2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
35 #include <asm/pgalloc.h>
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
57 static struct shrinker deferred_split_shrinker;
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
62 struct page *get_huge_zero_page(void)
64 struct page *zero_page;
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
79 __free_pages(zero_page, compound_order(zero_page));
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
86 return READ_ONCE(huge_zero_page);
89 void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
99 struct shrink_control *sc)
101 /* we can free zero page only if last reference remains */
102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
106 struct shrink_control *sc)
108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109 struct page *zero_page = xchg(&huge_zero_page, NULL);
110 BUG_ON(zero_page == NULL);
111 __free_pages(zero_page, compound_order(zero_page));
118 static struct shrinker huge_zero_page_shrinker = {
119 .count_objects = shrink_huge_zero_page_count,
120 .scan_objects = shrink_huge_zero_page_scan,
121 .seeks = DEFAULT_SEEKS,
126 static ssize_t triple_flag_store(struct kobject *kobj,
127 struct kobj_attribute *attr,
128 const char *buf, size_t count,
129 enum transparent_hugepage_flag enabled,
130 enum transparent_hugepage_flag deferred,
131 enum transparent_hugepage_flag req_madv)
133 if (!memcmp("defer", buf,
134 min(sizeof("defer")-1, count))) {
135 if (enabled == deferred)
137 clear_bit(enabled, &transparent_hugepage_flags);
138 clear_bit(req_madv, &transparent_hugepage_flags);
139 set_bit(deferred, &transparent_hugepage_flags);
140 } else if (!memcmp("always", buf,
141 min(sizeof("always")-1, count))) {
142 clear_bit(deferred, &transparent_hugepage_flags);
143 clear_bit(req_madv, &transparent_hugepage_flags);
144 set_bit(enabled, &transparent_hugepage_flags);
145 } else if (!memcmp("madvise", buf,
146 min(sizeof("madvise")-1, count))) {
147 clear_bit(enabled, &transparent_hugepage_flags);
148 clear_bit(deferred, &transparent_hugepage_flags);
149 set_bit(req_madv, &transparent_hugepage_flags);
150 } else if (!memcmp("never", buf,
151 min(sizeof("never")-1, count))) {
152 clear_bit(enabled, &transparent_hugepage_flags);
153 clear_bit(req_madv, &transparent_hugepage_flags);
154 clear_bit(deferred, &transparent_hugepage_flags);
161 static ssize_t enabled_show(struct kobject *kobj,
162 struct kobj_attribute *attr, char *buf)
164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "[always] madvise never\n");
166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "always [madvise] never\n");
169 return sprintf(buf, "always madvise [never]\n");
172 static ssize_t enabled_store(struct kobject *kobj,
173 struct kobj_attribute *attr,
174 const char *buf, size_t count)
178 ret = triple_flag_store(kobj, attr, buf, count,
179 TRANSPARENT_HUGEPAGE_FLAG,
180 TRANSPARENT_HUGEPAGE_FLAG,
181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
184 int err = start_stop_khugepaged();
191 static struct kobj_attribute enabled_attr =
192 __ATTR(enabled, 0644, enabled_show, enabled_store);
194 ssize_t single_hugepage_flag_show(struct kobject *kobj,
195 struct kobj_attribute *attr, char *buf,
196 enum transparent_hugepage_flag flag)
198 return sprintf(buf, "%d\n",
199 !!test_bit(flag, &transparent_hugepage_flags));
202 ssize_t single_hugepage_flag_store(struct kobject *kobj,
203 struct kobj_attribute *attr,
204 const char *buf, size_t count,
205 enum transparent_hugepage_flag flag)
210 ret = kstrtoul(buf, 10, &value);
217 set_bit(flag, &transparent_hugepage_flags);
219 clear_bit(flag, &transparent_hugepage_flags);
225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227 * memory just to allocate one more hugepage.
229 static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233 return sprintf(buf, "[always] defer madvise never\n");
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "always [defer] madvise never\n");
236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always defer [madvise] never\n");
239 return sprintf(buf, "always defer madvise [never]\n");
242 static ssize_t defrag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count)
246 return triple_flag_store(kobj, attr, buf, count,
247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
251 static struct kobj_attribute defrag_attr =
252 __ATTR(defrag, 0644, defrag_show, defrag_store);
254 static ssize_t use_zero_page_show(struct kobject *kobj,
255 struct kobj_attribute *attr, char *buf)
257 return single_hugepage_flag_show(kobj, attr, buf,
258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
260 static ssize_t use_zero_page_store(struct kobject *kobj,
261 struct kobj_attribute *attr, const char *buf, size_t count)
263 return single_hugepage_flag_store(kobj, attr, buf, count,
264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
266 static struct kobj_attribute use_zero_page_attr =
267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 #ifdef CONFIG_DEBUG_VM
269 static ssize_t debug_cow_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
272 return single_hugepage_flag_show(kobj, attr, buf,
273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
275 static ssize_t debug_cow_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
279 return single_hugepage_flag_store(kobj, attr, buf, count,
280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
282 static struct kobj_attribute debug_cow_attr =
283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
284 #endif /* CONFIG_DEBUG_VM */
286 static struct attribute *hugepage_attr[] = {
289 &use_zero_page_attr.attr,
290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291 &shmem_enabled_attr.attr,
293 #ifdef CONFIG_DEBUG_VM
294 &debug_cow_attr.attr,
299 static struct attribute_group hugepage_attr_group = {
300 .attrs = hugepage_attr,
303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
308 if (unlikely(!*hugepage_kobj)) {
309 pr_err("failed to create transparent hugepage kobject\n");
313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
315 pr_err("failed to register transparent hugepage group\n");
319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
321 pr_err("failed to register transparent hugepage group\n");
322 goto remove_hp_group;
328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
330 kobject_put(*hugepage_kobj);
334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
338 kobject_put(hugepage_kobj);
341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
349 #endif /* CONFIG_SYSFS */
351 static int __init hugepage_init(void)
354 struct kobject *hugepage_kobj;
356 if (!has_transparent_hugepage()) {
357 transparent_hugepage_flags = 0;
362 * hugepages can't be allocated by the buddy allocator
364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
366 * we use page->mapping and page->index in second tail page
367 * as list_head: assuming THP order >= 2
369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
371 err = hugepage_init_sysfs(&hugepage_kobj);
375 err = khugepaged_init();
379 err = register_shrinker(&huge_zero_page_shrinker);
381 goto err_hzp_shrinker;
382 err = register_shrinker(&deferred_split_shrinker);
384 goto err_split_shrinker;
387 * By default disable transparent hugepages on smaller systems,
388 * where the extra memory used could hurt more than TLB overhead
389 * is likely to save. The admin can still enable it through /sys.
391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392 transparent_hugepage_flags = 0;
396 err = start_stop_khugepaged();
402 unregister_shrinker(&deferred_split_shrinker);
404 unregister_shrinker(&huge_zero_page_shrinker);
406 khugepaged_destroy();
408 hugepage_exit_sysfs(hugepage_kobj);
412 subsys_initcall(hugepage_init);
414 static int __init setup_transparent_hugepage(char *str)
419 if (!strcmp(str, "always")) {
420 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
421 &transparent_hugepage_flags);
422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
423 &transparent_hugepage_flags);
425 } else if (!strcmp(str, "madvise")) {
426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
427 &transparent_hugepage_flags);
428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
429 &transparent_hugepage_flags);
431 } else if (!strcmp(str, "never")) {
432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
433 &transparent_hugepage_flags);
434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
435 &transparent_hugepage_flags);
440 pr_warn("transparent_hugepage= cannot parse, ignored\n");
443 __setup("transparent_hugepage=", setup_transparent_hugepage);
445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
447 if (likely(vma->vm_flags & VM_WRITE))
448 pmd = pmd_mkwrite(pmd);
452 static inline struct list_head *page_deferred_list(struct page *page)
455 * ->lru in the tail pages is occupied by compound_head.
456 * Let's use ->mapping + ->index in the second tail page as list_head.
458 return (struct list_head *)&page[2].mapping;
461 void prep_transhuge_page(struct page *page)
464 * we use page->mapping and page->indexlru in second tail page
465 * as list_head: assuming THP order >= 2
468 INIT_LIST_HEAD(page_deferred_list(page));
469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
472 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
473 loff_t off, unsigned long flags, unsigned long size)
476 loff_t off_end = off + len;
477 loff_t off_align = round_up(off, size);
478 unsigned long len_pad;
480 if (off_end <= off_align || (off_end - off_align) < size)
483 len_pad = len + size;
484 if (len_pad < len || (off + len_pad) < off)
487 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
488 off >> PAGE_SHIFT, flags);
489 if (IS_ERR_VALUE(addr))
492 addr += (off - addr) & (size - 1);
496 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
497 unsigned long len, unsigned long pgoff, unsigned long flags)
499 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
503 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
506 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
511 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
513 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
515 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
518 struct vm_area_struct *vma = fe->vma;
519 struct mem_cgroup *memcg;
521 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
523 VM_BUG_ON_PAGE(!PageCompound(page), page);
525 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
527 count_vm_event(THP_FAULT_FALLBACK);
528 return VM_FAULT_FALLBACK;
531 pgtable = pte_alloc_one(vma->vm_mm, haddr);
532 if (unlikely(!pgtable)) {
533 mem_cgroup_cancel_charge(page, memcg, true);
538 clear_huge_page(page, haddr, HPAGE_PMD_NR);
540 * The memory barrier inside __SetPageUptodate makes sure that
541 * clear_huge_page writes become visible before the set_pmd_at()
544 __SetPageUptodate(page);
546 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
547 if (unlikely(!pmd_none(*fe->pmd))) {
548 spin_unlock(fe->ptl);
549 mem_cgroup_cancel_charge(page, memcg, true);
551 pte_free(vma->vm_mm, pgtable);
555 /* Deliver the page fault to userland */
556 if (userfaultfd_missing(vma)) {
559 spin_unlock(fe->ptl);
560 mem_cgroup_cancel_charge(page, memcg, true);
562 pte_free(vma->vm_mm, pgtable);
563 ret = handle_userfault(fe, VM_UFFD_MISSING);
564 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
568 entry = mk_huge_pmd(page, vma->vm_page_prot);
569 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
570 page_add_new_anon_rmap(page, vma, haddr, true);
571 mem_cgroup_commit_charge(page, memcg, false, true);
572 lru_cache_add_active_or_unevictable(page, vma);
573 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
574 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
575 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
576 atomic_long_inc(&vma->vm_mm->nr_ptes);
577 spin_unlock(fe->ptl);
578 count_vm_event(THP_FAULT_ALLOC);
585 * If THP defrag is set to always then directly reclaim/compact as necessary
586 * If set to defer then do only background reclaim/compact and defer to khugepaged
587 * If set to madvise and the VMA is flagged then directly reclaim/compact
588 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
590 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
592 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
594 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
595 &transparent_hugepage_flags) && vma_madvised)
596 return GFP_TRANSHUGE;
597 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
598 &transparent_hugepage_flags))
599 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
600 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
601 &transparent_hugepage_flags))
602 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
604 return GFP_TRANSHUGE_LIGHT;
607 /* Caller must hold page table lock. */
608 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
609 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
610 struct page *zero_page)
615 entry = mk_pmd(zero_page, vma->vm_page_prot);
616 entry = pmd_mkhuge(entry);
618 pgtable_trans_huge_deposit(mm, pmd, pgtable);
619 set_pmd_at(mm, haddr, pmd, entry);
620 atomic_long_inc(&mm->nr_ptes);
624 int do_huge_pmd_anonymous_page(struct fault_env *fe)
626 struct vm_area_struct *vma = fe->vma;
629 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
631 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
632 return VM_FAULT_FALLBACK;
633 if (unlikely(anon_vma_prepare(vma)))
635 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
637 if (!(fe->flags & FAULT_FLAG_WRITE) &&
638 !mm_forbids_zeropage(vma->vm_mm) &&
639 transparent_hugepage_use_zero_page()) {
641 struct page *zero_page;
644 pgtable = pte_alloc_one(vma->vm_mm, haddr);
645 if (unlikely(!pgtable))
647 zero_page = get_huge_zero_page();
648 if (unlikely(!zero_page)) {
649 pte_free(vma->vm_mm, pgtable);
650 count_vm_event(THP_FAULT_FALLBACK);
651 return VM_FAULT_FALLBACK;
653 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
656 if (pmd_none(*fe->pmd)) {
657 if (userfaultfd_missing(vma)) {
658 spin_unlock(fe->ptl);
659 ret = handle_userfault(fe, VM_UFFD_MISSING);
660 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
662 set_huge_zero_page(pgtable, vma->vm_mm, vma,
663 haddr, fe->pmd, zero_page);
664 spin_unlock(fe->ptl);
668 spin_unlock(fe->ptl);
670 pte_free(vma->vm_mm, pgtable);
671 put_huge_zero_page();
675 gfp = alloc_hugepage_direct_gfpmask(vma);
676 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
677 if (unlikely(!page)) {
678 count_vm_event(THP_FAULT_FALLBACK);
679 return VM_FAULT_FALLBACK;
681 prep_transhuge_page(page);
682 return __do_huge_pmd_anonymous_page(fe, page, gfp);
685 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
686 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
688 struct mm_struct *mm = vma->vm_mm;
692 ptl = pmd_lock(mm, pmd);
693 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
694 if (pfn_t_devmap(pfn))
695 entry = pmd_mkdevmap(entry);
697 entry = pmd_mkyoung(pmd_mkdirty(entry));
698 entry = maybe_pmd_mkwrite(entry, vma);
700 set_pmd_at(mm, addr, pmd, entry);
701 update_mmu_cache_pmd(vma, addr, pmd);
705 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
706 pmd_t *pmd, pfn_t pfn, bool write)
708 pgprot_t pgprot = vma->vm_page_prot;
710 * If we had pmd_special, we could avoid all these restrictions,
711 * but we need to be consistent with PTEs and architectures that
712 * can't support a 'special' bit.
714 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
715 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
716 (VM_PFNMAP|VM_MIXEDMAP));
717 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
718 BUG_ON(!pfn_t_devmap(pfn));
720 if (addr < vma->vm_start || addr >= vma->vm_end)
721 return VM_FAULT_SIGBUS;
722 if (track_pfn_insert(vma, &pgprot, pfn))
723 return VM_FAULT_SIGBUS;
724 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
725 return VM_FAULT_NOPAGE;
727 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
729 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
735 * We should set the dirty bit only for FOLL_WRITE but for now
736 * the dirty bit in the pmd is meaningless. And if the dirty
737 * bit will become meaningful and we'll only set it with
738 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
739 * set the young bit, instead of the current set_pmd_at.
741 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
742 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
744 update_mmu_cache_pmd(vma, addr, pmd);
747 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd, int flags)
750 unsigned long pfn = pmd_pfn(*pmd);
751 struct mm_struct *mm = vma->vm_mm;
752 struct dev_pagemap *pgmap;
755 assert_spin_locked(pmd_lockptr(mm, pmd));
757 if (flags & FOLL_WRITE && !pmd_write(*pmd))
760 if (pmd_present(*pmd) && pmd_devmap(*pmd))
765 if (flags & FOLL_TOUCH)
766 touch_pmd(vma, addr, pmd);
769 * device mapped pages can only be returned if the
770 * caller will manage the page reference count.
772 if (!(flags & FOLL_GET))
773 return ERR_PTR(-EEXIST);
775 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
776 pgmap = get_dev_pagemap(pfn, NULL);
778 return ERR_PTR(-EFAULT);
779 page = pfn_to_page(pfn);
781 put_dev_pagemap(pgmap);
786 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
787 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
788 struct vm_area_struct *vma)
790 spinlock_t *dst_ptl, *src_ptl;
791 struct page *src_page;
793 pgtable_t pgtable = NULL;
796 /* Skip if can be re-fill on fault */
797 if (!vma_is_anonymous(vma))
800 pgtable = pte_alloc_one(dst_mm, addr);
801 if (unlikely(!pgtable))
804 dst_ptl = pmd_lock(dst_mm, dst_pmd);
805 src_ptl = pmd_lockptr(src_mm, src_pmd);
806 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
810 if (unlikely(!pmd_trans_huge(pmd))) {
811 pte_free(dst_mm, pgtable);
815 * When page table lock is held, the huge zero pmd should not be
816 * under splitting since we don't split the page itself, only pmd to
819 if (is_huge_zero_pmd(pmd)) {
820 struct page *zero_page;
822 * get_huge_zero_page() will never allocate a new page here,
823 * since we already have a zero page to copy. It just takes a
826 zero_page = get_huge_zero_page();
827 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
833 src_page = pmd_page(pmd);
834 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
836 page_dup_rmap(src_page, true);
837 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
838 atomic_long_inc(&dst_mm->nr_ptes);
839 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
841 pmdp_set_wrprotect(src_mm, addr, src_pmd);
842 pmd = pmd_mkold(pmd_wrprotect(pmd));
843 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
847 spin_unlock(src_ptl);
848 spin_unlock(dst_ptl);
853 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
858 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
859 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
862 entry = pmd_mkyoung(orig_pmd);
863 haddr = fe->address & HPAGE_PMD_MASK;
864 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
865 fe->flags & FAULT_FLAG_WRITE))
866 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
869 spin_unlock(fe->ptl);
872 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
875 struct vm_area_struct *vma = fe->vma;
876 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
877 struct mem_cgroup *memcg;
882 unsigned long mmun_start; /* For mmu_notifiers */
883 unsigned long mmun_end; /* For mmu_notifiers */
885 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
887 if (unlikely(!pages)) {
892 for (i = 0; i < HPAGE_PMD_NR; i++) {
893 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
894 __GFP_OTHER_NODE, vma,
895 fe->address, page_to_nid(page));
896 if (unlikely(!pages[i] ||
897 mem_cgroup_try_charge(pages[i], vma->vm_mm,
898 GFP_KERNEL, &memcg, false))) {
902 memcg = (void *)page_private(pages[i]);
903 set_page_private(pages[i], 0);
904 mem_cgroup_cancel_charge(pages[i], memcg,
912 set_page_private(pages[i], (unsigned long)memcg);
915 for (i = 0; i < HPAGE_PMD_NR; i++) {
916 copy_user_highpage(pages[i], page + i,
917 haddr + PAGE_SIZE * i, vma);
918 __SetPageUptodate(pages[i]);
923 mmun_end = haddr + HPAGE_PMD_SIZE;
924 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
926 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
927 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
929 VM_BUG_ON_PAGE(!PageHead(page), page);
931 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
932 /* leave pmd empty until pte is filled */
934 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
935 pmd_populate(vma->vm_mm, &_pmd, pgtable);
937 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
939 entry = mk_pte(pages[i], vma->vm_page_prot);
940 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
941 memcg = (void *)page_private(pages[i]);
942 set_page_private(pages[i], 0);
943 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
944 mem_cgroup_commit_charge(pages[i], memcg, false, false);
945 lru_cache_add_active_or_unevictable(pages[i], vma);
946 fe->pte = pte_offset_map(&_pmd, haddr);
947 VM_BUG_ON(!pte_none(*fe->pte));
948 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
953 smp_wmb(); /* make pte visible before pmd */
954 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
955 page_remove_rmap(page, true);
956 spin_unlock(fe->ptl);
958 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
960 ret |= VM_FAULT_WRITE;
967 spin_unlock(fe->ptl);
968 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
969 for (i = 0; i < HPAGE_PMD_NR; i++) {
970 memcg = (void *)page_private(pages[i]);
971 set_page_private(pages[i], 0);
972 mem_cgroup_cancel_charge(pages[i], memcg, false);
979 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
981 struct vm_area_struct *vma = fe->vma;
982 struct page *page = NULL, *new_page;
983 struct mem_cgroup *memcg;
984 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
985 unsigned long mmun_start; /* For mmu_notifiers */
986 unsigned long mmun_end; /* For mmu_notifiers */
987 gfp_t huge_gfp; /* for allocation and charge */
990 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
991 VM_BUG_ON_VMA(!vma->anon_vma, vma);
992 if (is_huge_zero_pmd(orig_pmd))
995 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
998 page = pmd_page(orig_pmd);
999 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1001 * We can only reuse the page if nobody else maps the huge page or it's
1004 if (page_trans_huge_mapcount(page, NULL) == 1) {
1006 entry = pmd_mkyoung(orig_pmd);
1007 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1008 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1009 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1010 ret |= VM_FAULT_WRITE;
1014 spin_unlock(fe->ptl);
1016 if (transparent_hugepage_enabled(vma) &&
1017 !transparent_hugepage_debug_cow()) {
1018 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1019 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1023 if (likely(new_page)) {
1024 prep_transhuge_page(new_page);
1027 split_huge_pmd(vma, fe->pmd, fe->address);
1028 ret |= VM_FAULT_FALLBACK;
1030 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1031 if (ret & VM_FAULT_OOM) {
1032 split_huge_pmd(vma, fe->pmd, fe->address);
1033 ret |= VM_FAULT_FALLBACK;
1037 count_vm_event(THP_FAULT_FALLBACK);
1041 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1042 huge_gfp, &memcg, true))) {
1044 split_huge_pmd(vma, fe->pmd, fe->address);
1047 ret |= VM_FAULT_FALLBACK;
1048 count_vm_event(THP_FAULT_FALLBACK);
1052 count_vm_event(THP_FAULT_ALLOC);
1055 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1057 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1058 __SetPageUptodate(new_page);
1061 mmun_end = haddr + HPAGE_PMD_SIZE;
1062 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1067 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1068 spin_unlock(fe->ptl);
1069 mem_cgroup_cancel_charge(new_page, memcg, true);
1074 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1075 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1076 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1077 page_add_new_anon_rmap(new_page, vma, haddr, true);
1078 mem_cgroup_commit_charge(new_page, memcg, false, true);
1079 lru_cache_add_active_or_unevictable(new_page, vma);
1080 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1081 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1083 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1084 put_huge_zero_page();
1086 VM_BUG_ON_PAGE(!PageHead(page), page);
1087 page_remove_rmap(page, true);
1090 ret |= VM_FAULT_WRITE;
1092 spin_unlock(fe->ptl);
1094 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1098 spin_unlock(fe->ptl);
1102 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1107 struct mm_struct *mm = vma->vm_mm;
1108 struct page *page = NULL;
1110 assert_spin_locked(pmd_lockptr(mm, pmd));
1112 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1115 /* Avoid dumping huge zero page */
1116 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1117 return ERR_PTR(-EFAULT);
1119 /* Full NUMA hinting faults to serialise migration in fault paths */
1120 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1123 page = pmd_page(*pmd);
1124 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1125 if (flags & FOLL_TOUCH)
1126 touch_pmd(vma, addr, pmd);
1127 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1129 * We don't mlock() pte-mapped THPs. This way we can avoid
1130 * leaking mlocked pages into non-VM_LOCKED VMAs.
1134 * In most cases the pmd is the only mapping of the page as we
1135 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1136 * writable private mappings in populate_vma_page_range().
1138 * The only scenario when we have the page shared here is if we
1139 * mlocking read-only mapping shared over fork(). We skip
1140 * mlocking such pages.
1144 * We can expect PageDoubleMap() to be stable under page lock:
1145 * for file pages we set it in page_add_file_rmap(), which
1146 * requires page to be locked.
1149 if (PageAnon(page) && compound_mapcount(page) != 1)
1151 if (PageDoubleMap(page) || !page->mapping)
1153 if (!trylock_page(page))
1156 if (page->mapping && !PageDoubleMap(page))
1157 mlock_vma_page(page);
1161 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1162 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1163 if (flags & FOLL_GET)
1170 /* NUMA hinting page fault entry point for trans huge pmds */
1171 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1173 struct vm_area_struct *vma = fe->vma;
1174 struct anon_vma *anon_vma = NULL;
1176 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1177 int page_nid = -1, this_nid = numa_node_id();
1178 int target_nid, last_cpupid = -1;
1180 bool migrated = false;
1184 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1185 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1189 * If there are potential migrations, wait for completion and retry
1190 * without disrupting NUMA hinting information. Do not relock and
1191 * check_same as the page may no longer be mapped.
1193 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1194 page = pmd_page(*fe->pmd);
1195 spin_unlock(fe->ptl);
1196 wait_on_page_locked(page);
1200 page = pmd_page(pmd);
1201 BUG_ON(is_huge_zero_page(page));
1202 page_nid = page_to_nid(page);
1203 last_cpupid = page_cpupid_last(page);
1204 count_vm_numa_event(NUMA_HINT_FAULTS);
1205 if (page_nid == this_nid) {
1206 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1207 flags |= TNF_FAULT_LOCAL;
1210 /* See similar comment in do_numa_page for explanation */
1211 if (!pmd_write(pmd))
1212 flags |= TNF_NO_GROUP;
1215 * Acquire the page lock to serialise THP migrations but avoid dropping
1216 * page_table_lock if at all possible
1218 page_locked = trylock_page(page);
1219 target_nid = mpol_misplaced(page, vma, haddr);
1220 if (target_nid == -1) {
1221 /* If the page was locked, there are no parallel migrations */
1226 /* Migration could have started since the pmd_trans_migrating check */
1228 spin_unlock(fe->ptl);
1229 wait_on_page_locked(page);
1235 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1236 * to serialises splits
1239 spin_unlock(fe->ptl);
1240 anon_vma = page_lock_anon_vma_read(page);
1242 /* Confirm the PMD did not change while page_table_lock was released */
1244 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1251 /* Bail if we fail to protect against THP splits for any reason */
1252 if (unlikely(!anon_vma)) {
1259 * Migrate the THP to the requested node, returns with page unlocked
1260 * and access rights restored.
1262 spin_unlock(fe->ptl);
1263 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1264 fe->pmd, pmd, fe->address, page, target_nid);
1266 flags |= TNF_MIGRATED;
1267 page_nid = target_nid;
1269 flags |= TNF_MIGRATE_FAIL;
1273 BUG_ON(!PageLocked(page));
1274 was_writable = pmd_write(pmd);
1275 pmd = pmd_modify(pmd, vma->vm_page_prot);
1276 pmd = pmd_mkyoung(pmd);
1278 pmd = pmd_mkwrite(pmd);
1279 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1280 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1283 spin_unlock(fe->ptl);
1287 page_unlock_anon_vma_read(anon_vma);
1290 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1296 * Return true if we do MADV_FREE successfully on entire pmd page.
1297 * Otherwise, return false.
1299 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1300 pmd_t *pmd, unsigned long addr, unsigned long next)
1305 struct mm_struct *mm = tlb->mm;
1308 ptl = pmd_trans_huge_lock(pmd, vma);
1313 if (is_huge_zero_pmd(orig_pmd))
1316 page = pmd_page(orig_pmd);
1318 * If other processes are mapping this page, we couldn't discard
1319 * the page unless they all do MADV_FREE so let's skip the page.
1321 if (page_mapcount(page) != 1)
1324 if (!trylock_page(page))
1328 * If user want to discard part-pages of THP, split it so MADV_FREE
1329 * will deactivate only them.
1331 if (next - addr != HPAGE_PMD_SIZE) {
1334 split_huge_page(page);
1340 if (PageDirty(page))
1341 ClearPageDirty(page);
1344 if (PageActive(page))
1345 deactivate_page(page);
1347 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1348 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1350 orig_pmd = pmd_mkold(orig_pmd);
1351 orig_pmd = pmd_mkclean(orig_pmd);
1353 set_pmd_at(mm, addr, pmd, orig_pmd);
1354 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1363 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1364 pmd_t *pmd, unsigned long addr)
1369 ptl = __pmd_trans_huge_lock(pmd, vma);
1373 * For architectures like ppc64 we look at deposited pgtable
1374 * when calling pmdp_huge_get_and_clear. So do the
1375 * pgtable_trans_huge_withdraw after finishing pmdp related
1378 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1380 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1381 if (vma_is_dax(vma)) {
1383 if (is_huge_zero_pmd(orig_pmd))
1384 tlb_remove_page(tlb, pmd_page(orig_pmd));
1385 } else if (is_huge_zero_pmd(orig_pmd)) {
1386 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1387 atomic_long_dec(&tlb->mm->nr_ptes);
1389 tlb_remove_page(tlb, pmd_page(orig_pmd));
1391 struct page *page = pmd_page(orig_pmd);
1392 page_remove_rmap(page, true);
1393 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1394 VM_BUG_ON_PAGE(!PageHead(page), page);
1395 if (PageAnon(page)) {
1397 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1398 pte_free(tlb->mm, pgtable);
1399 atomic_long_dec(&tlb->mm->nr_ptes);
1400 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1402 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1405 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1410 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1411 unsigned long new_addr, unsigned long old_end,
1412 pmd_t *old_pmd, pmd_t *new_pmd)
1414 spinlock_t *old_ptl, *new_ptl;
1416 struct mm_struct *mm = vma->vm_mm;
1418 if ((old_addr & ~HPAGE_PMD_MASK) ||
1419 (new_addr & ~HPAGE_PMD_MASK) ||
1420 old_end - old_addr < HPAGE_PMD_SIZE)
1424 * The destination pmd shouldn't be established, free_pgtables()
1425 * should have release it.
1427 if (WARN_ON(!pmd_none(*new_pmd))) {
1428 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1433 * We don't have to worry about the ordering of src and dst
1434 * ptlocks because exclusive mmap_sem prevents deadlock.
1436 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1438 new_ptl = pmd_lockptr(mm, new_pmd);
1439 if (new_ptl != old_ptl)
1440 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1441 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1442 VM_BUG_ON(!pmd_none(*new_pmd));
1444 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1445 vma_is_anonymous(vma)) {
1447 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1448 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1450 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1451 if (new_ptl != old_ptl)
1452 spin_unlock(new_ptl);
1453 spin_unlock(old_ptl);
1461 * - 0 if PMD could not be locked
1462 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1463 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1465 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1466 unsigned long addr, pgprot_t newprot, int prot_numa)
1468 struct mm_struct *mm = vma->vm_mm;
1472 ptl = __pmd_trans_huge_lock(pmd, vma);
1475 bool preserve_write = prot_numa && pmd_write(*pmd);
1479 * Avoid trapping faults against the zero page. The read-only
1480 * data is likely to be read-cached on the local CPU and
1481 * local/remote hits to the zero page are not interesting.
1483 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1488 if (!prot_numa || !pmd_protnone(*pmd)) {
1489 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1490 entry = pmd_modify(entry, newprot);
1492 entry = pmd_mkwrite(entry);
1494 set_pmd_at(mm, addr, pmd, entry);
1495 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1505 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1507 * Note that if it returns page table lock pointer, this routine returns without
1508 * unlocking page table lock. So callers must unlock it.
1510 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1513 ptl = pmd_lock(vma->vm_mm, pmd);
1514 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1520 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1521 unsigned long haddr, pmd_t *pmd)
1523 struct mm_struct *mm = vma->vm_mm;
1528 /* leave pmd empty until pte is filled */
1529 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1531 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1532 pmd_populate(mm, &_pmd, pgtable);
1534 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1536 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1537 entry = pte_mkspecial(entry);
1538 pte = pte_offset_map(&_pmd, haddr);
1539 VM_BUG_ON(!pte_none(*pte));
1540 set_pte_at(mm, haddr, pte, entry);
1543 smp_wmb(); /* make pte visible before pmd */
1544 pmd_populate(mm, pmd, pgtable);
1545 put_huge_zero_page();
1548 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1549 unsigned long haddr, bool freeze)
1551 struct mm_struct *mm = vma->vm_mm;
1555 bool young, write, dirty, soft_dirty;
1559 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1560 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1561 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1562 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1564 count_vm_event(THP_SPLIT_PMD);
1566 if (!vma_is_anonymous(vma)) {
1567 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1568 if (is_huge_zero_pmd(_pmd))
1569 put_huge_zero_page();
1570 if (vma_is_dax(vma))
1572 page = pmd_page(_pmd);
1573 if (!PageReferenced(page) && pmd_young(_pmd))
1574 SetPageReferenced(page);
1575 page_remove_rmap(page, true);
1577 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1579 } else if (is_huge_zero_pmd(*pmd)) {
1580 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1583 page = pmd_page(*pmd);
1584 VM_BUG_ON_PAGE(!page_count(page), page);
1585 page_ref_add(page, HPAGE_PMD_NR - 1);
1586 write = pmd_write(*pmd);
1587 young = pmd_young(*pmd);
1588 dirty = pmd_dirty(*pmd);
1589 soft_dirty = pmd_soft_dirty(*pmd);
1591 pmdp_huge_split_prepare(vma, haddr, pmd);
1592 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1593 pmd_populate(mm, &_pmd, pgtable);
1595 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1598 * Note that NUMA hinting access restrictions are not
1599 * transferred to avoid any possibility of altering
1600 * permissions across VMAs.
1603 swp_entry_t swp_entry;
1604 swp_entry = make_migration_entry(page + i, write);
1605 entry = swp_entry_to_pte(swp_entry);
1607 entry = pte_swp_mksoft_dirty(entry);
1609 entry = mk_pte(page + i, vma->vm_page_prot);
1610 entry = maybe_mkwrite(entry, vma);
1612 entry = pte_wrprotect(entry);
1614 entry = pte_mkold(entry);
1616 entry = pte_mksoft_dirty(entry);
1619 SetPageDirty(page + i);
1620 pte = pte_offset_map(&_pmd, addr);
1621 BUG_ON(!pte_none(*pte));
1622 set_pte_at(mm, addr, pte, entry);
1623 atomic_inc(&page[i]._mapcount);
1628 * Set PG_double_map before dropping compound_mapcount to avoid
1629 * false-negative page_mapped().
1631 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1632 for (i = 0; i < HPAGE_PMD_NR; i++)
1633 atomic_inc(&page[i]._mapcount);
1636 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1637 /* Last compound_mapcount is gone. */
1638 __dec_node_page_state(page, NR_ANON_THPS);
1639 if (TestClearPageDoubleMap(page)) {
1640 /* No need in mapcount reference anymore */
1641 for (i = 0; i < HPAGE_PMD_NR; i++)
1642 atomic_dec(&page[i]._mapcount);
1646 smp_wmb(); /* make pte visible before pmd */
1648 * Up to this point the pmd is present and huge and userland has the
1649 * whole access to the hugepage during the split (which happens in
1650 * place). If we overwrite the pmd with the not-huge version pointing
1651 * to the pte here (which of course we could if all CPUs were bug
1652 * free), userland could trigger a small page size TLB miss on the
1653 * small sized TLB while the hugepage TLB entry is still established in
1654 * the huge TLB. Some CPU doesn't like that.
1655 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1656 * 383 on page 93. Intel should be safe but is also warns that it's
1657 * only safe if the permission and cache attributes of the two entries
1658 * loaded in the two TLB is identical (which should be the case here).
1659 * But it is generally safer to never allow small and huge TLB entries
1660 * for the same virtual address to be loaded simultaneously. So instead
1661 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1662 * current pmd notpresent (atomically because here the pmd_trans_huge
1663 * and pmd_trans_splitting must remain set at all times on the pmd
1664 * until the split is complete for this pmd), then we flush the SMP TLB
1665 * and finally we write the non-huge version of the pmd entry with
1668 pmdp_invalidate(vma, haddr, pmd);
1669 pmd_populate(mm, pmd, pgtable);
1672 for (i = 0; i < HPAGE_PMD_NR; i++) {
1673 page_remove_rmap(page + i, false);
1679 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1680 unsigned long address, bool freeze, struct page *page)
1683 struct mm_struct *mm = vma->vm_mm;
1684 unsigned long haddr = address & HPAGE_PMD_MASK;
1686 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1687 ptl = pmd_lock(mm, pmd);
1690 * If caller asks to setup a migration entries, we need a page to check
1691 * pmd against. Otherwise we can end up replacing wrong page.
1693 VM_BUG_ON(freeze && !page);
1694 if (page && page != pmd_page(*pmd))
1697 if (pmd_trans_huge(*pmd)) {
1698 page = pmd_page(*pmd);
1699 if (PageMlocked(page))
1700 clear_page_mlock(page);
1701 } else if (!pmd_devmap(*pmd))
1703 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1706 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1709 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1710 bool freeze, struct page *page)
1716 pgd = pgd_offset(vma->vm_mm, address);
1717 if (!pgd_present(*pgd))
1720 pud = pud_offset(pgd, address);
1721 if (!pud_present(*pud))
1724 pmd = pmd_offset(pud, address);
1726 __split_huge_pmd(vma, pmd, address, freeze, page);
1729 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1730 unsigned long start,
1735 * If the new start address isn't hpage aligned and it could
1736 * previously contain an hugepage: check if we need to split
1739 if (start & ~HPAGE_PMD_MASK &&
1740 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1741 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1742 split_huge_pmd_address(vma, start, false, NULL);
1745 * If the new end address isn't hpage aligned and it could
1746 * previously contain an hugepage: check if we need to split
1749 if (end & ~HPAGE_PMD_MASK &&
1750 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1751 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1752 split_huge_pmd_address(vma, end, false, NULL);
1755 * If we're also updating the vma->vm_next->vm_start, if the new
1756 * vm_next->vm_start isn't page aligned and it could previously
1757 * contain an hugepage: check if we need to split an huge pmd.
1759 if (adjust_next > 0) {
1760 struct vm_area_struct *next = vma->vm_next;
1761 unsigned long nstart = next->vm_start;
1762 nstart += adjust_next << PAGE_SHIFT;
1763 if (nstart & ~HPAGE_PMD_MASK &&
1764 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1765 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1766 split_huge_pmd_address(next, nstart, false, NULL);
1770 static void freeze_page(struct page *page)
1772 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1776 VM_BUG_ON_PAGE(!PageHead(page), page);
1779 ttu_flags |= TTU_MIGRATION;
1781 /* We only need TTU_SPLIT_HUGE_PMD once */
1782 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1783 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1784 /* Cut short if the page is unmapped */
1785 if (page_count(page) == 1)
1788 ret = try_to_unmap(page + i, ttu_flags);
1790 VM_BUG_ON_PAGE(ret, page + i - 1);
1793 static void unfreeze_page(struct page *page)
1797 for (i = 0; i < HPAGE_PMD_NR; i++)
1798 remove_migration_ptes(page + i, page + i, true);
1801 static void __split_huge_page_tail(struct page *head, int tail,
1802 struct lruvec *lruvec, struct list_head *list)
1804 struct page *page_tail = head + tail;
1806 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1807 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1810 * tail_page->_refcount is zero and not changing from under us. But
1811 * get_page_unless_zero() may be running from under us on the
1812 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1813 * atomic_add(), we would then run atomic_set() concurrently with
1814 * get_page_unless_zero(), and atomic_set() is implemented in C not
1815 * using locked ops. spin_unlock on x86 sometime uses locked ops
1816 * because of PPro errata 66, 92, so unless somebody can guarantee
1817 * atomic_set() here would be safe on all archs (and not only on x86),
1818 * it's safer to use atomic_inc()/atomic_add().
1820 if (PageAnon(head)) {
1821 page_ref_inc(page_tail);
1823 /* Additional pin to radix tree */
1824 page_ref_add(page_tail, 2);
1827 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1828 page_tail->flags |= (head->flags &
1829 ((1L << PG_referenced) |
1830 (1L << PG_swapbacked) |
1831 (1L << PG_mlocked) |
1832 (1L << PG_uptodate) |
1835 (1L << PG_unevictable) |
1839 * After clearing PageTail the gup refcount can be released.
1840 * Page flags also must be visible before we make the page non-compound.
1844 clear_compound_head(page_tail);
1846 if (page_is_young(head))
1847 set_page_young(page_tail);
1848 if (page_is_idle(head))
1849 set_page_idle(page_tail);
1851 /* ->mapping in first tail page is compound_mapcount */
1852 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1854 page_tail->mapping = head->mapping;
1856 page_tail->index = head->index + tail;
1857 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1858 lru_add_page_tail(head, page_tail, lruvec, list);
1861 static void __split_huge_page(struct page *page, struct list_head *list,
1862 unsigned long flags)
1864 struct page *head = compound_head(page);
1865 struct zone *zone = page_zone(head);
1866 struct lruvec *lruvec;
1870 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1872 /* complete memcg works before add pages to LRU */
1873 mem_cgroup_split_huge_fixup(head);
1875 if (!PageAnon(page))
1876 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1878 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1879 __split_huge_page_tail(head, i, lruvec, list);
1880 /* Some pages can be beyond i_size: drop them from page cache */
1881 if (head[i].index >= end) {
1882 __ClearPageDirty(head + i);
1883 __delete_from_page_cache(head + i, NULL);
1884 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1885 shmem_uncharge(head->mapping->host, 1);
1890 ClearPageCompound(head);
1891 /* See comment in __split_huge_page_tail() */
1892 if (PageAnon(head)) {
1895 /* Additional pin to radix tree */
1896 page_ref_add(head, 2);
1897 spin_unlock(&head->mapping->tree_lock);
1900 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1902 unfreeze_page(head);
1904 for (i = 0; i < HPAGE_PMD_NR; i++) {
1905 struct page *subpage = head + i;
1906 if (subpage == page)
1908 unlock_page(subpage);
1911 * Subpages may be freed if there wasn't any mapping
1912 * like if add_to_swap() is running on a lru page that
1913 * had its mapping zapped. And freeing these pages
1914 * requires taking the lru_lock so we do the put_page
1915 * of the tail pages after the split is complete.
1921 int total_mapcount(struct page *page)
1923 int i, compound, ret;
1925 VM_BUG_ON_PAGE(PageTail(page), page);
1927 if (likely(!PageCompound(page)))
1928 return atomic_read(&page->_mapcount) + 1;
1930 compound = compound_mapcount(page);
1934 for (i = 0; i < HPAGE_PMD_NR; i++)
1935 ret += atomic_read(&page[i]._mapcount) + 1;
1936 /* File pages has compound_mapcount included in _mapcount */
1937 if (!PageAnon(page))
1938 return ret - compound * HPAGE_PMD_NR;
1939 if (PageDoubleMap(page))
1940 ret -= HPAGE_PMD_NR;
1945 * This calculates accurately how many mappings a transparent hugepage
1946 * has (unlike page_mapcount() which isn't fully accurate). This full
1947 * accuracy is primarily needed to know if copy-on-write faults can
1948 * reuse the page and change the mapping to read-write instead of
1949 * copying them. At the same time this returns the total_mapcount too.
1951 * The function returns the highest mapcount any one of the subpages
1952 * has. If the return value is one, even if different processes are
1953 * mapping different subpages of the transparent hugepage, they can
1954 * all reuse it, because each process is reusing a different subpage.
1956 * The total_mapcount is instead counting all virtual mappings of the
1957 * subpages. If the total_mapcount is equal to "one", it tells the
1958 * caller all mappings belong to the same "mm" and in turn the
1959 * anon_vma of the transparent hugepage can become the vma->anon_vma
1960 * local one as no other process may be mapping any of the subpages.
1962 * It would be more accurate to replace page_mapcount() with
1963 * page_trans_huge_mapcount(), however we only use
1964 * page_trans_huge_mapcount() in the copy-on-write faults where we
1965 * need full accuracy to avoid breaking page pinning, because
1966 * page_trans_huge_mapcount() is slower than page_mapcount().
1968 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1970 int i, ret, _total_mapcount, mapcount;
1972 /* hugetlbfs shouldn't call it */
1973 VM_BUG_ON_PAGE(PageHuge(page), page);
1975 if (likely(!PageTransCompound(page))) {
1976 mapcount = atomic_read(&page->_mapcount) + 1;
1978 *total_mapcount = mapcount;
1982 page = compound_head(page);
1984 _total_mapcount = ret = 0;
1985 for (i = 0; i < HPAGE_PMD_NR; i++) {
1986 mapcount = atomic_read(&page[i]._mapcount) + 1;
1987 ret = max(ret, mapcount);
1988 _total_mapcount += mapcount;
1990 if (PageDoubleMap(page)) {
1992 _total_mapcount -= HPAGE_PMD_NR;
1994 mapcount = compound_mapcount(page);
1996 _total_mapcount += mapcount;
1998 *total_mapcount = _total_mapcount;
2003 * This function splits huge page into normal pages. @page can point to any
2004 * subpage of huge page to split. Split doesn't change the position of @page.
2006 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2007 * The huge page must be locked.
2009 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2011 * Both head page and tail pages will inherit mapping, flags, and so on from
2014 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2015 * they are not mapped.
2017 * Returns 0 if the hugepage is split successfully.
2018 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2021 int split_huge_page_to_list(struct page *page, struct list_head *list)
2023 struct page *head = compound_head(page);
2024 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2025 struct anon_vma *anon_vma = NULL;
2026 struct address_space *mapping = NULL;
2027 int count, mapcount, extra_pins, ret;
2029 unsigned long flags;
2031 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2032 VM_BUG_ON_PAGE(!PageLocked(page), page);
2033 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2034 VM_BUG_ON_PAGE(!PageCompound(page), page);
2036 if (PageAnon(head)) {
2038 * The caller does not necessarily hold an mmap_sem that would
2039 * prevent the anon_vma disappearing so we first we take a
2040 * reference to it and then lock the anon_vma for write. This
2041 * is similar to page_lock_anon_vma_read except the write lock
2042 * is taken to serialise against parallel split or collapse
2045 anon_vma = page_get_anon_vma(head);
2052 anon_vma_lock_write(anon_vma);
2054 mapping = head->mapping;
2062 /* Addidional pins from radix tree */
2063 extra_pins = HPAGE_PMD_NR;
2065 i_mmap_lock_read(mapping);
2069 * Racy check if we can split the page, before freeze_page() will
2072 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2077 mlocked = PageMlocked(page);
2079 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2081 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2085 /* prevent PageLRU to go away from under us, and freeze lru stats */
2086 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2091 spin_lock(&mapping->tree_lock);
2092 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2095 * Check if the head page is present in radix tree.
2096 * We assume all tail are present too, if head is there.
2098 if (radix_tree_deref_slot_protected(pslot,
2099 &mapping->tree_lock) != head)
2103 /* Prevent deferred_split_scan() touching ->_refcount */
2104 spin_lock(&pgdata->split_queue_lock);
2105 count = page_count(head);
2106 mapcount = total_mapcount(head);
2107 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2108 if (!list_empty(page_deferred_list(head))) {
2109 pgdata->split_queue_len--;
2110 list_del(page_deferred_list(head));
2113 __dec_node_page_state(page, NR_SHMEM_THPS);
2114 spin_unlock(&pgdata->split_queue_lock);
2115 __split_huge_page(page, list, flags);
2118 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2119 pr_alert("total_mapcount: %u, page_count(): %u\n",
2122 dump_page(head, NULL);
2123 dump_page(page, "total_mapcount(head) > 0");
2126 spin_unlock(&pgdata->split_queue_lock);
2128 spin_unlock(&mapping->tree_lock);
2129 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2130 unfreeze_page(head);
2136 anon_vma_unlock_write(anon_vma);
2137 put_anon_vma(anon_vma);
2140 i_mmap_unlock_read(mapping);
2142 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2146 void free_transhuge_page(struct page *page)
2148 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2149 unsigned long flags;
2151 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2152 if (!list_empty(page_deferred_list(page))) {
2153 pgdata->split_queue_len--;
2154 list_del(page_deferred_list(page));
2156 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2157 free_compound_page(page);
2160 void deferred_split_huge_page(struct page *page)
2162 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2163 unsigned long flags;
2165 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2167 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2168 if (list_empty(page_deferred_list(page))) {
2169 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2170 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2171 pgdata->split_queue_len++;
2173 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2176 static unsigned long deferred_split_count(struct shrinker *shrink,
2177 struct shrink_control *sc)
2179 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2180 return ACCESS_ONCE(pgdata->split_queue_len);
2183 static unsigned long deferred_split_scan(struct shrinker *shrink,
2184 struct shrink_control *sc)
2186 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2187 unsigned long flags;
2188 LIST_HEAD(list), *pos, *next;
2192 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2193 /* Take pin on all head pages to avoid freeing them under us */
2194 list_for_each_safe(pos, next, &pgdata->split_queue) {
2195 page = list_entry((void *)pos, struct page, mapping);
2196 page = compound_head(page);
2197 if (get_page_unless_zero(page)) {
2198 list_move(page_deferred_list(page), &list);
2200 /* We lost race with put_compound_page() */
2201 list_del_init(page_deferred_list(page));
2202 pgdata->split_queue_len--;
2204 if (!--sc->nr_to_scan)
2207 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2209 list_for_each_safe(pos, next, &list) {
2210 page = list_entry((void *)pos, struct page, mapping);
2212 /* split_huge_page() removes page from list on success */
2213 if (!split_huge_page(page))
2219 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2220 list_splice_tail(&list, &pgdata->split_queue);
2221 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2224 * Stop shrinker if we didn't split any page, but the queue is empty.
2225 * This can happen if pages were freed under us.
2227 if (!split && list_empty(&pgdata->split_queue))
2232 static struct shrinker deferred_split_shrinker = {
2233 .count_objects = deferred_split_count,
2234 .scan_objects = deferred_split_scan,
2235 .seeks = DEFAULT_SEEKS,
2236 .flags = SHRINKER_NUMA_AWARE,
2239 #ifdef CONFIG_DEBUG_FS
2240 static int split_huge_pages_set(void *data, u64 val)
2244 unsigned long pfn, max_zone_pfn;
2245 unsigned long total = 0, split = 0;
2250 for_each_populated_zone(zone) {
2251 max_zone_pfn = zone_end_pfn(zone);
2252 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2253 if (!pfn_valid(pfn))
2256 page = pfn_to_page(pfn);
2257 if (!get_page_unless_zero(page))
2260 if (zone != page_zone(page))
2263 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2268 if (!split_huge_page(page))
2276 pr_info("%lu of %lu THP split\n", split, total);
2280 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2283 static int __init split_huge_pages_debugfs(void)
2287 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2288 &split_huge_pages_fops);
2290 pr_warn("Failed to create split_huge_pages in debugfs");
2293 late_initcall(split_huge_pages_debugfs);