm_mm;
788 ptl = pmd_lock(mm, pmd);
789 if (!pmd_none(*pmd)) {
791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
795 entry = pmd_mkyoung(*pmd);
796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 update_mmu_cache_pmd(vma, addr, pmd);
804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 if (pfn_t_devmap(pfn))
806 entry = pmd_mkdevmap(entry);
808 entry = pmd_mkyoung(pmd_mkdirty(entry));
809 entry = maybe_pmd_mkwrite(entry, vma);
813 pgtable_trans_huge_deposit(mm, pmd, pgtable);
818 set_pmd_at(mm, addr, pmd, entry);
819 update_mmu_cache_pmd(vma, addr, pmd);
824 pte_free(mm, pgtable);
827 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
829 unsigned long addr = vmf->address & PMD_MASK;
830 struct vm_area_struct *vma = vmf->vma;
831 pgprot_t pgprot = vma->vm_page_prot;
832 pgtable_t pgtable = NULL;
835 * If we had pmd_special, we could avoid all these restrictions,
836 * but we need to be consistent with PTEs and architectures that
837 * can't support a 'special' bit.
839 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
841 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
842 (VM_PFNMAP|VM_MIXEDMAP));
843 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
845 if (addr < vma->vm_start || addr >= vma->vm_end)
846 return VM_FAULT_SIGBUS;
848 if (arch_needs_pgtable_deposit()) {
849 pgtable = pte_alloc_one(vma->vm_mm);
854 track_pfn_insert(vma, &pgprot, pfn);
856 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
857 return VM_FAULT_NOPAGE;
859 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
861 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
862 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
864 if (likely(vma->vm_flags & VM_WRITE))
865 pud = pud_mkwrite(pud);
869 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
870 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
872 struct mm_struct *mm = vma->vm_mm;
876 ptl = pud_lock(mm, pud);
877 if (!pud_none(*pud)) {
879 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
880 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
883 entry = pud_mkyoung(*pud);
884 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
885 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
886 update_mmu_cache_pud(vma, addr, pud);
891 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
892 if (pfn_t_devmap(pfn))
893 entry = pud_mkdevmap(entry);
895 entry = pud_mkyoung(pud_mkdirty(entry));
896 entry = maybe_pud_mkwrite(entry, vma);
898 set_pud_at(mm, addr, pud, entry);
899 update_mmu_cache_pud(vma, addr, pud);
905 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
907 unsigned long addr = vmf->address & PUD_MASK;
908 struct vm_area_struct *vma = vmf->vma;
909 pgprot_t pgprot = vma->vm_page_prot;
912 * If we had pud_special, we could avoid all these restrictions,
913 * but we need to be consistent with PTEs and architectures that
914 * can't support a 'special' bit.
916 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
918 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
919 (VM_PFNMAP|VM_MIXEDMAP));
920 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
922 if (addr < vma->vm_start || addr >= vma->vm_end)
923 return VM_FAULT_SIGBUS;
925 track_pfn_insert(vma, &pgprot, pfn);
927 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
928 return VM_FAULT_NOPAGE;
930 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
931 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
933 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
934 pmd_t *pmd, int flags)
938 _pmd = pmd_mkyoung(*pmd);
939 if (flags & FOLL_WRITE)
940 _pmd = pmd_mkdirty(_pmd);
941 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
942 pmd, _pmd, flags & FOLL_WRITE))
943 update_mmu_cache_pmd(vma, addr, pmd);
946 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
947 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
949 unsigned long pfn = pmd_pfn(*pmd);
950 struct mm_struct *mm = vma->vm_mm;
953 assert_spin_locked(pmd_lockptr(mm, pmd));
956 * When we COW a devmap PMD entry, we split it into PTEs, so we should
957 * not be in this function with `flags & FOLL_COW` set.
959 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
961 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
962 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
963 (FOLL_PIN | FOLL_GET)))
966 if (flags & FOLL_WRITE && !pmd_write(*pmd))
969 if (pmd_present(*pmd) && pmd_devmap(*pmd))
974 if (flags & FOLL_TOUCH)
975 touch_pmd(vma, addr, pmd, flags);
978 * device mapped pages can only be returned if the
979 * caller will manage the page reference count.
981 if (!(flags & (FOLL_GET | FOLL_PIN)))
982 return ERR_PTR(-EEXIST);
984 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
985 *pgmap = get_dev_pagemap(pfn, *pgmap);
987 return ERR_PTR(-EFAULT);
988 page = pfn_to_page(pfn);
989 if (!try_grab_page(page, flags))
990 page = ERR_PTR(-ENOMEM);
995 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
997 struct vm_area_struct *vma)
999 spinlock_t *dst_ptl, *src_ptl;
1000 struct page *src_page;
1002 pgtable_t pgtable = NULL;
1005 /* Skip if can be re-fill on fault */
1006 if (!vma_is_anonymous(vma))
1009 pgtable = pte_alloc_one(dst_mm);
1010 if (unlikely(!pgtable))
1013 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1014 src_ptl = pmd_lockptr(src_mm, src_pmd);
1015 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1020 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1021 if (unlikely(is_swap_pmd(pmd))) {
1022 swp_entry_t entry = pmd_to_swp_entry(pmd);
1024 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1025 if (is_write_migration_entry(entry)) {
1026 make_migration_entry_read(&entry);
1027 pmd = swp_entry_to_pmd(entry);
1028 if (pmd_swp_soft_dirty(*src_pmd))
1029 pmd = pmd_swp_mksoft_dirty(pmd);
1030 set_pmd_at(src_mm, addr, src_pmd, pmd);
1032 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1033 mm_inc_nr_ptes(dst_mm);
1034 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1035 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1041 if (unlikely(!pmd_trans_huge(pmd))) {
1042 pte_free(dst_mm, pgtable);
1046 * When page table lock is held, the huge zero pmd should not be
1047 * under splitting since we don't split the page itself, only pmd to
1050 if (is_huge_zero_pmd(pmd)) {
1051 struct page *zero_page;
1053 * get_huge_zero_page() will never allocate a new page here,
1054 * since we already have a zero page to copy. It just takes a
1057 zero_page = mm_get_huge_zero_page(dst_mm);
1058 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1064 src_page = pmd_page(pmd);
1065 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1067 page_dup_rmap(src_page, true);
1068 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1069 mm_inc_nr_ptes(dst_mm);
1070 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1072 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1073 pmd = pmd_mkold(pmd_wrprotect(pmd));
1074 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1078 spin_unlock(src_ptl);
1079 spin_unlock(dst_ptl);
1084 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1085 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1086 pud_t *pud, int flags)
1090 _pud = pud_mkyoung(*pud);
1091 if (flags & FOLL_WRITE)
1092 _pud = pud_mkdirty(_pud);
1093 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1094 pud, _pud, flags & FOLL_WRITE))
1095 update_mmu_cache_pud(vma, addr, pud);
1098 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1099 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1101 unsigned long pfn = pud_pfn(*pud);
1102 struct mm_struct *mm = vma->vm_mm;
1105 assert_spin_locked(pud_lockptr(mm, pud));
1107 if (flags & FOLL_WRITE && !pud_write(*pud))
1110 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1111 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1112 (FOLL_PIN | FOLL_GET)))
1115 if (pud_present(*pud) && pud_devmap(*pud))
1120 if (flags & FOLL_TOUCH)
1121 touch_pud(vma, addr, pud, flags);
1124 * device mapped pages can only be returned if the
1125 * caller will manage the page reference count.
1127 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1129 if (!(flags & (FOLL_GET | FOLL_PIN)))
1130 return ERR_PTR(-EEXIST);
1132 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1133 *pgmap = get_dev_pagemap(pfn, *pgmap);
1135 return ERR_PTR(-EFAULT);
1136 page = pfn_to_page(pfn);
1137 if (!try_grab_page(page, flags))
1138 page = ERR_PTR(-ENOMEM);
1143 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1144 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1145 struct vm_area_struct *vma)
1147 spinlock_t *dst_ptl, *src_ptl;
1151 dst_ptl = pud_lock(dst_mm, dst_pud);
1152 src_ptl = pud_lockptr(src_mm, src_pud);
1153 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1157 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1161 * When page table lock is held, the huge zero pud should not be
1162 * under splitting since we don't split the page itself, only pud to
1165 if (is_huge_zero_pud(pud)) {
1166 /* No huge zero pud yet */
1169 pudp_set_wrprotect(src_mm, addr, src_pud);
1170 pud = pud_mkold(pud_wrprotect(pud));
1171 set_pud_at(dst_mm, addr, dst_pud, pud);
1175 spin_unlock(src_ptl);
1176 spin_unlock(dst_ptl);
1180 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1183 unsigned long haddr;
1184 bool write = vmf->flags & FAULT_FLAG_WRITE;
1186 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1187 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1190 entry = pud_mkyoung(orig_pud);
1192 entry = pud_mkdirty(entry);
1193 haddr = vmf->address & HPAGE_PUD_MASK;
1194 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1195 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1198 spin_unlock(vmf->ptl);
1200 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1202 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1205 unsigned long haddr;
1206 bool write = vmf->flags & FAULT_FLAG_WRITE;
1208 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1209 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1212 entry = pmd_mkyoung(orig_pmd);
1214 entry = pmd_mkdirty(entry);
1215 haddr = vmf->address & HPAGE_PMD_MASK;
1216 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1217 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1220 spin_unlock(vmf->ptl);
1223 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1224 pmd_t orig_pmd, struct page *page)
1226 struct vm_area_struct *vma = vmf->vma;
1227 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1228 struct mem_cgroup *memcg;
1233 struct page **pages;
1234 struct mmu_notifier_range range;
1236 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1238 if (unlikely(!pages)) {
1239 ret |= VM_FAULT_OOM;
1243 for (i = 0; i < HPAGE_PMD_NR; i++) {
1244 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1245 vmf->address, page_to_nid(page));
1246 if (unlikely(!pages[i] ||
1247 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1248 GFP_KERNEL, &memcg, false))) {
1252 memcg = (void *)page_private(pages[i]);
1253 set_page_private(pages[i], 0);
1254 mem_cgroup_cancel_charge(pages[i], memcg,
1259 ret |= VM_FAULT_OOM;
1262 set_page_private(pages[i], (unsigned long)memcg);
1265 for (i = 0; i < HPAGE_PMD_NR; i++) {
1266 copy_user_highpage(pages[i], page + i,
1267 haddr + PAGE_SIZE * i, vma);
1268 __SetPageUptodate(pages[i]);
1272 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1273 haddr, haddr + HPAGE_PMD_SIZE);
1274 mmu_notifier_invalidate_range_start(&range);
1276 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1277 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1278 goto out_free_pages;
1279 VM_BUG_ON_PAGE(!PageHead(page), page);
1282 * Leave pmd empty until pte is filled note we must notify here as
1283 * concurrent CPU thread might write to new page before the call to
1284 * mmu_notifier_invalidate_range_end() happens which can lead to a
1285 * device seeing memory write in different order than CPU.
1287 * See Documentation/vm/mmu_notifier.rst
1289 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1291 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1292 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1294 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1296 entry = mk_pte(pages[i], vma->vm_page_prot);
1297 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1298 memcg = (void *)page_private(pages[i]);
1299 set_page_private(pages[i], 0);
1300 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1301 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1302 lru_cache_add_active_or_unevictable(pages[i], vma);
1303 vmf->pte = pte_offset_map(&_pmd, haddr);
1304 VM_BUG_ON(!pte_none(*vmf->pte));
1305 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1306 pte_unmap(vmf->pte);
1310 smp_wmb(); /* make pte visible before pmd */
1311 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1312 page_remove_rmap(page, true);
1313 spin_unlock(vmf->ptl);
1316 * No need to double call mmu_notifier->invalidate_range() callback as
1317 * the above pmdp_huge_clear_flush_notify() did already call it.
1319 mmu_notifier_invalidate_range_only_end(&range);
1321 ret |= VM_FAULT_WRITE;
1328 spin_unlock(vmf->ptl);
1329 mmu_notifier_invalidate_range_end(&range);
1330 for (i = 0; i < HPAGE_PMD_NR; i++) {
1331 memcg = (void *)page_private(pages[i]);
1332 set_page_private(pages[i], 0);
1333 mem_cgroup_cancel_charge(pages[i], memcg, false);
1340 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1342 struct vm_area_struct *vma = vmf->vma;
1343 struct page *page = NULL, *new_page;
1344 struct mem_cgroup *memcg;
1345 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1346 struct mmu_notifier_range range;
1347 gfp_t huge_gfp; /* for allocation and charge */
1350 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1351 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1352 if (is_huge_zero_pmd(orig_pmd))
1354 spin_lock(vmf->ptl);
1355 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1358 page = pmd_page(orig_pmd);
1359 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1361 * We can only reuse the page if nobody else maps the huge page or it's
1364 if (!trylock_page(page)) {
1366 spin_unlock(vmf->ptl);
1368 spin_lock(vmf->ptl);
1369 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1376 if (reuse_swap_page(page, NULL)) {
1378 entry = pmd_mkyoung(orig_pmd);
1379 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1380 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1381 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1382 ret |= VM_FAULT_WRITE;
1388 spin_unlock(vmf->ptl);
1390 if (__transparent_hugepage_enabled(vma) &&
1391 !transparent_hugepage_debug_cow()) {
1392 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1393 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1397 if (likely(new_page)) {
1398 prep_transhuge_page(new_page);
1401 split_huge_pmd(vma, vmf->pmd, vmf->address);
1402 ret |= VM_FAULT_FALLBACK;
1404 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1405 if (ret & VM_FAULT_OOM) {
1406 split_huge_pmd(vma, vmf->pmd, vmf->address);
1407 ret |= VM_FAULT_FALLBACK;
1411 count_vm_event(THP_FAULT_FALLBACK);
1415 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1416 huge_gfp, &memcg, true))) {
1418 split_huge_pmd(vma, vmf->pmd, vmf->address);
1421 ret |= VM_FAULT_FALLBACK;
1422 count_vm_event(THP_FAULT_FALLBACK);
1426 count_vm_event(THP_FAULT_ALLOC);
1427 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1430 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1432 copy_user_huge_page(new_page, page, vmf->address,
1434 __SetPageUptodate(new_page);
1436 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1437 haddr, haddr + HPAGE_PMD_SIZE);
1438 mmu_notifier_invalidate_range_start(&range);
1440 spin_lock(vmf->ptl);
1443 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1444 spin_unlock(vmf->ptl);
1445 mem_cgroup_cancel_charge(new_page, memcg, true);
1450 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1451 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1452 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1453 page_add_new_anon_rmap(new_page, vma, haddr, true);
1454 mem_cgroup_commit_charge(new_page, memcg, false, true);
1455 lru_cache_add_active_or_unevictable(new_page, vma);
1456 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1457 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1459 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1461 VM_BUG_ON_PAGE(!PageHead(page), page);
1462 page_remove_rmap(page, true);
1465 ret |= VM_FAULT_WRITE;
1467 spin_unlock(vmf->ptl);
1470 * No need to double call mmu_notifier->invalidate_range() callback as
1471 * the above pmdp_huge_clear_flush_notify() did already call it.
1473 mmu_notifier_invalidate_range_only_end(&range);
1477 spin_unlock(vmf->ptl);
1482 * FOLL_FORCE can write to even unwritable pmd's, but only
1483 * after we've gone through a COW cycle and they are dirty.
1485 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1487 return pmd_write(pmd) ||
1488 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1491 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1496 struct mm_struct *mm = vma->vm_mm;
1497 struct page *page = NULL;
1499 assert_spin_locked(pmd_lockptr(mm, pmd));
1501 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1504 /* Avoid dumping huge zero page */
1505 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1506 return ERR_PTR(-EFAULT);
1508 /* Full NUMA hinting faults to serialise migration in fault paths */
1509 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1512 page = pmd_page(*pmd);
1513 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1515 if (!try_grab_page(page, flags))
1516 return ERR_PTR(-ENOMEM);
1518 if (flags & FOLL_TOUCH)
1519 touch_pmd(vma, addr, pmd, flags);
1521 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1523 * We don't mlock() pte-mapped THPs. This way we can avoid
1524 * leaking mlocked pages into non-VM_LOCKED VMAs.
1528 * In most cases the pmd is the only mapping of the page as we
1529 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1530 * writable private mappings in populate_vma_page_range().
1532 * The only scenario when we have the page shared here is if we
1533 * mlocking read-only mapping shared over fork(). We skip
1534 * mlocking such pages.
1538 * We can expect PageDoubleMap() to be stable under page lock:
1539 * for file pages we set it in page_add_file_rmap(), which
1540 * requires page to be locked.
1543 if (PageAnon(page) && compound_mapcount(page) != 1)
1545 if (PageDoubleMap(page) || !page->mapping)
1547 if (!trylock_page(page))
1550 if (page->mapping && !PageDoubleMap(page))
1551 mlock_vma_page(page);
1555 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1556 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1562 /* NUMA hinting page fault entry point for trans huge pmds */
1563 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1565 struct vm_area_struct *vma = vmf->vma;
1566 struct anon_vma *anon_vma = NULL;
1568 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1569 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1570 int target_nid, last_cpupid = -1;
1572 bool migrated = false;
1576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1577 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1581 * If there are potential migrations, wait for completion and retry
1582 * without disrupting NUMA hinting information. Do not relock and
1583 * check_same as the page may no longer be mapped.
1585 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1586 page = pmd_page(*vmf->pmd);
1587 if (!get_page_unless_zero(page))
1589 spin_unlock(vmf->ptl);
1590 put_and_wait_on_page_locked(page);
1594 page = pmd_page(pmd);
1595 BUG_ON(is_huge_zero_page(page));
1596 page_nid = page_to_nid(page);
1597 last_cpupid = page_cpupid_last(page);
1598 count_vm_numa_event(NUMA_HINT_FAULTS);
1599 if (page_nid == this_nid) {
1600 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1601 flags |= TNF_FAULT_LOCAL;
1604 /* See similar comment in do_numa_page for explanation */
1605 if (!pmd_savedwrite(pmd))
1606 flags |= TNF_NO_GROUP;
1609 * Acquire the page lock to serialise THP migrations but avoid dropping
1610 * page_table_lock if at all possible
1612 page_locked = trylock_page(page);
1613 target_nid = mpol_misplaced(page, vma, haddr);
1614 if (target_nid == NUMA_NO_NODE) {
1615 /* If the page was locked, there are no parallel migrations */
1620 /* Migration could have started since the pmd_trans_migrating check */
1622 page_nid = NUMA_NO_NODE;
1623 if (!get_page_unless_zero(page))
1625 spin_unlock(vmf->ptl);
1626 put_and_wait_on_page_locked(page);
1631 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1632 * to serialises splits
1635 spin_unlock(vmf->ptl);
1636 anon_vma = page_lock_anon_vma_read(page);
1638 /* Confirm the PMD did not change while page_table_lock was released */
1639 spin_lock(vmf->ptl);
1640 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1643 page_nid = NUMA_NO_NODE;
1647 /* Bail if we fail to protect against THP splits for any reason */
1648 if (unlikely(!anon_vma)) {
1650 page_nid = NUMA_NO_NODE;
1655 * Since we took the NUMA fault, we must have observed the !accessible
1656 * bit. Make sure all other CPUs agree with that, to avoid them
1657 * modifying the page we're about to migrate.
1659 * Must be done under PTL such that we'll observe the relevant
1660 * inc_tlb_flush_pending().
1662 * We are not sure a pending tlb flush here is for a huge page
1663 * mapping or not. Hence use the tlb range variant
1665 if (mm_tlb_flush_pending(vma->vm_mm)) {
1666 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1668 * change_huge_pmd() released the pmd lock before
1669 * invalidating the secondary MMUs sharing the primary
1670 * MMU pagetables (with ->invalidate_range()). The
1671 * mmu_notifier_invalidate_range_end() (which
1672 * internally calls ->invalidate_range()) in
1673 * change_pmd_range() will run after us, so we can't
1674 * rely on it here and we need an explicit invalidate.
1676 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1677 haddr + HPAGE_PMD_SIZE);
1681 * Migrate the THP to the requested node, returns with page unlocked
1682 * and access rights restored.
1684 spin_unlock(vmf->ptl);
1686 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1687 vmf->pmd, pmd, vmf->address, page, target_nid);
1689 flags |= TNF_MIGRATED;
1690 page_nid = target_nid;
1692 flags |= TNF_MIGRATE_FAIL;
1696 BUG_ON(!PageLocked(page));
1697 was_writable = pmd_savedwrite(pmd);
1698 pmd = pmd_modify(pmd, vma->vm_page_prot);
1699 pmd = pmd_mkyoung(pmd);
1701 pmd = pmd_mkwrite(pmd);
1702 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1703 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1706 spin_unlock(vmf->ptl);
1710 page_unlock_anon_vma_read(anon_vma);
1712 if (page_nid != NUMA_NO_NODE)
1713 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1720 * Return true if we do MADV_FREE successfully on entire pmd page.
1721 * Otherwise, return false.
1723 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1724 pmd_t *pmd, unsigned long addr, unsigned long next)
1729 struct mm_struct *mm = tlb->mm;
1732 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1734 ptl = pmd_trans_huge_lock(pmd, vma);
1739 if (is_huge_zero_pmd(orig_pmd))
1742 if (unlikely(!pmd_present(orig_pmd))) {
1743 VM_BUG_ON(thp_migration_supported() &&
1744 !is_pmd_migration_entry(orig_pmd));
1748 page = pmd_page(orig_pmd);
1750 * If other processes are mapping this page, we couldn't discard
1751 * the page unless they all do MADV_FREE so let's skip the page.
1753 if (page_mapcount(page) != 1)
1756 if (!trylock_page(page))
1760 * If user want to discard part-pages of THP, split it so MADV_FREE
1761 * will deactivate only them.
1763 if (next - addr != HPAGE_PMD_SIZE) {
1766 split_huge_page(page);
1772 if (PageDirty(page))
1773 ClearPageDirty(page);
1776 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1777 pmdp_invalidate(vma, addr, pmd);
1778 orig_pmd = pmd_mkold(orig_pmd);
1779 orig_pmd = pmd_mkclean(orig_pmd);
1781 set_pmd_at(mm, addr, pmd, orig_pmd);
1782 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1785 mark_page_lazyfree(page);
1793 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1797 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1798 pte_free(mm, pgtable);
1802 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1803 pmd_t *pmd, unsigned long addr)
1808 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1810 ptl = __pmd_trans_huge_lock(pmd, vma);
1814 * For architectures like ppc64 we look at deposited pgtable
1815 * when calling pmdp_huge_get_and_clear. So do the
1816 * pgtable_trans_huge_withdraw after finishing pmdp related
1819 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1821 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1822 if (vma_is_dax(vma)) {
1823 if (arch_needs_pgtable_deposit())
1824 zap_deposited_table(tlb->mm, pmd);
1826 if (is_huge_zero_pmd(orig_pmd))
1827 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1828 } else if (is_huge_zero_pmd(orig_pmd)) {
1829 zap_deposited_table(tlb->mm, pmd);
1831 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1833 struct page *page = NULL;
1834 int flush_needed = 1;
1836 if (pmd_present(orig_pmd)) {
1837 page = pmd_page(orig_pmd);
1838 page_remove_rmap(page, true);
1839 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1840 VM_BUG_ON_PAGE(!PageHead(page), page);
1841 } else if (thp_migration_supported()) {
1844 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1845 entry = pmd_to_swp_entry(orig_pmd);
1846 page = pfn_to_page(swp_offset(entry));
1849 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1851 if (PageAnon(page)) {
1852 zap_deposited_table(tlb->mm, pmd);
1853 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1855 if (arch_needs_pgtable_deposit())
1856 zap_deposited_table(tlb->mm, pmd);
1857 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1862 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1867 #ifndef pmd_move_must_withdraw
1868 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1869 spinlock_t *old_pmd_ptl,
1870 struct vm_area_struct *vma)
1873 * With split pmd lock we also need to move preallocated
1874 * PTE page table if new_pmd is on different PMD page table.
1876 * We also don't deposit and withdraw tables for file pages.
1878 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1882 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1884 #ifdef CONFIG_MEM_SOFT_DIRTY
1885 if (unlikely(is_pmd_migration_entry(pmd)))
1886 pmd = pmd_swp_mksoft_dirty(pmd);
1887 else if (pmd_present(pmd))
1888 pmd = pmd_mksoft_dirty(pmd);
1893 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1894 unsigned long new_addr, unsigned long old_end,
1895 pmd_t *old_pmd, pmd_t *new_pmd)
1897 spinlock_t *old_ptl, *new_ptl;
1899 struct mm_struct *mm = vma->vm_mm;
1900 bool force_flush = false;
1902 if ((old_addr & ~HPAGE_PMD_MASK) ||
1903 (new_addr & ~HPAGE_PMD_MASK) ||
1904 old_end - old_addr < HPAGE_PMD_SIZE)
1908 * The destination pmd shouldn't be established, free_pgtables()
1909 * should have release it.
1911 if (WARN_ON(!pmd_none(*new_pmd))) {
1912 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1917 * We don't have to worry about the ordering of src and dst
1918 * ptlocks because exclusive mmap_sem prevents deadlock.
1920 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1922 new_ptl = pmd_lockptr(mm, new_pmd);
1923 if (new_ptl != old_ptl)
1924 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1925 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1926 if (pmd_present(pmd))
1928 VM_BUG_ON(!pmd_none(*new_pmd));
1930 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1932 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1933 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1935 pmd = move_soft_dirty_pmd(pmd);
1936 set_pmd_at(mm, new_addr, new_pmd, pmd);
1938 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1939 if (new_ptl != old_ptl)
1940 spin_unlock(new_ptl);
1941 spin_unlock(old_ptl);
1949 * - 0 if PMD could not be locked
1950 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1951 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1953 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1954 unsigned long addr, pgprot_t newprot, int prot_numa)
1956 struct mm_struct *mm = vma->vm_mm;
1959 bool preserve_write;
1962 ptl = __pmd_trans_huge_lock(pmd, vma);
1966 preserve_write = prot_numa && pmd_write(*pmd);
1969 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1970 if (is_swap_pmd(*pmd)) {
1971 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1973 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1974 if (is_write_migration_entry(entry)) {
1977 * A protection check is difficult so
1978 * just be safe and disable write
1980 make_migration_entry_read(&entry);
1981 newpmd = swp_entry_to_pmd(entry);
1982 if (pmd_swp_soft_dirty(*pmd))
1983 newpmd = pmd_swp_mksoft_dirty(newpmd);
1984 set_pmd_at(mm, addr, pmd, newpmd);
1991 * Avoid trapping faults against the zero page. The read-only
1992 * data is likely to be read-cached on the local CPU and
1993 * local/remote hits to the zero page are not interesting.
1995 if (prot_numa && is_huge_zero_pmd(*pmd))
1998 if (prot_numa && pmd_protnone(*pmd))
2002 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2003 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2004 * which is also under down_read(mmap_sem):
2007 * change_huge_pmd(prot_numa=1)
2008 * pmdp_huge_get_and_clear_notify()
2009 * madvise_dontneed()
2011 * pmd_trans_huge(*pmd) == 0 (without ptl)
2014 * // pmd is re-established
2016 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2017 * which may break userspace.
2019 * pmdp_invalidate() is required to make sure we don't miss
2020 * dirty/young flags set by hardware.
2022 entry = pmdp_invalidate(vma, addr, pmd);
2024 entry = pmd_modify(entry, newprot);
2026 entry = pmd_mk_savedwrite(entry);
2028 set_pmd_at(mm, addr, pmd, entry);
2029 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2036 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2038 * Note that if it returns page table lock pointer, this routine returns without
2039 * unlocking page table lock. So callers must unlock it.
2041 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2044 ptl = pmd_lock(vma->vm_mm, pmd);
2045 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2053 * Returns true if a given pud maps a thp, false otherwise.
2055 * Note that if it returns true, this routine returns without unlocking page
2056 * table lock. So callers must unlock it.
2058 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2062 ptl = pud_lock(vma->vm_mm, pud);
2063 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2069 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2070 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2071 pud_t *pud, unsigned long addr)
2075 ptl = __pud_trans_huge_lock(pud, vma);
2079 * For architectures like ppc64 we look at deposited pgtable
2080 * when calling pudp_huge_get_and_clear. So do the
2081 * pgtable_trans_huge_withdraw after finishing pudp related
2084 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2085 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2086 if (vma_is_dax(vma)) {
2088 /* No zero page support yet */
2090 /* No support for anonymous PUD pages yet */
2096 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2097 unsigned long haddr)
2099 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2100 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2101 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2102 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2104 count_vm_event(THP_SPLIT_PUD);
2106 pudp_huge_clear_flush_notify(vma, haddr, pud);
2109 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2110 unsigned long address)
2113 struct mmu_notifier_range range;
2115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2116 address & HPAGE_PUD_MASK,
2117 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2118 mmu_notifier_invalidate_range_start(&range);
2119 ptl = pud_lock(vma->vm_mm, pud);
2120 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2122 __split_huge_pud_locked(vma, pud, range.start);
2127 * No need to double call mmu_notifier->invalidate_range() callback as
2128 * the above pudp_huge_clear_flush_notify() did already call it.
2130 mmu_notifier_invalidate_range_only_end(&range);
2132 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2134 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2135 unsigned long haddr, pmd_t *pmd)
2137 struct mm_struct *mm = vma->vm_mm;
2143 * Leave pmd empty until pte is filled note that it is fine to delay
2144 * notification until mmu_notifier_invalidate_range_end() as we are
2145 * replacing a zero pmd write protected page with a zero pte write
2148 * See Documentation/vm/mmu_notifier.rst
2150 pmdp_huge_clear_flush(vma, haddr, pmd);
2152 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2153 pmd_populate(mm, &_pmd, pgtable);
2155 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2157 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2158 entry = pte_mkspecial(entry);
2159 pte = pte_offset_map(&_pmd, haddr);
2160 VM_BUG_ON(!pte_none(*pte));
2161 set_pte_at(mm, haddr, pte, entry);
2164 smp_wmb(); /* make pte visible before pmd */
2165 pmd_populate(mm, pmd, pgtable);
2168 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2169 unsigned long haddr, bool freeze)
2171 struct mm_struct *mm = vma->vm_mm;
2174 pmd_t old_pmd, _pmd;
2175 bool young, write, soft_dirty, pmd_migration = false;
2179 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2180 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2181 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2182 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2183 && !pmd_devmap(*pmd));
2185 count_vm_event(THP_SPLIT_PMD);
2187 if (!vma_is_anonymous(vma)) {
2188 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2190 * We are going to unmap this huge page. So
2191 * just go ahead and zap it
2193 if (arch_needs_pgtable_deposit())
2194 zap_deposited_table(mm, pmd);
2195 if (vma_is_dax(vma))
2197 page = pmd_page(_pmd);
2198 if (!PageDirty(page) && pmd_dirty(_pmd))
2199 set_page_dirty(page);
2200 if (!PageReferenced(page) && pmd_young(_pmd))
2201 SetPageReferenced(page);
2202 page_remove_rmap(page, true);
2204 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2206 } else if (is_huge_zero_pmd(*pmd)) {
2208 * FIXME: Do we want to invalidate secondary mmu by calling
2209 * mmu_notifier_invalidate_range() see comments below inside
2210 * __split_huge_pmd() ?
2212 * We are going from a zero huge page write protected to zero
2213 * small page also write protected so it does not seems useful
2214 * to invalidate secondary mmu at this time.
2216 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2220 * Up to this point the pmd is present and huge and userland has the
2221 * whole access to the hugepage during the split (which happens in
2222 * place). If we overwrite the pmd with the not-huge version pointing
2223 * to the pte here (which of course we could if all CPUs were bug
2224 * free), userland could trigger a small page size TLB miss on the
2225 * small sized TLB while the hugepage TLB entry is still established in
2226 * the huge TLB. Some CPU doesn't like that.
2227 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2228 * 383 on page 93. Intel should be safe but is also warns that it's
2229 * only safe if the permission and cache attributes of the two entries
2230 * loaded in the two TLB is identical (which should be the case here).
2231 * But it is generally safer to never allow small and huge TLB entries
2232 * for the same virtual address to be loaded simultaneously. So instead
2233 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2234 * current pmd notpresent (atomically because here the pmd_trans_huge
2235 * must remain set at all times on the pmd until the split is complete
2236 * for this pmd), then we flush the SMP TLB and finally we write the
2237 * non-huge version of the pmd entry with pmd_populate.
2239 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2241 pmd_migration = is_pmd_migration_entry(old_pmd);
2242 if (unlikely(pmd_migration)) {
2245 entry = pmd_to_swp_entry(old_pmd);
2246 page = pfn_to_page(swp_offset(entry));
2247 write = is_write_migration_entry(entry);
2249 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2251 page = pmd_page(old_pmd);
2252 if (pmd_dirty(old_pmd))
2254 write = pmd_write(old_pmd);
2255 young = pmd_young(old_pmd);
2256 soft_dirty = pmd_soft_dirty(old_pmd);
2258 VM_BUG_ON_PAGE(!page_count(page), page);
2259 page_ref_add(page, HPAGE_PMD_NR - 1);
2262 * Withdraw the table only after we mark the pmd entry invalid.
2263 * This's critical for some architectures (Power).
2265 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2266 pmd_populate(mm, &_pmd, pgtable);
2268 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2271 * Note that NUMA hinting access restrictions are not
2272 * transferred to avoid any possibility of altering
2273 * permissions across VMAs.
2275 if (freeze || pmd_migration) {
2276 swp_entry_t swp_entry;
2277 swp_entry = make_migration_entry(page + i, write);
2278 entry = swp_entry_to_pte(swp_entry);
2280 entry = pte_swp_mksoft_dirty(entry);
2282 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2283 entry = maybe_mkwrite(entry, vma);
2285 entry = pte_wrprotect(entry);
2287 entry = pte_mkold(entry);
2289 entry = pte_mksoft_dirty(entry);
2291 pte = pte_offset_map(&_pmd, addr);
2292 BUG_ON(!pte_none(*pte));
2293 set_pte_at(mm, addr, pte, entry);
2294 atomic_inc(&page[i]._mapcount);
2299 * Set PG_double_map before dropping compound_mapcount to avoid
2300 * false-negative page_mapped().
2302 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2303 for (i = 0; i < HPAGE_PMD_NR; i++)
2304 atomic_inc(&page[i]._mapcount);
2307 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2308 /* Last compound_mapcount is gone. */
2309 __dec_node_page_state(page, NR_ANON_THPS);
2310 if (TestClearPageDoubleMap(page)) {
2311 /* No need in mapcount reference anymore */
2312 for (i = 0; i < HPAGE_PMD_NR; i++)
2313 atomic_dec(&page[i]._mapcount);
2317 smp_wmb(); /* make pte visible before pmd */
2318 pmd_populate(mm, pmd, pgtable);
2321 for (i = 0; i < HPAGE_PMD_NR; i++) {
2322 page_remove_rmap(page + i, false);
2328 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2329 unsigned long address, bool freeze, struct page *page)
2332 struct mmu_notifier_range range;
2334 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2335 address & HPAGE_PMD_MASK,
2336 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2337 mmu_notifier_invalidate_range_start(&range);
2338 ptl = pmd_lock(vma->vm_mm, pmd);
2341 * If caller asks to setup a migration entries, we need a page to check
2342 * pmd against. Otherwise we can end up replacing wrong page.
2344 VM_BUG_ON(freeze && !page);
2345 if (page && page != pmd_page(*pmd))
2348 if (pmd_trans_huge(*pmd)) {
2349 page = pmd_page(*pmd);
2350 if (PageMlocked(page))
2351 clear_page_mlock(page);
2352 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2354 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2358 * No need to double call mmu_notifier->invalidate_range() callback.
2359 * They are 3 cases to consider inside __split_huge_pmd_locked():
2360 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2361 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2362 * fault will trigger a flush_notify before pointing to a new page
2363 * (it is fine if the secondary mmu keeps pointing to the old zero
2364 * page in the meantime)
2365 * 3) Split a huge pmd into pte pointing to the same page. No need
2366 * to invalidate secondary tlb entry they are all still valid.
2367 * any further changes to individual pte will notify. So no need
2368 * to call mmu_notifier->invalidate_range()
2370 mmu_notifier_invalidate_range_only_end(&range);
2373 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2374 bool freeze, struct page *page)
2381 pgd = pgd_offset(vma->vm_mm, address);
2382 if (!pgd_present(*pgd))
2385 p4d = p4d_offset(pgd, address);
2386 if (!p4d_present(*p4d))
2389 pud = pud_offset(p4d, address);
2390 if (!pud_present(*pud))
2393 pmd = pmd_offset(pud, address);
2395 __split_huge_pmd(vma, pmd, address, freeze, page);
2398 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2399 unsigned long start,
2404 * If the new start address isn't hpage aligned and it could
2405 * previously contain an hugepage: check if we need to split
2408 if (start & ~HPAGE_PMD_MASK &&
2409 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2410 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2411 split_huge_pmd_address(vma, start, false, NULL);
2414 * If the new end address isn't hpage aligned and it could
2415 * previously contain an hugepage: check if we need to split
2418 if (end & ~HPAGE_PMD_MASK &&
2419 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2420 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2421 split_huge_pmd_address(vma, end, false, NULL);
2424 * If we're also updating the vma->vm_next->vm_start, if the new
2425 * vm_next->vm_start isn't page aligned and it could previously
2426 * contain an hugepage: check if we need to split an huge pmd.
2428 if (adjust_next > 0) {
2429 struct vm_area_struct *next = vma->vm_next;
2430 unsigned long nstart = next->vm_start;
2431 nstart += adjust_next << PAGE_SHIFT;
2432 if (nstart & ~HPAGE_PMD_MASK &&
2433 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2434 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2435 split_huge_pmd_address(next, nstart, false, NULL);
2439 static void unmap_page(struct page *page)
2441 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2442 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2445 VM_BUG_ON_PAGE(!PageHead(page), page);
2448 ttu_flags |= TTU_SPLIT_FREEZE;
2450 unmap_success = try_to_unmap(page, ttu_flags);
2451 VM_BUG_ON_PAGE(!unmap_success, page);
2454 static void remap_page(struct page *page)
2457 if (PageTransHuge(page)) {
2458 remove_migration_ptes(page, page, true);
2460 for (i = 0; i < HPAGE_PMD_NR; i++)
2461 remove_migration_ptes(page + i, page + i, true);
2465 static void __split_huge_page_tail(struct page *head, int tail,
2466 struct lruvec *lruvec, struct list_head *list)
2468 struct page *page_tail = head + tail;
2470 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2473 * Clone page flags before unfreezing refcount.
2475 * After successful get_page_unless_zero() might follow flags change,
2476 * for exmaple lock_page() which set PG_waiters.
2478 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2479 page_tail->flags |= (head->flags &
2480 ((1L << PG_referenced) |
2481 (1L << PG_swapbacked) |
2482 (1L << PG_swapcache) |
2483 (1L << PG_mlocked) |
2484 (1L << PG_uptodate) |
2486 (1L << PG_workingset) |
2488 (1L << PG_unevictable) |
2491 /* ->mapping in first tail page is compound_mapcount */
2492 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2494 page_tail->mapping = head->mapping;
2495 page_tail->index = head->index + tail;
2497 /* Page flags must be visible before we make the page non-compound. */
2501 * Clear PageTail before unfreezing page refcount.
2503 * After successful get_page_unless_zero() might follow put_page()
2504 * which needs correct compound_head().
2506 clear_compound_head(page_tail);
2508 /* Finally unfreeze refcount. Additional reference from page cache. */
2509 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2510 PageSwapCache(head)));
2512 if (page_is_young(head))
2513 set_page_young(page_tail);
2514 if (page_is_idle(head))
2515 set_page_idle(page_tail);
2517 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2520 * always add to the tail because some iterators expect new
2521 * pages to show after the currently processed elements - e.g.
2524 lru_add_page_tail(head, page_tail, lruvec, list);
2527 static void __split_huge_page(struct page *page, struct list_head *list,
2528 pgoff_t end, unsigned long flags)
2530 struct page *head = compound_head(page);
2531 pg_data_t *pgdat = page_pgdat(head);
2532 struct lruvec *lruvec;
2533 struct address_space *swap_cache = NULL;
2534 unsigned long offset = 0;
2537 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2539 /* complete memcg works before add pages to LRU */
2540 mem_cgroup_split_huge_fixup(head);
2542 if (PageAnon(head) && PageSwapCache(head)) {
2543 swp_entry_t entry = { .val = page_private(head) };
2545 offset = swp_offset(entry);
2546 swap_cache = swap_address_space(entry);
2547 xa_lock(&swap_cache->i_pages);
2550 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2551 __split_huge_page_tail(head, i, lruvec, list);
2552 /* Some pages can be beyond i_size: drop them from page cache */
2553 if (head[i].index >= end) {
2554 ClearPageDirty(head + i);
2555 __delete_from_page_cache(head + i, NULL);
2556 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2557 shmem_uncharge(head->mapping->host, 1);
2559 } else if (!PageAnon(page)) {
2560 __xa_store(&head->mapping->i_pages, head[i].index,
2562 } else if (swap_cache) {
2563 __xa_store(&swap_cache->i_pages, offset + i,
2568 ClearPageCompound(head);
2570 split_page_owner(head, HPAGE_PMD_ORDER);
2572 /* See comment in __split_huge_page_tail() */
2573 if (PageAnon(head)) {
2574 /* Additional pin to swap cache */
2575 if (PageSwapCache(head)) {
2576 page_ref_add(head, 2);
2577 xa_unlock(&swap_cache->i_pages);
2582 /* Additional pin to page cache */
2583 page_ref_add(head, 2);
2584 xa_unlock(&head->mapping->i_pages);
2587 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2591 for (i = 0; i < HPAGE_PMD_NR; i++) {
2592 struct page *subpage = head + i;
2593 if (subpage == page)
2595 unlock_page(subpage);
2598 * Subpages may be freed if there wasn't any mapping
2599 * like if add_to_swap() is running on a lru page that
2600 * had its mapping zapped. And freeing these pages
2601 * requires taking the lru_lock so we do the put_page
2602 * of the tail pages after the split is complete.
2608 int total_mapcount(struct page *page)
2610 int i, compound, ret;
2612 VM_BUG_ON_PAGE(PageTail(page), page);
2614 if (likely(!PageCompound(page)))
2615 return atomic_read(&page->_mapcount) + 1;
2617 compound = compound_mapcount(page);
2621 for (i = 0; i < HPAGE_PMD_NR; i++)
2622 ret += atomic_read(&page[i]._mapcount) + 1;
2623 /* File pages has compound_mapcount included in _mapcount */
2624 if (!PageAnon(page))
2625 return ret - compound * HPAGE_PMD_NR;
2626 if (PageDoubleMap(page))
2627 ret -= HPAGE_PMD_NR;
2632 * This calculates accurately how many mappings a transparent hugepage
2633 * has (unlike page_mapcount() which isn't fully accurate). This full
2634 * accuracy is primarily needed to know if copy-on-write faults can
2635 * reuse the page and change the mapping to read-write instead of
2636 * copying them. At the same time this returns the total_mapcount too.
2638 * The function returns the highest mapcount any one of the subpages
2639 * has. If the return value is one, even if different processes are
2640 * mapping different subpages of the transparent hugepage, they can
2641 * all reuse it, because each process is reusing a different subpage.
2643 * The total_mapcount is instead counting all virtual mappings of the
2644 * subpages. If the total_mapcount is equal to "one", it tells the
2645 * caller all mappings belong to the same "mm" and in turn the
2646 * anon_vma of the transparent hugepage can become the vma->anon_vma
2647 * local one as no other process may be mapping any of the subpages.
2649 * It would be more accurate to replace page_mapcount() with
2650 * page_trans_huge_mapcount(), however we only use
2651 * page_trans_huge_mapcount() in the copy-on-write faults where we
2652 * need full accuracy to avoid breaking page pinning, because
2653 * page_trans_huge_mapcount() is slower than page_mapcount().
2655 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2657 int i, ret, _total_mapcount, mapcount;
2659 /* hugetlbfs shouldn't call it */
2660 VM_BUG_ON_PAGE(PageHuge(page), page);
2662 if (likely(!PageTransCompound(page))) {
2663 mapcount = atomic_read(&page->_mapcount) + 1;
2665 *total_mapcount = mapcount;
2669 page = compound_head(page);
2671 _total_mapcount = ret = 0;
2672 for (i = 0; i < HPAGE_PMD_NR; i++) {
2673 mapcount = atomic_read(&page[i]._mapcount) + 1;
2674 ret = max(ret, mapcount);
2675 _total_mapcount += mapcount;
2677 if (PageDoubleMap(page)) {
2679 _total_mapcount -= HPAGE_PMD_NR;
2681 mapcount = compound_mapcount(page);
2683 _total_mapcount += mapcount;
2685 *total_mapcount = _total_mapcount;
2689 /* Racy check whether the huge page can be split */
2690 bool can_split_huge_page(struct page *page, int *pextra_pins)
2694 /* Additional pins from page cache */
2696 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2698 extra_pins = HPAGE_PMD_NR;
2700 *pextra_pins = extra_pins;
2701 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2705 * This function splits huge page into normal pages. @page can point to any
2706 * subpage of huge page to split. Split doesn't change the position of @page.
2708 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2709 * The huge page must be locked.
2711 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2713 * Both head page and tail pages will inherit mapping, flags, and so on from
2716 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2717 * they are not mapped.
2719 * Returns 0 if the hugepage is split successfully.
2720 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2723 int split_huge_page_to_list(struct page *page, struct list_head *list)
2725 struct page *head = compound_head(page);
2726 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2727 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2728 struct anon_vma *anon_vma = NULL;
2729 struct address_space *mapping = NULL;
2730 int count, mapcount, extra_pins, ret;
2732 unsigned long flags;
2735 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2736 VM_BUG_ON_PAGE(!PageLocked(head), head);
2737 VM_BUG_ON_PAGE(!PageCompound(head), head);
2739 if (PageWriteback(head))
2742 if (PageAnon(head)) {
2744 * The caller does not necessarily hold an mmap_sem that would
2745 * prevent the anon_vma disappearing so we first we take a
2746 * reference to it and then lock the anon_vma for write. This
2747 * is similar to page_lock_anon_vma_read except the write lock
2748 * is taken to serialise against parallel split or collapse
2751 anon_vma = page_get_anon_vma(head);
2758 anon_vma_lock_write(anon_vma);
2760 mapping = head->mapping;
2769 i_mmap_lock_read(mapping);
2772 *__split_huge_page() may need to trim off pages beyond EOF:
2773 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2774 * which cannot be nested inside the page tree lock. So note
2775 * end now: i_size itself may be changed at any moment, but
2776 * head page lock is good enough to serialize the trimming.
2778 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2782 * Racy check if we can split the page, before unmap_page() will
2785 if (!can_split_huge_page(head, &extra_pins)) {
2790 mlocked = PageMlocked(head);
2792 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2794 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2798 /* prevent PageLRU to go away from under us, and freeze lru stats */
2799 spin_lock_irqsave(&pgdata->lru_lock, flags);
2802 XA_STATE(xas, &mapping->i_pages, page_index(head));
2805 * Check if the head page is present in page cache.
2806 * We assume all tail are present too, if head is there.
2808 xa_lock(&mapping->i_pages);
2809 if (xas_load(&xas) != head)
2813 /* Prevent deferred_split_scan() touching ->_refcount */
2814 spin_lock(&ds_queue->split_queue_lock);
2815 count = page_count(head);
2816 mapcount = total_mapcount(head);
2817 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2818 if (!list_empty(page_deferred_list(head))) {
2819 ds_queue->split_queue_len--;
2820 list_del(page_deferred_list(head));
2822 spin_unlock(&ds_queue->split_queue_lock);
2824 if (PageSwapBacked(head))
2825 __dec_node_page_state(head, NR_SHMEM_THPS);
2827 __dec_node_page_state(head, NR_FILE_THPS);
2830 __split_huge_page(page, list, end, flags);
2831 if (PageSwapCache(head)) {
2832 swp_entry_t entry = { .val = page_private(head) };
2834 ret = split_swap_cluster(entry);
2838 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2839 pr_alert("total_mapcount: %u, page_count(): %u\n",
2842 dump_page(head, NULL);
2843 dump_page(page, "total_mapcount(head) > 0");
2846 spin_unlock(&ds_queue->split_queue_lock);
2848 xa_unlock(&mapping->i_pages);
2849 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2856 anon_vma_unlock_write(anon_vma);
2857 put_anon_vma(anon_vma);
2860 i_mmap_unlock_read(mapping);
2862 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2866 void free_transhuge_page(struct page *page)
2868 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2869 unsigned long flags;
2871 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2872 if (!list_empty(page_deferred_list(page))) {
2873 ds_queue->split_queue_len--;
2874 list_del(page_deferred_list(page));
2876 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2877 free_compound_page(page);
2880 void deferred_split_huge_page(struct page *page)
2882 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2884 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2886 unsigned long flags;
2888 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2891 * The try_to_unmap() in page reclaim path might reach here too,
2892 * this may cause a race condition to corrupt deferred split queue.
2893 * And, if page reclaim is already handling the same page, it is
2894 * unnecessary to handle it again in shrinker.
2896 * Check PageSwapCache to determine if the page is being
2897 * handled by page reclaim since THP swap would add the page into
2898 * swap cache before calling try_to_unmap().
2900 if (PageSwapCache(page))
2903 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2904 if (list_empty(page_deferred_list(page))) {
2905 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2906 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2907 ds_queue->split_queue_len++;
2910 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2911 deferred_split_shrinker.id);
2914 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2917 static unsigned long deferred_split_count(struct shrinker *shrink,
2918 struct shrink_control *sc)
2920 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2921 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2925 ds_queue = &sc->memcg->deferred_split_queue;
2927 return READ_ONCE(ds_queue->split_queue_len);
2930 static unsigned long deferred_split_scan(struct shrinker *shrink,
2931 struct shrink_control *sc)
2933 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2934 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2935 unsigned long flags;
2936 LIST_HEAD(list), *pos, *next;
2942 ds_queue = &sc->memcg->deferred_split_queue;
2945 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2946 /* Take pin on all head pages to avoid freeing them under us */
2947 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2948 page = list_entry((void *)pos, struct page, mapping);
2949 page = compound_head(page);
2950 if (get_page_unless_zero(page)) {
2951 list_move(page_deferred_list(page), &list);
2953 /* We lost race with put_compound_page() */
2954 list_del_init(page_deferred_list(page));
2955 ds_queue->split_queue_len--;
2957 if (!--sc->nr_to_scan)
2960 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2962 list_for_each_safe(pos, next, &list) {
2963 page = list_entry((void *)pos, struct page, mapping);
2964 if (!trylock_page(page))
2966 /* split_huge_page() removes page from list on success */
2967 if (!split_huge_page(page))
2974 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2975 list_splice_tail(&list, &ds_queue->split_queue);
2976 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2979 * Stop shrinker if we didn't split any page, but the queue is empty.
2980 * This can happen if pages were freed under us.
2982 if (!split && list_empty(&ds_queue->split_queue))
2987 static struct shrinker deferred_split_shrinker = {
2988 .count_objects = deferred_split_count,
2989 .scan_objects = deferred_split_scan,
2990 .seeks = DEFAULT_SEEKS,
2991 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2995 #ifdef CONFIG_DEBUG_FS
2996 static int split_huge_pages_set(void *data, u64 val)
3000 unsigned long pfn, max_zone_pfn;
3001 unsigned long total = 0, split = 0;
3006 for_each_populated_zone(zone) {
3007 max_zone_pfn = zone_end_pfn(zone);
3008 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3009 if (!pfn_valid(pfn))
3012 page = pfn_to_page(pfn);
3013 if (!get_page_unless_zero(page))
3016 if (zone != page_zone(page))
3019 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3024 if (!split_huge_page(page))
3032 pr_info("%lu of %lu THP split\n", split, total);
3036 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3039 static int __init split_huge_pages_debugfs(void)
3041 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3042 &split_huge_pages_fops);
3045 late_initcall(split_huge_pages_debugfs);
3048 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3049 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3052 struct vm_area_struct *vma = pvmw->vma;
3053 struct mm_struct *mm = vma->vm_mm;
3054 unsigned long address = pvmw->address;
3059 if (!(pvmw->pmd && !pvmw->pte))
3062 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3063 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3064 if (pmd_dirty(pmdval))
3065 set_page_dirty(page);
3066 entry = make_migration_entry(page, pmd_write(pmdval));
3067 pmdswp = swp_entry_to_pmd(entry);
3068 if (pmd_soft_dirty(pmdval))
3069 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3070 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3071 page_remove_rmap(page, true);
3075 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3077 struct vm_area_struct *vma = pvmw->vma;
3078 struct mm_struct *mm = vma->vm_mm;
3079 unsigned long address = pvmw->address;
3080 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3084 if (!(pvmw->pmd && !pvmw->pte))
3087 entry = pmd_to_swp_entry(*pvmw->pmd);
3089 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3090 if (pmd_swp_soft_dirty(*pvmw->pmd))
3091 pmde = pmd_mksoft_dirty(pmde);
3092 if (is_write_migration_entry(entry))
3093 pmde = maybe_pmd_mkwrite(pmde, vma);
3095 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3097 page_add_anon_rmap(new, vma, mmun_start, true);
3099 page_add_file_rmap(new, true);
3100 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3101 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3102 mlock_vma_page(new);
3103 update_mmu_cache_pmd(vma, address, pvmw->pmd);